COSC 421/521

Computational Cognitive Neuroscience

Bruce MacLennan

Spring 2020

Course Information

- Instructor: Bruce MacLennan [he/his/him]
 - Teaching Assistant: Michael Price (mprice35@vols.utk.edu)
- Course website: web.eecs.utk.edu/~bmaclenn/Classes/421-521
- Email: maclennan@utk.edu
- Office hours: 2:30–3:30 WF, most M (or make appt.)
- Prereqs: no specific prereqs, but will be taught at senior/graduate level
- Grading: weekly homework, occasional pop quizzes
- Piazza for discussions

About the Course

- A course in computational cognitive neuroscience
- Intended for computer science and neuroscience majors
- Focus on cognitive processes (including perception, categorization, memory, language, action, and executive control)
- Understanding neural implementation of these processes
- Using computer simulations to model processes and to test hypotheses

Value for Computer Science Students

- Important if interested in artificial intelligence, neural networks, or neuromorphic computing
- Will help you understand how brains do things that are still difficult for computers
- You will be able to take the concepts and theories of neural information processing and use them to develop better AI systems
- You will learn about neuroscience applications of computer modeling

Tricking AI to think a banana is a toaster

Value for Neuroscience Students

- You will learn how computers can be applied to modeling the neural processes underlying cognition
- You will get hands-on experience using these tools
 - reinforce your neuroscience knowledge
 - give you a deeper understanding of neural information processing in the brain
- You will learn how these processes can be implemented on computers in order to achieve artificial intelligence

Prerequisites

- This course is intended for:
 - Computer science students with no experience in neuroscience
 - Neuroscience students with no experience in computer modeling
- It is intended to be interdisciplinary and self-contained
- Therefore, no specific prerequisites
- No mathematics beyond elementary calculus
- Course will be taught at a level appropriate for seniors and graduate students

Practical Course Prerequisite

- You will be required to run models on the (free) emergent software system
- You can install it on your own computer (Mac, Windows, or linux)
- You can use a friend's installation
- However, if you cannot find a way to run it within a week, you should drop the course!

Suggested Installation Strategy

- Before the next class, attempt to install emergent on your computer of choice
- Make sure the neuron and detector projects run
 - I will demo them shortly
- If you have had difficulties, we will try to help you out on Friday
- If you do not have a workable solution by next
 Wednesday, we will need to consider your options

Assignments

- Readings in free, online text: *Computational Cognitive Neuroscience* by Randall O'Reilly et al.
- Weekly observations from experiments run on emergent system
- Weekly "reading reflections": paragraph on most interesting ideas from readings
- Occasional pop quizzes
- Term papers and presentations by students in COSC 521

Demonstration of emergent

Summary of Steps to Check emergent

- 1. Go to text and click on chapter 2. Neuron
- 2. Scroll to bottom and click on <u>Detector</u> (not <u>New Detector!</u>)
- 3. In the right-hand frame, click File:detector.proj
- 4. Control- or right-click detector.proj to download it to some convenient place
- 5. Launch emergent
- 6. Under File menu, click Open Project and open detector.proj
- 7. In upper border, click <u>ControlPanel</u>
- 8. In lower border, click <u>Init</u>
- 9. In lower border, click Run and you should see neurons updating in RH frame
- 10. Quit emergent. You're up and running!

From Neurons to Behavior and Back Again

COSC 421/521

13

The Challenge

- The brain is massively parallel
 - 86 billion neurons in human brain
 - 20 billion neurons in neocortex
- The brain is massively interconnected
 - each neuron gets inputs from thousands of others
 - 100–1000 trillion connections
- Neurons are slow
 - take milliseconds to respond
- Yet brain responds in real time
 - 100 step rule

The brain is organized over sizes that span 6 orders of magnitude

Levels of Investigation

(figure < Sejnowski, Salk)

J W Lichtman, W Denk Science 2011;334:618-623

Overview of Brain to Neurons

http://www.youtube.com/watch?v=DF04XPBj5uc

COSC 421/521

(play flash video)

Neural Density in Cortex

127 000 neurons / sq. mm

Hence, about 13 million / sq. cm

Cortical Areas

COSC 421/521

18

Reductionism and Reconstructionism

- Reductionism
 - Understanding something in terms of its parts
 - Understanding high-level processes in terms of lower-level processes
 - Understanding behavior in terms of neurons
- Reconstructionism
 - Complementary: putting the pieces back together
 - "What I cannot create, I do not understand" (Feynman)

Feynman's blackboard when he died

Emergence and Learning

- With 86 billion neurons, you can't build it by hand
- It basically has to build itself (through development & learning)
- Complexity must emerge from simplicity (not that many genes control brain development)

Emergence

(Now Imagine 10,000,000,000 gears, each interacting with 10,000 others)

Why Computational Models?

- Brain is a computing device (information processor)
- Computational models allow us to described models in a precise way
 - "What I understand, I can program"
- Abstract and formal theory can help us organize and interpret data
- Computational models are a path to AI

Marr's Levels of Abstraction

- Computational (goal)
 - What computations are being performed? What information is being processed?
- Algorithmic (strategy)
 - How are these computations being performed, in terms of a sequence of information processing steps?
- Implementational (representation)
 - How does the hardware actually implement these algorithms?

COSC 421/521

24

Why We Can't Ignore Implementation

- Traditional view: we can ignore implementation level because all computers are functionally the same
 - Von Neumann architecture
 - Universal Turing machine
- But the brain has a radically different architecture
 - Low-precision analog devices
 - Massively parallel
 - Massively interconnected

Some Levels of Computational Model

- High-level/symbolic cognitive processes
- Bayesian inference
- Artificial neural networks (BP, deep learning)
- Biologically realistic rate-based models (Leabra)
- Spiking neuron models (integrate and fire)
- Compartment models
- Microphysiological

Course Overview

From neurons to networks to the brain/mind...

(slide < O'Reilly)

Basic Computational Mechanisms

- Neurons
 - serve as *detectors*, signal with *activity*
- Networks
 - *link*, *coordinate*, *amplify*, and *select* patterns of activity over neurons
- Learning
 - organizes networks to perform tasks and develop models of environment

Cognitive Phenomena (1)

- **Visual encoding:** A network views natural scenes (mountains, trees, etc.), and develops brain-like ways of encoding them using principles of learning.
- Spatial attention: Taking advantage of interactions between two different streams of visual processing, a model focuses its attention in different locations in space, and simulates normal and brain-damaged people.
- **Episodic memory:** Replicating the structure of the hippocampus, a model forms new episodic memories and solves human memory tasks.
- Working memory: A neural network with specialized biological mechanisms simulates our working memory capacities (e.g., the ability to mentally juggle a bunch of numbers while trying to multiply multidigit values).

Cognitive Phenomena (2)

- Word reading: A network learns to read and pronounce nearly 3,000 English words, and generalizes to novel non-words (e.g., "mave" or "nust") just as people do. Damaging a reading model simulates various forms of dyslexia.
- Semantic representation: A network "reads" every paragraph in a textbook, acquiring a surprisingly good semantic understanding by noting which words tend to be used together or in similar contexts.
- Task directed behavior: A network simulates the "executive" part of the brain, the prefrontal cortex, which keeps us focused on performing the task at hand and protects us from distraction.