COSC 317 Worksheet 2

Bruce MacLennan, Fall 2014

2. Lattices

Definition 2.1 (meet and join). For $x, y \in P$, their meet is defined to be their greatest lower bound (if it exists): $x \wedge y=\operatorname{glb}\{x, y\}$. Likewise, the join is defined $x \vee y=\operatorname{lub}\{x, y\}$.

Problem 2.1. For the poset (\mathbb{R}, \leq) describe the results of the meet and join operations.

Problem 2.2. Let P be a set of sets. What are the meet and join operations in the poset (P, \subseteq) ?

Problem 2.3. Let P be a set of sets. What are the meet and join operations in the poset (P, \supseteq) ? (Be careful! This means that $x \sqsubseteq y$ if and only if $x \supseteq y$.)

Problem 2.4. What are the meet and join operations in the poset of truth values $(2, \Rightarrow)$?

Definition 2.2 (lattice). A poset P is called a lattice if for each $x, y \in P$, both $x \wedge y$ and $x \vee y$ exist.

Definition 2.3 (complete lattice). A lattice is complete if each of its subsets has both an lub and a glb.

Problem 2.5. Give an example of a lattice that is not complete.
Problem 2.6. Which of the example posets in Worksheet 1 are lattices? Which are complete?

Theorem 2.1. Any nonempty complete lattice has a greatest element T and a least element \perp.

Theorem 2.2. The dual of a lattice is a lattice; the dual of a complete lattice is a complete lattice.

Theorem 2.3. Let $\mathcal{P}(S)$ be the set of all subsets of S. Then $(\mathcal{P}(S), \subseteq)$ is a complete lattice. (What are its top and bottom elements?)

Whenever we define new operators, we should investigate immediately their properties. The meet and join operations satisfy a number of algebraic properties.

Theorem 2.4. In any poset, the meet and join operations, whenever they exist, satisfy the following algebraic laws:

L1 (Idempotent): $x \wedge x=x, \quad x \vee x=x$.
L2 (Commutative): $x \wedge y=y \wedge x, \quad x \vee y=y \vee x$.
L3 (Associative): $x \wedge(y \wedge z)=(x \wedge y) \wedge z, \quad x \vee(y \vee z)=(x \vee y) \vee z$.
L4 (Absorption): $x \wedge(x \vee y)=x=x \vee(x \wedge y)$.
THEOREM 2.5 (consistency). $x \sqsubseteq y$ if and only if $x \wedge y=x$ if and only if $x \vee y=y$.
Theorem 2.6. If a poset P has a top element \top, then for all $x \in P, x \wedge \top=x$ and $x \vee \top=\top$. Similarly for \perp.

Theorem 2.7 (isotone property). The meet and join operations in a lattice are isotone; that is, if $y \sqsubseteq z$, then $x \wedge y \sqsubseteq x \wedge z$ and $x \vee y \sqsubseteq x \vee z$.

Theorem 2.8 (distributive inequalities). In any lattice,

$$
\begin{array}{ll}
x \wedge(y \vee z) & \sqsupseteq(x \wedge y) \vee(x \wedge z), \\
x \vee(y \wedge z) & \sqsubseteq(x \vee y) \wedge(x \vee z)
\end{array}
$$

Problem 2.7. You might be surprised that these are inequalities and not equalities. Find a lattice for which equality does not apply.

Theorem 2.9 (modular inequality). In a lattice, $x \sqsubseteq z$ implies $x \vee(y \wedge z) \sqsubseteq$ $(x \vee y) \wedge z$.

THEOREM 2.10. In a lattice, $(a \vee b) \wedge(c \vee d) \sqsupseteq(a \wedge c) \vee(b \wedge d)$.
Definition 2.4 (semilattice). A semilattice (X, \diamond) is a set X and a binary operation \diamond on X that is idempotent, commutative, and associative.

Theorem 2.11. If P is a poset in which every pair of elements has a meet, then (P, \wedge) is a semilattice. Likewise for \vee.

Theorem 2.12. In a semilattice (X, \diamond) define $x \sqsubseteq y$ to mean $x \diamond y=x$. Then (X, \sqsubseteq) is a poset with $x \diamond y=\operatorname{glb}\{x, y\}$.

Theorem 2.13. A set with two binary operations obeying laws L1-L4 (Thm. 2.4) is a lattice, and conversely.

Definition 2.5 (sublattice). If L is a lattice, then $S \subseteq L$ is a sublattice if every pair of elements of S has both a meet and a join in S (i.e., using the same meet and join as L).

TheOrem 2.14. Both the empty set and the singleton sets are sublattices of a lattice. (Always check "degenerate" cases such as these.)

Problem 2.8. Give examples of (non-degenerate) sublattices of the example lattices from Worksheet 1.

THEOREM 2.15. If L is a complete lattice and $S \subseteq L$, and if (1) $\top \in S$ and (2) $\operatorname{glb} R \in S$ for every $R \subseteq S$, then S is a complete lattice.

Problem 2.9. Give counter-examples showing that each of the two conditions in the preceding theorem are required.

Definition 2.6 (direct product of posets). If P, Q are posets, their direct product $P \times Q$ is defined $(x, y) \sqsubseteq\left(x^{\prime}, y^{\prime}\right)$ if and only if $x \sqsubseteq x^{\prime}$ in P and $y \sqsubseteq y^{\prime}$ in Q.

Theorem 2.16. The direct product of two lattices is a lattice.

