
COSC 317 Worksheet 1

Bruce MacLennan, Fall 2014

By working through this material you will gain experience with developing a math-
ematical theory. In the following, you will find definitions, examples, theorems, and
problems. Usually I will give you the definitions, but sometimes I will ask you to
complete them. This will give you experience in mathematical definition. Sometimes
I provide examples of a defined concept, but you should show that the example fits
the definition. Theorems are generally presented without proof, because it is your
task to prove them. Problems, of course, should be solved by you. In summary, your
assignment is to prove the theorems, solve the problems, check the examples, and
(where asked) complete the definitions. This is the best way to learn mathematics:
by doing it!

Generally speaking, you should work through these assignments in order, since
they are organized to lead you along. However, if you get stuck on one item, it is
OK to skip it and move on, but you should not do this too often or you will get lost.
Please don’t try to find this material online or in books, since if you do, you will
not benefit from working it out yourself. Let’s begin!

1. Posets

Definition 1.1 (poset and partial order). A poset (partially ordered set) (P,v)
is a set P together with a binary relation v that is a partial order, that is:

P1 (Reflexive): For all x ∈ P , x v x.
P2 (Antisymmetric): For all x, y ∈ P , if x v y and y v x, then x = y.
P3 (Transitive): For all x, y, z ∈ P , if x v y and y v z, then x v z.

We can pronounce x v y as “x is part of y,” “x is less than or equal to y,” “x is
below or the same as y,” “x is inferior or equal to y,” etc. x w y means y v x; we
can pronounce it “contains,” “is above or the same as,” or “is superior or equal to.”
Obviously, if v is a partial order, then so is its converse w. The strict order x @ y
is equivalent to x v y but x 6= y, and x A y is defined analogously. We say that x is
a proper part of / less than / below / inferior to y.

Definition 1.2 (strict partial order). A relation @ on a set P is called a strict
partial order if

S1 (Irreflexive): x @ x does not hold for any x ∈ P .
S2 (Transitive): For all x, y, z ∈ P , if x @ y and y @ z, then x @ z.

Definition 1.3 (comparable). Elements x and y of a poset (P,v) are said to be
comparable if either x v y or y v x (or both), and incomparable otherwise.
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Example 1.1. Let P be a set of people and define x A y to mean that x is an
ancestor of y. Then (P,v) is a poset.

Example 1.2. Let P be the set of statements in a program. Define x @ y to
mean that statement x depends on statement y (for example, x might use a variable
to which y assigns). Then (P,v) is a poset.

Example 1.3. If X is a set of integers, then (X,≤) is a poset.

Example 1.4. If X is a set of real numbers, then (X,≤) is a poset.

Example 1.5. If X = {∅, {0}, {1}, {2}, {0, 1}, {1, 2}, {0, 2}, {0, 1, 2}}, then
(X,⊆) is a poset.

Example 1.6. If X is any set of sets, then (X,⊆) is a poset.

Example 1.7. Let P be a set of integers and let m|n mean that m evenly divides
into n (i.e., with no remainder). Then (P, |) is a poset.

Example 1.8. Let 2 = {0, 1}, representing the truth values false and true. Show
that (2,→), where “→” is material implication, is a poset.

Example 1.9. Let P be a set of strings and let x v y mean that x is a substring
of y. Then (P,v) is a poset.

Example 1.10. Let N be the nodes in a tree, and let x v y mean that node x
is on a branch descending from y (or is y itself). Then (N,v) is a poset.

Example 1.11. If V is the set of vertices (nodes) in an acyclic directed graph,
define x w y to mean that there is a path from vertex x to vertex y. (V,w) is a
poset. Why aren’t cycles allowed?

Note that the previous two examples imply that any tree and any directed acyclic
graph induces a partial order. These facts are useful, since it permits you to construct
examples and counter-examples for theorems and conjectures.

Theorem 1.1. A strict partial order is asymmetric; that is, if x @ y then it is
not the case that y @ x.

Theorem 1.2. (A) If @ is a strict partial order, and x v y ⇔ x @ y ∨ x = y,
then v is a (nonstrict) partial order. (B) If v is a (nonstrict) partial order, and
x @ y ⇔ x v y ∧ x 6= y, then @ is a strict partial order.

Definition 1.4 (cover). In a poset, an element x covers an element y if x A y
and there does not exist a z such that x A z A y. In effect, x is an “immediate
superior” of y.
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Problem 1.1. Describe the conditions under which an element of a poset does
not have a cover.

Definition 1.5 (Hasse diagram). A Hasse diagram of a poset has a node for each
element of the poset and a descending line from each element to those it covers. (This
is another convenient mechanism for constructing examples and counter-examples.)

Problem 1.2. Draw a Hasse diagram for each of the preceding examples of
posets (Exs. 1.1–1.11) or explain why it is impossible to do so. (Pick non-trivial
examples for the sets.)

Theorem 1.3. There are exactly three partial orderings of a set of two elements.
(Draw the Hasse diagram of each.)

Theorem 1.4. If (P,v) is a poset and S ⊆ P , then (S,v) is a poset.

Definition 1.6 (upper bound). For a poset (P,v), an element x ∈ P is an upper
bound of a subset S ⊆ P if and only if y v x for all y ∈ S.

Definition 1.7 (lower bound). Analogous: you define it.

You will notice that a principle of duality applies to posets: since v is a p.o. if
and only if w is a p.o., upper bounds correspond to lower bounds, etc. In effect, we
can turn a Hasse diagram upside down and still have a Hasse diagram.

Definition 1.8. (self-dual) A poset is self-dual if its Hasse diagram looks the
same when it is flipped vertically (ignoring node labels). This is an informal defini-
tion. How would you make it more formal?

Theorem 1.5. There are posets with subsets that do not have an upper bound.
The same applies for lower bounds.

Problem 1.3. Which of the example posets (Exs. 1.1–1.11) are self-dual?

Definition 1.9 (least upper bound). x is a least upper bound of S ⊆ P if x is
an upper bound of S and x v y for every upper bound y of S.

Definition 1.10 (greatest lower bound). Analogous.

Problem 1.4. Let S be a nonempty subset of the poset described in Ex. 1.10.
Must S have a lub? Describe it.

Theorem 1.6. If S has a least upper bound, then it is unique, and we can write
lubS for it. Likewise, if S has a greatest lower bound, we write glbS for it.

Theorem 1.7. There are posets with subsets that have upper bounds, but not
lubs. Likewise for lower bounds.
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Definition 1.11 (maximal and minimal elements). If S is a subset of a poset
P , then m ∈ S is called a maximal element of S if there is no x ∈ S with x A m.
Minimal element is defined analogously.

Problem 1.5. Describe the maximal and minimal elements of any nonempty
subset of the poset described in Ex. 1.10.

Theorem 1.8. There are posets with subsets that have no maximal element.
Likewise for minimal.

Theorem 1.9. There are posets with subsets that have more than one maximal
element. Likewise for minimal.

Theorem 1.10. Any finite nonempty subset of a poset has minimal and maximal
elements.

Definition 1.12 (greatest and least elements). An element g ∈ S of a subset S
of a poset is a greatest element if g w x for every x ∈ S. Likewise for least element.

Problem 1.6. Give an example of a poset with a greatest element and two
minimal elements, but no least element.

Problem 1.7. Does the poset described in Ex. 1.10 have a greatest element?
Least element?

Theorem 1.11. If a subset of a poset has a greatest element, then it is unique,
and if it has a least element, it is unique.

Definition 1.13 (top and bottom elements). If the entire poset has a greatest
element, then it is often written > and called the top element. Likewise, if the entire
poset has a least element, it is called bottom and written ⊥.


