Lecture 13
Artificial Neural Networks
H200

The Cognitive Inversion

- Computers can do some things very well that are difficult for people
- e.g., arithmetic calculations
- playing chess \& other board games
- doing proofs in formal logic \& mathematics
- handling large amounts of data precisely
- But computers are very bad at some things that are easy for people (and even some animals)
- e.g., face recognition \& general object recognition
- autonomous locomotion
- sensory-motor coordination
- Conclusion: brains work very differently from Von Neumann computers
11/2/06

Two Different Approaches to Computing

Neurons are Not Logic Gates

- Speed
- electronic logic gates are very fast (nanoseconds)
- neurons are comparatively slow (milliseconds)
- Precision
- logic gates are highly reliable digital devices
- neurons are imprecise analog devices
- Connections
- logic gates have few inputs (usually 1 to 3)
- many neurons have >100 000 inputs

Artificial Neural Networks	

Operation of Artificial Neuron

Feedforward Network

11/2/06

Feedforward Network In Operation (2)

Feedforward Network In Operation (3)

Feedforward Network In Operation (4)

Comparison with Non-Neural Net Approaches

- Non-NN approaches typically decide output from a small number of dominant factors
- NNs typically look at a large number of factors, each of which weakly influences output
- NNs permit:
- subtle discriminations
- holistic judgments
- context sensitivity

Connectionist Architectures

- The knowledge is implicit in the connection weights between the neurons
- Items of knowledge are not stored in dedicated memory locations, as in a Von Neumann computer
- "Holographic" knowledge representation:
- each knowledge item is distributed over many connections
- each connection encodes many knowledge items
- Memory \& processing is robust in face of damage, errors, inaccuracy, noise, .

Differences from
 Digital Calculation

- Information represented in continuous images (rather than language-like structures)
- Information processing by continuous image processing (rather than explicit rules applied in individual steps)
- Indefiniteness is inevitable (rather than definiteness assumed)

Supervised Learning

- Produce desired outputs for training inputs
- Generalize reasonably \& appropriately to other inputs
- Good example: pattern recognition
- Neural nets are trained rather than programmed
- another difference from Von Neumann computation

Learning for Output Neuron (2)

11/2/06 26

Learning for Output Neuron (3)
Learning for Output Neuron (4)

Credit Assignment Problem

How do we adjust the weights of the hidden layers?

Back-Propagation:
Correct Output Neuron Weights

11/2/06

Back-Propagation:
Correct Last Hidden Layer

Back-Propagation: Correct All Hidden Layers

Back-Propagation:
Correct All Hidden Layers

Use of Back-Propagation (BP)

- Typically the weights are changed slowly
- Typically net will not give correct outputs for all training inputs after one adjustment
- Each input/output pair is used repeatedly for training
- BP may be slow
- But there are many better ANN learning algorithms

ANN Training Procedures

- Supervised training: we show the net the output it should produce for each training input (e.g., BP)
- Reinforcement training: we tell the net if its output is right or wrong, but not what the correct output is
- Unsupervised training: the net attempts to find patterns in its environment without external guidance

11/2/06

Applications of ANNs

- "Neural nets are the second-best way of doing everything"
- If you really understand a problem, you can design a special purpose algorithm for it, which will beat a NN
- However, if you don't understand your problem very well, you can generally train a NN to do it well enough

Hopfield Network

- Symmetric weights: $w_{i j}=w_{j i}$
- No self-action: $w_{i i}=0$
- Zero threshold: $\theta=0$
- Bipolar states: $s_{i} \in\{-1,+1\}$
- Discontinuous bipolar activation function:

$$
\sigma(h)=\operatorname{sgn}(h)= \begin{cases}-1, & h<0 \\ +1, & h>0\end{cases}
$$

Positive Coupling	
- Positive sense (sign)	
- Large strength	
(1) \longleftrightarrow (1)	
(1) \longleftrightarrow (
11206	${ }^{43}$

Negative Coupling

- Negative sense (sign)
- Large strength

11/2/06

Weak Coupling

- Either sense (sign)
- Little strength

State $=-1 \&$ Local Field >0

State $=-1 \&$ Local Field <0

46

State Reverses

State $=+1 \&$ Local Field <0

Hopfield Net as Soft Constraint Satisfaction System

- States of neurons as yes/no decisions
- Weights represent soft constraints between decisions
- hard constraints must be respected
- soft constraints have degrees of importance
- Decisions change to better respect constraints
- Is there an optimal set of decisions that best respects all constraints?
11/2/06

Convergence

- Does such a system converge to a stable state?
- Under what conditions does it converge?
- There is a sense in which each step relaxes the "tension" in the system (or increases its "harmony")
- But could a relaxation of one neuron lead to greater tension in other places?

Energy

- "Energy" (or "tension") is the opposite of harmony
- $E=-H$

Harmony
11/2/06

Energy
56

Energy Does Not Increase

- In each step in which a neuron is considered for update:
$E\{\mathbf{s}(t+1)\}-E\{\mathbf{s}(t)\} \leq 0$
- Energy cannot increase
- Energy decreases if any neuron changes
- Must it stop? (Yes)
- If we do asynchronous updating, the Hopfield net must reach a stable, minimum energy state in a finite number of updates
- This does not imply that it is a global minimum

Conclusion

Demonstration of Hopfield Net

Run Hopfield Demo

11/2/06
64

Hopfield Net for Optimization and for Associative Memory

- For optimization:
- we know the weights (couplings)
- we want to know the minima (solutions)
- For associative memory:
- we know the minima (retrieval states)
- we want to know the weights

Example of Hebbian Learning:

 Pattern Imprinted

Applications of Hopfield Memory

- Pattern restoration
- Pattern completion
- Pattern generalization
- Pattern association

Example of Hebbian Learning: Partial Pattern Reconstruction

Trapping in Local Minimum

Escape from Local Minimum

11/2/06

Motivation

- Idea: with low probability, go against the local field
- move up the energy surface
- make the "wrong" microdecision
- Potential value for optimization: escape from local optima
- Potential value for associative memory: escape from spurious states
- because they have higher energy than imprinted states

11/2/06
${ }^{89}$
The Stochastic Neuron
Deterministic neuron: $s_{i}^{\prime}=\operatorname{sgn}\left(h_{i}\right)$

$$
\begin{aligned}
& \operatorname{Pr}\left\{s_{i}^{\prime}=+1\right\}=\Theta\left(h_{i}\right) \\
& \operatorname{Pr}\left\{s_{i}^{\prime}=-1\right\}=1-\Theta\left(h_{i}\right)
\end{aligned}
$$

Stochastic neuron:
$\operatorname{Pr}\left\{s_{i}^{\prime}=+1\right\}=\sigma\left(h_{i}\right)$
$\operatorname{Pr}\left\{s_{i}^{\prime}=-1\right\}=1-\sigma\left(h_{i}\right)$

Logistic sigmoid : $\sigma(h)=\frac{1}{1+\exp (-2 h / T)}$

Logistic Sigmoid	
With Varying T	

Logistic Sigmoid

$$
T=0.01
$$

11/2/06

Dilemma

- In the early stages of search, we want a high temperature, so that we will explore the space and find the basins of the global minimum
- In the later stages we want a low temperature, so that we will relax into the global minimum and not wander away from it
- Solution: decrease the temperature gradually during search
11/2/06

Quenching vs. Annealing

- Quenching:
- rapid cooling of a hot material
- may result in defects \& brittleness
- local order but global disorder
- locally low-energy, globally frustrated
- Annealing:
- slow cooling (or alternate heating \& cooling)
- reaches equilibrium at each temperature
- allows global order to emerge
- achieves global low-energy state

Moving Domain Boundaries

Effect of Moderate Temperature

Effect of High Temperature

Effect of Low Temperature

Annealing Schedule

- Controlled decrease of temperature
- Should be sufficiently slow to allow equilibrium to be reached at each temperature
- With sufficiently slow annealing, the global minimum will be found with probability 1
- Design of schedules is a topic of research

11/2/06

Summary

- Non-directed change (random motion) permits escape from local optima and spurious states
- Pseudo-temperature can be controlled to adjust relative degree of exploration and exploitation

11/2/06
112

