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Abstract

This report comprises the first four parts of a systematic presentation of
field computation, a theoretical framework for understanding and designing
massively parallel analog computers. This theory treats computation as the
continuous transformation of fields: continuous ensembles of continuous-valued
data. This theory is technology-independent in that it can be realized through
optical and molecular processes, as well as through large neural networks.

Part I is an overview of the goals and assumptions of field computation.
Part II presents relevant ideas and results from functional analysis, including
theorems concerning the field-computation of linear and multilinear operators.
Part III is devoted to examples of the field computation of a number of use-
ful linear and multilinear operators, including integrals, derivatives, Fourier
transforms, convolutions and correlations. Part IV discusses the field computa-
tion of nonlinear operators, including: a theoretical basis for universal (general
purpose) field computers, ways of replacing field polynomials by sigmoid trans-
formations, and ways of avoiding higher-dimensional fields (since they may be
difficult to represent in physical media).
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Part I
Field Computation

1 Introduction

1.1 Truly Massive Parallelism

AT is moving into a new phase characterized by a broadened understanding of the
nature of knowledge, and by the use of new computational paradigms.® A sign of this
transition is the growing interest in neurocomputers, optical computers, molecular
computers and other massively parallel analog computers. We have argued elsewhere
[5, 6, 7, 8] that the new Al will augment the traditional deep, narrow computation
with shallow, wide computation. That is, the new Al will exploit massive parallelism,
but this means different things to different people; massive parallelism may begin
with a hundred, a thousand, or a million processors. Biological evidence suggests
that skillful behavior requires a very large number of processors, so many in fact
that it is infeasible to treat them individually; they must be treated en masse. This
has motivated us to propose [5] the following definition of massive parallelism: A
computational system is massively parallel if the number of processing elements
is so large that it may conveniently be considered a continuous quantity. That is, a
system is massively parallel if the processing elements can be considered a continuous
mass rather than a discrete ensemble [9].

How large a number is large enough to be considered a continuous quantity? That
depends on the purpose at hand. A hundred is probably never large enough; a million
is probably always large enough; a thousand or ten thousand may be enough. One
of the determining factors will be whether the number is large enough to permit the
application of continuous mathematics (see below).

We propose this definition of massive parallelism for a number of reasons. First,
skillful behavior seems to require significant neural mass.> Second, we are interested in
computers, such as optical computers and molecular computers, for which the number
of processing elements is effectively continuous. Third, continuous mathematics is
generally easier than discrete mathematics. And fourth, we want to encourage a new
style of thinking about parallelism. Currently, we try to apply to parallel machines
the thought habits we have acquired from thinking about sequential machines. This
strategy works fairly well when the degree of parallelism is low, but it will not scale
up. One cannot think individually about the 10?° processors of a molecular computer.
Rather than postpone the inevitable, we think that it is time to develop a theoretical

!Research reported herein has been supported in part by Faculty Research Awards (1988, 1989)
from the University of Tennessee, Knoxville, and in part by the Mathematical Sciences Section of
Oak Ridge National Laboratory.

2Even a bee has some 10° neurons [2, p. 33].



framework for understanding massively parallel analog computers. The principal goal
of this paper is to outline such a theory.

1.2 Field Transformation

Our aim then is to develop a way of looking at massive parallelism that encompasses a
variety of implementation technologies, including neural networks, optical computers,
molecular computers and other massively parallel analog computers. What these all
have in common is the ability to process in parallel amounts of data so massive as
to be considered a continuous quantity. This suggests that we structure our theory
around the idea of a field, i.e. a continuous (dense) ensemble of data. We have in
mind both scalar fields (such as potential fields) and vector fields (such as gradient
fields). Any operation on such a field, either to produce another field or to produce
a new state of the field, can be considered massively parallel, if it operates on all
the elements of the field in parallel. Indeed, it would not be feasible to serialize the
processing of the field; modest degrees of parallelism cannot cope with an infinite (or
nearly infinite) number of field elements.

In the remainder of this paper we explore field transformation computers, that
is, computers characterized by the ability to perform (in parallel) transformations
on scalar and vector fields. This does not mean that field computers are unable to
perform scalar calculations; in fact many field transformation computers have the
scalar capabilities of conventional digital and analog computers. Scalars have many
uses in field computation. For example, we may want to use a scalar parameter to
control the rate at which a field transformation takes place (e.g., a reaction rate in a
molecular computer). Similarly, we may use a scalar representing the average intensity
of a field to control the contrast enhancement of that field. A scalar threshold value
may be used to suppress low level noise, and so forth.

It must be stressed that there are many field computers already in existence, for
example, large neurocomputers and many optical computers. What we are proposing
is:

1. a name for the class of such computers
2. a theoretical framework for understanding massively parallel analog computers

3. a basis for constructing general purpose computers of this type.

1.3 Classes of Field Transformations

Field transformations, like filters, can be divided into two classes: nonrecursive and
recursive. A nonrecursive transformation is simply a functional composition of more
elementary transformations. The output of a nonrecursive transformation depends
only on its input. A recursive transformation involves some kind of feedback. Hence,



its output depends both on its input and on its prior state. Recursive transformations
are ideal for simulating the temporal behavior of physical systems, as in simulated
annealing, genetic algorithms and Boltzmann machines [9].

1.4 General Purpose Field Computers

Field computers in the past have been designed for special purposes, and we expect
it to be the case in the future. In these computers, devices implementing field trans-
formations (such as filters and convolutions) are assembled to solve a small class of
problems (e.g., edge detection). On the other hand, our experience with digital com-
putation has shown the value of general purpose or programmable computers. This
architectural feature permits one computer to perform a variety of digital computa-
tions, which often eliminates the need to construct special purpose devices, and often
speeds implementation of digital algorithms.

The foregoing observations suggest that general purpose field computers will be
similarly valuable. In these the connections between field transformation units and
field storage units are programmable, thus facilitating their reconnection for a variety
of purposes. In fact, we may want to make better use of our resources by multiplexing
the use of field transformation units under the control of a program. Thus, a program
for a general purpose field computer might look very much like a conventional pro-
gram, except that the basic operations are field transformations rather than scalar
arithmetic.

We cannot build into a general purpose field computer every transformation we
might need. Instead we must choose a set of primitive operations that permit the
programming of most others. How can such a set of primitive operations be chosen?
How can we be guaranteed that we have provided all the necessary facilities, at least
for a given class of problems? For digital computers this question is answered in
part by computability theory. For example, this theory shows us how to construct
a universal Turing machine, which, given an appropriate program, can emulate any
Turing machine. Although the universal Turing machine is hardly a practical general
purpose computer, consideration of it and other universal machines shows us the kinds
of facilities a computer must have in order to be universal. There follows the hard
engineering job of going from the theoretically sufficient architecture to the practically
necessary architecture.

Can the same be accomplished for field computers? Is there a universal field
computer that can emulate any field computer? If there is such a thing, then we can
expect that it may form a basis for practical general purpose field computers in much
the same way that Turing machines do for digital computers. Fortunately there is
a set of primitive operations that can implement any field transformation in a very
wide class. We briefly discuss the results below; the details can be found in Section

9.



1.5 TUniversal Machines and Finite Resources

Later (Section 9), we show that with a certain set of built-in field transformations we
can implement (within a stated limit) any field transformation in a very wide class.
This is analogous to the result from Turing machine theory: The universal Turing
machine allows us to implement (within a stated limit) any function in a wide class
(now known as the Turing computable functions).

The phrase ‘within a stated limit’ appears in both of the preceding statements.
What does it mean? For the Turing machine it means that a stated limit (e.g., pre-
cision or range of argument) can be achieved by providing a long enough tape. For
the digital computer it means that computations are normally performed to a given
precision (e.g., the word length), and that finite increments in the desired precision
require finite increments in the resources required (e.g., additional registers and mem-
ory cells for double and multiple precision results, or stack space for recursion). The
case is much the same for the universal field computer. Finite increments in the de-
sired accuracy of a field transformation will require finite increments in the resources
used (such as field transformation and storage units).

There are a number of theoretical bases for a universal field computer. We have
investigated designs based on Fourier analysis, interpolation theory and Taylor’s the-
orem, all generalized for field transformations [5, 6]. In this paper we present the
basis for a design based on Taylor’s theorem as well as a design based on a functional
analog of polynomial approximation. There are no doubt as many principles upon
which universal field computers can be based as there are bases for universal digital
computers. Engineering considerations must determine which of these models can
form a feasible basis for practical general purpose field computers.

2 Assumptions

2.1 Fields
2.1.1 Assumed Properties of Fields

Physical Realizability By physical realizability we mean that all fields must ulti-
mately be represented in some physical medium (e.g., electrical potential, light inten-
sity, chemical concentration). This places certain constraints on the fields with which
we must deal. For example, fields must occupy a finite amount of space, otherwise
they will not fit in our field computers. Second, the dynamic range of the fields’ val-
ues are limited; concentrations, intensities, and so forth cannot be arbitrarily large.
Third, a field’s values vary continuously with their location in the field. Physical
media will not support an infinite gradient, that is, a discontinuous change in value.

As we will see, these physical constraints translate into mathematical properties
that helpfully limit the class of fields with with we must deal. On the other hand,
the analysis is sometimes simplified by assuming the existence of unrealizable fields



(e.g., Dirac deltas). In these cases we must be careful that the results of such analysis
apply to realizable fields (see Sections 6.2.4 and 6.2.6 for examples).

Fields are Functions We treat fields as functions ¢ from a domain € to a range
K, that is, ¢ : @ — K. Thus, at each point ¢t € Q the field ¢ has a value ¢(t) € K,
which we will often write ¢;. The domain € is a metric space. The range K is a
subset of an algebraic field. In this paper it will always be some closed interval of
the real numbers, although fields whose values are bounded subsets of the complex
numbers might be useful in some applications.

In the remainder of this section we discuss constraints on the allowable domains
, on the ranges K, and on the functions ¢ : @ — K. Our goal will be to define
O (Q), the space of all K-valued fields over a domain Q.

Fields Belong to Linear Spaces Fields belong to linear spaces, which means that
we can define an addition ¢ + % and scalar multiplication a¢ on them that satisfy the
usual properties:

L (¢+¢)+x =0+ +x)

2. $+0 =0+ ¢ = ¢, for some 0 in the space

3. There is a —¢ such that ¢+ —p= —p+ 6 =0
L o+v=v¢+9

5. a(p+ ) = adp+ ay

6. (ab)p = a(bs)

7. (a+b)p = ad + bo

8. 1¢ = ¢, where 1 is the unity element of K.

These properties are satisfied by obvious definition of the operations:

(p+) = &+ Uy
(ad)r = a(¢r)
Notice, however, that a space of fields ®(2) cannot be closed under these opera-

tions, since that would violate our physical realizability constraints (specifically, that
dynamic range be bounded).

3We suppress K when it is clear from context, and write ®(2).



2.1.2 Domains and Ranges

Field Domains are Measure Spaces The domain ) over which a field is defined
is assumed to be a measure space. In most cases the domain will in fact be some
closed and bounded subset of a Euclidean space F,. For example, it might be a
finite line segment to represent the frequency of a sound, or a closed disk to represent
the light intensity over a retina. Why then have we gone to the extra generality of
measure spaces?

There are two reasons. The first is that by keeping the theory general, we ensure
that it applies to a wide variety of fields. At this stage it is difficult to anticipate the
“shapes” we may need for our fields.

The second reason is that a finite set (when provided with a “weight” function)
is a measure space. Thus, although it is our goal to encourage thinking of fields as
continuously varying structures, most of the theory in fact applies to fields composed
of discrete elements (such as pixel arrays and neural networks).

For our purposes, one of the most important properties of measure spaces is that
we can define integration operations over them. For example, if ¢ : @ — K, then we
can define the (Lebesgue) integral [ ¢:du(t). Here p is the measure of the measure
space. Since it i1s usually clear from context, we will write integrals more simply:
Jo &:dt.  Also, note that for finite {2 and equal weighting, integration reduces to

[ ot =5 (1)

teQ

summation:

The Domain of a Measure Space is Bounded As discussed in Section 2.1.1
we require that fields occupy a finite amount of space. How can this be expressed
mathematically? We simply require that the “area” (volume, length) of the space be
bounded, by stating:

/Qldt < 00 (2)

Later (Section 4.1) we will see that this can be expressed in the more compact form
|1|| < co. For convenience we define the “size” of the space Q by:

Q ——/ 1dt 3
Hence we require that || < co.

The Range of a Field is Bounded We assume that every field ¢ :  — K has a
bound [, such that |¢:| < 3, for all ¢ € Q. Furthermore, as mentioned above (Section
2.1.1), we require that a space of fields have limited dynamic range. Thus, for each

space P (Q) there is a 8 such that 3, < 3 for all ¢ € ®(Q). Such a 3 is given by

B = supger 2] < oc.

10



2.1.3 Bounded Gradient

Fields are Continuous As discussed under Physical Realizability (Section 2.1.1)
we assume that all fields are continuous. That is, for all ¢,#" € @ and every ¢ > 0

there is a § > 0 such that |¢; — ¢u| < € whenever d(¢,t') < . Here d(¢,t') is the
distance between the points ¢ and t' (recall, Section 2.1.1, that © is a metric space).

Uniform Continuity As discussed in Section 2.1.1 we assume that there is a max-
imum gradient that physical fields can sustain. This implies, first of all, that fields
are uniformly continuous, which means that for all ¢ > 0 there is a § such that
|+ — ¢u| < € whenever d(t,t') < §. That is, for any change § in the field’s domain,
there is a maximum amount e that the field’s value can change.

Lipschitz Condition In fact, most fields satisfy a stronger condition than uniform
continuity. Specifically, there is a bounded ratio of the change of the field’s value to
a change in position in the field:

[pr — ¢
W <~ (4)

This means that such fields satisfy a Lipschitz condition (of order 1).

Fields are Band Limited It is generally reasonable to assume that fields are
band limited, that is that they have a frequency limit beyond which there is no
information. Higher frequency variation is either physically impossible, or represents
noise that should be ignored. This means that field transformations may be assumed
to have a low-pass filter on their inputs that does not affect their operation. This has
important consequences for the theoretical development (Section 5.5.2).

2.2 Field Transformations

Continuity The noise that accompanies physical processes will cause slight varia-
tions in the inputs to field transformations. It is undesirable if this noise has a major
effect on the output of the transformation. Therefore, we require that field transfor-
mations be continuous; this will ensure that small changes in the input will cause at
most small changes in the output.

Using the norm that will be defined in Section 4.1, the continuity of field trans-
formations can be expressed:

lim |6, — ¢l = 0 implies lim [[7(6,) ~ T(¢)] = 0 (5)

We can generally make the stronger assumption of uniform continuity: for every € > 0
there is a & > 0 such that ||T(¢) — T'(¢)|| < € whenever ||¢ — || < d. In effect, we are
assuming that a field transformation is “uniformly insensitive” to a given quantity of
noise, no matter what the input field.

11



Input Filters As noted above (Section 2.1.3), noise often manifests itself as high
frequency variation in the field. Therefore, to decrease the effects of noise, field
transformation units will often be constructed with a low-pass filter on their input.
In other cases, the implementation will naturally suppress high frequencies, and thus
behave as though the input is filtered. The foregoing permits us to assume the
presence of low pass input filters on field transformations when this simplifies the
mathematical analysis (see for example Sections 4.7.2 and 4.7.3).

3 Summary

Since fields have bounded domain (Section 2.1.2) and range (Section 2.1.2), the inte-
gral [, ¢,°dt exists:

[ otar <2 [ 1de < pile] (6)

We will see below (Section 4.1) that this is equivalent to saying that all fields have
finite norms.

Since fields are also continuous (Section 2.1.3), we know that fields over Q belong
to the function space Ly(€2). This is very important, because Ly function spaces
are Hilbert spaces, which means that a large body of powerful mathematics can be
brought to bear on the problems of field computation (see also Section 4.2).

We cannot conclude, however, that ®(2) = L3(f2), since L3(€) contains many
functions that do not satisfy our other constraints (e.g., Sections 2.1.2 and 2.1.3). In
most cases these additional constraints will help us. Nevertheless, we must be careful
that in applying properties of L, spaces we do not violate these other constraints.

12



Part 11
Functional Analysis Preliminaries

In Part II we present those concepts from functional analysis that are required to
understand the theory of field computation.

4 Hilbert Spaces

4.1 Definitions

Inner Product For fields ¢,¢» € ®(Q) we define the inner product in the usual
way':

o= /ﬂﬁbtlbtdt (7)

This operation satisfies the properties of a (real) inner product:

1) ¢-¢ >0, with ¢-¢ =0 if and only if ¢ = 0. Here and elsewhere O represents
the zero field, 0, = 0.

2) 61 =1- o

3) (ap+ b)) - x = a(p-x) + by - x).

From this it follows that inner products are bilinear (linear in both of their argu-
ments).

Orthogonality The orthogonality of two fields is defined, in the usual way, in terms
of the inner product: ¢ is orthogonal to v if and only if ¢ - = 0.

Norm of Field The norm of a field is a measure of its size. As usual, we use the
inner product norm:

16" =¢-¢ (8)
This is the usual norm for Ly function spaces (Section 3).* Note that since fields have
bounded domain and range (Section 2.1.2), we know that ||¢|| < 34Q|'/? (see Section
3). That is, all fields are finite in size. As noted before (Section 3), this means that
fields belong to Hilbert spaces (Section 4.2).

4.2 Fields Belong to Hilbert Spaces

A Hilbert space is an inner product space that has the additional property of being
complete with respect to the inner product norm (Section 4.1). That is, if ¢1, o, ...
is a sequence of functions, then ||¢,, — ¢,|| — 0 implies that the limit lim ¢,, exists.

4Although it is not the only norm upon which a theory of field computation can be based. In [5, 6]
we used the L; norm. There seems to be little practical difference, but the L, is mathematically
more convenient.

13



The set of continuous real-valued fields satisfying ||¢|| < oo is not complete as
it stands. But it can be completed in a well-known way to yield the function space
Ly(€Q). We will have to be careful though, since some of the fields created by this
completion process are not physically realizable (Section 2.1.1).

A Hilbert space is a special kind of Banach space (a complete normed linear space).
This fact will be used when we define derivatives of field transformations (Section 5.1).

4.3 Orthonormal Bases

A unit field e € () is a field whose norm is 1, |le|| = 1.

A sequence eg, €1, €3,... of unit fields is called orthonormal if its elements are
mutually orthogonal: €;-€; = 0 for i # j. Of course, €;-¢; = ||&;]|* = 1. Any sequence
of mutually orthogonal fields x1, x4, ... can be normalized by e; = z;/||z||.

An orthonormal sequence is complete if there is no nonzero field that is orthogonal
to every element of the sequence. That is, if ¢ # 0, then there is an e such that

An orthonormal (ON) basis is a complete ON sequence.

The function space Ly(€2), which includes all the fields over ©, has a number of
well-known orthonormal bases. For example, over the reals we have the trigonometric
basis:

(eo)e = 1/V2m (9)
(er): = cost//m k>0 (10)
(e_x): = sint/\/m, —k <0 (11)

and various systems of orthonormal polynomials.

Therefore, we will generally assume that spaces of fields have ON bases; we will
generally not have to specify the basis that we are using however.

We will sometimes refer to basis elements as being higher order or lower order.
This refers to their location in the sequence eg, e;,... Of course this ordering is
somewhat arbitrary, and may be changed without affecting the sequence’s status
as an ON basis. Nevertheless, there is usually a natural order, such as increasing
frequency for the trigonometric basis, and increasing degree for polynomial bases.

4.4 Generalized Fourier Series

Define ¢, = ¢ - e; the real numbers cg,¢p,... are called the generalized Fourier
coefficients of ¢ (with respect to the basis eg,e,...). It can be shown that every
¢ € Ly(Q) can be expanded in a Fourier series:

¢ = g:(qé-ek)ek (12)

14



Other useful properties are Parseval’s equality:

161" = >_(¢ - ex)’ (13)

k

and the Parseval relation:

¢-1p = Xk:(sb ex) (Y- er) (14)

4.5 Definition of General Field Product

It is useful to define a generalization of the inner product that is continuous-dimensional
analogue of products between vectors and matrices. The reason is that these products
seem to be the kind of operations that we can expect general purpose field comput-
ers to compute. For example, it is well known that linear neural networks compute
vector-matrix products ([15], Chapter 9; see also [11]); similarly, these operations
correspond to some optical phenomena (see for example [3]). These considerations,
together with the theoretical developments described later, lead us to base general
purpose field computation on these general field products.®

If ¢ € D(Q) and ¥ € &(Q; x ), then the product U € &(€,) is defined:
(W), = /Q U, ot (15)
If we let W, be the field (¥,); = U,,, then the product can be defined:
(Vo) =V, - ¢ (16)
If ¢ € () and ¥ € ®(Q x ), then the product ¢¥ € &(€,) is defined:
(W), = /Q Wl (17)

If we define the transpose (\I/T)ts = WUy, then we can write

(W)= W', (18)

Finally, if ¥ € ®(Q; x Q) and X € ®(; x Q3), then we define the product ¥X €
Oy x Q3) as follows:

(X0 = W, XE = [ WXt (19)

Any linear operator L that can be expressed in the form L¢ = V¢, for some field
U, is called an integral operator. Indeed, since we require ||¥V|| < oo, it is an integral
operator of Hilbert-Schmaidt type. We will be interested in expressing derivatives and
other linear transformations as integral operators (see Sections 4.7 and 5.5).

*Note that the scalar, inner and outer products (see Sect. 4.5) can all be considered degenerate
general products.

15



4.6 The Outer Product
4.6.1 Definition
For two fields ¢ € (), ¥ € ®(Q3) the outer product p Ay € ®(Qy x Q3) is defined:
(¢ A 771))575 = qbs'lbt (20)
Since physically realizable fields are bounded (Section 2.1.2), their outer product
always exists.
4.6.2 Useful Properties
We present a few simple properties of the outer product.
Theorem 1 If ¢ € ®(Q) and ¥, € ®(Qy), then
(@AP)C =¥ - () (21)
In other words, ¢ is “weighted” by 1 - C.

Proof: Simply expand the product.

Corollary 1 If ¢, € ®() and 5 € ®(€), then
S(CAn) =(¢ On (22)
In other words, 1 is “weighted” by ¢ - C.
Theorem 2 If ¢ € ®( x Qy), ¢ € B(Q) and ¥, n € B(Qy), then
(@AY)CAN) = (Y1) (23)

Proof: First expand the product as an integral over the direct product measure space:

(@A)CAML = [ (@AE)wlC Anadals. )
-/ o, Grteamdi(s, 1)

Next apply Fubini’s theorem, which says that the multiple integral equals the iterated
integral:

/lez GrsthrComdp(s, t) = /92 [/91 OrsthrCsmpdpn(s)| dp(t) (24)

Finally, regroup and remove from under the integral sign factors not dependent
on the variable of integration:

= [ bnGedn(s) [ dem(t)

= [oC(¥ )l
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Corollary 2 If ¢, € ®(Qy) and v, n € ®(Qy), then
(@AY)-(CAn) =(-C)(¥-n) (25)

Proof: Since ¢ -1 = ¢ (the right-hand side denoting a general field product) the

result follows immediately.

O
Corollary 3 [} A 6| = 6l1].
Proof:
lenell® = (6AY)-(6AY)
= (¢-9)(¥-9)
= [lol* ]
O
Corollary 4 If ¢r,vr € ©(Q), then
(oAb A Adn) (1 Ao Abn) = Golr - o) -+ (dn - ) (26)
Proof: Apply the theorem inductively:
(Po A1 Ao Ay ) (b1 A=+ Aidy)
= (o NDLNA NIy 1)(V1 A Aby_1) (b - Un)
= (450 A ¢1)¢1(¢2 : 152) T (an : ¢n)
= ¢0(¢1 ) ¢1) T (¢n ) l%)
O

The following theorem and its corollary show the relation between outer products
and iterated general products. Note that we take the general product to be left
associative: K¢y = (K¢).

Theorem 3 Suppose K € ®(Q x Oy x ), ¢ € Oy and v € Qy. Then:

Ko = K( A ¢) (27)
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Proof: Simply expand the general products as integrals:
(Kép) = [ (K@)puds

= / / I(rst ¢tdt '¢5 dS
Qo S

_ / / K,y othsdydsdt
Qo S8

= / / I(rst('gb A ¢)std3dt
Qo JE

By Fubini’s theorem (see proof of Theorem 4.6.2) the iterated integral may be replaced
by the multiple integral over the direct product space:

_ /QQXQI Kog(th A ¢)yd(s,1)
= [K(¥ A ),

O

Corollary 5 Suppose K € ®(Q x Q,, x --- x Q) and ¢ € ®(Q), for 1 <k < n.
Then:

Koidy -+ = K(da N+ N2 A y) (28)

Proof: An inductive application of the theorem.

4.7 Kernels of Linear and Multilinear Operators

4.7.1 Need for Kernels

We explore the conditions under which a linear field transformation L : ®(Q;) —
®(£3) can be expressed as a general field product, L(¢) = K¢, for some K € ®(£; x
). This condition is equivalent to saying that L is an integral operator (of Hilbert-
Schmidt type) with kernel K. 1t is an important condition, because field products can
be computed by neural networks and other massively parallel devices. The kernel is
the analog of the matrix representing a linear transformation in the finite-dimensional
case.

After the linear case (Section 4.7.2), we explore the multilinear case (i.e., the case
for multi-argument operators that are linear in each of their arguments; see Section

4.7.3).
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4.7.2 Kernels of Linear Operators

Theorem 4 Let .
K = Z L(ek) N eg (29)

k=0

If this field exists, then it is the kernel of L, L(¢) = K¢.

Proof: To see this, expand the Fourier series for ¢ and make use of linearity of L:

[o.e]

Lo = L]0 el
- S il(6rajal
- S(6 ke
- ¥ oo

= > [Llex) Nerld

k

= lzk: L(er) A ek] ¢

= K¢
This completes the proof.

O

The preceding result assumes that the kernel exists. Sufficient conditions are estab-
lished next. It will be useful to have the following definitions:

Definition 1 A linear transformation F': ®(Q) — ®(Q) is called a filter if the basis
elements e, are eigenvectors of the transformation. That is, there are A\p such that
F(er) = Arex. The sequence Ao, A1, ... is called the transfer function of the filter.

Definition 2 A sequence M\ is called absolutely summable if

5 Il < oo (30)
k=0

Another way of saying this is that the sequence belongs to the space [;.
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Theorem 5 Suppose L can be written in the form L = GoF', where F' s a filter whose
transfer function ts absolutely summable, and G is a continuous linear transformation.
Then the kernel of L exists and is

K = i L(ek) N eg (31)

k=0

Proof: We show that the norm of the kernel is finite.

1D Ller) Aerll < Do NIL(ex) A exll
= > _|IL(ex)|l|lex]|, by Section4.6.1
= Z ||L(ex)||, since the e, are normalized
(

= D lIGF ()]l

Since F' is a filter we know F'(e;) = Ager. Hence,

= DG
= Z |Ak|||G(er)|l, since G is linear

= > _|Ml|Bllexll, since G is continuous and hence bounded

= B 1M

< oo, since the A\, are absolutely summable

O

Hence, if the filter sufficiently suppresses the higher-order components of its argument,
the kernel will exist. This is certainly the case when F' has a sharp cutoff: Ay = 0 for
all k greater than some N.

In practice the conditions on the preceding theorem are not a problem. Since
most fields are band-limited (Section 2.1.3) they can be written ¢ = F/(¢) for a filter
F with a sharp cutoff. Also, since we generally want our field transformations to be
insensitive to higher-order noise, it is useful to express them in the form G'o F', where
G is the “ideal” or “goal” transformation and F' is an appropriate filter.

Finally, we show that if L can be written as a field product, then the sum-of-
outer-products series converges.

Theorem 6 Suppose that L : ®(Qy) — ®(Q,) satisfies L(¢p) = K¢ and ||K|| < oc.
Then | > Lex) A ex|| < oo.

Proof: The hypothesis amounts to supposing that L is an integral operator with
Hilbert-Schmidt kernel K. It is well known® that any such operator on a separable
Hilbert space (such as a space of fields) can be represented by an infinite matrix

Myn, = frn - L(ey) (32)

See for example [13, p. 68].
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where the f,, are an ON basis for ®({22). In addition, this matrix satisfies
2.2 My, < oo (33)
Now compute a bound on the sum-of-outer-products field:
I e Aenlf = S M) Al - [Eer) A
— 23 o) Ko e
= ;HL en)|l”

Next expand L(e,) in a Fourier series and apply Parseval’s equality (Section 4.4):

= LI S Lleaful®

< o0

4.7.3 Kernels of Multilinear Operators
The results in Section 4.7.2 are easily extended to multilinear operators. An operator
M:®(Qq) x - x (0,) = ¢(Q) (34)

is multilinear if it is linear in each of its arguments.

Our goal is to find a field
Ked(QxQ, x - x) (35)

such that
M(¢r,...,¢n) =Koy = K(dn A=+ A y) (36)

That the two products above are equivalent is established in Section 4.6.1.

Theorem 7 If M is a multilinear operator, then its kernel is

:Z...ZM(€k17...7€kn)/\€kn/\.--/\ekl (37)

k=0 kn=0

if the sum exists.

21



Proof: Suppose ¢; € ®(Q;), j =1,...,n, and ¢jr = ¢; - e, k = 0,... That is, ¢j;
is the k-th generalized Fourier coefficient of ¢;. Then, since M is multilinear we can
expand:

M(qbl,...,qbn) = M(chkek,...,chkek)
= chklM(ekl,...,chkek)
k1

— Z..-chkl"'annM(eklj"'7ekn)
k1 kn

At this point it will be convenient to work from the other side:

K(¢n A-oo A i)
= Z---ZM(ekl,...,ekn)/\ekn/\---/\ekl (¢nA"'A¢1)
k1 kn
= Z"'Z[M(eklv"'vekn)/\(ekn/\"'/\ekl)](qbn/\"'/\qbl)
k1 k

= D Y [ M(epyse s er)(€ry - bn) o (e, - D1,
£ kn
by Cor. 4 in Sec. 4.6.1

= Z"'ZM(eku"'vekn)cnkn"'Clkl
£ kn

The two expansions can be seen to be equal.

O
Theorem 8 If M is a continuous multilinear operator whose inputs are filtered:
M(p1,...,¢n) = G(Fiy, ..., Fody) (38)
then
K:ioz---io:Z\i(ekl,...,ekn)/\ekn/\---/\ek1 (39)

k=0 kn=0
exists and is the kernel of M, provided the transfer functions of the filters Fy are
absolutely summable.

Proof: Let A9 be the transfer function of the i-th filter F;; hence )\(i)l, A,
its eigenvalues. As in Theorem 5 we compute a bound on || K.

1K = 1YY M{enoeeven) Aek, A Aeg|
k1 kn

S ZZHM(ekl77ekn)/\ekn/\/\ele
k1 kn

= 3 S M (e sen)|
k1 kn

,...are
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Now note that

M(ekl,...,ekn) = G(Flekl,...,Fnekn)
== G()\(l)kl ekl, ey )\(n)knekn)
A(l)kl e )\(n)knG(ek“ ey ekn)

Continuing the derivation of the bound:

H[\’H < ZZP‘(UM)‘(n)kn|HG(ek177€kn)H
k1 kn

< ST AW, A,
k1 kn

The last step follows from the assumption that GG is bounded (continuous). Continu-
ing:

= Z...Z|)\(1)kl|...|)\(n)kn|
k1 kn
= TI> 1A

=1 k

This will be finite if each of the Y, |A(),] are finite.

4.7.4 Kernels in Terms of Generalized Functions

In this section we derive an alternative formula for the kernel that is often easier to
use than those given in Sections 4.7.2 and 4.7.3. The new formula is easily understood
through the analogy with finite-dimensional spaces. Recall that a linear transforma-
tion L : R™ — " can be represented by a matrix-vector product L(z) = Mz in
which the kth column of M is L(d;). That is, (M1), = L(8). Here the d; represent

the basis vectors defined by the Kronecker delta functions:

w={l b w

Now consider the infinite dimensional case and suppose L is a Hilbert-Schmidt oper-
ator, L(¢) = K¢, where K is given in Section 4.7.2. We claim that the ¢th “column”
of K is L(d;), that is, (K1), = L(;). Here the &; are the Dirac delta functions:

oo, ifs=t
&@):{0, if s £t (11)
Although “generalized functions” such as the Dirac delta are not physically realizable,

their use often simplifies the derivation of physically realizable fields. See Sections
6.2.4 and 6.2.6 for a further discussion.
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To establish our claim we need to make use of the well-known “sifting property”
of the Dirac delta:

5 ¢ = /Q 5i(s)bsds = ¢ (42)
With this in hand it is easy to show that (K1), = L(;):

T

(K", = lzk:L(ek)/\ek]

t

= lzk:ek/\L(ek)L
= > ex(t)L(exr)

k

= L lz ek(t)ek]

k

- 1|06 el

k

The expression in brackets is the generalized Fourier series for d;, so we conclude
(K1) = L(5;). We state the formula for K in two ways, also using an alternate
notation for d; (explained in Section 6.2.3).

(K%)= L(6) = L(A}) (43)

Ky = [L(8)]s = [L(AD]s (44)

We state without proof the analogous formulas for the kernel of a multilinear
operator:

[(stnnﬂ,‘l = [M((Sl‘“ ey 57571)]3 (45)

(I(T)tn...tl == M((St“ e ,575”) (46)

In the second equation the transpose must be interpreted as being around the first
dimension.

5 Derivatives

5.1 Derivatives of Field Transformations

Our goal is to find ways of approximating field transformations. The notion of a
derivative is important for understanding approximations of real functions (for in-
stance, in understanding the Taylor series). For many of the same reasons, it is
necessary to investigate the derivatives of field transformations. However, since fields
are functions (Section 2.1.1), we need the derivative of an operator on a function

24



space. There are two kinds of derivatives that may be defined, the Fréchet (Section
5.2) and Gateaux (Section 5.3). For fields they happen to be equivalent (Section 5.4).

It will be noted that these derivatives are defined on functions between Banach
spaces (complete normed linear spaces). Since Hilbert spaces are Banach spaces, we
can apply these results (Section 4.2).

5.2 Fréchet Derivatives

Suppose X and Y are two Banach spaces and U is an open subset of X. Then 7' :
U — Y is Fréchet differentiable at ¢ if there is a bounded linear operator D : X — Y
such that the following holds. For all @ € X such that ¢ + a« € U, there is an
E : X — Y such that

T(¢+a)=T(¢)+ D(a) + E(a) (47)
and
HEHEO IIJ;J‘S’[‘)H _ 0 (43)

Under these circumstances, D is called the Fréchet derivative of T" at ¢; it is denoted by
T'(¢). The Fréchet derivative is a locally linear approximation to 1'; 17'(¢)(«) = D(«)
is called the Fréchet differential of T'.

Since a linear operator is continuous if and only if it is bounded, Fréchet derivatives
are (by definition) continuous.

Note that 7" : X — L(X,Y), where £(X,Y) is the space of all continuous
(bounded) linear operators from X to Y.

5.3 Gateaux Derivatives

Suppose X and Y are Banach spaces, U C X is open, and T': U — Y. Then T has
a Gateaux derivative at ¢ € U if, for all a € U the following limit exists:
T(¢+ta)—T(¢) _ d

dT($, ) = lim t = ZT(6+ ta)limo (19)

We write dT'(¢, ) for the Gateaux derivative of T' at ¢ in the “direction” a. The
Gateaux derivative, if it exists, is unique.

5.4 Some Useful Properties of Derivatives on Function Spaces

1. Every Fréchet derivative is a Gateaux derivative. Since the Gateaux derivative
is unique, the two derivatives are identical if the Fréchet exists.

2. The derivative of a linear operator is that operator: L'(¢) = L.
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3. Higher order derivatives are defined in the obvious way. Suppose T': X — Y.
Since 77 : X — L(X,Y), it is easy to see that the higher derivatives have the
types:

T": X = L(X,L(X,Y))
TG X — L(X,L(X,L(X,Y)))
and so forth. Note that each successive derivative is of “higher type” than

its predecessor. We will see below that this leads to the problem of higher
dimensional gradients (Section 11). [See Section 5.2 for the notation £(X,Y).]

(50)

4. The spaces
! LOX,L(X, - L(X,L(X,Y))--+)) (51)

are isomorphic to the spaces £L(X*,Y), and we will often make use of this fact.
We use d*T" to denote that k-th order “uncurried” derivative of 71':

d*T - X = L(X*,Y)

dkT(gb)(ozl, Tt ak) = T<k)(¢)(a1) e (ak) (52)

5. The derivative of a composition is given by the following equation (shown in
both curried and uncurried forms):

(ToUY($)(a) = TUN(H) )] (53)
AT oU)(ba) = dTU(4),dU(4,a)] (54)

5.5 Gradients of Operators
5.5.1 Definition of Gradient

Based on the analogy with finite-dimensional spaces [5] we define the gradient of
a field transformation 7' : ®(2y) — ®(Qy) at a point ¢ € ®(Qy) to be the field
K € (2, x ) satisfying the following property:

T'(¢)(a) = Ka, for all a € ®(Qy) (55)

In other words, the derivative 7" is an integral operator with (Hilbert-Schmidt) kernel
K. Sufficient conditions for the existence of a gradient are discussed in Section 5.5.2.

The notation VT'(¢) denotes the gradient of T at ¢. Thus,

I'(¢)(a) = [VT($)]a (56)

It will also be convenient to use the notation V,T'(¢) for the directional derivative of
T in the “direction” a:

VI'(¢) = VT(¢)a = T'(¢)() (57)
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This permits V,, to be treated as an operator; operator techniques are exploited in
[5, 6].

It will be useful to consider the form taken by higher order directional derivatives.
Supposing that all the gradients exist, observe:

TG () (@) = V(G- a
= V(@) ap A--- A ay)
= vo‘k e ValT(qb)

Thus, a k-th order differential can be expressed as a k-fold product with the k-th
order gradient (if it exists), or as a product between the gradient and the k-fold outer
product. These relationships depend on the properties of outer products discussed in

Section 4.6.2.

5.5.2 When Can a Derivative Be Expressed as a Product?

Another way of asking this is “When do gradients exist?” Yet another way of asking
it is, “When are derivatives integral operators (of Hilbert-Schmidt type)?”

In this section we present practical sufficient conditions for the existence of gra-
dients. Since derivatives are linear (or multilinear) these conditions are direct appli-
cations of the results in Sections 4.7.2 and 4.7.3.

For practical applications it seems reasonable to assume that field transformations
have filtered inputs (see Section 4.7.2 for the definition of a filter). Typically there
are limitations on the gradients sustainable in the media used to represent the input
fields to a transformation (Section 2.1.3). Also, higher order components typically
represent noise, and we do not want our transformations to be excessively sensitive
to noise (Section 2.2).

Therefore, we consider the form of derivatives of transformations that can be
written 7' = (G o F', where F is a filter (Theorem 5) and G is the “ideal” operator to
be computed. By the formula for the derivative of a composition (Eq. 53) we have:

T'($)() = (GoF)($)(a)
= GIFGF($)(a)
= (G0 F)(OF(6)(0)]

Notice that the input to G’ is also filtered by F: (G' o F')(¢). Also note that since F
is a filter it is linear, and so by Section 5.4 F'(¢) = F'. Hence,

I'(¢)(a) = (G0 F)(¢)[F(a)] (58)

That is,
T'(¢) = (G'o F)(¢)o F (59)

Hence, T'(¢) can be written in the form H o F', so the gradient V7'(¢) exists. Since
the gradient has the appropriate form (H o F'), the higher order gradients also exist.
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The existence of gradients of multilinear operators exist under similar circum-

stances.

Summarizing, gradients exist for operators that are sufficiently insensitive to
higher-order (typically, higher frequency) components of their inputs. In particu-
lar, if the operators are band-limited (insensitive to all components beyond a certain
order) then the gradients exist. However, they also exist if there response rolls off as

an absolutely summable sequence.
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Part III
Linear and Multilinear Operators

6 Linear Operators

6.1 Introduction

Many of the most important field transformations are linear and multilinear operators.
However, in their ideal forms they often do not satisfy the conditions in Theorems
5 and 8 for the existence of their kernels. In these cases we have to consider the
approximation of the ideal operation by a field product.

6.2 Examples
6.2.1 Definite Integral

Definition The definite integral operator defint : ®(2) — R simply computes the
total value of the field:

defint ¢ = / et (60)
Q
If we let 1; = 1 be the constant 1 field, then we can define the definite integral:
defintp =¢ - 1 (61)

The definite integral is often useful, especially for computing the mean of a field.
For example, by subtracting from a field its mean, we may get maximum use of the
dynamic range of a field storage unit. The definite integral is also useful for automatic
gain control.

Formula

defintp =1-¢ (62)

Since 1 is a physically realizable field, no approximation is involved in this field
computation of the definite integral.

Proof Simply observe:
16 = [ Lt
Q

= /ﬂ Pedt

= defint ¢
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Alternately, we compute the kernel according to Equation 29:

o0

K = Z(deﬁntek)/\ek
k=0

o0

= Z(l-ek)/\ek

k=0
Now note that 1 - ey is a scalar, and that an outer product with a scalar is the same
as a scalar product. That is, if a is a scalar, then:

aNd=¢Na=a¢p (63)
Therefore, the formula for the kernel is:
K = E(l : ek)ek (64)
k=0

But this is just the Fourier expansion (Section 4.4) of 1, so K = 1.

6.2.2 Indefinite Integral

Definition For illustrative purposes we take @ = [0, 1]. The indefinite integral [ ¢
of a field ¢ is then defined:

(/ b)s = /OS Pt (65)

Formula
[o=2a% (66)
where
0o 17 if s 2 t
A“_{o, if s <t (67)

The unit step field (or Heaviside field) A° can be visualized as follows: it is 1
above the s = ¢ diagonal and zero below it. Although A° is discontinuous (and thus
violates our physical realizability constraints, Section 2.1.1), it can be approximated
arbitrarily closely by continuous functions.

The point of the A° notation will become apparent later (Sections 6.2.3 and 6.2.5).
An alternative formula for the indefinite integral will be derived in Section 7.2.4.

Proof To see that A is the kernel, observe:

([ = [ ot

= [ A%
= Aos : Qb
= (Aogb)s
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To see that A° exists, observe:
1 g1
a2 = [ [ (al)duas

1 ps
- j/ j/ 1 dtds
o Jo
1
:/Sds
0

= 1/2
< o0
6.2.3 Product Mask

Definition The product mask g x ¢ computes a point-wise product between the

given field ¢ and a fixed field p:
(1 % @)t = pehy (68)

This is obviously a linear operator. In addition to its obvious use for masking out
part of a field, it may also be used with defint to compute weighted averages of fields.

Formula
pxo=Ko (69)

where

Ky = puso(s —1t) (70)

Here we have made use of the Dirac delta function (or unit impulse function). This
“generalized function” has the value +o0o at the origin, and the value 0 everywhere
else. An alternative notation for K is:

I(st = MsAlst (71)

where

Aly = 8(s — 1) (72)

We prefer this notation because A'! is the derivative along the second coordinate
of A° which was defined in Section 6.2.2.

Alst - dAOSt/dt (73)

Since the kernel K is defined in terms of the unit impulse field A', it is not physically
realizable, and we must use an approximation; see Section 6.2.4.
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Proof This formula for the kernel can be established by Equation 44:
Ko = (1 x A})s = psly, = ps Ay, (74)

(since A' is symmetric). Notice that K is not physically realizable; indeed, it is not
even a Hilbert-Schmidt kernel (since ||K|| = o0). We turn to this problem next.

6.2.4 Delta Functions and Physical Realizability

The field K, defined as it is in terms of the Dirac delta function, violates several of our
physical realizability conditions (Section 2.1.1), since it is infinite valued at the origin
and discontinuous. However, we can approximate it by various realizable functions.
For example, we can approximate it by a square wave, §(z) ~ S.(x), where:

Se(z) = 1/e, if —¢/2 <a < +¢/2
Se(z) = 0, otherwise

Clearly, 6 = lim,_,o S.. Similarly, we could approximate ¢ by a triangular wave, or a
Gaussian distribution, or any number of other standard functions.

All of these approximations have the effect of “smearing out” the product p x ¢.
For example, with S.:

(K@S:QLM&@—Q@&

st+ef2
= [ ot

—€/2

Notice that ps is multiplied by the average of the values of ¢ in an interval of width
e centered on s.

From time to time we will make use of singularity functions such as the Dirac delta
function. Although they are convenient for the theoretical development, keep in mind
that physical realizability requires them to be approximated. This is not very different
from the familiar situation of numerical approximation on digital computers. On the
other hand, delta functions are significant in the theoretical development, since they
show us when an operator is local, that is, the value of the output field at a point
depends on the value of the input field at only one or a few points. This is impor-
tant, because local operators can be implemented with very sparse interconnections
between layers in a neural network (see [11] for more information).

6.2.5 Derivative

Definition There are of course many derivative and derivative-like operators that
can be defined on spaces of fields. In this case we take 2 = [a,b] and consider the
derivative operator on this closed interval: D¢ = ¢; that is, (D¢), = d¢/dt.
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Formula

Dé = A% (75)

where

Ay = —d(s—t) (76)

Here we make use of the doublet ¢', which is the derivative of the Dirac delta
function or unit impulse function 6 (see Section 6.2.3). The doublet is a very unusual
function. Its value is zero everywhere, except “just to the left” of 0, where its value is
+oo, and “just to the right” of 0, where its value is —oc. Therefore the doublet field
A? has the value —oo “just below” the s = ¢ line, and the value +o0o “just above” it.
Since the field A? is defined in terms of this “generalized function,” it is not physically
realizable; this issue is discussed later (Section 6.2.6).

Note that A? is the derivative of A' along its second coordinate:

A%, = DA, (77)

See Section 7.2.4 for an alternative approach to the field computation of the derivative.

Proof The simplest proof of this result uses the following “sifting” property of the
doublet:

- /95'(3 )t (78)
Hence, letting A%, = —¢'(s — ), it is immediate that
¢, =A% ¢ (79)
Alternately, use the formula for the kernel given in Section 4.7.4:
K, = (DAL), = A} (80)

Note however that A? is not a Hilbert-Schmidt kernel, since | K| = oo.
It may be instructive to consider the special case of the trigonometric basis. Sup-
pose a = —7, b = 7 and:

eo(t) = 1/V2r
€an—1(t) = cosnt/V2r, n=12,---
ea,(t) = sinnt/V2r, n=1,2,---

First apply the formula for the kernel (Eq. 29):

K = ZDek N eg
k

= Ze%/\ek
k
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For the trigonometric basis, observe that:
e(t) = 0
€y,_1(t) = —nsinnt/V2T = —neq,(t)
€3,(t) = mncosnt/V2m = ney,_1(t)

Hence,
/ J—
€y 0
/ J—
€oan_1 — TNECp
!
€y, = MNE€op_1
Hence, the kernel is
o0
,7 ! !
K = (€5, 1 A €1 + €5 A €ay)
n=1

I
Nk

n(€an—1 A €2, — €2, N €25-1)

n=1
Now note that
(e2n—1 A €2n)st = €an—1(8)e2n(1)

= (cosns/V2m)(sinnt/v2m)

= sinntcosns/27
Similarly,

(e2n A €9—1)st = cosntsinns/2m (81)
Therefore,
(e2n—1 A €2, — €2, N €25-1)st = (sinntcosns — cosntsinns)/2m

= sin(nt —ns)/2w

= sinn(t —s)/2n
Therefore the kernel is defined by:
. I &
Ky = o Z nsinn(t — s) (82)
n=1

This is the Fourier series for —4’(t — s) as can be seen by noting that the sines “pile
up” to —oo on the negative side of 0, and to +o0 on the positive side of 0. Clearly
K is not physically realizable; see Section 6.2.4 as well as the following section.
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6.2.6 Doublets and Physical Realizability

The field A% defined as it is in terms of the doublet, violates several of our physical
realizability conditions (Section 2.1.1), since it is infinite valued at the origin and
discontinuous. However, just as we did for A! (Section 6.2.4), we can approximate
A? by various realizable functions. For example, we can truncate the Fourier series
given above. More directly, we can approximate it by a square wave, A%, ~ S.(s,1),
where:

S.(s,t) = =2/, if —¢/2<s—1<0
Se(s,t) = —{—2/62, if0<s—t<+e¢/2
Se(s,t) = 0, otherwise

Clearly, A? = lim.,S.. By using S. we are approximating the derivative by the
“difference”: p

€ . 0 ,
Jo' " dedt — [Z, )5 pedl

€

ot~

Notice that in field computation the difference is computed between two “average”
values, whereas in digital computation it is computed between the values at two

(83)

points.

6.2.7 Discrete Fourier Transform

Definition Let fo, fi, f2,... be an orthogonal basis for ®(€;) and suppose Oy =
0,1,2,.., N. The result of the discrete Fourier transform Fy¢ is an N + 1 element
discrete field o, such that o, is the nth Fourier coefficient of ¢ with respect to the f,.
That is,

(FN@)n = ¢ fa (84)
Note that we extract only the first N + 1 coefficients. There are two reasons for this.
First, extracting all the coefficients would require €; to be infinite (i.e. the natural
numbers), which violates our condition that the domains of fields be bounded (Section
2.1.2). The second reason is that higher order coefficients frequently represent noise,
and so should be suppressed. Nevertheless, later in this section we show a way to
capture the full spectrum in a physically realizable field.

Formula
Fnvog = K¢ (85)

where

N
K=Y 6.Afn (86)
n=0
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Here ¢, is the Kronecker delta function defined by:

do(n) = 1
d,(m) = 0,n#m

Alternately we can define the Kronecker delta in a way analogous to the Dirac delta

(Section 6.2.3). Thus é(k) is 1 if £ =0, but 0 if £k # 0. Then K is defined:

K, = gé(m —n)fu(t) (87)

Observe that K is in effect an “array” of the basis functions fo, fi1,..., fa; K = fin-
Alternately, we may say that the kernel is the (truncated) series of basis functions.

Proof Although it is straight-forward to show the correctness of the formula for K
by expanding the product K¢, we will show that the formula can be derived directly
from the definition, (Fn¢), = ¢ - f.. First note that any N + l-element “array”
(discrete field) A satisfies

A= f: 5, A, (88)
since -
Ay = (X 6.4
S SRS

= Su(k)Ay
- A,

Therefore, the Fourier transform can be represented:

N
n=0

= Z_: 5n(¢ ) fn)

N

= Y (6N fu)d

N
- g

= [(q;

36



6.2.8 Representing the Full Spectrum

To represent the full spectrum, we must find some way of fitting the infinite set of
natural numbers into finite space. Although there are a number of ways of doing this,
we choose a representation that may have some practical applications. We define the
following family of “regressive pulse functions”:

ro(z) = 1, if 27" <z < 27!
ro(x) = 0, otherwise
In other words, rg, r1,... are a series of exponentially narrower contiguous pulses of

unit amplitude. We will use the nonzero portion of each pulse to represent a Fourier
coefficient; therefore higher order coefficients will occupy exponentially less space. It
is easy to show that this transformation is the integral operator:

Fod= Ko = (i oA fn) 4 (89)

provided that the infinite sum exists. To show that it does, we assume that the f, are
orthonormal (vice merely orthogonal) and observe that ||r,|| = 27"~'. Then, derive:

1K < 3l A fal
= 2 lIrallllfall
— EZ—TL—I

= 1<

6.2.9 Continuous Fourier Transform

Definition In this case we replace the discrete series of basis functions fy, fi,...
by a family of functions that depends continuously on a parameter w. For example,
we may replace the complex exponential basis f,,(¢) = e”"* by the family:

fu(t) = e (90)

If we are concerned with the spectrum in only a finite interval € = [a, b], then there
is no difficulty extending the discrete case to the continuous case. Here we define:

(Fap®)e = ¢ fo (91)

If we want the full spectrum, then we have a representation problem, since the domain
of the resulting field would be [0, 00), which is not physically realizable. In this case
we choose some continuous monotonic mapping p from [0, o) into a bounded domain.
An example p is

p(w) = 1/(w +1) (92)
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The resulting definition of the transform function is:

The field returned by F,¢ is physically realizable, since the image of [0, 00) under p
is [0, 1].

Formula In the band-limited case we use the analogous formula to that in Section

6.2.7:

F[a,b]¢ = [X’qb (94)
where
Kot = fu(t) (95)
To compute the full spectrum, a different kernel is required:
Kut = it (96)

Note that p~! exists, since p is monotonic.
Also note that, as before, the kernel is the orthonormal basis (possibly reindexed
to ensure a bounded domain).

Proof First consider the band-limited case. Derive:
(K¢), = K, ¢
= fw : Qb

= (F[a,b]qb)w

Further, the field K exists, since f, depends continuously on w.
For the full-spectrum case derive:

(I(Cﬁ)s = [(s : Qb
= fp—l(s) ’ Qb
= (FPQD)S

Hence (K¢),w) = fo - ¢. It remains to show that K exists. Assume an orthonormal

basis, || f.]| = 1. Then:
KIP = [ KEd(s,
K= [ K
2
= /Ql 0, fp—l(s)(t)dtds

2
= 1 d
/91 pr (S)H S

= 1ds
Q

= |Ql|<OO
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6.2.10 Inverse Fourier Transform

Definition We consider the case of the finite-spectrum discrete Fourier transform,
although it will be apparent that the solution can be simply extended to the full-
spectrum or continuous cases. Qur goal is as follows. Suppose that the generalized
coefficients of ¢ beyond the Nth are zero, then we want Fy' such that:

FX' (Fng) = ¢ (97)

We are given a discrete field ¢ such that ¢, is the nth generalized Fourier coefficient,
n=0,1,..., N. Then Fy' takes the simple form:

N

F]_Vlc = Z Cnfn (98)
n=0
Formula
Fye=cK = K'¢c (99)

where K is the kernel of the discrete Fourier transform (Section 6.2.7), which is simply
the “array” of basis functions. If we use Fy for this kernel, then the inverse transform
is expressed more obviously by:

F]_Vlc =cky = F%c (100)

Proof Recall (Section 6.2.7) that the kernel of the discrete Fourier transform is
defined:

That is, K,, = f,,. Therefore,

(F]_Vlc)t = chfnt
= ch[(nt

= (cK);

Hence Fyle = cK = K'c.

6.2.11 Using Fourier Methods to Compute Linear Operators

The Fourier transform permits a way computing linear operators that is particularly
suitable for neural implementation [11]. To see this observe:

L¢ = L(E Cnfn)
= > clL(fs)
= ch)\n
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Here the ¢, are the Fourier coefficients of ¢, ¢ = Fy¢, and the A, are the values of L

on the basis functions (i.e., Ag, A1,. .. is the transfer function of L). Then
L(¢) = cA = (Fy¢)A = AT (Fn9) (102)
where
A, = L(f,) (103)

In other words, any linear operator can be computed by extracting the Fourier coef-
ficients of its argument and using these to weight the values of the operator on the
basis fields. The advantage of this for neural implementation is that if the input is
band limited, then there are only a finite number of coefficients. These can be rep-
resented by the “hidden units” between the neural layers that compute Fy and A™.
The kernel of the linear operator is of course ATFy.

The foregoing suggests a generalization based on the continuous Fourier transform.
We may compute any linear operator by:

1. Taking its Fourier transform (discrete or continuous).

2. Multiplying the result by a (discrete or continuous) product mask representing
the operator’s transfer function.

3. Taking the corresponding inverse Fourier transform.

This suggests that a general purpose field computer could be structured around
Fourier transforms.

7 Multilinear Operators

7.1 Introduction

Like the linear operators discussed in Section 6, many of the multilinear operators
discussed here are not implementable by physically realizable field products. They
can, however, be approximated in a straight-forward way.

7.2 Examples
7.2.1 Local Product

Definition The local product ¢ x ¥ of two fields over the same domain is defined:

(QD X ¢)s = Qbs'QbS (104)
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Formula
6 x = My = My A ) (105)
where

M, = A, A AL, (106)

The unit impulse field A! is defined in Section 6.2.3. Since A! is not physically
realizable, M will have to be approximated; see Section 6.2.4. Notice that the field
product M ¢ is a very inefficient way to compute the local product ¢ x . The field
product brings together all the possible combinations (vs, ¢;), but the field M ignores
all except those for which s = ¢. It is wasteful to use the power of global computation
where only local computation is required. This suggests that most general-purpose
field computers will have the local product operation built in.

Proof It is easy to check that the formula for M is correct:
(MY AB)ls = M- (N ¢)
= (AL AAY) (A9
= (A% 9)(AL - 9)
= 1/)5¢5

The last two steps follow from Cor. 2 (Section 4.6.1) and the sifting property of A*
(Eq. 42).

It is also easy to derive the formula for M directly from the formula for the kernel
of a multilinear operator (Section 4.7.3):

M = ZZ(ek X 61) Ne A e (107)

Hence,

My, = ZZ(ek X er)sei(t)er(u)

— Z::zj:ez(s)ez(t)ek(s)ek(“)
- lzl: el(s)el(t)] likj ek(s>ek(u)l
_ lzz:(AIS : el)el(t)] le:(AIS : ek)ek('u)]

The last step is by the sifting property. Now observe that in the brackets we have
the Fourier series for A, hence:

Mstu = Als(t)Als(u)
(Als A Als)tu
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7.2.2 Linear Measure Spaces

In order to define the convolution and correlation of arbitrary fields we need a sub-
traction operation on the domains of fields. That is, for any ¢ € ®(f2) for which
we might want a convolution or correlation, we need s — ¢ € () to be defined for all
s, t e .

To this end, we define a linear measure space to be a measure space that is also a
linear space. Therefore, it has addition, subtraction and scalar multiplication opera-
tions satisfying the usual properties.

There is one difficulty with this definition. Since a linear space must be closed with
respect to its operations (addition, subtraction and scalar multiplication), it cannot
be bounded, since it must contain at for every real number a and every t € ). Thus
linear measure spaces violate one of our physical realizability constraints, namely,
that the domains of fields be bounded (Section 2.1.2). This is a problem that is
commonly faced in the analysis of linear, shift-invariant systems, since most imple-
mentable systems are bounded, and hence not completely shift-invariant. We shall
take the same pragmatic approach here that is commonly applied in that analysis:
apply the theory based on linear spaces, but be careful of “edge effects.”

7.2.3 Convolution

Definition If  is a linear measure space (Section 7.2.2), then the convolution ¢

of two fields ¢, ¢ € () is defined:

(o*)s / bs—1ydt (108)

Formula
pxp = Moy =M A @) (109)

where

My =A'y, (110)

Since the field M is defined in terms of the unit impulse field A; (Section 6.2.4),
it must in practice be approximated.

Proof It is easiest to establish this result by direct expansion of the product:

(Mgp), = (Mg)
- ( Mstqbtdt) y
= ([ Alus) -
= [t w)sde



= / ¢s—t¢tdt
Q
= (99* ¢)s
The second to last step follows from the sifting property of Al

7.2.4 Use of Convolution to Implement Linear, Shift-Invariant Operators

Many linear, shift-invariant operators can be implemented more efficiently by convo-
lution than by general field product. For example, the derivative operator (Section
6.2.5) can be implemented by:

Do =—8%¢ (111)
where ¢’ is the unit doublet (Section 6.2.5). To see this, observe
(—8' % @), /5t@& (112)

by the sifting property of the doublet (Section 6.2.5). This formula should be com-
pared with that in Section 6.2.5:

D¢ = A*p (113)

Although neither §’ nor A? is physically realizable, ' has the advantage that it is of
lower dimension: ¢’ € ®(Q), but A? € ®(Q x Q). Therefore, §’ will generally be easier
to represent in field computers.

For another example of the use of convolution, consider the indefinite integral
(Section 6.2.2), which is also shift invariant. Define the Heaviside field v to be a slice
through A%:

=AY (114)

It has the property:
L, ifs>0
“ZY0, ifs<o0

This field can be convolved with an arbitrary field to compute its indefinite integral:

/¢=v*¢ (116)

(115)

To see this, observe:

(0% ), = /Q Vs iyt
A%
LAZ@&

([ o)

The foregoing examples suggest that convolution is a useful operation to include
in general purpose field computers.
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7.2.5 Correlation

Definition If 2 is a linear measure space (Section 7.2.2), then the correlation ¢ ®
of two fields ¢, ¢ € () is defined:

(60 ¥) = [ drstndt (117)

Notice that this differs from convolution only in having ‘¢ — s’ where the latter has
‘s — 1.

The correlation of two different fields is usually called crosscorrelation, whereas
the correlation of a field with itself is called autocorrelation.

Formula
PR =Mpp =M A ) (118)

where

Mst - Alts (119)

Since the field M is defined in terms of the unit impulse field A' (Section 6.2.4),
it must in practice be approximated.

Proof It is easiest to establish this result by direct expansion of the product:

_ / Mstgbtdt)
- (fstot)

= [ (A p)st

= /QI/)t—sqétdt
= (¢@¢)s

The second to last step follows from the sifting property of A
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Part IV
Nonlinear Operators

& Introduction

In Sections 1.4 and 1.5 we discussed the utility of general purpose field computers,
and claimed that there exists a universal set of field operations that permits the ap-
proximation of any field transformation in a large and useful class. In this section we
present one such universal set and give several examples of the resulting approxima-
tions.

9 Approximation Based on Taylor Series

9.1 Taylor’s Theorem
9.1.1 Taylor’s Expansion in Derivatives

We state the standard Taylor theorem from functional analysis. Like the more familiar
Taylor theorem from real analysis, it permits the expansion of a function in an infinite
series about a point. The difference is that in the present case the function is a field
transformation, and the point is a field.

Theorem 9 Suppose U is any open subset of ®(Qy) and T : ®(y) — ¢(Qy) is a
map which is C™ in U (that is, the first n derivatives of T exist). Let ¢ € U and
a € O(Qy) be such that ¢+ 0 € U for all 0 € [0,1]. Then:

T(¢+a) = z_j ()k + Ro(o, ) (120)

where

1(1 — 1) (4 al(a)?
Rn(gb,oz):/o (1-9) (i: _(;@;9 (@) 49 (121)

Here {(a)F’ denotes k occurrences of the argument a. Also note that T®©) = T.
In uncurried form the Taylor expansion is:

L dkT
T(6+0)= % % 4 R(g,a) (122)
where L By T (4 0 )
—0)d” p+ba,a,...,« By
Ru($,a) = /0 ey do (123)

and the appropriate number of a arguments (zero or more) must be supplied for d*T.
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9.1.2 Taylor’s Expansion in Gradients

If the first n gradients of T" are defined (Section 5.5.2), then its Taylor expansion is:

T(6+a) = T(@)+ 3 = L R (g,0) (124)

=1

As shown in Section 5.5.1, the kth term can be written in any of the following forms:

1 , 1
SVEI(9) = L VT(G)a-a
_ Lorpiga®
= iV I(é)a
where by a®) we mean the k-fold outer product @ A a A --- A a. The two forms on

the right are especially useful, since they separate the part of the term which is fixed
by the point of expansion, V*T'(¢), from the part which is variable, a.
The remainder term is:

L1 — 0"V ($ + ba
R

9.1.3 Horner’s Rule Expansion

do (125)

As is done for conventional polynomials, we can eliminate the need to compute higher
(outer product) powers of « by using a form of “Horner’s Rule.” Consider the 3-term
Taylor expansion:

T(9+0) ~ T(6) + VI(9)a+ 5 V*T(8)o” (126)
This can be written
T(6+a) ~ T(6) + [VT(6) + 5V*T()aa (127)
In general, define
Qu(6,0) = VHT(9) + 7 Qhn(6,0)a (128)
for k > 0 where VT = T. Then the infinite Taylor expansion is given by
T(6+ o) = Qo(¢ ) (129)

The Horner’s Rule expansion has direct relevance to implementation of field trans-
formations by neural networks incorporating conjunctive synapses (sigma-pi units);

see [11].
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9.2 Summary of Taylor Series Approximation

We have already seen (Part I1I) that any reasonable linear or multilinear field trans-
formation can be approximated by a general field product. The results of this section
show that reasonable (i.e. sufficiently differentiable) nonlinear transformations can
be approximated by a field polynomials, that is, by a local sum of general products.
We conclude that the following constitute a universal set of operators:

1. Local sum: (¢ + ¢): = ¢ + ¢y
2. General product: (¥X),, = [o VX di

(Note that the scalar and outer products, which also appear in field polynomials, are
degenerate cases of the general product, and so are not strictly necessary.) Of course,
practical general purpose field computers will implement a larger set of primitive
operations.

9.3 General Polynomial Approximation

The Taylor series approximation of field transformations suffers from a limitation
similar to that of the Taylor series approximation of real functions, namely, the ap-
proximation is only locally good. That is, since the Taylor series extrapolates from a
fixed point, the accuracy tends to fall off rapidly with the distance from that point.
This is not an important limitation if our only purpose is to establish a universal set
of operations. If, however, we are interested in practical field computation, then the
limitation is significant. In this case we require polynomials that satisfy some global
criterion of goodness.

The problem of the polynomial approximation of field transformations can be put
as follows. Consider the nth degree polynomial:

Po(¢) = Ko+ K19 + K¢ + -+ 4+ K6 (130)

How can we choose the fields Ky, ..., K, so as to minimize the “distance” between P,
and the desired transformation 7'?7 The difficulty is to define an appropriate distance
between field transformations. The usual development of an approximation theory
presumes an inner product norm and a basis. Unfortunately, we have not found a
suitable way to define an inner product on field transformations.

One way to compare field transformations is to compare their values on a finite
set of input fields:

5(T.U) = Z I7(66) — U(0)] (131)

Although this measure is only a pseudo-metric,” it is nevertheless useful for a number
of purposes (see [11]).

"For a pseudo-metric é(z,y) = 0 need not imply z = y.

47



10 Local Transformations

10.1 Theory

In this section we consider the special case of (nonlinear) local transformations. These
are transformations in which each point of the output field is a function of the corre-
sponding point of the input field:

[T()]: = Fil() (132)
We write F for the local transformation that applies F} at each point ¢; thus:
[F(9)]: = Fi(¢) (133)

Suppose that for all ¢ € Q, F; : [a,b] = K. Then the type of F'is
F:Q—a,b — K (134)
and hence the type of F is:
F:®py(0) = 0x(Q) (135)

Although Taylor’s theorem can be used to derive the power series of a local transfor-
mation [6], a more general result is just as easy to obtain:

Theorem 10 Suppose that F : Q. 1)(Q) = ©x(Q) and that the series
Fy(z) =Y apea” (136)
k=0

converges uniformly with respect to t and x. Then F is given by the following (L,)
convergent series:

F(6) = - o x & (137)
k=0
Here ¢* denotes the k-fold local product:

& =1
P = gxgh, k20

We call transformations such as Eq. 137, local field polynomials or local power series,
since the powers are computed by local products.

Proof: Let € > 0 be chosen; we must show that there is an /N such that

I7(6) =3 an x o] < e (138)
k=0
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whenever n > N. Let ( = ¢|Q|~'/2. Since the series for Fy(x) converges uniformly,
we know that there is an N, independent of ¢ and x, such that

|Fy(z) — an | < ¢ (139)
k=0

whenever n > N. Now consider:

I F () — éak x " = /Q lf(qﬁ) — zn:ozk X qﬁkrdt

Hence,
[F(¢) = > ar x ¢F|| < e (140)
k=0
O

The common case where F'is a constant function, that is, F; = f for all ¢, is especially
useful:

Corollary 6 If f : ®7() — ®x () and I is in the interval of convergence of

flz) = ki_o:ak:ck (141)

then this series converges:
o0

Flo) =3 and® (142)

k=0

Here apd® denotes a scaling of ¢* by ap, € R. If this is not a primitive operation, then
it can be accomplished by a local product with the constant field a;1.

Proof: It is well-known that if / is in the interval of convergence of 332, azz* then
the series converges uniformly in /. Hence the theorem applies.
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10.2 Examples
10.2.1 Importance of Sigmoid Nonlinearities

We begin by exploring the field computation of two local transformations with a
“sigmoid” shape. Such transformations are important because of their applications
in neural networks. The functional behavior of the most common artificial neurons
are defined by the equation

N

yi=o (E Wz’j-l”j) (143)

k=1
This defines the activity level y; of an output neuron ¢ (1 < i < M) in terms of
the activities z; of the input neurons j (1 < j < N). The “weights” W;; reflect the
strength and polarity (excitatory or inhibitory) of the synapses between neurons j
and 1. The sigmoid function o is a nonlinear function whose effect is to “sharpen up”
the value computed by the summation; it acts as a “soft threshold.” Notice that if
we think of z, y and W as finite fields, then the preceding equation can be expressed
as a field computation:

y=o(Wz) (144)
We are of course most interested in the case where z, y and W are continuous fields,
but the mathematics is the same. In the following subsections we discuss the field
computation of two common sigmoid transformations.®

10.2.2 Hyperbolic Tangent

Definition The hyperbolic tangent sigmoid transformation is
tanh : (I)[a,b](ﬂ) — (I)[—l,l](\Q) (145)

where —7/2 < a < b < 7 /2. Its effect as a soft threshold can be seen in its continuous
variation between these values:

tanh(—o0) = -1

tanh(0) 0
tanh(+o0) = +1

The tanh function is most useful when we want the nonlinearity to preserve the sign of
the input. It also arises naturally in analog VLSI implementations of neural networks
[12, p. 69 and passim].

8For neural networks there is little practical difference between different sigmoids, since the effect
of scaling can be accomplished by modifying the weights, and the effect of translation by applying
a constant bias to the neuron; see [11].
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Formula

— 1, 2 17 227(2%% — 1) By,
tanh(¢) = ¢ — 2¢" + 26" — o= dT 4o + ( )B:

315 (2n)! P A (146)

where B, is the 2n-th Bernoulli number.

Proof This follows directly from Cor. 6 and the Maclauren series for tanh [14],
whose interval of convergence is (—m/2,7/2).

10.2.3 Logistic Function

Definition The sigmoid function most commonly used in neural networks is the
logistic function, given by

1
It can also be defined as a translated, scaled hyperbolic tangent:
1 ; 1
lgst(z) = 3 tanh (%) + 3 (148)

It is a soft threshold, as can be seen from its behavior:

lgst(—oc) = 0
lgst(0) = 1/2
lgst(+o00) = 1

This simoid is most useful when the output is to be interpreted as a probability. The
parameter T', commonly called “computational temperature,” adjusts the slope of the
sigmoid at the origin (which is 1/T"). At T' = 0 it becomes a step function (threshold).
We consider here the corresponding local transformation Igst : Do () = @po,11(9),
where —nT <a<b<nT.

Formula

1 1 1. 17

- 1
Tost(d) = = + — 3 _
gst(d) =5 + 179 Tt 180m5% T s064077

2 4T 4873 T+ (149)

Proof The series can be derived by direct differentiation, or from the series for tanh
by the relation lgst(z) = 1 tanh(z/27) 4+ L. Since the radius of convergence for the
tanh series is 7/2, the radius for lgst will be 77'.
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10.2.4 Replacing Local Field Polynomials by Sigmoid Functions

Sections 10.2.2 and 10.2.3 showed how a local sigmoid transformation could be com-
puted by a local polynomial. On the other hand, artificial neurons often have a built
in sigmoid function, and we can expect many field computers will provide a local
sigmoid transformation. For this reason it is important to ask the converse question:
When can a field polynomial be computed by a local sigmoid transformation? The
following equations characterize a sigmoid centered at the origin, but with a bias of
b, a slope m at the origin, and asymptotic values b £ p:

o(0) = b (150)
o(z)—b = b—o(—x) (151)
o(+o0) = b+ypu (152)
o'(+oc0) = 0 (153)
a0) = m (154)
o(z) > 0 (155)
dz) < m, x#0 (156)
Now consider a power series for o:
o(x) =ao+ a1z + arx? + azz® + - - (157)
Equation 150 tells us ag = b. Also, Eq. 151 tells us o(z) + o(—x) = 2b. But,
o(—z) = ap — a1z + asx® — azx® + - - (158)
Therefore,
2b =0(x)+o(—x)=2b+ Qa.2% + 2a,2t + - - - (159)

and we conclude that the power series contains only odd powers. Furthermore, by
Eq. 154 and
o'(z) = ay + 3azx® + -+ (160)

we know a; = m. Thus the power series for a sigmoid must look like this:
o(z) =b+ma + azx’ + - (161)
This suggests that we ask when a cubic of the form
f(z) = b+ mz + azz® (162)

can be approximated by a sigmoid function. This cubic can be easily seen to satisfy
Egs. 150, 151 and 154. Since f'(x) = m+ 3az2?, it will satisfy Eq. 156 only if a3 < 0.
Thus we rewrite it

fl@)=b+ma — azx’® (163)

52



where a > 0. The cubic differs from the sigmoid in its asymptotic properties (Egs.
152 and 153), so we must restrict our attention to the portion of the cubic between
its extema. To determine their location, set f'(r) = 0 and then since m — 3ar? = 0

we find
r=4y/m/3a (164)

Therefore, we will be able to approximate f(x) by o(z) only if |z| < r, the radius of
the cubic sigmoid. Equation 155 is satisfied within this radius.

For a specific example, suppose we want to approximate Eq. 163 by a scaled,
translated hyperbolic tangent:

o(xz) = b+ ptanh(va) (165)

First, observe that
o(0) = b (166)
a'(0) = pv (167)

Therefore, if we let m = uv, then f and o will agree at 0 in their value and derivative.
We need an additional condition to determine the values of g and v. Since the
argument of x is restricted to [—r,r] we require f(r) = o(r). Substituting into the
power series for tanh yields

b+mr—ar®=b+plvr — (vr)*/3 + -] (168)

Therefore,
mr — ar® = pvr — (uv®[3)r® + -+ (169)

If we neglect higher order terms, and let m = pr, then we have

mr — ar® = mr — (mv*/3)r° (170)

Hence, a = mv?/3 and so v = y/3a/m = r~!. Thus, the sigmoid approximates the

cubic if

2
<

! (171)
(172)

2
3

That is, the cubic

f(z) =b+mz—az®, |z|<r=1y/m/3a (173)
may be approximated by the sigmoid

o(x) =b+ mrtanh(z/r) (174)
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Therefore, if we must compute the local field polynomial
T(¢) = bl +mLé — a(Lp)* (175)

then this can be accomplished by a composition of a local sigmoid and a linear
transformation:

T(¢) ~ (L) (176)
This is especially important for neural networks, which generally have the effect of

a linear transformation followed by a sigmoid nonlinearity. In this case the input
weight matrix is 771 L and the output is scaled by mr and biased by b.?

11 Problem of High Dimensional Gradients

11.1 The Problem

Consider the kth term in the Taylor expansion:

%V’“T(qﬁ)a(’“) (177)

If @ € ®[a,b] is a field defined over a closed segment of the real line, then a® is

a field defined over a k-dimensional hypercube. Unfortunately, fields of dimension
higher than 3 are, seemingly, unrealizable.!® In other words, there seems to be no
way to build a field computer that can store fields like a!®), for £ > 3. The immediate
problem of raising « to a high power can be eliminated by alternate forms of the
Taylor expansion, such as that given by Horner’s Rule (Section 9.1.3), but we are
left with the problem that the gradients are of high dimension. In particular, if
T:0(02) = ®(Qy), then

VAT () € ®(Qy x OF) (178)

In general, for any field polynomial 38 K,¢*) the coefficient fields are of succes-
sively higher dimension, K € ®(Q, x QF).

There are several ways to avoid higher dimensional fields. One, which is discussed
in detail in [11], is to discretize the field. A second solution is to represent one
dimension by time. For example, if the field Wy, is represented by a time-varying field

(Uy)s, then in the field product

(W), = /Q Uyt (179)

the integral can be computed by accumulating the product W ¢; over an interval of
time Q = [t,,ts]. Of course this approach buys only one additional dimension. A

90f course this is not the only way to approximate a local cubic by a sigmoid. We could for
example pick g and v to minimize the Ly error: [|o — f]|2.
10See [1] for an exception, however.
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third solution is applicable when a higher dimensional field is sparse, that is, zero
over most of its domain. For example, if ¥ € (€ x ) satisfies

Uy =0, if [s—t] >e€ (180)
then it may be approximately represented by the lower dimensional ¢ € ®(2):
s+e
bs = v, dt (181)

We can replace a higher dimensional general product W¢ by a lower dimensional local
product 2¢(¢) x ¢) as shown by this derivation:

(\Il¢)s = /Q \I}stqbtdt

s+e€ )
= \Ilstqbtdt
s+e€

Ivbsqbtdt

S

%

S—

:¢53

+e
Ppdt

s+e
SN ¢,dt

= 2 ¢,

There are also various mixed strategies, and no doubt other solutions that may be
useful in various situations.

11.2 Field Computation in Alternate Domains

11.2.1 Introduction

Another approach to the problem of higher dimensional gradients is to map the gra-
dient into a lower dimensional space, and do the corresponding computations in this
lower dimensional space. For example, suppose 2 C E? is an appropriate subset of
Euclidean two-space. Further suppose that ¥, X € ®(}?) are two higher dimensional
(in fact four-dimensional) fields. It seems that there ought to be a continuous func-
tion R: ®(Q?) — ®(Q'), with Q' C E?, that maps four-dimensional spaces into two-
dimensional spaces in such a way that we can find an operation IP : (') x®(Q') — R
that does a four-dimensional inner product on the two-dimensional surrogates of the
fields:

F -G =1P[R(¥), R(X)] (182)
In fact, such continuous maps R exist; they are based on space-filling curves, such
as Peano curves (see Section 11.3). There remains the problem of whether lower
dimensional correspondents of the product operation (IP in this example) exist. In
this section we show that they do.
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11.2.2 Measure Preserving Change of Domain

Suppose we have a field ¥ € ®(2) and we want to represent it by a field ¥ € ®(Q').
A typical motivation for this would be that € is of lower dimension that £2. Thus we
want R : ®(2) — ®(Q') such that ¢y = R(¥). The change of domain is accomplished
by letting

R(¥)=Wo(C (183)

where C' : Q' — Q is bijective.!! The transformation R has the correct domain and
range, and loses no information (since C' is bijective). It is also easy to establish that
R is linear:

[R(a¥ 4+ bX)], = [(aV +bX)o (],
= (a¥ + bX)¢,
= aV¥¢, + X,
= a(VolC),+bXo(),
_ alR()], 4+ HR(X)L,

Hence R(aV + bX) = aR(V) + bR(X).

We now impose an additional condition on C: we require it to be measure-
preserving. That is, for and S C Q and 5" = C7[S] (i.e., S’ is the inverse image of
S under C') we have

[t = [ £(co)s (184)

That is,
/ ot = | [R(®)],ds (185)
s s
Under this assumption we find that R is an isometry (isometric transformation), since
IR(W) — REX)* = [[R(Y = X)]*
= (T =X)oC]?

= [ (w=X)ds

- /Q(\IJ—X)fdt
= | -X]*

An isometry is a homeomorphism, so we’ve shown that under these assumptions the
spaces ®(£2) and ®(£') are homeomorphic (and in fact isometric). Further, since an
isometry is necessarily continuous, we’ve shown that the transformation R is contin-
uous.

11'We will impose additional constraints shortly.
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11.2.83 Transformations in the Alternate Domain

To complete the replacement of a domain € by a more convenient domain €', we
must also replace transformations 7" on ®(£2) by corresponding transformations 7" on
O () so that

T(®) = TR(Y) (186)

(In some cases it is more convenient to have R[T(V)] = T'[R(V)].)

Inner Product We consider some examples, of which the simplest is the inner

product. We want IP : &(€') x ®() — R such that
¥ - X = IP[R(V), R(X)] (187)
We proceed to derive IP:
voX = /ﬂ W, X, dt
_ /Q(q; 0C o0, (XoCoC™)dt
= [ RO ROt

= [ ROLIRO)Ls
= R(V)- R(X)
Hence, let
IP(¢,x) = ¢ x (188)
and then ¥ - X = IP[R(V), R(X)], as we might expect.

Local Transformations By an analogous derivation it is easy to see that if f(¥, X)
is any local binary operation, then

R[f(¥,X)] = fIR(Y), R(X)] (189)

Simply observe that

{RIF(U. X))} = [F(¥,X)]e,
= f(Ye., Xc,)
= ARV, [R(X)]s}
= {/[R(P), RX)]}s

That is B commutes with local transformations.
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General Product Now we consider a more useful example, the general product.
Suppose

U o YO"x9)
X e v(Q)

We want to replace the product ¥X by a product ¢ x in which

o€ D x )
X € o)

Derive:
(UX), = / U, X,dt
Q

- /Q[‘I’ 0 (IxC) 0 (IxC) " ee(X 0 C 0 C~1),dt

where the direct product (IxC)s = (s,C;). Notice that (IxC') is an isomorphism,
and let
S(W) = Wo (IxC) (190)

Then continue the derivation:

WX)s = [ (SO, e [RX)]gdt
=[S RX)]udu
= [S(V)R(X)]s

Hence,

UX = S(V)R(X) (191)

Outer Product Next we consider the computation of an altered outer product:

OP(¢,¢) = R(¢ A ) (192)

Our goal is to compute OP(¢, 1) without generating the higher-dimensional field
¢ A 1. The outer product is a bilinear operator, but can be expressed as a local
product of two linear operators, as follows:

SAP= (A1) x (1AY) (193)
This is convenient, since R commutes with local transformations:

R(p Ap) = R(6 A1) x R(LAY) (194)
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Each of the two factors are linear operators, so they have kernels which we compute

as follows (Eq. 44):

Kg=[(0:N1)oCls=(6: A1), (195)
K, =[1AN&)oCl;=(1A)c, (196)

Then,
OP(¢,v) = K¢ x K'¢ (197)

This formula involves no higher-dimensional fields (except K and K’, which can
instead be provided as primitive operators).

Outer Product Power Finally, we define an altered outer-product power:

P,(¢) = R[] (198)

To accomplish this it will be useful to have two domain bijections:
C : QO =a0x (199)
Co : =0 (200)

and the corresponding representation transformations:
R(¥) = YoC (201)
Ro(¥) = Wo( (202)
Note that R: ®(Qx Q) — &(Q') and Ry : ®(Q) — (). Then we define the powers

recursively:

P(6) = Rol9) (203)
Pui(9) = OP[6,P(9)], n>1 (201)

where OP(¢,¢) = R(¢ A ). Note that the computation of P,(¢) makes use of no
fields of dimension greater than 2 x €)'

Field Polynomials The preceding derivations show that an arbitrary field poly-
nomial can be implemented by products over an alternative domain as follows:

N N
ST K. = Ko+ Y S(K,)Pa(9) (205)

Notice that all the fields that constitute this polynomial belong to ®(92), ®(Q') or
O x Q). In particular:

Ky € () (206)
S(K,) € o xQ), n>1 (207)
Po(¢) € oY) (208)
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11.3 Reduction of Dimension

We now return to the problem of the reduction of dimension. We are given ) and V',
where €' is assumed to be of lower dimension than €. To apply the preceding results
we need a measure-preserving bijection C' : ) — €. Fortunately, such functions
exist, although they are a little unusual. For example, suppose that Q = [0,1]? and
V' = [0,1]. Then there are various space-filling curves (such as the Peano curve)
C :[0,1] — [0,1]%. These functions are continuous, because they are curves, and
bijections, because they are space-filling. (They are not, however, homeomorphisms,
because their inverses are not continuous, a result of Brouwer’s [4, Section 36, pp.
228-236).

We also require that the space-filling curve C' be measure-preserving. This presents
no difficulty if we take a curve C that is the limit of a sequence ), of functions
Cn: Q — Q, that divide ) into narrower and narrower “strips” and preserve the
measure. For example, we may have {2, = [0,1/2"] x [0,2"]. In practice, we are not
much concerned about what happens in the limit, since we have to use one of the
finite approximations C',, anyway.

The foregoing discussion suggests that space-filling curves and, more generally,
fractal curves may be important in the representation of higher dimensional fields.
Thus it is especially intriguing that some structures in the brain seem to have a fractal
geometry.
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