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Figure 1.6. On the left are some standard single and multiple bit gates, while on the right is the prototypical
multiple qubit gate, the controlled- . The matrix representation of the controlled- , UCN , is written with
respect to the amplitudes for |00�, |01�, |10�, and |11�, in that order.

qubit. The action of the gate may be described as follows. If the control qubit is set to
0, then the target qubit is left alone. If the control qubit is set to 1, then the target qubit
is flipped. In equations:

|00i ! |00i; |01i ! |01i; |10i ! |11i; |11i ! |10i. (1.18)

Another way of describing the is as a generalization of the classical gate, since
the action of the gate may be summarized as |A, Bi ! |A, B � Ai, where � is addition
modulo two, which is exactly what the gate does. That is, the control qubit and the
target qubit are ed and stored in the target qubit.
Yet another way of describing the action of the is to give a matrix represen-

tation, as shown in the bottom right of Figure 1.6. You can easily verify that the first
column of UCN describes the transformation that occurs to |00i, and similarly for the
other computational basis states, |01i, |10i, and |11i. As for the single qubit case, the
requirement that probability be conserved is expressed in the fact that UCN is a unitary
matrix, that is, U †

CNUCN = I.
We noticed that the can be regarded as a type of generalized- gate. Can

other classical gates such as the or the regular gate be understood as unitary
gates in a sense similar to the way the quantum gate represents the classical
gate? It turns out that this is not possible. The reason is because the and gates
are essentially irreversible or non-invertible. For example, given the output A�B from
an gate, it is not possible to determine what the inputs A and B were; there is an
irretrievable loss of information associated with the irreversible action of the gate.
On the other hand, unitary quantum gates are always invertible, since the inverse of a
unitary matrix is also a unitary matrix, and thus a quantum gate can always be inverted
by another quantum gate. Understanding how to do classical logic in this reversible or
invertible sense will be a crucial step in understanding how to harness the power of

Figure III.9: Left: classical gates. Right: controlled-Not gate. [from Nielsen
& Chuang (2010, Fig. 1.6)]

C.2 Quantum gates

Quantum gates are analogous to ordinary logic gates (the fundamental build-
ing blocks of circuits), but they must be unitary transformations (see Fig.
III.9, left, for ordinarty logic gates). Fortunately, Bennett, Fredkin, and
To↵oli have already shown how all the usual logic operations can be done
reversibly. In this section you will learn the most important quantum gates.

C.2.a Single-qubit gates

The NOT gate is simple because it is reversible: NOT|0i = |1i, NOT|1i =
|0i. Its desired behavior can be represented:

NOT : |0i 7! |1i
|1i 7! |0i.

Note that defining it on a basis defines it on all quantum states. Therefore
it can be written as a sum of dyads (outer products):

NOT = |1ih0| + |0ih1|.

You can read this, “return |1i if the input is |0i, and return |0i if the input
is |1i.” Recall that in the standard basis |0i = (1 0)T and |1i = (0 1)T.
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Therefore NOT can be represented in the standard basis by computing the
outer products:

NOT =

✓
0
1

◆
(1 0) +

✓
1
0

◆
(0 1) =

✓
0 0
1 0

◆
+

✓
0 1
0 0

◆
=

✓
0 1
1 0

◆
.

The first column represents the result for |0i, which is |1i, and the second
represents the result for |1i, which is |0i.

Although NOT is defined in terms of the computational basis vectors, it
applies to any qubit, in particular to superpositions of |0i and |1i:

NOT(a|0i + b|1i) = aNOT|0i + bNOT|1i = a|1i + b|0i = b|0i + a|1i.

Therefore, NOT exchanges the amplitudes of |0i and |1i.
In quantum mechanics, the NOT transformation is usually called X. It

is one of four useful unitary operations, called the Pauli matrices, which are
worth remembering. In the standard basis:

I
def

= �
0

def

=

✓
1 0
0 1

◆
(III.10)

X
def

= �x
def

= �
1

def

=

✓
0 1
1 0

◆
(III.11)

Y
def

= �y
def

= �
2

def

=

✓
0 i
�i 0

◆
(III.12)

Z
def

= �z
def

= �
3

def

=

✓
1 0
0 �1

◆
(III.13)

We have seen thatX is NOT, and I is obviously the identity gate. Z leaves |0i
unchanged and maps |1i to �|1i. It is called the phase-flip operator because
it flips the phase of the |1i component by ⇡ relative to the |0i component.
(Recall that global/absolute phase doesn’t matter.) The Pauli matrices span
the space of 2 ⇥ 2 complex matrices (Exer. III.18).

Note that Z|+i = |�i and Z|�i = |+i. It is thus the analog in the sign
basis of X (NOT) in the computational basis. What is the e↵ect of Y on the
computational basis vectors? (Exer. III.12)

Note that there is an alternative definition of Y that di↵ers only in global
phase:

Y
def

=

✓
0 1

�1 0

◆
.
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This is a 90� = ⇡/2 counterclockwise rotation: Y (a|0i + b|1i) = b|0i � a|1i.
Draw a diagram to make sure you see this.

Note that the Pauli operations apply to any state, not just basis states.
The X, Y , and Z operators get their names from the fact that they reflect
state vectors along the x, y, z axes of the Bloch-sphere representation of a
qubit, which we will not use in this book. Since they are reflections, they are
Hermitian (their own inverses).

C.2.b Multiple-qubit gates

We know that any logic circuit can be built up from NAND gates. Can we
do the same for quantum logic, that is, is there a universal quantum logic
gate? We can’t use NAND, because it’s not reversible, but we will see that
there are universal sets of quantum gates.

The controlled-NOT or CNOT gate has two inputs: the first determines
what it does to the second (negate it or not).

CNOT : |00i 7! |00i
|01i 7! |01i
|10i 7! |11i
|11i 7! |10i.

Its first argument is called the control and its second is called the target,
controlled, or data qubit. It is a simple example of conditional quantum
computation. CNOT can be translated into a sum-of-dyads representation
(Sec. A.2.d), which can be written in matrix form (Ex. III.21, p. 194):

CNOT = |00ih00|
+ |01ih01|
+ |11ih10|
+ |10ih11|

We can also define it (for x, y 2 2), CNOT|xyi = |xzi, where z = x � y,
the exclusive OR of x and y. That is, CNOT|x, yi = |x, x � yi CNOT is
the only non-trivial 2-qubit reversible logic gate. Note that CNOT is unitary
since obviously CNOT = CNOT† (which you can show using its dyadic
representation or its matrix representation, Ex. III.21, p. 194). See the right



C. QUANTUM INFORMATION 107

Introduction to Quantum Computing · 15

gates are unitary. For example

Y Y

⇤ =

✓
0 �1
1 0

◆ ✓
0 1

�1 0

◆
= I.

The controlled-NOT gate, Cnot, operates on two qubits as follows: it changes the second
bit if the first bit is 1 and leaves this bit unchanged otherwise. The vectors |00i, |01i,
|10i, and |11i form an orthonormal basis for the state space of a two-qubit system, a 4-
dimensional complex vector space. In order to represent transformations of this space in
matrix notation we need to choose an isomorphism between this space and the space of
complex four tuples. There is no reason, other than convention, to pick one isomorphism
over another. The one we use here associates |00i, |01i, |10i, and |11i to the standard 4-
tuple basis (1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 0)T and (0, 0, 0, 1)T , in that order. The Cnot

transformation has representations

Cnot : |00i ! |00i
|01i ! |01i
|10i ! |11i
|11i ! |10i

0BB@
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1CCA .

The transformation Cnot is unitary since C

⇤
not = Cnot and CnotCnot = I . The Cnot gate

cannot be decomposed into a tensor product of two single-bit transformations.
It is useful to have graphical representations of quantum state transformations, especially

when several transformations are combined. The controlled-NOT gate Cnot is typically
represented by a circuit of the form

�
⇥

.

The open circle indicates the control bit, and the⇥ indicates the conditional negation of the
subject bit. In general there can be multiple control bits. Some authors use a solid circle to
indicate negative control, in which the subject bit is toggled when the control bit is 0.
Similarly, the controlled-controlled-NOT, which negates the last bit of three if and only

if the first two are both 1, has the following graphical representation.

�
�

⇥

Single bit operations are graphically represented by appropriately labelled boxes as
shown.

Z

Y

Figure III.10: Diagram for CCNOT or To↵oli gate [fig. from Nielsen &
Chuang (2010)]. Sometimes the ⇥ is replaced by � because CCNOT|xyzi =
|x, y, xy � zi.

panel of Fig. III.9 (p. 104) for the matrix and note the diagram notation for
CNOT.

CNOT can be used to produce an entangled state:

CNOT


1p
2
(|0i + |1i)

�
|0i = CNOT

1p
2
(|00i+|10i) = 1p

2
(|00i+|11i) = |�

00

i.

Note also that CNOT|x, 0i = |x, xi, that is, FAN-OUT, which would seem
to violate the No-cloning Theorem, but it works as expected only for x 2 2.
In general CNOT| i|0i 6= | i| i (Exer. III.22).

Another useful gate is the three-input/output To↵oli gate or controlled-
controlled-NOT. It negates the third qubit if and only if the first two qubits
are both 1. For x, y, z 2 2,

CCNOT|1, 1, zi def

= |1, 1,¬zi,
CCNOT|x, y, zi def

= |x, y, zi, otherwise.

That is, CCNOT|x, y, zi = |x, y, xy � zi. All the Boolean operations can be
implemented (reversibly!) by using To↵oli gates (Exer. III.25). For example,
CCNOT|x, y, 0i = |x, y, x^ yi. Thus it is a universal gate for quantum logic.

In Jan. 2009 CCNOT was implemented successfully using trapped ions.5

5Monz, T.; Kim, K.; Hänsel, W.; Riebe, M.; Villar, A. S.; Schindler, P.; Chwalla, M.;
Hennrich, M. et al. (Jan 2009). “Realization of the Quantum To↵oli Gate with Trapped
Ions.” Phys. Rev. Lett. 102 (4): 040501. arXiv:0804.0082.
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C.2.c Walsh-Hadamard transformation

Recall that the sign basis is defined |+i def

= 1p
2

(|0i+ |1i) and |�i def

= 1p
2

(|0i �
|1i). The Hadamard transformation or gate is defined:

H|0i def

= |+i, (III.14)

H|1i def

= |�i. (III.15)

In sum-of-dyads form: H
def

= |+ih0| + |�ih1|. In matrix form (with respect to
the standard basis):

H
def

=
1p
2

✓
1 1
1 �1

◆
. (III.16)

Note that H is self-adjoint, H2 = I (since H† = H). H can be defined also
in terms of the Pauli matrices: H = (X + Z)/

p
2 (Exer. III.33).

The H transform can be used to transform the computational basis into
the sign basis and back (Exer. III.32):

H(a|0i + b|1i) = a|+i + b|�i,
H(a|+i + b|�i) = a|0i + b|1i.

Alice and Bob could use this in quantum key distribution.
When applied to a |0i, H generates an (equal-amplitude) superposition of

the two bit-values, H|0i = 1p
2

|0i+ 1p
2

|1i. This is a useful way of generating a
superposition of both possible input bits, and the Walsh transform, a tensor
power of H, can be applied to a quantum register to generate a superposition
of all possible register values. Consider the n = 2 case:

H⌦2| ,�i = (H ⌦ H) (| i ⌦ |�i)
= (H| i) ⌦ (H|�i)

In particular,

H⌦2|00i = (H|0i) ⌦ (H|0i)
= |+i⌦2

=


1p
2
(|0i + |1i)

�⌦2

=

✓
1p
2

◆
2

(|0i + |1i)(|0i + |1i)

=
1p
22

(|00i + |01i + |10i + |11i).
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Notice that this is an equal superposition of all possible values of the 2-qubit
register. (I wrote the amplitude in a complicated way, 1/

p
22, to help you

see the general case.) In general,

H⌦n|0i⌦n =
1p
2n

(|0i + |1i)⌦n

=
1p
2n

nz }| {
(|0i + |1i) ⌦ (|0i + |1i) ⌦ · · · ⌦ (|0i + |1i)

=
1p
2m

(|00 . . . 00i + |00 . . . 01i + · · · + |11 . . . 11i)

=
1p
2n

X
x22

n

|xi

=
1p
2n

2

n�1X
x=0

|xi.

Note that “2n�1” represents a string of n 1-bits, and that 2 = {0, 1}. Hence,
H⌦n|0i⌦n generates an equal superposition of all the 2n possible values of the
n-qubit register. We often write Wn = H⌦n for the Walsh transformation.

An linear operation applied to such a superposition state in e↵ect applies
the operation simultaneously to all 2n possible input values. This is expo-
nential quantum parallelism and suggests that quantum computation might
be able to solve exponential problems much more e�ciently than classical
computers. To see this, suppose U |xi = |f(x)i. Then:

U(H⌦n|0i⌦n) = U

"
1p
2n

2

n�1X
x=0

|xi
#
=

1p
2n

2

n�1X
x=0

U |xi = 1p
2n

2

n�1X
x=0

|f(x)i

This is a superposition of the function values f(x) for all of the 2n possible
values of x; it is computed by one pass through the operator U .
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in the circuit represents a wire in the quantum circuit. This wire does not necessarily
correspond to a physical wire; it may correspond instead to the passage of time, or perhaps
to a physical particle such as a photon – a particle of light – moving from one location
to another through space. It is conventional to assume that the state input to the circuit
is a computational basis state, usually the state consisting of all |0is. This rule is broken
frequently in the literature on quantum computation and quantum information, but it is
considered polite to inform the reader when this is the case.
The circuit in Figure 1.7 accomplishes a simple but useful task – it swaps the states

of the two qubits. To see that this circuit accomplishes the swap operation, note that the
sequence of gates has the following sequence of effects on a computational basis state
|a, bi,

|a, bi �! |a, a � bi
�! |a � (a � b), a � bi = |b, a � bi
�! |b, (a � b)� bi = |b, ai , (1.20)

where all additions are done modulo 2. The effect of the circuit, therefore, is to inter-
change the state of the two qubits.

Figure 1.7. Circuit swapping two qubits, and an equivalent schematic symbol notation for this common and useful
circuit.

There are a few features allowed in classical circuits that are not usually present in
quantum circuits. First of all, we don’t allow ‘loops’, that is, feedback from one part of the
quantum circuit to another; we say the circuit is acyclic. Second, classical circuits allow
wires to be ‘joined’ together, an operation known as , with the resulting single wire
containing the bitwise of the inputs. Obviously this operation is not reversible and
therefore not unitary, so we don’t allow in our quantum circuits. Third, the inverse
operation, , whereby several copies of a bit are produced is also not allowed in
quantum circuits. In fact, it turns out that quantum mechanics forbids the copying of a
qubit, making the operation impossible! We’ll see an example of this in the next
section when we attempt to design a circuit to copy a qubit.
As we proceed we’ll introduce new quantum gates as needed. It’s convenient to in-

troduce another convention about quantum circuits at this point. This convention is
illustrated in Figure 1.8. Suppose U is any unitary matrix acting on some number n of
qubits, so U can be regarded as a quantum gate on those qubits. Then we can define a
controlled-U gate which is a natural extension of the controlled- gate. Such a gate
has a single control qubit, indicated by the line with the black dot, and n target qubits,
indicated by the boxed U . If the control qubit is set to 0 then nothing happens to the
target qubits. If the control qubit is set to 1 then the gate U is applied to the target qubits.
The prototypical example of the controlled-U gate is the controlled- gate, which is
a controlled-U gate with U = X, as illustrated in Figure 1.9.
Another important operation is measurement, which we represent by a ‘meter’ symbol,

Figure III.11: Diagram for swap [from Nielsen & Chuang (2010)].

C.3 Quantum circuits

A quantum circuit is a sequential series of quantum transformations on a
quantum register. The inputs are usually computational basis states (all |0i
unless stated otherwise). Quantum circuit diagrams are drawn with time go-
ing from left to right, with the quantum gates crossing one or more “wires”
(qubits) as appropriate. The circuit represents a sequence of unitary opera-
tions on a quantum register rather than physical wires.

These “circuits” are di↵erent in several respects from ordinary sequential
logic circuits. First, loops (feedback) are not allowed, but you can apply
transforms repeatedly. Second, Fan-In (equivalent to OR) is not allowed,
since it it not reversible or unitary. Fan-Out is also not allowed, because
it would violate the No-cloning Theorem. (N.B.: This does not contradict
the universality of the To↵oli or Fredkin gates, which are universal only with
respect to logical or classical states.)

Fig. III.9 (right) on page 104 shows the symbol for CNOT and its e↵ect.

The swap operation is defined |xyi 7! |yxi, or explicitly

SWAP =
X
x,y22

|yxihxy|.

We can put three CNOTs in series to swap two qubits (Exer. III.35). Swap
has a special symbol as shown in Fig. III.11.

In general, any unitary operator U (on any number of qubits) can be
conditionally controlled (see Fig. III.12); this is the quantum analogue of
an if-then statement. If the control bit is 0, this operation does nothing,
otherwise it does U . This is implemented by |0ih0|⌦I+ |1ih1|⌦U . E↵ectively,
the operators are entangled.

Suppose the control bit is in superposition, |�i = a|0i + b|1i. The e↵ect
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Figure 1.8. Controlled-U gate.

Figure 1.9. Two different representations for the controlled- .

as shown in Figure 1.10. As previously described, this operation converts a single qubit
state |�i = �|0i+�|1i into a probabilistic classical bitM (distinguished from a qubit by
drawing it as a double-line wire), which is 0 with probability |�|2, or 1 with probability
|�|2.

!!
✙
✙
✙
✙
✙
✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

Figure 1.10. Quantum circuit symbol for measurement.

We shall find quantum circuits useful as models of all quantum processes, including
but not limited to computation, communication, and even quantum noise. Several simple
examples illustrate this below.

1.3.5 Qubit copying circuit?
The gate is useful for demonstrating one particularly fundamental property of
quantum information. Consider the task of copying a classical bit. This may be done
using a classical gate, which takes in the bit to copy (in some unknown state x)
and a ‘scratchpad’ bit initialized to zero, as illustrated in Figure 1.11. The output is two
bits, both of which are in the same state x.
Suppose we try to copy a qubit in the unknown state |�i = a |0i + b |1i in the same

manner by using a gate. The input state of the two qubits may be written ash
a |0i + b |1i

i
|0i = a |00i + b |10i, (1.21)

The function of is to negate the second qubit when the first qubit is 1, and thus
the output is simply a |00i + b |11i. Have we successfully copied |�i? That is, have we
created the state |�i|�i? In the case where |�i = |0i or |�i = |1i that is indeed what this
circuit does; it is possible to use quantum circuits to copy classical information encoded
as a |0i or a |1i. However, for a general state |�i we see that

|�i|�i = a

2|00i + ab|01i + ab|10i + b

2|11i. (1.22)

Figure III.12: Diagram for controlled-U [from Nielsen & Chuang (2010)].

of the conditional operation is:

(|0ih0| ⌦ I + |1ih1| ⌦ U)|�, i
= (|0ih0| ⌦ I + |1ih1| ⌦ U)(a|0i + b|1i) ⌦ | i
= |0ih0|(a|0i + b|1i) ⌦ I| i + |1ih1|(a|0i + b|1i) ⌦ U | i
= a|0i ⌦ | i + b|1i ⌦ U | i
= a|0, i + b|1, U i.

The result is a superposition of entangled outputs. Notice that CNOT is a
special case of this construction, a controlled X.

We also have a quantum analogue for an if-then-else construction. If U
0

and U
1

are unitary operators, then we can make the choice between them
conditional on a control bit as follows:

|0ih0| ⌦ U
0

+ |1ih1| ⌦ U
1

.

For example,
CNOT = |0ih0| ⌦ I + |1ih1| ⌦ X. (III.17)

In quantum circuit diagrams, the symbol for the CCNOT gate is show in
Fig. III.10, or with • for top two connections and � for bottom, suggesting
CCNOT|x, y, zi = |x, y, xy�zi. Alternately, put “CCNot” in a box. Other
operations may be shown by putting a letter or symbol in a box, for example
“H” for the Hadamard gate.

The Hadamard gate can be used to generate Bell states (Exer. III.34):

CNOT(H ⌦ I)|xyi = |�xyi. (III.18)
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understood via the equations

|�xyi � |0, yi + (�1)x|1, ȳip
2

, (1.27)

where ȳ is the negation of y.

In Out
|00i (|00i + |11i)/

p
2 � |�00i

|01i (|01i + |10i)/
p
2 � |�01i

|10i (|00i � |11i)/
p
2 � |�10i

|11i (|01i � |10i)/
p
2 � |�11i

Figure 1.12. Quantum circuit to create Bell states, and its input–ouput quantum ‘truth table’.

1.3.7 Example: quantum teleportation
We will now apply the techniques of the last few pages to understand something non-
trivial, surprising, and a lot of fun – quantum teleportation! Quantum teleportation is a
technique for moving quantum states around, even in the absence of a quantum commu-
nications channel linking the sender of the quantum state to the recipient.
Here’s how quantum teleportation works. Alice and Bob met long ago but now live

far apart. While together they generated an EPR pair, each taking one qubit of the EPR
pair when they separated. Many years later, Bob is in hiding, and Alice’s mission, should
she choose to accept it, is to deliver a qubit |�i to Bob. She does not know the state of
the qubit, and moreover can only send classical information to Bob. Should Alice accept
the mission?
Intuitively, things look pretty bad for Alice. She doesn’t know the state |�i of the

qubit she has to send to Bob, and the laws of quantum mechanics prevent her from
determining the state when she only has a single copy of |�i in her possession. What’s
worse, even if she did know the state |�i, describing it precisely takes an infinite amount
of classical information since |�i takes values in a continuous space. So even if she did
know |�i, it would take forever for Alice to describe the state to Bob. It’s not looking
good for Alice. Fortunately for Alice, quantum teleportation is a way of utilizing the
entangled EPR pair in order to send |�i to Bob, with only a small overhead of classical
communication.
In outline, the steps of the solution are as follows: Alice interacts the qubit |�i with

her half of the EPR pair, and then measures the two qubits in her possession, obtaining
one of four possible classical results, 00, 01, 10, and 11. She sends this information to
Bob. Depending on Alice’s classical message, Bob performs one of four operations on his
half of the EPR pair. Amazingly, by doing this he can recover the original state |�i!
The quantum circuit shown in Figure 1.13 gives a more precise description of quantum

teleportation. The state to be teleported is |�i = �|0i+�|1i, where � and � are unknown
amplitudes. The state input into the circuit |�0i is

|�0i = |�i|�00i (1.28)

Figure III.13: Quantum circuit for generating Bell states. [from Nielsen &
Chuang (2010, fig. 1.12)]
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Figure 1.8. Controlled-U gate.

Figure 1.9. Two different representations for the controlled- .

as shown in Figure 1.10. As previously described, this operation converts a single qubit
state |�i = �|0i+�|1i into a probabilistic classical bitM (distinguished from a qubit by
drawing it as a double-line wire), which is 0 with probability |�|2, or 1 with probability
|�|2.
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Figure 1.10. Quantum circuit symbol for measurement.

We shall find quantum circuits useful as models of all quantum processes, including
but not limited to computation, communication, and even quantum noise. Several simple
examples illustrate this below.

1.3.5 Qubit copying circuit?
The gate is useful for demonstrating one particularly fundamental property of
quantum information. Consider the task of copying a classical bit. This may be done
using a classical gate, which takes in the bit to copy (in some unknown state x)
and a ‘scratchpad’ bit initialized to zero, as illustrated in Figure 1.11. The output is two
bits, both of which are in the same state x.
Suppose we try to copy a qubit in the unknown state |�i = a |0i + b |1i in the same

manner by using a gate. The input state of the two qubits may be written ash
a |0i + b |1i

i
|0i = a |00i + b |10i, (1.21)

The function of is to negate the second qubit when the first qubit is 1, and thus
the output is simply a |00i + b |11i. Have we successfully copied |�i? That is, have we
created the state |�i|�i? In the case where |�i = |0i or |�i = |1i that is indeed what this
circuit does; it is possible to use quantum circuits to copy classical information encoded
as a |0i or a |1i. However, for a general state |�i we see that

|�i|�i = a

2|00i + ab|01i + ab|10i + b

2|11i. (1.22)

Figure III.14: Symbol for measurement of a quantum state (from Nielsen &
Chuang (2010)).

The circuit for generating Bell states (Eq. III.18) is shown in Fig. III.13.
It’s also convenient to have a symbol for quantum state measurement,

such as Fig. III.14.

C.4 Quantum gate arrays

Fig. III.15 shows a quantum circuit for a 1-bit full adder. As we will
see (Sec. C.7), it is possible to construct reversible quantum gates for any
classically computable function. In particular the Fredkin and To↵oli gates
are universal.

Because quantum computation is a unitary operator, it must be re-
versible. You know that an irreversible computation x 7! f(x) can be em-
bedded in a reversible computation (x, c) 7! (g(x), f(x)), where c are suit-
able ancillary constants and g(x) represents the garbage qubits. Note that
throwing away the garbage qubits (dumping them into the environment) will
collapse the quantum state (equivalent to measurement) by entangling them
in the many degrees of freedom of the environment. Typically these garbage
qubits will be entangled with other qubits in the computation, collapsing
them as well, and interfering with the computation. Therefore the garbage
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classical computation on a quantum computer. Furthermore, it describes sets of gates with
which all quantum computations can be done. The second subsection discusses quantum
parallelism.

5.1 Quantum Gate Arrays
The bra/ket notation is useful in defining complex unitary operations. For two arbitrary
unitary transformationsU1 and U2, the “conditional” transformation |0ih0|⌦U1+ |1ih1|⌦
U2 is also unitary. The controlled-NOT gate can defined by

Cnot = |0ih0| ⌦ I + |1ih1| ⌦ X.

The three-bit controlled-controlled-NOT gate or Toffoli gate of section 4 is also an in-
stance of this conditional definition:

T = |0ih0| ⌦ I ⌦ I + |1ih1| ⌦ Cnot.

The Toffoli gate T can be used to construct complete set of boolean connectives, as can
be seen from the fact that it can be used to construct the AND and NOT operators in the
following way:

T |1, 1, xi = |1, 1, ¬xi
T |x, y, 0i = |x, y, x ^ yi

The T gate is sufficient to construct arbitrary combinatorial circuits.
The following quantum circuit, for example, implements a 1 bit full adder using Toffoli

and controlled-NOT gates:

|ci � � � |ci

|xi � � � |xi

|yi � � � |yi

|0i ⇥ ⇥ ⇥ |si

|0i ⇥ ⇥ ⇥ |c�i

where x and y are the data bits, s is their sum (modulo 2), c is the incoming carry bit, and
c

� is the new carry bit. Vedral, Barenco and Ekert [Vedral et al. 1996] define more complex
circuits that include in-place addition and modular addition.
The Fredkin gate is a “controlled swap” and can be defined as

F = |0ih0| ⌦ I ⌦ I + |1ih1| ⌦ S

where S is the swap operation

S = |00ih00| + |01ih10| + |10ih01| + |11ih11|.

The reader can verify that F , like T , is complete for combinatorial circuits.

Figure III.15: Quantum circuit for 1-bit full adder [from Rie↵el & Polak
(2000)]. “x and y are the data bits, s is their sum (modulo 2), c is the
incoming carry bit, and c0 is the new carry bit.”

Φ
CNOT

Φ-1
0

0

0

0

x

y

x

y⊕f(x)
y⊕f(x)y

x

f(x) f(x)

g(x) g(x)

Uf

Figure III.16: Quantum gate array for reversible quantum computation.
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must be produced in a standard state independent of x. This is accomplished
by uncomputing, as we did in classical reversible computing (Ch. II, Sec. C.6,
p. 57).

Since NOT is reversible, each 1 bit in c can be replaced by a 0 bit followed
by a NOT, so we need only consider computations of the form (x, 0) 7!
(g(x), f(x)); that is, all the constant bits can be zero.

Therefore, we begin by embedding our irreversible computation of f in a
reversible computation �, which we get by providing 0 constants and gen-
erating garbage g(x); see Fig. III.16. That is, � will perform the following
computation on four registers (data, workspace, result, target):

(x, 0, 0, y) 7! (x, g(x), f(x), y).

The result f(x) is in the result register and the garbage g(x) is in the
workspace register. Notice that x and y (data and target) are passed through.
Now use CNOTs between corresponding places in the result and target reg-
isters to compute y � f(x), where � represents bitwise exclusive-or, in the
target register. Thus we have computed:

(x, 0, 0, y) 7! (x, g(x), f(x), y � f(x)).

Now we uncompute with ��1, but since the data and target registers are
passed through, we get (x, 0, 0, y � f(x)) in the registers. We have restored
the data, workspace, and result registers to their initial values and have
y � f(x) in the target register. Ignoring the result and workspace registers,
we write

(x, y) 7! (x, y � f(x)).

This is the standard approach we will use for embedding a classical compu-
tation in a quantum computation.

Therefore, for any computable f : 2m ! 2n, there is a reversible quantum
gate array Uf : Hm+n ! Hm+n such that for x 2 2m and y 2 2n,

Uf |x, yi = |x, y � f(x)i,

See Fig. III.17. In particular, Uf |x,0i = |x, f(x)i. The first m qubits are
called the data register and the last n are called the target register.
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Deutsch has shown [Deutsch 1985] that it is possible to construct reversible quantum
gates for any classically computable function. In fact, it is possible to conceive of a univer-
sal quantum Turing machine [Bernstein and Vazirani 1997]. In this construction we must
assume a sufficient supply of bits that correspond to the tape of a Turing machine.
Knowing that an arbitrary classical function f withm input and k output bits can be im-

plemented on quantum computer, we assume the existence of a quantum gatearray Uf that
implements f . Uf is a m + k bit transformation of the form Uf : |x, yi ! |x, y � f(x)i
where � denotes the bitwise exclusive-OR6. Quantum gate arrays Uf , defined in this way,
are unitary for any function f . To compute f(x) we apply Uf to |xi tensored with k

zores |x, 0i. Since f(x) � f(x) = 0 we have UfUf = I . Graphically the transformation
Uf : |x, yi ! |x, y � f(x)i is depicted as

Uf

|xi

|yi

|xi

|y � f(x)i.

While the T and F gates are complete for combinatorial circuits, they cannot achieve ar-
bitrary quantum state transformations. In order to realize arbitrary unitary transformations7,
single bit rotations need to be included. Barenco et. al. [Barenco et al. 1995] show that
Cnot together with all 1-bit quantum gates is a universal gate set. It suffices to include the
following one-bit transformations✓

cos� sin�

� sin� cos�

◆
,

✓
e

i� 0
0 e

�i�

◆
for all 0  �  2� together with the Cnot to obtain a universal set of gates. As we shall
see, such non-classical transformations are crucial for exploiting the power of quantum
computers.

5.2 Quantum Parallelism
What happens if Uf is applied to input which is in a superposition? The answer is easy
but powerful: since Uf is a linear transformation, it is applied to all basis vectors in the
superposition simultaneously and will generate a superposition of the results. In this way,
it is possible to compute f(x) for n values of x in a single application of Uf . This effect is
called quantum parallelism.
The power of quantum algorithms comes from taking advantage of quantum parallelism

and entanglement. So most quantum algorithms begin by computing a function of interest
on a superposition of all values as follows. Start with an n-qubit state |00 . . .0i. Apply the

6� is not the direct sum of vectors.
7More precisely, we mean arbitrary unitary transformations up to a constant phase factor. A constant phase shift
of the state has no physical, and therefore no computational, significance.

Figure III.17: Computation of function by quantum gate array (Rie↵el &
Polak, 2000).

C.5 Quantum parallelism

Since Uf is linear, if it is applied to a superposition of bit strings, it will
produce a superposition of the results of applying f to them in parallel (i.e.,
in the same time it takes to compute it on one input):

Uf (c1

|x
1

i + c
2

|x
2

i + · · · + ck|xki) = c
1

Uf |x1

i + c
2

Uf |x2

i + · · · + ckUf |xki.

For example, if we have a superposition of the inputs x
1

and x
2

,

Uf

 p
3

2
|x

1

i + 1

2
|x

2

i
!

⌦ |0i =
p
3

2
|x

1

, f(x
1

)i + 1

2
|x

2

, f(x
2

)i.

The amplitude of a result y will be the sum of the amplitudes of all x such
that y = f(x).

If we apply Uf to a superposition of all possible 2m inputs, it will compute
a superposition of all the corresponding outputs in parallel (i.e., in the same
time as required for one function evaluation)! The Walsh-Hadamard trans-
formation can be used to produce this superposition of all possible inputs:

Wm|00 . . . 0i =
1p
2m

(|00 . . . 0i + |00 . . . 1i + · · · + |11 . . . 1i)

=
1p
2m

X
x22

m

|xi

=
1p
2m

2

m�1X
x=0

|xi.
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In the last line we are obviously interpreting the bit strings as natural num-
bers. Hence,

UfWm|0i = Uf

 
1p
2m

2

m�1X
x=0

|x, 0i
!

=
1p
2m

2

m�1X
x=0

Uf |x, 0i =
1p
2m

2

m�1X
x=0

|x, f(x)i.

A single circuit does all 2m computations simultaneously! “Note that since
n qubits enable working simultaneously with 2n states, quantum parallelism
circumvents the time/space trade-o↵ of classical parallelism through its abil-
ity to provide an exponential amount of computational space in a linear
amount of physical space.” (Rie↵el & Polak, 2000)

This is amazing, but not immediately useful. If we measure the input
bits, we will get a random value, and the state will be projected into a
superposition of the outputs for the inputs we measured. If we measure an
output bit, we will get a value probabilistically, and a superposition of all
the inputs that can produce the measured output. Neither of the above is
especially useful, so most quantum algorithms transform the state in such a
way that the values of interest have a high probability of being measured.
The other thing we can do is to extract common properties of all values of
f(x). Both of these require di↵erent programming techniques than classical
computing.


