CS 311: Discrete Structures
Spring 2004

Homework 8. Due Tuesday April 1

1) Compute the gcd of 231 and 1820 using Euclid’s algorithm. Show all your work.
2) Prove or disprove:
 a) If $a|(b - c)$ then $a|b$ and $a|c$.
 b) If $a|b$ and $a|c$ then $a|(b - c)$.
3) Using 4-bit 2’s complement representations, solve the following problems and check them by converting to base-10:
 (a) 0101 + 0001
 (b) 1101 + 1110
4) True or false. Explain why and give an example. Let a and b be positive integers and let $a = q \cdot b + r$ where r is the remainder when a is divided by b and q is the quotient.
 (a) If $r = 0$ then $a = b$.
 (b) If $a < b$ then $r = a$.
 (c) If $b = 1$ then $q = a$.
 (d) It is never the case that $r \geq b$.
5) When does a positive integer n have exactly:
 (a) two positive divisors?
 (b) three positive divisors?
 (c) four positive divisors?