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4.2 Examples
The use of simple quantum gates can be studied with two simple examples: dense coding
and teleportation.
Dense coding uses one quantum bit together with an EPR pair to encode and transmit

two classical bits. Since EPR pairs can be distributed ahead of time, only one qubit (parti-
cle) needs to be physically transmitted to communicate two bits of information. This result
is surprising since, as was discussed in section 3, only one classical bit’s worth of informa-
tion can be extracted from a qubit. Teleportation is the opposite of dense coding, in that
it uses two classical bits to transmit a single qubit. Teleportation is surprising in light of
the no cloning principle of quantum mechanics, in that it enables the transmission of an
unknown quantum state.
The key to both dense coding and teleportation is the use of entangled particles. The

initial set up is the same for both processes. Alice and Bob wish to communicate. Each is
sent one of the entangled particles making up an EPR pair,

�0 =
1p
2
(|00i + |11i).

Say Alice is sent the first particle, and Bob the second. So until a particle is transmit-
ted, only Alice can perform transformations on her particle, and only Bob can perform
transformations on his.

4.2.1 Dense Coding

Alice

Encoder

Bob

Decoder

EPR
source

Alice. Alice receives two classical bits, encoding the numbers 0 through 3. Depending
on this number Alice performs one of the transformations {I, X, Y, Z} on her qubit of the
entangled pair �0. Transforming just one bit of an entangled pair means performing the
identity transformation on the other bit. The resulting state is shown in the table.

Value Transformation New state
0 �0 = (I ⌦ I)�0

1�
2
(|00i + |11i)

1 �1 = (X ⌦ I)�0
1�
2
(|10i + |01i)

2 �2 = (Y ⌦ I)�0
1�
2
(�|10i + |01i)

3 �3 = (Z ⌦ I)�0
1�
2
(|00i � |11i)

Alice then sends her qubit to Bob.

Bob. Bob applies a controlled-NOT to the two qubits of the entangled pair.

Figure III.18: Superdense coding. [from ICQ]

C.6 Applications

C.6.a Superdense coding

¶1. Superdense coding: Also known as dense coding. A means by which
one quantum particle can be used to transmit two classical bits of in-
formation.
(in general “only one classical bit’s worth of information can be ex-
tracted from a qubit.” [ICQ])

¶2. It was described by Bennett and Wiesner in 1992. It was partially
validated experimentally in 1998.

¶3. Alice and Bob share an entangled pair.
To transmit two bits, Alice applies one of four transformations to her
qubit.
She sends her qubit to Bob, who can apply an operation to the entan-
gled pair to determine which of the four transformations she applied,
and hence the two bits.

¶4. Alice and Bob share the entangled pair |�
00

i = 1p
2

(|00i + |11i).

¶5. To encode her two classical bits, Alice applies one of the four Pauli
matrices (Sec. C.2.a, §6, p. 124), �

0

, �
1

, �
2

, �
3

= I, X, Y , Z.

¶6. Alice applies this transformation to her qubit. Since Bob’s bit is unaf-
fected, the transformation on the entangled pair is I ⌦ I, X ⌦ I, Y ⌦ I,
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Z ⌦ I. The results are:

bits transformation result
00 I ⌦ I 1p

2

(|00i + |11i) = |�
00

i
01 X ⌦ I 1p

2

(|10i + |01i) = |�
01

i
10 Y ⌦ I 1p

2

(�|10i + |01i) = |�
11

i
11 Z ⌦ I 1p

2

(|00i � |11i) = |�
10

i

For example, in the last case, since Z|0i = |0i and Z|1i = �|1i, we see
Z ⌦ I

h
1p
2

(|00i + |11i)
i
= 1p

2

(|00i � |11i). Make sure you can explain

the result in the other cases (Exer. III.33).

¶7. Alice sends her single transformed qubit to Bob.

¶8. We have seen that CNOT can create entangled pairs. Since it is its
own inverse, it can also disentangle entangled pairs.

¶9. Bob applies the CNOT gate to the transformed pair, which disentangles
the qubits. Note that the result is decomposable:

bits CNOT output factored
00 1p

2

(|00i + |10i) 1p
2

(|0i + |1i) |0i
01 1p

2

(|11i + |01i) 1p
2

(|1i + |0i) |1i
10 1p

2

(�|11i + |01i) 1p
2

(�|1i + |0i) |1i
11 1p

2

(|00i � |10i) 1p
2

(|0i � |1i) |0i

For example, in the first case

CNOT


1p
2
(|00i + |11i)

�
=

1p
2
(CNOT|00i+CNOT|11i) = 1p

2
(|00i+|10i).

Make sure you can explain the result in the other cases (Exer. III.34).

¶10. Since the state is decomposable, Bob can measure the second qubit
without disturbing the first.

¶11. Notice that the first qubit is |+i or |�i.

¶12. Finally, Bob applies the Hadamard gate to the first qubit:
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bits first qubit result of H
00 1p

2

(|0i + |1i) |0i
01 1p

2

(|1i + |0i) |0i
10 1p

2

(�|1i + |0i) |1i
11 1p

2

(|0i � |1i) |1i

For example, in the first case 1p
2

(|0i+ |1i) = |+i and we know H|+i =
|0i. Make sure you can explain the result in the other cases (exercise).

¶13. All four input situations can be discriminated.

¶14. Alternative approach: The Bell states are orthonormal, and can be
used to represent the two bits.

¶15. Recall the circuit for generating Bell states (Fig. III.13).
Its e↵ect is CNOT(H ⌦ I)|xyi = |�xyi.
This cannot be used by Alice for generating Bell states, because she
doesn’t have access to Bob’s qubit.

¶16. However, Alice can use xy to select I, X, Z, or ZX (corresponding
to xy = 00, 01, 10, 11 respectively) and generate the corresponding Bell
state |�xyi.
(Note that this is a di↵erent encoding from §6 above.)

¶17. Measuring in Bell basis: After Alice sends the qubit to Bob, he
needs to measure it in the Bell basis.
This can be done by inverting the Bell state generator, which, since the
CNOT and H are self-adjoint, is simply:

(H ⌦ I)CNOT|�xyi = |xyi.

This translates the Bell basis into the computational basis, so Bob can
measure the bits exactly.
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Initial state Controlled-NOT First bit Second bit
�0 = 1�

2
(|00i + |11i) 1�

2
(|00i + |10i) 1�

2
(|0i + |1i) |0i

�1 = 1�
2
(|10i + |01i) 1�

2
(|11i + |01i) 1�

2
(|1i + |0i) |1i

�2 = 1�
2
(�|10i + |01i) 1�

2
(�|11i + |01i) 1�

2
(�|1i + |0i) |1i

�3 = 1�
2
(|00i � |11i) 1�

2
(|00i � |10i) 1�

2
(|0i � |1i) |0i

Note that Bob can now measure the second qubit without disturbing the quantum state.
If the measurement returns |0i then the encoded value was either 0 or 3, if the measurement
returns |1i then the encoded value was either 1 or 2.
Bob now appliesH to the first bit:

Initial state First bit H(First bit)
�0

1�
2
(|0i + |1i) 1�

2

�
1�
2
(|0i + |1i) + 1�

2
(|0i � |1i)

�
= |0i

�1
1�
2
(|1i + |0i) 1�

2

�
1�
2
(|0i � |1i) + 1�

2
(|0i + |1i)

�
= |0i

�2
1�
2
(�|1i + |0i) 1�

2

�
� 1�

2
(|0i � |1i) + 1�

2
(|0i + |1i)

�
= |1i

�3
1�
2
(|0i � |1i) 1�

2

�
1�
2
(|0i + |1i) � 1�

2
(|0i � |1i)

�
= |1i

Finally, Bob measures the resulting bit which allows him to distinguish between 0 and
3, and 1 and 2.

4.2.2 Teleportation. The objective is to transmit the quantum state of a particle using
classical bits and reconstruct the exact quantum state at the receiver. Since quantum state
cannot be copied, the quantum state of the given particle will necessarily be destroyed. Sin-
gle bit teleportation has been realized experimentally [Bouwmeester et al. 1997; Nielsen
et al. 1998; Boschi et al. 1998].

Alice Bob

Decoder Encoder

EPR
source

Alice. Alice has a qubit whose state she doesn’t know. She wants to send the state of ths
qubit

� = a|0i + b|1i
to Bob through classical channels. As with dense coding, Alice and Bob each possess one
qubit of an entangled pair

�0 =
1p
2
(|00i + |11i).

Figure III.19: Quantum teleportation. [fig. from ICQ]

C.6.b Quantum teleportation

¶1. The goal of quantum teleportation is to transfer the exact quantum
state of a particle from Alice to Bob through a classical channel (Figs.
III.19, III.20).

¶2. Of course, the no-cloning theorem says we cannot copy it, but we can
teleport it by destroying the original. Furthermore, if Alice measures
it, she will alter its state.

¶3. Single-qubit quantum teleportation was described by Bennett in 1993
and first demonstrated experimentally in the late 1990s.

¶4. Alice and Bob begin by sharing the halves of an entangled pair, |�
00

i =
1p
2

(|0i + |1i).

¶5. Suppose that the quantum state that Alice wants to share is | i =
a|0i + b|1i.

¶6. The composite system comprising the unknown state and the Bell state
is

| , �
00

i = (a|0i + b|1i) 1p
2
(|00i + |11i)

=
1p
2
[a|0i(|00i + |11i) + b|1i(|00i + |11i)]
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Figure III.20: Possible setup for quantum teleportation. [from wikipedia
commons]

=
1p
2
(a|0, 00i + a|0, 11i + b|1, 00i + b|1, 11i).

¶7. Alice applies the decoding circuit used for superdense coding to the
unknown state and her qubit from the entangled pair. The function is
(H ⌦ I ⌦ I)(CNOT ⌦ I).
This is the first step of measuring her two qubits in the Bell basis.

¶8. When Alice applies CNOT ⌦ I the result is:

(CNOT ⌦ I)


1p
2
(a|00, 0i + a|01, 1i + b|10, 0i + b|11, 1i)

�
=

1p
2
(a|00, 0i + a|01, 1i + b|11, 0i + b|10, 1i).

¶9. When she applies (H ⌦ I ⌦ I) the result is:

(H ⌦ I ⌦ I)
1p
2
(a|0, 00i + a|0, 11i + b|1, 10i + b|1, 01i)

=
1

2
[a(|0, 00i + |1, 00i + |0, 11i + |1, 11i) + b(|0, 10i � |1, 10i + |0, 01i � |1, 01i)] .

This is because H|0i = |+i = 1p
2

(|0i+ |1i) and H|1i = |�i = 1p
2

(|0i�
|1i).
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¶10. Rearranging and factoring:

1

2
[|00i(a|0i + b|1i) + |01i(a|1i + b|0i) + |10i(a|0i � b|1i) + |11i(a|1i � b|0i)] .

¶11. Thus the amplitudes have been transferred from the first qubit to the
third (Bob’s), which now incorporates the amplitudes a and b, but in
di↵erent ways depending on the first two bits. In fact you can see that
they are transformed by the Pauli matrices.

¶12. Therefore Alice measures the first two bits (completing measurement
in the Bell basis) and sends them to Bob over the classical channel.
This measurement collapses the state, including Bob’s qubit, but in a
way that is determined by the first two qubits.

¶13. When Bob receives the two classical bits from Alice, he uses them to
select a transformation for his qubit, which restores the amplitudes to
the correct basis vectors. These transformations are the Pauli matrices:

bits gate input
00 I a|0i + b|1i (identity)
01 X a|1i + b|0i (exchange)
10 Z a|0i � b|1i (negate)
11 ZX a|1i � b|0i (exchange–negate)

¶14. In each case, applying the specified gate to its input yields | i = a|0i+
b|1i, Alice’s original qubit. This is obvious in the 00 case, but you
should verfy the others (exercise).

¶15. Notice that since Alice had to measure her original qubit, its state has
collapsed.

¶16. Notice that quantum teleportation does not allow faster-than-light com-
munication, since Alice had to transmit her two classical bits to Bob.

¶17. Teleportation circuit: The circuit in Fig. III.21 is slightly di↵erent,
since it uses the fact that the appropriate transformations can be ex-
pressed in the form ZM1XM2 , where M

1

and M
2

are the two classical
bits. You should verify that ZX = Y (exercise).
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Figure 1.13. Quantum circuit for teleporting a qubit. The two top lines represent Alice’s system, while the bottom
line is Bob’s system. The meters represent measurement, and the double lines coming out of them carry classical
bits (recall that single lines denote qubits).

=
1p
2

h
�|0i(|00i + |11i) + �|1i(|00i + |11i)

i
, (1.29)

where we use the convention that the first two qubits (on the left) belong to Alice, and
the third qubit to Bob. As we explained previously, Alice’s second qubit and Bob’s qubit
start out in an EPR state. Alice sends her qubits through a gate, obtaining

|�1i =
1p
2

h
�|0i(|00i + |11i) + �|1i(|10i + |01i)

i
. (1.30)

She then sends the first qubit through a Hadamard gate, obtaining

|�2i =
1
2

h
�(|0i + |1i)(|00i + |11i) + �(|0i � |1i)(|10i + |01i)

i
.

(1.31)

This state may be re-written in the following way, simply by regrouping terms:

|�2i =
1
2

h
|00i

�
�|0i + �|1i

�
+ |01i

�
�|1i + �|0i

�
+ |10i

�
�|0i � �|1i

�
+ |11i

�
�|1i � �|0i

�i
. (1.32)

This expression naturally breaks down into four terms. The first term has Alice’s qubits
in the state |00i, and Bob’s qubit in the state �|0i + �|1i – which is the original state
|�i. If Alice performs a measurement and obtains the result 00 then Bob’s system will
be in the state |�i. Similarly, from the previous expression we can read off Bob’s post-
measurement state, given the result of Alice’s measurement:

00 7�! |�3(00)i �
h
�|0i + �|1i

i
(1.33)

01 7�! |�3(01)i �
h
�|1i + �|0i

i
(1.34)

10 7�! |�3(10)i �
h
�|0i � �|1i

i
(1.35)

11 7�! |�3(11)i �
h
�|1i � �|0i

i
. (1.36)

Depending on Alice’s measurement outcome, Bob’s qubit will end up in one of these
four possible states. Of course, to know which state it is in, Bob must be told the result of
Alice’s measurement – we will show later that it is this fact which prevents teleportation

Figure III.21: Circuit for quantum teleportation. [from NC]

¶18. Entangled states: can be teleported.

¶19. Interchanging resources: Both superdense coding and teleportation
indicate that under some circumstances two bits and an entangled pair
can be interchanged with one qubit. This is one example of a method
of interchanging resources.

¶20. State of the art: Free-space quantum teleportation has been demon-
strated over 143 km between two of the Canary Islands (Nature, 13
Sept. 2012).4

4http://www.nature.com/nature/journal/v489/n7415/full/nature11472.html
(accessed 12-09-18).


