COSC 317 Worksheet 2

Bruce MacLennan, Fall 2014

2. Lattices

DEFINITION 2.1 (meet and join). For $x, y \in P$, their *meet* is defined to be their greatest lower bound (if it exists): $x \wedge y = \text{glb}\{x, y\}$. Likewise, the *join* is defined $x \vee y = \text{lub}\{x, y\}$.

PROBLEM 2.1. For the poset (\mathbb{R}, \leq) describe the results of the meet and join operations.

PROBLEM 2.2. Let P be a set of sets. What are the meet and join operations in the poset (P, \subseteq) ?

PROBLEM 2.3. Let P be a set of sets. What are the meet and join operations in the poset (P, \supseteq) ? (Be careful! This means that $x \sqsubseteq y$ if and only if $x \supseteq y$.)

PROBLEM 2.4. What are the meet and join operations in the poset of truth values $(2, \Rightarrow)$?

DEFINITION 2.2 (lattice). A poset P is called a *lattice* if for each $x, y \in P$, both $x \wedge y$ and $x \vee y$ exist.

DEFINITION 2.3 (complete lattice). A lattice is *complete* if each of its subsets has both an lub and a glb.

PROBLEM 2.5. Give an example of a lattice that is *not* complete.

PROBLEM 2.6. Which of the example posets in Worksheet 1 are lattices? Which are complete?

THEOREM 2.1. Any nonempty complete lattice has a greatest element \top and a least element \perp .

THEOREM 2.2. The dual of a lattice is a lattice; the dual of a complete lattice is a complete lattice.

THEOREM 2.3. Let $\mathcal{P}(S)$ be the set of all subsets of S. Then $(\mathcal{P}(S), \subseteq)$ is a complete lattice. (What are its top and bottom elements?)

Whenever we define new operators, we should investigate immediately their properties. The meet and join operations satisfy a number of algebraic properties.

THEOREM 2.4. In any poset, the meet and join operations, whenever they exist, satisfy the following algebraic laws:

L1 (Idempotent): $x \wedge x = x$, $x \vee x = x$.

- L2 (Commutative): $x \land y = y \land x$, $x \lor y = y \lor x$.
- L3 (Associative): $x \land (y \land z) = (x \land y) \land z$, $x \lor (y \lor z) = (x \lor y) \lor z$.
- L4 (Absorption): $x \land (x \lor y) = x = x \lor (x \land y)$.

THEOREM 2.5 (consistency). $x \sqsubseteq y$ if and only if $x \land y = x$ if and only if $x \lor y = y$.

THEOREM 2.6. If a poset P has a top element \top , then for all $x \in P$, $x \wedge \top = x$ and $x \vee \top = \top$. Similarly for \perp .

THEOREM 2.7 (isotone property). The meet and join operations in a lattice are *isotone*; that is, if $y \sqsubseteq z$, then $x \land y \sqsubseteq x \land z$ and $x \lor y \sqsubseteq x \lor z$.

THEOREM 2.8 (distributive inequalities). In any lattice,

$$\begin{array}{rcl} x \wedge (y \lor z) & \sqsupseteq & (x \wedge y) \lor (x \wedge z), \\ x \lor (y \wedge z) & \sqsubseteq & (x \lor y) \land (x \lor z). \end{array}$$

PROBLEM 2.7. You might be surprised that these are inequalities and not equalities. Find a lattice for which equality does not apply.

THEOREM 2.9 (modular inequality). In a lattice, $x \sqsubseteq z$ implies $x \lor (y \land z) \sqsubseteq (x \lor y) \land z$.

THEOREM 2.10. In a lattice, $(a \lor b) \land (c \lor d) \sqsupseteq (a \land c) \lor (b \land d)$.

DEFINITION 2.4 (semilattice). A *semilattice* (X, \diamond) is a set X and a binary operation \diamond on X that is idempotent, commutative, and associative.

THEOREM 2.11. If P is a poset in which every pair of elements has a meet, then (P, \wedge) is a semilattice. Likewise for \vee .

THEOREM 2.12. In a semilattice (X,\diamond) define $x \sqsubseteq y$ to mean $x \diamond y = x$. Then (X, \sqsubseteq) is a poset with $x \diamond y = \text{glb}\{x, y\}$.

THEOREM 2.13. A set with two binary operations obeying laws L1–L4 (Thm. 2.4) is a lattice, and conversely.

DEFINITION 2.5 (sublattice). If L is a lattice, then $S \subseteq L$ is a *sublattice* if every pair of elements of S has both a meet and a join in S (i.e., using the same meet and join as L).

THEOREM 2.14. Both the empty set and the singleton sets are sublattices of a lattice. (Always check "degenerate" cases such as these.)

PROBLEM 2.8. Give examples of (non-degenerate) sublattices of the example lattices from Worksheet 1.

THEOREM 2.15. If L is a complete lattice and $S \subseteq L$, and if (1) $\top \in S$ and (2) glb $R \in S$ for every $R \subseteq S$, then S is a complete lattice.

PROBLEM 2.9. Give counter-examples showing that each of the two conditions in the preceding theorem are required.

DEFINITION 2.6 (direct product of posets). If P, Q are posets, their *direct product* $P \times Q$ is defined $(x, y) \sqsubseteq (x', y')$ if and only if $x \sqsubseteq x'$ in P and $y \sqsubseteq y'$ in Q.

THEOREM 2.16. The direct product of two lattices is a lattice.