
Effects of Distributed Software Development
and Virtual Teams

Audris Mockus

audris@avaya.com

Avaya Labs Research
Basking Ridge, NJ 07920

http://www.research.avayalabs.com/user/audris

Motivation

F Software project with a lack of common mental model
G Sites: two primary sites with opposing views
G Perceived user needs: reliability, maintainability, availability,

backward compatibility, and cost versus get something out quick, fix
it later, what are these -ilities anyway

G Platform: a windows shop with no clue beyond windows versus
embedded, unix/linux shop with concerns about portability and
performance

G User base: used to support tens of thousand of customers versus
we’ll make a patch for your system if you have problems

F Management by compromise
G Two box system (a box for each team)
G Constantly revisiting decisions, each party tries to prove others

wrong
2 A. Mockus Effects of Distributed Software Development and Virtual Teams

Outcome

X
X

X
X

X X X X
X

X

X

X

X

2003.2 2003.4 2003.6 2003.8 2004.0

1
10

10
0

10
00

10
00

0
Tier 4 tickets per deployed system per month are 100 to 1000 times higher for MM

Years

Ti
er

 4
 ti

ck
et

s
pe

r 1
0K

 d
ep

lo
ye

d
sy

st
em

s

M

M

M

M

M M
M M M

M M

S

S

S

S S

S

S

S

S

S

S
S

SA

A A A A

A
A A A A

A A A

M
X
S
A

Modular Messenger: Tier 4 tickets per 10K deployed systems per month
INTUITY AUDIX LX: Tier 4 tickets per 10K deployed systems per month
ARIA and SERENADE: Tier 4 tickets per 10K deployed systems per month
INTUITY AUDIX: Tier 4 tickets per 10K deployed systems per month

3 A. Mockus Effects of Distributed Software Development and Virtual Teams

Outline

F Definitions and method

G Virtual teams
G Observing (estimating) interdependence
G Observing commonness of the goals

F Some empirical evidence

G Methodology
G OSS vs mixed projects
G Dealing with multiple people
G Not complying with existing design

4 A. Mockus Effects of Distributed Software Development and Virtual Teams

Virtual Teams

F Groups of people whose work is interdependent

G Not necessarily collocated
G Not necessarily interact
G Not necessarily know each other
G Not necessarily overlap in time
G Not necessarily want to work together

5 A. Mockus Effects of Distributed Software Development and Virtual Teams

Observing (Estimating) Interdependence
(Teams)

F Work items implement decisions/choices that are tightly
interdependent, therefore following form teams

G People involved in the same work item

F The artifact (code) is the expression of all decisions taken by
individuals and teams, therefore following form teams

G People involved in work items that operate on the same artifacts
(lines, files, modules, chunks)

6 A. Mockus Effects of Distributed Software Development and Virtual Teams

Having common goals

F Common mental model, common understanding of the relevant
part of the world

G Concept of the user and user needs and wants
G Concept of the product, its behavior and its -ilities
G Concept of development, delivery, and support processes

7 A. Mockus Effects of Distributed Software Development and Virtual Teams

Observing (Estimating) the Commonness of
Goals

F Many factors affect it

G The nature of participants’ motivation (compensation, pleasure, etc.)
G The size of the team
G Common code base, version control, problem tracking,

process/decision making
G Multiple sites (language/culture/communication)

F Self selection by their common goals in some OSS (no other
motivation is apparent)

F Product/process may be affected by the lack of it

G Moderated by the degree of interdependence

8 A. Mockus Effects of Distributed Software Development and Virtual Teams

Empirical Methodology: Assumptions

F Software is created by by work items or changes

F Changes are tracked to enable multiple people to work on them

Time, Date delta

Feature

MRDescription

File, Module

Developer #lines add., del.

Software Release Patch

Version
Control
System

Change
Management
System

9 A. Mockus Effects of Distributed Software Development and Virtual Teams

Methodology: Approach

F Use properties and relationships among changes to model
phenomena in software projects

G Obtain change properties from project repositories (VCS/CMS)
G Model staffing/schedule/quality relationships to decide upon future

changes
G The product/code is simply a dynamic superposition of changes, and

is not of particular interest otherwise

10 A. Mockus Effects of Distributed Software Development and Virtual Teams

Tools in a Medium/Large Software Org.

F Sales/Marketing: customer information, customer rating,
customer purchase patters, customer needs: features and quality

F Accounting: Customer/system/software billing information and
maintenance support level

F Maintenance support: Currently installed system, support level

F Field support: dispatching repair people, replacement parts,
installing patches, fixing configuration

F Call center support: customer call/problem tracking

F Development field support: software related customer problem
tracking, patch tracking

F Development: feature and development, testing, and field defect
tracking, software change and software build tracking

11 A. Mockus Effects of Distributed Software Development and Virtual Teams

Methodology: Why Use Project Repositories?
G The data collection is non-intrusive (using only existing data minimizes

overhead)

G Long history of past projects enables historic comparisons, calibration,
and immediate diagnosis in emergency situations.

G The information is fine grained: at MR/delta level

G The information is complete: everything under version control is
recorded

G The data are uniform over time

G Even small projects generate large volumes of changes: small effects are
detectable.

G The version control system is used as a standard part of a project, so the
development project is unaffected by observer

12 A. Mockus Effects of Distributed Software Development and Virtual Teams

Methodology: Pitfalls of Using Project
Repositories

F Different process: how work is broken down into work items may
vary across projects

F Different tools: CVS, ClearCase, SCCS, ...

F Different ways of using the same tool: under what circumstances
the change is submitted, when the MR is created

F The main challenge: create change based models of key problems
in software engineering

13 A. Mockus Effects of Distributed Software Development and Virtual Teams

Methodology: Existing Models

F Predicting the quality of a patch [8]

F Work coordination:
G What parts of the code can be independently maintained [9]
G Who are the experts to contact about any section of the code [7]
G How to measure organizational dependencies [3]

F Effort: estimate MR effort and benchmark process
G What makes some changes hard [4]
G What processes/tools work [1, 2]
G What are OSS/Commercial process differences [6]

F Project models
G Release schedule [10]
G Release readiness criteria [5]
G Consumer perceived quality

14 A. Mockus Effects of Distributed Software Development and Virtual Teams

Evidence 1: Receiving work from multiple
people decreases productivity

More people may imply dissimilarity of goals

Variable Coeff. Std. Error p-val

Intercept 6.4 0.96 .001

self 0.47 0.18 .01

in 1.16 0.32 .001

out 0.42 0.82 .6

inDegree -2.1 0.68 .006

outDegree -1.1 1.4 .41

Dependent Variable: productivity, defined as MRs/week [3]

15 A. Mockus Effects of Distributed Software Development and Virtual Teams

Evidence 2: Making changes across chunk
boundaries takes longer

Each chunk implies a module, change across modules indicates
unanticipated goals

Variable Coeff. Std. Error p-val

Intercept 11.3 0.24 .001

Other 2.46 0.10 .001

nReleases 1.04 0.11 .001

NFiles 0.18 0.05 .001

Multi-chunk 0.41 0.19 .027

Dependent Variable: MR elapsed time: first change to last
change [9, 3]
16 A. Mockus Effects of Distributed Software Development and Virtual Teams

Apache/Mozilla Development Process

F Apache (most common goals)

G No external motivation (self selection by goals)
G Small core team

F Mozilla (somewhat less common goals)

G Most developers compensated
G Large core team

F Commercial projects (varies)

G All developers compensated, although there is some self selection
based on expertise

G Typically larger teams, involving non developers
G In case of multiples sites often different tools/process apply

17 A. Mockus Effects of Distributed Software Development and Virtual Teams

Evidence 3: Productivity

F Compare sets of developers that produced 80% of the code in
each application

F A-E: similar-sized commercial projects

Ap./Moz A B C D E

KMR/developer/year � � � � � � .03 .03 .09 .02 .06

KLOC/developer/year 4.3/6-16 38.6 11.7 6.1 5.4 10

18 A. Mockus Effects of Distributed Software Development and Virtual Teams

Evidence 4: Defect Density

F Measures

G Post release and post-feature test
G Per KLOC added and per thousand Delta

19 A. Mockus Effects of Distributed Software Development and Virtual Teams

Discussion

F Virtual team: people whose work is interdependent

G Two methods to identify such teams

F Common goals

G In certain organization (some OSS projects), people may self select
based on what they want to accomplish

G Different sites tend to have dissimilar goals
G Product/process should be negatively affected when there is a lack of

common goals

20 A. Mockus Effects of Distributed Software Development and Virtual Teams

References
[1] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using version control data to evaluate the

impact of software tools: A case study of the version editor. IEEE Transactions on Software
Engineering, 28(7):625–637, July 2002.

[2] D. Atkins, A. Mockus, and H. Siy. Measuring technology effects on software change cost.
Bell Labs Technical Journal, 5(2):7–18, April–June 2000.

[3] James Herbsleb and Audris Mockus. Formulation and preliminary test of an empirical theory
of coordination in software engineering. In 2003 International Conference on Foundations of
Software Engineering, Helsinki, Finland, October 2003. ACM Press.

[4] James D. Herbsleb, Audris Mockus, Thomas A. Finholt, and Rebecca E. Grinter. An
empirical study of global software development: Distance and speed. In 23nd International
Conference on Software Engineering, pages 81–90, Toronto, Canada, May 12-19 2001.

[5] Audris Mockus. Analogy based prediction of work item flow in software projects: a case
study. In 2003 International Symposium on Empirical Software Engineering, pages 110–119,
Rome, Italy, October 2003. ACM Press.

[6] Audris Mockus, Roy T. Fielding, and James Herbsleb. Two case studies of open source
software development: Apache and mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3):1–38, July 2002.

[7] Audris Mockus and James Herbsleb. Expertise browser: A quantitative approach to

identifying expertise. In 2002 International Conference on Software Engineering, pages
503–512, Orlando, Florida, May 19-25 2002. ACM Press.

[8] Audris Mockus and David M. Weiss. Predicting risk of software changes. Bell Labs Technical
Journal, 5(2):169–180, April–June 2000.

[9] Audris Mockus and David M. Weiss. Globalization by chunking: a quantitative approach.
IEEE Software, 18(2):30–37, March 2001.

[10] Audris Mockus, David M. Weiss, and Ping Zhang. Understanding and predicting effort in
software projects. In 2003 International Conference on Software Engineering, pages 274–284,
Portland, Oregon, May 3-10 2003. ACM Press.

Abstract
Distributed software development often results in delays, inefficiencies, and misunderstanding.
Many reasons have been proposed to explain these issues. They range from differences in cultural
background to the lack of face-to-face and informal communication needed to coordinate
interdependent project tasks.

We propose the lack of common goals and development infrastructure to be the main reasons for
problems in distributed software development. More specifically, we consider a range of traditional
and open source projects where the commonality of goals and infrastructure varies across teams and
find that to influence the key output measures related to productivity, interval, and quality.

Bio

Audris Mockus

Avaya Labs Research

233 Mt. Airy Road

Basking Ridge, NJ 07920

ph: +1 908 696 5608, fax:+1 908 696 5402

http://mockus.org, mailto:audris@mockus.org,

picture:http://mockus.org/images/small.gif

Audris Mockus conducts research of complex dynamic systems. He designs data mining methods to

summarize and augment the system evolution data, interactive visualization techniques to inspect,

present, and control the systems, and statistical models and optimization techniques to understand

the systems. Audris Mockus received B.S. and M.S. in Applied Mathematics from Moscow Institute

of Physics and Technology in 1988. In 1991 he received M.S. and in 1994 he received Ph.D. in

Statistics from Carnegie Mellon University. He works at Software Technology Research Department

of Avaya Labs. Previously he worked at Software Production Research Department of Bell Labs.

