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1 The New Information Processing Technology

1.1 Introduction

In Tokyo on March 13-14, 1991, MITI sponsored the International Symposium on
New Information Processing Technologies ‘91, or NIPT ‘91. At this symposium the
NIPT Research Committee reported on the results of a two-year preliminary study
for an R&D project to develop the computer-technology foundations of “the infor-
mation network society of the 21st century” (Ishii 1991). This technology comprises:
(1) flexible computing (“intuitive information processing”), (2) adaptive computing,
and (3) massively parallel computing, including optical computers. This article will
attempt: (1) to explain the importance of new information processing technology, (2)
to discuss its potential impact on computing, and (3) to suggest research necessary
to its successful implementation.

1.2 Artificial Intelligence: Old and New

It is now widely acknowledged that traditional Al (artificial intelligence) has failed
to live up to its promises. Although there are many reasons for this, a central one
seems to be the inadequacy of rule-based representations of knowledge. The essence
of the problem can be understood as follows. Anyone who has tried to write a set of
administrative rules or procedures knows that there are always exceptional situations
in which a rule should not be applied. Sometimes one can write additional rules
to handle these exceptions, but then one can usually anticipate exceptions to these
rules, and so forth. One may debate whether or not there can be an end to the
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exceptions to the exceptions to the exceptions..., but it is clear that an attempt
to have a exhaustive set of rules will lead to so many rules that the system will be
unwieldy and unusable. In actual practice, we do not try to write rules that cover
every possible situation. Instead, apparent exceptions to the rules are submitted to
a person or committee, who uses its judgement to decide if the rule is to be applied.
Centuries of experience have shown the wisdom of having rule use tempered by human
judgement.

The difficulty comes with rule-based artificial intelligence systems, since in these
there is no human to whom we can appeal for final judgement. The designer of
such a system is faced with a dilemma: if there are too few rules, then the system’s
behavior will be brittle, that is, minor exceptions or novelties will cause it to fail
catastrophically (i.e., to behave stupidly). On the other hand, if the designer tries
to include rules to cover all the possibilities, then the system will be very slow, since
processing time tends to increase exponentially in the number of rules. Thus we find
artificial intelligence systems that tax the capabilities of our best supercomputers, yet
are still inadequate in many ways.

Growing recognition of the limitations of existing Al technology, and especially of
rule-based knowledge representation, has led to the development of a very different
approach, which we have called “the new AI” (MacLennan 1988). Related terms,
differing in emphasis and focus, are connectionism, artificial neural networks, flexible
information processing, and emergent computation. The new Al is at the heart of
the new information processing technology, but, to see why, it will be necessary to
consider cognition in humans and other animals.

1.3 Human Cognition: Symbolic and Subsymbolic

One clue to the solution to brittleness can be found in the “cognitive inversion” of
the old Al. By this we mean that the old Al did best what people do poorly, and did
poorly those things that people, and even lower animals, do well. For example, some
of the first successes in Al were with activities such as proving theorems in symbolic
logic, playing games such as checkers and chess, and analyzing blood. These are all
specialized skills that comparatively few people acquire. On the other hand, skills
common to almost all people, such as the ability to recognize a familiar face, or to
understand spoken or written language, or to find one’s way through a forest, still
defeat our most powerful computers. To cite a clear example, our most powerful
supercomputers are insufficient to give an autonomous vehicle the same competence
in finding its way through the natural environment as is exhibited by a mouse.

The lesson to be learned from this cognitive inversion is that brains process in-
formation in a very different way from conventional computers. Further evidence is
provided by the “100 Step Rule”: If we divide the time it takes a person to perform
a simple perceptual task, such as recognizing a familiar face, by the response time
of a neuron, we find that there can be at most about 100 sequential steps between



the stimulus and the response. A conventional computer cannot do much in 100
steps, certainly not something as complicated as recognizing a face. One reason that
brains are able to accomplish this is that they use massive parallelism, but on a scale
well beyond the capabilities of current supercomputers. For example, even in the first
stage of visual processing we have approximately 100 million receptor cells driving one
million ganglion cells, each of which is an independent, but slow-speed, low-precision
analog processor.

The source of the cognitive inversion can be understood in terms of the distinction
between symbolic and subsymbolic cognition (Smolensky 1988). Symbolic cognition
includes most of the faculties we think of as uniquely human, including language use,
explicit reasoning and formal symbol manipulation (e.g., arithmetic, algebra). In
contrast, the other animals share our subsymbolic cognitive capacities, which include
perception, sensory-motor coordination, pattern recognition, and associative memory.

Since conventional computers are in effect programmable discrete symbol manip-
ulators, they are well suited to the implementation of cognitive processes that are
completely formal and require great precision. On the other hand, such a computer
must implement subsymbolic cognition in terms of the symbolic operations it pro-
vides. Thus, on conventional computers subsymbolic processes are relatively less
efficient than symbolic processes. To understand the effect of this, imagine that we
had to calculate by hand the procedures required to drive an automobile, that is, the
exact trajectories of our hands, feet, etc. in response to incoming sights and sounds.
Given the thousands or millions of calculations required and the very slow rate at
which we do arithmetic by hand, we would never be able to drive at all. This is the
reason for the cognitive inversion of the old Al.

On the other hand, brains are composed of very large numbers of relatively slow,
low precision, simple analog processors. These are well-suited to subsymbolic cogni-
tion, such as perception, recognition, coordination, association, and pattern matching,
but poorly suited to symbolic processes, such as formal logic and mathematics. It
takes practice and effort to get our flexible, subsymbolic brains to emulate rigid, sym-
bolic machines. Almost anyone can walk, tie a shoe or recognize a face; comparatively
few can prove a theorem in mathematics.

One might conclude from the foregoing that although brain-style computers (neu-
rocomputers) might be more suitable for subsymbolic processing, the conventional
digital computer is still preferable for symbolic processing. However, such a con-
clusion ignores the issue of flexible rule use. We saw before that the old Al was
limited by the necessity of rules to cover all contingencies, but that human rule use
was always against a background of non-rule-based judgement. Now we can see why.
Human symbolic processing avoids brittleness by partaking of the flexibility of the
underlying subsymbolic processes in terms of which it is implemented.

These considerations have led the NIPT Research Committee and others to con-
clude that 21st century society will need a new, flexible information processing tech-
nology, and that this technology will require a new kind of computer, the neurocom-



puter, to complement the familiar digital computer.

2 Research Issues

The successful implementation of the new information processing technology requires
basic research in three areas, which may be loosely termed hardware, software and
theory. We consider briefly some key problems.

2.1 Hardware

Achieving the goals of the new information processing technology will require a new
kind of computer, with principles of operation more like those of the brain. Thus,
instead of a comparatively small number of fast, high precision processors, future
neurocomputers will make use of a very large number of possibly slow, low precision
processors. For example, neurons take approximately 10 msec. to fire, and are es-
timated to perform analog computations with about one digit of precision. On the
other hand, even an animal as simple as a bee has about a million neurons in its
brain, and the human brain is estimated to comprise at least a billion neurons. It is
not unreasonable to suppose that if we want our neurocomputers to behave at least
as intelligently as bees, then they will have to be capable of implementing neural
networks of comparable size. Thus, the hardware goal for the new information pro-
cessing technology should be to implement between a million and a billion neurons
with at least the speed and precision of biological neurons.

2.2 Software

Unfortunately, merely having a million-processor neurocomputer will not be suffi-
cient to implement the new information processing technology. It is also necessary to
understand how information may be represented and processed flexibly. The repre-
sentation and processing of information is essentially a problem of software. Judging
from the number of applications of neural networks now in progress, one might as-
sume that we have a basic understanding of neural information processing, but this
is not the case. A few examples will illustrate the extent of our ignorance.

First, we do not understand how the brain learns. The learning algorithm most
commonly used in neural net applications (back-propagation) is almost surely not the
algorithm the brain uses, and that is good, because back-propagation is very slow. The
slight information we do have about learning in the brain indicates that it uses a rule
(Hebb’s Rule) that is generally considered too weak for most practical applications.
So it seems the brain is using an algorithm that neural network researchers have
abandoned as nearly useless. If this is the case, then we need to find out how the
brain is able to do this, so that our neurocomputers can learn more quickly.



Second, we know very little about how the brain processes symbolic information,
such as language and logic. As discussed above, the flexibility of human symbolic
processing derives from the flexibility of the underlying subsymbolic processes. Yet
we know little about how the symbolic computation can be built upon subsymbolic
processes, which will limit our ability to implement symbolic processing and the higher
cognitive processes in the new information processing technology. Thus we will not
have true flexible information processing.

Finally, even our understanding of neurons is not as complete as one would sup-
pose from the neural network literature. For example, the model of neurons that is
almost universally used treats the dendrites like simple input wires. There is evidence,
however, that the dendritic net may be the site of most of the brain’s information
processing (Shepherd 1978). Furthermore, most neural net models treat neurons as
though they change state discretely, whereas it is possible that the interference of con-
tinuously varying electrochemical waves is essential to the brain’s pattern recognition
capabilities (Pribram 1991). Crick and Asanuma (1986) have noted other important
differences between neurons in the brain and in our models.

The preceding examples show that there are large gaps in our understanding of
the brain, which may limit our ability to develop the new information processing
technology. It is certainly premature to assume that we know all that is necessary
to implement flexible information processing. We conclude that continuing basic
research in cognitive psychology and neuroscience should be an essential part of the

NIPT project.

2.3 Theory

The new information processing technology will require a sufficiently theoretical un-
derstanding of the brain so that we will know how to abstract away from the details
of neurobiology and be able to implement brain-style flexible information processing
in other media. Such a theory should provide a theoretical framework in which to
understand the emergence of high level structures from low level interactions, and
the control of these interactions by those structures. This theory will constrain and
guide research in both the hardware and software areas. In hardware it will show us
the kinds of low level functions that need to be implemented to permit higher order
structures. In software it will help us understand the information representations
that will permit flexible, efficient processing.

3 Emergent Computation Research Laboratory

Research into the foundations of flexible information processing is the principal goal
of the Emergent Computation Research Laboratory currently being set up at the Uni-
versity of Tennessee, Knoxville. This research is divided into three areas: (1) theory of



emergent computation, (2) information representation and processing (i.e., software),
and (3) implementation (i.e., hardware).

The term emergent computation has been used for the study of how high-level rep-
resentation and processing of information can emerge from the interactions of large
numbers of simple processes (Forrest 1990). We believe that a deeper understanding
of emergent computation will be necessary for the full exploitation of the new in-
formation processing technology, and so we have been investigating several different
aspects of emergent computation, including field computation, continuous simulated
annealing, continuous spatial automata, and the evolution of communication in popu-
lations of simple machines (MacLennan 1987, 1989, 1990b, 1992). We are continuing
these investigations, and intend to pursue other models from nature that will increase
our understanding of emergent computation.

We have been investigating information representation and processing at both
the subsymbolic and symbolic levels, and have concluded that there is a need for a
fundamentally new framework for understanding the representation and processing of
symbolic information. Although we have some preliminary results (MaclLennan 1991a,
1991¢), much work remains to be done. We are also investigating the representation
and processing of subsymbolic information, including perceptual and motor images
(MacLennan 1991b).

Effective neurocomputation presumes a very large number of processors; we have
set a million to a billion as our goal. We do not expect traditional analog VLSI
to be able to provide the necessary densities for quite some time, so we have con-
centrated on optical, opto-electronic, and opto-molecular processes. These are made
more attractive by the fact that field computers (MacLennan 1987, 1989, 1990a) do
not require regular arrays of processors, which should simplify fabrication.

4 Conclusions

Achieving the goals of the “information network society of the 21st century” will in-
deed require a “new information processing technology.” However, developing such a
technology will depend on continuing basic research in a number of areas, including
cognitive science, neurophysiology, epistemology and the theory of emergent compu-
tation. Further, research should be directed to the implementation of a neurocom-
puter with a million to a billion slow-speed, low-precision analog processors. We
are optimistic that work in this area will lead to a revolution in flexible information
processing.
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