
-1-

Expanding the Concept of Computation1

Bruce J. MacLennan

Department of Computer Science

1122 Volunteer Blvd.

University of Tennessee

Knoxville, TN 37996-3450, USA

maclennan@cs.utk.edu

Abstract

My goal in this paper is to recontextualize the concept of computation. I review the historical roots of

Church-Turing computation to show that the theory exists in a frame of relevance, which underlies

the assumptions on which it rests and the questions it is suited to answer. Although this frame of

relevance is appropriate in many circumstances, there are many important applications of the idea of

computation for which it is not relevant, especially in natural computation. As a consequence we

need, not so much to abandon the Church-Turing model of computation, as to supplement it with new

models based on different assumptions and suited to answering different questions. In this alternative

frame of relevance, more suited to natural computation, the central issues include real-time response,

continuity, indeterminacy, and parallelism. Once we understand computation in a broader sense than

the Church-Turing model, we can see new possibilities for using natural processes to achieve our

computational goals. These possibilities will increase in importance as we approach the limits of

electronic binary logic as a basis for computation. They will also help us to understand computational

processes in nature.

Keywords: Church-Turing thesis, natural computation, theory of computation, model of

computation

Abbreviations: MIPS = millions of instructions per seconds, VLSI = very large scale

integration

1 Preprint of article submitted to Natural Computation.

-2-

The Frame of Relevance of Church-Turing Computation

It is important to keep in mind that the Turing machine is a model of computation. Like all

models, its purpose is to facilitate describing or reasoning about some other class of phenomena

of which it is a model. A model accomplishes this purpose by being similar to its object in

relevant ways, but different in other, irrelevant ways, and it is these differences that make the

model more tractable than the original phenomena. But how do we know what is relevant or

not? Every model is suited to pose and answer certain classes of questions but not others, which

we may call the frame of relevance of the model. Although a model’s frame of relevance often

is unstated and taken for granted, we must expose it and make it explicit in order to understand

the range of applicability of a model and to evaluate its effectiveness within its frame of

relevance. What, then, is the frame of relevance of the Turing-machine model of computation?

As we know, the Church-Turing theory of computation was developed to address issues of

formal calculability and provability in axiomatic mathematics. The assumptions that underlie

Church-Turing computation are reasonable in that context, but we must consider them critically

before applying the model in other contexts. In its context, for example, for addressing the

questions of what is, in principle, effectively calculable or formally provable, it is reasonable to

require only that there be a finite number of steps requiring finite resources. As a consequence,

according to this model, something is computable if it can be accomplished eventually, given

unlimited but finite resources.

Another consequence of the historical roots of the Church-Turing theory of computation is its

definition of computing power in terms of classes of functions. A function is computable if,

given an input, we will get the correct output eventually, given unlimited but finite resources. Of

course, the theory can address questions of computation time and space, but the framework of

the theory limits its applicability to asymptotic complexity, polynomial-time reducibility, and so

forth. The roots of the idea that computation is a process of taking an input, calculating for a

while, and producing an output can be found in the theory of effective calculability as well as in

contemporary applications of the first computers, such as ballistics calculations, code breaking,

and business accounting.

-3-

The Church-Turing model of computation, like all models, makes a number of idealizing

assumptions appropriate to its frame of relevance. Many of these assumptions are captured by

the idea of a calculus, but a phenomenological analysis of this concept is necessary to reveal the

background of assumptions (MacLennan 1994a). Although there is not space here to discuss

them in detail, it may be worthwhile to mention them briefly (for more see MacLennan 2003,

2004).

The model of information representation derives from mathematical formulas. As idealized

in calculi, representations are formal, finite, and definite. We assume that tokens can be

definitively discriminated from the background and from one another, and we assume that they

can be classified by a mechanical procedure into exactly one of a finite number of types. The

texts, or as we might say, data structures, are required to be finite in size, but also finite in depth;

that is, as we divide it into parts, we will eventually reach its smallest, atomic constituents, which

are tokens. These and other assumptions are taken for granted by the Church-Turing model of

computation. Although the originators of the model discussed some of them, many people today

do not think of them as idealizing assumptions, which might not be appropriate in some other

frames of relevance.

A similar array of idealizing assumptions underlie the Church-Turing model of information

processing, in particular, that it is formal, finite, and definite. Applicability of basic operations

depends only on mechanically determinable properties of the tokens, and there is no ambiguity in

the applicability of these operations (although it is permissible for several operations to be

applicable). Each basic operation is atomic, and a computation terminates after a finite number

of these atomic operations. Also, it is definitely determinable whether a computation has

terminated. Again, these are largely unquestioned assumptions of the Church-Turing model.

Alternative Frames of Relevance

It certainly could, and has, been argued that the notion of computation was vague before the

pioneering work of Church, Turing, and the other founders of the theory of computation, and that

what they did was analyze, define, and express this previously informal notion in more precise

terms. However, I want to argue that there are important concerns connected with computation

-4-

that are outside the frame of relevance of the Church-Turing model. Therefore we need to

consider these alternative frames and the models suited to them.

In this paper I will focus on the frame of relevance of natural computation (see MacLennan

2005 for the related issues in nanocomputation and quantum computation). Natural computation

occurs, of course, in the brains of many species, but also in the control systems of

microorganisms and in the self-organized collective behavior of groups of animals, such as insect

colonies, flocks of birds, and so on. Natural computation is an important research area because

robust, efficient, and effective natural systems can show us how to design better artificial

computational systems, and our artificial systems, in turn, can suggest models of computational

processes in nature. Such fruitful interchange is already apparent in the theories of neural nets

and complex systems. However, natural computation occurs in a different frame of relevance

from conventional computing, and so it answers questions about the relative power and

equivalence of computing systems from a different perspective, and at the same time it asks

entirely new questions.

First, natural computation is often more like real-time control than the evaluation of a

function. In nature the purpose of computation is frequently to generate continuous control

signals in response to continuous sensor inputs. The system continues to compute so long as the

natural system exists, and so eventual termination is generally irrelevant in natural computation.

Typically, we are concerned with whether a result, such as a decision to act, can be delivered

within a fixed real-time bound, or whether continuous control signals can be generated in real

time. Therefore, we are not concerned with speed in terms of a number of abstract computation

steps, but with real time, and therefore with how the rate of computation relates to the rates of the

physical processes by which it is implemented. Also, in the usual theory the criterion is whether

an absolutely correct output will be produced eventually, whereas in natural computation it may

be more important to know how closely a preliminary result approximates to the correct one,

since the system may be forced by real-time constraints to use the preliminary result.

Asymptotic complexity is not so important in natural computation as in conventional

computation, because in applications of natural computation the size of the inputs are often

-5-

fixed; for example, they are determined by the physical structure of the sensors. Other bases for

comparing computational processes are more relevant in natural computation. For example, for

fixed-sized inputs and processing resources, which computational process has a greater

generality of response, that is, a wider range of inputs to which it responds well?

A closely related criterion relevant to natural computation is how flexibly a system responds

to novel inputs, that is, to inputs outside its range. For an artificial system this range is the set of

inputs it was designed to process correctly; for a natural system it is the set of inputs that it has

evolved to process in its environment of evolutionary adaptedness.

Adaptability is another relevant basis of comparison for natural computation systems, that is,

how well do they accommodate themselves to changing circumstances. In this regard we are

interested in the range, quality, speed, and stability of adaptation.

Finally, the function of natural computation is to allow imperfect physical agents to operate

effectively in the extremely complex, unpredictable natural world. Therefore, in natural

computation, we must take noise, uncertainty, errors, faults, and damage as givens, not as

peripheral issues added on as an afterthought, if considered at all, as is often done in

conventional computing. These considerations affect both the structure of natural computations

and the criteria by which they are compared.

It will be apparent that the Church-Turing model is not particularly well suited to addressing

many of these issues, and in a number of cases begs the questions or makes assumptions

incompatible with addressing them.

Computation in General

Defining Computation

Historically, there have been many kinds of computation, and the existence of alternative

frames of relevance shows us the importance of non-Turing models of computation. How, then,

can we define “computation” in sufficiently broad terms? Prior to the 20th century computation

involved the manipulation of mathematical objects by means of physical operations. The

familiar examples are arithmetic operations on numbers, but we are also familiar with geometric

-6-

operations on spatial objects and with logical operations on formal propositions. Modern

computers manipulate a much wider variety of objects, including character strings, images,

sounds, and much else. Therefore, when I say that computation uses physical operations to

accomplish the mathematical manipulation of mathematical objects, I mean it in the broadest

sense, that is, the abstract manipulation of abstract objects. In terms of the traditional separation

of form and matter, we may say that computation uses material processes to accomplish formal

manipulation of abstract forms.

The forms manipulated by a computation must be materially realized in some way, but the

characteristic of computation that distinguishes it from other physical processes is that it is

independent of specific material realization. That is, although a computation must be materially

realized in some way, it can be realized in any physical system having the required formal

structure. (Of course, there will be practical differences between different physical realizations,

but I will defer consideration of them until later.) Therefore, when we consider computation qua

computation, we must, on the one hand, restrict our attention to formal structures that are

physically realizable, but, on the other, consider the processes independently of any particular

physical realization.

These observations provide a basis for determining whether or not a particular physical

system (in the brain, for example) is computational (MacLennan 1994b, 2004). If the system

could, in principle at least, be replaced by another having the same formal properties and still

accomplish its purpose, then it is reasonable to consider the system computational. On the other

hand, if a system can fulfill its purpose only by control of particular substances or particular

forms of energy, then it cannot be purely computational. Nevertheless, a computational system

will not be able to accomplish its purpose unless it can interface properly with its environment;

this is a topic I will consider later.

Based on the foregoing considerations, I have proposed the following definition of

computation (MacLennan 1994b, 2004):

Definition: Computation is a physical process, the purpose of which is the abstract

manipulation of abstract objects.

-7-

Alternately, we may say that computation accomplishes the formal manipulation of formal

objects by means of their material embodiment. Next I will define the relation between the

physical and abstract processes:

Definition: A physical system realizes a computation if, at the level of abstraction

appropriate to its purpose, the abstract manipulation of the abstract objects is a

sufficiently accurate model of the physical process. Such a physical system is

called a realization of the computation.

That is, the physical system realizes the computation if we can see the material process as a

sufficiently accurate embodiment of the formal structure, where the sufficiency of the accuracy

must be evaluated in the context of the system’s purpose. Next I will suggest a definition by

which we can classify various systems, both natural and artificial, as computational:

Definition: A physical system is computational if its purpose is to realize a

computation.

Finally, for completeness:

Definition: A computer is an artificial computational system.

Thus I restrict the term “computer” to intentionally constructed computational devices; to call

the brain a computer is a metaphor. These definitions raise a number of issues, which I will

discuss briefly; no doubt they can be improved.

First, these definitions make reference to the purpose of a system, but philosophers and

scientists are justifiably wary of appeals to purpose, especially in a biological context. However,

I claim that the use of purpose in the definition of computation is unproblematic, for in most

cases of practical interest, purpose is easy to establish. On the one hand, we can look to the stated

purpose for which an artificial system was designed. On the other, in a biological context,

scientists routinely investigate the purpose of biological systems, such as the digestive system

and immune system, and make empirically testable hypotheses about their purposes. Ultimately

such claims of purpose are reduced to the selective advantage to a particular species in that

species’ environment of evolutionary adaptedness, but in most cases we can appeal to more

-8-

familiar ideas of purpose.

However, I should mention one problem that does arise in biology and can be expected to

arise in our biologically-inspired robots. That is, while the distinction between computational

and non-computational systems is significant for us, it does not seem to be especially significant

to biology. The reason may be that we are concerned with the multiple realizability of

computations, that is, with the fact that they have alternative realizations. For this property

allows us to consider the implementation of a computation in a different technology, for example

in electronics rather than neurons. In nature, typically, the realization is given, since natural life

is built upon a limited range of substances and processes. On the other hand, there is typically

selective pressure in favor of exploiting a biological system for as many purposes as possible.

Therefore, in a biological context, we expect physical systems to serve multiple purposes, and

therefore many such systems will not be purely computational; they will fulfill other functions

besides computation. From this perspective, it is remarkable how free the nervous systems of all

animals are from non-computational functions.

Transduction

I have emphasized that the purpose of computation is the abstract manipulation of abstract

objects, but obviously this manipulation will be pointless unless the computational system

interfaces with its environment in some way. Certainly our computers need input and output

interfaces in order to be useful. So also computational systems in the brain must interface with

sensory receptors, muscles, and many other noncomputational systems in order to be useful. In

addition to these practical issues, the computational interface to the physical world is also

relevant to the symbol grounding problem, the philosophical question of how abstract symbols

can have real-world content (Harnad 1990, 1993; MacLennan 1993). Therefore we need to

consider the interface between a computational system and its environment, which comprises

input and output transducers.

The relation of transduction to computation is easiest to see in the case of analog computers.

The inputs and outputs of the computational system have some physical dimensions (light

intensity, air pressure, mechanical force, etc.), because they must have a specific physical

-9-

realization for the system to accomplish its purpose. On the other hand, the computation itself is

essentially dimensionless, since it manipulates pure numbers. Of course, these internal numbers

must be represented by some physical quantities, but they can be represented in any appropriate

physical medium. In other words, computation is generically realized, that is, realized by any

physical system with an appropriate formal structure, whereas the inputs and outputs are

specifically realized, that is, constrained by the environment with which they interface to

accomplish the computational system’s purpose.

So we can think of pure transduction as changing matter while leaving form unchanged, and

computation as transforming form independently of matter. In fact, most transduction is not

pure, for it modifies the form as well as the material substrate, for example, by filtering.

Likewise, transductions between digital and analog representations transform the signal between

discrete and continuous spaces.

Classification of Computational Processes

I have tried to frame this definition of computation quite broadly, to make it topology-

neutral, so that it encompasses all the forms of computation found in natural and artificial

systems. It includes, of course, the familiar computational processes operating in discrete steps

and on discrete state spaces, such as in ordinary digital computers. It also includes continuous-

time processes operating on continuous state spaces, such as found in conventional analog

computers. However, it also includes hybrid processes, incorporating both discrete and

continuous computation, so long as they are mathematically consistent. As we expand our

computational technologies outside of the binary electronic realm, we will have to consider these

other topologies of computation. This is not so much a problem as an opportunity, for many

important applications, especially in natural computation, are better matched to these alternative

topologies.

In connection with the classification of computational processes in terms of their topologies,

it is necessary to say a few words about the relation between computations and their realizations.

A little thought will show that a computation and its realizations do not have to be of the same

type, for example, discrete or continuous. For instance, the discrete computations performed on

-10-

our digital computers are in fact realized by continuous physical systems obeying Maxwell’s

equations. The realization is approximate, but exact enough for practical purposes. Conversely

a discrete system can approximately realize a continuous system, much like numerical

integration on a digital computer. In comparing the topologies of the computation and its

realization, we must describe the physical process at the relevant level of analysis, for a physical

system that is discrete on one level may be continuous on another. (See MacLennan 2004 for

more on the classification of computations and realizations.)

Expanding the Range of Physical Computation

General Guidelines

Next I will discuss the prospects for expanding the range of physical processes that can be

applied to computation. I will consider some general guidelines, new concepts of general-

purpose computers, and natural computation. But why should we want to expand the concept of

computation?

A powerful feedback loop has amplified the success of digital VLSI technology to the

exclusion of all other computational technologies. The success of digital VLSI encourages and

finances investment in improved tools and technologies, which further promote the success of

digital VLSI. Unfortunately this powerful feedback loop is rapidly becoming a vicious cycle.

We know that there are limits to digital VLSI technology, and, although estimates differ, we will

reach them soon. We have assumed there will always be more bits and more MIPS, but that is

false. Unfortunately, alternative technologies and models of computation remain undeveloped

and largely uninvestigated, because the rapid advance of digital VLSI has surpassed them before

they could be adequately developed. Investigation of alternative computational technologies is

further constrained by the assumption that they must support binary logic, because that is the

only way we know how to compute, or because our investment in this model of computation is

so large. Nevertheless, we must break out of this vicious cycle or we will be technologically

unprepared when digital VLSI finally, and inevitably, reaches its limits.

Therefore, as a means of breaking out of this vicious cycle, I will step back and look at

-11-

computation and computational technologies in the broadest sense. What sorts of physical

processes can we reasonably expect to use for computation? Based on my preceding remarks,

we can see that any mathematical process, that is, any abstract manipulation of abstract objects,

is a potential computation. Of course, not all of these are useful, but mathematical models in

science and engineering offer many possibilities. Aside from de novo applications of

mathematical techniques to practical problems, mathematical models of computation in natural

systems may be applied to our computational needs. Certainly, a computation must be

physically realizable, which means that we need to find at least one physical process for which

the desired computation is a good model. Nevertheless, in principle, any reasonably

controllable, mathematically described, physical process can be used for computation.

Of course, there are practical limitations on the physical processes usable for computation,

but the range of possible computational technologies is much broader than might be suggested by

a narrow definition of computation. Considering some of the requirements for computational

technologies will reveal some of the possibilities as well as the limitations.

One obvious issue is speed. The rate of the physical process may be either too slow or too

fast for a particular computational application. That it might be too slow is obvious, for

conventional computing technology has been driven by speed. Nevertheless, there are many

applications that have limited speed requirements, for example, if they are interacting with an

environment with its own limited rates. Conversely, these applications may benefit from other

characteristics of a slower technology, such as energy efficiency; insensitivity to uncertainty,

error, and damage; and the ability to adapt or repair itself. Another consideration that may

supersede speed is whether the material substrate is suited to the application: Is it organic or

inorganic? Living or nonliving? Chemical, optical, or electrical?

A second requirement is the ability to implement the transducers required for the application.

Although the computation is theoretically independent of its physical embodiment, its inputs and

outputs are not, and some conversions to and from a computational medium may be easier than

others. For example, if the inputs and outputs to a computation are chemical, then chemical or

molecular computation may permit simpler transducers than electronic computation. Also, if the

-12-

system to be controlled is biological, then some form of biological computation may suit it best.

Finally, a physical realization should have the accuracy, stability, controllability, etc.

required for the application. Fortunately, natural computation provides many examples of useful

computations that are accomplished by realizations that are not very accurate, for example,

neuronal signals have at most about one digit of precision. Also, nature shows us how systems

that are subject to many sources of noise and error may be stabilized and thereby accomplish

their purposes.

A key component of the vicious cycle is that we know so much about how to design digital

computers and how to program them. We are naturally reluctant to abandon this investment,

which pays off so well, but so long as we restrict our attention to existing methods, we will be

blind to the opportunities of other technologies. But no one is going to invest much time or

money in technologies that we don’t know how to use. How to break the cycle?

I believe that natural computation provides the best opportunity. Nature provides many

examples of useful computations based on different models from digital logic. When we

understand these processes in computational terms, that is, as abstractions independent of their

physical realizations in nature, we can begin to see how to apply them to our own computational

needs and how to implement them in alternative physical processes. As examples we may take

information processing and control in the brain, and emergent self-organization in animal

societies, both of which have been applied already to a variety of computational problems. (I am

thinking of artificial neural networks, genetic algorithms, ant colony optimization, etc.) But

there is much more that we can learn from these and other natural computation systems, and we

have not made much progress in developing computers better suited to them. More generally we

need to increase our understanding of computation in nature and keep our eyes open for physical

processes with useful mathematical structure. Therefore, one important step toward a more

broadly based computer technology will be a library of well-matched computational methods and

physical realizations.

Computation in nature gives us many examples of the matching of physical processes to the

needs of natural computation, and so we may learn valuable lessons from nature. First, we may

-13-

apply the actual natural processes in our artificial systems, for example using biological neurons

or populations of microorganisms for computation. Second, by understanding the formal

structure of these computational systems in nature, we may realize them in alternative physical

systems with the same abstract structure. For example, neural computation or insect colony-like

self-organization might be realized in an optical system.

General-purpose Computation

An important lesson learned from digital computer technology is the value of programmable

general-purpose computers for prototyping of special-purpose computers as well as for use in

production system. Therefore to make better use of an expanded range of computational

methodologies and technologies, it will useful to have general-purpose computers in which the

computational process is controlled by easily modifiable parameters. That is, we will want

generic computers capable of a wide range of specific computations under the control of an

easily modifiable representation. As has been the case for digital computers, the availability of

such general-purpose computers will accelerate the development and application of new

computational models and technologies.

We must be careful, however, lest we fall into the “Turing Trap,” which is to assume that the

notion of universal computation found in Turing machine theory is the appropriate notion in all

frames of relevance. The criteria of universal computation defined by Turing and his

contemporaries was appropriate for their purposes, that is, studying effective calculability and

derivability in formal mathematics. For them, all that mattered was whether a result was

obtainable in a finite number of atomic operations and using a finite number of discrete units of

space. Two machines, for example a particular Turing machine and a programmed universal

Turing machine, were considered to be of the same power if they computed the same function by

these criteria. Notions of equivalence and reducibility in contemporary complexity theory are

not much different.

It is obvious that there are many important uses of computers, such as real-time control

applications, for which this notion of universality is irrelevant. In such applications, one

computer can be said to emulate another only if it does so at the same speed. In other cases, a

-14-

general-purpose computer may be required to emulate a particular computer with at most a fixed

extra amount of a computational resource, such as storage space. The point is that in the full

range of computer applications, in particular in natural computation, there may be considerably

different criteria of equivalence than computing the same mathematical function. Therefore, in

any particular application area, we must consider in what ways the programmed general-purpose

computer must behave the same as the computer it is emulating, and in what ways it may behave

differently, and by how much. That is, each notion of universality comes with a frame of

relevance, and we must uncover and explicate the frame of relevance appropriate to our

application area.

Fortunately there has been some work in this area. For example, theoretical analysis of

general-purpose analog computation goes back to Claude Shannon (1941), with more recent

work by Pour-El (1974) and Rubel (1981, 1993). In the area of neural networks we have several

theorems based on Sprecher’s (1965) improvement of the Kolmogorov superposition theorem,

which defines one notion of universality for feed-forward neural networks, although perhaps not

a very useful one. Also, I have done some work on general-purpose field computers

(MacLennan 1987, 1990, 1999). In any case, much more work needs to be done, especially

towards articulating the relation between notions of universality and their frames of relevance.

It is worth remarking that these new types of general-purpose computers might not be

programmed with anything that looks like an ordinary program, that is, a textual description of

rules of operation. For example, a guiding image might be used to govern a gradient descent

process (MacLennan 1995, 2004). We are, indeed, quite far from universal Turing machines and

the associated notions of programs and computing, but non-Turing models are often more

relevant in natural computation and other new domains of computation.

Conclusions

The historical roots of Church-Turing computation remind us that the theory exists in a frame

of relevance, which is not well suited to natural computation. Therefore we need to supplement

it with new models based on different assumptions and suited to answering different questions.

Central issues include continuity, indeterminacy, and parallelism. Once we understand

-15-

computation in a broader sense than the Church-Turing model, we begin to see new possibilities

for using natural processes to achieve our computational goals. These possibilities will increase

in importance as we approach the limits of electronic binary logic as a basis for computation.

They will also help us to understand computational processes in nature.

References

Harnad S (1990) The symbol grounding problem. Physica D 42: 335–346

Harnad S (1993) Grounding symbols in the analog world. Think 2: 12–78

MacLennan BJ (1987) Technology-independent design of neurocomputers: The universal field

computer. In: Caudill M & Butler C (eds) Proceedings IEEE First International Conference on

Neural Networks, Vol. 3, IEEE Press, pp 39–49

MacLennan BJ (1990) Field computation: A theoretical framework for massively parallel analog

computation, parts I–IV. Technical report UT-CS-90-100, Department of Computer Science,

University of Tennessee, Knoxville

MacLennan BJ (1993) Grounding analog computers. Think 2: 48–51

MacLennan BJ (1994a) Continuous symbol systems: The logic of connectionism. In: Levine DS

& Aparicio IV M (eds) Neural Networks for Knowledge Representation and Inference,

Lawrence Erlbaum, Hillsdale, pp 83–120

MacLennan BJ (1994b) “Words lie in our way.” Minds and Machines 4: 421–437.

MacLennan BJ (1995) Continuous formal systems: A unifying model in language and cognition.

In: Proceedings of the IEEE Workshop on Architectures for Semiotic Modeling and Situation

Analysis in Large Complex Systems, August 27–29, 1995, Monterey, CA, pp. 161–172

MacLennan BJ (1999) Field computation in natural and artificial intelligence. Information

Sciences 119: 73–89

MacLennan BJ (2003) Transcending Turing computability. Minds and Machines 13: 3–22

MacLennan BJ (2004) Natural computation and non-Turing models of computation. Theoretical

Computer Science 317: 115–145

MacLennan BJ (2005) The nature of computing — Computing in nature. Technical report UT-

-16-

CS-05-565, Department of Computer Science, University of Tennessee, Knoxville

Pour-El MB (1974) Abstract computability and its relation to the general purpose analog

computer (some connections between logic, differential equations and analog computers).

Transactions of the American Mathematical Society 199: 1–29

Rubel LA (1981) A universal differential equation. Bulletin (New Series) of the American

Mathematical Society 4: 345–349

Rubel LA (1993) The extended analog computer. Advances in Applied Mathematics 14: 39–50

Shannon CE (1941) Mathematical theory of the differential analyzer. Journal of Mathematics

and Physics of the Massachusetts Institute Technology 20: 337–354

Sprecher DA (1965) On the structure of continuous functions of several variables. Transactions

of the American Mathematical Society 115: 340–355.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

