
Why Not Improve Coordination in Distributed Software
Development by Stealing Good Ideas from Open Source?

Audris Mockus
Avaya Labs Research

233 Mt Airy Rd
Basking Ridge, NJ, USA 07920

audris@avaya.com
+1 908 696-5608

James D. Herbsleb
Bell Laboratories
2701 Lucent Lane

Lisle, IL, USA 60532
jherbsleb@lucent.com

+1 630 713-1869

Software projects are increasingly distributed among many
sites, often located at great distance, both geographic and
cultural, from one another. This creates the potential for
enormous problems, whose effects run the gamut from
enormous cumulative delay through complete breakdown
and failure [1].

Open source projects are remarkable in that they usually
must solve all the problems of distributed development,
using only very simple communication tools such as e-
mail, listservs, newsroups, and change management
systems such as CVS or Bugzilla.

In a case study of the Apache server [3], the authors
identified several techniques used to coordinate the work.
These techniques can be summarized as follows:

• A small, elite team of capable developers, each
with distinctive expertise, all of whom have
commit privileges. Each is trusted by the others to
make changes to the server code.

• The core team coordinates their work informally,
by informing others about what they are doing,
asking recognized experts in the group when in
doubt, and by reviewing all changes to the code.

• In order to join the core group, candidates must
clearly demonstrate competence, commitment to
the work, and nearly always develop a needed
specialty.

• The core group creates the vast majority of new
functionality.

• A much larger group submits bug fixes. Proposed
fixes are reviewed and acted upon by the core
group. Bug fixes generally have fewer
interdependencies than new functionality, since
most of the work is usually finding the problem.

• A much larger group yet tests the code, through
actual use, and submits problem reports.

• There is no formal requirements process � the
requirements are determined implicitly, as
whatever the developers actually build.
Presumably, features are selected based on what

individual developers themselves need in the
product.

• Work is not assigned; individuals choose what
work they will do. The choices are constrained,
however, by various motivations that are not fully
understood. For example, it can be assumed that
developers try to maximize the chance that their
code will be included in a release, and will
enhance their reputation.

These techniques, as effective as they indisputably are for
open source development, have certain limitations. Among
them are the following:

• The core group cannot exceed some maximum
size, say 15, or the overhead for the informal style
of coordination will become overwhelming.

• The largest system that can be built is constrained
by the size of the core team. If the size-limited
core team cannot develop sufficient new
functionality, additional means of coordination
(e.g., formal inspections, code ownership, process,
projects broken into smaller subprojects) will
become necessary.

• The developers must be users, since there is
generally no requirements gathering, and the
developers are assumed to be domain experts. In
general, only what this group of user-developers
wants will actually get built.

Commercial development, on the other hand, typically uses
a number of coordination mechanisms to fit the work of
each individual into the project as a whole (see, e.g., [1, 2]).
Explicit mechanisms include such things as interface
specifications, processes, plans, staffing profiles, and
reviews. Implicit mechanisms include knowledge of who
has expertise in what area, as well as customs and habits
about how things are done. In addition, of course, it is
possible to substitute communication for these
mechanisms. So, for example, two people could develop
interacting modules with no interface specification, merely
by staying in constant communication with each other. The
�communication-only� approach does not scale, of course,
as size and complexity quickly overwhelm communication
channels. Ad hoc communication is always necessary,

however, as the default means of overcoming coordination
problems, as a way to recover if unexpected events break
down the existing coordination mechanisms, and to handle
details that need to be worked out in real time.

Apache adopts an approach to coordination that seems to
work extremely well for a small project. The server itself is
kept small. Any functionality beyond the basic server is
added by means of various ancillary projects that interact
with Apache only through Apache�s well-defined interface.
That interface serves to coordinate the efforts of the
Apache developers with anyone building external
functionality, and does so with minimal ongoing effort by
the Apache core group. In fact, control over the interface is
asymmetric, in that the external projects must generally be
designed to what Apache provides. The coordination
concerns of Apache are thus sharply limited by the stable,
asymmetrically-controlled interface.

The coordination necessary within this sphere is such that it
can be successfully handled by a small core team using
primarily implicit mechanisms, e.g., a knowledge of who
has expertise in what area, and general communication
about what is going on, who is doing what, when. When
such mechanisms are sufficient to prevent coordination
breakdowns, they are extremely efficient. Many people can
contribute code simultaneously, and there is no waiting for
approvals, permission, and so forth, from a single
individual. The core people just do what needs to be done.
The Apache results show the benefits in speed,
productivity, and quality.

The benefit of the larger open source community for
Apache is primarily in those areas where coordination is
much less of an issue. While bug fixes occasionally
become entangled in interdependencies, most of the effort
in bug fixing is generally in tracking down the source of the
problem. Investigation, of course, cannot cause
coordination problems. The tasks of finding and reporting
bugs are completely free of interdependencies, in the sense
that they do not involve changing the code.

Given this discussion, one might speculate that overall, in
OSS projects, low post-release defect density and high
productivity stem from effective use of the open source
community for the low-interdependence bug finding and
fixing tasks. The fact that Mozilla was apparently able to
achieve defect density levels like Apache�s argues that even
when an open source effort maintains much of the
machinery of commercial development (including elements
of planning, documenting the process and the product,
explicit code ownership, inspections, and testing), there is
substantial potential benefit. In particular, defect density
and productivity both seem to benefit from recruiting an
open source community of testers and bug fixers. Speed,
on the other hand, seems to require highly modularized
software and small highly-capable core teams and the
informal style of coordination this permits.

Interestingly, the particular way that the core team in
Apache (and, we assume, many other OSS projects) is
formed may be another of the keys to their success. Core
members must be persistent and very capable to achieve
core status. They are also free, while they are earning their
core status, to work on any task they choose. Presumably
they will try to choose something that is both badly needed
and where they have some specific interest. While working
in this area, they must demonstrate a high level of
capability, and they must also convince the existing core
team that they would make a responsible, productive
colleague. This is in contrast to most commercial
development, where assignments are given out that may or
may not correspond to a developer�s interests or
perceptions of what is needed.

In contrast to Apache, the Mozilla project began as a
commercial endeavor, and was only later morphed into an
open source approach. Mozilla provides us with a hybrid
example that illustrates some of the possible properties of
open source development techniques used in a commercial
context.

The Mozilla approach has some, but not all, of the Apache-
style OSS benefits. The open source community has taken
over a significant portion of the bug finding and fixing, as
in Apache, helping with these low-interdependency tasks.
However, the Mozilla modules are not as independent from
one another as the Apache server is from its ancillary
projects. Because of the interdependence among modules,
considerable effort (i.e., inspections) needs to be spent in
order to ensure that the interdependencies do not cause
problems. In addition, the modules are too large for a team
of 10-15 to do 80% of the work in the desired time.
Therefore, the relatively free-wheeling Apache style of
communication and implicit coordination is likely not
feasible. The larger Mozilla core teams must have more
formal means of coordinating their work, which in their
case means a single module owner who must approve all
changes to the module. These characteristics produce high
productivity and low defect density, much like Apache, but
relatively long development intervals.

The relatively high level of module interdependence may
be a result of many factors. For example, the commercial
legacy distinguishes Mozilla from Apache and many other
purely open source projects. One might speculate that in
commercial development, feature content is driven by
market demands, and for many applications (such as
browsers) the market generates great pressure for feature
richness. When combined with extreme schedule pressure,
it is not unreasonable to expect that the code complexity
will be high and that modularity may suffer. This sort of
legacy may well contribute to the difficulty of coordinating
Mozilla and other commercial-legacy hybrid projects.

It may be possible to avoid this problem under various
circumstances, e.g.,

• new hybrid projects that are set up like OSS
projects, with small teams owning well-separated
modules,

• projects with OSS legacy code, and

• projects with a commercial legacy, but where
modules are parsed in a way that minimizes
module-spanning changes (see [4] for a technique
that accomplishes this).

We believe that for some kinds of software, in particular
those where developers are also highly knowledgeable
users, it would be worth experimenting, in a commercial
environment, with OSS-style �open� work assignments.
This approach implicitly allows new features to be chosen
by the developers/users rather than a marketing or product
management organization.

It is tempting to suggest that commercial and OSS practices
might be fruitfully hybridized in a number of ways. For
example, it might prove very attractive to commercial
developers to use the OSS style project structure. In such
an arrangement, there is a core team of recognized experts,
who alone have the power to commit code to an official
release, and a much larger group who contribute voluntarily
in various ways, and who may prove themselves diligent
and skillful enough to be added to the core. Everyone,
under this type of project management, is self-determining.
The core members can commit code where they choose, the
peripheral members submit changes of any sort they
choose. These decisions appear to be guided only by a
common desire to see the product developed successfully,
to contribute in meaningful ways, and to be seen as an
important contributor.

While we are certain that this suggestion will be met with
healthy skepticism, we see no inherent reason why
commercial developments could not operate in a similar
manner, subject of course to restrictions on size, and the
necessity that developers must be users. Assuming that this
arrangement would work in a commercial setting, there
could be tremendous benefits to pairing the high
motivation, low pre-system test defect rates, and fast
response of OSS with a more commercially-oriented
system test capability. Such cross-fertilization might pave
the way to a true revolution in software development.

Two areas that seem particularly promising for the
introduction of OSS techniques in the commercial world
are tools and platforms. Developers generally create a
variety of in-house tools for their own use, or for the use of
their work groups. They are generally fairly small, and the
developers are obviously users. Assuming that there are
tools with sufficiently general utility, they could provide a
natural place for trying out OSS techniques with relatively
low risk.

A second area is platforms, i.e., software that provides a
more specialized layer on top of an operating system, on
which a number of distinct products can be built. Members

of project teams might be permitted (or persuaded) to spend
some portion of time on platform development, possibly
working their way into the core team. Again, product
developers are users of the platform, and no doubt would
like to see specific improvements made to accommodate
their product.

REFERENCES
[1] GRINTER, R. E., HERBSLEB, J. D., AND PERRY, D.
E. 1999. The Geography of Coordination: Dealing with
Distance in R&D Work. In GROUP '99, Phoenix, AZ

[2] HERBSLEB J. D., AND GRINTER, R. E. 1999.
Splitting the Organization and Integrating the Code:
Conway's Law Revisited. In 21st International Conference
on Software Engineering (ICSE 99), Los Angeles, CA.

[3] MOCKUS, A., FIELDING, R., AND HERBSLEB, J.
1999. A case study of open source development: The
apache server. In 22nd International Conference on
Software Engineering, pages 263-272, Limerick, Ireland,
June 4-11 2000.

[4] MOCKUS, A., AND WEISS, D. M. 2001.
Globalization by Chunking: A Quantitative Approach,
IEEE Software, vol. 18, No 2, January - March, 30-37.

