104 CHAPTER III. QUANTUM COMPUTATION

aAD%NOTa Z:D—aANDb

(a) (®) controlled-NOT
”Damb “j)DfaXORb |4) —o— |4)
b b

c) (d)

|B) —&—— |B @ A)

(
(e) Z:D—aNANDb = w
Uon =
a
® bD—aNORb = m

_= oo oo

0
0
1
0

Figure I11.9: Left: classical gates. Right: controlled-NOT gate. [from Nielsen
& Chuang (2010, Fig. 1.6)]

C.2 Quantum gates

Quantum gates are analogous to ordinary logic gates (the fundamental build-
ing blocks of circuits), but they must be unitary transformations (see Fig.
II1.9, left, for ordinarty logic gates). Fortunately, Bennett, Fredkin, and
Toffoli have already shown how all the usual logic operations can be done
reversibly. In this section you will learn the most important quantum gates.

C.2.a SINGLE-QUBIT GATES

The NOT gate is simple because it is reversible: NOT|0) = |1), NOT|1) =
|0). Its desired behavior can be represented:

NOT: [0) — |1)
) = 10).

Note that defining it on a basis defines it on all quantum states. Therefore
it can be written as a sum of dyads (outer products):

NOT = [1}0] + |0)1].

You can read this, “return |1) if the input is |0), and return |0) if the input
is [1).” Recall that in the standard basis [0) = (1 0)* and [1) = (0 1)T.

C. QUANTUM INFORMATION 105

Therefore NOT can be represented in the standard basis by computing the
outer products:

- (D)an (Don=(2)+ (1) (2 1)

The first column represents the result for |0), which is |1), and the second
represents the result for |1), which is |0).

Although NOT is defined in terms of the computational basis vectors, it
applies to any qubit, in particular to superpositions of |0) and |1):

NOT(a|0) + b[1)) = aNOT|0) + bNOT|1) = a[1) + b|0) = b[0) + a|1).

Therefore, NOT exchanges the amplitudes of |0) and |1).

In quantum mechanics, the NOT transformation is usually called X. It
is one of four useful unitary operations, called the Pauli matrices, which are
worth remembering. In the standard basis:

ef ef 1 O

1%, & (o 1) (111.10)

X ey e (0] (I1.11)
10

y s, &y, & < 0 Z) (I11.12)
— 0

7, e, (é _01) (I11.13)

We have seen that X is NOT, and [is obviously the identity gate. Z leaves |0)
unchanged and maps |1) to —|1). It is called the phase-flip operator because
it flips the phase of the |1) component by 7 relative to the |0) component.
(Recall that global/absolute phase doesn’t matter.) The Pauli matrices span
the space of 2 x 2 complex matrices (Exer. I11.18).

Note that Z|+) = |—) and Z|—) = |+). It is thus the analog in the sign
basis of X (NOT) in the computational basis. What is the effect of Y on the
computational basis vectors? (Exer. I11.12)

Note that there is an alternative definition of Y that differs only in global

phase:
def 0 1
y (ol)

106 CHAPTER III. QUANTUM COMPUTATION

This is a 90° = 7/2 counterclockwise rotation: Y (a|0) + b|1)) = b|0) — a|1).
Draw a diagram to make sure you see this.

Note that the Pauli operations apply to any state, not just basis states.
The X, Y, and Z operators get their names from the fact that they reflect
state vectors along the x,y, z axes of the Bloch-sphere representation of a
qubit, which we will not use in this book. Since they are reflections, they are
Hermitian (their own inverses).

C.2.b MULTIPLE-QUBIT GATES

We know that any logic circuit can be built up from NAND gates. Can we
do the same for quantum logic, that is, is there a universal quantum logic
gate? We can’t use NAND, because it’s not reversible, but we will see that
there are universal sets of quantum gates.

The controlled-NOT or CNOT gate has two inputs: the first determines
what it does to the second (negate it or not).

CNOT:]00) + |00)
|01) ~— [01)
|10) — |11)
|11) — [10).

Its first argument is called the control and its second is called the target,
controlled, or data qubit. It is a simple example of conditional quantum
computation. CNOT can be translated into a sum-of-dyads representation
(Sec. A.2.d), which can be written in matrix form (Ex. III.21, p. 194):

CNOT = [00%00|
+ |o1Y01]
+ [11Y10]
+ [10¥11]

We can also define it (for z,y € 2), CNOT|zy) = |zz), where z = z @ y,
the exclusive OR of z and y. That is, CNOT|z,y) = |z,z & y) CNOT is
the only non-trivial 2-qubit reversible logic gate. Note that CNOT is unitary
since obviously CNOT = CNOT' (which you can show using its dyadic
representation or its matrix representation, Ex. II1.21, p. 194). See the right

C. QUANTUM INFORMATION 107

o

I
l

Figure I11.10: Diagram for CCNOT or Toffoli gate [fig. from Nielsen &
Chuang (2010)]. Sometimes the x is replaced by & because CCNOT |zyz) =
|z, y, 2y @ 2).

panel of Fig. II1.9 (p. 104) for the matrix and note the diagram notation for
CNOT.
CNOT can be used to produce an entangled state:

ONOT |- (10)+ 1) 10) = CNOT—(100}-+10}) = -

V2 V2 V2

Note also that CNOT|z,0) = |z, x), that is, FAN-OUT, which would seem
to violate the No-cloning Theorem, but it works as expected only for x € 2.
In general CNOT|¢)[0) # [¢)|¢)) (Exer. 111.22).

Another useful gate is the three-input/output Toffoli gate or controlled-
controlled-NOT. It negates the third qubit if and only if the first two qubits
are both 1. For z,y, 2 € 2,

(100)+[11)) = |Boo)-

CONOT|1,1,2) % |1,1,-2),
CCNOT|z,y, 2) o |z, y,2), otherwise.

That is, CCNOT|z,y, z) = |z, y,xy ® z). All the Boolean operations can be
implemented (reversibly!) by using Toffoli gates (Exer. I11.25). For example,
CCNOT|x,y,0) = |z,y,z Ay). Thus it is a universal gate for quantum logic.

In Jan. 2009 CCNOT was implemented successfully using trapped ions.’

®Monz, T.; Kim, K.; Hansel, W.; Riebe, M.; Villar, A. S.; Schindler, P.; Chwalla, M.;
Hennrich, M. et al. (Jan 2009). “Realization of the Quantum Toffoli Gate with Trapped
Tons.” Phys. Rev. Lett. 102 (4): 040501. arXiv:0804.0082.

108 CHAPTER III. QUANTUM COMPUTATION

C.2.c WALSH-HADAMARD TRANSFORMATION

Recall that the sign basis is defined |+) = = 12(]O> + 1)) and |—) o (|0>
|1)). The Hadamard transformation or gate is defined:

H0) & |4, (I11.14)

oy -, (I11.15)

In sum-of-dyads form: H < |—|—)(0| + |—X1]. In matrix form (with respect to

the standard basis):
def 1 1 1
H_ﬁ(lq) (IIL.16)

Note that H is self-adjoint, H> = I (since H' = H). H can be defined also
in terms of the Pauli matrices: H = (X + Z)/v/2 (Exer. 111.33).

The H transform can be used to transform the computational basis into
the sign basis and back (Exer. I11.32):

H(al0) +0[1)) = al+)+b|-),
H(a|+) +b|-)) = al0)+ b|1).

Alice and Bob could use this in quantum key distribution.

When applied to a |0), H generates an (equal-amplitude) superposition of
the two bit-values, H|0) = \O) f|1> This is a useful way of generating a
superposition of both pos&ble input bits, and the Walsh transform, a tensor

power of H, can be applied to a quantum register to generate a superposition
of all possible register values. Consider the n = 2 case:

H?[p,¢) = (H®H)(|Y) @ |¢))
= (HlY)) @ (H]9))
In particular,
H®|00) = (H|0)) ® (H|0))
— ‘ _|_>®2

Lo+ |1>>]

I
l—|

\/_
) (10 + [19)(10) + 1)

—
Sl ®

000>—+|01)—+|10>—+|11>)

3

C. QUANTUM INFORMATION 109

Notice that this is an equal superposition of all possible values of the 2-qubit
register. (I wrote the amplitude in a complicated way, 1/v/22, to help you
see the general case.) In general,

o)™ = —(j0) + 1))

n

- 5

n
A

= = (0 + 1)@ (0) + 1) @@ (0) +[1))

(J00...00) +[00...01) + -+ |11...11))

-5

m

1
- =2
2nx€2”
2" —1

1
= \/2720\)@

Note that “2™—1" represents a string of n 1-bits, and that 2 = {0, 1}. Hence,
H®™|0)®" generates an equal superposition of all the 2" possible values of the
n-qubit register. We often write W,, = H®™ for the Walsh transformation.

An linear operation applied to such a superposition state in effect applies
the operation simultaneously to all 2" possible input values. This is expo-
nential quantum parallelism and suggests that quantum computation might
be able to solve exponential problems much more efficiently than classical
computers. To see this, suppose U|xz) = |f(z)). Then:

2" —1 2" —1

Ly m] -3 Ul == 3 1)

U(HE0)") = U

This is a superposition of the function values f(x) for all of the 2" possible
values of x; it is computed by one pass through the operator U.

110 CHAPTER III. QUANTUM COMPUTATION

-1

Figure II1.11: Diagram for swap [from Nielsen & Chuang (2010)].

C.3 Quantum circuits

A quantum circuit is a sequential series of quantum transformations on a
quantum register. The inputs are usually computational basis states (all |0)
unless stated otherwise). Quantum circuit diagrams are drawn with time go-
ing from left to right, with the quantum gates crossing one or more “wires”
(qubits) as appropriate. The circuit represents a sequence of unitary opera-
tions on a quantum register rather than physical wires.

These “circuits” are different in several respects from ordinary sequential
logic circuits. First, loops (feedback) are not allowed, but you can apply
transforms repeatedly. Second, FAN-IN (equivalent to OR) is not allowed,
since it it not reversible or unitary. FAN-OUT is also not allowed, because
it would violate the No-cloning Theorem. (N.B.: This does not contradict
the universality of the Toffoli or Fredkin gates, which are universal only with
respect to logical or classical states.)

Fig. II1.9 (right) on page 104 shows the symbol for CNOT and its effect.

The swap operation is defined |zy) — |yz), or explicitly

SWAP = Z lyzfxy|.

x,yc2

We can put three CNOTSs in series to swap two qubits (Exer. I11.35). Swap
has a special symbol as shown in Fig. II[.11.

In general, any unitary operator U (on any number of qubits) can be
conditionally controlled (see Fig. II1.12); this is the quantum analogue of
an if-then statement. If the control bit is 0, this operation does nothing,
otherwise it does U. This is implemented by |0X0|® I+ |1{1| @ U. Effectively,
the operators are entangled.

Suppose the control bit is in superposition, |x) = a|0) + b|1). The effect

C. QUANTUM INFORMATION 111

U

Figure 1.8. Controlled-U gate.

Figure II1.12: Diagram for controlled-U [from Nielsen & Chuang (2010)].

of the conditional operation is:

(10X0] @ I + [1X1] @ U)[x, %)
= (100l @ I + |1{1] © U)(al0) + b[1)) @ |¢))
= [0X0[(al0) +b[1)) @ I|¢) + [1{1[(al0) + b[1)) © Ul4))
= al0) @ |¢) +b[1) @ Ul)
= al0,¥) + b1, U).

The result is a superposition of entangled outputs. Notice that CNOT is a
special case of this construction, a controlled X.

We also have a quantum analogue for an if-then-else construction. If U
and U; are unitary operators, then we can make the choice between them
conditional on a control bit as follows:

|0X0] ® Uy + |1X1] & Us.

For example,
CNOT = |0X0| ® I + [1)1]| ® X. (IIL.17)

In quantum circuit diagrams, the symbol for the CCNOT gate is show in
Fig. II1.10, or with e for top two connections and & for bottom, suggesting
CCNOT|z,y,z) = |z,y, 2y @ z). Alternately, put “CCNOT” in a box. Other
operations may be shown by putting a letter or symbol in a box, for example
“H” for the Hadamard gate.

The Hadamard gate can be used to generate Bell states (Exer. I111.34):

CNOT(H ® I)|zxy) = |Bay)- (II1.18)

112 CHAPTER III. QUANTUM COMPUTATION

In Out

00) | (00) * 11)/v/Z = 7o) —

on | qoy+popvi=jay L

10) | (|00) — [11))/v2 = |A0) |Bay)
| qon - popvai=is 7

Figure II1.13: Quantum circuit for generating Bell states. [from Nielsen &
Chuang (2010, fig. 1.12)]

) —, =

Figure I11.14: Symbol for measurement of a quantum state (from Nielsen &
Chuang (2010)).

The circuit for generating Bell states (Eq. I11.18) is shown in Fig. II1.13.
It’s also convenient to have a symbol for quantum state measurement,
such as Fig. I11.14.

C.4 Quantum gate arrays

Fig. 1I1.15 shows a quantum circuit for a 1-bit full adder. As we will
see (Sec. C.7), it is possible to construct reversible quantum gates for any
classically computable function. In particular the Fredkin and Toffoli gates
are universal.

Because quantum computation is a unitary operator, it must be re-
versible. You know that an irreversible computation x +— f(x) can be em-
bedded in a reversible computation (z,c) — (g(x), f(x)), where ¢ are suit-
able ancillary constants and g(z) represents the garbage qubits. Note that
throwing away the garbage qubits (dumping them into the environment) will
collapse the quantum state (equivalent to measurement) by entangling them
in the many degrees of freedom of the environment. Typically these garbage
qubits will be entangled with other qubits in the computation, collapsing
them as well, and interfering with the computation. Therefore the garbage

C. QUANTUM INFORMATION 113

[9) lc)
|z) |z)
))
|0))
|0) <)

Figure II1.15: Quantum circuit for 1-bit full adder [from Rieffel & Polak
(2000)]. “x and y are the data bits, s is their sum (modulo 2), ¢ is the
incoming carry bit, and ¢ is the new carry bit.”

|

|
X :—» X » ——:—» X

Lo — g(x) g, >0 |

' 0 ® ot 0!

R > > F—>

| fix) CNOT fix) l
y———r > > > y@f(x)

, y yefix) !

B e "] |

Ur

Figure I11.16: Quantum gate array for reversible quantum computation.

114 CHAPTER III. QUANTUM COMPUTATION

must be produced in a standard state independent of x. This is accomplished
by uncomputing, as we did in classical reversible computing (Ch. II, Sec. C.6,
p. 57).

Since NOT is reversible, each 1 bit in ¢ can be replaced by a 0 bit followed
by a NOT, so we need only consider computations of the form (x,0)
(g9(x), f(x)); that is, all the constant bits can be zero.

Therefore, we begin by embedding our irreversible computation of f in a
reversible computation ®, which we get by providing 0 constants and gen-
erating garbage g(x); see Fig. I11.16. That is, ® will perform the following
computation on four registers (data, workspace, result, target):

(2,0,0,y) = (z,g9(x), f(z),y).

The result f(z) is in the result register and the garbage g(x) is in the
workspace register. Notice that 2 and y (data and target) are passed through.
Now use CNOTs between corresponding places in the result and target reg-
isters to compute y @ f(z), where @ represents bitwise exclusive-or, in the
target register. Thus we have computed:

(2,0,0,9) = (z,9(x), f(x),y @ f(2)).

Now we uncompute with ®~!, but since the data and target registers are
passed through, we get (2,0,0,y ® f(x)) in the registers. We have restored
the data, workspace, and result registers to their initial values and have
y @ f(x) in the target register. Ignoring the result and workspace registers,
we write

(z,y) = (z,y ® f(x)).

This is the standard approach we will use for embedding a classical compu-
tation in a quantum computation.

Therefore, for any computable f : 2™ — 2", there is a reversible quantum
gate array Uy : H™T™ — H™" such that for x € 2™ and y € 27",

Uslz,y) = |z, y © f(z)),

See Fig. II1.17. In particular, Us|z,0) = |z, f(x)). The first m qubits are
called the data register and the last n are called the target register.

C. QUANTUM INFORMATION 115

r) — — [7)

ly) — — |y @ f(x))

Figure I11.17: Computation of function by quantum gate array (Rieffel &
Polak, 2000).

C.5 Quantum parallelism

Since Uy is linear, if it is applied to a superposition of bit strings, it will
produce a superposition of the results of applying f to them in parallel (i.e.,
in the same time it takes to compute it on one input):

Uf(Cl|X1> + CQ‘XQ) 4+ o+ Ck|Xk>) = ClUf’X1> + CQUf|X2> + 4 Cka’Xk>.

For example, if we have a superposition of the inputs x; and xg,

Us (?Ixﬁ + %\m)) ®10) = §|X1, f(x1)) + %\Xz, f(x2)).

The amplitude of a result y will be the sum of the amplitudes of all x such
that y = f(z).

If we apply Uy to a superposition of all possible 2™ inputs, it will compute
a superposition of all the corresponding outputs in parallel (i.e., in the same
time as required for one function evaluation)! The Walsh-Hadamard trans-
formation can be used to produce this superposition of all possible inputs:

Win|00...0) = —=—(]00...0)+[00...1) + -+ [11...1))

116 CHAPTER III. QUANTUM COMPUTATION

In the last line we are obviously interpreting the bit strings as natural num-
bers. Hence,

= = ;2
UsW|0) = Uy (ﬁ > |$70>> o > Ugle,0) = Jom > |, f(x).
=0 =0 x=0

A single circuit does all 2™ computations simultaneously! “Note that since
n qubits enable working simultaneously with 2" states, quantum parallelism
circumvents the time/space trade-off of classical parallelism through its abil-
ity to provide an exponential amount of computational space in a linear
amount of physical space.” (Rieffel & Polak, 2000)

This is amazing, but not immediately useful. If we measure the input
bits, we will get a random value, and the state will be projected into a
superposition of the outputs for the inputs we measured. If we measure an
output bit, we will get a value probabilistically, and a superposition of all
the inputs that can produce the measured output. Neither of the above is
especially useful, so most quantum algorithms transform the state in such a
way that the values of interest have a high probability of being measured.
The other thing we can do is to extract common properties of all values of
f(x). Both of these require different programming techniques than classical
computing.

