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VII. Cooperation & Competition

 Game Theory and the Iterated 
Prisoner’s Dilemma
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The Rudiments of Game Theory
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Leibniz on Game Theory

•  “Games combining chance and skill give the best 
representation of human life, particularly of 
military affairs and of the practice of medicine 
which necessarily depend partly on skill and partly 
on chance.” — Leibniz (1710)

•  “… it would be desirable to have a complete study 
made of games, treated mathematically.”�
 — Leibniz (1715)
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Origins of Modern Theory

•  1928: John von Neumann: optimal strategy for 
two-person zero-sum games
–  von Neumann: mathematician & pioneer computer 

scientist (CAs, “von Neumann machine”)
•  1944: von Neumann & Oskar Morgenstern:Theory 

of Games and Economic Behavior
–  Morgenstern: famous mathematical economist

•  1950: John Nash: Non-cooperative Games
–  his PhD dissertation (27 pages)
–  “genius,” Nobel laureate (1994), schizophrenic
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Classification of Games

•  Games of Chance
–  outcome is independent of players’ actions
–  “uninteresting” (apply probability theory)

•  Games of Strategy
–  outcome is at least partially dependent on 

players’ actions
–  completely in chess
–  partially in poker
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Classification of Strategy Games

•  Number of players (1, 2, 3, …, n)
•  Zero-sum or non zero-sum
•  Essential or inessential
•  Perfect or imperfect information
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Zero-sum vs. Non Zero-sum

•  Zero-sum: winnings of some is exactly 
compensated by losses of others
–  sum is zero for every set of strategies

•  Non zero-sum:
–  positive sum (mutual gain)
–  negative sum (mutual loss)
–  constant sum
–  nonconstant sum (variable gain or loss)
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Essential vs. Inessential
•  Essential: there is an advantage in forming 

coalitions
– may involve agreements for payoffs, 

cooperation, etc.
–  can happen in zero-sum games only if n ≥ 3�

(obviously!)
•  Inessential: there is no such advantage

–  “everyone for themselves”
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Perfect vs. Imperfect Information

•  Perfect information: everyone has complete 
information about all previous moves

•  Imperfect information: some or all have 
only partial information
–  players need not have complete information 

even about themselves (e.g. bridge)
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Strategies

•  Strategy: a complete sequence of actions for a 
player

•  Pure strategy: the plan of action is completely 
determined
–  for each situation, a specific action is prescribed
–  disclosing the strategy might or might not be 

disadvantageous
•  Mixed strategy: a probability is assigned to each 

plan of action
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Von Neumann’s Solution for 
Two-person Zero-sum Games
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Maximin Criterion

•  Choose the strategy that maximizes the 
minimum payoff

•  Also called minimax: minimize the 
maximum loss
–  since it’s zero-sum, your loss is the negative of 

your payoff
–  pessimistic?
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Example
•  Two mineral water companies competing for same 

market
•  Each has fixed cost of $5 000 (regardless of sales)
•  Each company can charge $1 or $2 per bottle

–  at price of $2 can sell 5 000 bottles, earning $10 000
–  at price of $1 can sell 10 000 bottles, earning $10 000
–  if they charge same price, they split market
–  otherwise all sales are of lower priced water
–  payoff = revenue – $5 000

Example from McCain’s Game Theory: An Introductory Sketch



11/23/08 14

Payoff Matrix

Perrier

price = $1 price = $2

Apollinaris
price = $1 0, 0 5000, –5000

price = $2 –5000, 5000 0, 0
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Maximin for A.

Perrier

price = $1 price = $2

Apollinaris
price = $1 0, 0 5000, –5000

price = $2 –5000, 5000 0, 0

minimum at $1

minimum at $2

Maximin
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Maximin for P.

Perrier

price = $1 price = $2

Apollinaris
price = $1 0, 0 5000, –5000

price = $2 –5000, 5000 0, 0



11/23/08 17

Maximin Equilibrium

Perrier

price = $1 price = $2

Apollinaris
price = $1 0, 0 5000, –5000

price = $2 –5000, 5000 0, 0
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Implications of the Equilibrium

•  If both companies act “rationally,” they will 
pick the equilibrium prices

•  If either behaves “irrationally,” the other 
will benefit (if it acts “rationally”)
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Reading

•  CS 420/594: Flake, ch. 18 (Natural & 
Analog Computation)
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Matching Pennies

•  Al and Barb each independently picks either 
heads or tails

•  If they are both heads or both tails, Al wins
•  If they are different, Barb wins
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Payoff Matrix

Barb

head tail

Al
head +1, –1 –1, +1

tail –1, +1 +1, –1

Minimum of each
pure strategy is the same
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Mixed Strategy

•  Although we cannot use maximin to select a 
pure strategy, we can use it to select a 
mixed strategy

•  Take the maximum of the minimum payoffs 
over all assignments of probabilities

•  von Neumann proved you can always find 
an equilibrium if mixed strategies are 
permitted
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Analysis

•  Let PA = probability Al picks head
•  and PB = probability Barb picks head
•  Al’s expected payoff:

E{A} = PA PB – PA (1 – PB) – (1 – PA) PB �
+ (1 – PA) (1 – PB)

= (2 PA – 1) (2 PB – 1)
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Al’s Expected Payoff�
from Penny Game
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How Barb’s Behavior Affects 
Al’s Expected Payoff
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How Barb’s Behavior Affects 
Al’s Expected Payoff



11/23/08 27

More General Analysis�
(Differing Payoffs)

•  Let A’s payoffs be: �
H = HH, h = HT, t = TH, T = TT

•  E{A} = PAPBH + PA(1 – PB)h + (1 – PA)PBt �
+ (1 – PA)(1 – PB)T
= (H + T – h – t)PAPB + (h – T)PA + (t – T)PB + T 

•  To find saddle point set ∂E{A}/∂PA = 0 and ∂E
{A}/∂PB = 0 to get:

€ 

PA =
T − t

H + T − h − t
, PB =

T − h
H + T − h − t
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Random Rationality

 “It seems difficult, at first, to accept the idea 
that ‘rationality’ — which appears to 
demand a clear, definite plan, a 
deterministic resolution — should be 
achieved by the use of probabilistic devices.  
Yet precisely such is the case.”

—Morgenstern
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Probability in Games of Chance 
and Strategy

•  “In games of chance the task is to determine 
and then to evaluate probabilities inherent in 
the game;

•  in games of strategy we introduce 
probability in order to obtain the optimal 
choice of strategy.”

— Morgenstern
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Review of von Neumann’s 
Solution

•  Every two-person zero-sum game has a 
maximin solution, provided we allow mixed 
strategies

•  But— it applies only to two-person zero-
sum games

•  Arguably, few “games” in real life are zero-
sum, except literal games (i.e., invented 
games for amusement)
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Nonconstant Sum Games

•  There is no agreed upon definition of 
rationality for nonconstant sum games

•  Two common criteria:
–  dominant strategy equilibrium
– Nash equilibrium
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Dominant Strategy Equilibrium

•  Dominant strategy: 
–  consider each of opponents’ strategies, and 

what your best strategy is in each situation
–  if the same strategy is best in all situations, it is 

the dominant strategy
•  Dominant strategy equilibrium: occurs if 

each player has a dominant strategy and 
plays it
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Another Example

Price�
Competition

Beta

p = 1 p = 2 p = 3

Alpha

p = 1 0, 0 50, –10 40, –20

p = 2 –10, 50 20, 20 90, 10

p = 3 –20, 40 10, 90 50, 50

There is no dominant strategy
Example from McCain’s Game Theory: An Introductory Sketch
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Nash Equilibrium

•  Developed by John Nash in 1950
•  His 27-page PhD dissertation: �

Non-Cooperative Games
•  Received Nobel Prize in Economics for it in 

1994
•  Subject of A Beautiful Mind
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Definition of Nash Equilibrium

•  A set of strategies with the property:�
No player can benefit by changing actions 
while others keep strategies unchanged

•  Players are in equilibrium if any change of 
strategy would lead to lower reward for that 
player

•  For mixed strategies, we consider expected 
reward



11/23/08 36

Another Example (Reconsidered)

Price�
Competition

Beta

p = 1 p = 2 p = 3

Alpha

p = 1 0, 0 50, –10 40, –20

p = 2 –10, 50 20, 20 90, 10

p = 3 –20, 40 10, 90 50, 50

Not a Nash equilibrium
Example from McCain’s Game Theory: An Introductory Sketch

better for Alphabetter for Beta
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The Nash Equilibrium

Price�
Competition

Beta

p = 1 p = 2 p = 3

Alpha

p = 1 0, 0 50, –10 40, –20

p = 2 –10, 50 20, 20 90, 10

p = 3 –20, 40 10, 90 50, 50

Example from McCain’s Game Theory: An Introductory Sketch

Nash equilibrium



11/23/08 38

Extensions of the Concept of a 
Rational Solution

•  Every maximin solution is a dominant 
strategy equilibrium

•  Every dominant strategy equilibrium is a 
Nash equilibrium
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Cooperation Better for Both:�
A Dilemma

Price�
Competition

Beta

p = 1 p = 2 p = 3

Alpha

p = 1 0, 0 50, –10 40, –20

p = 2 –10, 50 20, 20 90, 10

p = 3 –20, 40 10, 90 50, 50

Example from McCain’s Game Theory: An Introductory Sketch

Cooperation
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Dilemmas

•  Dilemma: “A situation that requires  choice 
between options that are or seem equally 
unfavorable or mutually exclusive”

– Am. Her. Dict.
•  In game theory: each player acts rationally, 

but the result is undesirable (less reward)
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The Prisoners’ Dilemma
•  Devised by Melvin Dresher & Merrill Flood in 

1950 at RAND Corporation
•  Further developed by mathematician Albert W. 

Tucker in 1950 presentation to psychologists
•  It “has given rise to a vast body of literature in 

subjects as diverse as philosophy, ethics, biology, 
sociology, political science, economics, and, of 
course, game theory.” — S.J. Hagenmayer

•  “This example, which can be set out in one page, 
could be the most influential one page in the social 
sciences in the latter half of the twentieth 
century.” — R.A. McCain
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Prisoners’ Dilemma: The Story
•  Two criminals have been caught
•  They cannot communicate with each other
•  If both confess, they will each get 10 years
•  If one confesses and accuses other:

–  confessor goes free
–  accused gets 20 years

•  If neither confesses, they will both get 1 
year on a lesser charge
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Prisoners’ Dilemma�
Payoff Matrix

•  defect = confess, cooperate = don’t
•  payoffs < 0 because punishments (losses)

Bob

cooperate defect

Ann
cooperate –1, –1 –20, 0

defect 0, –20 –10, –10
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Ann’s “Rational” Analysis�
(Dominant Strategy)

•  if cooperates, may get 20 years
•  if defects, may get 10 years
•  ∴, best to defect

Bob

cooperate defect

Ann
cooperate –1, –1 –20, 0

defect 0, –20 –10, –10
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Bob’s “Rational” Analysis�
(Dominant Strategy)

•  if he cooperates, may get 20 years
•  if he defects, may get 10 years
•  ∴, best to defect

Bob

cooperate defect

Ann
cooperate –1, –1 –20, 0

defect 0, –20 –10, –10
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Suboptimal Result of�
“Rational” Analysis

•  each acts individually rationally ⇒ get 10 years�
(dominant strategy equilibrium)

•  “irrationally” decide to cooperate ⇒ only 1 year

Bob

cooperate defect

Ann
cooperate –1, –1 –20, 0

defect 0, –20 –10, –10
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Summary
•  Individually rational actions lead to a result that all 

agree is less desirable
•  In such a situation you cannot act unilaterally in 

your own best interest
•  Just one example of a (game-theoretic) dilemma
•  Can there be a situation in which it would make 

sense to cooperate unilaterally?
–  Yes, if the players can expect to interact again in the 

future
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Classification of Dilemmas



11/23/08 49

General Payoff Matrix

Bob

cooperate defect

Ann
cooperate CC (R) CD (S)

defect DC (T) DD (P)

Reward Sucker

Temptation Punishment
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General Conditions for a 
Dilemma

•  You always benefit if the other cooperates:
  CC > CD and DC > DD

•  You sometimes benefit from defecting:
  DC > CC or DD > CD

•  Mutual coop. is preferable to mut. def.
  CC > DD

•  Consider relative size of CC, CD, DC, DD
  think of as permutations of R, S, T, P
  only three result in dilemmas



11/23/08 51

Three Possible Orders

The three dilemmas: TRSP, RTPS, TRPS

CC�
(R)

DC�
(T)

CD�
(S)

DD�
(P)
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The Three Dilemmas
•  Chicken (TRSP)

  DC > CC > CD > DD
  characterized by mutual defection being worst
  two Nash equilibria (DC, CD)

•  Stag Hunt (RTPS)
  CC > DC > DD > CD
  better to cooperate with cooperator
  Nash equilibrium is CC

•  Prisoners’ Dilemma (TRPS)
  DC > CC > DD > CD
  better to defect on cooperator
  Nash equilibrium is DD
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The Iterated Prisoners’ Dilemma

and Robert Axelrod’s Experiments
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Assumptions

•  No mechanism for enforceable threats or 
commitments

•  No way to foresee a player’s move
•  No way to eliminate other player or avoid 

interaction
•  No way to change other player’s payoffs
•  Communication only through direct 

interaction
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Axelrod’s Experiments
•  Intuitively, expectation of future encounters 

may affect rationality of defection
•  Various programs compete for 200 rounds

–  encounters each other and self
•  Each program can remember:

–  its own past actions
–  its competitors’ past actions

•  14 programs submitted for first experiment
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IPD Payoff Matrix

B

cooperate defect

A
cooperate 3, 3 0, 5

defect 5, 0 1, 1

N.B. Unless DC + CD < 2 CC (i.e. T + S < 2 R), �
can win by alternating defection/cooperation
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Indefinite Number�
of Future Encounters

•  Cooperation depends on expectation of 
indefinite number of future encounters

•  Suppose a known finite number of 
encounters:
– No reason to C on last encounter
– Since expect D on last, no reason to C on next 

to last
– And so forth: there is no reason to C at all
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Analysis of Some Simple 
Strategies

•  Three simple strategies:
– ALL-D: always defect
– ALL-C: always cooperate
– RAND: randomly cooperate/defect

•  Effectiveness depends on environment
– ALL-D optimizes local (individual) fitness
– ALL-C optimizes global (population) fitness
– RAND compromises
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Expected Scores

⇓ playing ⇒ ALL-C RAND ALL-D Average

ALL-C 3.0 1.5 0.0 1.5

RAND 4.0 2.25 0.5 2.25

ALL-D 5.0 3.0 1.0 3.0
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Result of Axelrod’s Experiments

•  Winner is Rapoport’s TFT (Tit-for-Tat)
–  cooperate on first encounter
–  reply in kind on succeeding encounters

•  Second experiment:
–  62 programs
–  all know TFT was previous winner
– TFT wins again
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Demonstration of�
Iterated Prisoners’ Dilemma

Run NetLogo demonstration�
PD N-Person Iterated.nlogo
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Characteristics�
of Successful Strategies

•  Don’t be envious
–  at best TFT ties other strategies

•  Be nice
–  i.e. don’t be first to defect

•  Reciprocate
–  reward cooperation, punish defection

•  Don’t be too clever
–  sophisticated strategies may be unpredictable & look 

random; be clear



11/23/08 63

Tit-for-Two-Tats

•  More forgiving than TFT
•  Wait for two successive defections before 

punishing
•  Beats TFT in a noisy environment
•  E.g., an unintentional defection will lead 
TFTs into endless cycle of retaliation

•  May be exploited by feigning accidental 
defection
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Effects of Many Kinds of Noise 
Have Been Studied

•  Misimplementation noise
•  Misperception noise

–  noisy channels
•  Stochastic effects on payoffs
•  General conclusions:

–  sufficiently little noise ⇒ generosity is best
–  greater noise ⇒ generosity avoids unnecessary 

conflict but invites exploitation
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More Characteristics�
of Successful Strategies

•  Should be a generalist (robust)
–  i.e. do sufficiently well in wide variety of 

environments
•  Should do well with its own kind

–  since successful strategies will propagate
•  Should be cognitively simple
•  Should be evolutionary stable strategy

–  i.e. resistant to invasion by other strategies
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Kant’s Categorical Imperative

“Act on maxims that can at the same time 
have for their object themselves as universal 

laws of nature.”
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Ecological & Spatial Models
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Ecological Model

•  What if more successful strategies spread in 
population at expense of less successful?

•  Models success of programs as fraction of 
total population

•  Fraction of strategy = probability random 
program obeys this strategy
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Variables

•  Pi(t) = probability = proportional population 
of strategy i at time t

•  Si(t) = score achieved by strategy i 
•  Rij(t) = relative score achieved by strategy i 

playing against strategy j over many rounds
– fixed (not time-varying) for now
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Computing Score of a Strategy

•  Let n = number of strategies in ecosystem
•  Compute score achieved by strategy i:

€ 

Si t( ) = Rik t( )Pk t( )
k=1

n

∑

€ 

S t( ) =R t( )P t( )
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Updating Proportional Population

€ 

Pi t +1( ) =
Pi t( )Si t( )
Pj t( )S j t( )

j=1

n
∑
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Some Simulations

•  Usual Axelrod payoff matrix
•  200 rounds per step
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Demonstration Simulation
•  60% ALL-C
•  20% RAND
•  10% ALL-D, TFT
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NetLogo Demonstration of�
Ecological IPD

Run EIPD.nlogo
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Collectively Stable Strategy
•  Let w = probability of future interactions
•  Suppose cooperation based on reciprocity 

has been established
•  Then no one can do better than TFT 

provided:

•  The TFT users are in a Nash equilibrium

€ 

w ≥max T − R
R − S

,T − R
T − P
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“Win-Stay, Lose-Shift” Strategy

•  Win-stay, lose-shift strategy:
–  begin cooperating
–  if other cooperates, continue current behavior
–  if other defects, switch to opposite behavior

•  Called PAV (because suggests Pavlovian 
learning)
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Simulation without Noise
•  20% each
•  no noise
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Effects of Noise

•  Consider effects of noise or other sources of error 
in response

•  TFT:
–  cycle of alternating defections (CD, DC)
–  broken only by another error

•  PAV:
–  eventually self-corrects (CD, DC, DD, CC)
–  can exploit ALL-C in noisy environment

•  Noise added into computation of Rij(t)
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Simulation with Noise
•  20% each
•  0.5% noise
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Spatial Effects
•  Previous simulation assumes that each agent 

is equally likely to interact with each other
•  So strategy interactions are proportional to 

fractions in population
•  More realistically, interactions with 

“neighbors” are more likely
–  “Neighbor” can be defined in many ways

•  Neighbors are more likely to use the same 
strategy
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Spatial Simulation

•  Toroidal grid
•  Agent interacts only with eight neighbors
•  Agent adopts strategy of most successful 

neighbor
•  Ties favor current strategy
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NetLogo Simulation of�
Spatial IPD

Run SIPD.nlogo
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Typical Simulation (t = 1)

Colors:

ALL-C
TFT
RAND
PAV
ALL-D
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Typical Simulation (t = 5)

Colors:

ALL-C
TFT
RAND
PAV
ALL-D
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Typical Simulation (t = 10)

Colors:

ALL-C
TFT
RAND
PAV
ALL-D
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Typical Simulation (t = 10)�
Zooming In
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Typical Simulation (t = 20)

Colors:

ALL-C
TFT
RAND
PAV
ALL-D
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Typical Simulation (t = 50)

Colors:

ALL-C
TFT
RAND
PAV
ALL-D
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Typical Simulation (t = 50)�
Zoom In
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SIPD Without Noise
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Conclusions: Spatial IPD

•  Small clusters of cooperators can exist in 
hostile environment

•  Parasitic agents can exist only in limited 
numbers

•  Stability of cooperation depends on 
expectation of future interaction

•  Adaptive cooperation/defection beats 
unilateral cooperation or defection
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