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Introduction 
Stephen Turner’s work on practice theory makes important progress toward 

constructing a consistent narrative incorporating contemporary social theory, cognitive 
science, and neuroscience. The purpose in this article is not primarily to criticize this 
work, but rather to build on it by discussing results from related disciplines that may 
further enrich social theory. My article is structured as follows. From evolutionary 
psychology, we know the importance of comparative studies in understanding human 
behavior, and therefore I will argue that social theory can benefit from the study of 
complex adaptive biological systems, such as social insect colonies. Next I will argue that 
practices and other social phenomena can be understood as emergent phenomena in 
complex systems, and therefore that complex systems theory can illuminate the ways in 
which social structures emerge and evolve. In particular it helps us to understand how 
practices can seem like “collective objects” in spite of existing only in individuals. Turner 
has argued for the relevance of connectionist cognitive science to social theory, and I will 
explore some of the consequent implications of connectionism for social theory. From 
there I will turn to cognitive neuroscience, which has much to offer social theory, but I 
will argue that there remains an enormous “explanatory gap” between the information we 
get from brain imaging and our theories of information representation and processing in 
neural networks. Theoretical as well as empirical research will be needed to close this 
gap. Finally, I will discuss some of the ethical implications of our gradually improving 
understanding of evolutionary psychology, neuroscience, and complex adaptive systems 
theory. 

Comparative Studies of Emergent Behavior 
Karl Popper said, “The main task of the theory of human knowledge is to understand 

it as continuous with animal knowledge; and to understand also its discontinuity—if 
any—from animal knowledge” (117). The same statement may be made about social 
theory. While there are many important differences between human social structures and 
processes and those of other animals, there are also many similarities and differences of 
degree, and therefore social theory has much to learn from nonhuman social behavior. In 
many cases the social structures are simpler than those of humans, and it is generally a 
good strategy in science to begin by trying to understand simpler systems. Furthermore, 
comparative studies across species are better able to distinguish between properties that 
are inherent in all social structures and those that are peculiar to humans. 

Evolutionary psychology seeks to understand human psychology in terms of its 
adaptive role in our species’ evolution and by comparison with the evolution of other 
species’ behavior. Fundamentally, it is based on the scientifically manifest observation 
that humans are animals and are therefore evolutionarily adapted to the historical 
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environment in which they evolved. This is the environment of evolutionary adaptedness 
of Homo sapiens, which provides a background and context for understanding the 
phylogenetic basis of human behavior and social structure. Although our understanding is 
subject to the limitations of archeology, it is supplemented by studies of contemporary 
hunter-gatherers and of related nonhuman species. We expect, of course, the psychosocial 
characteristics of other primate species to be relevant to human sociology, but the social 
adaptations of our more distant relatives may reveal deeper structures and processes. 

For example, social insects exhibit complex forms of adaptive collective behavior. 
Indeed it is claimed that an ant colony exhibits intelligent behavior comparable to a 
vertebrate animal (Camazine et al. 245). The colony as a whole can be considered an 
organism in the sense that its parts—the individual ants—exist for the sake of the whole, 
but that the whole provides a context for the behavior of the individuals. Thus the 
behavior of the whole and its parts are defined relative to each other. 

Although the colony as a whole has characteristic forms of behavior (and, indeed, a 
characteristic life cycle, for older colonies behave differently to younger ones; see 
Johnson 81), and collective behavior may be organized by shared physical structures, 
such as nests and pheromone trails, the constituent behaviors themselves are executed by 
individual insects. Of course, in the case of social insects these behaviors are innate, 
whereas most human social practices are learned; therefore we should look more closely 
at this difference. 

An important process in evolution, which is also relevant to social theory, is the 
Baldwin effect, which provides a mechanism for genetic assimilation of acquired 
characteristics (Baldwin; Milner 32; Turner, “Soc. Th. Cog. Neuro.”). Briefly and 
roughly, the process operates as follows. Suppose that there is some learned behavior that 
has selective advantage for a population. Members of that population that have genetic 
characteristics that improve their ability to exhibit that behavior (e.g., to learn it more 
quickly or execute it more skillfully) will have an advantage relative to other members. 
Other things being equal, natural selection will favor these individuals, and therefore the 
population will evolve a genetic predisposition to acquire and exhibit this behavior; 
indeed, the behavior itself may come to be encoded in the genome. Thus there is a 
process by which advantageous learned behaviors may eventually become innate 
behaviors (i.e., instincts). Of course, this is balanced by a loss of behavioral flexibility 
and adaptability, which may be disadvantageous. 

The Baldwin effect is a special case of a process that ethologists call niche 
construction, which is also relevant to social theory. Niche construction refers to a 
feedback process by which a population modifies its environment to its own benefit, but 
then adapts to the modified environment, leading to further modifications, and so forth. 
The result is a complex (and largely unpredictable) coevolution of the population and its 
environment. Human genetic predispositions for complex social organization and certain 
practices, and in particular the genetic basis for language, are likely the result of niche 
construction. Therefore comparative studies of niche construction in many species can 
help us to understand the evolution of the genetic foundations of human social structures. 

A similar process, with a potentially important role in social theory, is epigenesis, 
which refers to modifications of gene expression that are maintained by a kind of “cell 
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memory” over cell divisions; it has the effect of genetic change but without alteration in 
the underlying DNA sequence (Bird). Epigenesis is essential in the development of 
multicellular organisms, for it permits embryonic stem cells to differentiate into a variety 
of cell types. By means of it some organisms adapt their genetic structure, in effect, to 
environmental conditions. Most interestingly there is evidence for transgenerational 
inheritance of some epigenetic states; that is, environmentally conditioned epigenetic 
features can be passed from parents to offspring, but the role of this mechanism in 
evolution is unclear (e.g., Jablonka and Lamb). Some epigenetic changes are a result of 
social interactions, and of course they affect future interactions (e.g., Fox, Hane, and 
Pine). Thus social epigenetics may be an important contributor to future social theory. 

Before leaving the topic of evolutionary psychology, it is important to mention a 
characteristic limitation. Because of its reliance on comparisons with nonhuman species, 
evolutionary psychology most easily addresses externally observable behavior and is less 
suited to addressing subjective experience. Nevertheless, subjective experience is 
fundamental to human social interactions, and so it is important that behavioral 
approaches be supplemented by phenomenological investigation. For corresponding to 
phylogenetic behavioral patterns are archetypal psychological structures coordinating 
perception, affect, motivation, and social interaction (e.g., Jung, Str. & Dyn. 114–138; 
MacLennan; Stevens, Arch.). Thus our goal should be mutually consistent behavioral, 
phenomenological, and neural descriptions of human social processes and structures. 

Complex Adaptive Systems & Emergent Properties 
In Brains/Practices/Relativism Turner explores the shift in social theory from the 

view that practices are collective objects, in some way shared by the members of a 
culture, to the view that “practices, cultures, and so on are ensembles, with no essence, 
whose elements change over time, but that persist or have continuity by virtue of, and 
only by virtue of, the persistence of the elements themselves” (14). 

This perspective raises important issues about the objectivity of collective objects and 
processes, which can be illuminated by the parallel shift from essentialism to population 
thinking that revolutionized evolutionary biology in the century after Darwin (Mayr). The 
essentialist view was that a species corresponds to an eternal essence, which represents 
the ideal type for members of the species, to which particular individuals conform more 
or less perfectly. From this perspective the continuity and objectivity of a species is a 
consequence of the atemporality of its essence, but its evolution is problematic, as is 
speciation (the emergence of new species). 

From the population perspective, however, a species’ genome is a kind of statistical 
average over the genotypes (genetic codes) of all the individuals living at a particular 
time. Therefore, on one hand, since the genome is dependent on individual genotypes, it 
can evolve through the birth and death of individuals in the population, and speciation 
can result when populations divide. On the other hand, the genome has a certain 
objectivity, for it makes scientific sense to talk about the human genome, the rat genome, 
etc. and to make objective statements about them. As a consequence, both the persistence 
and evolution of species are comprehensible. 
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Analogously, the fact that practices are ensembles does not contradict their reality and 
causal efficacy as collective objects.  These parallel shifts from essentialism to population 
thinking might seem to be merely analogous, but the connections go deeper and may 
contribute to the development of social theory (DeVore). 

Complex Adaptive Systems 
In this section I will consider some insights we may obtain from looking at practices 

and other social phenomena as emergent properties of complex systems, such as studied 
in nonhuman social animals and even in some nonliving systems. 

A complex system is composed of a large number of comparatively simple parts 
interacting with each other so that the emergent behavior of the whole is difficult to 
predict from the behavior of the parts. Examples of complex systems include the brain, 
multicellular organisms, social insect colonies, ecosystems, economies, and human 
societies (Anderson, Arrow & Pines; Johnson; Solé & Goodwin). Many complex systems 
are adaptive, in that they respond to their environments and alter their behavior in such a 
way that they can maintain or improve their function, or so that they can “survive” (that 
is, continue to persist as organized systems). 

Complex systems manifest emergent properties, which cannot be explained in terms 
of simple, linear interactions among the system’s components. For example the foraging 
trails constructed by an ant colony and the characteristic nests constructed by particular 
species of wasps or termites are emergent properties of these collectives. Emergent 
properties may be characterized by order parameters, which measure or describe the 
collective behavior or structure of the system. Often these parameters are statistical in 
character, but none-the-less objective. For example, reaction-diffusion equations, which 
describe interactions between microscopic elements, such as cells and diffusible 
molecules, generate patterns similar to animal hair coats and to skin pigmentation 
patterns. Over time these produce macroscopic stripes and spots of predictable 
dimensions, although the specifics of a pattern (e.g., the color of a particular small patch) 
depend on unpredictable microscopic processes (Solé and Goodwin 85–8). 

From the perspective of social theory, it is important that these emergent properties 
and order parameters are objective characteristics of the whole, despite being an effect of 
interactions among the parts, for social phenomena, such as practices, world-views, and 
languages, are similarly objective properties of human populations, despite being 
derivative of individual behavior, learning, and cognition. The order parameters should 
be predictable by social theory, even if the particulars are not. 

One characteristic typical of complex adaptive systems is circular causality, or the 
macro-micro feedback loop (Solé and Goodwin 150), which refers to the fact that the 
large-scale order of the system is created by interaction of its parts, but that the 
interaction of the parts is governed in turn by the large-scale order. For example, the 
collective behavior of the ants in a colony creates pheromone trails to food sources, to 
which individual ants respond, maintaining and adapting the trails, as food sources are 
discovered or exhausted. On the one hand, of course, the higher order structures exist 
only as ongoing macroscale phenomena sustained by the actions of individual ants, but 
on the other they are causally efficacious in that they provide external resistances to 
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which the ants respond. In an important sense, therefore, they are real. Thus it seems that 
studying circular causality, and the relation between the collective and the individual, in 
relatively simple complex adaptive systems (such as social insects, bacteria, and even 
nonliving complex systems) will illuminate the relation of individual people to the 
macroscopic structures, such as practices, that they collective create. 

Coarse Coding 
Coarse coding is a process that occurs in complex information-processing systems 

such as the brain (Rumelhart, McClelland, et al. 91–6; Sanger). It refers to the fact that 
individual neurons might be quite broadly tuned to stimuli (to frequencies of sound, for 
example), but that the collective activity of a large group of neurons can represent a 
stimulus very precisely. That is, the collective response of a population of coarse-coding 
neurons results in a very fine (precise) representation. This seems to be a fundamental 
principle of representation in the nervous system, necessary to get precise behavior from 
neurons, which—from a computational perspective—are very low precision computing 
devices. Of course, there is nothing mysterious about how it works; it is simply statistics 
(the law of large numbers) in action. 

Similar processes occur in the social systems of humans and other animals. For 
example, ants encounter other ants and by an exchange of chemical signals form 
independent estimates of the tasks that need to be done and the number of workers 
assigned to them (Johnson 74). Because each ant’s estimate is based on a very limited 
number of samples, it is quite inaccurate, but all together the workers have an accurate 
estimate, and so as each worker decides individually what task to perform, the overall 
allocation of workers to tasks in the colony is nearly optimal. Similarly in human 
markets, for example, collective knowledge and intelligence may be much greater than 
that of any of its participants. 

More generally, a collection of individuals can collectively (and distributively) 
represent an abstraction more accurately than any of the individuals can on its own. Thus, 
information, skills, practices, etc. may be imperfectly learned and performed by each of 
the members of a human population, but their collective behavior may appear to be an 
ideal shared competence, which the individuals have imperfectly acquired (language is a 
good example). In fact, individual performance is not based on a shared collective object, 
but the collective object is primarily an emergent property of individual performance. 
Nevertheless, by circular causality, the emergent collective object exerts a real causal 
influence on individual behavior. That is, the collective object is simultaneously 
emergent (and in that sense descriptive) and regulating (and in that sense normative). By 
studying these complex, self-organizing processes in simpler cases, such as nonliving 
systems and simple social organisms, we may gain insight into the more complicated 
social structures of human populations. 

Amplification of Random Fluctuations 
Another process that is typical in complex systems, with implications for social 

theory, is amplification of random fluctuations, which results from positive feedback 
within the system. As a consequence, relatively minor fluctuations can direct complex 
systems into divergent evolutionary pathways. Therefore the origins of some features of 
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social systems will be rooted in historical contingency and have no more general 
explanation (cf. Turner, Brains/Prac./Rel. 102–5), although the persistence of these 
features can be explained by identifying the feedback processes. Sometimes this 
amplification is useful (adaptive), for it can break symmetries, or balanced forces, that 
may be blocking further evolution (Buridan’s ass is a proverbial example). On the other 
hand, by stabilizing and overly reinforcing one set of structures and processes, it may 
effectively block access to others that might be preferable. Understanding the feedback 
processes from a complex-systems perspective may reveal means for weakening or 
eliminating them, to permit the formation of new structures, if that is desirable. 

We know from complex systems that there can be “phase changes”: pervasive and 
rapid reorganization of a system resulting from a relatively minor change in conditions, 
either from within the system (e.g., amplification of random fluctuations, “tipping 
points”) or from outside of it (e.g., environmental changes). Therefore, complex systems 
theory can help us to understand the dynamics of social change, especially large-scale, 
rapid reorganizations (e.g., political, conceptual, and scientific revolutions; paradigm 
shifts). 

Blind Variation and Selective Retention 
Amplification of random fluctuations provides a mechanism for divergence that 

presupposes no collective “choice,” “act of commitment, faith, will,” etc. (Turner, 
Brains/Prac./Rel. 102–5). This may be a source of simple diversity or of genuine novelty. 
In a discussion of evolutionary epistemology, Campbell defines evolution in a general 
sense as blind variation and selective retention (Campbell “Bl. Var.” 91–3, “Ev. Epist.” 
56–7). The concept of blind variation, which is not synonymous with random variation, 
is important. It may be defined as variation that is not aimed at some goal, such as fitness, 
selective advantage, or at some idea of progress or optimality. Therefore it includes 
random variation (such as random genetic mutation) as a special case. In a social context 
it includes individual variations resulting from misunderstanding, limitations of learning 
and experience, contextual understanding, the contingencies of an individual’s life, 
mistakes in communication or action, etc. 

In the context of social systems, selective retention refers to any process that tends to 
amplify certain variations and to dampen others. A priori, there is no reason to suppose 
that such amplification will lead to improvements in the system or to “progress,” as 
judged either by members of the population or by those outside of it; negative or neutral 
variations can be amplified as well, depending on the feedback mechanisms. 
Nevertheless, systems that have persisted for a long time often exhibit adaptive selection 
processes, which promote their continued existence (“survival”) as systems. An important 
aspect of social systems is that the feedback processes are not immutable, but can be 
altered intentionally or by blind variation and (higher order) selective retention. In any 
case, the study of complex adaptive systems is relevant to understanding the evolution of 
social systems. 

Self-organizing systems in nature illustrate the positive value of error, uncertainty, 
noise, individual variability, and other sources of blind variation. Ant foraging provides 
an informative example. As foragers wander about they discover food sources, and when 
they return to their nests they lay pheromone trails reflecting the quantity and the quality 
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of the food. Other foragers follow the trail and reinforce it when they return to the nest; 
this is the amplification of random fluctuations, since the initial discovery of food sources 
is largely a matter of chance. Thus the creation of foraging trails is an example of blind 
variation and selective retention. 

If this process worked perfectly, the ants would devote all their foraging to the food 
sources initially discovered and would not discover alternative, possibly superior food 
sources until those found initially were exhausted. Fortunately, the mechanism does not 
operate perfectly; ants sometimes deviate from the path and have to wander around until 
they find it again. In the process they may discover a new food source, and the positive 
feedback processes will cause the emergence of a foraging trail to it. If the new food 
source is superior, the trail will become stronger and capture foraging resources from the 
other trails. Thus the imperfections in the trail-following mechanism cause a certain 
amount of unbiased exploration, which facilitates the reorganization of macroscopic 
structures (the foraging trails) from a less advantageous state to a better one. 

A general characteristic of adaptive self-organizing systems is the productive use of 
error, uncertainty, noise, imprecision, error, variability, and other sources of blind 
variation. This goes against our habits in engineering and many other activities, in which 
we attempt to eliminate or control these unpredictable factors, but we can see that too 
perfect a mechanism can lock a complex system into a local optimum and block further 
adaptation. Indeed, if people were more like computers and could be programmed with 
identical, precise rules and could follow them with precision, human society would be 
much less flexible and adaptable than it is.  Thus variation among individuals in the 
acquisition of practices (Turner, “Pr. Th., Cog. Sci., Eth.”), contributes to the adaptability 
of human societies. 

Blind variation is also applied in connectionist theories of cognition, such as harmony 
theory (Rumelhart, McClelland, et al. ch. 6). The ideas are easiest to understand in the 
context of a simpler process, simulated annealing, which is used to solve optimization 
problems by controlling the degree of blind variation, which is measured by a parameter 
usually called computational temperature, by analogy with thermodynamics, in which 
temperature measures the amount of random motion (Kirkpatrick, Gelatt, and Vecchi). 
Simulated annealing attempts to improve the state of a system, as measured by some 
figure of merit, by exploring the effect of small perturbations of the state. If the 
computational temperature is low, then the potential change of state is accepted if it raises 
the figure of merit and is rejected otherwise. Therefore, at low temperatures, the 
algorithm makes incremental improvements to the system state. We may say it climbs the 
“merit landscape,” but this behavior runs the risk of becoming trapped in a local optimum 
(i.e., stuck on the top of a “hill” that is not the highest hill). At “absolute zero” the 
algorithm is completely deterministic in its hill-climbing behavior. However, higher 
computational temperatures introduce more randomness into its behavior; at higher 
temperatures it will sometimes accept a state change even if it decreases the figure of 
merit. That is, the higher the temperature, the more often locally “bad” decisions will be 
made. This might seem counterproductive, but it provides an escape route from a local 
optimum, for there is a non-zero probability that the state will creep down from its hill 
and find its way to the slope of a higher peak. 
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The key to simulated annealing, from which it gets its name, is to control the 
computational temperature, starting at a comparatively high value and slowly (typically 
in stages) reducing it to zero. Therefore, in the early stages of the processes, the state is 
varied relatively blindly, so that it conducts unbiased sampling of the space of system 
states. As the temperature is decreased, the algorithm begins to prefer state changes that 
increase the merit; the search is biased toward regions where the merit is relatively high, 
although there is still random exploration. In the later stages the search becomes more 
directed, eventually approximating deterministic hill climbing, but by then it is likely to 
be on the slopes of the global optimum. Thus, the decreasing temperature shifts the 
search priority from exploration (gathering information about the state space) to 
exploitation (use of the information).  It can be proved that, in rough terms, simulated 
annealing will almost surely find the global optimum (given a good annealing schedule 
and enough time).  In connectionism similar models are used to account, for example, for 
a neural system’s ability to arrive at a good interpretation of perceptual data subject to 
context, expectations, etc. (Rumelhart, McClelland, et al. chs. 6, 7). 

I am not claiming that something akin to simulated annealing takes place in social 
systems (for which the notion of a figure of merit is problematic, to say the least). 
Nevertheless, simulated annealing is a suggestive metaphor, which illustrates the 
tradeoffs between local changes directed toward some global notion of improvement 
(changes promoting exploitation), and those that are blind to it (promoting exploration), 
and especially the consequences of different degrees of blind variation. The simulated 
annealing process suggests that complex adaptive systems can achieve global optima by 
starting with a high degree of blind variation and gradually shifting to changes that lead 
to global improvement.  

This argument assumes that the “merit landscape” is constant in shape, as is often true 
in optimization problems, but which might not be the case in adaptive social systems. If 
the landscape has changed shape, so that the previous global optimum is no longer the 
highest peak, then it may be worthwhile to repeat the annealing process by increasing the 
computational temperature to destabilize (“melt”) the existing structures and to allow 
new, better ones to emerge. Some adaptive systems can detect that they are no longer in 
an optimal state, due to changed circumstances, and raise the computational temperature 
(the probability of blind variation) in order to allow a new optimal state to emerge. For 
example, some organisms respond to environmental stress by epigenetically increasing 
their genetic variability (e.g., Hernday et al.). The analogies to scientific revolutions and 
other paradigm shifts are obvious, as are those to other kinds of large-scale social 
reorganization, but determining whether the similarities are more than superficial will 
require further investigation. 

Of Ants and Humans 
Humans are not ants, and so one may reasonably doubt that the social organization of 

ants and other simple life forms can tell us much about human society. Therefore it is 
interesting that studies of complex systems have shown that many emergent properties do 
not depend on the specific structure or behavioral sophistication of the agents constituting 
the system (Johnson 98–100). A well-known example is traffic flow, which can be 
described quite accurately without attributing much intelligence to the agents (perhaps 
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that is not surprising) and without detailed information about individual agents’ beliefs, 
desires, goals, plans, histories, knowledge, etc. In effect, all of this detailed information, 
which is so important in our personal and interpersonal lives, is averaged out, and can be 
treated as random noise for the purposes of describing macroscopic properties of traffic 
(random noise which can, for sure, be amplified into macroscopic behavior). Therefore, 
ants, wasps, and other relatively simple organisms are relevant to human social theory, 
especially for comparative purposes. If we observe similar emergent behavior in human 
and insect societies, then that similarity suggests that the behavior does not depend on the 
specifics of individual human behavior, which implies that we may be able to discover 
the causes of some human social structures by studying much simpler complex systems. 

Connectionism 
Turner discusses the importance to social theory of cognitive science, and in 

particular of connectionism, a new approach to artificial intelligence and cognitive 
science based on mathematical models of information processing and learning in the 
brain. So it may be worthwhile to make a few observations about connectionism. 
Traditionally—and by “traditionally” I mean stretching back in Western intellectual 
history at least 2300 years to the time of Aristotle—traditionally, knowledge has been 
understood as a system of language-like propositions, and thinking as a kind of 
calculation directed by language-like rules. The paradigm is formal deductive logic, 
especially as systematized in modern symbolic logic. Traditional Artificial Intelligence 
(AI), often called “symbolic AI” is based on the same assumption, that cognition is a 
matter of symbol manipulation. Unfortunately, by the early 1980s it had become apparent 
that symbolic AI, especially as implemented in the programs called expert systems, could 
not achieve levels of performance comparable to human experts. 

About this time an old idea was resurrected: that intelligent computers could be based 
on the same principles by which the brain operates. This approach is called artificial 
neural networks or connectionism, because the knowledge is implicit in the connections 
between the neurons rather than explicit in language-like structures. Knowledge 
representation is implicit in that each fact is distributed over a large number of 
connections and each connection participates in the representation of a large number of 
facts. Furthermore, while symbolic AI systems are programmed by inputting a set of 
rules or facts expressed in some language, and learning modifies these language-like 
structures, connectionist networks are trained by giving them examples from which they 
generalize. Therefore connectionism is better than symbolic AI at dealing with tacit 
knowledge, which is typically difficult or impossible to put into verbal form. 

An objection frequently made against connectionism, especially in its early days, was 
that many cognitive processes are apparently governed by rules. Language use is the 
classic example, since it appears to be governed by the syntactic rules (grammar) of the 
language. The observation that the grammatical rules of natural languages seem to be 
much too complicated to be learned from the samples to which an infant is exposed (the 
problem of “the poverty of the stimulus”) has led to the conclusion—most commonly 
associated with Chomsky and his followers—that the human brain must contain a 
sophisticated “language module” incorporating innate knowledge of certain universal 
grammar rules common to all natural languages.  
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Like language, many other practices appear to be governed by rules, and if the 
hypothesized rules seem to be more complicated or extensive than could be learned in the 
time available (either explicitly as verbal rules or—more likely—tacitly from the 
background), then we might be led to hypothesize some innate knowledge of the rules. 
(The Baldwin effect could provide a theoretical basis for this innate competence.) 

Connectionism, however, provides an alternative explanation based on a distinction 
between rule-following behavior and rule-like behavior (literally, regular behavior). In 
rule-following behavior, some agent (e.g., a person or a machine) executes a process by 
following rules that are explicitly and literally expressed in some language (natural or 
artificial). This is the idea of an algorithm, which is fundamental to computer science, but 
had its origins in human rule-following: the arithmetical algorithms of hand calculation. 
When consciously executed by humans this is a slow process (because it is fundamentally 
unnatural), but when people get some practice it becomes less conscious and more 
automatic. Nevertheless, it has been argued that rules are still being followed, but they 
have been internalized (“compiled” in computer jargon) and are being executed at a 
deeper level inaccessible to consciousness. 

Connectionist research has shown, however, that an artificial neural network system 
can exhibit rule-like behavior—that is, appear to be following rules—without actually 
doing so. There are no explicit rules in a connectionist network; nevertheless, the 
cumulative effect of the many connections and the individual neural computations can 
exhibit regular behavior that an external observer can describe as following rules (at least 
to a first approximation, and that is important!). The locus classicus is McClelland and 
Rumelhart’s experiment in which a neural net learned to form the past tenses of English 
verbs (McClelland, Rumelhart, et al. ch. 18). Although this was a very simple model, and 
can be criticized on a number of fronts (cognitive science, neuroscience, etc.), it 
nevertheless reveals a different explanation for rule-like behavior. At first the network 
learns each verb as a special case, learning it in effect by rote; with exposure to only a 
few, common verbs, every verb is in effect an irregular verb. After it has been exposed to 
a sufficient number of verbs, however, it apparently learns the rule “add -ed,” since it 
over-generalizes and begins applying this rule to irregular verbs to which it doesn’t apply 
(and which it had previously handled correctly). Of course, the network has not learned 
an explicit rule at all (there is nowhere in a connectionist net to store a rule), but it has 
adjusted its behavior to act as though it were following this rule. Significantly, with 
continued exposure to both regular and irregular verbs, the network learns the past tenses 
of both kinds of verbs correctly (effectively learning the irregular verbs as exceptions to 
the “rule”). Like human English speakers, the net is even able to make good guesses 
about the past tenses of verbs it hasn't learned, thus demonstrating some internalized 
inferred knowledge of the phonetic structure of English. The parallels to human language 
acquisition are, of course, very suggestive (perhaps overly so), but the key point is that a 
connectionist network can behave as though it is obeying rules, and even exceptions to 
the rules. Many other connectionist experiments tell the same tale. 

It is important to understand that a connectionist network is not simply an alternative 
method of getting the same results as following a set of rules, for connectionist systems 
are potentially much more flexible than rule-based systems. This is because the response 
of a connectionist network can be the result of combining many factors, some quite subtle 
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and meaningful only in the context of other factors. Therefore, connectionist models can 
exhibit the flexibility and context sensitivity of response characteristic of humans and 
other animals. Rule-based models, in contrast, are by nature “brittle” (i.e., broken by 
minor exceptions, context dependencies, etc.) and can achieve flexibility only by having 
exceptions to rules (expressed, again, in rules or other language-like structures), 
exceptions to the exceptions, and so forth. Therefore, rule-based attempts to account for 
the flexibility and fluency of human and nonhuman skillful behavior pile epicycles upon 
epicycles, and the resulting models are approximate, complicated, implausible, and 
unnecessarily so, for connectionism explains fluency much more directly. Indeed, our 
experience with rule following by both humans and computers is that it becomes less 
efficient with an increase in the number and complexity of the rules, and therefore it is 
difficult to explain how rule following could produce skillful behavior. 

It is sometimes argued that even if much of our knowledge (especially of skills and 
practices) is not stored in our brains in the form of rules, nevertheless that is our only 
means for expressing knowledge in tangible form, so that it can be a subject for scientific 
discourse. That is, it is claimed that cognition should be described as if it were following 
rules, even if it is not in fact doing so. Aside from arguments based on the necessity of a 
non-verbalizable background and tacit knowledge to provide a context for verbalizable 
knowledge (Polanyi; Searle 172–4; Turner, Brains/Prac./Rel. ch. 1), connectionist 
research also suggests that often rules can, at best, approximate the flexible behavior of 
neural networks. (There are formal, historical, and metaphorical connections to the 
approximation of irrational real numbers by rational numbers.) Therefore, connectionism 
implies that practices cannot in general be captured by explicit rules. 

There is a method for analyzing the matrix of connections between one group of 
connectionist neurons and another; it is called the singular value decomposition of the 
matrix. Without going into details (but see Appendix), I would like to say a few words 
about this analysis, because it illustrates the relation between connectionist information 
processing and rule-directed information processing. Using this method one can extract 
from the interconnection matrix a series of rule-like relationships of decreasing strength 
or importance. Each of these implicit rules looks for a pattern in the input, and to the 
extent it finds it, it generates a characteristic output pattern. If the input matches several 
of these implicit rules, it will generate a composite output, which is equal to the average 
of the outputs of the activated rules, weighted both by how well each rule matches the 
input and by the rule’s inherent strength. Thus, in typical situations, not just one rule is 
selected, but a subtle blending of all the rules, which permits context sensitive and 
flexible rule application.  

Again, I must emphasize that the rules are not literally there, but we can analyze the 
effect of the connection matrix in terms of a weighted blending of these implicit rules. 
Furthermore, a large interconnection matrix, which is what we realistically expect in the 
brain, may require a large number of implicit rules—perhaps many thousands—in order 
to be completely captured. The rules can be listed in order of decreasing strength 
(importance), and if we cut off this list before the end, we will get an approximation of 
the information processing performed by the connection matrix, but some subtlety and 
sensitivity will be lost. This is one way to understand what happens when we try to 
capture expert behavior in a small set of rules: we get a crude approximation. In some 
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cases, a few strong rules will capture most of the behavior of the neural net; in these 
cases, rule-guided information processing will work fairly well. In other cases, however, 
the competent behavior of the neural network will have the effect of the combined actions 
of a large number of weak rules. In these cases, any small number of rules will give 
crude, inflexible behavior compared to that of the neural network. 

The differences between connectionist and rule-directed information processing and 
control are reinforced by the Dreyfus brothers’ research on expert behavior. In brief, they 
found that while novice behavior may be characterized by the mechanical (that is to say, 
mindless) application of context-free rules, as people become more skilled, they abandon 
the strict use of rules and behave in ways that are flexible and sensitive to context. 
Therefore, as expected, while novice behavior can be captured in small sets of rules, the 
skillful behavior of experts can only be approximated by increasingly large sets. Experts 
respond to many subtle factors, which they integrate in a context-sensitive way, to arrive 
at judgments or otherwise to govern their behavior. 

Unfortunately, connectionist research often gives a false impression. Many 
connectionist experiments involve training a simple network to perform some isolated 
cognitive task (e.g., learning past tenses of English verbs). In order to demonstrate that 
nothing has been “preloaded” into the system (in particular, none of the experimenters’ 
knowledge), a simple unstructured net is often used, with unstructured connections and 
random connection strengths. However the human brain is not like this! It has an 
enormous number of modules, each with a highly specific structure, and interconnected 
in very specific ways. Connectionist researchers understand this, but it is difficult to 
model the brain on this level. Nevertheless, connectionist experiments can give the 
impression that connectionists believe that the brain begins as an amorphous, 
unstructured mass of randomly connected neurons, tabula rasa. (As a consequence, 
connectionism is sometimes misunderstood as a modern variant of simple 
associationism.) Rather, the brain has an elaborate species-specific structure, which 
develops in interaction with the environment during an individual’s life (especially 
through young adulthood). Therefore, in bringing neuroscience to bear on social science, 
we must be cognizant of the species-specific brain structures and processes shared by all 
humans. 

Cognitive Neuroscience 
Turner observes that brain-imaging technology provides a new tool for social theory, 

permitting us to see, for example, “what parts of the brain itself are activated in various 
‘moral’ situations, such as the punishment of free-riders” (“Cog. Sci., Soc. Th. & Ethics,” 
see also “Soc. Th. Cog. Neuro.”). These developments are certainly exciting, but I think it 
is important to be modest in our expectations of what we may learn from brain imaging 
studies at this time. The current resolution of fMRI and similar imaging technologies is 
on the order of several square millimeters (“Func. Mag. Res. Img.”), which seems quite 
good, but we must remember that there are at least about 146 000 neurons per square 
millimeter in human cortex (Changeux 51). Therefore each pixel in one of these images 
represents the average activity of at least about 150 thousand neurons, which, by 
comparison, is more than the number of transistors in an early-1980s Intel 80286 
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computer (used in the IBM PC/AT) (“Intel 80286”); that is, each pixel represents the 
average activity of an entire PC. This implies there is a lot going on that we cannot see. 

Furthermore, fMRI measures blood oxygen level, which reflects metabolic activity in 
neurons over a duration of several seconds. Since electrochemical activity in neurons 
takes place on a timescale of milliseconds, the time resolution of fMRI and similar 
imaging techniques is quite coarse. Within the time interval resolvable by the device, 
each of these hundreds of thousands of neurons may have fired hundreds or thousands of 
times; we see the average behavior. Therefore, valuable as these techniques are, they do 
not come close to telling the whole story. 

As further evidence of the importance of sub-millimeter cortical structure, I will 
mention computational maps, which are ubiquitous in the brain and one of the 
fundamental means for neural information representation (Knudsen et al.). In a 
computational map, properties of a stimulus, motor plan, etc., are systematically mapped 
to locations in a patch of cortex. For example, auditory stimuli are systematically 
represented according to pitch; visual stimuli are mapped according to retinal location, 
edge orientation, etc.; and the intended destination of an arm movement may be 
represented in a map corresponding to “reach space.” Some of these computational maps 
are less that a square millimeter in size (Knudsen et al.), and therefore they are below the 
level of fMRI resolution. Computational maps are critical in sensory and motor neural 
systems (Morasso and Sanguineti), on which many practices depend, and so the eventual 
integration of social theory with cognitive neuroscience will depend on an understanding 
of computational maps and other sub-millimeter neural structures. 

Thus, while brain imaging contributes to our understanding of the medium- to large-
scale organization of brain activity over relatively slow timescales, this needs to be 
supplemented by improved understanding of processes taking place in dense networks of 
hundreds of thousands of neurons on millisecond timescales. In addition to invasive 
investigations of neural activity, cognitive neuroscience will depend on a deep theory of 
information representation, processing, and control at the neural level, such as is being 
developed in connectionist neural network theory. Animal studies are crucial to the 
development of this theory. 

Turner points to the relevance of mirror neurons to a neurocognitively grounded 
social theory (“Pr. Then & Now,” “Soc. Th. Cog. Neuro.”). By allowing, in effect, the 
neural activity of one organism to be reflected in the neural activity of another, mirror 
neurons implement a more direct and efficient means of learning and communication 
than do conscious observation and imitation. In particular the mirror neuron system may 
be important in establishing empathy, discerning intentions, and fostering the learning 
and evolution of language (Arbib and Rizzolatti). Thus, beyond ordinary perception, 
mirror neurons provide an additional, and much more subtle and efficient, channel for 
coordinating the behavior of the members of a population (human or nonhuman). 
Therefore the mirror neuron system is an additional mechanism in the emergence of 
macroscopic properties and processes, which establishes a closer link between 
neuroscience and social theory. 
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Ethics and Human Nature 
It remains to say a few words on ethics and, in particular, on relativism. In 

Brains/Practices/Relativism (ch. 4) Turner analyzes the concept of relativism as an 
explanation of observed differences in cultures, mores, worldviews, standpoints, and so 
forth. As an explanation it rests on the premises model, which accounts for these 
differences in terms of deductive conclusions deriving from differing fundamental tacit 
premises, which arise from necessarily non-rational acts of commitment, leaps of faith, 
jumps between worldviews, etc. He argues that the premises model is implausible and 
unnecessary, and that differences arise from historical contingency, for cultural paths 
may diverge due to the amplification of accidental differences or of peculiarities of 
environment, context, individual behavior, learned practices, etc. (see also his “Practice 
Relativism”). 

Similarly, the study of complex adaptive systems shows that such systems may have 
alternative stable states (stabilized by feedback processes) that are equally adaptive. And, 
as we know, radically different cultures can be equally effective in ensuring the survival 
and well-being of their members. Which culture arises in a particular situation may 
depend on historical contingencies, but can also be an effect of amplification of random 
fluctuations with no adaptive significance. This observation may seem to imply some 
form of relativism, but it is important to keep in mind that adaptation to the environment 
is an empirical concept with a basis in evolutionary psychology. The study of complex 
adaptive systems will help us to understand the dynamical relations that promote the 
persistence of social organizations in time. 

Complex systems theory is especially informative in dealing with systems composed 
of simple inanimate elements or of animate agents with simple behavior conditioned by 
their local situations; therefore it might not seem to be useful when the agents are human 
beings. Its applicability lies in the fact the people often respond unconsciously to social 
situations (that is, without conscious, explicit judgment), and that when they do make 
explicit decisions, they are largely based on personal circumstances (local criteria), not 
global (system-wide) conditions (e.g., driving in traffic, making individual economic 
decisions). Therefore, to the extent that people behave unconsciously and locally, 
complex systems theory can account for emergent social structures and processes. 
Conversely, conscious global judgment (that is, explicit decision making informed by 
knowledge of the whole system) can result in distinctively human social behavior. 
Further, since amplification of microdecisions can lead to global phase changes, complex 
systems theory illustrates the importance of explicit ethical theorizing and individual 
ethical choice to the self-organization and evolution of social structures. 

I suppose it will be granted that any practical ethics—by which I mean any ethics that 
will promote the long-term survival and well-being of humankind—must take into 
account the biological nature of Homo sapiens, as revealed by evolutionary psychology 
and neuroscience, and its relation to the rest of the living and nonliving world. This is the 
raw material with which ethics must work. Ethics that ignores human nature is as futile as 
carpentry that ignores the nature of wood. 

In particular, it is important to understand the environment of evolutionary 
adaptedness (EEA) of our species. Evolutionary biologists use this term to refer to the 
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environment in which a species has evolved and to which it has become adapted through 
natural selection. It is by reference to a species’ EEA that we may understand its specific 
adaptations and their functions. Anthony Stevens argues that 99.5% of the evolutionary 
history of modern humans (H. sapiens sapiens) has been spent as hunter-gatherers living 
in small kinship groups, and that this is the explanation for the “cultural universals” 
enumerated by George Murdock, Robin Fox, Donald Brown and others (Stevens, Arch. 
25, Two Mill. 15–19, 64–8). Leaving aside the specifics of these claims, which will stand 
or fall under the investigations of archaeologists, anthropologists, and evolutionary 
psychologists, it is nevertheless true that understanding our EEA will help us understand 
human nature and its adaptive function.  How, then, can we apply some of the insights 
that we can obtain from neuroscience, evolutionary psychology, and complex systems 
theory to our ethical dilemmas? 

Although evolutionary psychology is a young science, it is reasonable to suppose that 
Homo sapiens is adapted to living by hunting and gathering in kinship groups a few 
dozens in size. It is also plausible that many of the “discontents of civilization” and even 
many neuroses have their root in the divergence of civilized life from our environment of 
evolutionary adaptedness (Stevens, Arch. ch. 9, Two Mill. 86). This presents us with a 
dilemma, for we can neither return to this ancient lifestyle (which would require a sort of 
regression to an earlier, less consciously organized social structure), nor can we (yet!) 
alter our genome, which is the foundation on which human nature is built. 

We require a tertium quid, and it can be found in our ability to bring conscious 
understanding to this ethical dilemma (Stevens, Arch. 276–7). Indeed, conscious 
understanding and explicit discourse about our behavior is an aspect of human nature, 
which can follow a self-reinforcing trajectory toward an increasingly conscious and 
reflective awareness of ourselves, now incorporating insights from connectionist 
cognitive science, neuroscience, evolutionary psychology, and complex systems theory. 
In this way we can strive to formulate ethical norms that are compatible with human 
biology, and that promote the well-being of the human organism (including our 
psychological well-being, which also has its biological foundation). 

This widened consciousness is a valuable goal for both the individual and society. 
First, a better understanding of our nature, both phylogenetic and ontogenetic, will 
facilitate our individual well-being. “Know thyself,” as the Delphic maxim urges. The 
solution is to neither repress our biological nature nor to act it out, but to engage in an 
informed, conscious negotiation with it. Second, a society will be better adapted to its 
environment if it strives consciously to organize itself consistently with human (and 
nonhuman) nature. 

The foregoing remarks have treated biological human nature as a given, a necessary 
precondition for any ethics that can be adaptive in the long term. Nevertheless, even 
without germ-line genetic engineering and neurosurgery, human nature can be altered. 
First, we now know that the brain is much more plastic than previously believed, and that 
the environment can have important effects on neural processes not only in early 
childhood, but throughout the human life cycle. Second, epigenetic processes permit the 
expression of genes to be altered by environmental conditions, effectively altering 
genetics without a change in the DNA. Finally, as we have seen, the Baldwin Effect 
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eventually adapts the genome to the niche (e.g., behavioral norms and other social 
structures) that a population has created for itself. 

Yet we must be modest, for there is much that we still do not know, and not base 
radical changes of direction on premature, inadequately tested, and poorly understood 
scientific theories. (Social Darwinism illustrates the dangers.) Furthermore, one of the 
most important lessons of complex systems theory it that it is difficult to predict the 
effects of changes, due to the complexity of the feedback processes and their 
amplification of minor influences. 

Conclusions 
Jung, who was well aware of the instinctual side of humankind; said (Alch. St. 184), 

“Nature must not win the game, but she cannot lose. And whenever the conscious mind 
clings to hard and fast concepts and gets caught in its own rules and regulations—as is 
unavoidable and of the essence of civilized consciousness—nature pops up with her 
inescapable demands.” 

This statement is quite precise. “Nature must not win”; that is, it is imperative that we 
not give in to nature, for that would be a regression to an uncivilized state and in fact a 
unnatural rejection of the human potential for civilization. On the other hand, nature 
“cannot lose”; that is, it is impossible to escape nature because we are part of it and 
constrained by natural law. Further, human nature permits, and even demands, the 
formation of concepts and the conscious formulation of behavioral norms, which are 
fundamental to civilization and have their own self-reinforcing dynamics, but are 
ultimately constrained by biological necessity. 

How can this paradox be resolved? I believe we have to hold the tension of the 
opposites: on one hand, the phylogenetic or species-specific nature of the human mind, 
which defines the raw materials we have to work with, and on the other, our equally 
human ability to consciously and critically understand and govern our perception and 
behavior—in the context of human nature—and thereby to make our individual 
contributions to the evolution of our society. 
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Appendix 
For readers interested in the mathematics of the singular value decomposition (SVD), 

here it is in brief.  Let 

! 

M  be any 

! 

m " n  matrix (e.g., a neural connection matrix in which 
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Mij  is the strength of the connection to neuron 
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j .).  Its SVD is the matrix 
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If a (column) vector of information 

! 

x  (representing a pattern of activities in a set of 
neurons) is fed into this connection matrix, the result will be the matrix product 

! 

y =Mx , 
which represents the pattern of activity that is the output of the connection matrix.  (This 
output is a linear combination of the inputs, and some readers will be aware that most 
neural networks are nonlinear, but the effect of the nonlinearities on the result 

! 

Mx  is 
unimportant for our purposes here.)  Using the SVD, the output can be written in the 
alternative form 

! 

y = s
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" .  This expression can be interpreted in terms of a set 
of 
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r  implicit “soft rules,” with the kth rule looking for pattern 
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pattern 

! 

u
k
.  (Sometimes such a rule is written 
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.)  The inner product (or scalar 

product) 
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T
x  measures the similarity of the input 
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x  to 
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v
k
.  This number weights the 

output pattern 
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k
 so that the more closely the input matches 
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v
k
, the more strongly will 
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u
k
 

be represented in the output.  In addition the kth implicit rule has an inherent strength or 
weight given by its singular value 

! 

s
k
.  This reflects its overall influence (importance) in 

the behavior of the neural connection matrix. 

A matrix representing the connections among thousands of neurons might have 
thousands of nonzero singular values, and so the exact representation of this network 
would require thousands of rules.  (Indeed, since they are “soft rules”—i.e., they admit 
degrees of applicability—they are more expressive than the more familiar “hard rules,” 
which either do or don’t apply; an even larger number of hard rules would be required.)  
We can approximate the matrix with fewer rules by setting some of the singular values to 
zero, in effect eliminating the corresponding rules.  Since we have put the singular values 
in non-increasing order, we can do this optimally by beginning with the smallest singular 
value 

! 

s
r
 (corresponding to the weakest rule).  Next we can eliminate 

! 

s
r"1

, and continue 
until we have reduced the rule set as far as we want.  But each such approximation step 
eliminates some of the flexibility, subtlety, and sensitivity of the original neural network. 


