78 Chapter 2 Fundamentals of Logic

R	ule of Inference	Related Logical Implication	Name of Rule
1)	$\frac{p}{p \to q}$	$[p \land (p \to q)] \to q$	Rule of Detachment (Modus Ponens)
2)	$p \to q$ $\frac{q \to r}{\therefore p \to r}$	$[(p \to q) \land (q \to r)] \to (p \to r)$	Law of the Syllogism
3)	$\frac{p \to q}{\frac{\neg q}{\therefore \neg p}}$	$[(p \to q) \land \neg q] \to \neg p$	Modus Tollens
4)	$\frac{p}{\frac{q}{\cdots p \wedge q}}$		Rule of Conjunction
	$\frac{p \lor q}{\neg p}$	$[(p \lor q) \land \neg p] \to q$	Rule of Disjunctive Syllogism
6)	$\frac{\neg p \to F_0}{\therefore p}$	$(\neg p \rightarrow F_0) \rightarrow p$	Rule of Contradiction
7)	$\frac{p \wedge q}{\therefore p}$	$(p \land q) \rightarrow p$	Rule of Conjunctive Simplification
8)	$\frac{p}{\therefore p \lor q}$	$p \rightarrow p \lor q$	Rule of Disjunctive Amplification
	$\frac{p \land q}{p \to (q \to r)}$	$[(p \land q) \land [p \to (q \to r)]] \to r$	Rule of Conditional Proof
10)	$p \to r$ $q \to r$ $\therefore (p \lor q) \to r$	$[(p \to r) \land (q \to r)] \to [(p \lor q) \to r]$	Rule for Proof by Cases
	$p \to q$ $r \to s$ $\frac{p \lor r}{\therefore q \lor s}$	$[(p \to q) \land (r \to s) \land (p \lor r)] \to (q \lor s)$	Rule of the Constructive Dilemma
12)	$p \to q$ $r \to s$ $\neg q \lor \neg s$ $\therefore \neg p \lor \neg r$	$[(p \to q) \land (r \to s) \land (\neg q \lor \neg s)] \to (\neg p \lor \neg r)$	Rule of the Destructive Dilemma

EXAMPLE 2.30

Establish the validity of the argument

$$p \to q$$

$$q \to (r \land s)$$

$$\neg r \lor (\neg t \lor u)$$

$$p \land t$$

$$\therefore u$$