Interval Quality: Relating
Customer-Percelved Quality To Process

Quality

Audris Mockus and David Weiss

{audris,weiss@avaya.com

Avaya Labs Research
Basking Ridge, NJ 07920
http://mockus.org/

Motivation: bridge the gap between
developer and user and measuren vivo

0 A key software engineering objective is to improve quality v
practices and tools that support requirements, design,
Implementation, verification, and maintenance

0 Needs of a user: installability, reliability, availabylitoackward
compatibility, cost, and features

0 Primary objectives

1 Can we measure user-perceived-qualtyivo?
1 Can we communicate it to the development team?
1 Is the common wisdom about software quality correct?

2 Mockus & Weiss Interval Quality: Relating Customer-Pered Quality To Process Quality

Outline

0 History of quality in communications systems
0 How to observe qualityn vivo
0 Questions

1 Can we compare quality among releases?

o Which part of the life-cycle affects quality the most?

1 Can we approximate quality using easy-to-obtain measures?
1 Does hardware or software have more impact on quality?

0O Answers

0 Yes, service, no, it depends

0 Discussion

3 Mockus & Weiss Interval Quality: Relating Customer-Peree Quality To Process Quality

Approaches to measure quality

0 Theoretical models [16]
0 Simulations (n silico)
0 Observing indirectly

o Testruns, load tests, stress tests, SW defects and failures

0 Observing directly 1N VIVO via recorded user/system actions
(not opinion surveys) has following benefits:

o 1S more realistic,

o IS more accurate,

o provides higher level of confidence,

o 1S more suited to observe an overall effect tihamitro research,
0 IS more relevant in practice.

4 Mockus & Weiss Interval Quality: Relating Customer-Pered Quality To Process Quality

History of Communications Quality [6]

0 Context: military and commercial communication systems,
1960-present

0 Goals: system outage, loss of service, degradation ofcgervi

O

O

O

Downtime of 2 hours over 40 yr, later “5 nines” (or 5 min per gea
Degradation of service, e.g, .01% calls mishandled

Faults per line per time unit, e.g., errors per 100 subsgiper year
MTBF for service or equipment, e.g, exchange MTBF, % subsigibe
with MTBF > X

Duplication levels, e.g., standby HW for systems witl64
subscribers

5 Mockus & Weiss Interval Quality: Relating Customer-Peree Quality To Process Quality

Observing in vivo — architecture

System ID Platform 5 Weekly
: snapshots
Customer Info. Release > [System ID|
[Platform |
Configuration Date modified : [Release |
: | First date |
| nventory system y
'' I nstalled base -
E System ID E : I|\3/Iet”3$/
: ystem Time : : ounds
—{ g
Alarm ID Other alarm infg MTBF
5 Augmented .
Alarm type Al arming Systern —> thkget/al am Outage duratign
P _ Outage/Restart Availability
' System ID Ticket ID Release/Platf. Population
| | Inst/runtme _
Resolution Time : Rel. launch > Survival
Other attributes Ticketing system System Id/Conf. Hazard
| Level O Levdl | | Level 2

6 Mockus & Weiss Interval Quality: Relating Customer-Pered Quality To Process Quality

Observing in vivo — primary data sources

0 Service tickets

1 Represent requests for action to remedy adverse eventgesuta
software and hardware issues, and other requests

o Manual input = not always accurate

1 Some issues may be unnoticed and/or unrepo#tes missing

0 Software alarms

1 Complete list for the systems configured to generate them
0 lrrelevant events may be included, e.g, experimental, onisgured
systems that are not in production use at the time

0 Inventory

0 Type, size, configuration, install date for each release

0 Link between deployment dates and tickets/alarms

7 Mockus & Weiss Interval Quality: Relating Customer-Peree Quality To Process Quality

Issues with commonly available data and
published analyses

0 Present

n Problem reports by month (hopefully grouped by release)
1 Sales (Installations) by month (except for freely downkiald S\W)

0 Absent

1 No link between install time and problem repos=-

o no way to get accurate estimates of hazard function (prababi
density of observing a failure conditional on the absenceaglier
failures)

1 No complete list of software outages=
o no way to get rough estimates of the underlying rate

8 Mockus & Weiss Interval Quality: Relating Customer-Peree Quality To Process Quality

Data Remedies

0 Only present state of inventory is kept=- collect snapshots to
reconstruct history

0 The accounting aggregation (by solution, license) is chife
from service (by system) or production (by release/patch)
aggregation—> remap to the finest common aggregation

0 Missing data

1 Systems observed for different periogds=- use survival curves
1 Reporting bias—- divide into groups according to service levels
and practices

0 Quantity of interest not measureg=- design measures for
upper and lower bounds

9 Mockus & Weiss Interval Quality: Relating Customer-Peree Quality To Process Quality

Practical questions

0 Can we compare quality among releases to evaluate the
effectiveness of QA practices?

0 Which part of the production/deployment/service lifedeyc
affects quality the most?

0 Can quality be approximated with easy-to-obtain measergs,
defect density?

0 Does hardware or software have more impact on quality?

10 Mockus & Weiss Interval Quality: Relating Customer-fared Quality To Process Quality

Hazard function

(Probability density of observing a failure conditionalthie absence of earlier failures)

0.8

0.6

Estimated Hazard Rate
0.4

0.2

——

0.0
I

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Runtime (years)

0 Have to adjust for runtime and separate by platform or the MVH|
characterize the currently installed base, not releasktyjua

0 Therefore, how to compare release quality?
11 Mockus & Weiss Interval Quality: Relating Customer-fared Quality To Process Quality

Interval Quality

Post inst. MR rates. Current Date

0.025
|

B O—1 months after inst.
B 0—3 months after inst.
[0O0—6 months after inst.

0.020
I

0010 0.015
I I

0.005

0.000
I

1.1 1.3 2.0 2.1 2.2 3.0 3.1

0 Fraction of customers that report software failures withim first few months of
installation

Does not account for proximity to launch, platform mix
Significant differences marked with “*”

“We live or die by this measure”
12 Mockus & Weiss Interval Quality: Relating Customer-fared Quality To Process Quality

Can we use easy-to-obtain defect density?

Lo
—
o
< DefPerKLOC/100
=¥ DefPerPreGaMR*10
% Probability 1m.
Probability 3m.
o
—
o
=<
=
<
)
(@
LO
o
o
o
¢ L)
D - “F3
I__.l - -
® *F1
o
o
o
o

rl1.1 ri1.2 rl1.3 r2.0 r2.1 r2.2

Anti-correlated?!

13 Mockus & Weiss Interval Quality: Relating Customer-fared Quality To Process Quality

High defect density leads to satisfied
customers?

0 What does any organization strive for?

14 Mockus & Weiss Interval Quality: Relating Customer-fared Quality To Process Quality

Stability = Predictability!

0 The rate at which customer problems get to Tier IV is almost
constant despite highly varying deployment and failuregat

150

1500

100
1000

Numbers of field issues
Deployed systems

50
500

0

rl.1l rl.2 rl.3 r2.0 r2.1 r2.2

Months

15 Mockus & Weiss Interval Quality: Relating Customer-fared Quality To Process Quality

Major versus Minor releases

0 Defect density numerator is about the same as for IQ because

1 Major releases are deployed more slowly to fewer customers
1 For minor releases a customer is less likely to experieneealadgo
they are deployed faster and to more customers

0 The denominator diverges because

1 Major releases have more code changed and fewer customers
1 Minor releases have less code and more customers

16 Mockus & Weiss Interval Quality: Relating Customer-fared Quality To Process Quality

Hardware vs Software

0 Limitations

............ O o Durations of SW Warm,
% .. SW Cold, HW differ by or-
o) ders of magnitude
I e R : _i_ 0 Warm rSt. don’t drOp Ca”S
E ... g ; High/CriticaI Cfg may by

— ; o unaffected
-] S s AN O - HW-High ultra conserva-
: —— tive
R TR _E_ 0 Var|ab|||ty for each esti-
E HWlow HWHgh SWCod SWAI mate may be high

0 Distribution of MTBF for 15 platform/release combinations

17 Mockus & Weiss Interval Quality: Relating Customer-feared Quality To Process Quality

Which part of the software production and
delivery contributes most to quality?

0 Development perspective - fraction of MRs removed per stage

1 Development— features, bugs introduced, and resolved

o Verification— 40% of development stage MRs (post unit-test)
0 o/ trials — 7% of development stage MRs

1 Deployment— 5% in major and 18% in minor releases

0 Customer perspective - probability of observing a failure

1 may drop up to 30 times in the first few months post-launch [15]

18 Mockus & Weiss Interval Quality: Relating Customer-fared Quality To Process Quality

In vivo Investigation — new Insights

0 Methodology

1 Service support systems provirevivo capability =— new insights
1 Results become an integral part of development practices —
continuous feedback on production changes/improvements

0 Quality insights

1 Maintenance — the most important quality improvement agtiv
1 Development process view does not represent customer views
1 Software tends to be a bigger reliability issue with a fewegtmns

0 Measurement hints

o Pick the right measure for the objective — no single “qualaxyists
o Adjust for relevant factors to avoid measuring demographic
o Bound objective, navigate around missing, biased, irr@fegata

19 Mockus & Weiss Interval Quality: Relating Customer-fared Quality To Process Quality

Thank You.

20 Mockus & Weiss Interval Quality: Relating Customer-Rared Quality To Process Quality

Limitations

0 Different characteristics of the project including nungef
customers, application domain, software size, quality
requirements are likely to affect most of the presentedeslu

0 Many projects may not have as detailed and homogeneous
service repositories

21 Mockus & Weiss Interval Quality: Relating Customer-Rared Quality To Process Quality

Methodology: Validation

0 Interview a sample of individuals operating and maintagnin
relevant systems

1 Go over recent cases the person was involved with

o to illustrate the practices (what is the nature of the wagknif why
you got it, who reviewed it)

o to understand/validate the meaning of attribute valuebe(wwas
the work done, for what purpose, by whom)

o to gather additional data: effort spent, information exaewith
other project participants

o to add experimental/task specific questions

0 Augment data via relevant models [8, 11, 1, 12]
0 Validate and clean retrieved and modeled data
0 lterate

22 Mockus & Weiss Interval Quality: Relating Customer-ared Quality To Process Quality

Methodology: Existing Models

0 Predicting the quality of a patch [12]

0 Work coordination:

o What parts of the code can be independently maintained [13]
1 Who are the experts to contact about any section of the cdije [1
1 How to measure organizational dependencies [4]

0 Effort: estimate MR effort and benchmark practices

1 What makes some changes hard [5]
1 What practices and tools work [1, 2, 3]
1 How OSS and Commercial practices differ [9]

0 Project models

1 Release schedule [14]
1 Release readiness criteria [7]

o Consumer perceived quality [15, 8]
23 Mockus & Weiss Interval Quality: Relating Customer-Rared Quality To Process Quality

Naive reliability estimates

- - calendar timeinstalled base
0 Naive estimate ===z c sr /216 restarts

runtimgsimplex systems
restartsimplex

. .. runtimgsimplex,generating alarms
0 Alarming syst. estimate: 7 restartsimplex

0 Naive+ estimate:

Naive | Naive+ | Alarming
Systems 80000| 1011 761

Restarts 14000 32 32
Period 5 .25 .25
MTBF (years) 3 7.9 5.9

24 Mockus & Weiss Interval Quality: Relating Customer-ared Quality To Process Quality

What affects restart rates?

O
o
+ .O....'o' .
ql 1 — PlatformG
o - .. = = Platforml
L3 = ’ PlatformM
TS .
i I .
o - |1
3 -+ r
= ‘
58 P o e
= I
o e - - - -
o | = = = =
3 |
oo}
= l_ ——— == -
|
0.0 0.1 0.2 0.3 0.4

Years from installation’

0 Kaplan-Meier estimates of the survival curves for thre¢fpians and
two releases

0 Differences between releases dwarfed by differences among

platforms [8]
25 Mockus & Weiss Interval Quality: Relating Customer-Rared Quality To Process Quality

Probability of observing SW issue in the first 3 months

- Medium size, No upgrades
— Medium size, Upgrades

= —— Large size, Upgrades
S
E
a |
o :
it I T T T T I
0.0 0.2 0.4 0.6 0.8 1.0
Time in years between launch and deployment
Quality:
0 7T with time after the launch
0 | with Size

0 7 for new installs

26 Mockus & Weiss Interval Quality: Relating Customer-Rared Quality To Process Quality

References

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

D. Atkins, T. Ball, T. Graves, and A. Mockus. Using vensioontrol data to evaluate the impact of software tools: Adady of the
version editor| EEE Transactions on Software Engineering, 28(7):625-637, July 2002.

D. Atkins, A. Mockus, and H. Siy. Measuring technologyeets on software change co8ell Labs Technical Journal, 5(2):7-18,
April-June 2000.

Birgit Geppert, Audris Mockus, and FranloRler. Refactoring for changeability: A way to go?Ntetrics 2005: 11th International
Symposium on Software Metrics, Como, September 2005. IEEE CS Press.

James Herbsleb and Audris Mockus. Formulation and miakry test of an empirical theory of coordination in softevangineering.
In 2003 International Conference on Foundations of Software Engineering, Helsinki, Finland, October 2003. ACM Press.

James D. Herbsleb, Audris Mockus, Thomas A. Finholt, Retbecca E. Grinter. An empirical study of global softwarestigoment:
Distance and speed. B8nd International Conference on Software Engineering, pages 81-90, Toronto, Canada, May 12-19 2001.

H.A. Malec. Communications reliability: a historicag¢spectivel EEE Transactions on Reliability, 47(3):333-345, Sept. 1998.

Audris Mockus. Analogy based prediction of work item flawsoftware projects: a case study.2003 International Symposiumon
Empirical Software Engineering, pages 110-119, Rome, Italy, October 2003. ACM Press.

Audris Mockus. Empirical estimates of software availépof deployed systems. 18006 International Symposium on Empirical
Software Engineering, pages 222-231, Rio de Janeiro, Brazil, September 21-22 2@M Press.

Audris Mockus, Roy T. Fielding, and James Herbsleb. Tasecstudies of open source software development: Apachmerida.
ACM Transactions on Software Engineering and Methodology, 11(3):1-38, July 2002.

Audris Mockus and James Herbsleb. Expertise browsequantitative approach to identifying expertise.2002 International
Conference on Software Engineering, pages 503-512, Orlando, Florida, May 19-25 2002. ACM Press

Audris Mockus and Lawrence G. Votta. Identifying reasdor software change using historic databasesnteinational Conference
on Software Maintenance, pages 120-130, San Jose, California, October 11-14 2000.

[12]

[13]

[14]

[15]

[16]

Audris Mockus and David M. Weiss. Predicting risk of sedre changesBell Labs Technical Journal, 5(2):169-180, April-June
2000.

Audris Mockus and David M. Weiss. Globalization by cking: a quantitative approachEEE Software, 18(2):30-37, March 2001.

Audris Mockus, David M. Weiss, and Ping Zhang. Undardiag and predicting effort in software projects.2003 International
Conference on Software Engineering, pages 274-284, Portland, Oregon, May 3-10 2003. ACM Press.

Audris Mockus, Ping Zhang, and Paul Li. Drivers for carser perceived software quality. IGSE 2005, pages 225-233, St Louis,
Missouri, May 2005. ACM Press.

J. D. Musa, A. lannino, and K. Okumot&oftware Reliability. McGraw-Hill Publishing Co., 1990.

Abstract

We investigate relationships among software quality messcommonly used to assess the value of
a technology, and several aspects of customer perceivdityquaasured by Interval Quality (1Q): a
novel measure of the probability that a customer will obsexvailure within a certain interval after
software release. We integrate information from develaptraed customer support systems to
compare defect density measures and 1Q for six releases aja telecommunications system. We
find a surprising negative relationship between the traikti defect density and 1Q. The four years
of use in several large telecommunication products dematesthow a software organization can
control customer perceived quality not just during develept and verification, but also during
deployment by changing the release rate strategy and bgasitrg the resources to correct field
problems rapidly. Such adaptive behavior can compensatadovariations in defect density
between major and minor releases.

Audris Mockus

Avaya Labs Research

233 Mt. Airy Road

Basking Ridge, NJ 07920

ph: +1 908 696 5608, fax:+1 908 696 5402
http://mockus.org, mailto:audris@mockus.org

Audris Mockus is interested in quantifying, modeling, anmgbroving software development. He
designs data mining methods to summarize and augment sefoiange data, interactive
visualization techniques to inspect, present, and cotftetevelopment process, and statistical
models and optimization techniques to understand thaoe&itips among people, organizations,
and characteristics of a software product. Audris Mockesiked B.S. and M.S. in Applied
Mathematics from Moscow Institute of Physics and Technpiodl988. In 1991 he received M.S.
and in 1994 he received Ph.D. in Statistics from Carnegiddviélniversity. He works in the
Software Technology Research Department of Avaya Labsidtrgly he worked in the Software

Production Research Department of Bell Labs.

