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Abstract

This report addresseand resoles several issuesin the use of combinatorsfor
molecularcomputation.Theissuesncludeassumptionaboutbinding sitesandlink-
ing groups,‘capping” of unusedsites,replicationandsharingof structuresn amolec-
ular contet, creationof cyclic structuresdisassemblyf unneededtructuresrepre-
sentationof Booleanvaluesand conditionals,representatiomf Lisp-style lists, and
representatioof numerals.

1 Intr oduction

This reportis not intendedto provide an introductoryor systematigresentatiorof com-
binatorylogic; necessarpackgroundnformationis in a previous report,the “Molecular
CombinatorReferenceManual” [Mac02a],which (1) definesgenerakerminologyandno-
tation; (2) definesthe combinatorsand statesimportantpropertiesof them; and (3) de-
finesrelatednotations(mostly involving subscriptandsuperscriptsyvith their properties.
Sectionsand equationdrom thatreportwill be cited, for example,“Sec. 2 [Mac02a]” or
“Eq. 50 [Mac02a]"
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ScienceFoundation. It hasbeenfacilitatedby a grantfrom the University of Tennesseelnoxville, Center

for InformationTechnologyResearchThis reportmay be usedfor any non-profitpurposeprovidedthatthe
sourcels credited.
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Figurel: Diagramof reactantdor K substitution.Arrows representinking groups;small
roundedtriangularshapeis A (application)comple; circular shapesare primitive com-

binators; large triangular shapeglabeledU, X, andY’) representarbitrary combinator
networks.

2 Links

A molecularcombinatometwork comprisevariousnodegprimitive molecularcomplexes)
connectedby links (linking groups).In orderfor computatiorio proceeccorrectly thelinks
mustbe directedor oriented andso we usuallyshov themwith arravheadsin diagrams
suchasFig. 1 (which shows the reactantdor a K-substitution,seeSec.9 [Mac02a]). In
accordwith computersciencecorvention, the arrov points from the parentnodeto its
offspring, thatis, downwardin trees. (As is commonin expressiontrees,the dataflav is
upward,andthereforeagainsthearrows.) In molecularterms,thelink is amoleculargroup
with distinctbindingsitesatits ends which we may call the headandtail .

Nodesmay be classifiedasleavesor interior nodes Most leavesaremoleculargroups
with a single binding site, to which the headof a link canbind. In computationaterms,
they deliveraresultbut have noinputs. Themostcommonleavesareprimitive combinators
suchasS andK. A few leaftypes(D, P), which will bediscussedater, bind thetail of a
link.

Sofar, all interior nodeshave threebinding sites. The mostcommonis the application
or A primitive, which representshe applicationof a functionto its parameterTherefore,
anA nodehastwo “inputs;’ representinghe functionandits parameterto which thetails
of links canbind, andit hasone“output; representinghe resultof applyingthe function
to its parameterto which theheadof alink canbind (seeFig. 1 for examples).Someother
primitives(e.g.,R, V, discussedater) have one“input” andtwo “outputs”

Becauseof their interpretationin expressiontrees,we definea resultsite to be a site
to which a link headcanbind, andan argumentsite to be oneto which a link tail binds.
Thereforewe cansay:S andK eachhave oneresultsite;D andP eachhave oneargument



site; A hastwo argumentsitesandoneresultsite; R andV have two resultsitesandone
argument.

3 Resultand Argument Caps

In doing molecularcombinatoryprogrammingwe dealwith complexesonly whenthey
arein well-defined stablestatesjn particular we dealwith themonly whenall the binding
sitesarefilled, not during transientstageswvhen binding sitesmay be unfilled or shared
betweentwo groups. Therefore,whencomplees have unusedbinding sites(e.g., when
they areavailableasreactant®r generatecdsreactionwasteproducts)they mustbefilled
by someplace-holders.For this purposewe have postulatedwo otherwiseinert groups,
P andQ. Theresultcap P canfill or “cap” a resultsite on ary comple; likewise the
argumentcap Q canfill anargumentsite. Whenboth arerequiredasreactantsthey may
comeboundasa pair PQ (e.g.,Figs.6,10-13,pp.6-12).

As a consequencef the foregoingrules,molecularcombinatoryreactiongpermutethe
sitesto which the affectedlinks arebound,but do not createor destrg any links or other
moleculargroups.

4 Replication and Sharing

4.1 The Problem

Combinatorylogic is aterm-rewriting systemiHO82, Ros73]or abstractcalculus[Mac90].
Thereforearule suchasS-substitution,

SXYZ = XZ(YZ),
canbethoughtof asanoperationon parenthesizetinearexpressions,
(8X)Y)Z2) = ((X2)(Y 2)), (1)

or as an operationon trees,as shavn in Fig. 2. The latter interpretationis, of course,
whatsuggestsombinatorylogic asabasisfor universalmolecularcomputation However,
asdiscussedn a previous report[Mac024, therearedifferencesdbetweenterm-ravriting
systemsandmolecularprocessedn the context of term-ravriting systemsthe copying of
aterm,suchasZ in Fig. 2 or EQ. 1, is assumedo be anatomic(constant-timepperation.
This s certainlya poorassumptiorior molecularcomputationjn which thereplicationof
alarge structurecouldtake considerable¢ime.

Constant-timecopying is also a poor assumptionin corventional computation,and
soimplementation®f term-ravriting systemaypically sharea singlecopy of a structure
ratherthanmaking multiple copies;this is shavn in Fig. 3. This strategy works because
the term-ravriting systemsof greatestinterest(including combinatorylogic) satisfy the
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Figure2: S-substitutionwith copying. U, X, Y, andZ areary combinatortrees. In this
implementatiorof theS operationthetree 7 is copied.
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Figure 3: S-substitutionwith sharing.U, X, Y, andZ areary combinatortrees. In this
implementatiorof the S operationanadditionalpointeris createdo thetree 7.
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Figure4: S-substitutiorreactionwith replication. ThereactionintroducesanR (replicator)
comple, which beginsthereplicationof Z, which canproceedn parallelwith othersub-
stitutions. This diagramshaws boththereactantsieededor the substitutionaswell asthe
reactionproducts.Notice thatthetwo A complexeson the right-handside areorientedin
oppositedirections.

Church-RosseProperty[CR36, Ros73],which implies that suchsharingwill not affect
theresultsof computationinterpretedaslinearparenthesizedxpressionsit mayproduce
differentgraphstructures).Unfortunately this doesnot seemto be a good approachfor
molecularcomputationsinceit may resultin an unlimited numberof pointersto a struc-
ture.In moleculaterms thiswould correspondo anunlimitednumberof links to abinding
site,whichis impossible.

Variouswaysaroundthis problem,suchashaving binary “f an-in” nodesto the shared
structuredo not seentfeasible sincetheseintermediatenodeswould block the application
of thecomputationafteactions.Thereforewe have optedfor a differentsolution,described
in thefollowing section.

4.2 Replication

Our approachs somethingof a hybrid betweerthe copying andsharingimplementations;
it might be called“lazy replication” Thetwo usesbegin by linking to a singlecopy of a
tree,whichis graduallysplit into two replicateqseeFig. 4). Thanksto the Church-Rosser
Property as soonasthe roots of the replicatesare separatedthey canbegin to be used
separatelyalthoughsomeprocessemighthave to wait until thereplicationhassufficiently
progressed.

The mostimportantreactionis illustratedin Fig. 5: whenreplicationencounterg&n A
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Figure5: Replicationof anapplication(A primitive), which triggersreplicationof its two
daughtemodes,which can proceedin parallel. Notice that the two A primitiveson the
right-handsideareorientedin oppositedirections.
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Figure6: Replicationof a primitive combinatorcomplex pc (suchasS, K, or Y).

(application)primitive linkedto subtreesX andY’, anew A is allocatedandthetwo As are
linkedto correspondingeplicatesof X andY’, thustriggeringrecursve replicationof the
subtreesThemolecularreactionis described:

UVRAXY + PAQ; + P;RQ — UV AR, XY + 3PQ.

The reactantanclude “capped”A and R groups;the reactionreleaseshreePQ pairsas
waste.

Eventuallyreplicationwill reacha leaf of thetree,thatis, a primitive combinator(e.g.,
S, K, or Y); replicationterminateswith the allocationof a new instanceof the primitive
(Fig. 6). Thereactionis simply:

UVRp +Pp + PQ — Up+ Vp + P2RQ,

wherep is ary primitive combinator The R comple, appropriately‘capped; is released
asareactionwasteproduct.

Completereactionspecificationgor replication can be found in Sec.13 [Mac02a].
Replicationalsointeractswith deletion,whichwill bediscussedn Sec.6 of thisreport.
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Figure7: TheV primitive allows sharingof a network. Networks X andY bothconnecto
network Z viaV (sharing)primitive.

5 Sharing

5.1 TheV Primiti ve

As remarled, the copying andsharingimplementationgFigs. 2 and 3) are equialentfor
term-revriting systemssatisfyingthe Church-RosseProperty suchascombinatorylogic,
but they resultin differentnetwork structuresSinceonegoal of universallyprogrammable
intelligentmatteris the assemblyof specificnanostructuresye mustbeableto controlthe
networksthatare constructed.Therefore althoughlazy replicationis a goodsolutionfor
implementingcombinatoryreductionstherewill be circumstances which we will want
to createspecificsharedstructurespneohbviousexampleis the creationof cyclic structures
(Sec.5.3).

To accomplishsharingwe postulatea sharing primitive, denotedV (to suggestits
shape),which allows two links to point at one binding site; thereforeV hastwo result
sitesandoneargumentsite (Fig. 7). Situationsin which morethantwo links areintended
to point to the samedestinationareaccomplishedy usingmultiple V groups. Thus,a V
primitive occursin the sameconfigurationasa R primitive, but it doesnot triggerreplica-
tion. Conceptuallyandperhapgphysically it actslike aninert replicationoperator

NoticethattheV primitive introducesan extra level of indirectionbetweerthe shared
structureandthe referencedo it (Fig. 7). Thisis a fundamentabifferencebetweensym-
bolic linking, suchaswe have on corventionalcomputersjn which ary numberof cells
may hold the addressof the sharedstructure,and physicallinking, suchaswe have in
molecularcomputation As a consequencesharedstructuresannotbe usedcomputation-
ally with full generality sincetheV groupswill oftendisruptthe patternghattriggerthe
computationateactions.Therearevariouswaysof working aroundtheselimitations, but
they seemunduly complicated. For now it seemsbetterto restrictthe useof V to the
constructiorof noncomputationahanostructures.
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Figure8: S-substitution,which introducesa V (sharing)primitive. The V complex will
block mostothersubstitutionstherefordts primary purposes the creationof staticshared
structuresNoticethatthetwo A complexeson theright-handsideareorientedin opposite
directions.

5.2 The S Combinator

It is not enoughto have a sharingprimitive; we mustalso have somegeneralmeansof

introducingit into molecularstructuresThe simplestapproachs suggestedy theparallel
betweenreplicationand sharing: modify a R-producingoperatorto producea V instead.
Two of the simplestcombinatorghatreplicatetheiraumentsareS andW:

SXYZ = XZ(YZ), )
WXY = XYV. 3)

A sharingversionof S, which we denoteS, is shown in Fig. 8; its reactionis:
UAsSXY Z + P,VQ — UAsXYVZ +PS + PQ. (4)

To notatethefactthatastructures sharedwe oftenuseparenthesizeduperscriptsandso

we maywrite:
SXYZ = XZW (v Zz©), (5)

or, lessprecisely we useprimes,SXYZ — X Z'(Y Z). (SeealsoSec.17 [Mac02a]on
thenotationfor sharing.)
SinceW is simplerthan$, a correspondingharingoperationW might seema better
choice.It would be defined
WXY = XYWy ©, (6)



with a correspondingeaction:
UAWXY + P,VQ — UA,XVY + PW + PQ. (7)

Neverthelesswe have decidedtentatiely to take S asthe primitive. Thereare several
reasons:

1. Thereactionfor S (Fig. 8) is very similar to thatfor S (Fig. 4); the former hasV
wherethelatterhasR. Thereforeonereactionmight be modifiedto yield the othet

2.8 cgnbedefinedin termsovf W angvice versa.However, thedefinitignofW in terrsz
of S (Eg. 45 [Mac02d), W = CSI, is muchsimplerthanthatof S in termsof W
(Eq.34[Mac02a]),S = B(B(BW)C)(BB).

Neverthelessve will oftenfind thatW is more corvenientin programmingin particular
we canexponentiatat (Sec.28 [Mac02a])to createsharingchains

Wi XY = XY™y =1 . yy©) ()

which canbeusedto link togethedarge structures.

5.3 TheY Combinator

The so-calledparadoxicalor fixed-pointcombinatorY is definedsothat
YF = F(YF). 9)
It’ s easyto seethatthis leadsto a nonterminatingorocess:
YF = F(YF) = F(F(YF)) = F(F(F(YF))) = - - (10)

Neverthelesghis operationis usefulin corventionalfunctionalprogrammingor defining
recursve functions[Bur75, Mac90]. Whetherit will besimilarly usefulin molecularcom-
binatory programmings lessobvious, but if it is neededjt canbe definedin termsof S
andK (Sec.21[Mac02a]),soit doesnot needto be supporteddy a primitive reaction.

However, aswe have seenSec.4.1),sharingandcopying arecloselyrelated andcyclic
structuresreabstractlyequialentto infinite structures Similarly, theinfinite expansiorof
Y F canbeinterpretedasacyclic structure,Y F —> y, wherey = F'y. This suggestshat
anappropriatgsharing)versionof Y mightbeusedto constructcyclic structures(Indeed,
in mary functionalprogramminganguagemplementation®n conventionalcomputersy
creates self-referentiaktructurehenceits useto implementrecursion.)

Figure9 shows areactionimplementingY, a sharingversionof the fixed-pointcombi-
nator Thereactionis described:

UAYF + P,VQ — UVAF + PY + PQ. (11)
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Figure9: Y-substitutionwhichintroducesacycleby meansf aV (sharing)primitive. The
indicatedsharingstructuremaybedescribedl F = y(!) wherey = Fy(©. Normally F is
a combinatoryprogramcomple, which will leadto further substitutionghatwill expand
thecycle into amoreusefulstructure.

Usingour corvention(Sec.5.2)for notatingsharing thecreationof the cyclic structurecan
bewritten asa substitutiorrule:

YF =y wherey = Fy©. (12)

Herey is definedasa namefor the resultof the A nodein Fig. 9, andy(") andy(® arethe
two links to theV primitive.

Thecreationof theverytight cycle betweerthe A andV nodesshownin Fig. 9, might
not seemvery useful,but it is, ascanbe seerwhenwe realizethat /' canbearny combina-
tory comple, andthereforeF'y(®) canresultin very complex computationsnvolving the
link y(©). Exampleswill bepresentedh laterreports.

6 Deletion

Combinatorcomputationproceedsy permuting,replicating,anddeletingnetwork struc-
tures[CFC58 Sec.5H]. In amolecularcontext, this meanghatthe computationaprocess
will generateanmary wastestructures.Thesecould, of course be abandonedput it seems
betterto arrangdor theirdisassemblysothattheircomponengroupscanberegycledasre-
actionresourceslndeed without suchregycling thereactionspacecouldbecomecluttered
with wasteproducts,andresidualbut uselesscomputationin discardedcomplexescould
consumevaluablereactionresourcesTherefore at this time at least,it appearpreferable
to arrangefor the disassemblandregycling of deletedstructures.To accomplishthis, we
postulatea primitive D (deletion)operatoywhich maybelinkedto a network to disassem-
bleit recursvely.

10



Lo

Figure10: Deletionof a primitive combinatorcomplex pe (suchass, K, orY).
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Figurell: Deletionof anapplication(A) primitive. Thistriggersdeletionof its two daugh-
ters,which mayproceedn parallel.

Figure 10 shaws the baseof the recursve processdeletionof a primitive combinator
causest to be“capped’andreleasedor reuse.Thereactionis:

Dp +PQ — Pp+DQ, (13)

wherep representary primitive combinator(e.g.,S or K). Deletionof anapplication(A)
primitive triggersthe deletionof its daughtergFig. 11); thereactionis:

DAXY +DQ +PQ — DX + DY + PAQs. (14)

Y11~

Figurel12: Deletionof areplicationin progresslf adeletioncatchesup with areplication
(R primitive),thenboththe deletionandreplicationareterminated.

11



Figure 13: Deletion of one pathto a sharingnode (V primitive). The deletedpath is
“capped’with aP primitive (resultcap),but the otherpathis left intact.

The foregoing reactionsare sufficient, but thereare advantagego consideringthe in-
teractionof deletionwith R andV primitives.If adeletioncatchesip with areplicationin
progressthenit shouldsurelycancelthereplication(Fig. 12):

DURX + 2PQ — UX + P,RQ + DQ. (15)

It would surelybe wastefulto wait for the duplicationto complete andthenhave to begin
the processof disassemblinghe new copy! Anotherargumentin favor of this reaction
comesfrom obsenationsof functionalprogramgranslatednto SK combinatortrees.The
standardranslationalgorithmsgeneratenary instancef the | combinatoy which is de-
fined|l = SKK. This meansthatanidentity operationis implementedoy replicatingand
thendeletinga copy of theagument:

IX = SKKX = KX (KX) = X.

Although someof thesepointlessreplicationscanbe avoidedby cleverertranslationalgo-
rithms, a certainamountof it is an avoidablecharacteristiof combinatorycomputation.
Thereforewewill bebetteroff if theseuselesseplicationsareterminatedeforethey com-
plete.

Finally, we mustconsiderthe effect of deletinga link to a sharing(V) primitive. We
couldleaveit unspecifiedin which casdt would bereasonabléo supposehatthedeletion
stopswhenit reachesheV primitive. Alternately andmoreneatly we couldspecifytheD
resultsin thedeletedpathbeing“capped”(Fig. 13):

DUVX + PQ —s PUVX + DQ. (16)

(Indeedthetwo approachemaynot be sodifferent,for D might be usablein placeof the
resultcapP.) Ontheotherhand,whenbothlinks to aV complex have beendestryed, it
seemgeasonabl¢o triggerthedeletionof the (previously) sharedstructure:

DPVX +PQ — DX + P,VQ. (17)

(Thisreactionis notincludedin the specificatiorof deletionin Sec.6 [Mac02a].)

12
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Figure 14: Deletionof only remainingpathto a sharingnode(V primitive). The shared
complecis recursvely deletedandthe“capped”V primitiveis releasedsawasteproduct.

7 BooleanValues,Conditionals, etc.

Thefundamentameaningof true andfalse is theability to selectbetweertwo alternatves.
Sincein combinatorylogic, we take datato be (potentiallyactive) functions,we candefine
true to selectthefirst of two alternatves,andfalse to selectthe second:

true XY — X, (18)
falseXY — Y. (29

Theseaaretheusualdefinitionsin thelambdacalculusandcombinatorytogic [Bar84, Bur75,
Mac84 Mac90,e.g.] They aredefinedin combinatorylogic asfollows:

true = K, (20)
false = SK. (21)

The logical operationsare easyto define. SincenotX = X false true, we candefine
not = Cpyl false true (seeSecs4, 30[Mac02a]). Thuswe have (seealsoSec.31[Mac02a]):

not = Cpylfalse true, (22)
and = CPlfalse, (23)
or = Cltrue. (24)

If C'is aBoolean-aluedexpressiononereducingto true or false), thenthe conditional
“if C thenX elseY” canberepresentedby the expressionC XY. For greaterclarity, we
canwrite it usingALGOL 68 notation,(C — X | Y).

(C = X |Y) = CXY. (25)

This is not quite the sameas a conditionalin a programminglanguage sincereduction
could proceedin X andY in parallel,eventhoughone of themwill be discarded.This
could be a problemif oneof the computationsn nonterminatingsincethat computation

13



could consumeall the reactionresourcesgven thoughit won't be selected. This is es-
pecially a problemwith recursve function definitions, sincetypically one branchof the
conditionalwill leadto recursve expansionof the function.

One commonmethodof avoiding this problemis to “delay” executionof the arms
of the conditionaluntil one of themis chosenat which point its executionis “released”
[Bur75,Mac9(. Executionof anexpressioris delayedby “abstracting”[Abd76, CFC5§
adummyformal parametefromit. Thenit cannotereducedintil acorrespondinglummy
actualis provided. Theseoperationsaredefined:

(E) = Xa(E), (26)
forceFr — FA, 27
if C'then X else Y = force(C — (X)) | (Y')))- (28)

{(£) means\z(FE), wherez is ary variablethatdoesnotoccurin E; this delaysexecution
of E by corvertingit to asingle-parametdunction. Executionis allowedby providing an
actualparameterd, whichrepresentary combinator(theinertN would beagoodchoice).
Thus,force{(E)) = E. The'if then else’ is thendefinedto delayexecutionof its arms
until oneof themis chosen.

8 Lisp-stylelLists

8.1 RepresentationBasedon Triples

Thereare a numberof waysto define Lisp-style lists in combinatorylogic. One way
[Mac84]is to definea“cell” with threefields,cell NFR. If N istrue, thenF andR arethe
“first” (car, head)and“rest” (cdr, tail) of thelist. If N is false, thencell N F'R represents
null list, andthe valuesF’ and R areirrelevant. This canbe accomplishedy definingcell
sothatcell N F'R returnsafunctionthat,whenappliedto a“selector”s, returnsthe selected
componenbf thecell. Thereforeto begin we definethreeselectorswith the properties:

lof3zyz — «x, (29)
20f3zyz = v, (30)
3of3zyz — =z. (31)

Theseareeasilydefinedin combinatorylogic (seeSecs24, 30 [Mac023):

lof3 = CpK*=K? (32)
20f3 = CyK®> = CK?, (33)
30f3 = C[Q}K2. (34)

cell NF' R thenis definedto beafunctionthatappliesa provided selectors to N F'R:
cell NFR = (\s.sNFR). (35)

14



Thus, cell shouldsatisfycell NFRS = SNFR, and a suitabledefinitionis (Sec.30
[Mac02a)):

cell = Cyl. (36)
A definitionof list-processingperationss thenstraight-forvard:
nilyy = cellfalsel |, (37)
consy; = celltrue, (38)
nonnullyy, = Az.(zlof3) = Cl 1of3, (39)
firsty = Az.(220f3) = Cl 20f3, (40)
restyy = Az.(230f3) = Cl 30f3, (41)
nullyy = not o nonnully;. (42)

(The subscriptsare to distinguishthesedefinitions from the alternatves consideredn
Sec.8.2. L is ary combinatorN would beagoodchoice.)

Let’s explore the actualcombinatoryrepresentatiorof sucha list. The “cons cell”
resultingfrom consy; F'R lookslik e this:

consy FFR = celltrue PR = cel| KFR = C3IKFR. (43)

Therefore)et
Ly = CiglK. (44)

Therepresentatioonf ann-elementist is:

(X1,Xo,...,X,) = consyXi(consyXo(- -« (consy Xynily) - - +)), (45)

wherenily, = Ci3I(SK)NN. Thus,a list structureis a network asin Fig. 15. We cansee
thateachlist elementrequireswo A nodesandaninstanceof Ly;, which hassize:

|Ly| = 24S 4 23K + 46A = 93 total primitives 47

(Onthemeasuremerdf network sizes seelntr oduction in [Mac02a].)In addition,thelist
is terminatedby arepresentationf nil, but we canusearny complex suchthat

nonnull nil = nil 1lof3 = false = SK.
Thuswe canuse

nil = K(SK), (48)
il = 1S+ 2K + 2A = 5 total (49)

Hencethesizeof thislist representatiors
(X1, ..., Xn)| = (24n + 1)S + (23n + 2)K + (48n + 2)A = 95n + 5 total, (50)

exclusive of the sizesof the X..

15
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Figure 15: LispP-style list asa combinatorcomplex. The diagramshawvs the molecular
representatioof thelist (X1, ..., X,,). Interior nodesareapplication(A) primitives.

8.2 RepresentationsBasedon Pairs

A secondapproactdefinesa“conscell” asanorderedpair[Bar84, LV97]. Herearetypical
definitions:

const = Azys.szy = Cyl, (51)
nilp = Ktrue, (52)

7?7 = K(Kfalse), (53)
nully = CI?7, (54)
firsty = Cl true, (55)
resscr — Cl false. (56)

Thelattertwo definitionsusetrue andfalse to selectthe component®f a pair. It's easyto
show that

firstp(const XY) = X,
nullr(const XY) = (constXY)? = false,
nullpnil = true,

etc. Therepresentatioof alist looksthe sameasin Fig. 15, exceptthat

Ly = (Cyl, (57)
ILt| = 155+ 14K + 28A = 57 total, (58)
nilp = Ktrue = KK, (59)

nily] = 0S+ 2K + 1A = 3 total (60)

16



Hence,
(X1, ..., Xn)| = 15nS + (14n + 2)K + (30n 4+ 1)A = 59n + 3 total (61)

(exclusive of the | X|), which is smallerthanthe representatioin triples. However, it is
difficult to saywhetherit mattersn molecularterms.
Curry andFeys [CFC5§ useda variantof this approacho definepairs:

consc = Azys.[s(Ky)z] = C(B(Cjyl)K), (62)

nilc = Ktrue = KK, (63)
firstc = ClIZ,, (64)
restc = ClZ,,q, foranyn > 0. (65)

(SeeSec.9.3 belav on the “Church numerals”Z,.) With this representatioiit is easyto
shaw thatalist hassize

(X1, ..., X)) = (150 + 1)S + (150 + 2)K + (31n + 1)A = 61n + 3total,  (66)

exclusive of the | X|.

8.3 Sequencegn-tuples)

Ratherthan building up lists by pairs, it is possibleto representhem directly; that is,
insteadof usingtriplesor coupleswe usen-tuples[Bar84,p. 134]. Defineann-tupleto be
afunctionthattakesa selectorandreturnsthe selectecelement:

<X1,,Xn> :)\S(SXan) (67)
This is satisfiedby thefollowing combinatoriakexpression:
(X1,...,Xn) = CulXy - X, (68)

Theith elementof alist is selectedy applyingit to a selectorfunctionsel;’, which selects
thei elemeniof ann-elementsequenceBy Eq. 26 [Mac02a],

Ki_lFXl --- X, = F. (69)

Also, by Eq. 26 [Mac02a], .
Kn—in e Xn = XZ.‘ (70)

Therefore substitutingk™* for I in Eq.69, we have
KK i X, - X X - X, = KX - X, = X

Therefore, . .
sel? = K"~ 'K"™, (71)

17
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Figure 16: Sequenc€ Xy, ..., X,,) represente@s combinatorstructure. Interior nodes
represengapplication(A) primitives.

In contrasto the precedinglefinitions,the overheadf sequencess very small(Fig. 16):
(X1, ..., Xn)| = [Cpyl| + nA, (72)

exclusive of the | X;|. However, |C"| € ©(n), sincefrom Sec.30 [Mac02a]we can
calculate

Cpay| = (90 — 4)S + (8n — 4)K + (17n — 9)A = 34n — 17 total.
Hence,
(X1, ..., Xp)| = (9n — 3)S+ (8n — 2)K + (18n — 6)A = 35n — 11 total, (73)

exclusive of the | X |.

8.4 Comparison

The mostefficient representationn termsof spaceis the sequencén-tuple) representa-
tion, but it hasthe disadwantagethat one mustknow the lengthn of the sequence.This

precluded.i1sp-style list processingthatis, having a function recuruntil the end of the

list is reached).Also, the elementsareindexed with the selectorfunctionssel;’, although

it would be possibleto definethemasfunctionsof 4, thusallowing computationof sub-

scripts. Therefore althoughsequencemay be usefulfor particularpurposesit seemshat

thecommonlist representatioshouldbe basedon pairs(conscells).

9 Numerals

9.1 Unary Numeral System

As in ordinarycomputationjn programmabléntelligentmatterwe oftenwantto represent
nonngative integers. For example,we might definea complex G suchthat GM N pro-
ducesan M x N grid, givensuitablerepresentationsf the integersiM, N. In electronic
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computersintegersarerepresenteth binarynotation,andof courseit is possibleto define
combinatoryprogramshatusebinary numeralsput this doesnot seemto be the bestap-
proach.Rather the simplestapproachs to represenhumbersasunary numeals; thatis,
the numberN is representedy somestructure(e.g.,a chain)of size N. The savingsin
sizeby usingbinarynumeralgsize [log, N|) insteadof unarynumeralds notsogreat,in
molecularterms,andthe decodingcompleity is significantlygreater

9.2 List Representation

The simplestunaryrepresentationf n is asa list of lengthn; thisis in effect whatPeano
usedin his axiomatizationof naturalnumbers.With sucha representatioiit is simpleto
computethe successoof a number(cons a new elementontoit), computeits predecessor
(take therest of thelist), or askif it’s O (testif it’s null). Oneproblemwith this approachs
its relative inefficiengy. Basedon our precedinganalysisof list representationshenumber
n will requirea network of atleast59n + 3 primitives.

9.3 Church Numerals

Of coursen mayberepresentetdy ary structureof sizen, andsoit maybebetterto pick
a structurethatdoessomethinguseful. This fits betterwith the blurring of the distinction
betweerprogramanddatain combinatorylogic, in which datais oftenactive.

To move toward a morefunction-orientedview, startby thinking of the numbern asa
list of lengthn, (X1, Xs, ..., X,). Fromthis, we areled to consideran agumentlist of
lengthn, suchas(FX; X5 - - - X,,). Thisis turn suggestann-fold functionalcomposition
asarepresentatioof n, suchasFi (Fy(- - - (F,X) - - -)), or, moresimply, F" X (seeSec.28
[Mac02a]for this notation). This immediateleadsusto the iterators or Church numeals
Z, (Sec.23[Mac02a]),which aredefinedsothat

Z,F = F".

Accordingto Sec.23 [Mac02a],Z,, is 10n + 7 in size,which is considerablybetterthan
the list representatiolfseealso Fig. 17); moreimportantly the Churchnumeralsareim-
mediatelyuseful,without the needof a programto interpretthem. Sec.23 [Mac02a]also
shavsthatit is possibleto add, multiply, andexponentiateChurchnumerals Predecessor
subtractionandzerotestarenotneededften,but whenthey are,they canbeaccomplished
by corvertingto thelist representatiorgoingthe operationandcorvertingbackto Church
numeralsasshavn by Barendrgt [Bar84,pp. 140-1].

9.4 Representationof Lar geNumbers

The readermay be worried aboutthe useof unarynumeralsin the casesvherewe need
to representarge numberssince|Z,,| € O(n). In thesecaseswe cansimple compute
the numberswe needby exponentiation.By Eq. 67 [Mac02a],Z,,» = Z,,Z,,, SOwWe can
represent™ by Z,,,Z,,, which hassize®(m + n), specificallyl0(m + n) + 15.
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Figure17: Iteratoror ChurchNumeralrepresente@s combinatorstructure. The iterator
Z, isrepresentedly achainof n SB compleceswith aterminalKl comple. Interior nodes
represengpplication(A) primitives.
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