8. Learning and Memory

Memory

- Memory = any persistent effect of experience (not just memorization of facts, events, names, etc.)
- Weights vs. activations
- Gradual, integrative cortical learning and priming effects
- Rapid memorization: The hippocampus
- Active memory: prefrontal cortex

Major Types of Memory: Mechanisms

- Weight-based (changes in synapses)
 - Long lasting, persist over distraction, etc.
 - Very high capacity
- Activation-based (sustained neural firing)
 - Transient, easily lost
 - Very flexible: mental arithmetic, etc.

Weights vs. Activations

- Despite appearances, memory is not unitary
- Weights:
 - Long-lasting
 - Requires re-activation
 - Weights in different brain systems store different types of memories

(slide < Frank)

- Activations:
 - Short-term
 - Already active, can influence processing

Major Types of Memory: Characteristics

- Episodic Memory: events, facts, etc.
 - Hippocampus
- Familiarity-based recognition
 - Perirhinal cortex: "You look familiar, but..."
- Weight-based priming
 - Subconscious, can be very long-lasting
- Activation-based priming
 - Also subconscious, but transient...

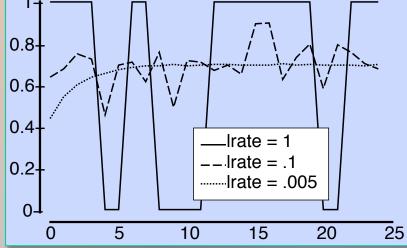
COSC 494/594 CCN (slide < O'Reilly)

A. Episodic Memory

Weight-based Memories

Cortex does gradual, integrative learning

Cortex can learn arbitrary input-output mappings given:


– multiple passes through the training set – a relatively

small learning rate

• Rapid weight changes causes interference

- slow-learning cortex
- rapid-learning hippocampus (pattern separation avoids interference)

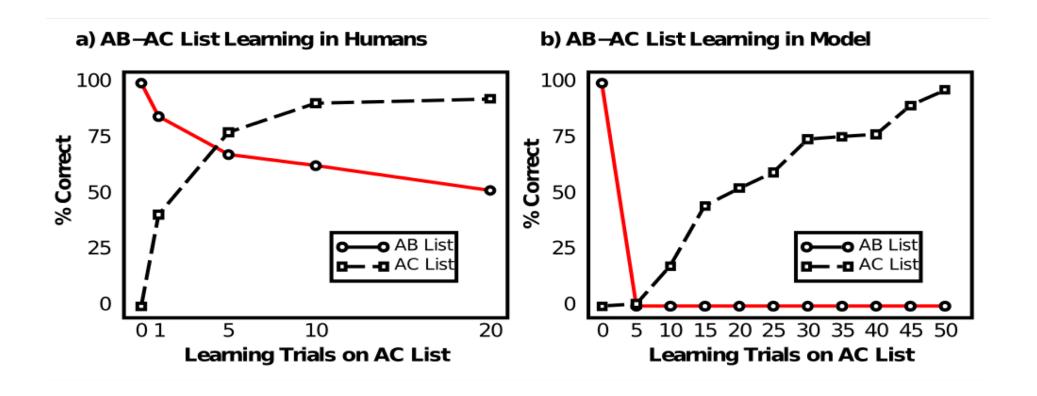
Episodic Memory

- Autobiographical memory (life events)
- Arbitrary new memories (lab tasks)

•

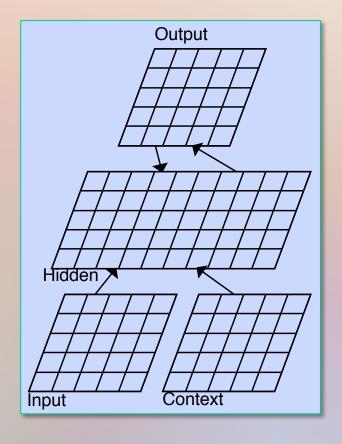
COSC 494/594 CCN (slide < O'Reilly)

Classic Lab Task: AB-AC


- Humans can rapidly learn overlapping associations without too much interference
- Learn AB paired associates:
 - window-reason
 - bicycle-garbage
- Then AC paired associates:
 - window-locomotive
 - bicycle-dishtowel

-- ...

AB-AC

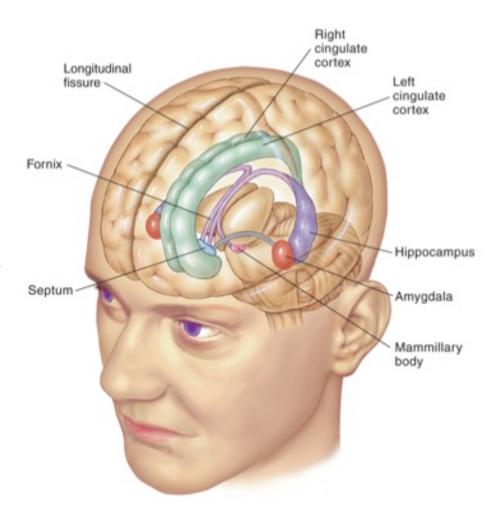

- Test on AB list:
 - Window?
 - —Bicycle?
- And AC list:
 - Window?
 - Bicycle?

Catastrophic Interference

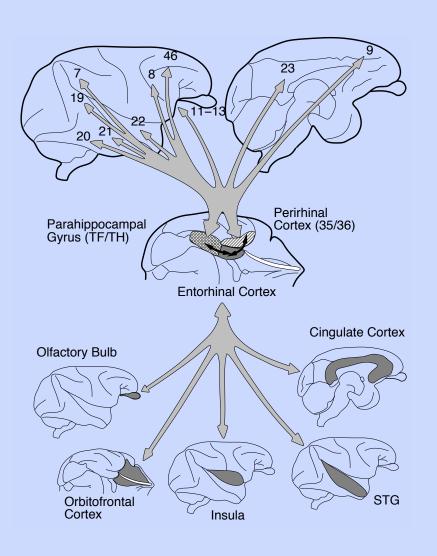
AB-AC Model

- Input = A
- Output = B, C
- Context differentiates the lists
 - Each list is associated with a different context pattern

emergent Demonstration: AB-AC-interference

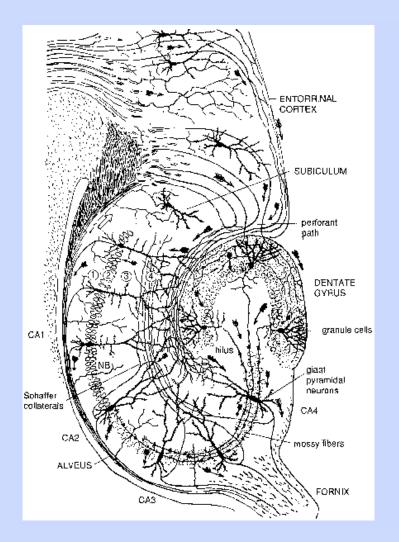

B. Hippocampus and Pattern Separation

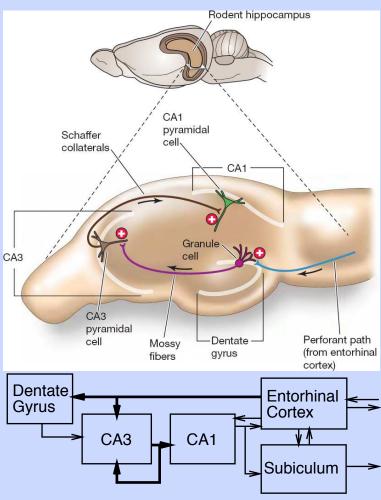
Complementary Learning Systems

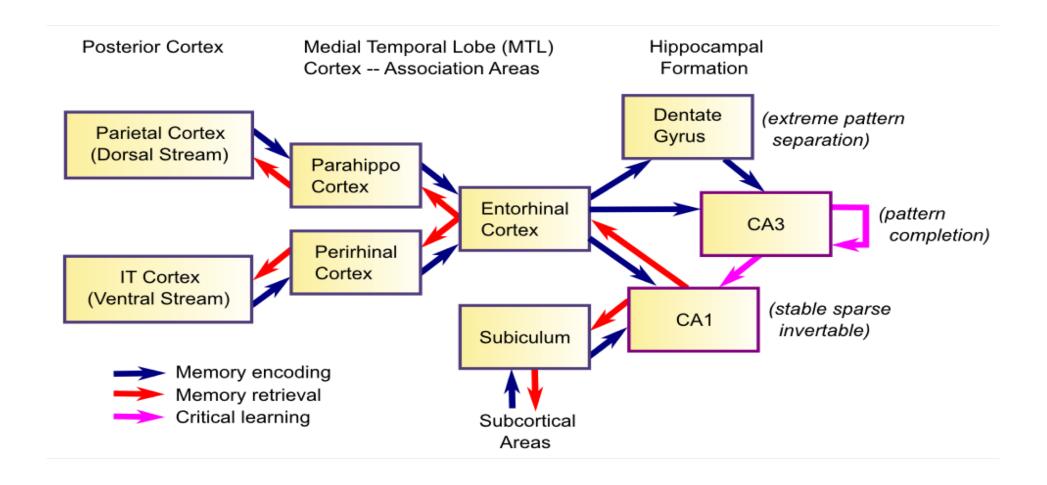

Goals:	Remember Specifics	Extract Generalities	
Example:	Where is car parked?	Best parking strategy?	
Need to:	Avoid interference	Accumulate experience	
Solution:			
1.	Separate reps	Overlapping reps	
	(keep days separate)	(integrate over days)	
	(D1) (D2) (D3)	PS (parking strategy)	
	XXX		
	(D1) (D2) (D3)	(D1) (D2) (D3)	
2.	Fast learning	Slow learning	
	(encode immediately)	(integrate over days)	
3.	Learn automatically	Task-driven learning	
	(encode everything)	(extract relevant stuff)	
These are incompatible, need two different systems:			
System:	Hippocampus	Neocortex	

Hippocampus

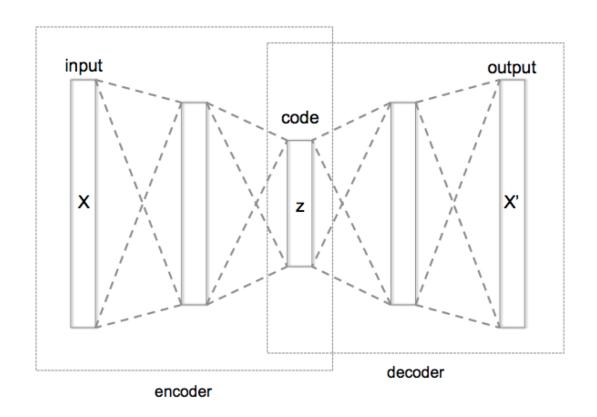
- 3 or 4 layers
- About 40 million neurons
- Important functions:
 - > episodic memory
 - spatial memory & navigation (right HC)
 - memories involving words (left HC)
 - perhaps, "particulars that need to be kept separate"



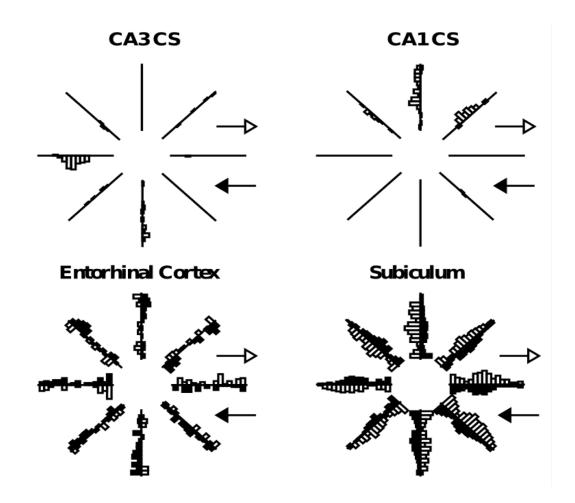

Centrality of Hippocampus


- One of two "summits" in processing hierarchy
 - sensory input areas are "bottoms"
 - o other summit is prefrontal cortex
- Access to summary of all brain activity
- Ventral stream connected through perirhinal cortex (PRC)
- Dorsal via parahippocampal cortex (PHC)
- Converge on HC through entorhinal cortex (EC)

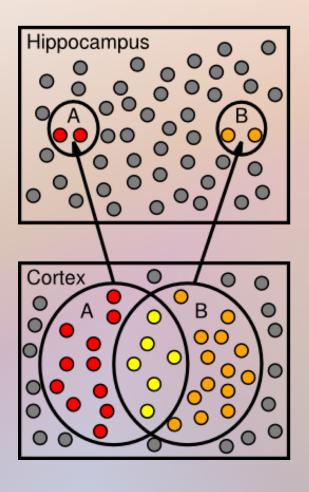
Hippocampal Anatomy


Hippocampal System

Outline of Episodic Memory Encoding

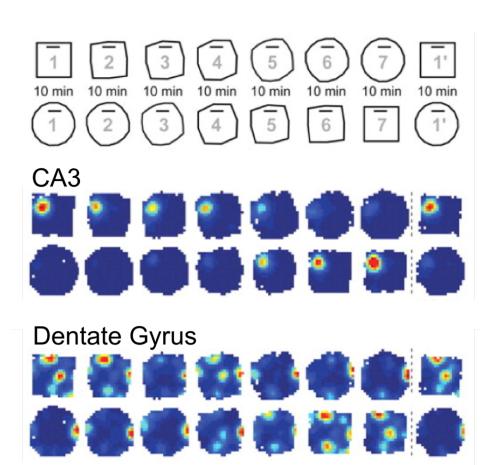

- High-level summary of brain activity in EC
- Drives DG and CA3 via *perforant pathway* resulting in sparse firing pattern in CA3
- EC also drives CA1 via invertible mapping (autoencoder)
 - thus CA1 can reactivate the high-level summary in EC
- Activity drives synaptic plasticity
 - among CA3 neurons (in the CA3 recurrent pathway)
 - CA3 to CA1 (the Schaffer collateral pathway)
- Binds together components of conjunctive memory so CA3 pattern can activate pattern in CA1, which activates pattern in EC, and thence to neocortex
- Connections are strengthened in all these pathways

Example Auto-encoder Network


(figure by Chervinskii - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45555552)

Sparse Activity (Rat Hippocampal Place Cells)

Activation of sample neurons within each area are shown for a rat running on an 8-arm radial maze


Sparse Representation ⇒ Pattern Separation

- Sparseness thought to result from high levels of GABA inhibition
- Hence, much excitation required to reach threshold
- P = 1% neurons active (typical of DG) in an episode $\Rightarrow P = 0.01\%$ in two random episodes
- P = 25% (typical of cortex) in one $\Rightarrow P = 6.25\%$ in two

Separation vs. Sparseness in DG & CA3

- Activity sparseness in DG (1%) is greater than that in CA3 (2–5%)
- Activity of place cell as shape of environment morphed
- CA3: distinct patterns for square and circular environment
- DG: responds differentially to middle of morph sequence
 ⇒ greater pattern separation

Cued Recall & Pattern Completion

- Human memory is content addressable
- Partial retrieval cue triggers completion of full original pattern
- Pattern completion facilitated by recurrent connections among CA3 neurons
 - glues them together during encoding
 - subset of CA3 neurons can trigger recall of the remainder
- Synaptic changes in perforant pathway during encoding increase likelihood that original DG and CA3 neurons will be reactivated by partial retrieval cue

Pattern Separation vs. Completion

- Tradeoff between pattern separation and pattern completion
- Pattern separation ⇒ likely to treat retrieval cue as novel stimulus
 - encodes new distinct engram pattern in CA3, instead of completing old one
- System too good at pattern completion ⇒ reactivates old memories instead of encoding new patterns for novel episodes
- Can balance with model parameters
 - LTP in CA3 supports completion while LTD supports separation
- Hippocampus likely benefits from strategic influences from other brain areas (e.g., PFC executive control)
 - emphasize either completion or separation depending on whether the current demands require recall or encoding

Spatial Representation in the HC System

- Place cells
- Grid cells
- Head-direction cells
- Border/boundary cells
- Prospective or goal-directed cells
- "Social place cells"
- "Inanimate-object place cells"

Hippocampus Summary

- CA3 stores sparse, pattern-separated representations of cortical input patterns
- Recurrent self-projections in CA3 facilitate recall (pattern completion)
- DG acts as a removable pattern separation turbocharger
 - DG uses super-sparse representations, helps increase pattern separation during encoding
 - DG "steps aside" during retrieval
 - Evidence for two modes: theta cycle (e.g., Hasselmo et al, 2002); neuromodulatory control over relative DG effect on CA3
- CA1 helps "translate" sparse, non-overlapping CA3 representations back into overlapping EC representations, by providing an intermediately sparse representation

3/19/18 COSC 494/594 CCN 28

emergent demo: Hip.proj

Applying the hippocampus model to the AB-AC task

C. Memory Consolidation

How memories become (semi-)permanent

Complementary Learning Systems

Goals:	Remember Specifics	Extract Generalities	
Example:	Where is car parked?	Best parking strategy?	
Need to:	Avoid interference	Accumulate experience	
Solution:			
1.	Separate reps	Overlapping reps	
	(keep days separate)	(integrate over days)	
	(D1) (D2) (D3)	PS (parking strategy)	
	XXX	strategy)	
	(D1) (D2) (D3)	(D1) (D2) (D3)	
2.	Fast learning	Slow learning	
	(encode immediately)	(integrate over days)	
3.	Learn automatically	Task-driven learning	
	(encode everything)	(extract relevant stuff)	
These are incompatible, need two different systems:			
System:	Hippocampus	Neocortex	

H.M. (Henry Molaison, 1926–2008)

- HC removed in 1957 to treat severe epilepsy
- Developed inability to learn new episodic information (anterograde amnesia)
 - some degree of forgetting of previously learned knowledge (*retrograde amnesia*)
 - older memories had somehow become *consolidated* outside of the HC
- Remembered how to talk, meanings of different words and objects, how to ride bike, could learn various new motor skills
- Could learn new semantic information, but relatively slowly and access was more brittle

Hippocampal Amnesia

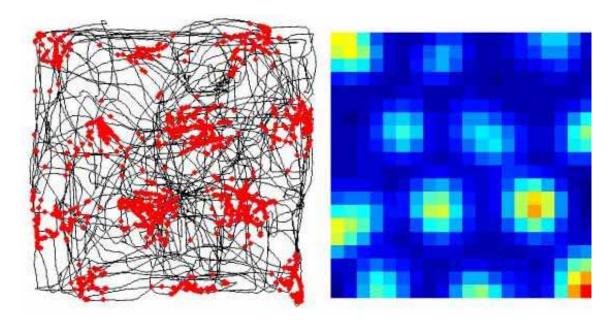
Hippocampal amnesiacs show:

- Spared implicit memory, skill learning (without recall)
 - small adaptive adjustments in synaptic weights
- Intact repetition priming for existing associations (table-chair) but not for arbitrary novel pairs of words (locomotive-spoon)
 - small cortical adjustments can prime existing representations but not novel conjunctions
- Remote memories spared but recent ones completely forgotten
 - consolidation by reactivation of memories across multiple contexts, sleep, etc.

Memory Consolidation

- Patterns of activity that occur while a rat is running a maze seem to be reactivated when animal is asleep
 - but measured levels of reactivation are relatively weak compared to patterns active during actual behavior
- Humans: slow wave oscillations in non-REM sleep thought to be associated with memory consolidation.
 - external induction of slow wave oscillations during sleep may result in enhanced hippocampal-dependent memories for items encoded just prior to sleep (Marshall et al., 2006)

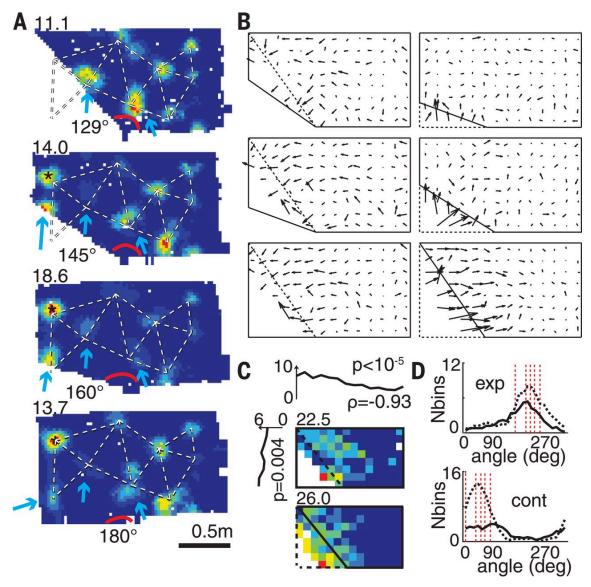
Effects of Complementary Learning


- Information encoded in neocortex of a different character to that initially encoded by hippocampus
- To the extent that episodic memories can be encoded in the neocortex:
 - will become more "semanticized" and generalized
 - integrated with other existing memories
- Compare to more distinct and crisp patternseparated representations originally encoded in HC

D. Spatial Representation in the Hippocampus

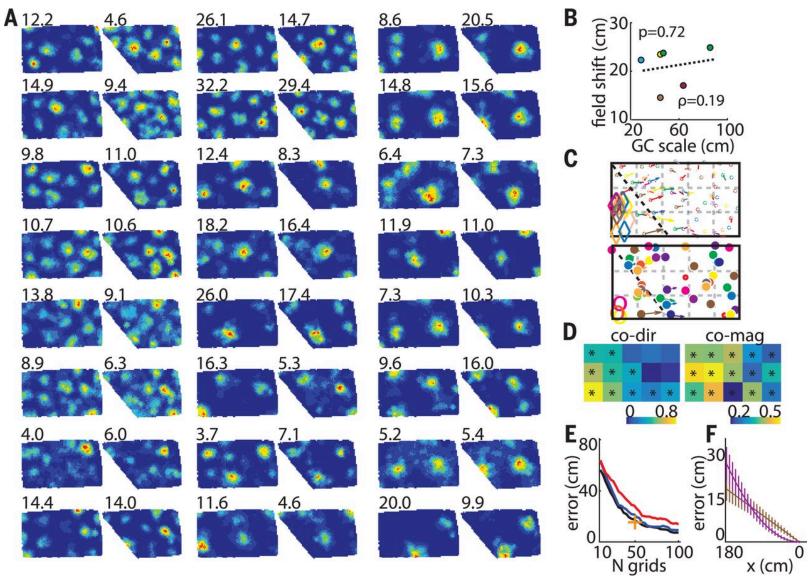
Place, Grid, & Head Direction Cells in HC

- Rat hippocampus exhibits robust place cell firing
 - individual DG, CA3, CA1 neurons respond to particular location
 - neuron will have different preferred location in different environments
 - does not appear to be any topography or other systematic organization
 - consistent with random, diffuse nature of perforant pathway projections and effects of pattern separation
- Grid cells form regular hexagonal grid over space
 - appear to depend on various forms of oscillations
 - may provide raw spatial information that gets integrated into place cells within the hippocampus proper
- Head direction cells in several areas project into hippocampus
 - provide dead reckoning signal about where rat is facing based on accumulation of recent movements


"Hippocampal" Grid Cells

- Grid cells are in medial entorhinal cortex (Haftingetal, 2005), not HC proper
- Hippocampus might integrate location with speed and direction (head direction cells) to perform path integration
- Can be recast as just another example of conjunctive, pattern-separate representations

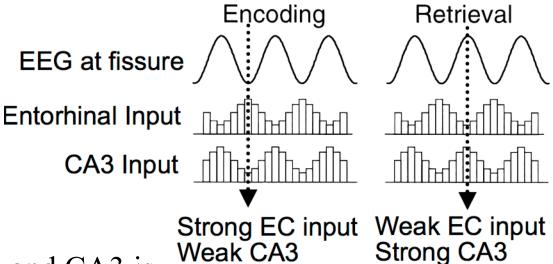
(slide < Frank)


Local transformations of the hippocampal cognitive map

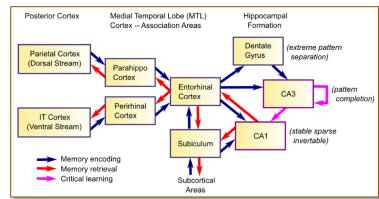
Julija Krupic et al. Science 2018;359:1143-1146

Simultaneous changes in grid field positions.

Julija Krupic et al. Science 2018;359:1143-1146

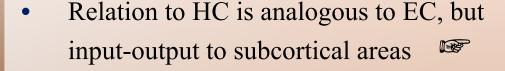


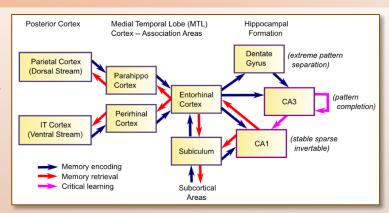
Theta Waves


- Hippocampus exhibits oscillation of neuron firing in theta frequency band (8 to 12 Hz)
- Thought to play critical role in grid cell activations in EC
 - perhaps may serve to encode temporal sequence information
 - place-field activity firing shows theta phase procession
 - different place fields fire at different points within unfolding theta wave
- Different areas of hippocampus are out of phase with each other
- Perhaps this phase relationship enables system to alternate between encoding of new information vs. recall of existing information (Hasselmo et al., 2002)
 - alters HC parameters to optimize encoding or retrieval
- Implemented in Hip.prog model

Theta Rhythm Control of Encoding/Retrieval

• Different areas of HC system fire out of phase with respect to theta rhythm, producing dynamics that optimize encoding vs. retrieval.


- When the EC input is strong and CA3 is weak, CA1 can learn to encode the EC inputs.
 - serves as plus phase for error-driven learning dynamic in the Leabra framework.
- When CA3 is strong and EC is weak, the system recalls information driven by prior CA3 ⇒ CA1 learning.



serves as minus phase for Leabra error-driven learning

E. Novelty, Familiarity, and Recognition

Function of the Subiculum

- Might compute relative <u>novelty</u> of a given situation, and communicate to midbrain dopamine systems and thence to basal ganglia
- Novelty can have complex affective consequences:
 - both *anxiogenic* (anxiety producing)
 - and motivational for driving further exploration
 - generally increases overall arousal levels
- HC uniquely capable of determining novelty, taking into account full conjunction of relevant spatial and other contextual information
- Subiculum could compute novelty by comparing CA1 and EC states during recall phase of theta oscillation
- Conjecture!

Dual Process Model of Recognition Memory

- Neocortex can support episodic memory traces, but with different properties from those in HC
- Perirhinal cortex (PRC) can produce a <u>familiarity signal</u>
 - indicates in coarse manner whether a stimulus was experienced recently or not
 - like a single graded value that varies in intensity depending on how strongly familiar the item is
 - accessible to consciousness
 - hypothesis: sharpness of repeated representations in perirhinal cortex due to competition & Hebbian learning
 - familiarity indicated by average activity of winners (Norman & O'Reilly '03)
- Dual processes: hippocampal recall and perirhinal familiarity

Priming

- Memory increases speed or probability of a particular response
- We are not generally aware of these memories
- Weight-based priming
 - incremental changes to synapses
 - persistent (> 1 year from single exposure)
- Activation-based priming
 - results from residual activation
 - short-lived

More Robust Activation-Based Memory

In Executive Function Chapter:

- PFC robust active maintenance over seconds to minutes
- BG provides dynamic gating signal for update vs. maintenance
- Used for "working memory," cognitive control, ...

emergent Demonstrations: WtPriming ActPriming