Transfer of Code Ownership, Implicit Teams, and Organizational Tomography

Audris Mockus

March 13, 2008

Abstract

Transfer of code ownership or succession is a crucial ingredient in
open source projects because the source code tends to be reused and
in global software development because products are offshored or out-
sourced. Measuring and studying such transfer can highlight the way
organizations adapt to new product structure and change the received
product in response. We evaluate several measures of succession on
a sample of developers whose tasks were transferred. The best fit-
ting measures were then used to discover the most likely relation-
ships for multiple development locations. To illustrate some of the
powerful implications we propose productivity ratio to measure the
decrease in productivity associated with the succession and quantify
it for instances of within- and across-location succession. Decrease in
productivity ratio almost doubles when comparing across-location to
within-location successions.

1 Introduction

Present software development business practices are trying to emulate
the successes of manufacturing process by offshoring software devel-
opment to countries with lower labor costs. The relatively more com-
plex domain of software development is making it difficult to achieve
cost savings comparable to offshored manufacturing. In this work we
investigate some possible reasons for that challenge. We look at a
very specific aspect of code ownership transfer, where the offshore
developers take ownership of the code that was initially created by
developers in another country. Our analysis primarily focuses on ram-
ifications of code ownership transfer in general. However, we investi-
gate this problem in the offshoring context, therefore some aspects of
the findings are likely to be specific to that context.

At the conceptual level, the code ownership transfer, among other
aspects, leads to a change in organizational structure without the cor-
responding change in product structure. Therefore, we expect to see
some changes in product structure (or a change in the receiving or-
ganization structure) as a result of such transfers. Finding such orga-
nizational and product structure evolution may provide insights and
recommendations related to efforts directed to code ownership trans-
fer in particular and for improvements of organizational and technical
structure in general.

Given the difficulty of measuring the concepts involved, we are
focused on reframing the concepts to reflect the same or similar
phenomena and be subject to measurement, and on techniques that
demonstrate various aspect of changes in products and organization.

The first concept involves implicit or virtual teams and it represents

undirected relationships among individuals based on the affinity to the
parts of the product they are working on. Implicit team members may
know each other and communicate if they are working on the same
part of the product at the same time. However, if they are separated
temporally or are working on cloned versions of the product, they
may be unaware of each other’s existence. Thus, they may not form a
team in the ordinary sense of the word and, consequently, we use the
term implicit team.

The second concept is needed to define the transfer of code owner-
ship and involves directed (often temporal) relationships between in-
dividuals within the implicit teams reflecting the chronological order
in which different individuals were engaged with (owned) a particular
part of a product. We call it succession'.

Our primary objective is to come up with measures of implicit
teams and of the succession in them. Because observations available
to us involve only projections of the organizational structure on the
work product and IT support systems, the attempt to reconstruct or-
ganizational structure is analogous to image tomography (image, of-
ten three-dimensional, reconstruction from multiple projections), thus
we use the term organizational tomography to describe methods re-
constructing organizational structure from the projections or traces in
version control, problem tracking, and other software support and IT
systems.

The ultimate objective of this work is to relate implicit team struc-
ture and succession to aspects crucial to software engineering: cost,
quality, and speed. However, we need to develop reliable measures of
organizational dynamics reflected through succession and other mea-
surable phenomena in order to achieve this goal.

We start from an empirical study where we use known instances
of succession to identify observable patterns in software change and
problem reporting data. We then apply these patterns to determine
succession in other projects and parts of the product and propose a
method to validate these results. Finally, we investigate if the relevant
software engineering outcomes change as a result of the succession.

2 Context

We investigate a medium sized (1-3 MNCSL) project that has engaged
in offshoring practices for several years and has built a substantial ex-
pertise in offshoring. In broad strokes, the practice identifies the tasks
and individuals whose work is a candidate for outsourcing and ob-
tains their cooperation by assigning them different responsibilities or

'We borrow the meaning from ecology where succession means the gradual and or-
derly process of change in an ecosystem brought about by the progressive replacement
of one community by another until a stable climax is established.

by providing a separation bonus contingent on expertise transfer. At
the same time, a small team of developers in the outsourcing location
is identified and their team lead is brought to the outsourcee loca-
tion to follow (shadow) the outsourcee’s work by participating in all
meetings, phone calls, and other business related activities together
with the outsourcee. After a few weeks of shadowing, the team lead
returns to the outsourcing location and trains remaining members of
the team who take over the duties of the outsourcee. Even though
the commonly used term is shadow, we do not believe it properly re-
flects the semantics of what is going on?>. We, therefore, propose to
use the term follower, because it captures the aspect of shadowing by
following the outsourcee around, and the aspect of learning: one that
follows the opinions or teachings of another.

In particular, we have identified 14 individuals and their followers
to use as our training set to detect patterns of code ownership trans-
fer. Four of these individuals were not involved in development tasks,
therefore we had only ten pairs representing succession.

3 Measurement

Our measurement framework consists of two parts: the version con-
trol system logs and the developer and manager interviews. The
source of training data and the qualitative description of the outsourc-
ing process were obtained from the interviews and casual conversa-
tions, while the code ownership measures were obtained from the ver-
sion control system.

Our first task was to infer code ownership transfer patterns based on
the data obtained from interviews. To accomplish this we postulated
five different measures of succession and ranked all 3.5K present and
former company developers based on how close they were to each
outsourcee.

The measures were constructed based on the idea that modifying
the same set of files indicates shared or transfered code ownership.
Thus, these measures are also indicators of implicit teams as well.

Denote files as f;, i = 1,..., N, developersd;,j = 1,..., M, and
the time of changes ¢, (f;,d;),k = 1,..., K;;. The first measure .Sy
counts files where the first (in the temporal sense) change a developer
d;, made occurred after the first change a developer d;, made. Denote
the time of such first change as F'C(f;,d;) = miny cx(f;,d;). The
first measure of succession is the cardinality of the subset of files both
developers changed, but developer d;, made the first change later than
developer d;, :

So(dj,, dj,) = R{fi : FC(fi,dj,) > FC(fi,dj,)}

The idea behind the first measure is to capture the the temporal aspect
in change of ownership or succession when one developer changes
the file after another developer. This measure treats all files equally,
however some files may be more relevant to the succession.

The second measure S also takes the temporal aspects into account
and weights each file by the fractions of changes developers made on
that file. Denote the number of changes developer j made to file ¢ as

2For example, outsourcee would need to be called obscurer even though she en-
lightens the shadow with her expertise.

n4;, then:

Sl(djovdjl) =

>

i:d Tiggrmidy > O
| FC(firdjy) > FC(f4,djy)

(Nijo + Tijy >
D Mo D Mg

This way the files central to each developer get more weight and have
large effect on the overall measure. If developers overlap only on files
they tend to change infrequently, the measure S; would be low. The
measure may take values in the interval [0, 2], with S; = 0 indicating
no overlap in files that were first touched later by developer jy, and
with S; = 2 indicating that developers changed the same files with
developer jo always making later first change than developer j;.

The third measure S2 also combines aspects of succession and im-
plicit teams, but this time the weight is based on the relative number
of changes the two developers made to a file. Files where the two de-
velopers had contributed little would not contribute much to the mea-
sure, but files where at least one developer made significant fraction
of changes would contribute a lot.

Nijo + Nijy

Sa(djy, dyj,) = S
Jjn

>

l{ "ijor Mijy > O

FC(f;, djo) > FC(f;, djl)
S also ranges from zero to two, with value zero indicating no overlap
and value two indicating perfect overlap as in measure S .

The fourth measure S3 combines aspects of all three measures by
weighting by the frequency a file was modified by a particular devel-
oper and by the fraction of developer’s changes that are devoted to a
file:

2 2
"ijo Mijy

2oy 2 My
> i

SS(djm dj)

>

i ™ijo> ™ijy
| FCOWfisdjy) > FC(fi,dj,)

The fifth measure S} is derived from the third measure by calculat-
ing the amount of asymmetry in opposite directions:

_ Sa(dyy, dy)
S4(dj0’ djl) B SQ(djl) djo) +e

The idea is that developers with most asymmetry would be the ones
that were well separated temporally (one of them starting to mod-
ify files later) over all the files they worked on and, therefore, rep-
resenting good candidates for the transfer of ownership. Measures
Si,i = 1,2,3 would be symmetric if the condition FC(f;,d;,) >
FC(fi,d;j,) was eliminated, making them suitable to measure im-
plicit teams, not just code transfer phenomena.

4 Evaluation of succession measures

To evaluate these five measures we have calculated their values for
all pairs of the ten followers and all the remaining developers. For
each follower we thus got a list of values for each measure that was
sorted by magnitude in the decreasing order. That way each follower
got a list of all potential outsourcees ordered by a particular measure.

Looking at a particular follower and a particular measure the first de-
veloper in this ordered list represents the best candidate (according to
that measure) for being the outsourcee for that follower according (or
being on the same implicit team). We then looked at the rank (posi-
tion in this ordered list) of the actual outsourcee. These ranks (starting
from zero) are presented in Table 1.

Follower So Sl SQ 53 54
1 2 0 1 1 1

21 20| 51123 25 | 14

3 11 91 20 71| 14

41 56| 126 | 19 | 111 | 12

5 0 5 2 41 0

6 9| 44 5 4 4

7 10 81 3 39 2

8 0 9 0 0] 25

9 8| 35 9 13| 17

10 21 39 0 0] O
Totals | 118 | 399 | 82 | 204 | 89

Table 1: The ranks of interview-derived outsourcees according to five
measures for 10 followers.

There are several patterns visible in the table. First, the measure
S1 does not appear to provide good results despite its intuitive appeal
and the measure S5 appears to be uniformly better than the rest. This
suggests that succession and ownership are mostly related to the frac-
tion of file’s changes performed by a developer, and not based on the
fraction of developer’s changes performed on a file. This is true to the
extent that the measure S3 incorporating both weights appears to be
inferior to measure S5 that looks only at one weight.

Surprisingly, purely temporal first measure Sy appears to perform
quite well in detecting the outsourcee-follower relationships. It also
appears that by combining measure S with the extent of its asymme-
try (S4) may improve the detection of succession.

Second observation concerns several outsourcees (2, 3, 4, and 9)
that have followers that go on to do work on parts of the code that
appear not to be closely related to what the outsourcee was chang-
ing because there are many better candidates according to all mea-
sures. A closer look at these instances reveals other developers that
had ownership of the code prior to the follower taking it over, but
after the outsourcee started working on it. This suggests that the
succession measures may be improved by constructing an ownership
transfer graph and determining ownership transfers utilizing proper-
ties (shortest paths) of that graph. Other possible improvements may
be achieved at communication traces among developers. It is nearly
impossible to obtain such communication paths based on email or
instant messaging for companies operating in countries with strong
privacy rules. Fortunately, workflow systems, such as bug tracking
systems and discussion boards prevalent in software projects, provide
an alternative source of communication patterns.

The best possible score for the ranks that could be achieved is zero,
yet we get 82 as a sum of all scores for the measure S (the sum is
only 11 if we exclude followers 2, 3, 4, and 9). Given that teams
of four to five developers are taking over the tasks of an individual,
it is not unreasonable to have ranks larger than zero, because code
ownership transfer is a group activity. Therefore, the score of 11 for 6

followers (excluding 2, 3, 4, and 9) is probably the best we can expect,
while the scores for the remaining followers may be improved through
better measures that take into account entire succession graph as sug-
gested above. On the positive side, the worst possible score would
be 35K if the true outsourcee was the last of the 3.5K developers for
each follower. A more reasonable worst-case score would be having
the true outsourcee to be the last among developers that changed at
least one file in common. This worst possible measure for our sample
of followers is 1033 and the range varied from 113 to 153 potential
(that changed at least one file in common) outsourcees among the ten
followers.

5 Inferring succession

Based on the experiences of fitting outsourcee-follower relationships
described in Section 4, we applied the best performing measure So
on a sample of 134 potential followers to find their most likely out-
sourcees. The potential followers were selected by choosing devel-
opers with at least 100 changes that were located at the country (ac-
cording to the country code of their telephone number) where most of
the outsourcing is directed to. This set of developers was no longer
restricted to the project on which the measures were evaluated in the
previous section.

There were 84 distinct outsourcees identified using the top out-
sourcee candidate via measure S5. The number of outsourcees is
lower than the number of followers because a team of followers tends
to take over tasks assigned to one outsourcee. The outsourcee with
the largest number of followers had 11 followers, three outsourcees
had five followers, 20 had between two and four, and 60 outsourcees
had one follower.

It would be of interest to conduct a study to verify how many of
these relationships were completely explicit, i.e., the follower was
assigned to shadow the outsourcee, and how many were completely
implicit, i.e., where the follower may not be aware of the outsourcees
existence. This can be accomplished by interviewing a sample of the
developers involved in succession.

6 Evaluating the impact of succession

The ultimate objective of any software engineering investigation is to
determine if the phenomena under study has tangible effects on soft-
ware effort, quality, or lead-time. To illustrate a narrow aspect of the
relevance of the succession phenomena we compared the productivity
of outsourcees and their followers in the sample selected in Section 5.

To estimate productivity we calculated the average number of
changes (delta) per month each developer made. The geometric av-
erage® over outsourcees (counting each of the 84 outsourcees only
once) was 87 delta per month while the average for the followers was
27 delta per month. Even if we exclude any outsourcee with more than
one follower, we get the geometric average of 68 delta per month over
the sixty outsourcees with a single follower.

The difference in productivity is in line with the practice of assign-
ing teams of developers for each outsourcee and roughly quantifies

3The distribution of productivity is highly skewed, therefore geometric average is
more sensible than arithmetic average.

the productivity relationship in the succession context. It would be of
interest to verify if such productivity ratios are specific to outsourcee-
follower relationships or hold for more general scenarios of succes-
sion. It should be noted that the productivity ratio does not compare
the productivity of developers in various locations. To do that we
would need to select developers of comparable experience on both
sides, an unlikely scenario in an outsourcee-follower relationship.
Furthermore, it is likely that the productivity ratio depends on the type
of succession. Much of the code transfer involves deployed releases
that need current engineering support (fix customer reported problems
and deliver patches). Productivity of fixing customer reported defects
(in terms of delta per month) tends to be lower than for the develop-
ment of a new release. Therefore, we hypothesize higher productivity
ratios in succession instances where new feature development is off-
shored.

To test some aspects of this hypothesis we have conducted a fur-
ther analysis. We inferred succession as described in Section 5 for
all locations and investigated the productivity ratio for the instances
of succession within a single location and across locations shown in
Table 2. The within-location transfers are most likely to include new
feature development, while cross-location transfers are more likely to
involve current engineering work.

From | To | Productivity ratio | Number of pairs
Al A 0.41 76
B| B 0.43 32
c| C 0.24 32
A| B 0.29 17
C| B 0.11 22
Al C 0.19 76

Table 2: The productivity ratio for the succession across and within
locations (there are fewer than 10 developer pairs for the remaining
location combinations).

Table 2 shows that locations A and B have a similar and relatively
high within-location productivity ratio and location C has a substan-
tially lower ratio. In all cases, across-location succession substantially
lowers the the productivity ratio from that of within-location succes-
sion. This suggests that a mismatch between organizational structure
of outsourcee and follower organizations may have an impact on the
productivity reduction. Other factors besides the type of work that
was transferred are also likely to affect the productivity ratio and their
relative contributions need to be investigated. For example, the struc-
ture of the product, the structure of organizations on the giving and
receiving ends of the code transfer, the differences between these or-
ganizations, and experience of developers are some of the factors that
need to be explored.

7 Conclusions and related work

While the code ownership has been measured before (see, for exam-
ple, [3,5]), we have demonstrated the feasibility of measuring a phe-
nomena of succession and assessing how it affects one of key software
outcomes. The succession becomes more important as the software
development increasingly follows in the offshoring and outsourcing

footsteps of the manufacturing and because of code reuse associated
with open source software [4]. More generally, the succession is a
key aspect of organizational dynamics in software projects.

Organizational tomography has a substantial history. Arguably, the
reconstruction of organizational patterns from interviews conducted
in [1] represents an instance of organizational tomography. The his-
tory of the software product [2] provided some insights about the or-
ganization from these projections in change management data and,
therefore, can be considered to be an example of organizational to-
mography. In [6], the code was chunked into independently change-
able pieces of suitable size to fit the capabilities of the less expensive
offshore development location.

More recently, various aspects of organizational tomography have
blossomed through applications in studies of open source projects and
global software development that started having regular international
research meetings a few years ago.

Clearly, the proof of concept presented in this work requires ex-
tensive validation and further development, yet promise of research
in this area is tantalizing. The potential to track the transfer of code
ownership in the universe of all software code [4] and the ability to
quantify how the product and organization coevolve are likely to pro-
vide numerous lessons and significantly improve the way software
development organizations and product are created and structured in
the future.

Acknowledgments

We thank R. Hackbarth and J. Palframan for providing instances of
succession and better understanding of the offshoring process.

References

[1] Tom Allen. Managing the flow of technology. MIT Press, Cam-
bridge, MA, 1977.

[2] S.G. Eick, J.L. Steffen, and Sumner E.E. Seesoft-a tool for vi-
sualizing line oriented software statistics. I[EEE Transactions on
Software Engineering, 18(11):957 — 968, November 1992.

[3] A.Mockus, R. F. Fielding, and J. Herbsleb. A case study of open
source development: The apache server. In 22nd International
Conference on Software Engineering, pages 263-272, Limerick,
Ireland, June 4-11 2000.

[4] Audris Mockus. Large-scale code reuse in open source software.
In ICSE’07 Intl. Workshop on Emerging Trends in FLOSS Re-
search and Development, Minneapolis, Minnesota, May 21 2007.

[5] Audris Mockus and James Herbsleb. Expertise browser: A quan-
titative approach to identifying expertise. In 2002 International
Conference on Software Engineering, pages 503-512, Orlando,
Florida, May 19-25 2002. ACM Press.

[6] Audris Mockus and David M. Weiss. Globalization by chunk-
ing: a quantitative approach. IEEE Software, 18(2):30-37, March
2001.

