
COSC 317 Worksheet 2

Bruce MacLennan, Fall 2014

2. Lattices

Definition 2.1 (meet and join). For x, y ∈ P , their meet is defined to be their
greatest lower bound (if it exists): x ∧ y = glb{x, y}. Likewise, the join is defined
x ∨ y = lub{x, y}.

Problem 2.1. For the poset (R,≤) describe the results of the meet and join
operations.

Problem 2.2. Let P be a set of sets. What are the meet and join operations in
the poset (P,⊆)?

Problem 2.3. Let P be a set of sets. What are the meet and join operations in
the poset (P,⊇)? (Be careful! This means that x v y if and only if x ⊇ y.)

Problem 2.4. What are the meet and join operations in the poset of truth values
(2,⇒)?

Definition 2.2 (lattice). A poset P is called a lattice if for each x, y ∈ P , both
x ∧ y and x ∨ y exist.

Definition 2.3 (complete lattice). A lattice is complete if each of its subsets has
both an lub and a glb.

Problem 2.5. Give an example of a lattice that is not complete.

Problem 2.6. Which of the example posets in Worksheet 1 are lattices? Which
are complete?

Theorem 2.1. Any nonempty complete lattice has a greatest element > and a
least element ⊥.

Theorem 2.2. The dual of a lattice is a lattice; the dual of a complete lattice is
a complete lattice.

Theorem 2.3. Let P(S) be the set of all subsets of S. Then (P(S),⊆) is a
complete lattice. (What are its top and bottom elements?)

Whenever we define new operators, we should investigate immediately their prop-
erties. The meet and join operations satisfy a number of algebraic properties.

Theorem 2.4. In any poset, the meet and join operations, whenever they exist,
satisfy the following algebraic laws:
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L1 (Idempotent): x ∧ x = x, x ∨ x = x.
L2 (Commutative): x ∧ y = y ∧ x, x ∨ y = y ∨ x.
L3 (Associative): x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∨ (y ∨ z) = (x ∨ y) ∨ z.
L4 (Absorption): x ∧ (x ∨ y) = x = x ∨ (x ∧ y).

Theorem 2.5 (consistency). x v y if and only if x∧y = x if and only if x∨y = y.

Theorem 2.6. If a poset P has a top element >, then for all x ∈ P , x ∧ > = x
and x ∨ > = >. Similarly for ⊥.

Theorem 2.7 (isotone property). The meet and join operations in a lattice are
isotone; that is, if y v z, then x ∧ y v x ∧ z and x ∨ y v x ∨ z.

Theorem 2.8 (distributive inequalities). In any lattice,

x ∧ (y ∨ z) w (x ∧ y) ∨ (x ∧ z),

x ∨ (y ∧ z) v (x ∨ y) ∧ (x ∨ z).

Problem 2.7. You might be surprised that these are inequalities and not equal-
ities. Find a lattice for which equality does not apply.

Theorem 2.9 (modular inequality). In a lattice, x v z implies x ∨ (y ∧ z) v
(x ∨ y) ∧ z.

Theorem 2.10. In a lattice, (a ∨ b) ∧ (c ∨ d) w (a ∧ c) ∨ (b ∧ d).

Definition 2.4 (semilattice). A semilattice (X, �) is a set X and a binary oper-
ation � on X that is idempotent, commutative, and associative.

Theorem 2.11. If P is a poset in which every pair of elements has a meet, then
(P,∧) is a semilattice. Likewise for ∨.

Theorem 2.12. In a semilattice (X, �) define x v y to mean x � y = x. Then
(X,v) is a poset with x � y = glb{x, y}.

Theorem 2.13. A set with two binary operations obeying laws L1–L4 (Thm.
2.4) is a lattice, and conversely.

Definition 2.5 (sublattice). If L is a lattice, then S ⊆ L is a sublattice if every
pair of elements of S has both a meet and a join in S (i.e., using the same meet and
join as L).

Theorem 2.14. Both the empty set and the singleton sets are sublattices of a
lattice. (Always check “degenerate” cases such as these.)

Problem 2.8. Give examples of (non-degenerate) sublattices of the example
lattices from Worksheet 1.



8

Theorem 2.15. If L is a complete lattice and S ⊆ L, and if (1) > ∈ S and (2)
glbR ∈ S for every R ⊆ S, then S is a complete lattice.

Problem 2.9. Give counter-examples showing that each of the two conditions
in the preceding theorem are required.

Definition 2.6 (direct product of posets). If P,Q are posets, their direct product
P×Q is defined (x, y) v (x′, y′) if and only if x v x′ in P and y v y′ in Q.

Theorem 2.16. The direct product of two lattices is a lattice.


