Leabra Networks Applications to Machine Learning

Daniel Schultz

Innovative Computing Laboratory Electrical Engineering & Computer Science University of Tennessee, Knoxville

Computational Cognitive Neuroscience, 2019

Outline

Introduction Leabra Model Multi-layer Perceptron (MLP) Motivation Handwritten digits

Methodologies Data preprocessing

Performance Methods

Leabra Model

Review

- Designed to be biologically realistic model of the neocortex.
- Combination learning mechanism Self-organized learning Error-driven learning
- Described as best combination for studying the brain

Multi-layer Perceptron (MLP)

background

- Type of artificial neural network used in machine learning
- Error-driven learning using back-propagation
- ► 3 layers: Input, Hidden, Output
 - Hidden layers usually implemented as a single hidden layer
- Easy to implement and used for performance comparison
- Common in the 1980's and the baseline for our problem.

Motivation

- Human brain can always recognize digits
- Orientation, size, obstruction, etc are irrelevant
- No need for millions of test cases to "learn"
- Why cant machine learning do this?

Questions to Answer

- 1. Why use Leabra as a machine learning algorithm?
- 2. How is Leabra different then other artificial neural networks?
- 3. Is Leabra better at learning some tasks?

MNIST

MNIST dataset of digits sourced from NIST dataset

MNIST

- MNIST dataset of digits sourced from NIST dataset
- Training Set: 60,000 images. Testing Set: 10,000 images. Normalized & centered on a fixed image size 28x28 pixels

- Artificial neural networks are very good at learning a known set.
- Classification accuracy for a known problem is high.
- Not as good for test cases not conforming to the training set.
- Generally can't solve problems not trained on. Can be tricked even:

Figure: DNN classifications with greater than 99% confidence. (Nguyen A)

3 distinct data sets are generated from MNIST

- 3 distinct data sets are generated from MNIST
- Unmodified Set

- 3 distinct data sets are generated from MNIST
- Unmodified Set
- Skewed Set
 - Random Rotation
 - Affine Transformation
 - Horizontal/Vertical Flip
 - Scaling

- 3 distinct data sets are generated from MNIST
- Unmodified Set
- Skewed Set
 - Random Rotation
 - Affine Transformation
 - Horizontal/Vertical Flip
 - Scaling
- Combination Set (roughly 50%)

- 3 distinct data sets are generated from MNIST
- Unmodified Set
- Skewed Set
 - Random Rotation
 - Affine Transformation
 - Horizontal/Vertical Flip
 - Scaling
- Combination Set (roughly 50%)
- ► Training, Validation, Test subsets of each

Figure: Example of Digit Manipulation

Methods

 Compare performance of Leabra learning against the multi-layer perceptron (MLP).
3 data sets
Normal (Unmodified)
Skewed
Combination

Methods

 Compare performance of Leabra learning against the multi-layer perceptron (MLP).
3 data sets
Normal (Unmodified)
Skewed
Combination

3 separate data sets
3 trained networks
3 data sets to gather performance data for each network

Methods

 Compare performance of Leabra learning against the multi-layer perceptron (MLP).
3 data sets
Normal (Unmodified)
Skewed
Combination

3 separate data sets
3 trained networks
3 data sets to gather performance data for each network

3 Leabra networks, 3 MLP networks
3 training phases each
3 data sets, 3 modes (Training/Validation/Testing), 3 networks
27 performance metrics per network type, 54 total.

SSE Results

MLP(1 hidden layer)											
Group NT	NV	NTsT	ST	SV	STsT	СТ	CV	CTsT			
Norm 0.89	0.9	0.91	0.92	0.9	0.91	0.91	0.9	0.9			
Skew 0.92	0.91	0.91	0.89	0.91	0.92	0.92	0.91	0.91			
Comb 0.91	0.91	0.92	0.92	0.92	0.91	0.89	0.91	0.91			

(a) MLP (h = 1) SSE Performance

LEABRA (1 Hidden Layer)											
Grou	> NT	NV	NTsT	ST	SV	STsT	СТ	CV	CTsT		
Norm	0.40	0.36	0.54	0.87	0.84	0.85	0.68	0.68	0.74		
Skew	0.83	0.75	0.72	0.52	0.78	0.81	0.74	0.75	0.77		
Com	0.66	0.65	0.65	0.80	0.79	0.83	0.49	0.73	0.76		

(b) Leabra SSE Performance

MLP Training

LEABRA Training

LEABRA Learning on handwritten digits

Comparison

Leabra vs MLP (h=1) Learning on handwritten digits

1. Why use Leabra as a machine learning algorithm?

2. How is Leabra different then other artificial neural networks?

3. Is Leabra better at learning some tasks?

- 1. Why use Leabra as a machine learning algorithm?
 - Can learn a problem just as well or better than artificial neural networks used in machine learning.
- 2. How is Leabra different then other artificial neural networks?
- 3. Is Leabra better at learning some tasks?

- 1. Why use Leabra as a machine learning algorithm?
 - Can learn a problem just as well or better than artificial neural networks used in machine learning.
- 2. How is Leabra different then other artificial neural networks?
 - Doesn't rely entirely on error-driven learning.
 - Integrates a form of principal component analysis.
- 3. Is Leabra better at learning some tasks?

- 1. Why use Leabra as a machine learning algorithm?
 - Can learn a problem just as well or better than artificial neural networks used in machine learning.
- 2. How is Leabra different then other artificial neural networks?
 - Doesn't rely entirely on error-driven learning.
 - Integrates a form of principal component analysis.
- 3. Is Leabra better at learning some tasks?
 - Preliminary results show Leabra having roughly $\frac{1}{2}$ SSE compared to MLP over the same number of epochs & layers.

Conclusions

Leabra Networks

- + Better Inital SSE Performance
- + Better Overall SSE Performance
- Larger Memory Footprint
- High Computational Workload

MLP Networks

+Less Memory Footprint

- + Less Computationally Intensive
- Worse Initial SSE Performance
- Worse Overall SSE Performance
- Not good on non-trained problems

Questions?

References

1. Leabra PhD Thesis

- https://www.researchgate.net/profile/Randall_ OReilly/publication/270960245_The_Leabra_Model_ of_Neural_Interactions_and_Learning_in_the_ Neocortex/links/0fcfd5142b925b81de000000.pdf

2. Emergent Neural Network Simulator

- https:

//grey.colorado.edu/emergent/index.php/Main_Page

3. Leabra Python Implementation

- https://github.com/benureau/leabra

4. MNIST Dataset

- http://yann.lecun.com/exdb/mnist/