
Molecular Combinatory Computing
for Nanostructure Synthesis and Control

Bruce MacLennan
Department of Computer Science

University of Tennessee
Knoxville, TN 37996–3450

Email: maclennan@cs.utk.edu

Abstract— Molecular combinatory computing makes use of a
small set of chemical reactions that together have the ability
to implement arbitrary computations. Therefore it provides a
means of “programming” the synthesis of nanostructures andof
controlling their behavior by programmatic means. We illustrate
the approach by several simulated nano-assembly applications,
and discuss a possible molecular implementation in terms of
covalently structured molecular building blocks connected by
hydrogen bonds.

I. I NTRODUCTION

We are investigating a systematic approach to nanotechno-
logy based on a small number of molecular building blocks
(MBBs). Central to our approach is the identification of a small
set of such MBBs that is provably sufficient for controlling the
nanoscale synthesis and behavior of materials. To accomplish
this we have made use of combinatory logic [1], a mathe-
matical formalism based on network substitution operations
suggestive of supramolecular interactions. This theory shows
that two simple substitution operations (known as

�
and �)

are sufficient to describe any computable process. Therefore,
these two operations are, in principle, sufficient to describe
any process of nanoscale synthesis or control that could be
described by a computer program. In a molecular context, sev-
eral additional housekeeping operations are required beyond

�
and �, but the total is still less than a dozen. An additional
advantage of this approach is that the substitutions can be
done in any order or in parallel without affecting the result,
which makes it an ideal model for autonomous molecular
computation.

At IEEE-Nano 2002 we presented an overview of the
strategy and potential of molecular combinatory computing
[2]. In this summary, in addition to a brief introduction
to molecular combinatory computing, we discuss possible
molecular implementations as well as our accomplishments in
the (simulated) synthesis of membranes, channels, nanotubes,
and other nanostructures.

II. OVERVIEW

Molecular combinatory programs are supramolecular struc-
tures in the form of binary trees. The interior nodes of the
tree (which we call� nodes) represent the application of a
function to its argument, which are represented by the two
daughters of the� node. The leaf nodes are molecular groups

that function as primitive operations. As previously remarked,
we primarily make use of two primitive combinators,� and

�
(which exists in two variants�� and

�
proper). To understand

these operations, consider a binary tree of the form���� �� �,
where� and � are binary trees. (The� nodes are implicit
in the parentheses.) This configuration triggers a substitution
reaction, which has the effect

���� �� � �	 � 
 (1)

That is, the complex���� �� � is replaced by� in the
supramolecular network structure. The� group is released
as a waste product, which may be recycled in later reactions.
The tree� is also a waste product, but it is bound to another
primitive operator (�), which disassembles the tree so that its
components may be recycled. The� primitive is the first of
several house-keeping operations, which are not needed in the
theory of combinatory logic, but are required for molecular
computation. (Detailed descriptions can be found in a prior
report [3].)

The second primitive computational operator is
�
, which

has the effect:

����� �� �� � �	 ��� � � �� � 
 �� 
 (2)

Here� 
 refers to a new copy of the structure� , which is cre-
ated by a primitive replication (�) operation. The� operation
progressively duplicates� , “unzipping” the original and new
copies. The properties of combinatory computing allow this
replication to take place while other computation proceeds,
even including use of the partially completed replicate.

A variant of the
�

operation is essential to molecular
synthesis [3]:

������ �� �� � �	 ��� � ��� � �� � ��� �� 
 (3)

The structure created by this operator shares a single copy of
� ; the notations� ��� and � ��� refer to two links to a “Y-
connector” (called a� node), which links to the original copy
of � . The principal purpose of the�� operation is to synthesize
non-tree-structured supramolecular networks.

Finally, we use the�� operator to create elementary cyclic
structures, which can be expanded into larger cycles. It is
defined [3]:

� ��� � �	 � ��� where� � �� � ��� � 
 (4)



Fig. 1. Visualization of cross-linked membrane produced by�� ���� �� ���.

Examples of the use of both�� and �� are given in Sec. III.

III. E XAMPLES

We have investigated the synthesis of a number of nano-
structures by molecular combinatory computing. These include
membranes and nanostructures of several different architec-
tures. We have developed also systematic means to combine
these into larger, heterogeneous structures, and to include
active elements such as channels, sensors, and nano-actuators.

A. Membranes

For our first example we will discuss the synthesis of a
cross-linked membrane, such as shown in Fig. 1. Such a
structure is produced by the combinator program	
 ��
� �� ���,
where	
 ��
 is defined:

	
 ��
� �� � � �� �����
� �� �� �����

� � ��� ��� �� � (5)

which is an abbreviation for a large binary tree of� , �,
�
, and

�� groups. Unfortunately, space does not permit an explanation
of this program or a proof of its correctness, both of which
may be found in a technical report [4].

The size of 	
 ��
� �� , the program structure to generate
an � � � membrane, can be shown [4] to be��� �
� � � !" primitive groups (� �� ��). This does not seem to
be unreasonable, even for large membranes, but it can be
decreased more if necessary. For example, if� � #�$ , then
�� in (5) can be replaced by�$ � �� , reducing the size of
this part of the program from% �#�$ � to % �& � (see [3] for
explanation). Similar compressions can be applied to the other
parts dependent on� and�. Furthermore, as will be explained
in Sec. III-C, large membranes can be synthesized by iterative
assembly of small patches.

B. Nanotubes

Next we consider the synthesis of nanotubes, such as shown
in Figs. 2 and 3. This is accomplished by using the��
combinator to construct a cycle between the upper and lower
termini of the cross-linked membrane (Fig. 1). The program
is [4]:

	' ()*+� �� � ����� �� ��� � ���� �� ��� �� �, -�. /��� 
 (6)

The size of	' ()*+� �� is #��� � 00� 1 23 primitive groups
(� ��� �� �� ).

Fig. 2. Visualization of small nanotube, end view, producedby �4567 8 �� �.

Fig. 3. Visualization of small nanotube, side view, produced by �4567 8 �� �.

C. Assembly of Heterogeneous Structures

Large membranes will not be homogeneous in structure; of-
ten they will contain pores and active channels of various sorts
embedded in a matrix. One way of assembling such a structure
is by combining rectangular patches as in a patchwork quilt.
To accomplish this we have defined a uniform interface for
such patches (see a forthcoming report [5] for details).

It is simple to assemble patches into larger structures. For
example, if9 is an� � � patch and: is an� � � 
 patch,
then��; �:9 is an� � �� � � 
� patch with: to the right of
9 . Similarly, if 9 is � � � and: is � 
 � �, then9 < ��:
is the �� � � 
 � � � patch with9 below : .

Nanotubes can also be synthesized in patch format to allow
end-to-end connection. If= is a patchable tube synthesizer
of length � and > is one of length� 
, both of the same
circumference�, then> <= is a patch synthesizer that connects
> to the right of= . This operation is easily iterated, for= $ is &
replicates of= connected end-to-end (and thus of length&� ).
This operation can also be expressed�$= . If, as is commonly
the case, the size of the the synthesizer= is % �� � � �, then
the size of�$= is % �& �� �� �. Similarly, rectangular patches
can be iteratively assembled, both horizontally and vertically,
to hierarchically synthesize large, heterogeneous membranes.

D. Active Elements

1) Pores and Active Channels: Space does not permit a
detailed discussion of the synthesis of membranes with pores
and channels [5]; the following brief remarks must suffice. A
rectangularpore is simply a patch in which the interior is an
open space. These pores can be combined with other patches



to create membranes with pores of a given size and distribution
(all in terms of the fundamental units, of course). Pores can
be included in the surfaces of nanotubes as well.

Channels open or close under control ofsensor molecules,
which can respond to conditions, such as electromagnetic
radiation or the presence of chemical species of interest. This
is most simply accomplished by synthesizing a molecular
group, which we write��� , which responds to condition

�
by reconfiguring into a� combinator.

Given a sensor, “one-shot” channels — which open and stay
open, or close and stay closed — are easy to implement. In the
former case, the sensor triggers the dissolution of the interior
of its patch (using the deletion operator� to disassemble it). In
the latter case, the sensor triggers a synthesis process to fill in
a pore. Reusable channels (which open and close repeatedly)
are more complicated, since, in order to reset themselves,
they need to be able to prevent sensor molecules from being
prematurely triggered.

2) Nano-Actuators: Nano-actuators have some physical ef-
fect depending on a computational process. Certainly, many
of these will be synthesized for special purposes. However,
we have been investigating actuators based directly on the
computational reactions. To give a very simple example, we
may program a computation that synthesizes a chain of some
length; we may also program a computation that collapses a
chain into a single link. The two of these can be used together,
like opposing muscle groups, to cause motion under molecular
program control. The force that can be exerted will depend on
the bond strength of the nodes and links (probably on the order
of 50 kJ/mol; see Sec. IV). However, we also know that these
forces can combine additively, like individual muscle fibers in
a muscle.

IV. POSSIBLE MOLECULAR IMPLEMENTATION

A. Combinator Networks

1) Requirements: Combinatory computing proceeds by
making substitutions in networks of interconnected nodes.
These networks constitute both the medium in which com-
putation takes place and the nanostructure created by the
computational process. Therefore it is necessary to consider
the molecular implementation of these networks as well as
the processes by which they may be transformed according to
the rules of combinatory computing.

The first requirement is that nodes and linking groups need
to be stable in themselves, but the interconnections between
them need to be sufficiently labile to permit the substitutions.
Second, the node types (� , �,

�
, etc.) need to identifiable, so

that the correct substitutions take place. In addition, formore
secure matching of structures, the link (�) groups should be
identifiable. Further, it is necessary to be able to distinguish
the various binding sites on a node. For example, an� node
has three distinct sites: the result site, an operator argument,
and an operand argument [3].

2) Hydrogen-Bonded Covalent Subunits: Our current ap-
proach is to implement the nodes and linking groups by

covalently-structured MBBs and to interconnect them by hy-
drogen bonds. We use a covalent framework for the nodes and
links because they are stable and because there is an extensive
synthetic precedent for engineering molecules of the required
shape and with appropriately located hydrogen bonding sites
[6]. This is in fact the structural basis of both DNA and
proteins (hydrogen bonding as a means of connecting and
identifying covalently-bonded subunits).

Hydrogen bonds are used to interconnect the MBBs because
they are labile in aqueous solution, permitting continual disas-
sembly and re-assembly of structures. (Bond strengths are 2–
40 kJ/mol.) Further, other laboratories have demonstratedthe
synthesis and manipulation of large hydrogen-bonded tree-like
structures (dendrimers) [7], [8].

We estimate that two or three H-bonds will be necessary
at each end of an� group. Therefore, if we take 20 kJ/mol
as the strength of a typical H-bond, then the total connection
strength will be about 50 kJ/mol.

Hydrogen bonding can also be used for recognizing different
kinds of nodes by synthesizing them with unique arrangements
of donor and acceptor regions. Currently, we are using 11
different node types (� , �, �, �, �, �, �,

�
, ��, � , �� ), so

it would seem that arrangements of 5 H-bonds would be
sufficient (since they accommodate 16 complementary pairs
of bond patterns).

A number of hydrogen-bonding sites can be located in a
small area. For example, in DNA thymine (23 atoms) and
adenine (26 atoms) have two H-bonds, while cytosine and
guanine have three. Similarly, amino acids are also small, on
the order of 30 atoms and as few as 10. On the basis of the
above considerations, we estimate — very roughly! — that
our primitive combinators (�,

�
, ��, �� ) might be 100 atoms in

size, � groups about 130, and ternary groups (� , � , �) about
180.

B. Substitution Reactions

1) Requirements: We state briefly the requirements on a
molecular implementation of the primitive combinator substi-
tutions. First, there must be a way of matching the network
configurations that enable the substitution reactions. Forex-
ample, a�-substitution (1) is enabled by a leftward-branching
tree of the forms ���� �� �, and an

�
-substitution (2) is

enabled by a leftward-branching tree of the form����� �� �� �.
So also for the other primitive combinators (�� �� �� ). Second,
the variable parts of the matched structures (represented in
the substitution rules by italic variables such as� and � ),
which may be arbitrarily large supramolecular networks, must
be bound in some way. Next, a new molecular structure must
be constructed, incorporating some or all of these variable
parts. Further, reaction waste products must be recycled or
eliminated from the system, for several reasons. An obvious
one is efficiency; another is to avoid the reaction space
becoming clogged with waste. Less obvious is the fact that
discarded molecular networks (such as� in (1)) may contain
large executable structures; by the laws of combinatory logic,
computation in these discarded networks cannot affect the



computational result, but they can consume resources. Finally,
there are energetic constraints on the substitution reactions, to
which we now turn.

2) Fundamental Energetic Constraints: On the one hand,
any system that is computationally universal (i.e., equivalent to
a Turing machine in power) must permit nonterminating com-
putations. On the other, a spontaneous chemical reaction will
take place only if it decreases Gibbs free energy. Therefore,
molecular combinatory computing will require an external
source of energy or reaction resources; it cannot continue
indefinitely in a closed system.

Fortunately we have several recent concrete examples of
how such nonterminating processes may be fueled. For exam-
ple, Koumura et al. [9] have demonstrated continuous (non-
terminating) unidirectional rotary motion driven by ultraviolet
light. In the four-phase rotation, alternating phases are by
photochemical reaction (uphill) and by thermal relaxation
(downhill). Also, Yurke et al. [10] have demonstrated DNA
“tweezers,” which can be cycled between their open and closed
states so long as an appropriate “DNA fuel” is provided.
Both of these provide plausible models of how molecular
combinatory computation might be powered. We can conclude
that the individual steps of a combinator substitution mustbe
either energetically “downhill” or fueled by external energy or
reactions resources.

3) Use of a Synthetic Substitutase: To implement the sub-
stitution processes we are investigating the use of enzyme-
like covalently-structured molecules to recognize network
sites at which substitutions are allowed, and (through graded
electrostatic interactions) to rearrange the hydrogen bonds to
effect the substitutions. Again, the rich synthetic precedent for
covalently-structured MBBs makes it likely that the required
enzyme-like compounds, which we callsubstitutase molecules,
can be engineered.

4) Discussion: Finally, we will review some of the issues
that must be resolved and problems that must be solved before
molecular combinatory computing can be applied to nanotech-
nology. First, of course, it will be necessary to synthesizethe
required MBBs for the nodes, and links; fortunately, there is
every reason to believe that this is well within the capabilities
of the state of the art of synthetic chemistry [6]. Also,
it will be necessary to synthesize the required substitutase
molecules; again, there is every reason to believe that thisis
well within the capabilities of the state of the art of synthetic
chemistry. A second problem is error control: substitutions will
not take place with perfect accuracy, and we know that some
substitution errors can result in runaway reactions. Therefore
we must develop means to prevent errors or to correct them
soon after they occur. A third issue is that the supramolecular
networks may get quite dense during computation, and we are
concerned about the ability, and probability, of the substitutase
molecules reaching the sites to which they should bind (i.e.,
what are the steric constraints on the processes?). Nevertheless,
the enormous potential of molecular combinatory computing
makes these problems worth solving.

V. CONCLUSION

After briefly reviewing the concept of molecular combina-
tory computing, we displayed several simulated applications to
nanostructure synthesis. We also indicated how it may be ap-
plied to the assembly of large, active, heterogeneous structures.
Finally, we discussed a possible molecular implementation
based on networks of covalently-structured MBBs connected
by H-bonds, and substitution operations implemented by en-
dothermic reactions with synthetic “substitutase” molecules.
Unfortunately, we have had to omit much explanation, discus-
sion, and analysis, but it can be found in other publications
from our project [3], [4], [11], [12].

ACKNOWLEDGMENT

This research is supported by Nanoscale Exploratory Re-
search grant CCR-0210094 from the National Science Foun-
dation. It has been facilitated by a grant from the University
of Tennessee, Knoxville, Center for Information Technology
Research. The author’s research in this area was initiated when
he was a Fellow of the Institute for Advanced Studies of the
Collegium Budapest.

REFERENCES

[1] H. B. Curry, R. Feys, and W. Craig,Combinatory Logic, Volume I.
Amsterdam: North-Holland, 1958.

[2] B. J. MacLennan, “Universally programmable intelligent matter sum-
mary,” in IEEE Nano 2002. IEEE Press, 2002, pp. 405–8.

[3] ——, “Replication, sharing, deletion, lists, and numerals: Progress on
universally programmable intelligent matter — UPIM report3,” Dept. of
Computer Science, University of Tennessee, Knoxville, Tech. Rep. CS-
02-493, 2002, available at http://www.cs.utk.edu/˜ library/TechReports/
2002/ut-cs-02-493.ps.

[4] ——, “Membranes and nanotubes: Progress on universally pro-
grammable intelligent matter — UPIM report 4,” Dept. of Computer
Science, University of Tennessee, Knoxville, Tech. Rep. CS-02-495,
2002, available at http://www.cs.utk.edu/˜ library/TechReports/ 2002/ut-
cs-02-495.ps.

[5] ——, “Sensors, patches, pores, and channels: Progress onuniversally
programmable intelligent matter — UPIM report 5,” Dept. of Computer
Science, University of Tennessee, Knoxville, Tech. Rep. forthcoming,
2003.

[6] D. G. Allis and J. T. Spencer, “Nanostructural architectures from
molecular building blocks,” inHandbook of Nanoscience, Engineering,
and Technology, W. A. Goddard, D. W. Brenner, S. E. Lyshevski, and
G. J. Iafrate, Eds. CRC Press, 2003, ch. 16.

[7] M. Simard, D. Su, and J. D. Wuest, “Use of hydrogen bonds tocontrol
molecular aggregation. Self-assembly of three-dimensional networks
with large chambers,”Journal of American Chemical Society, vol. 113,
no. 12, pp. 4696–4698, 1991.

[8] S. C. Zimmerman, F. W. Zeng, D. E. C. Reichert, and S. V. Kolotuchin,
“Self-assembling dendrimers,”Science, vol. 271, p. 1095, 1996.

[9] N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada,and B. L.
Feringa, “Light-drive monodirectional molecular rotor,”Nature, vol. 401,
pp. 152–5, 1999.

[10] B. Yurke, A. J. Turberfield, A. P. Mills Jr, F. C. Simmel, and J. L.
Neumann, “A DNA-fuelled molecular machine made of DNA,”Nature,
vol. 406, pp. 605–8, 2000.

[11] B. J. MacLennan, “Universally programmable intelligent matter (ex-
ploratory research proposal) — UPIM report 1,” Dept. of Computer
Science, University of Tennessee, Knoxville, Tech. Rep. CS-02-486,
2002, available at http://www.cs.utk.edu/˜ library/TechReports/ 2002/ut-
cs-02-486.ps.

[12] ——, “Molecular combinator reference manual — UPIM report 2,”
Dept. of Computer Science, University of Tennessee, Knoxville,
Tech. Rep. CS-02-489, 2002, available at http://www.cs.utk.edu/
˜ library/TechReports/ 2002/ut-cs-02-489.ps.


