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The Cognitive Inversion
• Computers can do some things very well that are difficult

for people
– e.g., arithmetic calculations
– playing chess & other board games
– doing proofs in formal logic & mathematics
– handling large amounts of data precisely

• But computers are very bad at some things that are easy for
people (and even some animals)
– e.g., face recognition & general object recognition
– autonomous locomotion
– sensory-motor coordination

• Conclusion: brains work very differently from Von
Neumann computers
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The 100-Step Rule

• Typical recognition
tasks take less than
one second

• Neurons take several
milliseconds to fire

• Therefore then can be
at most about 100
sequential processing
steps
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Two Different Approaches to
Computing

Von Neumann: Narrow but Deep

…

Neural Computation: Shallow but Wide
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How Wide?

Retina:
100 million receptors

Optic nerve: one million nerve fibers

11/2/06 6

Neurons are Not Logic Gates
• Speed

– electronic logic gates are very fast (nanoseconds)
– neurons are comparatively slow (milliseconds)

• Precision
– logic gates are highly reliable digital devices
– neurons are imprecise analog devices

• Connections
– logic gates have few inputs (usually 1 to 3)
– many neurons have >100 000 inputs
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Artificial Neural Networks
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Typical Artificial Neuron

inputs

connection
weights

threshold

output
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Typical Artificial Neuron
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net input

activation
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Operation of Artificial Neuron
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Operation of Artificial Neuron
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Feedforward Network
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Feedforward Network In
Operation (1)
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Feedforward Network In
Operation (2)
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Feedforward Network In
Operation (3)
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Feedforward Network In
Operation (4)
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Feedforward Network In
Operation (5)

. .
 .

. .
 . . .
 . . .
 .

. .
 .

. .
 .

11/2/06 18

Feedforward Network In
Operation (6)
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Feedforward Network In
Operation (7)
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Feedforward Network In
Operation (8)

. .
 .

. .
 . . .
 . . .
 .

. .
 .

. .
 . output

11/2/06 21

Comparison with Non-Neural
Net Approaches

• Non-NN approaches typically decide output
from a small number of dominant factors

• NNs typically look at a large number of
factors, each of which weakly influences
output

• NNs permit:
– subtle discriminations
– holistic judgments
– context sensitivity
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Connectionist Architectures
• The knowledge is implicit in the connection

weights between the neurons
• Items of knowledge are not stored in dedicated

memory locations, as in a Von Neumann
computer

• “Holographic” knowledge representation:
– each knowledge item is distributed over many

connections
– each connection encodes many knowledge items

• Memory & processing is robust in face of damage,
errors, inaccuracy, noise, …
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Differences from
Digital Calculation

• Information represented in continuous
images (rather than language-like
structures)

• Information processing by continuous
image processing (rather than explicit rules
applied in individual steps)

• Indefiniteness is inevitable (rather than
definiteness assumed)
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Supervised Learning
• Produce desired outputs for training inputs
• Generalize reasonably & appropriately to

other inputs
• Good example: pattern recognition
• Neural nets are trained rather than

programmed
– another difference from Von Neumann

computation



Artificial Neural Networks 11/2/06 17:29

5

11/2/06 25

Learning for Output Neuron (1)
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Learning for Output Neuron (2)
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Learning for Output Neuron (3)
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Learning for Output Neuron (4)
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Credit Assignment Problem
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Back-Propagation:
Forward Pass
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Back-Propagation:
Actual vs. Desired Output
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Back-Propagation:
Correct Output Neuron Weights
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Back-Propagation:
Correct Last Hidden Layer
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Back-Propagation:
Correct All Hidden Layers
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Back-Propagation:
Correct First Hidden Layer
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Use of Back-Propagation (BP)
• Typically the weights are changed slowly
• Typically net will not give correct outputs

for all training inputs after one adjustment
• Each input/output pair is used repeatedly for

training
• BP may be slow
• But there are many better ANN learning

algorithms
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ANN Training Procedures
• Supervised training: we show the net the

output it should produce for each training
input (e.g., BP)

• Reinforcement training: we tell the net if its
output is right or wrong, but not what the
correct output is

• Unsupervised training: the net attempts to
find patterns in its environment without
external guidance
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Applications of ANNs

• “Neural nets are the second-best way of
doing everything”

• If you really understand a problem, you can
design a special purpose algorithm for it,
which will beat a NN

• However, if you don’t understand your
problem very well, you can generally train a
NN to do it well enough
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The Hopfield Network

(and constraint satisfaction)
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Hopfield Network
• Symmetric weights: wij = wji

• No self-action: wii = 0
• Zero threshold: θ = 0
• Bipolar states: si ∈ {–1, +1}
• Discontinuous bipolar activation function:

! 

" h( ) = sgn h( ) =
#1, h < 0

+1, h > 0

$ 
% 
& 
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Positive Coupling

• Positive sense (sign)
• Large strength
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Negative Coupling

• Negative sense (sign)
• Large strength
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Weak Coupling
• Either sense (sign)
• Little strength
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State = –1 & Local Field < 0

h < 0
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State = –1 & Local Field > 0

h > 0
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State Reverses

h > 0



Artificial Neural Networks 11/2/06 17:29

9

11/2/06 49

State = +1 & Local Field > 0

h > 0
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State = +1 & Local Field < 0

h < 0
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State Reverses

h < 0
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Hopfield Net as Soft Constraint
Satisfaction System

• States of neurons as yes/no decisions
• Weights represent soft constraints between

decisions
– hard constraints must be respected
– soft constraints have degrees of importance

• Decisions change to better respect
constraints

• Is there an optimal set of decisions that best
respects all constraints?
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Demonstration of Hopfield Net

Run Hopfield Demo
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Convergence

• Does such a system converge to a stable
state?

• Under what conditions does it converge?
• There is a sense in which each step relaxes

the “tension” in the system (or increases its
“harmony”)

• But could a relaxation of one neuron lead to
greater tension in other places?
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Quantifying Harmony
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Energy

• “Energy” (or “tension”) is the opposite of
harmony

• E = –H

Harmony Energy
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Energy Does Not Increase

• In each step in which a neuron is considered
for update:
E{s(t + 1)} – E{s(t)} ≤ 0

• Energy cannot increase
• Energy decreases if any neuron changes
• Must it stop?  (Yes)
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Conclusion

• If we do asynchronous updating, the
Hopfield net must reach a stable, minimum
energy state in a finite number of updates

• This does not imply that it is a global
minimum
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Conceptual
Picture of

Descent on
Energy
Surface

(fig. from Solé & Goodwin) 11/2/06 60

Energy
Surface

(fig. from Haykin Neur. Netw.)
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Energy
Surface

+
Flow
Lines

(fig. from Haykin Neur. Netw.) 11/2/06 62

Flow
Lines

(fig. from Haykin Neur. Netw.)

Basins of
Attraction
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Storing
Memories as

Attractors

(fig. from Solé & Goodwin) 11/2/06 64

Demonstration of Hopfield Net

Run Hopfield Demo
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Example of
Pattern

Restoration

(fig. from Arbib 1995) 11/2/06 66

Example of
Pattern

Restoration

(fig. from Arbib 1995)
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Example of
Pattern

Restoration

(fig. from Arbib 1995) 11/2/06 68

Example of
Pattern

Restoration

(fig. from Arbib 1995)
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Example of
Pattern

Restoration

(fig. from Arbib 1995) 11/2/06 70

Example of
Pattern

Completion

(fig. from Arbib 1995)
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Example of
Pattern

Completion

(fig. from Arbib 1995) 11/2/06 72

Example of
Pattern

Completion

(fig. from Arbib 1995)
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Example of
Pattern

Completion

(fig. from Arbib 1995) 11/2/06 74

Example of
Pattern

Completion

(fig. from Arbib 1995)
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Example of
Association

(fig. from Arbib 1995) 11/2/06 76

Example of
Association

(fig. from Arbib 1995)
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Example of
Association

(fig. from Arbib 1995) 11/2/06 78

Example of
Association

(fig. from Arbib 1995)
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Example of
Association

(fig. from Arbib 1995) 11/2/06 80

Applications of
Hopfield Memory

• Pattern restoration
• Pattern completion
• Pattern generalization
• Pattern association
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Hopfield Net for Optimization
and for Associative Memory

• For optimization:
– we know the weights (couplings)
– we want to know the minima (solutions)

• For associative memory:
– we know the minima (retrieval states)
– we want to know the weights
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Hebb’s Rule

“When an axon of cell A is near enough to
excite a cell B and repeatedly or persistently
takes part in firing it, some growth or
metabolic change takes place in one or both
cells such that A’s efficiency, as one of the
cells firing B, is increased.”

—Donald Hebb (The Organization of Behavior, 1949, p. 62)
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Example of Hebbian Learning:
Pattern Imprinted
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Example of Hebbian Learning:
Partial Pattern Reconstruction
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Stochastic Neural Networks

(in particular, the stochastic Hopfield network)
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Trapping in Local Minimum
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Escape from Local Minimum
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Escape from Local Minimum
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Motivation

• Idea: with low probability, go against the local
field
– move up the energy surface
– make the “wrong” microdecision

• Potential value for optimization: escape from local
optima

• Potential value for associative memory: escape
from spurious states
– because they have higher energy than imprinted states
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The Stochastic Neuron

! 

Deterministic neuron :  " s 
i
= sgn h

i( )
Pr " s 

i
= +1{ } =# h

i( )
Pr " s 

i
= $1{ } =1$# h

i( )

! 

Stochastic neuron :  

Pr " s 
i
= +1{ } =# h

i( )
Pr " s 

i
= $1{ } =1$# h

i( )

! 

Logistic sigmoid :  " h( ) =
1

1+ exp #2h T( )

h

σ(h)
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Properties of Logistic Sigmoid

• As h → +∞, σ(h) → 1
• As h → –∞, σ(h) → 0
•  σ(0) = 1/2

! 

" h( ) =
1

1+ e#2h T
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Logistic Sigmoid
With Varying T
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Logistic Sigmoid
T = 0.5

Slope at origin = 1 / 2T
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Logistic Sigmoid
T = 0.01
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Logistic Sigmoid
T = 0.1
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Logistic Sigmoid
T = 1
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Logistic Sigmoid
T = 10
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Logistic Sigmoid
T = 100
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Pseudo-Temperature

• Temperature = measure of thermal energy (heat)
• Thermal energy = vibrational energy of molecules
• A source of random motion
• Pseudo-temperature = a measure of nondirected

(random) change
• Logistic sigmoid gives same equilibrium

probabilities as Boltzmann-Gibbs distribution
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Simulated Annealing

(Kirkpatrick, Gelatt & Vecchi, 1983)
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Dilemma
• In the early stages of search, we want a high

temperature, so that we will explore the
space and find the basins of the global
minimum

• In the later stages we want a low
temperature, so that we will relax into the
global minimum and not wander away from
it

• Solution: decrease the temperature
gradually during search
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Quenching vs. Annealing
• Quenching:

– rapid cooling of a hot material
– may result in defects & brittleness
– local order but global disorder
– locally low-energy, globally frustrated

• Annealing:
– slow cooling (or alternate heating & cooling)
– reaches equilibrium at each temperature
– allows global order to emerge
– achieves global low-energy state
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Multiple Domains

local
coherence

global
incoherence
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Moving Domain Boundaries
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Effect of Moderate Temperature

(fig. from Anderson Intr. Neur. Comp.) 11/2/06 106

Effect of High Temperature

(fig. from Anderson Intr. Neur. Comp.)
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Effect of Low Temperature

(fig. from Anderson Intr. Neur. Comp.) 11/2/06 108

Annealing Schedule

• Controlled decrease of temperature
• Should be sufficiently slow to allow

equilibrium to be reached at each
temperature

• With sufficiently slow annealing, the global
minimum will be found with probability 1

• Design of schedules is a topic of research
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Demonstration of Boltzmann
Machine

& Necker Cube Example

Run ~mclennan/pub/cube/cubedemo
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Necker Cube
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Biased Necker Cube
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Summary

• Non-directed change (random motion)
permits escape from local optima and
spurious states

• Pseudo-temperature can be controlled to
adjust relative degree of exploration and
exploitation


