
A Review of Field Computation

Technical Report UT-CS-07-606

Bruce J. MacLennan∗

Department of Electrical Engineering & Computer Science
University of Tennessee, Knoxville

www.cs.utk.edu/~mclennan

October 31, 2007

Abstract

This report reviews the basic principles of field computation, a model of
massively parallel analog computation, and discusses its applications in nat-
ural and artificial intelligence. We begin with the mathematical foundations
and notation for field computation; Hilbert spaces provide the basic mathemat-
ical framework. Next we discuss examples of field computation in the brain,
especially in its computational maps. Fields appear in a number of contexts,
including activity at the axon hillocks, in patterns of axonal connection between
areas, and in patterns of synaptic connection to dendrites. The following section
presents examples of field computation in the brain and in other natural and
artificial systems, including fields for sensorimotor processing, excitable media,
and diffusion processes. Next we consider special topics in field computation in
cognition, including the separation of information (semantics) from pragmatics,
and the analysis of discrete symbols as field excitations. We also consider the
relevance of universal mutivariate approximation theorems to general-purpose
field computation. Then we discuss hardware specifically oriented toward field
computation, including electronic, optical, and chemical technologies. Finally,
we consider future directions for field computation research.

∗This report is based on an unedited draft for an article to appear in the Encyclopedia of Com-
plexity and System Science (Springer, 2008) and may be used for any non-profit purpose provided
that the source is credited.

1

Report Outline

Glossary

1. Definition

2. Introduction

3. Basic Principles

4. Field Computation in the Brain

5. Examples of Field Computation

6. Field Computers

7. Future Directions

8. Bibliography

Glossary

Axon: Nerve fiber adapted to the efficient, reliable, active transmission of neural
impulses between locations in the brain or body.

Dendrite: Nerve fibers adapted to the (primarily passive) sensing and integration
of signals from other neurons, which are transmitted to the neuron cell body.

Dirac delta function: A distribution or generalized function that is defined to be
infinite at the origin, zero everywhere else, and to have unit area (or volume).
More generally, such a function but with its infinite point located elsewhere
than the origin. Dirac delta functions are idealized impulses and exist as limit
objects in Hilbert spaces.

Eigenfield: An eigenfield of a linear operator has the property of passing through
the operator with its shape unchanged and only its amplitude possibly modified.
Equivalent to an eigenfunction of the operator, but stresses the function’s role
as a field.

Field: A continuous distribution of continuous quantity. Mathematically, an el-
ement of an appropriate space, such as a Hilbert space, of continuous-valued
functions over a continuum. See also phenomenological field and structural field.

Field computation: Computation in which data are represented by fields, or by
other representations that can be mathematically modeled by fields.

2

Field space: A suitably constrained set of fields. Generally field spaces are taken
to be subspaces of Hilbert spaces.

Field transformation: Functions between field spaces; more generally, functions
whose input and/or outputs are fields. Synonymous with operator in this article.

Functional: A scalar-valued function of functions, and in particular a scalar-valued
field transformation.

Idempotency: An operation is idempotent when repeating it several times has the
same effect as doing it once.

Impulse response: The response of a system to an input that is an idealized
impulse (a Dirac delta function, q.v.).

Microfeature: Features of a stimulus or representation that are much smaller and
at a lower level than ordinary (macro-)features, which are the sort of properties
for which natural languages have words. Typically microfeatures have meaning
(are interpretable) only in the context of many other microfeatures. Pixels are
examples of microfeatures of images.

Nullcline: In a two-dimensional system of differential equations (u̇k = fk(u, v),
k = 1, 2), the lines along which each of the derivatives is zero (fk(u, v) = 0).

Operator: A function of functions (i.e., a functions whose inputs and/or outputs
are functions), and in particular a function whose inputs and/or outputs are
fields. Operators may be linear or nonlinear. Synonymous, in this article, with
field transformation.

Orthonormal (ON): A set of vectors, fields, or functions is orthonormal if they are:
(1) mutually orthogonal (i.e., inner products of distinct elements are 0), and (2)
individually normalized (i.e., inner products of elements with themselves are 1).

Phenomenological field: A physical distribution of quantity that for practical
purposes may be treated mathematically as a continuous distribution of contin-
uous quantity, although it is not so in reality (cf. structural field)

Physical realizability: A field is physically realizable if it can be represented in
some physical medium.

Population coding: Neural representation in which a population of neurons jointly
represent a stimulus or other information. Each individual neuron is broadly
tuned to a range of stimuli, but collectively they can represent a stimulus accu-
rately.

3

Post-Moore’s law computing: Refers to computing paradigms that will be im-
portant after the expiration of Moore’s Law (Moore 1965), which predicts a
doubling of digital logic density every two years.

Projection: A systematic pattern of axonal connections from one region of a brain
to another.

Radial basis function (RBF): One of a set of real-valued functions, each of whose
value decreases with distance from a central point (different for each function).
The set as a whole satisfies some appropriate criteria of completeness (ability
to approximate a class of functions).

Receptive field: The receptive field of a sensory neuron is the set of stimuli to
which it responds. By extension, the receptive field of a non-sensory neuron is
the set of inputs (from other neurons) to which it responds. Each neuron has a
receptive field profile which describes the extent to which particular patterns of
input stimulate or inhibit activity in the neuron (and so, in effect, its receptive
field is fuzzy-boundaried).

Structural field: A physical field that is in reality a continuous distribution of
continuous quantity (cf. phenomenological field).

Synapse: A connection between neurons, often from the axon of one to the dendrite
of another. Electrical impulses in the pre-synaptic neuron cause neurotransmit-
ter molecules to be secreted into the synapses between the neurons. These
chemicals bind to receptors in the post-synaptic neuron membrane, and cause
fluctuations in the membrane potential.

Transfer function: A function expressing the effect of a linear system on its input,
expressed in terms of its effect on the amplitude and phase of each component
frequency.

Unit doublet: A generalized function that is the derivative of the Dirac delta
function (q.v.). It is zero except infinitesimally to the left of the origin, where
it is +∞, and infinitesimally to the right of the origin, where it is −∞.

4

1 Definition

A field may be defined as a spatially continuous distribution of continuous quantity.
The term is intended to include physical fields, such as electromagnetic fields and
potential fields, but also patterns of electrical activity over macroscopic regions of
neural cortex. Fields include two-dimensional representations of information, such as
optical images and their continuous Fourier transforms, and one-dimensional images,
such as audio signals and their spectra, but, as will be explained below, fields are
not limited to two or three dimensions. A field transformation is a mathematical
operation or function that operates on one or more fields in parallel yielding one
or more fields as results. Since, from a mathematical standpoint, fields are defined
over a continuous domain, field transformations operate with continuous parallelism.
Some examples of field transformations are point-wise summation and multiplication
of fields, Fourier and wavelet transforms, and convolutions and correlations.

Field computation is a model of computation in which information is represented
primarily in fields and in which information processing is primarily by means of field
transformations. Thus is may be described as continuously parallel analog computing
(MacLennan 2007, 2008). Field computation may be feed-forward, in which one or
more fields progress through a series of field transformations from input to output, or
it may be recurrent, in which there is feedback from later stages of the field computa-
tion back to earlier stages. Furthermore, field computations can proceed in discrete
sequential steps (similar to digital program execution, but with each step applying a
field transformation), or in continuous time according to partial differential equations.

A distinction is often made in science between structural fields and phenomeno-
logical fields. Structural fields are physically continuous distributions of continuous
quantity, such as gravitational fields and electromagnetic fields. Phenomenological
fields are distributions of quantity that can be treated mathematically as though they
are continuous, even if they are not physically continuous. For example, the velocity
field of a macroscopic volume of fluid is a phenomenological field, because it is not
physically continuous (each discrete molecule has its own velocity), but can be treated
as though it is. Similarly, a macroscopic charge distribution is a phenomenological
field because charge is quantized but can be treated as a continuous quantity for many
purposes. Although structural fields are sometimes used, often field computation is
concerned with phenomenological fields, that is, with information that can be treated
as a continuous distribution of continuous quantity, regardless of whether it is phys-
ically continuous. Practically, this means that quantization in both the distribution
and the quantity must be sufficiently fine that they can be modeled mathematically
by continua.

One of the goals of field computation is to provide a mathematical language for
describing information processing in the brain and in future large artificial neural
networks intended to exhibit brain-scale intelligence. Neural computation is quali-
tatively different from ordinary digital computation. Computation on an ordinary

5

computer can be characterized as deep but narrow; that is, the processor operates
on relatively few data values at a time, but the operations are very rapid, and so
many millions of operations can be executed each second. Even on a modern parallel
computer, the degree of parallelism is modest, on the order of thousands, whereas
even a square millimeter of cortex has at least 146 000 neurons operating in parallel
(Changeux 1985, p. 51). On the other hand, since neurons are quite slow (responding
on the order of milliseconds), the “100-Step Rule” says that there can be at most
about 100 sequential processing stages between sensory input and response (Feldman
& Ballard 1982). Therefore, neural computation is shallow but wide; that is, it uses
relatively few sequential stages, but each operates with a very high degree of paral-
lelism (on the order of many millions). In addition to its speed, modern electronic
digital arithmetic is relatively precise compared to the analog computation of neurons
(at most about one digit of precision) (McClelland, Rumelhart & the PDP Research
Group 1986, p. 378). Therefore we can conclude that neuronal information processing
operates according to quite different principles to ordinary digital computing.

It is not unreasonable to suppose that achieving an artificial intelligence that is
comparable to the natural intelligence of mammals will require a similar information
processing architecture; in any case that seems to be a promising research direction.
Therefore we should be aiming toward components with computational capabilities
comparable to neurons and densities of at least 15 million per square centimeter. For-
tunately, the brain demonstrates that these components do not have to be high-speed,
high-precision devices, nor do they have to be precisely connected, for the detailed
connections can be established through self-organization and learning. The theory
of field computation can contribute in two ways: first, by providing a mathematical
framework for understanding information in massively parallel analog computation
systems, such as the brain, and second, by suggesting how to exploit relatively ho-
mogeneous masses of computational materials (e.g., thin films, new nanostructured
materials). For the same reasons, field computers may provide an attractive alterna-
tive for “post-Moore’s law computing.”

2 Introduction

The term “field computation” dates from 1987 (MacLennan 1987), but examples of
field computation are much older. For example, G Kirchhoff (1824–87) and oth-
ers developed the field analogy method in which partial differential equation (PDE)
problems are solved by setting up an analogous physical system and measuring it
(Kirchhoff 1845). Thus a two-dimensional boundary value problem, for example de-
termining a steady-state temperature or magnetic field distribution, could solved by
setting up an analogous system with a conductive sheet or a shallow tank containing
an electrolytic solution (Small 2001, p. 34). When the boundary conditions were ap-
plied, the system computed the steady-state solution field in parallel and at electronic
speed. The resulting potential field could not be displayed directly at that time, and

6

so it was necessary to probe the field at discrete points and plot the equipotential
lines; later devices allowed the equipotentials to be traced more or less automatically
(Truitt & Rogers 1960, p. 2-6). In either case, setting up the problem and reading out
the results were much slower than the field computation, which was comparatively
instantaneous. Three-dimensional PDEs were similarly solved with tanks containing
electrolytic solutions (Truitt & Rogers 1960, pp. 2-5–6). (For more on conductive
sheet and electrolytic tanks methods, see Soroka (1954, ch. 9).)

Non-electronic field computation methods were also developed in the nineteenth
century, but continued to be used through the first half of the twentieth century to
solve the complex PDEs that arise in practical engineering (Truitt & Rogers 1960,
pp. 2-8–9). For example, so called “rubber-sheet computers” were used to compute
the complex electric fields in vacuum tubes. A thin elastic membrane represented
the field, and rods or plates pushing the sheet down from above or up from below
represented constant negative or positive potential sources. The sheet assumed the
shape of the electrical potential field, which could be viewed directly. By altering the
rods and plates and observing the effects on the sheet, the engineer could develop
an intuitive understanding of the field’s dependence on the potential sources. These
simple mechanical devices used effectively instantaneous field computation to display
the steady-state field’s dependence on the boundary conditions.

Electrolytic tanks and conductive and elastic sheets are all examples of the use of
structural fields in computation, but other mechanical field computers used discrete
approximations of spatially continuous fields, and therefore made use of phenomeno-
logical fields. For example, “pin-and-rod systems,” which were developed in the nine-
teenth century, exploited the fact that equipotential lines and flux (or stream) lines
always cross at right angles (Truitt & Rogers 1960, pp. 2-9–11). A (two-dimensional)
field was represented by two arrays of flexible but stiff wires, representing the flux
and equipotential lines. At each crossing point was a pin with two perpendicular
holes drilled through it, through which the crossing wires passed. The pins were loose
enough that they could move on the wires, while maintaining, of course, their relative
position and the perpendicular crossings of the wires. To solve a PDE problem (for
example, determining the pressure potentials and streamlines of a non-tubulent flow
through a nozzle), the edges of the pin-and-rod system were bent to to conform to the
boundary conditions; the rest of the system adjusted itself to the steady-state solu-
tion field. Like the rubber-sheet computers, pin-and-rod systems allowed the solution
field to be viewed directly and permitted exploration of the effects on the solution of
changes in the boundary conditions.

Through the first half of the twentieth century, network analyzers were popular
electronic analog computers, which were often used for field computation (Small 2001,
pp. 35–40) This was similar to the field analogy method, but a discrete network of
resistors or resistive elements replaced such continuous conducting media as the elec-
trolytic tank and conductive sheet. Nevertheless, a sufficiently fine mesh of resistive
elements may be treated as a phenomenological field, and network analyzers were

7

used to solve PDE problems (Truitt & Rogers 1960, pp. 2-6–8). Boundary conditions
were defined by applying voltages to the appropriate locations in the network, and the
resulting steady-state field values were determined by measuring the corresponding
nodes in the network. As usual, it was possible to monitor the effects of boundary
condition changes on particular locations in the field, and to plot them automatically
or display them on an oscilloscope.

The field computers discussed so far were suited to determining the steady-state
solution of a system of PDEs given specified boundary conditions; as a consequence
they were sometimes called field plotters or potential analyzers (Truitt & Rogers 1960,
p. 2-3). These are essentially static problems, although, as we have seen, it was pos-
sible to simulate and monitor changes in the (relatively) steady-state solution as a
consequence of (relatively slowly) changing boundary conditions. On the other hand,
truly dynamic problems, which simulated the evolution of a field in time, could be
addressed by reactive networks, that is, networks incorporating capacitive and induc-
tive elements as well as resistors (Truitt & Rogers 1960, pp. 2-11–13). For example
an RC network analyzer, which had capacitance at each of the nodes of the resistor
network, could solve the diffusion equation, for the charge on the capacitors corre-
sponded to the concentration of the diffusing substance at corresponding locations in
the medium. An RLC network analyzer had inductance, as well as resistance and ca-
pacitance, at each node, and so it was able to address a wider class of PDEs, including
wave equations.

Although these twentieth-century field computers were constructed from discrete
resistors, capacitors, and inductors, which limited the size of feasible networks, analog
VLSI and emerging fabrication technologies will permit the implementation of much
denser devices incorporating these and similar field computation techniques (see Sec.
6).

The following section will present the mathematical foundations and notation for
field computation; Hilbert spaces provide the basic mathematical framework. Next
we discuss examples of field computation in the brain, especially in its computational
maps. Fields appear in a number of contexts, including activity at the axon hillocks, in
patterns of axonal connection between areas, and in patterns of synaptic connection
to dendrites. The following section presents examples of field computation in the
brain and in other natural and artificial systems, including fields for sensorimotor
processing, excitable media, and diffusion processes. Next we consider special topics
in field computation in cognition, including the separation of information (semantics)
from pragmatics, and the analysis of discrete symbols as field excitations. We also
consider the relevance of universal mutivariate approximation theorems to general-
purpose field computation. Then we discuss hardware specifically oriented toward
field computation, including electronic, optical, and chemical technologies. Finally,
we consider future directions for field computation research.

8

3 Basic Principles

3.1 Mathematical Definitions

Mathematically, a field is (generally continuous) function φ : Ω → K defined over
some bounded domain Ω (often a compact subset of a Euclidean space) and taking
values in an algebraic field K. Typically K is the real numbers, but in some appli-
cations it is the complex numbers or a vector space (see Secs. 4.1, 5.3, 5.4, and 5.6
below).

As usual, the value of a field φ at a point u ∈ Ω of its domain can be denoted by
φ(u), but we more often use the notation φu with the same meaning. The latter is
especially convenient for time-varying fields. For example, the value of a field φ at
point u and time t can be denoted by φu(t) rather than φ(u, t). The entire field at a
particular time t is then written φ(t). As is commonly done in mathematics, we may
consider φ to be a variable implicitly defined over all u ∈ Ω. (In this article lower-case
Greek letters are usually used for fields. We occasionally use bold-face numbers, such
as 0 and 1, for constant-valued fields; thus 0u = 0 for all u ∈ Ω. When it is necessary
to make the field’s domain explicit, we write 0Ω, 1Ω, etc.)

For practical field computation (e.g., in natural and artificial intelligence) we are
interested in fields that can be realized in some physical medium, which places restric-
tions on the space of allowable fields. These restrictions vary somewhat for different
physical media (e.g., neural cortex or optical fields), but we can specify a few gen-
eral conditions for physical realizability. Generally, fields are defined over a bounded
domain, although sometimes we are interested in fields that are extended in time
with no prespecified bound (e.g., an auditory signal). Furthermore, since most me-
dia cannot represent unbounded field amplitudes, it is reasonable to assume that a
field’s range of variation is also bounded (e.g., |φu| ≤ B for all u ∈ Ω). In addi-
tion, most media will not support unbounded gradients, so the field’s derivatives are
bounded. Indeed, physically realizable fields are band-limited in both the spatial and
temporal domains. Although different assumptions apply in different applications,
from a mathematical perspective it is generally convenient to assume that fields are
uniformly continuous square-integrable functions (defined below), and therefore that
they belong to a Hilbert function space. In any case we use the notation ΦK(Ω) for a
physically realizable space of K-valued fields over a domain Ω, and write Φ(Ω) when
the fields’ values are clear from context.

The foregoing considerations suggest that the inner product of fields is an impor-
tant concept, and indeed it is fundamental to Hilbert spaces. Therefore, if φ and ψ
are two real-valued fields with the same domain, φ, ψ ∈ Φ(Ω), we define their inner
product in the usual way:

〈φ | ψ〉 =

∫
Ω

φuψudu.

If the fields are complex-valued, then we take the complex conjugate of one of the

9

fields:

〈φ | ψ〉 =

∫
Ω

φ∗uψudu.

For vector-valued fields φ,ψ ∈ ΦRn(Ω) we may define

〈φ | ψ〉 =

∫
Ω

φu ·ψudu,

where φu · ψu is the ordinary scalar product on the vector space Rn. Finally, the
inner-product norm ‖φ‖ is defined in the usual way:

‖φ‖2 = 〈φ | φ〉.

As previously remarked, the elements of a Hilbert space are required to be square-
integrable (“finite energy”): ‖φ‖ <∞.

3.2 Field Transformations

A field transformation or operator is any continuous function that maps one or more
input fields into one or more output fields. In the simplest case a field transformation
F : Φ(Ω) → Φ(Ω′) maps a field in the input space Φ(Ω) into a field in the output
space Φ(Ω′).

We do not want to exclude degenerate field transformations, which operate on
a field to produce a single real number, for example, or operate on a scalar value
to produce a field. (An example of the former is the norm operation, ‖ · ‖, and an
example of the latter is the operator that produces a constant-valued field over a
domain.) In these cases we can consider the inputs or outputs to belong to a space
Φ(Ω) in which Ω is a singleton set. For example, the real numbers can be treated as
fields in

Φ0 = ΦR({0}).

Since R and Φ0 are isomorphic, we will ignore the difference between them when no
confusion can result.

Another class of simple field transformations are the local transformations, in
which each point of the output field is a function of the corresponding point in the
input field. In the simplest case, the same function is applied at each point. Suppose
that for input field φ ∈ ΦJ(Ω), the output field ψ ∈ ΦK(Ω) is defined ψu = f(φu),
where f : J → K. Then we write f : ΦJ(Ω) → ΦK(Ω) for the local transformation
ψ = f(φ). For example, log(φ) applies the log function to every element of φ and
returns field of the results. More generally, we may apply a different function (from a
parameterized family) at each point of the input field. Suppose F : Ω×J → K, then
we define F : ΦJ(Ω) → ΦK(Ω) so that if ψ = F (φ), then ψu = F (u, φu).

Field transformations may be linear or nonlinear. The most common linear trans-
formations are integral operators of Hilbert-Schmidt type, which are the field analogs

10

of matrix-vector products. Let φ ∈ Φ(Ω) and L ∈ Φ(Ω′×Ω) be square-integrable
fields; then the product Lφ = ψ ∈ Φ(Ω′) is defined:

ψu =

∫
Ω

Luvφvdv.

L is called the kernel of the operator. It is easy to show that physically realizable
linear operators have a Hilbert-Schmidt kernel, because physically realizable fields
and the operators on them are band-limited (MacLennan 1990). Therefore they can
be computed by field products of the form Lφ.

According to the Riesz Representation Theorem (e.g., Brachman & Narici 1966,
Sec. 12.4), a continuous linear functional (real-valued operator) L : Φ(Ω) → R has a
representer, which is a field ρ ∈ Φ(Ω) such that Lφ = 〈ρ | φ〉. However, since linear
operators are continuous if and only if they are bounded, and since practical field
transformations are bounded, all practical linear functionals have representers.

We define multilinear products in the same way. Suppose φk ∈ Φ(Ωk), for k =
1, . . . , n, and M ∈ Φ(Ω′×Ωn× · · ·Ω2×Ω1). Then Mφ1φ2 · · ·φn = ψ ∈ Φ(Ω′) is
defined

ψu =

∫
Ωn

· · ·
∫

Ω2

∫
Ω1

Muvn···v2v1φ1(v1)φ2(v2) · · ·φn(vn)dv1dv2 · · · dvn.

Again, physically realizable multilinear operators are band limited, and so they can
be computed by this kind of multilinear product (MacLennan 1990).

Like the field analogs of inner products and matrix-vector products, it is also
convenient to define an analog of the outer product. For φ ∈ Φ(Ω) and ψ ∈ Φ(Ω′)
we define the outer product φ∧ ψ ∈ Φ(Ω×Ω′) so that (φ∧ ψ)(u,v) = φuψv, for u ∈ Ω,
v ∈ Ω′. Inner, outer, and field products are related as follows for φ, χ ∈ Φ(Ω) and
ψ ∈ Φ(Ω′):

φ(χ ∧ ψ) = 〈φ | χ〉ψ = (ψ ∧ χ)φ.

In the simplest kind of field computation (corresponding to a feed-forward neural
network), an input field φ is processed through one or more field transformations
F1, . . . , Fn to yield an output field ψ:

ψ = Fn(· · ·F1(φ) · · ·).

This includes cases in which the output field is the continuously-varying image of a
time-varying input field,

ψ(t) = Fn(· · ·F1(φ(t)) · · ·).

More complex feed-forward computations may involve additional input, output, and
intermediate fields, which might be variable or not.

In an ordinary artificial neural network, the activity yi of neuron i in one layer
is defined by the activities x1, . . . , xn of the neurons in the preceding layer by an

11

equation such as

yi = s

(
N∑

j=1

Wijxj + bi

)
, (1)

where Wij is the weight or strength of the connection from neuron j to neuron i,
bi is a bias term, and s : R → R is a sigmoid function, that is a non-decreasing,
bounded continuous function. (The hyperbolic tangent is a typical example.) The
field computation analog is obtained by taking the number of neurons in each layer
to the continuum limit. That is, the activities ψu in one neural field (u ∈ Ω′) are
defined by the values φv in the input field (v ∈ Ω) by this equation:

ψu =

∫
Ω

Luvφvdv + βv,

where L ∈ Φ(Ω′×Ω) is an interconnection field and β ∈ Φ(Ω′) is a bias field. More
compactly,

ψ = s(Lφ+ β). (2)

Typically, the input is processed through a series of layers, each with its own weights
and biases. Analogously, in field computation we may have an N -layer neural field
computation, φk = s(Lkφk−1 + βk), k = 1, . . . , N , where φ0 ∈ Φ(Ω0) is the input,
φN ∈ Φ(ΩN) is the output, Lk ∈ Φ(Ωk×Ωk−1) are the interconnection fields, and
βk ∈ Φ(Ωk) are the bias fields. Other examples of neural-network style field computing
are discussed later (Sec. 5).

Many important field computation algorithms are iterative, that is, they sequen-
tially modify one or more fields at discrete moments of time. They are analogous
to ordinary computer programs, except that the variables contain fields rather than
scalar quantities (integers, floating-point numbers, characters, etc., and arrays of
these). Since the current value of a field variable may depend on its previous val-
ues, iterative field computations involve feedback. Examples of iterative algorithms
include field computation analogs of neural network algorithms that adapt in discrete
steps (e.g., ordinary back-propagation), and recurrent neural networks, which have
feedback from later layers to earlier layers.

Analog field computers, like ordinary analog computers, can operate in continuous
time, defining the continuous evolution of field variable by differential equations. For
instance, φ̇ = F (φ) is a simple first-order field-valued differential equation, which
can be written dφu(t)/dt = Fu[φ(t)]. An example is the familiar diffusion equation
φ̇ = k2∇2φ.

Continuously varying fields arise in a number of contexts in natural and artificial
intelligence. For example, sensorimotor control (in both animals and robots) depends
on the processing of continuously varying input fields (e.g., visual images or auditory
signals) and their transformation into continuously varying output signals (e.g., to
control muscles or mechanical effectors). One of the advantages of field computing for
these applications is that the fields are processed in parallel, as they are in the brain.

12

Often we find continuous field computation in optimization problems, in adaptation
and learning, and in the solution of other continuous problems. For example, a field
representing the interpretation of perceptual data (such as stereo disparity) may be
continuously converging to the optimal interpretation or representation of the data.

Optimization problems are sometimes solved by continuous gradient ascent or
descent on a potential surface defined by a functional F over a field space (F :
Φ(Ω) → R), where F (φ) defines the “goodness” of solution φ. Gradient ascent is
implemented by φ̇ = r∇F (φ), where r is the rate of ascent. This and other examples
are discussed in Sec. 5.9, but the use of the gradient raises the issue of the derivatives
of field transformations, such as F , which we now address.

3.3 Derivatives of Field Transformations

Since fields are functions, field spaces are function spaces (generally, Hilbert spaces),
and therefore the derivatives of field transformations are the derivatives of operators
over function spaces (Mathematical Society of Japan 1980, §251G). There are two
common definitions of the differentiation of operators on Hilbert spaces (more gen-
erally, on Banach spaces), the Fréchet and the Gâteaux derivatives, which turn out
to be the same for field transformations (MacLennan 1990). Therefore suppose that
F : Φ(Ω) → Φ(Ω′) is a field transformation and that U is an open subset of Φ(Ω).
Then D ∈ L(Φ(Ω),Φ(Ω′)), the space of bounded linear operators from Φ(Ω) to Φ(Ω′),
is called the Fréchet differential of F at φ ∈ U if for all α ∈ Φ(Ω) such that φ+α ∈ U
there is an E : Φ(Ω) → Φ(Ω′) such that,

F (φ+ α) = F (φ) +D(α) + E(α)

and

lim
‖α‖→0

‖E(α)‖
‖α‖

= 0.

The Fréchet derivative F ′ : Φ(Ω) → L(Φ(Ω),Φ(Ω′)) is defined by F ′(φ) = D, which
is the locally linear approximation to F at φ.

Similarly dF : Φ(Ω)×Φ(Ω) → Φ(Ω′) is a Gâteaux derivative of F if for all α ∈ U
the following limit exists:

dF (φ, α) = lim
s→0

F (φ+ sα)− F (φ)

s
=

dF (φ+ sα)

ds

∣∣∣∣
s=0

.

If the Fréchet derivative exists, then the two derivatives are identical, dF (φ, α) =
F ′(φ)(α) for all α ∈ Φ(Ω).

Based on the analogy with finite-dimensional spaces, we define ∇F (φ), the gra-
dient of F at φ, to be the field K ∈ Φ(Ω′×Ω) satisfying F ′(φ)(α) = Kα for all α
in Φ(Ω). That is, F ′(φ) is an integral operator with kernel K = ∇F (φ); note that

13

F ′(φ) is an operator but ∇F (φ) is a field. The field analog of a directional derivative
is then defined:

∇αF (φ) = [∇F (φ)]α = F ′(φ)(α).

Because of their importance, it is worth highlighting the gradients of functionals
(real-valued operators on fields). According to the preceding definition, the gradient
of a functional F : Φ(Ω) → Φ0 will be a two dimensional field ∇F (φ) ∈ Φ({0}×Ω).
(Recall Φ0 = Φ({0}).) However, when confusion is unlikely, it is more convenient to
define ∇F (φ) = γ ∈ Φ(Ω), where γ is the representer of F ′(φ). Then F ′(φ)(α) = 〈γ |
α〉 = 〈∇F (φ) | α〉.

Higher order derivatives of field operators are defined in the obvious way, but
it is important to note that each derivative is of “higher type” that the preceding.
That is, we have seen that if F : Φ(Ω) → Φ(Ω′), then dF : Φ(Ω)2 → Φ(Ω′), where
Φ(Ω)2 = Φ(Ω)×Φ(Ω). Similarly, dnF : Φ(Ω)n+1 → Φ(Ω′). Also, as F ′ : Φ(Ω) →
L(Φ(Ω),Φ(Ω′)), so F ′′ : Φ(Ω) → L(Φ(Ω),L(Φ(Ω),Φ(Ω′))) and, in general,

F (n) : Φ(Ω) →
n︷ ︸︸ ︷

L(Φ(Ω),L(Φ(Ω), · · · ,L(Φ(Ω),Φ(Ω′)) · · ·)).

Corresponding to higher-order derivatives are higher-order gradients:

dF n(φ, α1, . . . , αn) = ∇nF (φ)α1 · · ·αn

= ∇nF (φ)(αn ∧ · · · ∧ α1)

= ∇αn · · ·∇α1F (φ).

For reference, we state the chain rules for Fréchet and Gâteaux derivatives:

(F ◦G)′(φ)(α) = F ′[G(φ)][G′(φ)(α)], (3)

d(F ◦G)(φ, α) = dF [G(φ), dG(φ, α)]. (4)

Just as a real function can be expanded in a Taylor series around a point to
obtain a polynomial approximation, there is a corresponding theorem in functional
analysis that allows the expansion of an operator around a fixed field. This suggests
an approach to general-purpose computation based on field polynomials (MacLennan
1987), but there are also other approaches suggested by neural networks (see Sec.
5.10 below). We begin with a formal statement of the theorem.

Theorem 1 (Taylor) Suppose that U is any open subset of Φ(Ω) and that F :
Φ(Ω) → Φ(Ω′) is a field transformation that is Cn in U (that is, its first n derivatives
exist). Let φ ∈ U and α ∈ Φ(Ω) such that φ+ sα ∈ U for all s ∈ [0, 1]. Then:

F (φ+ α) =
n−1∑
k=0

dkF (φ,
k︷ ︸︸ ︷

α, . . . , α)

k!
+Rn(φ, α),

14

where

Rn(φ, α) =

∫ 1

0

(1− s)n−1dnF (φ+ sα,

n︷ ︸︸ ︷
α, . . . , α)

(n− 1)!
ds.

Here the “zeroth derivative” is defined in the obvious way: d0F (φ) = F (φ).
If the first n gradients exist (as they will for physically realizable fields and trans-

formations), then the Taylor approximation can be written:

F (φ+ α) = F (φ) +
n∑

k=1

∇k
αF (φ)

k!
+Rn(φ, α).

However, ∇k
αF (φ) = ∇kF (φ)α(k), where α(k) is the k-fold outer product:

α(k) =

k︷ ︸︸ ︷
α ∧ α ∧ · · · ∧ α .

If we define the fields Γk = ∇kF (φ), then we can see this approximation as a “field
polynomial”:

F (φ+ α) ≈ F (φ) +
n∑

k=1

Γkα
(k)

k!
.

Such an approximation may be computed by a field analog of “Horner’s rule,”
which is especially appropriate for computation in a series of layers similar to a neural
network. Thus F (φ+ α) ≈ G0(α), where

Gk(α) = Γk +
Gk+1(α)

k + 1
α,

for k = 0, . . . , n, Γ0 = F (φ), and Gn+1(α) = 0.

4 Field Computation in the Brain

There are a number of contexts in mammalian brains in which information represen-
tations are usefully treated as fields, and information processing as field computation.
These include neuronal cell bodies, patterns of axonal projection, and synapses. Of
course, all of these are discrete structures, but in many cases the numbers are suf-
ficiently large (e.g., 146 × 103 neurons / mm2: Changeux 1985, p. 51) that the rep-
resentations are usefully treated as fields; that is, they are phenomenological fields).
(We omit discussing the intriguing possibility that the brain’s electromagnetic field
may affect conscious experience (McFadden 2002, Pockett 2000).)

15

4.1 Neuronal Fields

Computational maps, in which significant information is mapped to cortical location,
are found throughout the brain (Knudsen, du Lac & Esterly 1987). For example,
tonotopic maps in auditory cortex have systematic arrangements of neurons that
respond to particular pitches, and retinotopic maps in visual cortex respond system-
atically to patches of color, edges, and other visual features projected onto the retina.
Other topographic maps in somatosensory cortex and motor cortex systematically re-
flect sensations at particular locations in the body, or control motor activity at those
locations, respectively. The number of identified maps is very large and there are
probably many that have not been identified. And while some are quite large and
can be investigated by fMRI and other noninvasive imaging techniques, other are less
than a square millimeter in size (Knudsen, du Lac & Esterly 1987). However, even a
0.1mm2 map may have tens of thousands of neurons, and thus be analyzed reasonably
as a field.

In mathematical terms, let X be a space of features represented by a cortical map.
These might be microfeatures of a sensory stimulus (e.g., oriented edges at particular
retinal locations) or motor neurons (e.g., controlling muscle fibers in particular loca-
tions). These examples are peripheral features, but X might represent patterns of
activity in nonperipheral groups of neurons (e.g., in other cortical maps). Let Ω be
a two-dimensional manifold corresponding to a cortical map representing X . There
will a piecewise continuous function µ : X → Ω so that µ(x) is the cortical location
corresponding to feature x ∈ X . The mapping µ may be only piecewise continuous
since X may be of higher dimension that Ω. (This is the reason, for example, that
we find stripes in striate cortex; it is a consequence of mapping a higher dimensional
space into a lower one.)

Typically, the activity φµ(x) at a cortical location µ(x) will reflect the degree of
presence of the feature x in the map’s input. Furthermore, the responses of neurons
are often broadly tuned, therefore the response at a location µ(x′) will generally be
a decreasing function r[d(x, x′)] of the distance d(x, x′), where d is some appropriate
metric on X . Therefore an input feature x will generate a response field φ = ξ(x)
given by

φµ(x′) = r[d(x, x′)].

If a number of features x1, . . . , xn are simultaneously present in the input, then the
activity in the map may be a superposition of the activities due to the individual
features:

ξ(x1) + · · ·+ ξ(xn).

Furthermore, a sensory or other input, represented as a subset X ′ ⊂ X of the feature
space, generates a corresponding field,

ξ(X ′) =

∫
X ′
ξ(x)dx

16

(with an appropriate definition of integration for X , which usually can be taken to be
a measure space). (See Sec. 5.5 for more on computation on superpositions of inputs
via topographic maps.)

The preceding discussion of cortical maps refers somewhat vaguely to the “ac-
tivity” of neurons, which requires clarification. In cortical maps the represented
microfeatures are correlated most closely with the location of the neuronal cell body,
which often interacts with nearby neurons. Therefore, when a cortical map is treated
mathematically as a field, there are several physical quantities that can be interpreted
as the field’s value φu at a particular cortical location u. Although the choice depends
somewhat on the purpose of the analysis, the most common interpretation of φu(t)
will be the instantaneous spiking frequency at time t of the neuron at location u. We
will refer to φ(t) ∈ Φ(Ω) as the neuronal field (at time t) associated with the neurons
u in the map Ω.

The relative phase of neural impulses is sometimes relevant to neural informa-
tion processing (Hopfield 1995). For example, the relative phase with which action
potentials arrive a neuron’s dendrites can determine whether or not the induced post-
synaptic potentials add. In these cases it may be convenient to treat neural activity
as a complex-valued field, ψ(t) ∈ ΦC(Ω), which can be written in polar form:

ψ(t) = ρ(t)eiφ(t).

Then the magnitude (or modulus) field ρ(t) may represent the impulse rate and the
phase (or argument) field φ(t) may represent the relative phase of the impulses. That
is, ρu(t) is the rate of neuron u (at time t) and φu(t) is its phase. For example,
in a bursting neuron (which generates impulses in clusters), ρ(t) can represent the
impulse rate within the clusters and φ(t) the relative phase of the clusters. More
generally, in a complex-valued neuronal field, the phase part may represent micro-
features of stimulus, while the magnitude part represent pragmatic characteristics
of the microfeatures, such as their importance, confidence, or urgency. (Such dual
representations, comprising semantics and pragmatics, are discussed in Sec. 5.7.)

4.2 Synaptic and Dendritic Fields

The surface of each neuron’s dendritic tree and soma (cell body) is complicated two-
dimensional manifold Ωm, and so the electrical field across the neuron’s membrane is
naturally treated as a two-dimensional potential field φ ∈ Φ(Ωm). Synaptic inputs
create electrical disturbances in this field, which, to a first approximation, propagate
passively according to the cable equations (Anderson 1995a, pp. 25–31). However,
there are also nonlinear effects due to voltage-gated ion channels etc. (Rumelhart,
McClelland & the PDP Research Group 1986, p. 381). Therefore the membrane field
obeys a nonlinear PDE (partial differential equation) dependent on a synaptic input
field ε:

M(ε, φ, φ̇, φ̈, . . .) = 0.

17

The electrical field φ on the membrane includes the field φa at the axon hillock a ∈ Ωm.
This voltage determines the rate at which the neuron generates action potentials (APs,
nerve impulses), which constitute the neuron’s contribution to a neuronal field. The
dependence of the impulse rate r on the membrane field, r(t) = Ar[φ(t)], which is
approximately linear (that is, the rate is proportional to the depolarization, relative
to the resting potential, at the axon hillock). To a first approximation, the dendritic
tree implements an approximately linear (adaptive) analog filter on its input field
(MacLennan 1993, 1994a). Some purposes require a more detailed analysis, which
looks at the time-varying action potential V (t), rather than at the instantaneous
impulse rate, as a function of the membrane field, V (t) = AV [φ(t)].

Many neurons have tens of thousands of synaptic inputs (Anderson 1995a, p. 304),
and so these quantitative properties can be treated as a field over a domain Ω, which
is a subset of the dendritic membrane. The post-synaptic potential εs at synapse
s is a result of the synaptic efficacy σs and the pre-synaptic axonal impulse rate
ζs. The synaptic efficacy is the composite effect of the number of receptors for the
neurotransmitter released by the incoming axon, as well as of other factors, such as
the dependence of neurotransmitter flux on the impulse rate. Some learning processes
(e.g., long-term potentiation) alter the synaptic efficacy field σ.

However, because synaptic transmission involves the diffusion of neurotransmitter
molecules across the synaptic cleft, the subsequent binding to and unbinding from
receptors, and the opening and closing of ion channels, the post-synaptic potential is
not a simple product, εs = σsζs. Rather, the synaptic system filters the input field.
To a first approximation we may analyze it as a linear system S:(

ε

ψ̇

)
= S(σ)

(
ζ
ψ

)
,

where ψ represents the internal state of the synaptic system (concentrations of neu-
rotransmitter in the clefts, receptor and ion channel states, etc.). The parameter σ
shows the system’s dependence on the synaptic efficacies. The preceding equation is
an abbreviation for the following system (in which we suppress the σ parameter):

ε = S11ζ + S12ψ,

ψ̇ = S21ζ + S22ψ,

in which the products are Hilbert-Schmidt integral operators (that is, the Sij are
fields operating on the input and state fields).

4.3 Axonal Projection Fields

Bundles of axons form projections from one brain region to another; through the
pattern of their connections they may effect certain field transformations (explained
below). The input is typically a neuronal field φ ∈ Φ(Ω) defined over the source region

18

Ω. At their distal ends the axons branch and form synapses with the dendritic trees of
the neurons in the destination region. Since each axon may form synapses with many
destination neurons, and each neuron may receive synapses from many axons, it is
convenient to treat all the synapses of the destination neurons as forming one large
synaptic system S, where the synaptic efficacies σu range over all the synapses u in
the destination region, u ∈ Ω′. Correspondingly we can consider the field ζ ∈ Φ(Ω′)
of pre-synaptic inputs ζu to all of these synapses. The axons and their synapses define
an axonal projection system P, which is, to a first approximation, a linear system:(

ζ
α̇

)
= P

(
φ
α

)
,

where α represents the internal state of the axonal projection system.
The function of axons is to transmit nerve impulses over relatively long distances

with no change of amplitude or waveform. However, there is a transmission delay,
and different axons in a projection may introduce different delays. Thus an axonal
projection may change the phase relationships of the input field, in addition to in-
troducing an overall delay. On the basis of our analysis the axonal projection as a
linear system, we can express the Laplace transform Z of the pre-synaptic field ζ(t)
in terms of the transfer function HS of the projection and the Laplace transform Φ
of the input field φ(t):

Z(s) = HS(s)Φ(s)

(where s is the conjugate variable of time). Note that all the variables refer to fields,
and so this equation means

Zu(s) =

∫
Ω

HS
uv(s)Φv(s)dv,

where HS
uv(s) ∈ ΦC(Ω′×Ω) is the (complex-valued) transfer function to synapse u

from input neuron v. Since the effects of the axons are pure delays, the transfer
function is imaginary:

HS
uv(s) = exp(−i∆uvs),

where ∆uv is the delay imposed by the axon from neuron v to synapse u. Thus the
delay field ∆ ∈ Φ(Ω′×Ω) defines the effect of the axonal projection on the input field.

The system S comprising all the synapses of the destination neurons is also char-
acterized by a transfer function HS(s); that is, E(s) = HS(s)Z(s), where E(s) is the
Laplace transform of the post-synaptic field ε(t). Therefore the combined effect of
the axonal projection and the synapses is E(s) = HSP(s)Φ(s), where the composite
transfer function is HSP(s) = HS(s)HP(s). Note that this a field equation, which
abbreviates

HSP
uv (s) =

∫
Ω′
HS

uw(s)HP
wvdw.

19

The transfer function HSP
uv (s) has a corresponding impulse response ηSP

uv (t), which
represents the post-synaptic response at u to a mathematical impulse (Dirac delta
function) injected at v. (For Dirac delta functions, see Glossary and Sec. 5.1.4.) The
impulse response characterizes the effect of signal transmission to u from v as follows:

εu(t) =

∫
Ω′
ηSP

uv (t)⊗ φv(t)dv,

where “⊗” represents convolution in the time domain. This may be abbreviated as a
field equation, ε(t) = ηSP(t)⊗ φ(t).

Since axonal projections largely determine the receptive fields of the destination
neurons, it will be worthwhile to consider the relation of the projection field to the
neuronal field at the destination region. Therefore, let ψw represent the output signal
of a destination neuron w in response to an input field φ. We may write

ψw(t) = Fw[ηSP(t)⊗ φ(t)],

where Fw represents the (possibly nonlinear) function computed by neuron w on the
subset of the post-synaptic signal ηSP(t) ⊗ φ(t) in its dendritic tree. Therefore, the
destination neuronal field is given by the field equation ψ = F [ηSP⊗φ]. Many neurons
behave as “leaky integrators” (Anderson 1995a, pp. 52–4), which are approximately
linear, and in these cases the combined effect of the axonal projection, synaptic field,
and destination neurons is a linear operator applied to the input signal, ψ(t) = Lφ(t).

5 Examples of Field Computation

5.1 Neural-Network-Like Computation

Many neural network approaches to artificial intelligence can be adapted easily to field
computation, effectively by taking the number of neurons in a layer to the continuum
limit. For example, as discussed in Sec. 3.2, ψ = s(Lφ+ β) (Eq. 2) is the field analog
of one layer of a neural net, that is, a continuum neural net, with interconnection
field L and bias field β.

5.1.1 Discrete Basis Function Networks

Radial basis function (RBF) networks are a familiar and useful class of artificial
neural networks, which have similarities to neural networks in the brain (Light 1992,
Powell 1985). Indeed, RBF networks are inspired by the observation that many
sensory neurons are tuned to a point in sensory space and that their response falls off
continuously with distance from that central point (recall Sec. 4.1). RBFs are usually
defined over finite dimensional spaces, but the extension to fields is straight-forward.
Therefore we will consider a set of functionals r1, r2, . . ., where rj : Φ(Ω) → [0, 1].

20

Typically we restrict our attention to finite sets of basis functionals, but we include
the infinite case for generality. The intent is that each rj is tuned to a different field
input ηj, its “focal field,” and that rj(φ) represents the closeness of φ to the focal
field ηj.

If all the RBFs have the same receptive field profile, that is, the same fall-off of
response with increasing distance from the focal field, then we can write rj(φ) =
r(‖φ− ηj‖), where the receptive field profile is defined by a r : [0,∞) → [0, 1] that is
monotonically decreasing with r(0) = 1 and r(x) −→ 0 as x −→∞.

As is well known, the inner product is frequently used as a measure of similarity.
Expanding the difference in terms of the inner product yields:

‖φ− ηj‖2 = ‖φ‖2 − 2〈φ | ηj〉+ ‖ηj‖2.

The inverse relation between the inner product and distance is especially obvious if,
as is often the case (see Sec. 5.7), the input and focal fields are normalized (‖φ‖ =
1 = ‖ηj‖); then:

‖φ− ηj‖2 = 2− 2〈φ | ηj〉.

Therefore, RBFs with an identical fall-off of response can be defined in terms of a
fixed function s : [−1, 1] → [0, 1] applied to the inner product, rj(φ) = s(〈φ | ηj〉),
where the monotonically increasing function s equals 1 when φ = ηj and equals 0
when the fields are maximally different (φ = −ηj). That is, for normalized fields
〈φ | ηj〉 ∈ [−1, 1], and so s(−1) = 0, s(1) = 1.

Such RBFs are closely related to familiar artificial neurons (Eq. 1). Indeed, we may
define rj(φ) = s(〈ηj | φ〉+ bj), where s : R → [0, 1] is a sigmoidal activation function
and bj is the bias term. Here the input φ to the neuron is a field, as is its receptive
field profile ηj, which is the focal field defined by the neuron’s interconnection field.

Generally, neurons are quite broadly tuned, and so individual RBFs do not charac-
terize the input very precisely, but with an appropriate distribution of focal fields the
collection of RBFs can characterize the input accurately, a process known as coarse
coding (e.g., Rumelhart, McClelland & the PDP Research Group 1986, pp. 91–6,
Sanger 1996). Therefore the discrete ensemble of RBFs compute a representation
p(φ) of the input given by pj(φ) = rj(φ).

When information is represented in some way we must consider the adequacy of the
representation for our information processing goals. In general, it is not necessary that
a representation function p preserve all characteristics and distinctions of the input
space; indeed often the function of representation is to extract the relevant features
of the input for subsequent processing. Nevertheless it will be worthwhile to consider
briefly RBF-like representations that do not lose any information. A Hilbert function
space is isomorphic (indeed, isometric) to the space `2 of square-summable sequences;
that is, there is a one-to-one correspondence between fields and the infinite sequences
of their generalized Fourier coefficients. Therefore let β1, β2, . . . be any orthonormal
(ON) basis of Φ(Ω) and define pj(φ) = 〈βj | φ〉. Define p : Φ(Ω) → `2 so that p(φ)

21

is the infinite sequence of generalized Fourier coefficients, (p1(φ), p2(φ), . . .). Mathe-
matically, we can always find an m such that the first m coefficients approximate the
fields as closely as we like; practically, physically realizable fields are band-limited,
and so they have only a finite number of nonzero Fourier coefficients. Therefore, we
may use pm : Φ(Ω) → Rm to compute the m-dimensional representations (relative to
an understood ON basis):

pm(φ) = (p1(φ), p2(φ), . . . , pm(φ))T.

5.1.2 Continua of Basis Functions

In the preceding section we looked at the field computation of a discrete, typically
finite, set of basis functionals. This is appropriate when the basis elements are rela-
tively few in number and there is no significant topological relation among them. In
the brain, however, large masses of neurons typically have a significant topological
relation (e.g., they may form a topographic map (Sec. 4.1), and so we are interested
in cases in which each point in an output field ψ is a result of applying a different
basis function to the input field. Suppose φ ∈ Φ(Ω) and ψ ∈ Φ(Ω′). For all u ∈ Ω′

we want ψu = R(u, φ), where R : Ω′×Φ(Ω) → Φ(Ω′). That is, R defines a family
of functionals in which, for each u, R(u,—) has a different focal field, which varies
continuously with u.

For example, suppose we want ψu to be an inner-product comparison of φ with
the focal field ηu: ψu = s(〈ηu | φ〉). Since 〈ηu | φ〉 =

∫
Ω
ηu

vφvdv, define the field
H ∈ Φ(Ω′×Ω) by Huv = ηu

v . Then a point in the output field is given by ψu = s[(Hφ)u],
and the entire field is computed by:

ψ = s(Hφ). (5)

This is, of course, the field analog of one layer of a neural net (Eq. 2), but with no
bias field. In a similar way we can define a continuum of RBFs: ψu = r(‖φ− ηu‖).

5.1.3 Spatial Correlation and Convolution

A special case of Eq. 5 rises when all the focal fields ηu are the same shape but
centered on different points u ∈ Ω. That is, ηu

v = %(v − u), where % ∈ Φ(Ω) is the
common shape of the focal fields (their receptive field profile). In this case,

〈ηu | φ〉 =

∫
Ω

%(v − u)φ(v)dv.

This is simply the cross-correlation of % and φ, which we may write % ? φ. In general,

(ψ ? φ)u =

∫
Ω

ψ(v − u)φ(v)dv, (6)

22

which gives the correlation of ψ and φ at a relative displacement u. Therefore in this
case the RBF field is given by ψ = s(% ? φ). If the receptive field % is symmetric,
%(−x) = %(x), then

〈ηu | φ〉 =

∫
Ω

%(u− v)φ(v)dv,

which is %⊗ φ, the convolution of % and φ. In general,

(ψ ⊗ φ)u =

∫
Ω

ψ(u− v)φ(v)dv. (7)

Hence ψ = s(% ⊗ φ) when % is symmetric. Computation of these fields by means of
convolution or correlation rather than by the integral operator (Eq. 5) may be more
convenient on field computers that implement convolution or correlation directly.

5.1.4 Approximation of Spatial Integral and Differential Operators

Correlation and convolution (Eqs. 6, 7) can be used to implement many useful linear
operators, in particular spatial integral and differential operators. Of course these
linear operations can be implemented by a field product with the appropriate Hilbert-
Schmidt kernel, but convolution and correlation make use of lower dimensional fields
than the kernel.

For example, suppose we want to compute the indefinite spatial integral of a field
φ ∈ Φ(R). That is, we want to compute ψ =

∫
φ defined by ψx =

∫ x

−∞ φydy. This
can be computed by the convolution ψ = υ ⊗ φ where υ is the Heaviside or unit step
field on R:

υx =

{
1 if x ≥ 0
0 if x < 0

.

The Heaviside field is discontinuous, and therefore it may not be physically realizable,
but obviously it may be approximated arbitrarily closely by a continuous field.

Spatial differentiation is important in image processing in nervous systems and
artificial intelligence systems. In the one-dimesional case, for φ ∈ Φ(R) we want
φ′ ∈ Φ(R), where φ′u = dφu/du. To express this as a convolution we may begin by
considering the Dirac delta function or unit impulse function δ, which is the derivative
of the unit step function, δ(x) = υ′(x). This is a generalized function or distribution
with the following properties:

δ(0) = +∞,

δ(x) = 0, x 6= 0,∫ +∞

−∞
δ(x)dx = 1.

Obviously such a function is not physically realizable (more on that shortly), but
such functions exist as limit objects in Hilbert spaces. The Dirac delta satisfies the

23

following “sifting property”:

φx =

∫ +∞

−∞
δ(x− y)φ(y)dy;

that is, the Dirac delta is an identity for convolution, φ = δ ⊗ φ. Now observe:

φ′x = Dx

∫ +∞

−∞
δ(x− y)φ(y)dy

=

∫ +∞

−∞
δ′(x− y)φ(y)dy,

where δ′ is the derivative of the Dirac delta. It is called the unit doublet and has
the property of being zero everywhere except infinitesimally to the left of the origin,
where it is +∞, and infinitesimally to the right of the origin, where it is −∞. Thus
the spatial derivative of a field can be computed by convolution with the unit doublet:
φ′ = δ′ ⊗ φ.

Obviously, neither the unit impulse (Dirac delta) nor the unit doublet is physically
realizable, but both may be approximated arbitrarily closely by physically realizable
fields. For example, the delta function can be approximated by a sufficiently sharp
Gaussian field γ (i.e., γx =

√
r/π exp(−rx2) for sufficiently large r). Corresponding

to the sifting property φ = δ ⊗ φ we have Gaussian smoothing φ ≈ γ ⊗ φ, which is
a typical effect of the limited bandwidth of physically realizable fields in cortex and
other physical media. Similarly, the unit doublet can be approximated by a derivative
of Gaussian (DoG) field γ′, where γ′x = dγx/dx. Thus, the spatial derivative can be
approximated the convolution φ′ ≈ γ′ ⊗ φ. Indeed, in the nervous system we find
neurons with approximately DoG receptive field profiles. (These derivative formulas
are perhaps more intuitively expressed in terms of correlation, φ′ = (−δ′) ? φ ≈
(−γ′) ? φ, since this is more easily related to the difference, φx+ε − φx−ε.)

If ψ is a two-dimensional field, ψ ∈ Φ(R2), it is easy to show that the partial
derivative along the first dimension can be computed by convolution with δ′ ∧ δ,
and along the second by convolution with δ ∧ δ′. The partial derivatives may be
approximated by convolutions with γ′ ∧ γ and γ ∧ γ′. The divergence of a field can
be computed by a two-dimensional convolution with the sum of these fields:

∇ · ψ = (δ′ ∧ δ + δ ∧ δ′)⊗ ψ ≈ (γ′ ∧ γ + γ ∧ γ′)⊗ ψ.

Similarly the gradient is

∇ψ = [(δ′ ∧ δ)⊗ ψ]i + [(δ ∧ δ′)⊗ ψ]j,

where i ∈ ΦR2(R2) is a constant vector field of unit vectors in the x direction, i(x,y) =
(1, 0), and j is a similar field in the y direction. It is approximated by

∇ψ ≈ [(γ′ ∧ γ)⊗ ψ]i + [(γ ∧ γ′)⊗ ψ]j. (8)

24

To compute the Laplacian we need the second partial derivatives, but note that for
a one-dimensional field φ′′ = δ′ ⊗ (δ′ ⊗ φ) = (δ′ ⊗ δ′) ⊗ φ = δ′′ ⊗ φ, where δ′′ is the
second derivative of the Dirac function (a “unit triplet”). Hence, for two-dimensional
ψ

∇2ψ = (δ′′ ∧ δ + δ ∧ δ′′)⊗ ψ ≈ (γ′′ ∧ γ + γ ∧ γ′′)⊗ ψ, (9)

where γ′′ is the second derivative of the Gaussian, a typical (inverted) “Mexican hat
function” with the center-surround receptive-field profile often found in the nervous
system. These formulas extend in the obvious way to higher-dimensional fields.

5.2 Change of Field Domain

We have seen that physically realizable linear operators are integral operators, and
therefore can be computed by field products of the form Kφ. However, the kernel
K might not be physically realizable if its dimension is too high. For example,
suppose L : Φ(Ω) → Φ(Ω) is a linear operator on two dimensional visual images;
that is, Ω is a bounded subset of two-dimensional Euclidean space. Its kernel K,
satisfying Kφ = L(φ), will be a four-dimensional field K ∈ Φ(Ω×Ω), and therefore
physically unrealizable. Therefore we need means for realizing or approximating high-
dimensional fields in three or fewer spatial dimensions.

The simplest way to accomplish this is to represent fields of higher dimensional
spaces by corresponding fields over lower dimensional spaces. For example, to repre-
sent φ ∈ Φ(Ω) by ψ ∈ Φ(Ω′), suppose β1, β2, . . . is an ON basis for Φ(Ω), as η1, η2, . . . is
for Φ(Ω′). Then, let the generalized Fourier coefficients of φ be used as the coefficients
to compute a corresponding ψ. Observe:

ψ =
∑

k

ηk〈βk | φ〉 =
∑

k

(ηk ∧ βk)φ.

(Of course, a finite sum is sufficient for physically realizable fields.) Therefore the
change of basis can be implemented by the kernel K =

∑
k ηk ∧ βk. By this means,

any Hilbert-Schmidt operator on two-dimensional fields can be implemented by a
physically realizable field product: represent the input by a one-dimensional field,
generate the one-dimensional representation of the output by a product with a two-
dimensional kernel, and convert this representation to the output field. Specifically,
suppose φ ∈ Φ(Ω), ψ ∈ Φ(Ω′), and L : Φ(Ω) → Φ(Ω′) is a Hilbert-Schmidt linear
operator. The three-dimensional kernel H =

∑
k ηk ∧ βk ∈ Φ([0, 1]×Ω) will be used

to generate a one-dimensional representation of the two-dimensional input, Hφ ∈
Φ([0, 1]). Similarly, the two-dimensional output will be generated by Θ =

∑
j ζj∧ηj ∈

Φ(Ω′×[0, 1]), where ζ1, ζ2, . . . is an ON basis for Φ(Ω′). It is easy to show that the
required two-dimensional kernel K ∈ Φ([0, 1]2) such that L = ΘKH is just

K =
∑
jk

〈ζj | Lβk〉(ηj ∧ ηk).

25

We have seen (Sec. 5.1) that field computation can often be implemented by
neural-network-style computation on finite-dimensional spaces. For example, a linear
field transformation (of Hilbert-Schmidt type) can be factored through the eigenfield
basis. Let ε1, ε2, . . . be the eigenfields of L with corresponding eigenvalues e1, e2, . . .:
Lεk = ekεk. The eigenfields can be chosen to be orthonormal (ON), and, since Φ(Ω)
is a Hilbert space, only a finite number of the eigenvalues are greater than any fixed
bound, so φ can be approximated arbitrarily closely by a finite sum φ ≈

∑m
k=1 ckεk,

where ck = 〈εk | φ〉; that is, φ is represented by the finite dimensional vector c.
The discrete set of coefficients c1, . . . , cm is not a field because there is no significant
topological relationship among them; also, typically, m is relatively small.

The output ψ is computed by a finite sum, ψ ≈
∑m

k=1 εkekck. In terms of neural
computation, we have a finite set of neurons k = 1, . . . ,m whose receptive field
profiles are the eigenfields, so that they compute ekck = ek〈εk | φ〉. The outputs
of these neurons amplitude-modulate the generation of the individual eigenfields εk,
whose superposition yields the output ψ.

It is not necessary to factor the operator through the eigenfield basis. To see
this, suppose L : Φ(Ω) → Φ(Ω′) and that the fields βk are an ON basis for Φ(Ω)
and that the fields ζj are an ON basis for Φ(Ω′). Represent the input by a finite-
dimensional vector c, where ck = 〈βk | φ〉. Then the output ψ can be represented
by the finite dimensional vector d, where dj = 〈ζj | ψ〉. (Since the input and output
spaces are both Hilbert spaces, only a finite number of these coefficients are greater
than any fixed bound.) It is easy to show d = Mc, where Mjk = 〈ζj | Lβk〉 (the
Hilbert-Schmidt theorem). In neural terms, a first layer of neurons with receptive
field profiles βk compute the discrete representation ck = 〈βk | φ〉. Next, a layer of
linear neurons computes the linear combinations dj =

∑m
k=1Mjkck in order to control

the amplitudes of the output basis fields in the output superposition ψ ≈
∑n

j=1 djζj.
In this way, an arbitrary linear field transformation may be computed through a
neural representation of relatively low dimension.

If a kernel has too high dimension to be physically realizable, it is not neces-
sary to completely factor the product through a discrete space; rather, one or more
dimensions can be replaced by a discrete set of basis functions and the others per-
formed by field computation. To see the procedure, suppose we have a linear operator
L : Φ(Ω) → Φ(Ω′) with kernel K ∈ Φ(Ω′×Ω), where Ω = Ω1×Ω2 is of too great di-
mension. Let ψ = Kφ and observe

ψu =

∫
Ω

Kuvφvdv =

∫
Ω1

∫
Ω2

Kuxyφx(y)dydx,

where we consider φv = φxy as a function of y, φx(y). Expand φx in terms of an ON
basis of Φ(Ω2), β1, β2, . . .:

φx =
∑

k

〈φx | βk〉βk.

26

Note that

〈φx | βk〉 =

∫
Ω2

φxyβk(y)dy = (φβk)x,

where φβk ∈ Φ(Ω1). Rearranging the order of summation and integration,

ψu =
∑

k

∫
Ω1

∫
Ω2

Kuxyβk(y)(φβk)xdydx =
∑

k

[Kβk(φβk)]u.

Hence, ψ =
∑

k Kβk(φβk). Let Jk = Kβk to obtain a lower-dimensional field compu-
tation:

L(φ) =
∑

k

Jk(φβk).

Note that Jk ∈ Φ(Ω′×Ω1) and all the other fields are of lower dimension than K ∈
Φ(Ω′×Ω). As usual, for physically realizable fields, a finite summation is sufficient.

We can discretize Φ(Ω1) by a similar process, which also can be extended straight-
forwardly to cases where several dimensions must be discretized. Normally we will
discretize the dimension that will have the fewest generalized Fourier coefficients,
given the bandwidth of the input fields.

The foregoing example discretized one dimension of the input space, but it is also
possible to discretize dimensions of the output space. Therefore suppose L : Φ(Ω) →
Φ(Ω′) with kernel K ∈ Φ(Ω′×Ω), where Ω′ = Ω1×Ω2 is of too great dimension.
Suppose ζ1, ζ2, . . . are an ON basis for Φ(Ω1). Consider ψu = ψxy as a function of x,
expand, and rearrange:

ψxy =
∑

k

ζk(x)

∫
Ω1

ζk(x
′)ψx′ydx

′

=
∑

k

ζk(x)

∫
Ω

∫
Ω1

ζk(x
′)Kx′yvdx

′φvdv

=
∑

k

ζk(x)[(ζkK)φ]y.

Hence ψ =
∑

k ζk ∧ [(ζkK)φ]. Let Jk = ζkK ∈ Φ(Ω2×Ω) and we can express the
computation with lower dimensional fields:

L(φ) =
∑

k

ζk ∧ Jkφ.

Other approaches to reducing the dimension of fields are described elsewhere (MacLennan
1990).

The converse procedure, using field computation to implement a matrix vector
product, is also useful, since a field computer may have better facilities for field
computation than for computing with vectors. Therefore suppose M is an m×n
matrix, c ∈ Rn, and that we want to compute d = Mc by a field product ψ = Kφ.

27

The input vector will be represented by φ ∈ Φ(Ω), where we choose a field space Φ(Ω)
for which the first n ON basis elements β1, . . . , βn are physically realizable. The field
representation is given by φ =

∑n
k=1 ckβk. Analogously, the output is represented

by a field ψ ∈ Φ(Ω′) given by ψ =
∑m

j=1 dkζk, for ON basis fields ζ1, . . . , ζm. The
required kernel K ∈ Φ(Ω′×Ω) is given by

K =
m∑

j=1

n∑
k=1

Mij(ζj ∧ βk).

To see this, observe:

Kφ =
∑
jk

Mjk(ζj ∧ βk)φ

=
∑
jk

Mjkζj〈βk | φ〉

=
∑

j

ζj
∑

k

Mjkck

=
∑

j

ζjdj.

5.3 Diffusion Processes

Diffusion processes are useful in both natural and artificial intelligence. For example,
it has been applied to path planning through a maze (Steinbeck, Tóth & Showalter
1995) and to optimization and constraint-satisfaction problems, such as occur in image
processing and motion estimation (Miller, Roysam, Smith & O’Sullivan 1991, Ting &
Iltis 1994). Natural systems, such as developing embryos and colonies of organisms,
use diffusion as a means of massively parallel search and communication.

A simple diffusion equation has the form φ̇ = d∇2φ with d > 0. On a continuous-
time field computer that provides the Laplacian operator (∇2) diffusion can be im-
plemented directly by this equation. With sequential computation, the field will be
iteratively updated in discrete steps:

φ := φ+ d∇2φ.

If the Laplacian is not provided as a primitive operation, then its effect can be ap-
proximated by a spatial convolution with a suitable field % (Sec. 5.1.3). In sequential
computation we may use φ := (1 − d)φ + d% ⊗ φ, where % is an appropriate two-
dimensional Gaussian or similarly shaped field. In continuous time, we may use
φ̇ = d%⊗ φ, where % = γ′′ ∧ γ + γ ∧ γ′′ (Eq. 9, Sec. 5.1.4), where γ is an appropriate
one-dimensional Gaussian and γ′′ is its second derivative (or similarly shaped fields).

Reaction-diffusion systems combine diffusion in two or more fields with local non-
linear reactions among the fields. A typical reaction-diffusion system over fields

28

φ1, . . . , φn ∈ Φ(Ω) has the form:

φ̇1 = F1(φ
1, . . . , φn) + d1∇2φ1,

φ̇2 = F2(φ
1, . . . , φn) + d2∇2φ2,

...

φ̇n = Fn(φ1, . . . , φn) + dn∇2φn,

where the dk > 0, and the local reactions Fk apply at each point u ∈ Ω of the fields:
Fk(φ

1
u, . . . , φ

n
u). With obvious extension of the notation, this can be written as a

differential equation on a vector field:

φ̇ = F(φ) + D∇2φ,

where D = diag(d1, . . . , dn) is a diagonal matrix of diffusion rates.
Embryological development and many other biological processes of self-organization

are controlled by local reaction to multiple diffusing chemicals (e.g., Bar-Yam 1997,
ch. 7, Solé & Goodwin 2000, ch. 3); these are examples of natural field computation, a
subject pioneered by Turing (1952). For example, simple activator-inhibitor systems
can generate Turing patterns, which are reminiscent of animal skin and hair-coat pig-
mentation patterns (e.g., Bar-Yam 1997, ch. 7). In the simplest case, these involve
an activator (α) and an inhibitor (β), which diffuse at different rates, and a nonlinear
interaction which increases both when α > β, and decreases them otherwise. For
example (Bar-Yam 1997, p. 668):

α̇ =
k1α

2

β(1 + k5α2)
− k2α+ dα∇2α,

β̇ = k3α
2 − k4β + dβ∇2β.

Reaction-diffusion systems have been applied experimentally in several image-
processing applications, where they have been used to restore broken contours, detect
edges, and improve contrast (Adamatzky 2001, pp. 26–31). In general, diffusion
accomplishes (high-frequency) noise filtering and the reaction is used for contrast
enhancement.

A Adamatzky and his colleagues have used chemical implementation of reaction-
diffusion systems to construct Voronoi diagrams around points and other two-dimensional
objects (Adamatzky, De Lacy Costello & Asai 2005, ch. 2). Voronoi diagrams have
been applied to collision-free path planning, nearest-neighbor pattern classification,
and many other problems (Adamatzky, De Lacy Costello & Asai 2005, pp. 32–3).
They also demonstrated a chemical field computer on a mobile robot to implement a
reaction-diffusion path planning (Adamatzky, De Lacy Costello & Asai 2005, ch. 4).

Excitable media are an important class of reaction-diffusion system, which are
found, for example, in the brain, cardiac tissue, slime mold aggregation, and many

29

other natural systems. In the simplest cases these comprise an excitation field ε and
a recovery field ρ coupled by local nonlinear reactions:

ε̇ = F (ε, ρ) + dε∇2ε,

ρ̇ = G(ε, ρ) + dρ∇2ρ.

Typically G(e, r) is positive for large e and negative for large r, while along the
nullcline F (e, r) = 0, r has a roughly cubic dependence on e, with F (e, r) < 0 for
large values of r and > 0 for small ones. The intersection of the nullclines defines the
system’s stable state, and small perturbations return to the stable state. However
excitation above a threshold will cause the excitation to increase to a maximum,
after which the system becomes first refractory (unexcitable), then partially excitable
with an elevated threshold, and finally back to its excitable, resting state. Excitation
spreads to adjacent regions, but the refractory property assures that propagation takes
the form of a unidirectional wave of constant amplitude. Characteristic circular and
spiral waves appear in two-dimensional media. Excitable media are useful for rapid,
efficient communication. For example, masses of slime mold amoebas (Dictyostelium
discoideum) act as an excitable medium in which the propagating waves accelerate
aggregation of the amoebas into a mound (Solé & Goodwin 2000, pp. 21–4).

Many self-organizing systems and structures in biological systems involve reaction-
diffusion processes, chemical gradients, excitable media, and other instances of field
computation.

For example, Deneubourg (1977) has described the construction of equally-spaced
pillars in termite nests in terms of three interrelated two-dimensional fields: φ, the
concentration of cement pheromone in the air, σ, the amount of deposited cement with
active pheromone, and τ the density of termites carrying cement (see also Bonabeau,
Dorigo & Theraulaz 1999, pp. 188–93, Camazine, Deneubourg, Franks, Sneyd &
Bonabeau 2001, pp. 399–400, and Solé & Goodwin 2000, pp. 151–7). The amount
of deposited cement with pheromone increases as it is deposited by the termites and
decreases as the pheromone evaporates into the air: σ̇ = k1τ−k2σ. The pheromone in
the air is increased by this evaporation, but also decays and diffuses at specified rates:
φ̇ = k2σ−k4φ+dφ∇2φ. Laden termites enter the system at a uniform rate r, deposit
their cement (k1), wander a certain amount (modeled by diffusion at rate dτ), but
also exhibit chemotaxis, that is, motion up the gradient of pheromone concentration:

τ̇ = r − k1τ + dτ∇2τ − k5∇ · (τ×∇φ),

where × represents the point-wise (local) product, (φ×ψ)u = φuψu. See Figure 1 for
this model expressed as a field computation.

In addition to reaction-diffusion systems, chemical gradients, chemotaxis, and
other field processes are essential to self-organization in morphogenesis, which can be
understood in terms of field computation (Davies 2005).

30

∇

× ∇⋅ –k5 ∫

1

∇2 dτ

–k1

0

∫
k1

–k2

∫

0

k2

dφ

–k4

∇2

σ0
Φ(R2)

ΦR2(R
2)

Φ(R2)

Φ(R2)

Φ(R2)

σ

τ

φ

Φ(R2)

ΦR2(R
2)

r

Figure 1: Field computation of Deneubourg’s model of pillar construction by termites

31

5.4 Motion in Direction Fields

For an example of field computation in motor control, we may consider Georgopoulos
(1995) explanation of the population coding of direction. In this case the feature
space D represents directions in three-dimensional space, which we may identify with
normalized three-dimensional vectors d ∈ D. Each neuron u ∈ Ω has a preferred
direction ηu ∈ D to which it responds most strongly, and it is natural to define u
as the location in the map corresponding to this direction, u = µ(ηu). However,
Georgopoulos has shown that the direction is represented (more accurately and ro-
bustly) by a population code, in which the direction is represented by a neuronal
field. Specifically, the activity φu of a neuron (above a base level) is proportional to
the cosine of the angle between its preferred direction ηu and the direction d to be
encoded. In particular, since the cosine of the angle between normalized vectors is
equal to their scalar product, φu ∝ d · ηu. A neurally plausible way of generating
such a field is with a layer of radial basis functions (Sec. 5.1.2), φu = r(‖d − ηu‖),
where r(x) = 1− x2/2; then φu = d · ηu (MacLennan 1997).

Field computation is also used to update direction fields in the brain. For example,
a remembered two-dimensional location, relative to the retina, must be updated when
the eye moves (Droulez & Berthoz 1991a, Droulez & Berthoz 1991b). In particular,
if the direction field φ has a peak representing the remembered direction, and the
eye moves in the direction v, then this peak has to move in the direction −v in
compensation. More specifically, if v is a two-dimensional vector defining the direction
of eye motion, then the change in the direction field is given by the differential field
equation, φ̇ = v · ∇φ, where the gradient is a two-dimensional vector field (retinal
coordinates). (That is, ∂φ(d, t)/∂t = v · ∇dφ(d, t).) To see this, note that behind
the moving peak ∇φ and −v point in the same direction, and therefore (−v) · ∇φ
is positive; hence φ̇ is negative. Conversely, φ̇ is positive in front of the peak. Each
component of the gradient may be approximated by convolution with a derivative-of-
Gaussian (DoG) field, in accord with Eq. 8, which can be computed by neurons with
DoG receptive field profiles. (Additional detail can be found elsewhere (MacLennan
1997).)

Anderson (1995b) describes how transformations between retinal coordinates and
head- or body-centered coordinates can be understood as transformations between
field representations in area 7a of the posterior parietal cortex. For example, a min-
imum in a field may represent the destination of a motion (such as a saccade) in
head-centered space, and then the gradient represents paths from other locations
to that destination (MacLennan 1997). Further, the effects of motor neurons often
correspond to vector fields (Bizzi & Mussa-Ivaldi 1995, Goodman & Anderson 1989).

5.5 Nonlinear Computation via Topographic Maps

As discussed in Secs. 4.1 and 5.4, the brain often represents scalar or vector quantities
by topographic or computational maps, in which fields are defined over the range of

32

possible values and a particular value is represented by a field with a peak of activity at
the corresponding location. That is, a value x ∈ Ω is represented by a field φx ∈ Φ(Ω)
that is distinctly peaked at x. For mathematical convenience we can idealize φx as a
Dirac delta function (unit impulse) centered at x: δx, where δx(u) = δ(u− x). That
is, δx is an idealized topographic representation of x.

For every function f : Ω → Ω′, with y = f(x), there is a corresponding linear
transformation of a topographic representation of its input, δx ∈ Φ(Ω), into a topo-
graphic representation of its output, δy ∈ Φ(Ω′). It is easy to show that the kernel
K ∈ Φ(Ω′×Ω) of this operation is

K =

∫
Ω

δf(x) ∧ δxdx,

which is essentially a graph of the function f . That is, we can compute an arbitrary,
possibly nonlinear function y = f(x) by a linear operation on the corresponding
computational maps, δy = Kδx.

To avoid the use of Dirac delta functions, we can expand them into generalized
Fourier series; for example, δx =

∑
k βk〈βk | δx〉 =

∑
k βkβk(x). This expansion yields

K =

∫
Ω

(∑
j

ζjζj[f(x)]

)
∧

(∑
k

βkβk(x)

)
dx

=
∑
j,k

ζj ∧ βk

∫
Ω

ζj[f(x)]βk(x)dx

=
∑
j,k

ζj ∧ βk〈ζj ◦ f | βk〉,

where ζj ◦ f is the composition of ζj and f : (ζj ◦ f)(x) = ζj[f(x)]. A physically
realizable approximation to K is obtained by limiting the summations to finite sets
of physically realizable basis functions. (This has the effect of blurring the graph of
f .)

Computation on topographic maps has a number attractive advantages. These are
simple mathematical consequences of the linearity of topographic computation, but
it will be informative to look at their applications in neural information processing.
For example, transformation of input superpositions compute superpositions of the
corresponding outputs in parallel: K(δx + δx′) = δf(x) + δf(x′) (recall Sec. 4.1).

Since an input value is encoded by the position of the peak of a field rather than
by its amplitude, the amplitude can be used for pragmatic characteristics of the input,
such as its importance or certainty (see Sec. 5.7). These pragmatic characteristics are
preserved by topographic computation, K(pδx) = pδf(x). Therefore if we have two
(or more) inputs x, x′ ∈ Ω with corresponding pragmatic scale factors p, p′ ∈ R, then
the corresponding outputs carry the same factors, K(pδx + p′δx′) = pδf(x) + p′δf(x′).
For example, if the inputs are weighted by confidence or importance, then the corre-
sponding outputs will be similarly weighted. Further, if several inputs generate the

33

same output, then their pragmatic scale factors will sum; for example if f(x) = f(x′),
then K(pδx + p′δx′) = (p + p′)δf(x). Thus, a number of inputs that are individu-
ally relatively unimportant (or uncertain) could contribute to a single output that is
relatively important (or certain).

Finite superpositions of inputs are easily extended to the continuum case. For
example, suppose that φx is the pragmatic scale factor associated with x, for all x ∈ Ω
(for example, φx might be the probability of input x). We can think of the field φ as
a continuum of weighted delta functions, φ =

∫
Ω
φxδxdx. Applying the kernel to this

field yields a corresponding continuum of weighted outputs, Kφ =
∫

Ω
φxδf(x)dx ∈

Φ(Ω′), where each point of the output field gives the total of the pragmatic scale
factors (e.g., probabilities) of the inputs leading to the corresponding output value:

(Kφ)y =

∫
{x|y=f(x)}

φxdx.

Therefore, by topographic computation, a transformation of an input probability
distribution yields the corresponding output probability distribution.

We have remarked that the brain often uses coarse coding, in which a population of
broadly-tuned neurons collectively represent a value with high precision (Sec. 5.1.1).
If φ is the coarse coding of input x, then its maximum will be at x and its amplitude
will decrease with distance from x, φu = r(‖u − x‖). Similarly, Kφ will be a coarse
coding of the output f(x) induced by the coarse coding of the input. As discussed in
Sec. 5.1.3, if all the neurons have the same receptive field profile %, then the effect of
coarse coding is a convolution or correlation of % with the input map.

5.6 Gabor Wavelets and Coherent States

In 1946 D Gabor presented a theory of information based on application to arbitrary
signals of the Heisenberg-Weyl derivation of the quantum mechanical Uncertainty
Principle (Gabor 1946). Although he derived it for functions of time, it is easily gen-
eralizable to fields (square-integrable functions) over any finite-dimensional Euclidean
space (reviewed elsewhere (MacLennan 1991)). Therefore, for Ω ⊂ Rn, let ψ ∈ Φ(Ω)
be an arbitrary (possible complex-valued) field (assumed, as usual, to have a finite
norm, that is, to be square-integrable; see Sec. 3.1). To characterize this field’s local-
ity in space, we can measure its spread (or uncertainty) along each of the n spatial
dimensions xk by the root mean square deviation of xk (assumed to have 0 mean):

∆xk = ‖xkψ(x)‖ =

√∫
Ω

ψ∗
xx

2
kψxdx,

where x = (x1, . . . , xn)T ∈ Rn. Consider also the Fourier transform Ψ(u) of ψ(x),
the spread or uncertainty of which, in the frequency domain, can be quantified in a

34

similar way:

∆uk = ‖(uk − ū)Ψ(u)‖ =

√∫
Ω

Ψ∗
uu

2
kΨudu.

It is straight-forward to show that the joint localization in any two conjugate variables
(i.e., xk in the space domain and uk in the spatial-frequency domain) is limited by
the Gabor Uncertainty Principle: ∆xk∆uk ≥ 1/4π.

This principle limits the information carrying capacity of any physically-realizable
signal, so it is natural to ask if any function achieves the theoretical minimum,
∆xk∆uk = 1/4π. Gabor showed that this minimum is achieved by what we may
call the Gabor elementary fields, which have the form:

Γpu(x) = exp
[
−π‖A(x− p)‖2

]
exp[2πiu · (x− p)].

The second, imaginary exponential defines a plane wave originating at p with a
frequency and direction determined by the wave vector u. The first exponential
defines a Gaussian envelope centered at p with a shape determined by the diagonal
aspect matrix A = diag(α1, . . . , αn), which determines the spread of the function along
each of the space and frequency axes:

∆xk =
αk

2
√
π
, ∆uk =

α−1
k

2
√
π
.

Gaussian-modulated complex exponentials of this form correspond to the coherent
states of quantum mechanics.

Each Gabor elementary field defines a cell in 2n-dimensional “Gabor space” with
volume (4π)−n. He explained that these correspond to elementary units of infor-
mation, which he called logons, since a field of finite spatial extent and bandwidth
occupies a finite region in Gabor space, which determines its logon content. It may
be computed by

N =
n∏

k=1

Xk

∆xk

Uk

∆uk

= (4π)n

n∏
k=1

XkUk,

where Xk is the width of the field along the kth axis, and Uk its bandwidth on that
axis, that is, a field’s logon content is (4π)n times its Gabor-space volume.

The set of Gabor elementary functions are complete, and so any finite-energy func-
tion can be expanded into a series (Heil & Walnut 1989, pp. 656–7): ψ =

∑N
k=1 ckΓk,

where Γ1, . . . ,ΓN are the Gabor fields corresponding to the cells occupied by ψ, and
the ck are complex coefficients. These N complex coefficients are the information
conveyed by ψ, each corresponding to a logon or degree of freedom in the signal.

The Gabor elementary functions are not orthogonal, and so the coefficients cannot
be computed by the inner product, 〈Γk | ψ〉. (They do form a tight frame, a very useful
but weaker condition, under some conditions (Daubechies, Grossman & Meyer 1986,
p. 1275); see MacLennan (1991) for additional discussion of the non-orthogonality

35

issue.) On the other hand, it is easy to find the coefficients by minimization of the
approximation error (Daugman 1993). Let ψ̂(c) =

∑N
k=1 ckΓk and define the error

E = ‖ψ̂(c)−ψ‖2. This is a standard least-squares problem (cf. Sec. 5.10), which can
be solved by matrix calculation or by gradient descent on the error surface. It is easy
to show that ∂E/∂ck = 2〈Γk | ψ̂(c) − ψ〉, and therefore gradient descent is given by
ċk = r〈Γk | ψ − ψ̂(c)〉 for some rate r > 0.

There is considerable evidence (reviewed elsewhere (MacLennan 1991)) that ap-
proximate Gabor representations are used in primary visual cortex, and there is also
evidence that Gabor representations are used for generating motor signals (Pribram
1991, pp. 139–44, Pribram, Sharafat & Beekman 1984).

5.7 Information Fields

Hopfield (1995) observed that in some cases a neural impulse train can be understood
as transmitting two signals: (1) the information content, encoded in the phase of the
impulses relative to some global or local “clock,” and (2) some other pragmatic char-
acteristic of the information (such as importance, urgency, or confidence), encoded in
the rate of the impulses. Such a combination of phase-encoded semantics and rate-
encoded pragmatics may be common in the nervous system. Already in his Laws of
Thought (1854), George Boole recognized idempotency as characteristic of informa-
tion: repeating a message does not change its meaning, but it may affect its pragmatic
import. The distinction is implicit in our typographic conventions; consider:

Yes No

Yes No

The horizontal distinction is semantic, but the vertical is pragmatic. More generally,
following a distinction that has been made in quantum mechanics (Bohm & Hiley
1993, pp. 35–6), we may say that the form of the signal guides the resulting action,
but its magnitude determines the amount of action.

Similarly in field computation it may be useful to represent information by a
field’s shape and pragmatics by its magnitude; that is, pragmatics depends on the
total amount of “stuff,” semantics on it disposition (also a holistic property). The
magnitude of such an information field is given by its norm ‖ψ‖, where we normally
mean the inner-product norm of the Hilbert space, ‖ψ‖2 = 〈ψ | ψ〉 (which we can
think of as “energy”), but other norms may be appropriate, depending on the relevant
sense of the “amount” of action. The semantics of such fields is determined by their
form, which we may identify with the normalization of the field, N(ψ) = ψ/‖ψ‖
(for nonzero fields). Idempotency is expressed by the identity N(zψ) = N(ψ) for all
z 6= 0.

Therefore, it is reasonable that the entropy of a field depends on its shape, but

36

not its magnitude:

S(ψ) =

∫
Ω

ψu

‖ψ‖
log

ψu

‖ψ‖
du =

∫
Ω

N(ψ)u logN(ψ)udu = 〈N(ψ) | logN(ψ)〉.

It is perhaps unsurprising that similar issues arise in quantum mechanics and field
computation, for they are both formulated in the language of Hilbert spaces. For
example, a quantum mechanical state ψ is taken to be undetermined with respect
to magnitude, so that zψ is the same state as ψ for any nonzero complex number z
(Dirac 1958, p. 17). Therefore, the state is conventionally taken to the normalized,
‖ψ‖ = 1, so that its square is a probability density function, ρx = |ψx|2.

Independence of magnitude is also characteristic of the quantum potential, which
led Bohm & Hiley (1993) to characterize this field as active information. For example,
if we write the wave function in polar form, ψx = Rxe

iSx/h, then the motion of a single
particle is given by (Bohm & Hiley 1993, pp. 28–9):

∂Sx

∂t
+

(∇Sx)
2

2m
+ Vx +Qx = 0,

where the quantum potential is defined:

Qx = − ~2

2m

∇2Rx

Rx

.

Since the Laplacian ∇2Rx is scaled by Rx, the quantum potential depends only on the
local form of the wavefunction ψ, not on its magnitude. From this perspective, the
particle moves under its own energy, but the quantum potential controls the energy.

5.8 Field Representations of Discrete Symbols

Quantum field theory treats discrete particles as quantized excitations of a field. This
observation suggests analogous means by which field computation can represent and
manipulate discrete symbols and structures, such as those employed in symbolic AI.
It also provides potential models for neural representation of words and categories,
especially in computational maps, which may illuminate how discrete symbol pro-
cessing interacts with continuous image processing. From this perspective, discrete
symbol manipulation is an emergent property of continuous field computation, which
may help to explain the flexibility of human symbolic processes, such as language use
and reasoning (MacLennan 1994a, 1994b, 1995).

Mathematically, discrete symbols have the discrete topology, which is defined by
the discrete metric, for which the distance between any two distinct objects is 1:
d(x, x) = 0 and d(x, y) = 1 for x 6= y. Therefore we will consider various field repre-
sentations of symbols that have this property. For example, discrete symbols could
be represented by localized, non-overlapping patterns of activity in a computational

37

map. In particular, symbols could be represented by Dirac delta functions, for which
〈δx | δx〉 = 1 and 〈δx | δy〉 = 0 for x 6= y. Here we may let d(x, y) = 1 − 〈δx | δy〉.
More realistically, symbols could be represented by physically realizable normalized
fields φx with little or no overlap between the representations of different symbols:
〈φx | φy〉 ≈ 0 for x 6= y. Indeed, any sufficiently large set of orthonormal fields may
be used to represent discrete symbols. Fields may seem like an inefficient way to
represent discrete symbols, and so it is worth observing that with at least 146 000
neurons per square millimeter, a one hundred thousand-word vocabulary could be
represented in a few square millimeters of cortex.

Since the meaning of these fields is conveyed by the location of activity peak in the
map, that is, by the shape of the field rather than its amplitude, the field’s amplitude
can be used for pragmatic scale factors, as previously discussed (Sec. 5.5). This could
be used, for example, to convey the confidence or probability of a word or verbal
category, or another pragmatic factor, such as loudness (cf. Sec. 5.7).

Wave packets (coherent states, Gabor elementary functions) are localized patterns
of oscillation resulting from the superposition of a number of nonlocal oscillators
with a Gaussian distribution of frequencies (MacLennan 1991). The relative phase
of these oscillators determines the position of the wave packet within its field of
activity. Therefore different phase relationships may determine field representations
for different discrete symbols. The amplitude of the wave packet could represent
pragmatic information, and frequency could be used for other purposes, for example
for symbol binding, with bound symbols having the same frequency. Continuous phase
control could be used to control the motion of wave packets in other representations,
such as direction fields (Sec. 5.4).

5.9 Gradient Processes

Many optimization algorithms and adaptive processes are implemented by gradient
ascent or gradient descent. Because of its physical analogies, it is more convenient to
think of optimization as decreasing a cost function rather than increasing some figure
of merit. For example, the function might represent the difficulty of a motor plan or
the incoherence in an interpretation of sensory data (such as stereo disparity).

Therefore suppose that U : Φ(Ω) → R is a functional that defines the undesirabil-
ity of a field; the goal is to vary φ so that U(φ) decreases down a path of “steepest
descent.” (By analogy with physical systems, we may call U a potential function and
think of gradient descent as a relaxation process that decreases the potential.) The
change in the potential U is given by the chain rule for field transformations (Eq. 3):

U̇(t) = (U ◦ φ)′(t, 1)

= U ′[φ(t)][φ′(t)(1)]

= 〈∇U [φ(t)] | φ̇(t)〉.

More briefly, suppressing the dependence on time, U̇ = 〈∇U(φ) | φ̇〉. To guarantee

38

U̇ ≤ 0 we let φ̇ = −r∇U(φ) with a rate r > 0 for gradient descent. Then,

U̇ = 〈∇U(φ) | φ̇〉 = 〈∇U(φ) | −r∇U(φ)〉 = −r‖∇U(φ)‖2 ≤ 0.

Therefore, gradient descent decreases U so long as the gradient is nonzero. (More
generally, of course, so long as the trajectory satisfies 〈∇U(φ) | φ̇〉 < 0 the potential
will decrease.)

Often the potential takes the form of a quadratic functional:

U(φ) = φKφ+ Lφ+ c,

where K ∈ Φ(Ω×Ω), φKφ =
∫

Ω

∫
Ω
φuKuvφvdudv, L is a linear functional, and c ∈ R.

We require the coupling field K to be symmetric: Kuv = Kvu for all u, v ∈ Ω; typically
it reflects the importance of correlated activity between any two locations u and v in
φ. By the Riesz Representation Theorem (Sec. 3.2) this quadratic functional may be
written

U(φ) = φKφ+ 〈ρ | φ〉+ c,

where ρ ∈ Φ(Ω). The field gradient of such a functional is especially simple:

∇U(φ) = 2Kφ+ ρ.

In many cases ρ = 0 and then gradient descent is a linear process: φ̇ = −rKφ.
This process can be understood as follows. Notice that −Kuv decreases with the

coupling between locations u and v in a field and reflects the inverse variation of the
potential with the coherence of the activity at those sites (i.e., the potential measures
lack of coherence). That is, if Kuv > 0 then the potential will be lower to the extent
that activity at u covaries with activity at v (since then −φuKuvφv ≤ 0), and if
Kuv < 0, the potential will be lower to the extent they contravary. Therefore, the
gradient descent process φ̇ = −rKφ changes φu to maximally decrease the potential
in accord with the covariances and contravariances with other areas as defined by K:
φ̇u = −r

∫
Ω
Kuvφvdv. The gradient descent will stop when it produces a field φ∗ for

which −rKφ∗ = 0, that is, a field in the null space of K (the set of all φ ∈ Φ(Ω) such
that Kφ = 0.

5.10 Universal Approximation

A system of universal computation provides a limited range of facilities that can be
programmed or otherwise set up to implement any computation in a large and in-
teresting class. The most familiar example is the Universal Turing Machine (UTM),
which can be programmed to emulate any Turing machine, and therefore can im-
plement any (Church-Turing) computable function. While this model of universal
computation has been important in the theory of digital computation, other models
may be more relevant in for other computing paradigms (MacLennan 2003, 2004,
2007, 2008).

39

Models of universal computation are important for both theory and practice.
First, they allow the theoretical power of a computing paradigm to be established.
For example, what cannot be computed by a UTM cannot be computed by a Turing
machine or by any computer equivalent to a Turing machine. Conversely, if a function
in Church-Turing computable, then it can be computed on a UTM or any equivalent
machine (such as a programmable, general-purpose digital computer). Second, a
model of universal computation for a computing paradigm provides a starting point
for designing a general-purpose computer for that paradigm. Of course, there are
many engineering problems that must be solved to design a practical general-purpose
computer, but a model of universal computation establishes a theoretical foundation.

In the context of field computing there are several approaches to universal com-
putation. One approach to universal field computation is based on a kind of field
polynomial approximation based on the Taylor series for field transformations (Sec.
3.3) (MacLennan 1987, 1990). Another approach relies on a variety of “universal
approximation theorems” for real functions, which are themselves generalizations of
Fourier-series approximation (Haykin 1999, pp. 208–9, 249–50, 264–5, 274–8, 290–
4). To explain this approach we will begin with the problem of interpolating a field
transformation F : Φ(Ω) → Φ(Ω′) specified by the samples F (φk) = ψk, k = 1, . . . , P .
Further, we require the interpolating function to have the form

ψ̂ =
H∑

j=1

rj(φ)αj,

for some H, where the rj : Φ(Ω) → R are fixed nonlinear functionals (real-valued field
transformation), and the αj ∈ Φ(Ω′) are determined by the samples so as to minimize

the sum-of-squares error defined by E =
∑P

k=1 ‖ψ̂k−ψk‖2, where ψ̂k =
∑H

j=1 rj(φ
k)αj.

(A regularization term can be added if desired (Haykin 1999, ch. 5).)
A field, as an element of a Hilbert space, has the same norm as the (infinite)

sequence of its generalized Fourier coefficiants (with respect to some ON basis). Let
ζ1, ζ2, . . . be a basis for Φ(Ω′), and we can compute the Fourier coefficients of ψ̂k−ψk

as follows:

〈ζi | ψ̂k − ψk〉 =

〈
ζi

∣∣∣∣∣
H∑

j=1

rj(φ
k)αj − ψk

〉

=

[
H∑

j=1

rj(φ
k)〈ζi | αj〉

]
− 〈ζi | ψk〉

Let Rkj = rj(φ
k), Aji = 〈ζi | αj〉, and Yki = 〈ζi | ψk〉. Then, 〈ζi | ψ̂k − ψk〉 =∑H

j=1RkjAji − Yki. The fields may approximated arbitrarily closely by the first N

Fourier coefficients, in which case R, A, and Y are ordinary matrices. Then ‖ψ̂k −

40

ψk‖2 ≈
∑N

i=1E
2
ki, where E = RA − Y. Therefore the approximate total error is

Ê =
∑P

k=1

∑N
i=1E

2
ki, or Ê = ‖E‖2

F (the squared Frobenius norm).
This is a standard least-squares minimization problem, and, as is well known

(Leon 1986, pp. 371–3), the error is minimized by A = R+Y, where R+ is the Moore-
Penrose pseudoinverse of the interpolation matrix R: R+ = (RTR)−1RT. From A we
can compute the required fields to approximate F : αj =

∑N
i=1Ajiζi.

For universality, we require that the approximation error can be made arbitrarily
small, which depends on the choice of the basis functionals rj, as can be learned
from multivariable interpolation theory. Therefore, we represent the input fields by
their first M generalized Fourier coefficients, an approximation that can be made as
accurate as we like. Let β1, β2, . . . be an ON basis for Φ(Ω) and let pM : Φ(Ω) → RM

compute this finite-dimensional representation: pM
j (φ) = 〈βj | φ〉. We will approxi-

mate rj(φ) ≈ sj[p
M(φ)], for appropriate functions sj : RM → R, j = 1, . . . , H. That

is, we are approximating the field transformation F by

F (φ) ≈
H∑

j=1

sj[p
M(φ)]αj.

Now let Skj = sj[p
M(φk)], and we have corresponding finite-dimensional interpolation

conditions Y = SA with the best least-square solution A = S+Y.
Various universal approximation theorems tell us that, given an appropriate choice

of basis functions s1, . . . , sH , any continuous function f : RM → RN can be approxi-
mated arbitrarily closely by a linear combination of these functions (Haykin 1999, pp.
208–9). That is, the error Ê = ‖SA−Y‖2

F can be made as small as we like. Therefore,
appropriate choices for the sj imply corresponding choices for the basis functionals
rj.

For example, one universal class of basis functions has the form sj(x) = s(wj ·
x + bj), for any nonconstant, bounded, monotone-increasing continuous function s
(Haykin 1999, p. 208). This form is common in artificial neural networks, where wj

is a vector of neuron j’s input weights (connection strengths) and bj is its bias. To
find the corresponding basis functional, rj(φ) = sj[p

M(φ)], observe

wj · pM(φ) + bj =
M∑

k=1

wjkp
M
k (φ) + bj

=
M∑

k=1

wjk〈βk | φ〉+ bj

=

〈
M∑

k=1

wjkβk

∣∣∣∣∣φ
〉

+ bj.

Therefore, let $j =
∑M

k=1wjkβk, and we see that a universal class of functionals has
the form:

rj(φ) = s(〈$j | φ〉+ bj). (10)

41

Thus, in this field analog of an artificial neuron, the input field φ is matched to the
neuron’s interconnection field $j.

Another universal class is the radial basis functions, sj(x) = r(‖x − cj‖), where
the radial function r is monotonically decreasing, and the centers cj are either fixed
or dependent on the function to be approximated. A corresponding universal class of
field functions has the form:

rj(φ) = r(‖φ− ηj‖), (11)

where each field ηj =
∑

i c
j
iζi causes the maximal response of the corresponding basis

function rj. Furthermore, if we set H = P and ηj = φj, then the matrix R is invertible
for a wide variety of radial functions r (Haykin 1999, pp. 264–5).

Thus familiar methods of universal approximation can be transferred to field com-
putation, which reveals simple classes of field transformations that are universal. This
implies that universal field computers can be designed around a small number of sim-
ple functions (e.g., field summation, inner product, monotonic real functions).

6 Field Computers

6.1 Structure

As previously explained (Sec. 1), fields do not have to be physically continuous in
either variation or spatial extension (that is, in range or domain), so long as the dis-
cretization is sufficiently fine that a continuum is a practical approximation. There-
fore, field computation can be implemented with ordinary serial or parallel digital
computing systems (as it has been in the past). However, field computation has a
distinctively different approach to information representation and processing; compu-
tation tends to be shallow (in terms of operations applied), but very wide, “massively
parallel” in the literal sense of computing with an effectively continuous mass of pro-
cessors. Therefore field computation provides opportunities for the exploitation of
novel computing media that may not be suitable for digital computation. For ex-
ample, as the brain illustrates how relatively slow, low precision analog computing
devices can be used to implement intelligent information processing via field compu-
tation, so electronic field computers may exploit massive assemblages of low-precision
analog devices, which may be imprecisely fabricated, located, and interconnected.
Other possibilities are optical computing in which fields are represented by optical
wavefronts, molecular computation based on films of bacteriorhodopsin or similar
materials, chemical computers based on reaction-diffusion systems, and “free space
computing” based on the interactions of charge carriers and electrical fields in homo-
geneous semiconductors (Sec. 6.3).

Field computation is a kind of analog computation, and so there are two principal
time domains in which field computation can take place, sequential time and contin-
uous time (MacLennan 2007, 2008). In sequential computation, operations take place

42

in discrete steps in an order prescribed by a program. Therefore, sequential field
computation is similar to ordinary digital computation, except that the individual
program steps may perform massively parallel analog field operations. For example,
a field assignment statement, such as:

ψ := φ+ ψ;

updates that field variable ψ to contain the sum of φ and the previous value of ψ.
In continuous-time computation the fields vary continuously in time, generally

according to differential equations in which time is the independent variable; this has
been the mode of operation of most analog computers in the past. In this case, a
simple dependence, such as ψ = φ+χ, is assumed to have an implicit time parameter,
ψ(t) = φ(t) + χ(t), which represents the real time of computation. Since continuous-
time programs are often expressed by differential equations, these computers usually
provide hardware for definite integration of functions with respect to time:

ψ(t) = ψ0 +

∫ t

0

F [φ(τ)]dτ. (12)

Continuous-time programs are expressed by circuit diagrams (variable-dependency
diagrams) rather than by textual programs such as used in digital computer pro-
gramming (see Figure 1 for an example).

Although special-purpose analog and digital computers are appropriate for many
purposes, already in the first half of the twentieth century the value of general-purpose
(programmable) digital and analog computers had been recognized (MacLennan 2007,
2008). Therefore it will be worthwhile to consider briefly the sort of facilities we may
expect to find in a general-purpose field computer (whether operating in sequential
or continuous time).

We have seen that the following facilities are sufficient for universal computation
(Sec. 5.10): multiplication of fields by scalars, local (point-wise) addition of fields
(ψu = φu +χu), and some means of computing appropriate basis functionals. Neural-
net style functionals (Eq. 10) require inner product and any non-constant, bounded,
monotone-increasing scalar function (i.e., a sigmoid function). Radial basis func-
tionals (Eq. 11) require the norm (which can be computed with the inner product)
and any non-constant, bounded, monotone-decreasing scalar function. (Point-wise
subtraction can be implemented, of course, by scalar multiplication and point-wise
addition.) These are modest requirements, and we can expect practical field comput-
ers to have additional facilities.

In addition, continuous-time field computers will implement definite integration
with respect to time (Eq. 12), which is used to implement field processes defined
by differential equations. The equations are implemented in terms of the operations
required for universal computation or in terms of others, discussed next.

Additional useful operations for general-purpose field computing include matrix-
vector style field products (Hilbert-Schmidt integral operators), outer product, con-
volution, cross-correlation, normalization, local (point-wise) product and quotient

43

(ψu = φuχu, ψu = φu/χu), and various other local operations (log, exp, etc.). Op-
erations on vector fields can be implemented by scalar field operations on the vector
components (Cartesian or polar); in this manner, vector fields of any finite dimen-
sion can be processed. If vector fields and operations on them are provided by the
hardware, then it is useful if these operations include conversions between scalar and
vector fields (e.g., between vector fields and their Cartesian or polar coordinate fields).
Other useful vector field operations include point-wise scalar products between vector
fields (ψu = φu · χu), gradient (∇), Laplacian (∇2), divergence (∇·), and point-wise
scalar-vector multiplication (ψu = φuχu). Scalar analog computation is a degener-
ate case of field computation (since scalars correspond to fields in Φ({0})), and so
practical general-purpose field computers will include the facilities typical of analog
computers (MacLennan 2007, 2008).

6.2 The Extended Analog Computer

One interesting proposal for a general-purpose field computer is the Extended Analog
Computer (EAC) of LA Rubel, which was a consequence of his conviction that the
brain is an analog computer (Rubel 1985). However, Rubel and others had shown
that the existing model of a general-purpose analog computer (GPAC), the abstract
differential analyzer defined by CE Shannon, had relatively severe theoretical limi-
tations, and so it did not seem adequate as a model of the brain (MacLennan 2007,
2008)(Lipshitz & Rubel 1987, Pour-El 1974, Rubel 1988, Shannon 1941, Shannon
1993). Like Shannon’s differential analyzer, the EAC is an abstract machine intended
for theoretical investigation of the power of analog computation, not a proposal for a
practical computer (Rubel 1993); nevertheless, some actual computing devices have
been based on it.

The EAC is structured in a series of levels, each building on those below it, taking
outputs from the lower layers and applying analog operations to them to produce
its own outputs. The inputs to the lowest layer are a finite number of “settings,”
which can be thought of real-numbers (e.g., set by a continuously adjustable knob).
This layer is able to combine the inputs with real constants to compute polynomials
over which it can integrate to generate differentially algebraic functions; this layer is
effectively equivalent to Shannon’s GPAC. Each layer provides a number of analog
devices, including “boundary-value-problem boxes,” which can solve systems of PDEs
subject to boundary conditions and other constraints. That is, these conceptual
devices solve field computation problems. Although for his purposes Rubel was not
interested in implementation, he did remark that PDE solvers might be implemented
by physical processes that obeyed the same class of PDEs as the problem (e.g., using
physical diffusion to solve diffusion problems). This of course is precisely the old field
analogy method, which was also used in network analyzers (recall Sec. 2). Rubel was
able to show that the EAC is able to solve an extremely large class of problems, but
the extent of its power has not been determined (MacLennan 2007, 2008).

44

6.3 Field Computing Hardware

Research in field computing hardware is ongoing and a comprehensive survey is be-
yond the scope of this article; a few examples must suffice.

Although the EAC was intended as a conceptual machine (for investigating the
limits of analog computing), JW Mills has demonstrated several hardware devices
inspired by it (Mills 1996, Mills, Himebaugh, Kopecky, Parker, Shue & Weilemann
2006). In these the diffusion of electrons in bulk silicon or conductive gels is used
to solve diffusion equations subject to given boundary conditions, an technique he
describes as “computing with empty space.” This approach, in which a physical
system satisfying certain PDEs is used to solve problems involving similar PDEs, is
a contemporary version of the “field analogy method” developed by Kirchhoff and
others (Sec. 2).

Adamatzky and his colleagues have investigated chemical field computers for
implementing reaction-diffusion equations (Adamatzky 2001, Adamatzky, De Lacy
Costello & Asai 2005); see Sec. 5.3. These use variants of the Belousov-Zhabotinsky
Reaction and similar chemical reactions. Although the chemical reactions proceed
relatively slowly, they are massively parallel: at the molecular level (“molar paral-
lelism”). Also, Adamatzky, De Lacy Costello & Asai (2005, chs. 6–8) have designed
both analog and digital electronic reaction-diffusion computers.

M Perǔs and his colleagues have investigated the use of quantum holography to
implement field analogues of neural-network algorithms (Loo, Peruš & Bischof 2004,
Peruš 1998).

Several investigators have explored optical implementations of field computers.
For example, Skinner, Behrman, Cruz-Cabrera & Steck 1995 used self-lensing media,
which respond nonlinearly to applied irradience, to implement feed-forward neural
networks trained by back-propagation. Tõkés et al. (Tõkés, Orzó & Ayoub 2003,
Tõkés, Orzó, Váró, Dér, Ormos & Roska 2001) have been developing an optical field
computer using bacteriorhodopsin as a medium.

7 Future Directions

In the future field computation can be expected to provide an increasingly impor-
tant analytical and intuitive framework for understanding massively parallel analog
computation in natural and artificial intelligence.

First, field computation will provide a theoretical framework for understanding
information processing in the brain in terms of cortical maps and, more generally,
at a level between anatomical structures and individual neurons or small neural cir-
cuits. This will require improved understanding of information processing in terms
of field computation, which will benefit from cognitive neuroscience research, but
also contribute new computational concepts to it. Increased understanding of neural
field computation will improve our ability to design very large artificial neural net-

45

works, which will be more attractive as massively parallel neurocomputing hardware
is developed.

Traditionally, artificial intelligence has approached knowledge representation from
the perspective of discrete, language-like structures, which are difficult to reconcile
with the massively parallel analog representations found in the cortex. Therefore
field computation will provide an alternative framework for understanding knowledge
representation and inference, which will be more compatible with neuroscience but
also provide a basis for understanding cognitive phenomena such as context sensi-
tivity, perception, sensorimotor coordination, image-based cognition, analogical and
metaphorical thinking, and nonverbal intelligences (kinesthetic, emotional, aesthetic,
etc.).

As we have seen, concepts from field computation may be applied to understand-
ing the collective intelligence of large groups of organisms. This approach permits
separating the abstract computational principles from the specifics of their realization
by particular organisms, and therefore permits their application to other organisms or
artificial systems. For example, principles of field computation governing the self or-
ganization of groups of organisms are applicable to distributed robotics; in particular,
they will provide a foundation for controlling very large population of microrobots or
nanobots.

Embryological morphogenesis is naturally expressed in terms of field computa-
tion, since the differentiation and self-organization of an (initially homogeneous) cell
mass is governed by continuous distributions of continuous quantity. Therefore, field
computation provides a vehicle for rising above the specifics of particular signaling
molecules, mechanisms of cell migration, etc. in order to understand development in
abstract or formal terms. Understanding morphogenesis in terms of field computation
will facilitate applying its principles to other systems in which matter self-organizes
into complex structures. In particular, field computation will suggest means for pro-
gramming the reorganization of matter for nanotechnological applications and for
describing the behavior of adaptive “smart” materials.

As we approach the end of Moore’s Law (Moore 1965), future improvements in
computing performance will depend on developing new computing paradigms not
based in sequential digital computation (see also MacLennan 2007, 2008). Improve-
ments in both speed and density can be achieved by matching data representations
and computational operations to the physical processes that realize them, which are
primarily continuous and parallel in operation. Indeed, many of these processes are
described in terms of fields or involve physical fields (i.e., phenomenological or phys-
ical fields). Therefore field computation points toward many physical processes that
might be used for computation and provides a framework for understanding how best
to use them. Thus we anticipate that field computation will play an important role
in post-Moore’s Law computing.

46

References

Adamatzky, A. 2001. Computing in Nonlinear Media and Automata Collectives. Bris-
tol: Institute of Physics Publishing.

Adamatzky, A, B De Lacy Costello & T Asai. 2005. Reaction-Diffusion Computers.
Amsterdam: Elsevier.

Anderson, JA. 1995a. An Introduction to Neural Networks. Cambridge, MA: MIT
Press.

Anderson, RA. 1995b. Coordinate Transformations and Motor Planning in Posterior
Parietal Cortex. In The Cognitive Neurosciences, ed. MS Gazzaniga. MIT Press
pp. 519–32.

Bar-Yam, Y. 1997. Dynamics of Complex Systems. Reading, MA: Perseus Books.

Bizzi, E & FA Mussa-Ivaldi. 1995. Toward a Neurobiology of Coordinate Transforma-
tion. In The Cognitive Neurosciences, ed. MS Gazzaniga. MIT Press pp. 495–506.

Bohm, D & BJ Hiley. 1993. The Undivided Universe: An Ontological Interpretation
of Quantum Theory. Routledge.

Bonabeau, E, M Dorigo & G Theraulaz. 1999. Swarm Intelligence: From Natural to
Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity New
York: Oxford University Press.

Brachman, G & L Narici. 1966. Functional Analysis. New York: Academic Press.

Camazine, S, J-L Deneubourg, NR Franks, G Sneyd, J Theraulaz & E Bonabeau.
2001. Self-organization in Biological Systems. Princeton.

Changeux, J-P. 1985. Neuronal Man: The Biology of Mind. Oxford: Oxford Univer-
sity Press. tr. by L. Garey.

Daubechies, I, A Grossman & Y Meyer. 1986. “Painless Non-orthogonal Expansions.”
Journal of Mathematical Physics 27:1271–83.

Daugman, JG. 1993. An Information-Theoretic View of Analog Representation in
Striate Cortex. In Computational Neuroscience, ed. EL Schwartz. Cambridge:
MIT Press pp. 403–423.

Davies, JA. 2005. Mechanisms of Morphogensis. Amsterdam: Elsevier.

Deneubourg, JL. 1977. “Application de l’ordre par Fluctuation à la Description de
Certaines étapes de la Construction du nid chez les Termites.” Insectes Sociaux
24:117–30.

47

Dirac, PAM. 1958. The Principles of Quantum Mechanics. fourth ed. Oxford: Oxford
University Press.

Droulez, J & A Berthoz. 1991a. The Concept of Dynamic Memory in Sensorimotor
Control. In Motor Control: Concepts and Issues, ed. D. R. Humphrey & H.-J.
Freund. Wiley pp. 137–161.

Droulez, J & A Berthoz. 1991b. “A Neural Network Model of Sensoritopic Maps with
Predictive Short-Term Memory Properties.” Proc. National Acad. Science USA
88:9653–9657.

Feldman, JA & DH Ballard. 1982. “Connectionist Models and their Properties.”
Cognitive Science 6(3):205–54.

Gabor, D. 1946. “Theory of Communication.” Journal of the Institution of Electrical
Engineers 93, Part III:429–57.

Georgopoulos, AP. 1995. Motor Cortex and Cognitive Processing. In The Cognitive
Neurosciences. MIT Press pp. 507–517.

Goodman, SJ & RA Anderson. 1989. “Microstimulation of a Neural-Network Model
for Visually Guided Saccades.” Journal of Cognitive Neuroscience 1:317–26.

Haykin, S. 1999. Neural Networks: A Comprehensive Foundation. 2nd ed. Upper
Saddle River: Prentice-Hall.

Heil, CE & DF Walnut. 1989. “Continuous and Discrete Wavelet Transforms.” SIAM
Review 31(4):628–66.

Hopfield, JJ. 1995. “Pattern Recognition Computation Using Action Potential Timing
for Stimulus Response.” Nature 376:33–6.

Kirchhoff, G. 1845. “Ueber den Durchgang eines elektrischen Stromes durch eine
Ebene, insbesondere durch eine kreisförmige.” Annalen der Physik und Chemie
140/64(4):497–514.

Knudsen, EJ, S du Lac & SD Esterly. 1987. “Computational Maps in the Brain.”
Ann. Rev. of Neuroscience 10:41–65.

Leon, SJ. 1986. Linear Algebra with Applications. 2nd ed. New York: Macmillan.

Light, WA. 1992. Ridge Functions, Sigmoidal Functions and Neural Networks. In
Approximation Theory VII, ed. EW Cheney, CK Chui & LL Schumaker. Boston:
Academic Press pp. 163–206.

Lipshitz, L & LA Rubel. 1987. “A Differentially Algebraic Replacment Theorem.”
Proceedings of the American Mathematical Society 99(2):367–72.

48

Loo, CK, M Peruš & H Bischof. 2004. “Associative Memory Based Image and Object
Recognition by Quantum Holography.” Open Systems & Information Dynamics
11(3):277–89.

MacLennan, BJ. 1987. Technology-independent Design of Neurocomputers: The
Universal Field Computer. In Proceedings of the IEEE First International Con-
ference on Neural Networks, ed. M. Caudill & C.Butler. Vol. 3 IEEE Press
pp. 39–49.

MacLennan, BJ. 1990. Field Computation: A Theoretical Framework for Massively
Parallel Analog Computation, Parts I–IV. Technical Report CS-90-100 Depart-
ment of Computer Science, University of Tennessee, Knoxville. Available from
www.cs.utk.edu/~mclennan.

MacLennan, BJ. 1991. Gabor Representations of Spatiotemporal Visual Images.
Technical Report CS-91-144 Department of Computer Science, University of
Tennessee, Knoxville. Available from www.cs.utk.edu/~mclennan.

MacLennan, BJ. 1993. Information Processing in the Dendritic Net. In Rethinking
Neural Networks: Quantum Fields and Biological Data, ed. Karl H. Pribram.
Hillsdale, NJ: Lawrence Erlbaum pp. 161–197.

MacLennan, BJ. 1994a. Continuous Computation and the Emergence of the Discrete.
In Origins: Brain & Self-Organization, ed. Karl H. Pribram. Hillsdale, NJ:
Lawrence Erlbaum pp. 121–151.

MacLennan, BJ. 1994b. Image and Symbol: Continuous Computation and the Emer-
gence of the Discrete. In Artificial Intelligence and Neural Networks: Steps To-
ward Principled Integration, ed. Vasant Honavar & Leonard Uhr. New York:
Academic Press pp. 207–24.

MacLennan, BJ. 1995. Continuous Formal Systems: A Unifying Model in Language
and Cognition. In Proceedings of the IEEE Workshop on Architectures for Semi-
otic Modeling and Situation Analysis in Large Complex Systems. Monterey, CA:
pp. 161–172.

MacLennan, BJ. 1997. Field Computation in Motor Control. In Self-Organization,
Computational Maps and Motor Control, ed. Pietro G. Morasso & Vittorio San-
guineti. Elsevier pp. 37–73.

MacLennan, BJ. 2003. “Transcending Turing Computability.” Minds and Machines
13:3–22.

MacLennan, BJ. 2004. “Natural Computation and Non-Turing Models Of Computa-
tion.” Theoretical Computer Science 317:115–145.

49

MacLennan, BJ. 2007. A Review of Analog Computing. Technical Report UT-CS-
07-601 Department of Electrical Engineering and Computer Science, University
of Tennessee, Knoxville.

MacLennan, BJ. 2008. Analog Computation. In Encyclopedia of Complexity and
System Science. Springer.

Mathematical Society of Japan. 1980. Encyclopedic Dictionary of Mathematics. Cam-
bridge: MIT Press.

McClelland, JL, DE Rumelhart & the PDP Research Group. 1986. Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition, Volume 2:
Psychological and Biological Models. Cambridge, MA: MIT Press.

McFadden, J. 2002. “Synchronous Firing and its Influence on the Brain’s Electromag-
netic Field: Evidence for an Electromagnetic Field Theory of Consciousness.”
Journal of Consciousness Studies 9(4):23–50.

Miller, MI, B Roysam, KR Smith & JA O’Sullivan. 1991. “Representing and Com-
puting Regular Languages on Massively Parallel Networks.” IEEE Transactions
on Neural Networks 2:56–72.

Mills, JW. 1996. The Continuous Retina: Image Processing with a Single-Sensor
Artificial Neural Field Network. In Proceedings IEEE Conference on Neural Net-
works. IEEE Press.

Mills, JW, B Himebaugh, B Kopecky, M Parker, C Shue & C Weilemann. 2006.
“Empty Space” Computes: The Evolution of an Unconventional Supercomputer.
In Proceedings of the 3rd Conference on Computing Frontiers. New York: ACM
Press pp. 115–26.

Moore, GE. 1965. “Cramming More Components Onto Integrated Circuits.” Elec-
tronics 38(8):114–117.

Peruš, M. 1998. A Quantum Information-Processing “Algorithm” Based on Neural
Nets. In Joint Connference on Information Sciences, ed. P Wang, G Georgiou,
C Janikow & Y Yao. Vol. II Association for Intelligent Machinery pp. 197–200.

Pockett, S. 2000. The Nature of Consciousness: A Hypothesis. San Jose: Writers
Club Press.

Pour-El, MB. 1974. “Abstract Computability and its Relation to the General Purpose
Analog Computer (Some Connections Between Logic, Differential Equations and
Analog Computers).” Transactions of the American Mathematical Society 199:1–
29.

50

Powell, MJD. 1985. Radial Basis Functions for Multivariable Interpolation: A Review.
In IMA Conference on Algorithms for the Approximation of Functions and Data.
Shrivenham, UK: RMCS pp. 143–67.

Pribram, KH. 1991. Brain and Perception: Holonomy and Structural in Figural
Processing. Hillsdale, NJ: Lawrence Erlbaum.

Pribram, KH, A Sharafat & GJ Beekman. 1984. Frequency Encoding in Motor Sys-
tems. In Human Motor Actions: Bernstein Reassessed, ed. HTA Whiting. Else-
vier pp. 121–56.

Rubel, LA. 1985. “The Brain as an Analog Computer.” Journal of Theoretical Neu-
robiology 4:73–81.

Rubel, LA. 1988. “Some Mathematical Limitations of the General-Purpose Analog
Computer.” Advances in Applied Mathematics 9:22–34.

Rubel, LA. 1993. “The Extended Analog Computer.” Advances in Applied Mathe-
matics 14:39–50.

Rumelhart, DE, JL McClelland & the PDP Research Group. 1986. Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition, Volume 1:
Foundations. Cambridge, MA: MIT Press.

Sanger, TD. 1996. “Probability Density Estimation for the Interpretation of Neural
Population Codes.” Journal of Neurophysiology 76:2790–3.

Shannon, CE. 1941. “Mathematical Theory of the Differential Analyzer.” Journal of
Mathematics and Physics of the Massachusetts Institute Technology 20:337–354.

Shannon, CE. 1993. Mathematical Theory of the Differential Analyzer. In Claude
Elwood Shannon: Collected Papers, ed. N. J. A. Sloane & Aaron D. Wyner. New
York: IEEE Press pp. 496–513.

Skinner, SR, EC Behrman, AA Cruz-Cabrera & JE Steck. 1995. “Neural Network
Implementation Using Self-Lensing Media.” Applied Optics 34:4129–35.

Small, JS. 2001. The Analogue Alternative: The electronic analogue computer in
Britain and the USA, 1930–1975. London & New York: Routledge.

Solé, R & B Goodwin. 2000. Signs of Life: How Complexity Pervades Biology. New
York: Basic Books.

Soroka, WW. 1954. Analog Methods in Computation and Simulation. New York:
McGraw-Hill.

51

Steinbeck, O, A Tóth & K Showalter. 1995. “Navigating Complex Labyrinths: Opti-
mal Paths from Chemical Waves.” Science 267:868–71.

Ting, P-Y & RA Iltis. 1994. “Diffusion Network Architectures for Implementation of
Gibbs Samplers with Applications to Assignment Problems.” IEEE Transactions
on Neural Networks 5:622–38.

Tõkés, Sz, L Orzó & A Ayoub. 2003. Two-wavelength POAC (Programmable Opto-
electronic Analogic Computer) using Bacteriorhodopsin as Dynamic Holographic
Material. In Proceedings of ECCTD ‘03 Conference. Vol. 3 Krakow: pp. 97–100.

Tõkés, Sz, L Orzó, Gy Váró, A Dér, P Ormos & T Roska. 2001. Programmable Ana-
logic Cellular Optical Computer using Bacteriorhodopsin as Analog Rewritable
Image Memory. In Bioelectronic Applications of Photochromic Pigments, ed. A
Dér & L Keszthelyi. Amsterdam, The Netherlands: IOS Press pp. 54–73.

Truitt, TD & AE Rogers. 1960. Basics of Analog Computers. New York: John F.
Rider.

Turing, AM. 1952. “The Chemical Basis of Morphogenesis.” Philosophical Transac-
tions of the Royal Society B 237:37–72.

Books and Reviews

1. Bachman, G, and L Narici (1966) Functional analysis. Academic Press, New
York.

2. Berberian, SK (1961) Introduction to Hilbert space. Oxford, New York.

3. MacLennan, BJ (1991) Field computation: A theoretical framework for mas-
sively parallel analog computation, parts I–IV. Technical Report CS-90-100,
Dept. of Computer Science, University of Tennessee, Knoxville. Available from
http:www.cs.utk.edu/~mclennan.

4. MacLennan, BJ Foundations of Field Computation. In preparation. Available
from http:www.cs.utk.edu/~mclennan.

52

