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Abstract

There is great demand today for real-time computer vision systems, with applications in-
cluding image enhancement, target detection and surveillance, autonomous navigation, and
scene reconstruction. These operations generally require extensive computing power; when
multiple conventional processors and custom gate arrays are inappropriate, due to either
excessive cost or risk, a class of devices known as Field-Programmable Gate Arrays (FP-
GAs) can be employed. FPGAs offer the flexibility of a programmable solution and nearly
the performance of a custom gate array.

When implementing a custom algorithm in an FPGA, one must be more efficient than
with a gate array technology. By tailoring the algorithms, architectures, and precisions,
the gate count of an algorithm may be sufficiently reduced to fit into an FPGA. The
challenge is to perform this customization of the algorithm, while still maintaining the
required performance. The techniques required to perform algorithmic optimization for
FPGAs are scattered across many fields; what is currently lacking is a framework for utilizing
all these well known and developing techniques. The purpose of this thesis is to develop
this framework for orientation and photogrammetry systems.

Thesis Supervisor: Berthold K. P. Horn
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

There is great demand today for real-time computer vision systems, with interest being
generated by consumer, industrial, and military applications. We continually witness the
increasing usage of electronic imaging systems to improve or automate tasks in our daily
lives. In the past, size, weight, cost, and power were hindrances to the widespread deploy-
ment of these systems. Now, the availability of inexpensive, high-performance processing
brings the possibility of satisfying our ever-increasing performance and cost demands.

Many of these systems are designed to be carried long distances, flown on small un-
manned aerial vehicles, or left in a remote location with only a battery for a power source.
In all these instance, efficiency of processing is paramount to long mission life. Also of
great importance in many problems is robustness and reliability; there is a great penalty for
erroneous results. This requirement can drive designers to more computationally-intensive
algorithms, further straining the bounds of real-time processing.

Real-time vision systems have been proposed or are currently in use in the following
applications:

• Biometrics and access control (ATMs, “smart doors”)

• Optical target detection and classification (battlefield processing, near-earth asteroid
surveys)

• Image enhancement and understanding (stellar imaging, financial document verifica-
tion, law-enforcement)

• Scene reconstruction (real-estate, cartography, battle-damage assessment)

• Autonomous vehicle navigation (collision avoidance, robotic transportation, UAVs)

• Intelligent Transportation (Obstacle detection, lane tracking, adaptive cruise control)

• Surveillance and site monitoring (traffic monitoring, activity detection, security cam-
eras)

• Telecommunications (internet video)

• Consumer electronics (video gaming, portable TVs, camcorders, toys)

• Entertainment industry (special effects, motion capture)

• Augmented reality (virtual worlds, image stabilization, flight simulation)

• Medical (CAT, MRI, image guided surgery, optical tomography)
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Autonomous navigation is needed for unmanned aerial vehicles. The latest research is
focusing on “micro air-vehicles” (MAVs), which can be extremely small fixed-wing aircraft
[39], or rotary-wing aircraft, such as the Firefly, a micro-helicopter [154]. Image processing
and onboard scene reconstruction has been proposed for flight plan verification and obstacle
avoidance. One of the latest experimental vehicles, the MicroStar [25] has a total wingspan
of six inches. Clearly, the computational system for onboard image processing must be
extremely efficient.

For automobiles, there is great desire to incorporate computer vision processing [19],
thereby creating “intelligent transportation systems.” Calculation of the time-to-collision
and the direction of motion via the focus-of-expansion are two examples of processing that
can be used to increase safety; however, the results must be available in a timely fashion.
These applications require the determination of camera motion from image sequences, which
is termed the orientation problem.

Closely related to the orientation problem is the subject of photogrammetry, which at-
tempts to perform three dimensional reconstruction of scenes, given photographic images
and camera locations. Scene understanding and reconstruction from images is used in
model generation for virtual walkthrough in real-estate, law-enforcement, military applica-
tions [143], and even the entertainment industry [45]. Algorithms for performing metric
reconstructions from images typically require an immense amount of linear algebraic oper-
ations.

Orientation and photogrammetry generally require extensive processing power; but
when the fastest digital signal processing (DSP) microprocessor is not fast enough, the
traditional alternatives have been to add multiple DSP processors or to use custom gate
arrays. Multiple DSP microprocessor approaches are expensive, require many components,
and consume too much power. The development and debugging of multi-processor software
can also be time consuming and problematic. Custom gate array solutions deliver the per-
formance but sacrifice flexibility and require a large engineering investment; the cost, risk,
and development time are prohibitive in many applications.

The past decade has seen the emergence of a family of devices that address these short-
comings: the Field-Programmable Gate Array (FPGA). These are an intermediate solution
for implementing computationally intensive algorithms [70], [80]. FPGAs offer the flexibility
of a programmable solution and nearly the performance of a custom gate array.

The ability to reconfigure an FPGA of course requires extensive on-chip silicon area.
For a typical FPGA, most of the silicon is devoted to reprogrammability and routing. This
limits the number of user-programmable gates to roughly an order of magnitude less than
the number available to a custom gate array technology.

Therefore, when implementing a custom DSP algorithm in an FPGA, one must be
more efficient than with a custom gate array technology. By tailoring the algorithms,
architectures, and precisions, the gate count of an algorithm may be sufficiently reduced to
fit into an FPGA. The challenge is to perform this customization of the algorithm, while
still maintaining the required performance.

The techniques required to perform algorithmic optimization for FPGAs are scattered
across many diverse fields: numerical analysis, linear algebra, tensor analysis, parallel and
distributed computing, computer arithmetic, digital hardware design, digital signal process-
ing, detection and estimation, array processing and subspace tracking, image processing,
pattern recognition, sensor fusion, and computer vision. What is currently lacking is a
framework for utilizing all these well known and developing techniques.

This thesis develops just such a framework for the computationally intensive orientation

13



and photogrammetry problems. The key contribution will be a theoretical framework for
mapping orientation and photogrammetry algorithms to FPGA hardware. To show the
contribution, we will explore the reduction of several key algorithms to an FPGA architec-
ture.

Today, advances will be made by combining hard-earned knowledge from many fields,
not just from a specialty area. This leads to the central tenet of this thesis: Advances in
affordable real-time vision systems will occur only when the algorithm domain and device
technology are considered simultaneously.

This form of simultaneous optimization has traditionally not been thought of as a self-
contained discipline. Rather, it gets lumped under the heading of “system engineering”.
Often, new and efficient mappings of algorithms receive less attention than more conven-
tional literature in the specialty fields, because the results are viewed by algorithm specialists
as merely an “implementation,” whereas the computational specialists view the results as
a “special case”.

Rather than viewing this customized computing as an “orphan discipline,” we now
see that in fact this approach is the heart of the meaning of engineering: use the most
appropriate algorithms, approximations, and implementations that you can to make the best
design possible. Indeed, the realization is growing among the engineering community that
custom computing solutions to DSP and computer vision problems is a field worthy of study
in its own right. For example, the keynote speech [155] at the 1999 Intl. Conf. on Acoustics,
Speech, and Signal Processing, traditionally a conference on signal processing theory, was on
exactly this topic. Additionally, several conferences with this focus ( i.e. IEEE Workshop on
Signal Processing Systems, the IEEE Workshop on FPGA Custom Computing Machines,
and the ACM Intl. Symp. on FPGAs ), even refereed journals (i.e. The Journal of VLSI
Signal Processing ) are increasing in popularity.

To be successful, one must become adept at device-specific algorithmic optimization.
Clearly, generic methods to optimize any hardware design should be considered; this thesis
will propose several novel techniques in this regard. Just as clearly, one must be skilled
in the algorithmic field at hand; this thesis examines the orientation and photogrammetry
fields, which heretofore have not been extensively examined in light of the custom computing
paradign.

In the remainder of this chapter, we highlight the key concepts in orientation and pho-
togrammetry, and then present an outline of the thesis.

1.1 Orientation and Photogrammetry

Determining orientation is the process of locating the position and attitude of two or more
objects in space. Various types of information may be available to aid in this process,
leading to the different categories of orientation detailed below and in subsequent thesis
chapters. Photogrammetry is the process of determining the structure of a scene from
image or motion data. Orientation and photogrammetry can thus be considered duals of
each other, in the sense that if one is known, solving for the other is greatly simplified.

1.1.1 Types of Orientation

Relative orientation is the process of determining camera motion from two views. For this
problem, it is assumed that the camera has been move through a rigid environment. We
therefore must determine the rotation and translation (up to a scale factor) that the camera
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has undergone. Relative orientation finds use is automated vehicle attitude tracking; it is
also a critical component of photogrammetric processing.

Given a sufficient number of matched points, the relative orientation between the two
images can be calculated using a geometric formulation. Horn [90], Dron [48], and Hartley
[78] address the various computational and stability issues involved. Recent work includes
that of Coorg [34] and some Total Least Squares (TLS) approaches [34], [44], [146].

Clearly, erroneous matches can cause extremely poor relative orientation performance.
Work work has been done on detecting and removing these outliers, with robust statistics
concepts being the most used approaches [71], [75], [77], [128], [170].

Absolute orientation seeks to align two (or more) sets of feature points, whose three
dimensional locations have been measured or reconstructed. Horn [89] gave a closed-form
quaternion solution, and matrix square-root [92] solution. Arun, Huang, and Blostein [10],
and Umeyama [189] provide a closed-form singular value decomposition (SVD) approach.
Recent work [87] addresses the absolute orientation problem under nonisotropic location
uncertainty. This approach can lead to a generalization of absolute orientation, to include
relative and exterior orientation.

Exterior orientation is the process of determining camera location, given feature point
locations in the image, as well as the absolute coordinates of the feature points in the scene.
This finds application in navigation problems.

Interior orientation is the process of determining the internal configuration of the cam-
era. Generally, we are concerned with obtaining the effective focal length, the principal
point, and perhaps the pixel aspect ratio. While not strictly a motion vision task, knowl-
edge of the interior orientation is essential if meaningful Euclidean motion estimation and
scene reconstructions are to be attempted.

Determination of camera motion from image sequences continues to be an active area
of research. Methods for determining camera motion fall into three classes: feature point
matching, optical flow, and direct methods We discuss each of these categories next.

1.1.2 Feature Point Matching

In this method, points in each image that correspond to the same physical point are located.
Given a sufficient number of matched points, the relative motion of between the two images
can be calculated using straightforward geometrical ideas.

The difficulty in using feature point matching is the features themselves. One or several
feature extractors are required. These are generally heuristic-based algorithms that attempt
to find interesting regions of the images. Often, edges, line segments and corners are the
desired features. Also, more complicated methods, that take into account the “trackability”
of the image region, have been employed [179], [181].

The amount of motion during the times when the images were taken can also effect the
amount of required processing. If the motion is very small (i.e. subpixel), then associating
feature points between images is not a difficult task. One could simply associate a feature
point in the new image with the closest feature point in the old image.

If the motion is on the order of several pixels to the tens of pixels, the possibility of
misassociating features can occur. Assuming the motion does not drastically warp the
pattern of the feature points, then one can apply image registration techniques [13], [29],
[184]. Depending on the quality of the feature extractor or the images themselves, one
can have spurious and missing points in the feature point sets. This is not likely to be a
problem in the case of very small camera motion, but it is known to lead to significantly
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more complicated algorithms in the case of larger motions [53], [182]. Recently, Pilu [149]
presented a surprisingly simple registration technique based on the SVD.

For extremely large camera motion between images, significant warping of the feature
point patterns may occur. The epipolar constraint is often used to reduce the search region
for point matches [51], [129], [158]. Also, large parts of the scene may not be visible in
one or the other image, further complicating matters. Correlation type processing and
model-based template matching [107], [194], as well as operator assistance are typically the
approaches used in this situation.

Of interest in the feature based approach is the quality of the estimate of the features.
In many real-time and low cost or low power systems, the amount of computation that
one can afford may be limited. One may intentionally use a feature extractor with higher
feature pixel location error, in an attempt to reduce computations. The robustness of the
feature point matching algorithm, and of the motion recovery algorithm in the presence of
feature pixel location noise is therefore of interest.

With the feature point locations in the images and the correct associations, one can
recover the translational and rotational parameters of the camera motion. In general, only
five correspondences are needed [51] (with a very weak constraint on their locations). If
eight correspondences are available, then a set of linear equations results [77], [78], [88],
[185]. Often, one uses many more points than this to reduce the effect of feature point
location errors.

1.1.3 Optical Flow

The second class of algorithms for recovery of camera motion are based on the calculation of
optical flow, which is the apparent motion of brightness patterns in an image sequence due
to camera motion. Horn and Schunck [93] first proposed the optical flow concept. Optical
flow may be used to calculate camera motion, or perhaps more distilled information, such
as the “time-to-collision” [8]. Recent work on optical flow based methods include multiscale
regularization approach of Luettgen, Karl, and Willsky [119].

The implicit assumption employed when utilizing optical flow is that it in some ways
mimics the motion field of the scene. One must thus first compute the optical flow before it
can be used to recover camera motion. In general, this is not a trivial operation. Also, the
amount of camera motion between images must be small, or one will suffer aliasing during
the calculations of the brightness gradients.

As shown by Horn [88], we can easily derive the optical flow constraint equation Exu+
Eyv + Et = 0 at each point in the image. Here, Ex, Ey, and Et are the spatial and time
derivatives of the image brightness, and u and v are the components of the optical flow. We
must impose an addition constraint, the “smoothness” assumption, to enable a solution.
We thus minimize,∫ ∫

(Exu+Eyv +Et)2 dx dy + α

∫ ∫
(u2
x + u2

y + v2
x + v2

y) dx dy (1.1)

where α must be determined interactively to trade off the degree of smoothing (a recent
paper has an automated method for this [137]).

With the optical flow in hand, one must then actually calculate the motion parameters.
Horn [88] shows how this is done for the general case of rotation and translation, as well
as for simplifying cases with either translation or rotation. For the general case, one has to
solve for the six parameters iteratively. The rotational parameters are linear functions of the
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translational parameters, so these are easily obtained for each iteration. The translational
parameters satisfy second order equations, so a numerical iteration is required.

1.1.4 Direct Methods

The third and final class of algorithms for recovery of camera motion only use spatial and
time derivatives of image brightness data. These methods are also termed direct methods
because we directly calculate motion parameters without first calculating optical flow. This
approach seems attractive because complicated feature extractors and optical flow calcula-
tion can be avoided. Here of course, as with the optical flow, the camera motion must be
small during the time between images, or aliasing will result.

Horn and Weldon [94] analyze in detail directly using the spatial and temporal bright-
ness gradients. They show that for restricted motions (i.e. pure rotation or pure translation)
that very simple algorithms result for recovery of the motion parameters. Also, geomet-
ric insight is given to explain why some parameters can be better estimated than others.
Negahdaripour and Horn [136] analyze the case of a planar scene in great detail. Several
iterative as well as a closed form essential matrix solution are given.

Recent work on the direct methods include the work of Gupta and Kanal [74], who
show how to perform gradient-based direct methods without actually calculating gradients.
Other recent work includes [73].

Optical flow and direct methods are popular because the problematic feature extraction
step is eliminated. The drawback of these methods using conventional DSP microprocessors
is the extremely high processing load of performing linear algebraic operations on all the
image pixels [48]. Of course, custom computational processors, based on gate arrays and
FPGAs, have been proposed for these operations.

1.1.5 Photogrammetry

Closely related to the orientation problem is the subject of photogrammetry, which attempts
to perform three dimensional reconstruction of scenes, given photographic images and cam-
era locations. Although well-established, there is continuing interest in this field [46], [132],
[164]. As an example, two views of a synthetic scene are shown in Figure 1-1. Correspond-
ing feature points were extracted and matched, and are shown in the figure. Conventional
relative orientation was used to first determine the camera displacement. Then, a geomet-
ric reconstruction was performed, as shown in Figure 1-2. Good results were obtained here
because the images were relatively free of noise; significantly worse reconstructions occur
with real images, unless more computationally intensive approaches are used.

With relative orientation known or estimated, one can formulate the 3D reconstruction
problem as the approximate intersection of multiple rays in space. A different approach
(taken by Thompson [178]) is to combine known or estimated relative orientation with
photometric stereo ideas.

1.1.6 Multiple Views

Researchers have sought to use multiple views to further improve the accuracy of the esti-
mated camera motion, and for scene reconstruction. Accurate scene reconstruction can also
be used to aid on obstacle avoidance for moving platforms, and for recognition of known
objects in the environment.
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Figure 1-1: Two views from a sequence (unknown motion). Marked points in images were
identified and associated by a feature extractor.
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Figure 1-2: Metric reconstruction of marked points.

Historically, scene reconstruction was first performed by photogrammetrists, with the
emphasis placed on accuracy. A typical application was to build maps from aerial pho-
tographs. Since data collection was (and still is) rather expensive, the emphasis on highly
accurate methods is understandable.

More recently, the computer vision community has taken great interest in this problem,
but from a different viewpoint. The emphasis is now placed on fast and robust methods, in
order to construct systems that can act in real-time.

A type of multiple view orientation problem arises when an image sequence is captured
from a moving video camera. Recursive estimation techniques are the appropriate compu-
tational model for this situation. Heel [83] formulates the problem as an iterated, extended
Kalman filter, with the reconstructed pixel depths as the state variables. Broida, Chan-
drashekhar, and Chellappa [28] and Azerbayejani and Pentland [12] track feature points.
A review of other recursive techniques can be found in [4]. A subspace-tracking approach
under the assumption of nonaccelerating motion is taken by Chaudhuri, et al. [31]. In the
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array processing field, a related method by Tufts, Real, and Cooley [188] promises to sig-
nificantly reduce computational throughput of subspace tracking with minimal degradation
on performance. Multiple view orientation and reconstruction, using tensor concepts are
also receiving attention [169].

Lately, there has also been a great deal of interest in using projective geometry for camera
motion and scene reconstruction. These methods typically try to solve the problem using
uncalibrated cameras. Faugeras et al. [52] outline the workings of a system to the computer-
aided modeling of urban scenes. Robust estimation of matches and projective geometric
methods are extensively used. Heyden [86] uses the properties of projective transformations
to determine the minimal number N of point correspondences visible in M images required
for reconstruction using uncalibrated cameras. Basically, Heyden shows that using only
linear constraints, the (N,M) pairs (8, 2), (7, 3), and (6, 4) are possible, and if all linear and
nonlinear constraints are used, the pairs (7, 2) and (6, 3) are possible. In contrast to these
minimal point/view combination approaches, we are more interested in this thesis in using
a large number of points and images for robust orientation and photogrammetry, and the
efficient implementation of algorithms utilization this data.

1.2 Overview of the Thesis

The purpose of this thesis is to develop a framework for custom computing optimization
of orientation and photogrammetry systems. To achieve this, we apply DSP, estimation,
and novel hardware design and optimization techniques to these motion vision problems.
Applying these ideas to motion vision problems will allow a reduction in computations and
the required accuracy.

To demonstrate the usefulness of this framework, the mapping of orientation algorithms
into modern digital logic devices will be explored. Recent advances in cost and density of
FPGAs make feasible high performance custom computing solutions to a variety of signal
and image processing problems. A systematic approach to understanding and applying
optimization techniques will enable the rapid and affordable development of computer vi-
sion systems, able to take advantage of the current revolution in the paradigm of custom
computing.

Here we briefly outline the remainder of the thesis.
In the introduction of each chapter, the relationship of the chapter in the context of the

thesis is discussed. Also, related and previous work is reviewed.
We begin in Chapter 2 with a review of the relevant mathematical background for the

projective camera model and the perspective projection. The first goal of this chapter is to
provide the mathematical details of motion recovery from feature point matches and from
image gradients. Also, the various orientation problems are reviewed, and a new, efficient
approach to exterior orientation is introduced.

In Chapter 3 we discuss several exciting new techniques for optimizing custom hard-
ware designs. These techniques are crucial to the successful implementation of real-time
orientation and photogrammetry systems. A review of real-time technology is first given.

In order to reduce hardware requirements, one must round or truncate data at various
points throughout an algorithm. Many operations such as multiplication or accumulation
can greatly expand the wordlength of the data. If these operations are cascaded, then
without some form of wordlength reduction, excessive hardware growth results. Wordlength
reduction introduces noise into the data stream, so the designer must balance the need for an
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efficient implementation with output quality. This chapter explores systematic approaches
for optimal wordlength allocation for orientation and photogrammetry.

To achieve this, a new hardware optimization technique based on the Markov Chain
Monte Carlo (MCMC) method is introduced and explored. Also in this chapter is a usable
new iteration that bounds the achievable cost and quality for a particular algorithm. In
many cases, this algorithm can be used to initialize the MCMC approach.

Following these general purpose optimization techniques, two new specialized optimiza-
tion techniques are introduced and explored. The first method concerns the reduction of
the complexity of the addition operation. The second method discusses rearranging the
computations in an algorithm to minimize the number of expensive multiplications. Be-
cause most algorithms can be decomposed into multiplications and additions, both of these
operations are critical to mapping an orientation algorithm to real-time hardware.

While Chapter 3 is more concerned with gaining speed at the possible expense of ac-
curacy, Chapter 4 investigates the opposite approach. In Chapter 4, we review estimation
theory and focus on techniques for constrained estimation. A new Constrained Maximum
Likelihood method is introduced, and its relationship to orientation is explored. These con-
cepts are then applied to the problem of motion estimation from image gradients. A new,
custom FPGA design is introduced and analyzed using the techniques from the previous
chapters to implement this high computational burden in real-time.

In Chapter 5 we explore the topic of orientation and photogrammetry using multiple
(more than two) data sets. This topic is currently receiving a great deal of interest due to
the possibility of obtaining more accurate scene reconstructions than are possible with only
two data sets. Recent work has attempted to cast photogrammetry and other orientation
problems as an absolute orientation problem, subject to non-isotropic noise. This chapter
explores the unification of multiview orientation data using error ellipses into a common
processing framework, so that a suitable custom computing architecture can be formulated.
Both of these approaches offer high accuracy, at the cost of a slow, iterative solution method.
In constrast to these approaches, we next offer a fast, linear approach to the multiple view
problem that appears to work well in practice. An FPGA architecture that accelerates this
approach is also given.

Finally, Chapter 6 provides a summary of the thesis, as well as possible future research
directions.
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Chapter 2

Mathematical Background

2.1 Introduction and Chapter Overview

In this chapter, we develop the mathematical background necessary for structure, motion,
and orientation calculations. We review the relevant known results and methods, and
additionally provide new error analyses, and even some new algorithms.

This chapter is organized as follows. In Section 2.2 we review the process of image forma-
tion via the perspective projection. Two images leads to the concept of epipolar geometry,
which plays an important role in the development of structure and motion recovery algo-
rithms. Methods that use matching feature points locations in the images in conjunction
with rigid motion equations are reviewed.

Section 2.3 reviews an alternative approach, based not on explicit feature matches but
rather on image brightness gradient measurements. These so-called “direct” methods can
be thought of as the limiting case of a two-view formulation, with the time (or motion) be-
tween view approaching zero. These methods are popular because the problematic feature
extraction and matching step is eliminated. In the past, acceptance of these direct methods
has been hindered because of the computational load required to support real-time oper-
ation. Although the required operations are simple, every pixel is processed. Also, the
gradients that are required must be calculated numerically from noisy data, a notoriously
risky proposition (although there has been recent work in optimal differentiating filters [50]
and in totally avoiding the gradient calculation altogether [74]). Another problem is that
the small (infinitesimal) motion assumption translates into a high frame rate requirement,
further increasing the computational requirements. However, it is exactly in this situation,
a large number of simple operation, that custom computing approaches excel.

Section 2.4 next explores the use of multiple (greater than two) camera views. Re-
searchers have recently been intensively studying the multiple view problem with the hope
of overcoming the known deficiencies of using only two views. In this section, Stein’s ten-
sorial approach is explored.

The next section, Section 2.5, treats a different orientation problem, that of absolute
orientation. In some sense, absolute orientation is seemingly unrelated to the problem of
determining camera position and attitude from images. Nonetheless, absolute orientation
is extremely useful in formulating multiple view orientation problems.

The next section, Section 2.6 covers exterior orientation, which can be viewed as a
mixture of relative and absolute orientation. Because of this, exterior orientation is per-
haps the most interesting orientation problem, because all the other ones might be viewed
as limiting cases. Traditionally, exterior orientation refers to determining camera position
from one image and one set of known three-dimensional landmarks. The ability to perform
this calculation in real-time is important for robotic hand-eye calibration, mobile robots
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in known environments, and in unmanned aerial vehicles navigation. With multiple pho-
tographs, exterior orientation can be generalized into what is known as photogrammetry.
The emphasis is now on accurate reconstruction of the scene. This section, reviews the basic
photogrammetric approach, and covers some newer techniques. Section 2.7 covers camera
calibration, which in some ways is just a generalization of exterior orientation.

2.2 Feature Based Relative Orientation

To aid in our analysis, we will adopt a viewer-based coordinate system, as shown in Figure
2-1. We assume a perspective projection. The center of projection lies at the origin, and the
image plane is parallel to the xy-plane, at a principal distance of f = 1. We assume that
the camera pixels are arranged in a grid aligned with the x and y axes. The center-to-center
spacing of the pixels is ∆p. We assume the environment lies in front of the xy-plane, with
positive Z values, so that the optical axis is pointing in the same direction as ẑ, the unit
vector in the direction (0, 0, 1)T .

x

y

z

P

p

1

O

Image Plane

Figure 2-1: Viewer-based coordinate system used for perspective projection.

A point in the environment
P = [X Y Z]T (2.1)

has a projection onto the image plane

p = [x y 1]T . (2.2)
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These points are related by the perspective projection equation [88]

p =
P

P · ẑ , (2.3)

where ẑ is the unit vector along the positive z-axis. The line connecting p and P passes
through the origin, and thus perspective projection represents an imaging model equivalent
to an ideal pinhole. Rewriting (2.3) in terms of the coordinates,

x = X
Z , y = Y

Z , (2.4)

which demonstrates the main complicating factor in perspective geometry: the observed
data is nonlinear in the quantities of interest.

The field of view (FOV) of the system is the maximum angle θv that a point P can make
with the optical axis and still have a projection onto the pixels in the image plane. Since
the camera pixels are typically arranged in a square, the angles that the boundary pixels
make with the optical axis are not identical. We shall assume that the field of view is the
cone of angles made by the circle inscribed inside the square of pixels.

Assume now that we have two images taken with the camera at two different positions,
as shown in Figure 2-2. Each camera identifies a 3D reference frame, whose origin is the
center of projection, and whose z-axis is the optical axis of the camera. This type of
arrangement is known as an epipolar geometry. The points at which the line through the
centers of projection intersects the image planes are known as epipoles. By construction,
the left epipole el is the image of the projection center of the right camera, and vice versa.

A point P in the environment is labeled Pl = [Xl Yl Zl]T in the left camera coordinate
system and Pr = [Xr Yr Zr]T in the right camera coordinate system. The vectors pl =
[xl yl 1]T and pr = [xr yr 1]T, refer to the projections of P onto the left and right image
planes, respectively. If we assume that the environment is rigid, then we can always relate
Pl and Pr by a rotation followed by a translation, or

Pr = RPl + t, (2.5)

where R is a 3 × 3 orthonormal rotation matrix and t is a translation vector. Estimating
R and t from sets of matching Pl and Pr pairs is the Absolute Orientation problem. Esti-
mating the motion parameters from matching pairs of pl and pr is the Relative Orientation
problem.

In Figure 2-2, the plane defined by P, Ol, and Or is known as the epipolar plane of the
point, and the intersection of this plane with an image plane is called the epipolar line of
the point. Since all rays include the center of projection, all epipolar lines of one camera
go through the epipole.

From Figure 2-2, we see that the rays pl, pr, and t, must all be coplanar. The expression
of this fact in algebraic terms, known as the coplanarity constraint, is central to most motion
estimation formulations. Since these vectors are coplanar, the parallelepiped formed by the
three vectors must have zero volume. Since the volume is equal to the triple product of the
vectors [88], [174], we transform pr to the coordinate system of pl and write

[pltp′r] = 0 (2.6)

where [·] is the triple product and p′r = Rpr+t. R is a rotation matrix and t is the baseline
translation, and p′r is result of transforming pr to the coordinate system of pl. Expanding
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the triple product in (2.6) and substituting for p′r gives

0 = [pltp′r]
= pl · (t× p′r)
= pl · (t× (Rpr + t))
= pl · (t×Rpr + t× t))
= pl · (t×Rpr)
= pl · (BRpr)
= pTl BRpr
= pTl Epr,

(2.7)

where we have set E = BR and we have used the skew-symmetric representation of the
cross product with t, with

B =

 0 −t3 t2
t3 0 −t1
−t2 t1 0

 . (2.8)

The matrix E is known as the essential matrix; it contains all the (unknown) motion
parameters. Since B is rank two, E is also rank two. It is also known that the two nonzero
singular values of E are equal to each other [51]. Notice that

ET t = RTBT t = RT (−t× t) = 0, (2.9)

so that t is perpendicular to each column of E. Since E is rank two, we can thus recover the
baseline translation t to within a scale factor by taking the cross product of any two columns
of E. With t known, the rotation R can be recovered using, for example, quaternions [91].

2.2.1 Recovering the Motion Parameters

In this section we review the known methods for solving the overdetermined set of equations

pTilEpir ≈ 0. (2.10)

for all i. In (2.10), pil is the ith point in the left image, matched to the ith point in the
right image, pir.
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Linear Algorithms

A simple algorithm, known as the “linear” or “8-Point” algorithm, first due to Stefanovic
[166] and later by Longuet-Higgins [117], ignores all nonlinear constraints on E. Clearly,
for noisy data, this will lead to extremely poor performance. Nevertheless, this approach
typically is the starting point for more accurate methods.

In order to place approximately equal weight on the approximation errors in (2.10), a
good heuristic, documented first by Chaudhuri and Chatterjee [30] and later elaborated by
Hartley [78], is to normalize the feature point locations pil and pir so that their magnitudes
equal one. If this is not done, then feature points near the edge of the image dominate the
error norm, so the linear algorithm tends to ignore most point matches near the center of
the image, leading to poor performance. Let us denote the normalized feature points by
p̃il = pil/‖pil‖ and similarly p̃ir = pir/‖pir‖.

We thus attempt the minimization

Eest = arg min
‖E‖2F=1

N∑
i=1

(
p̃TilEp̃ir

)2
(2.11)

where the elements of E are otherwise unconstrained. The normalization of E is necessary
because (2.11) is homogeneous in the elements of E. Writing the elements of E as

E =

 e1 e2 e3

e4 e5 e6

e7 e8 e9

 , (2.12)

and defining e = [e1, . . . , e9]T , we rearrange (2.11) as

eest = arg min‖e‖22=1

∑N
i=1 eTaiaTi e

= arg min‖e‖22=1 eT
(∑N

i=1 aiaTi
)

e

= arg min‖e‖22=1 eTATAe,

(2.13)

where

ai
4= p̃il ⊗ p̃ir, A

4=

 aT1
...

aTN

 , (2.14)

and where “⊗” is the Kronecker product. The solution to (2.13) is simply the eigenvector
corresponding to the minimum eigenvalue of ATA. Alternatively, we could set e equal
to the right singular vector associated with the minimum singular value of A. Another
alternative is to fixed e9 = 1 and solve the linear equations Ae ≈ 0 in the (ordinary)
least squares sense. Partitioning A = [A(:, 1 : 8) | A(:, 9)], the solution found this way is
obtained as

e(1 : 8)est = −A(:, 1 : 8)+A(:, 9). (2.15)

With the vector e now obtained, we now proceed to the recovery of the baseline and
rotation parameters, B and R. Most authors first form E from e, and then attempt to
enforce some of the nonlinear constraints on E, by zeroing the smallest singular value of E.
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This enforces the rank-2 constraint, but does nothing about enforcing constraint that R be
a rotation matrix, or that B be skew-symmetric.

With E now formed, there are several approaches to recovering B and R. Tsai and
Huang [185] show that we may recover B and R from the SVD USVT of E. Their solution
is that there are two solutions for the rotation:

R = U

 0 −1
1 0

s

VT , (2.16)

or

R = U

 0 1
−1 0

s

VT , (2.17)

with s = det(U)det(V), and one solution for the translation (up to a scale factor) t1
t2
t3

 = α

 E(1, :) ·E(2, :)/E(2, :) · E(3, :)
E(1, :) ·E(2, :)/E(1, :) · E(3, :)

1

 . (2.18)

Only one of the two solutions for R, together with the appropriate sign for α, will yield
positive depth values.

Horn [90] recovers the baseline and rotation from E in a slightly simpler fashion, without
resorting to the SVD. His solution is

ttT =
1
2

tr(EET )I−ETE (2.19)

which easily gives the translation vector, and

(t · t)R = Cofactors(E)T −BE, (2.20)

where Cofactors(E) is the matrix of cofactors of E. Again, multiple solutions may be
obtained from these equations.

Many researchers have observed that poor performance is likely to be obtained from
these “linear” approaches. Hartley [78] attributes most of this to the lack of normalizing
the observation vectors to unit magnitude.

A reasonably simple approach that has gained some attention recently is to use Total
Least Squares (TLS) in solving for the motion parameters. Actually, setting e equal to the
minimum singular value of A is a TLS approach (which does not perform very well at low
SNR). Slightly better results were obtained by Diamantaras et al. [44] and Papadimitriou
et al. [146], by using a small rotation angle assumption. Letting the incremental rotation
angles ωx, ωy and ωz be small, the input to their solution method is the set of 2D displace-
ments [ui, vi] = [xil − xir, yil − yir]. Using simple geometry, these displacements can be
approximated as

ui = (t1 − xit3)/Zi + ωxxiyi − ωy(1 + x2
i ) + ωzyi

vi = (t2 − yit3)/Zi − ωyxiyi + ωx(1 + y2
i )− ωzxi.

(2.21)

When the unknown depths Zi are eliminated from these equations, we obtain the linear
equation Aθ = 0, with θ = [t1, t2, t3, t1ωx, t2ωy, t3ωz, t1ωy + t2ωx, t1ωz + t3ωx, t2ωz +
t3ωy]T, and A a function of the observed data. TLS is used to find the optimal θ, and the
translation and rotation parameters can then be recovered from θ.
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Nonlinear Algorithms

While the linear and TLS approaches are straightforward and computationally efficient,
their performance at lower SNRs will generally be unsatisfactory. This is because the least
squares constraint is not being enforced at the most appropriate place in the equations. In
fact, if all the constraints are enforced, then only 5 point pairs are required to determine
orientation (Faugeras [51] provides a summary of this “5-point” algorithm). Recently, Philip
[148] presented a “linear” 5-point algorithm that would appear to work correctly only with
5 points and no noise (and therefore makes the algorithm of theoretical interest only).

With these limitations in mind, several researchers have proposed exact solutions to
the motion problem. These algorithms are iterative in nature, and are essentially steep-
est descent minimizations (although other authors [98] attempt to solve the multivariate
polynomial system symbolically).

Horn [91] provides a unit quaternion based approach (see Appendix B for details on
quaternion algebra). He rewrites the coplanarity constraint in terms of quaternions. Min-
imizing the squares of the volumes that result from deviations from true coplanarity, the
minimization problem becomes

◦
dest,

◦
qest= arg min

◦
d,
◦
q

N∑
i=1

wi

(
◦
pri
◦
d ·

◦
q
◦
pli
)2

, (2.22)

where
◦
d and

◦
q are unit quaternions,

◦
pri is a quaternion version of the image measurement

(
◦
pri= (0,pri), and similarly for

◦
pli), and where wi is a weighting factor. We also have the

orthogonality condition
◦
d ·

◦
q= 0. A Newton-Raphson approach is used to perform the

minimization. The unit quaternions
◦
d and

◦
q are renormalized and re-orthogonalized after

each iteration. There are 11 variables in the optimization, (each unit quaternion is four
variables, and the three constraints contribute three Lagrange multipliers).

Mcilrath (nee Dron) [48] provides another iterative approach. In this iteration, first
the baseline estimate is held fixed, and the rotation matrix is estimated, then the rotation
matrix is held fixed, and the baseline estimated. Estimation of the baseline with a fixed
rotation is actually a simple problem. Substituting E = BR into (2.11),

Best = arg min
‖t‖22=1

N∑
i=1

(
p̃TilBRp̃ir

)2
. (2.23)

With R fixed, we may rearrange this into a simple quadratic minimization

Best = arg min
‖t‖22=1

tT (ATA)t, (2.24)

where the elements of A are known functions of the data and the fixed rotation matrix
R. We find the baseline estimate simply as the eigenvector associated with the minimum
eigenvalue of ATA.

With the baseline is fixed, we must now estimate the rotation matrix. Unfortunately, no
simple solution method (such as an EVD or SVD approach) is known. Mcilrath calculates
an incremental adjustment δR to the current rotation matrix by determining the optimal
axis/angle representation. Let ω be a vector representing the incremental rotation. Then
the rotation angle is δθ = ‖ω‖ and the axis of the rotation is given by ω̂ = ω/δθ. Let the
residual of each equation at the current estimate be denoted by ri, and define the quantities
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ai = (t × pli) × (Rpri). With these definitions, Mcilrath shows that the optimal update
can be found from

ω =

(
N∑
i=1

aiaTi

)−1( N∑
i=1

riai

)
. (2.25)

With ω for the iteration determined, the optimal matrix δR is calculated using Rodrigues
formula, or from the quaternion formulation (given in Appendix B). The new R is then
calculated, and we then repeat the main iteration by recalculating B.

2.3 Gradient Based Relative Orientation

Movement of a camera through an environment, or movement by objects in the environment,
change the projection locations of points in the environment. The instantaneous direction
and magnitude of the projection point motion is termed the motion field. This is a vector
field, confined to the image plane. Generally, we cannot observe the motion field, but rather
the optical flow. This is the apparent motion of brightness patterns in the image plane.
When the optical flow used, we generally assume that it is identical to the motion field,
although it is possible that the two fields differ. Assume that a camera moves continuously
through a rigid environment. The instantaneous motion of an environmental point can be
described by two vectors. The first vector, ω, is instantaneous rotational velocity. The
entire environment is assumed to rotate about the line through the origin in the direction
of ω. The magnitude of ω is taken to the angular rotation rate, in rads/sec. The second
vector is the instantaneous translational velocity, t. Any motion can be described by first
rotating points P about ω, followed by translation t. The time derivative of the location
of P is calculated as [94], [136]

Pt = −ω ×P− t. (2.26)

The motion of P induces motion of its projection p (which we will also denote by r = p =
[x y 1]T ) in the image plane. This derivative is

rt =
dr
dt

=
d

dt

(
P

P · ẑ

)
=

ẑ× (Pt × r)
P · ẑ . (2.27)

In (2.27), we made use of the identity a× (b× c) = (c · a)b− (a ·b)c. Substitution of (2.3)
into (2.26) and (2.26) into (2.27) gives

rt = −
(

ẑ×
(

r×
(

r× ω − 1
P · ẑ t

)))
. (2.28)

Next, we make use of the brightness values. If we assume a moving environmental point
maintains steady brightness E, then its projection into the image plane also maintains
steady brightness as it wanders about the image. This is the brightness change constraint
equation (BCCE), which is

dE

dt
= 0 (2.29)

for any small patch of image. Expanding the total derivative in (2.29) gives [88],

∂E

∂r
· dr
dt

+
∂E

∂t
= 0. (2.30)
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Here, ∂E/∂r = Er is the spatial brightness gradient, dr/dt = rt is the point velocity, and
∂E/∂t = Et is the brightness gradient with respect to time. Substituting rt given in (2.28)
into (2.30) and simplifying gives [136]:

Et − (((Er × ẑ)× r)× r) ·ω +
1

P · ẑ((Er × ẑ)× r) · t = 0. (2.31)

Defining c = Et, s = (Er× ẑ)× r, and v = −s× r, allows us to write (2.31) more compactly
as

c+ v ·ω +
1

P · ẑs · t = 0. (2.32)

This is valid for any three dimensional rigid scene.
The vectors s and v are derived solely from the image data. Clearly, from their defining

equations, we have s · r = 0, s · v = 0, and v · r = 0. These vectors may be written out
explicitly as [94]

s =

 −Ex
−Ey

xEx + yEy

 , (2.33)

and

v =

 Ey + y(xEx + yEy)
−Ex − x(xEx + yEy)

yEx − xEy

 . (2.34)

s and v indicate the directions for which translation and rotation will give the maximal
temporal brightness change.

Several special cases for solving (2.32) for ω and t have been examined:

• Pure rotation (Horn and Weldon [94]),

• Pure translation (Horn and Weldon [94]),

• Planar scene (Negahdaripour and Horn [136]),

• Quadratic patches (Negahdaripour [135]).

All of these start with a least squares formulation, where we attempt to perform the mini-
mization

arg min
ω,t,Z

∫ ∫ (
c+ v ·ω +

1
Z

s · t
)2

dx dy (2.35)

through choice of ω, t , and Z.

2.3.1 Pure Rotation

In this instance ‖t‖ = 0, so (2.35) becomes

arg min
ω,t,Z

∫ ∫
(c+ v · ω)2 dx dy (2.36)

This is a straightforward linear least squares problem, with solution given by[∫ ∫
vvTdx dy

]
ω = −

[∫ ∫
Etv dx dy

]
, (2.37)
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which is just a 3× 3 set of linear equations. Clearly, the ability to recover the components
of ω accurately depends on the condition number of the matrix on the left hand side of
(2.37) (defined to be M1). Horn and Weldon [94] showed that the the condition number of
the integral of vvT on average is

Cond(M1) =
3/2

sin2 θv
− 1

2
(2.38)

which can be very large for a small field of view. They also show that on average M1 is
diagonal, with the magnitude of the first two diagonal elements greater than the magnitude
of the third. This means that the third component of ω will generally be estimated with
worse accuracy than the other two components.

2.3.2 Pure Translation

In this instance ‖ω‖ = 0, and (2.35) becomes

arg min
ω,t,Z

∫ ∫ (
c+

1
Z

s · t
)2

dx dy (2.39)

If we do not know the depth Z of R, then (2.39) is ill-posed, because we can set Z = −s ·t/c
at every point, thus making the integral zero. However, if we do know the depth at every
point, then (2.39) again becomes a linear least squares estimation problem, with solution
given by [∫ ∫ 1

Z2
ssTdx dy

]
t = −

[∫ ∫ 1
Z
Ets dx dy

]
, (2.40)

which is just a 3× 3 set of linear equations. As with the pure rotation case, the condition
number of the integral of ssT controls the accuracy with which t may be recovered. Horn
and Weldon [94] showed that on average the matrix is diagonal, with diagonal elements
1, 1, and tan2 θv/2. Conditioning is best when θv = 54.74 . . . degrees. When the field of
view is larger than this, the z-component of t is recovered more accurately than the other
two components. When the field of view is smaller, the third component is recovered less
accurately.

When Z is not known, in [94] the authors find the t that minimizes the quadratic form

tT
[∫ ∫ 1

E2
t

ssTdx dy
]

t. (2.41)

The solution is well known to be the eigenvector associated with the minimum eigenvalue
of the matrix in (2.41).

2.3.3 Planar Scene

For simple planar scenes
P · n = 1, (2.42)

where n is a vector normal to the plane. The quantity 1/‖n‖ is the distance from the origin
to the plane. With the restriction of (2.42) and using (2.3), (2.32) becomes [136]:

c+ v · ω + (r · n)(s · t) = 0. (2.43)
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This is the brightness change constraint equation for a planar scene. The minimization of
(2.35) now becomes

arg min
ω,t,n

J =
∫ ∫

(c+ v · ω + (r · n)(s · t))2 dx dy (2.44)

At the minimum, all the gradients must be zero. This leads to the following nonlinear
equations

0 =
∫ ∫

[c+ v ·ω + (r · n)(s · t)] v dx dy
0 =

∫ ∫
(r · n) [c+ v · ω + (r · n)(s · t)] s dx dy

0 =
∫ ∫

(s · t) [c+ v ·ω + (r · n)(s · t)] r dx dy.
(2.45)

Negahdaripour and Horn [136] propose several solutions to this set of equations. These
are iterative schemes where the unknowns are partitioned into two sets. In one iteration, the
first set of unknowns is held constant, and the second set is calculated based on these values.
Then the second set is held constant, and the first set is calculated. This iteration proceeds
until convergence. For the translation-only case, Frumkin [65] designed a specialized time-
to-collision circuit based on these equations.

Recovering Motion Parameters - Iterative Solution

For the problem in (2.45), an iterative method is attractive because it leads to simultaneous
linear equations. For example, if we partition the unknowns into the two sets {ω, t} and
{n}, we can rearrange (2.45) as[∫ ∫

vvTdx dy
]
ω +

[∫ ∫
(r · n)(vsT )dx dy

]
t = −

∫ ∫
cv dx dy

[∫ ∫
(r · n)(svT )dx dy

]
ω +

[∫ ∫
(r · n)2(ssT )dx dy

]
t = −

∫ ∫
c(r · n)s dx dy

(2.46)

and [∫ ∫
(s · t)2(rrT )dx dy

]
n = −

∫ ∫
[c+ v ·ω](s · t) dx dy. (2.47)

Equations (2.46) and (2.47) are iteratively solved through the sequential solution of the
linear equations [

M1 M2

M2
T M4

][
ω
t

]
= −

[
d1

d2

]
(2.48)

and
N4n = −g, (2.49)

where the definitions of M1, M2, M4, M4,N4, d1, d1, and g are clear from (2.46) and
(2.47).

This solution method was simulated using a synthetic scene. Figure 2-3 shows the
evolution of the ω, t, and n estimates after every evolution of (2.48) and (2.49). As seen
in the figure, the rotational parameters in this case were quick to converge to the correct
values. The parameters t and n took much longer to converge. In fact, the inherent scale
ambiguity in t and n causes poor conditioning of the matrices during the iterations. We
simply fix the last element of n to be one during the iterations, and rescale at the end.

The number of multiplications per iteration is shown in [136] to be 279, if certain
tensors are precalculated before the iterations commence. 165N multiplications are required
initially to form these tensors, where N is the number of pixels involved in the calculation.
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Figure 2-3: Iterative solution for motion parameters. True parameters are ω = [1 0.2 0.1]T,
t = [.1 .1 0.1]T, and n = [0 0 − 0.1]T .

If N is large compared to the number of iterations I (i.e. if we use all the pixels in an image),
then the amount of computation in the iterations is negligible. We note that a closed form
solution presented below requires 44N multiplications for a preprocessing step.

Of interest is the question of convergence rate of the above scheme. The authors in [136]
observed that in some situations very few iterations were required for convergence, while in
others (namely, n and t nearly parallel), several hundred iterations were required.

This form of numerical estimation, where an estimation problem is decomposed into
subsets of parameters that are sequentially updated while the remaining parameters are held
fixed, has been treated by Velez-Reyes and Verghese [193]. They show that the partitioning
of the Hessian matrix of the iteration determines the convergence rate. For the iteration
in (2.46) and (2.47), we have partitioned the unknown parameter vector θ = [wT tT nT ]T

into two sets θα = [wT tT ]T and θβ = n. The Hessian matrix of the cost function J is the
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9× 9 matrix

H =



∂2J
∂ω∂ω

∂2J
∂ω∂t

∂2J
∂ω∂n

∂2J
∂t∂ω

∂2J
∂t∂t

∂2J
∂t∂n

∂2J
∂n∂ω

∂2J
∂n∂t

∂2J
∂n∂n


. (2.50)

Each entry shown in (2.50) is in fact a 3× 3 matrix. These are given by:

∂2J

∂ω∂ω
=
∫ ∫

vvTdx dy (2.51)

∂2J

∂ω∂t
=
∫ ∫

(r · n)vsTdx dy (2.52)

∂2J

∂ω∂n
=
∫ ∫

(s · t)vrTdx dy (2.53)

∂2J

∂t∂ω
=

(
∂2J

∂ω∂t

)T
(2.54)

∂2J

∂t∂t
=
∫ ∫

(r · n)2ssTdx dy (2.55)

∂2J

∂t∂n
=
∫ ∫

(s · t)(r · n)srTdx dy (2.56)

∂2J

∂n∂ω
=

(
∂2J

∂ω∂n

)T
(2.57)

∂2J

∂n∂t
=

(
∂2J

∂t∂n

)T
(2.58)

∂2J

∂n∂n
=
∫ ∫

(s · t)2rrTdx dy. (2.59)

The behavior of H near the true solution governs the convergence rate of the iteration.
Because of the way we partitioned θ, we perform a similar block partitioning on H:

H =

[
Hα,α Hα,β

Hβ,α Hβ,β

]
. (2.60)

where Hα,α is a 6 × 6 matrix, Hα,β is a 6 × 3 matrix, Hβ,α = HT
α,β, and Hβ,β is a 3 × 3

matrix, The iterative method estimates θ at iteration k + 1 from the estimate at iteration
k via a nonlinear mapping M . Fast convergence of this iterations equates to small spectral
radius of the Jacobian matrix of M . The authors in [193] show that this spectral radius is
given by

ρ =
∥∥∥H−1/2

β,β Hβ,αH−1
α,αHα,βH

−1/2
β,β

∥∥∥2

2
, (2.61)

where ‖ · ‖2 is the induced 2-norm.
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Because of the complexity of (2.61), it does not appear that we can get intuition con-
cerning the convergence rate of the iteration symbolically. However, we can evaluate (2.50)
numerically under different motion parameter sets. Of interest then is the “shape” of H
at or near the true solution. This will be governed by the condition number of the matrix,
which is the ratio of the maximum singular value to the minimum singular value. This
measures the maximum ratio of growth that two equal size vectors can experience when
multiplied by H. It is of importance here because it measures the sensitivity of the error
metric (2.44) to the values of the true parameters ω, t, and n. A large condition number
indicates that some parameters have almost no influence on the error metric, and hence can
not be reliably estimated.

Figure 2-4 shows the condition number of the leading submatrices of H at the solution
for the iteration shown in Figure 2-3. When the number of parameters equals nine, the
condition number of the entire H given in (2.50) is shown to be quite large. This is because
of the inherent scale ambiguity in t and n. If we fix the last element of n during the iterations
to one, the Hessian matrix is now 8 × 8, and the condition number drops approximately
thirteen orders of magnitude, as shown in Figure 2-4. If we somehow knew t and n, and
were only required to solve for ω, then as shown in Figure 2-4, H would be quite well
conditioned. This is borne out by the simulation shown in Figure 2-3, where the rotational
parameters are seen to be estimated quickly and reliably.
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Figure 2-4: Condition number of leading submatrices of H at true solution ω = [1 0.2 0.1]T,
t = [.1 .1 0.1]T, and n = [0 0 − 0.1]T .
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Recovering Motion Parameters - Closed Form Solution

Negahdaripour and Horn [136] also show that the brightness change constraint equation
can lead to a closed form solution. Define the skew-symmetric matrix Ω as

Ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (2.62)

It is shown in [136] that (2.43) becomes

c+ rTEs = 0, (2.63)

where

E =

 e1 e2 e3

e4 e5 e6

e7 e8 e9

 = −Ω + ntT . (2.64)

The matrix E is referred to as the essential matrix since this matrix contains all the infor-
mation about the planar motion. Since the equation is linear in the unknowns {ei}, the
data c, r, and s from several points can be used to solve for the components of E.

There are nine elements in E, but only eight degrees of freedom since we can replace n
and t by kn and t/k, respectively. We make use of this by noting

E∗
4= E + ET = ntT + tnT (2.65)

is a rank-2 matrix so det(E + ET ) = 0. Because rT s = 0, we can alter E in (2.63) by any
multiple of the identity matrix and still have an exact equality:

c+ rT (E + lI)s = 0. (2.66)

With E′
4= E + lI, (2.66) becomes

c+ rTE′s = 0. (2.67)

Thus, we first find any E′ that satisfies (2.67) for all image points, and then we determine
l such that det(E∗) = 0.

Because the unknowns in (2.67) are linear in the constraints, we can rearrange (2.67) as

aTe′ = −c, (2.68)

where
e′ = [e′1 . . . e′9]T , (2.69)

and
a = r⊗ s = [r1s1 r1s2 r1s3 r2s1 r2s2 r2s3 r3s1 r3s2 r3s3]T . (2.70)

Since there are only eight degrees of freedom in solving for the {e′i}, we can set e′9 = 0
without loss of generality. A minimum of eight image points with constraints of the form
(2.68) are used to solve for the eight unknowns e′1, . . . e

′
8, although generally one would use

more points and solve for the unknowns in the least squares sense. This would provide for
robustness in the presence of noise in the measurements, which is likely to occur because
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of approximate gradient calculations and limited image pixel brightness accuracy. Stacking
up all the aT into a matrix A and all the c into a vector c gives

Ae′ = −c. (2.71)

This overdetermined set of linear equations is generally solved using least squares. We will
analyze this approach in more detail in a later section.

Once the {e′i} are determined, we construct E′ and determine its eigenvalues. Since
det(E + ET ) = det(E′ + E

′T − 2lI) = 0, 2l must be an eigenvalue of E′ + E
′T . In [136], the

authors use the middle eigenvalue l of E′. E is formed via E = E′ − lI.
With E now known, we can reconstruct the motion parameters. Let σ = |n||t|, the

product of the magnitudes of n and t, and τ = n̂ · t̂. It is shown in [136] that the eigenvalues
of E∗ are d1 = σ(τ − 1), d2 = 0, and d3 = σ(τ + 1), so that we may recover σ and τ via

σ =
d3 − d1

2
, (2.72)

and
τ =

d3 + d1

2σ
. (2.73)

The eigenvectors of E∗ are u1, u2, and u3, and in terms of these eigenvectors it is shown
in [136] that

n̂ =
√

1
2(1 + τ)u3 −

√
1
2(1− τ)u1,

t̂ =
√

1
2(1 + τ)u3 +

√
1
2(1− τ)u1,

(2.74)

The rotation parameters are then found via

Ω = σn̂t̂T −E. (2.75)

2.4 Multiple View Geometry

While it is possible to estimate motion and structure from two views, estimation perfor-
mance may be improved by using more images. That is, we expect more accurate motion
and reconstruction results if we can enforce rigidity constraints across many camera views,
rather than just two. Figure 2-5 illustrates this concept. If we had only two views from
cameras very close to each other, then we expect large uncertainty in the location of many
of the world points. Many views, from a diversity of directions, will allow more accurate
reconstruction.

A type of multiple view orientation problem arises when an image sequence is captured
from a moving video camera. Recursive estimation techniques are the appropriate com-
putational model for this situation. Heel [82], [83] formulates the problem as an iterated,
extended Kalman filter (IEKF), with the reconstructed pixel depths as the state variables.
Broida, Chandrashekhar, and Chellappa [28] and Azerbayejani, Pentland, and Jebara [12],
[97] track feature points. Lee and Kay [112] use a quaternion representation to formulate a
linear Kalman filter for feature point tracking. A review of other recursive techniques can
be found in [4] and [165]. A subspace-tracking approach under the assumption of nonac-
celerating motion is taken by Chaudhuri et al. [31]. In the array processing field, a related
method by Tufts, Real, and Cooley [188] promises to significantly reduce computational
throughput of subspace tracking with minimal degradation on performance.
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Figure 2-5: Multiple View Geometry.

Batch estimation techniques are also of interest. Iterative least squares methods (i.e.
the “bundle adjustment” method) have been extensively used (see Appendix C and [67],
[163]). Bergendahl [18] used three images in the design and implementation of an adaptive
cruise control system. Coorg [34] uses images augmented with positional information from
GPS.

Recently, a tensorial representation has been used with some success (see Shashua [159],
[160], Stein [167], [168], [169], and Avidan and Shashua [11]). It will be convenient to use
the projective coordinates to represent a world point P:

P = [X Y Z 1]T ≡ [x y 1 ρ]T , (2.76)

with ρ equal to the inverse depth of the point. Assume we have three cameras (shown in
Figure 2-6. We represent image points in the reference camera frame by p. The corre-
sponding points in the other camera frames are p′ and p′′. Under perspective projection,
we have

p = [I 0] P,
p′ = [I 0] P′,
p′′ = [I 0] P′′.

(2.77)

For any line s′ through p′, we have s′Tp′ = 0. Similarly, we also have s′′Tp′′ = 0.
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Figure 2-6: Three views. Reference frame is Image 1. s′ is any line through p′, and s′′ is
any line through p′′.

Transferring the second camera’s reference frame to the original camera,

P′ =

[
R′ t′

0T 1

]
P. (2.78)

where R′ is the rotation from the first frame to the second frame, and t′ is the translation
from the first frame to the second frame. We obtain a similar equation for the third camera
frame. Combining (2.77) and (2.78),

p′ = [I 0] P′

= [I 0]

[
R′ t′

0T 1

]
P

= [R′ t′] P

= [R′ t′]

[
p
ρ

]
= R′p + ρt′.

(2.79)

Similarly, we obtain p′′ = R′′p + ρt′′. Premultiplying by s′T and s′′T gives

p′ = R′p + ρt′

s′Tp′ = s′TR′p + ρs′T t′ = 0,
(2.80)

and
p′′ = R′′p + ρt′′

s′′Tp′′ = s′′TR′′p + ρs′′T t′′ = 0.
(2.81)

Eliminating ρ from these equations results in

s′T t′s′′TR′′p− s′′T t′′s′TR′p = 0. (2.82)
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This can be written compactly using tensor notation as

Tijkpis′js′′k = 0, (2.83)

where T is the third order tensor representing the bilinear function of the camera motion
parameters:

Tijk = t′jR
′′
k,i − t′′kR′j,i. (2.84)

In (2.83), a repeated subscript in a product indicates an implicit summation over that
subscript, an operation known as tensor contraction. For example, writing out (2.83) in
detail,

3∑
i=1

3∑
j=1

3∑
k=1

Tijkpis′js′′k = 0. (2.85)

Since (2.83 - 2.85) hold for any lines s′ and s′′, we are free to pick convenient ones. The
standard form is to pick lines parallel to horizontal and vertical:

s′ =

 −1
0
x′

 or s′ =

 0
−1
y′

 , (2.86)

and

s′′ =

 −1
0
x′′

 or s′′ =

 0
−1
y′′

 . (2.87)

Choosing one form from each equation in all possible ways results in four combinations.
When each combination is substituted into (2.84), we obtain the four trilinear equations:

x′′Ti13pi − x′x′′Ti33pi + x′Ti31pi − Ti11pi = 0
y′′Ti13pi − x′y′′Ti33pi + x′Ti32pi − Ti12pi = 0
x′′Ti23pi − y′x′′Ti33pi + y′Ti31pi − Ti21pi = 0
y′′Ti23pi − y′y′′Ti33pi + y′Ti32pi − Ti22pi = 0.

(2.88)

In (2.88), note the implicit summation over the i index (i.e. Ti13pi = T113p1+T213p2+T313p3).
While the set of equations (2.88) may appear complicated, they are in fact linear in the
unknowns Tijk. Thus, given enough point correspondences across three frames, we may form
a set of overdetermined linear equations, and solve for the tensor of motion parameters Tijk.
Since each point correspondence gives 4 equations, a minimum of 7 point correspondences
across three views are required to solve for the 27 unknowns Tijk. Predictably, there are
some nonlinear admissibility constraints among the 27 elements of Tijk. In an approach
similar to the 8-point algorithm for two views, given noisy measurements, one would solve
for Tijk using the linear equations (2.88), and use this as a starting point for a nonlinear
optimization algorithm.

2.4.1 Gradient-Based Approach

The foregoing description described a feature-based approach to three-view orientation.
Stein [167] actually adapted this to a gradient-based approach. The basic idea is to use
photometric constraints to develop an equation for a line in a second image corresponding
to each point in a first image.
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In this section, quantities associated with the second image will have a prime attached,
while quantities associated with the third image will have a double-prime attached. Starting
with (2.32), for the motion between the first and second image, we have

0 = E′t + vTω′ + ρsT t′, (2.89)

where ρ is the inverse depth, and s and v are as defined in (2.33) and (2.34). Similarly, we
obtain for the motion between the first and third image,

0 = E′′t + vTω′′ + ρsT t′′. (2.90)

Eliminating the unknown ρ between these two equations gives

E′′t sT t′ −E′tsT t′′ + sT
(
t′ω′′T − t′′ω′T

)
v = 0, (2.91)

which is known as the “15-parameter” model. We may solve for the unknowns in (2.91)
through linear equations by ignoring some constraints. The 15 unknowns are t′, t′′, and the
nine elements of the matrix

(
t′ω′′T − t′′ω′T

)
. By treating the unknown matrix elements

as independent quantities (thus ignoring constraints), we obtain a linear equation for each
pixel in the image.

For general motions, Stein [167] shows that the set of linear equations (2.91) has rank
of at most 13. This complicates recovery of the motion parameters t′, t′′, ω′, and ω′′, but
Stein provides an effective algorithm. However, in the case of collinear motion ( t′ ∝ t′′),
this algorithm fails. Stein therefore mainly restricts his attention to the case of a moving
stereo rig, in which case the “motions” are guaranteed to be noncollinear.

2.5 Absolute Orientation

Absolute orientation seeks to align two (or more) sets of feature points, whose three dimen-
sional locations have been measured or reconstructed in two reference frames (see Figure
2-7). Horn [89] gave a closed-form quaternion solution, and matrix square-root [92] solution.
Arun, Huang, and Blostein [10], and Umeyama [189] provide a closed-form singular value
decomposition (SVD) approach. Although the previous approaches implictly assume that
any location errors are assigned to one data set, Goryn and Hein [69] show that in fact
that these algorithms do not need to be modified when both data sets are subject to error.
Recent work [87] addresses the absolute orientation problem under nonisotropic location
uncertainty. This approach can lead to a generalization of absolute orientation, to include
relative and exterior orientation.

We present a very compact proof and algorithm for the exact solution of the absolute
orientation problem. Using simple linear algebraic identities, we show that the product
of the orthonormal matrices associated with the SVD of the data matrix is the required
rotation matrix, a result first obtained by Arun et al. [10]. Note that there is a version
of absolute orientation with an unknown scale factor s; it is useful in sequential tracking.
Here, we simply treat the case where s = 1, because recovery of an unknown s is easy.

Let one set of three dimensional feature point locations be denoted as li and the other set
as ri, for i = 1, . . . ,N . We seek the optimal translation t and rotation Q that approximately
satisfies li = Qri + t. Summing these equations for all i and dividing by N shows that the
optimal translation is found via t = l0 − Qr0, where l0 =

∑
i li/N and r0 =

∑
i ri/N

are the centroids of the two data sets. Combining this with our original equation gives
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Figure 2-7: The absolute orientation problem.

li − l0 = Q(ri − r0). Letting l̃i = li − l0 and r̃i = ri − r0, we must now find the best
rotation matrix Q that approximately satisfies l̃i = Qr̃i, for all i. Let L be the 3 × N
matrix formed by stacking the points l̃i side by side, and R be the matrix formed by
stacking the points r̃i similarly. We desire to minimize the sum of the square of the errors,
or
∑N
i=1 ‖̃li −Qr̃i‖22 = ‖L−QR‖2F = ‖LT −RTQT‖2F , where ‖ · ‖F is the Frobenius norm.

We could stop right there and claim that this exact problem is known as the “Orthogonal
Procrustes Problem,” and whose solution is given in the book by Golub and Van Loan [68]
as

Q = VUT , (2.92)

where U and V are derived from the singular value decomposition (SVD) USVT of the
matrix RLT . However, for completeness, we will expand upon the solution given in [68]
and give a few more details.

We will use two simple facts about the trace of a matrix. The first is tr(ATA) = ‖A‖2F .
The second fact is that if matrices A and B are related by a similarity transform, B =
XAX−1, then tr(A) = tr(B). Using our two trace formulas,

‖LT −RTQT‖2F = tr
(
(L−QR)(LT −RTQT )

)
= tr(LLT ) + tr(QRRTQT )− 2tr(QRLT )
= tr(LLT ) + tr(RRT )− 2tr(QRLT ).

(2.93)

Since the first two terms on the righthand side of (2.93) do not depend on Q, minimizing
(2.93) is equivalent to maximizing tr(QRLT ). Let RLT = USVT be the singular value
decomposition, with [S]ii = σi ≥ 0. Now, tr(QRLT ) = tr(QUSVT ) = tr(VTQUSVTV) =
tr(VTQUS). Letting Z = VTQU, we have tr(VTQUS) = tr(ZS) =

∑
ziiσi ≤

∑
σi. Thus,

to maximize the trace tr(VTQUS), we must set zii = 1, which means that Z = I. Therefore,
I = VTQU, or Q = VUT, thus completing the proof.

Haralick [75] derives this using a Lagrange multiplier approach. However, our derivation
is much shorter and perhaps more intuitive. Also, the “B” matrix in [75] plays the role of
our matrix product RLT, but it is not immediately obvious that this is so.

Horn et al. [92] solve the absolute orientation problem using a matrix square root
approach. One must first multiply the data matrix by its transpose, before performing a
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an eigendecomposition. Thus, the condition number of the matrix is essentially squared,
pushing the matrix closer towards singularity. Also, the method must be modified in the
case of a low rank data matrix. Our solution presented here avoids this condition number
doubling, and needs no modification in case of a low rank matrix.

Horn [89] also presents a closed form solution using unit quaternions. This method
requires the solution of a 4× 4 eigenvalue problem. Our solution here requires the solution
of a 3× 3 SVD problem. Thus, slightly fewer operations are required, and we expect more
accurate results because the SVD is inherently more stable than the eigenvector calculation.

To summarize the algorithm, first remove the centroids from the data sets, form the
matrices of match points L and R, form the product RLT and take the singular value
decomposition USVT = RLT . The optimal rotation is then Q = VUT, and the optimal
baseline translation is the difference in the centroids, with one of them rotated.

If the datasets are very corrupted with noise, then occasionally the Q produced by the
algorithm will be a reflection matrix and not a rotation matrix. Umeyama [189] proves that
the following simple fix is in fact optimal. The error arises whenever det(U)det(V) = −1.
If this occurs, simply form Q as

Q = V

 1
1
−1

UT . (2.94)

While it is by no means obvious, the Orthogonal Procrustes algorithm provides a maximum
likelihood solution to the absolute orientation problem (assuming Gaussian perturbations
to the feature point locations). We will prove this fact in Chapter 5.

Wang and Jepson [199] present a method that derives the translation vector without
first solving for the rotation. They first form a weighted sum of the rigid motion equations∑N

i=1 cili = Q
∑N
i=1 ciri + t

∑N
i=1 ci,

Lc = QRc + t1Tc
(2.95)

To eliminate the rotation, we require the ci’s to satisfy Rc = 0, or c must be in the null
space of the data matrix R. Since (2.95) is homogeneous in c, we are free to choose the
normalization. For simplicity, we choose this as 1Tc = 1. The weight vector c is therefore
found by combining the normalization constraint and the null space constraint, yielding

c =

[
R
1T

]+ [
0
1

]
(2.96)

t is now recovered by
t = Lc. (2.97)

With t now calculated, we can recover Q by subtracting t from every point in the left
hand data set li and then performing either the Orthogonal Procrustes Problem, or the
quaternion eigenvalue problem.

With Q and t now calculated, we may desire to calculate updated feature point locations.
These refined feature point estimates would be valuable in photogrammetric applications,
and also in refining structure derived from stereo reconstructions. In the development here
(and in fact in the quaternion approach [89]) it would appear that all the error has to be

42



assigned to the l̃i. In situations where the r̃i are noise-free, this is correct; when both sets
subject to noise, we must develop an alternate approach.

Assume that the true locations are (li)t and (ri)t, and the required perturbations are
∆li and ∆ri. We have li = (li)t + ∆li, and ri = (ri)t + ∆ri. Substituting these into the
equation (li)t = Q(ri)t + t gives

li + ∆li = Q(ri)t + Q∆ri + t,

[I −Q]

[
∆li
∆ri

]
= t− [I −Q]

[
li
ri

]
,

[
∆li
∆ri

]
= [I −Q]+

(
t− [I −Q]

[
li
ri

])
,

(2.98)

where the last line gives the desired perturbations. Note that we cannot recover the per-
turbation components in the null space of the matrix [I −Q].

2.6 Exterior Orientation

Exterior orientation [88] is the process of determining the location and attitude of a camera,
given three-dimensional feature point locations and their corresponding two-dimensional
image points.

While this problem is more than 150 years old, there is recent renewed interest because of
automated navigation and model-based vision systems. Previous work [76], [163] focused on
working with a small number of correspondences, and iterative Newton-Raphson approaches
[67], [77] to solve sets of polynomial equations (which can also be solved using continuation
methods [133]).

Recently, there has been great interest in the computer vision literature in methods to
determine orientation that do not rely on Newton-Raphson iterations. This is mainly a
result of the need for real-time computations. Iterative method often have uncertain execu-
tion times, and perhaps worse, uncertain convergence properties. Since many applications,
such as mobile robotics and automotive systems have hard, real-time requirements, this
type of uncertainty is generally not acceptable.

At the extreme in terms of efficiency are the “linear” methods. In these, conventional
linear algebra is used to solve for unknowns. The problem with these methods is that not
all geometric constraints are satisfied by a solution. At high SNR, these methods generally
perform well, but at low SNR, their performance degrades rapidly. Recent examples of this
approach are given by Quan and Lan [152], Triggs [183], and Ji et al. [99].

Lately, there has been work in noniterative, nonlinear methods. These are often touted
by their practitioners as “closed-form” or “direct” methods [144]. These methods attempt
to capture more of the problem constraints by formulating and solving nonlinear equa-
tions. These take the form of high order multivariate polynomial equations using spherical
trigonometry [145], resultants [210], Grobner bases [7], [115], [156], group theoretic methods
[100], Clifford algebras [3], [110], [111], [118], Grassman algebras, and even tensor formula-
tions [150].
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For a single photograph, the exterior orientation problem is given by

lj

 xj
yj
f

 = R(aj + t), j = 1, . . . , n. (2.99)

In (2.99), the pair (xj , yj) denotes the camera feature point locations, aj the three-dimensional
feature point locations in the world coordinate frame, R is a rotation matrix, t is a trans-
lation vector (which is in fact the location of the camera center of projection in the world
coordinates), and the parameters lj are unknown scales. For multiple photographs and
a single set of three-dimensional feature points, we have the classical bundle adjustment
problem, where we must determine all the camera location parameters, as well as updated
feature point locations. Appendix C contains a detailed writeup of this technique. For the
remainder of this section, we examine a recent polynomial-based method, as well as a new
linear approach.

2.6.1 Resultants and Exterior Orientation

Quan and Lan [152] have formulated the recovery of exterior orientation parameters in terms
of resultants [210], which is a symbolic method of solving sets of multivariate polynomial
equations. If we let f(x) = anx

n+an−1x
n−1+· · ·+a0 and g(x) = bmx

m+bm−1x
m−1+· · ·+b0

be polynomials in a single variable x, with an 6= 0 and bm 6= 0, the resultant of f(x) and
g(x) with regard to x is the determinant of the (m+ n)× (m+ n) matrix

D =



an an−1 · · · a0

. . . . . .
an an−1 · · · a0

bm bm−1 · · · b0
. . . . . .

bm bm−1 · · · b0


, (2.100)

where the “a” row is repeated m times and the “b” row is repeated n times.
The resultant has the following property: the determinant det(D) equals zero if and

only if f(x) and g(x) have a common root. This fact can be used to solve sets of mul-
tivariate polynomial equations as follows. Let the multiple variables be represented as
x = [x1, . . . , xn]T, and assume that there is a common root to the set of equations. First,
select a variable (say, x1) to eliminate, and represent two of the equations as polynomials
in this variable. The other unknowns, x2 through xn are treated as parts of the coefficients
of the various powers of x1 in each of the equations. Write out the resultant with regard to
x1 of the two equations symbolically. The elements of the resultant matrix will consist of
constants and the other variables x2 through xn, but not x1. Because the set equations are
assumed to have a common root x, there must be a common root x1 to the two equations,
and hence the determinant of the resultant must equal zero. By symbolically calculating
the determinant of the resultant and setting it equal to zero, we obtain another polynomial
equation, with x1 eliminated. This new polynomial can be combined with similar ones
created by the same resultant-determinant process, to eliminate another variable, say x2.

Eventually, if there are enough equations, we can obtain a polynomial equation which
contains only a single variable, say xn. The solutions to this univariate polynomial equation
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can be then found by standard methods [151]. These solutions are candidate solutions to the
entire set of equations. Candidate solutions for all the variables x1 through xn are obtained
this way, and then the correct combinations must be found through direct substitution.
This process involves a finite (although probably large) number of operations. Ideally,
the designer would have a priori knowledge with which to eliminate many of the solution
combinations. Clearly, the efficacy of using resultants depends on the number of variables
and equations, as well as the order of the polynomials.

For computer vision and signal processing applications, we may be interested in ap-
proximately solving a set of multivariate polynomial equations, rather than exactly so. This
situation occurs when the equation coefficients are formed from noisy observations, so we do
not expect that there is an exact, common solution. In this situation, it would appear that
resultants are not directly applicable. However, by selectively requiring exact solutions to
small subsets of the equations, we may use resultants to form sets of univariate polynomial
equations, which may then be approximately solved using linear methods. This is exactly
the approach taken by Quan and Lan in their solution of the exterior orientation problem.

Quan and Lan consider triples of feature points p1, p2, and p3, with known three-
dimensional location in the world coordinate system, and known camera image locations.
Of course, both sets of observations are contaminated with some amount of noise, so that
approximate solutions must be sought. Consider the triangle formed by p2 and p3 and
the camera center of projection. In the triangle, let the length of the side from the center
of projection to p2 be denoted by x2, and similarly for p3 and x3. Also, let the (known)
distance between points p2 and p3 be denoted by d23, and let the (known) angle formed
by the two rays from the center of projection to p2 and p3 be denoted by θ23. Elementary
geometry gives us the relation

d2
23 = x2

2 + x2
3 − 2x2x3c23, (2.101)

where c23
4
= cos θ23. We can in fact determine c23 without resorting to trigonometric

function evaluation by noting that the cosine of the angle formed by the rays is the inner
product of the rays (normalized in length):

c23 =
[u2, v2, 1]T · [u3, v3, 1]T

‖[u2, v2, 1]T ‖‖[u3, v3, 1]T ‖ , (2.102)

where [u2, v2, 1]T are the image plane coordinates of p2, and [u3, v3, 1]T are the image plane
coordinates of p3.

By considering the pair p1 and p3, we may obtain an equation similar to (2.101):

d2
13 = x2

1 + x2
3 − 2x1x3c13. (2.103)

We can use resultants to eliminate x3 from these two equations. The resultant with regard
to x3 is

D1 =


1 −2x1c13 x2

1 − d2
13 0

0 1 −2x1c13 x2
1 − d2

13

1 −2x2c23 x2
2 − d2

23 0
0 1 −2x2c23 x2

2 − d2
23

 . (2.104)

Using a symbolic algebra program, the determinant of D1 is calculated and set equal to
zero, resulting in the equation

x4
2 + (a1x1)x3

2 +
(
a2x

2
1 + a3

)
x2

2 +
(
a4x

3
1 + a5x1

)
x2 +

(
x4

1 + a6x
2
1 + a7

)
= 0, (2.105)
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where we have collected terms for a polynomial in x2. The coefficients a1, . . . , a7 are given
by

a1 = −4c23c13,
a2 = 4c223 + 4c213 − 2,
a3 = −4c223d

2
13 + 2d2

13 − 2d2
23,

a4 = −4c13c23,
a5 = 4c13c23d

2
13 + 4c23c13d

2
23,

a6 = −2d2
13 + 2d2

23 − 4c213d
2
23,

a7 = −2d2
13d

2
23 + d4

13 + d4
23.

(2.106)

We may now combine (2.105) and the equation

d2
12 = x2

1 + x2
2 − 2x1x2c12 (2.107)

to eliminate x2. The resultant is

D2 =



1 a1x1 a2x
2
1 + a3 a4x

3
1 + a5x1 x4

1 + a6x
2
1 + a7 0

0 1 a1x1 a2x
2
1 + a3 a4x

3
1 + a5x1 x4

1 + a6x
2
1 + a7

1 −2x1c12 x2
1 − d2

12 0 0 0
0 1 −2x1c12 x2

1 − d2
12 0 0

0 0 1 −2x1c12 x2
1 − d2

12 0
0 0 0 1 −2x1c12 x2

1 − d2
12

 .

(2.108)
The determinant of D2 is calculated and set equal to zero, resulting in the equation

b8x
8
1 + b6x

6
1 + b4x

4
1 + b2x

2
1 + b0 = 0. (2.109)

The coefficients b1, b3, b5, and b7 are all exactly zero. The remaining even coefficients are
incredibly complicated expressions of the ai’s, c12, and d12 (i.e. the measurements). See
Appendix D for the expressions.

We may actually forego this last symbolic determinant evaluation and calculate the
coefficients b0, b2, b4, b6, and b8 numerically. We simply plug in at least five different values
of x1 into (2.108), numerically evaluate the determinant for these values, and fit a polynomial
of the form shown on the left-hand side of (2.109). This results in a Vandermonde system
of equations, which can be solved in the least squares sense for the coefficients.

Quan and Lan then consider another triplet containing p1, say (p1, p2, p4), obtaining
another equation of the form (2.109). By consider all such triplets containing p1, we obtain
a set of M = (N − 1)(N − 2)/2 quartic polynomial equations in x2

1, where N is the number
of feature points. Since the coefficients are corrupted by measurement noise, we attempt to
find an x1 such that 

b
(1)
0 b

(1)
2 b

(1)
4 b

(1)
6 b

(1)
8

b
(2)
0 b

(2)
2 b

(2)
4 b

(2)
6 b

(2)
8

...
...

...
...

...
b
(M)
0 b

(M)
2 b

(M)
4 b

(M)
6 b

(M)
8




1
x2

1

x4
1

x6
1

x8
1

 ≈ 0, (2.110)

where b(j)i indicates the bi obtained by considering the jth triplet containing p1. Quan and
Lan resort to the SVD, by calculating the right singular vector v corresponding to the
minimum singular value. They then set x2

1 equal to the ratio of two consecutive entries
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of v, say x2
1 = v2/v1. Clearly, this approach will suffer at high noise levels because the

elements of v are not guaranteed to follow a geometric progression, as would be required
by the exact solution.

Several variations on this approach are obvious. For example, we could average the
ratios of consecutive elements of v. Also, denoting the matrix in (2.110) by A, we could
find the optimal x1 by performing the minimization

arg min
x1

[
1 x2

1 x
4
1 x

6
1 x

8
1

]
AtA

[
1 x2

1 x
4
1 x

6
1 x

8
1

]T
. (2.111)

This is simply a polynomial in x1, which may be minimized by standard one-dimensional
polynomial root finding algorithms. Finally, rather than evaluating all M triples, we could
randomly select a smaller set of triples. This in fact becomes imperative for increasing N ,
because of the large number (i.e. O(N5)) of operations involved.

2.6.2 A New, Efficient, Linear Method

This section presents a new algorithm for the solution of the exterior orientation problem.
Orthogonal decompositions are used to first isolate the unknown depths of feature points
in the camera reference frame, which allows the problem to be reduced to an absolute
orientation with scale problem. The SVD is then used to solve the absolute orientation
problem.

There do not appear to be any non-iterative algorithms that enforce all nonlinear con-
straints on the unknown motion and length parameters. In contrast, absolute orientation
has several closed-form, optimal solution methods. Wang and Jepson [199] solve the abso-
lute orientation problem by forming linear combinations of constraint equations in such a
way as to first eliminate the unknown rotation and then similarly to eliminate the unknown
translation.

We use a very similar trick here, but for the exterior orientation problem. We form a set
of linear combinations of the data from which the unknown translation, rotation, and scale
are eliminated. This allows us to recover the point depths in the camera reference frame
using orthogonal decompositions. The problem is thus reduced to an absolute orientation
problem, which we solve using the basic approaches of [10] and [189].

Derivation of the New Method

Assume that we know the noise-free three-dimensional feature point locations, denoted by
ai, and also the corresponding camera feature point locations, denoted by the pair (xi, yi),
for i = 1, . . . ,N . We seek the optimal translation vector t, rotation matrix R, scale s, and
projective parameters li that best satisfy

li

 xi
yi
1

 = sR(ai + t), i = 1, . . . ,N. (2.112)

The parameters li and scale factor s will be unique only up to an arbitrary common scale
factor. For notational ease, we define the data matrices

P =

[
a1 · · · aN
1 · · · 1

]
, (2.113)
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and

D =

[
x1 · · · xN
y1 · · · yN

]
. (2.114)

We first solve for the parameters li by seeking multiple linear combinations of the N
equations (2.112) so that the right hand sides become zero. To this end, we seek a full
column rank weight matrix W = [wij ] such that

N∑
i=1

wij = 0, (2.115)

N∑
i=1

wijai = 0, (2.116)

and
N∑
i=1

w2
ij = 1. (2.117)

for all j. The weights W can be easily found by collecting the linear constraints (2.115)
and (2.116) into the equation

PW = 0. (2.118)

The matrix P is of size 4 × N , and we assume here that it is rank-4 (and treat the rank-
deficient case later in the section). Let P = USVT be the SVD, and let V be partitioned
as V = [V1|V2]. V2 is the N ×N − 4 matrix of right singular vectors corresponding to the
null space of P. We see then that the columns of V2 are linearly independent (and, in fact,
orthonormal). We may therefore use W = V2.

We form N − 4 linear combinations of the N equations (2.112). For the jth linear
combination, we use the jth column of W. We thus have

∑N
i=1wij li

 xi
yi
1

 =
∑N
i=1wijsR(ai + t)

= sR
∑N
i=1wijai + sRt

∑N
i=1wij

= sR0 + sRt · 0

= 0,

(2.119)

for j = 1, . . . ,N − 4. We stack these N − 4 equations, and isolate the li into a vector
l = [l1, . . . , lN ]T : 

w1,1

 x1

y1

1

 . . . wN,1

 xN
yN
1


...

...

w1,N−4

 x1

y1

1

 . . . wN,N−4

 xN
yN
1




l = 0 (2.120)
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We can reduce this equation by noting that every third row of the matrix in (2.120) is
in fact a column of W. This means that l is required to be in the left null space of W,
which by virtue of (3.63), is spanned by PT . We therefore have that

l = PTα, (2.121)

for an unknown 4× 1 vector α. This allows us to rewrite the constraint (2.120) as

Cα
4=



w1,1

[
x1

y1

]
. . . wN,1

[
xN
yN

]

...
...

w1,N−4

[
x1

y1

]
. . . wN,N−4

[
xN
yN

]


PTα = 0. (2.122)

The best α is found from the SVD of the matrix product C in (2.122), by choosing the left
singular vector corresponding to the minimum singular value of C. Alternatively, we can
premultiply by CT and seek the eigenvector corresponding to the minimum eigenvalue of
the matrix CTC. After some manipulation, we can write this matrix compactly as

CTC = P
(
WWT �DTD

)
PT , (2.123)

where we use the symbol “�” to denote componentwise multiplication (also known as the
“Hadamard product” or “Schur product”).

In (2.123), W appears only through the product WWT . We can form this product
more efficiently than by calculating W from the SVD of P. We could calculate this product
as

WWT = I−V3VT
3 , (2.124)

where I is the identity matrix and V3 is an N × 4 matrix that forms an orthonormal basis
for the columns of PT . Such a basis is easily calculated using a Gram-Schmidt or QR
procedure [173], at significantly less cost than an SVD for large N .

Note that since C is 2(N − 4) × 4, we will require N ≥ 6 points for a unique minimal
α to be found. Since it is possible to calculate exterior orientation from 3 points [67], this
indicates that some nonlinear constraints are being ignored by the algorithm.

Once α is determined, the li are found from (2.121). With the vector l thus recovered
(up to a scale factor) we are now in a position to apply the absolute orientation with scaling
algorithm to (2.112). Denoting the left hand sides of (2.112) as

bi = li

 xi
yi
1

 , (2.125)

(2.112) becomes
bi = sR(ai + t), i = 1, . . . ,N. (2.126)

Summing these equations for all i and dividing by N shows that the optimal translation
is found via

t = s−1RTb0 − a0, (2.127)
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where b0 =
∑
i bi/N and a0 =

∑
i ai/N are the centroids of the two data sets. Combining

this with our original equation gives bi − b0 = sR(ai − a0). Letting b̃i = bi − b0 and
ãi = ai − a0, we must now find the best rotation matrix R that approximately satisfies
b̃i = sRãi, for all i. Because the rotation matrix does not change the length of the vectors
ãi, we immediately solve for the optimal least squares scale s using

s =
∑
i ‖ãi‖‖b̃i‖∑
i ‖ãi‖2

. (2.128)

Let B be the 3 × N matrix formed by stacking the points b̃i side by side, and A be
the matrix formed by stacking the scaled points sãi similarly. We desire to minimize the
sum of the square of the errors, or

∑N
i=1 ‖b̃i − sRãi‖22 = ‖B −RA‖2F , where ‖ · ‖F is the

Frobenius norm. This problem is known as the “Orthogonal Procrustes Problem,” whose
solution is given by Golub and Van Loan [68] as

R = VUT , (2.129)

where U and V are the left and right singular vectors of the SVD USVT of the matrix
ABT . Actually, if the data sets are extremely noisy, it is possible that R obtained by (2.129)
may be merely orthonormal, rather than a rotation matrix. The method of Umeyama [189]
corrects this situation.

The efficient linear algorithm for exterior orientation is thus summarized as:

1. Calculate an orthonormal basis V3 for the columns of PT using the Gram-Schmidt
procedure,

2. Calculate WWT from (2.124),

3. Form the 4×4 matrix CTC in (2.123) and set α equal to the eigenvector corresponding
to the minimum eigenvalue,

4. Calculate the vector of parameters l from (2.121),

5. Calculate the centroids a0 and b0, and form the data sets ãi and b̃i,

6. Calculate the scale s using (2.128),

7. Form the matrices A and B, and calculate the SVD of ABT,

8. Calculate the rotation estimate using (2.129),

9. Calculate the translation estimate using (2.127).

We note also that a small cost savings can be had if multiple image frames are available for
the single set of three-dimensional feature points. The calculation of WWT in (2.124) is
independent of the image point locations and can therefore be calculated once for multiple
frames. This can serve as an efficient initialization for a bundle adjustment procedure in
photogrammetric applications [163].
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Rank Deficient Case

When P has rank less than four, as was assumed in the previous section, we must slightly
modify the algorithm. It is easily shown that P will be rank-3 if and only if all the points
ai are coplanar (and not all collinear). In this situation, V1 is now N × 3. We replace PT

in (2.121)-(2.124) by V1, and solve for the now 3×1 vector α. Since C is now 2(N −3)×3,
N ≥ 4 known coplanar points are necessary for a unique minimal α. As a practical matter,
for geometries where theN points are nearly coplanar, the algorithm as given in the previous
section will exhibit unstable performance, due to the near-repeated minimal eigenvalue of
C. Therefore, the planar algorithm given this section should be used when C exhibits nearly
equal minimal eigenvalues.

Simulations and Performance Evaluation

In this section, we compare the new algorithm to that of [152]. Additionally, we also
compare to another, very simple, linear method. Starting with (2.112), we rearrange the
equation so that all the unknowns are collected into a single vector:

−x1 | | aT1
−y1 | I | aT1
−1 | | aT1

. . . |
... |

...
−xN | | aTN
−yN | I | aTN
−1 | | aTN




l1/s

...
lN/s

t′

r

 = 0. (2.130)

where t′ = Rt, and r = [r1, . . . , r9]T is a vectorized (row scanned) version of R. We solve
for the unknowns by finding the right singular vector v corresponding to the minimum
singular value of the matrix in (2.130). Alternatively, to reduce the computational load,
we may premultiply by the matrix transpose in (2.130) and set v equal to the eigenvector
corresponding to the minimum eigenvalue. Since the matrix in (2.130) is 3N × (N + 12),
we require N ≥ 6 for a unique minimum. We extract the li/s estimates from v, and then
solve the resulting absolute orientation with scale problem with these estimates.

For the tests, a random set of two-dimensional feature points and li’s were generated,
along with a random rotation and translation (care was used so that the points were in
front of the camera). The corresponding three-dimensional points were calculated. Noise
was then added independently to both the two-dimensional and three-dimensional data.

The metrics that were measured are the error in the rotation matrix components (the
Frobenius norm is reported), the angular error (in degrees) of the corresponding unit quater-
nion associated with the rotation, the relative error in magnitude of the translation vector,
and the angular error (in degrees) of the translation vector.

The signal-to-noise ratio (SNR) used in setting the noise level was calculated by first
measuring the average spread of the two-dimensional and three-dimensional components.
This number was then used as a multiplier for a scaled Gaussian random noise generator.
Monte Carlo runs were then performed, and results for constant SNR were combined by
taking the median of the various errors. Figures 2-8 and 2-9 show examples of the relative
feature point displacements in the image and in space corresponding to the worst SNR level
used in the Monte Carlo runs.
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Figure 2-8: Two views of a sample three-dimensional feature point scene. Noise-free “◦”
and noisy “×” feature point locations corresponding to 35dB SNR.

Figures 2-10 shows a comparison of the simple linear method, the method of [152], and
the new method. 50 Monte Carlo runs per SNR were performed, and the median errors
were plotted. Results for N = 8 are shown; all of the methods show improved performance
with the addition of more points. Figures 2-11 and 2-12 show the performance of the new
method for a more challenging scenario, where the field of view is narrower than in Figure
2-10.

Figure 2-13 shows a comparison of the number of operations required by the methods
(as determined by the MATLAB “flops” command), as a function of the number of feature
points. Clearly, the new method requires far fewer computations. This shows that for the
method of [152] to be practical for large N , one must forego forming all triplets and select
smaller (perhaps random) subsets of triplets.

It is straightforward to derive the operations counts of the methods. For the new method,
the Gram-Schmidt and absolute orientation procedures requires O(N) operations, and all
the other steps are O(N2) in complexity (with small multiplicative constants). The method
of [152] as formulated evaluates O(N2) triplets for each of N points, leading to O(N3)
behavior. The simple linear method requires O(N2) operations to form the symmetric
product of the matrix in (2.130), and anywhere from O(N2) to O(N3) operations to find
the minimum eigenvector, depending on the method used.

Linear methods, such as the one presented here and in [152] involve a trade-off between
robustness and computational cost. Because nonlinear constraints are ignored by linear
algorithms, it is crucial to understand the behavior of these algorithms in the presence of
feature location noise. For our algorithm, the main entry point for deviations from optimal
behavior will be in the solution of the vector α as the minimizer of the quadratic form
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Figure 2-9: Image feature points corresponding to three-dimensional scene in Figure 2-8.
The image feature points were independently perturbed; “◦” indicates the true location,
“×” indicates the perturbed location.

αTCTCα. In the noise-free case, α will be the unique eigenvector corresponding to the
zero-eigenvalue of CTC. The nonlinear constraints are not needed in this case because α is
necessarily in the null space. As noise is allowed to increase, the zero-eigenvalue increases,
and the corresponding zero-eigenvector will change direction. In this situation, the nonlinear
constraints are not satisfied, and more importantly, deviations from satisfying the nonlinear
constraints are not penalized by any linear method.

We thus become interested in the sensitivity of eigenvectors to noise. Golub and Van
Loan [68] showed that the eigenvector sensitivity is proportional to the inverse distance
between the zero-eigenvalue and the other eigenvalues of the matrix. Therefore, for a
matrix of constant Frobenius norm, the most stable zero-eigenvector computation is had
when all other eigenvalues of the matrix are equal. Because we may arbitrarily scale the
matrix, the quantity of interest is thus the ratio of the maximum eigenvalue to the second
smallest eigenvalue. We loosely term this ratio the “condition” number of the matrix (as
does Hartley [78] in a similar computation to analyze the stability of the “8-point algorithm”
for relative orientation). Figure 2-14 shows this condition number of the matrix CTC as a
function of the number of points N .

Figure 2-15 shows a scatter plot of the median angular error of the translation estimate
as a function of the condition number. Here, the condition number is calculated without
the addition of noise; it is a function of the scene geometry only. The translation angular
error was calculated with a small amount of additive noise; we are in effect linearizing the
sensitivity calculation about the noise free operating point. What the figure shows is that
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Figure 2-10: Performance comparison for method of [152] (plotted as “+”), the simple linear
method (plotted as “◦”), and new method (plotted as “×”). Shown are results for N = 8
points. The average field of view was 80 degrees, and the average li was approximately 80,
and the average scene depth was approximately 10.

the error does increase with the condition number of the scene.

Summary

In this section, we have developed a computationally efficient method for exterior orientation
which uses well known numerical, linear algebraic methods. Comparisons to several existing
methods showed nearly the same robustness to feature point location noise, but with a
significantly reduced computational cost. The method extends to multiple image frames
with some additional cost savings through shared computations. The method can be used
as is, or be used to initialize a more exact, iterative procedure.
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Figure 2-11: Performance comparison of the simple linear method (plotted as “◦”), and
new method (plotted as “×”). Shown are results for N = 20 points. The average field of
view was 45 degrees, the average li was approximately 150, and the average scene depth
was approximately 20. 100 Monte Carlo runs per point were performed.
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Figure 2-12: Performance of the new method. Shown are results for N = 6, 10, 20, and
50 points. The average field of view was 45 degrees, the average li was approximately 150,
and the average scene depth was approximately 20. 100 Monte Carlo runs per point were
performed.
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Figure 2-13: Operations count of the method of [152] (plotted as “+”), simple linear method
(plotted as “◦”) and new method (plotted as “×”).
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Figure 2-14: Condition number of CTC as a function of N (same scene generation param-
eters as in Figure 2-12).
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Figure 2-15: Scatter plot of noise-free condition number vs. 50dB SNR translation angular
error for N = 20. 400 random configurations plotted (same scene generation parameters as
in Figure 2-12).
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2.7 Camera Calibration and Interior Orientation

When working with real camera images, we are often presented with just the pixel brightness
values, and is generally unsafe to assume that the camera was perfect. Even if it were, we
do not know the focal length (i.e. zoom) that the photo was taken. Also, the array of pixel
data, may have been clipped in an off-centered manner, so that the principal point may
not lie in the exact center of the array. If we to this the fact that the pixels are generally
rectangular, of unknown aspect ratio, we see then that there are several parameters of the
camera that really must be known before any type of exterior or relative orientation is
attempted. Once these parameters are determined, it is a simple matter to normalize the
image coordinates to a standard camera.

This problem is referred to as the interior orientation [88] or camera calibration problem.
The method we summarize here follows Trucco and Verri [184]. It is a linear method, based
on projective geometry, so it should be used only on clean calibration patterns (i.e. low
noise environments).

The approach consists of two steps:

1. Estimate the projection matrix from the world coordinate system to the image coor-
dinates.

2. Compute the interior orientation parameters in closed-form from the projection ma-
trix.

The following describes these operations in more detail.
The interior orientation parameters that we are interested in are the principal distance,

f , the principal point (ox, oy), and the pixel dimensions sx and sy. It will be convenient to
define

fx =
f

sx
, fy =

f

sy
. (2.131)

Assume that we have a known calibration pattern, where easily visible feature points
have known 3D locations ai. We are free to choose any convenient frame of reference for
these locations. Typically, the calibration pattern has an obvious, convenient reference
frame.

The images of these feature points are related projectively to the image points via ui
vi
wi

 = M

[
ai
1

]
, (2.132)

with

xi =
ui
wi

=
[m11 m12 m13 m14]

[
ai
1

]

[m31 m32 m33 m34]

[
ai
1

] (2.133)

and

yi =
vi
wi

=
[m21 m22 m23 m24]

[
ai
1

]

[m31 m32 m33 m34]

[
ai
1

] . (2.134)
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The matrix M is defined up to an arbitrary scale factor and therefore has only 11 degrees
of freedom. Since we get two linear equations for every feature point, at least six feature
points can be used to form a set of homogeneous linear equations in the elements of M:

Am = 0, (2.135)

where

A =


aT1 1 0T 0 −x1aT1 −x1

0T 0 aT1 1 −y1aT1 −y1
...

aTN 1 0T 0 −xNaTN −xN
0T 0 aTN 1 −yNaTN −yN

 , (2.136)

and m = [m11, m12, . . . ,m34]T . The optimal m̂ estimate, determined up to an unknown
scale factor, is found as the right singular vector corresponding to the minimal singular
value of A.

Once m̂ is thus determined, we must recover the interior orientation parameters from
it elements. It is easily derived [184] from the perspective projection equations that the
elements of M can be written in terms of the interior and exterior orientation parameters
as

M =

 −fxr11 + oxr31 −fxr12 + oxr32 −fxr13 + oxr33 −fxt1 + oxt3
−fyr21 + oyr31 −fyr22 + oyr32 −fyr23 + oyr33 −fyt2 + oyt3

r31 r32 r33 t3

 . (2.137)

The negatives appear in the equation because generally both x and y coordinates of the
pixel values are flipped with respect to the coordinates of the viewer-centered coordinate
system. For convenience, define

m̂1 =

 m̂11

m̂12

m̂13

 , m̂2 =

 m̂21

m̂22

m̂23

 , m̂3 =

 m̂31

m̂32

m̂33

 , m̂4 =

 m̂14

m̂24

m̂34

 . (2.138)

Simple algebra shows that

ox =
m̂T

1 m̂3

m̂T
3 m̂3

, (2.139)

oy =
m̂T

2 m̂3

m̂T
3 m̂3

, (2.140)

f2
x =

m̂T
1 m̂1

m̂T
3 m̂3

− o2
x, (2.141)

f2
y =

m̂T
2 m̂2

m̂T
3 m̂3

− o2
y. (2.142)

The denominator in the above expression is needed to remove the arbitrary scale factor in
m̂.

To illustrate this method, Figure 2-16 shows a picture of a Rubik’s Cube, obtained from
an uncalibrated camera. Because we know that the various romboids in the picture are
actually squares, we can set up a three-dimensional coordinate system along the edges of
the cube, and can therefore guess the three-dimensional coordinates of the various corners
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in the image. In the figure, the circle marked “15” is the origin, “25” is the unit x direction,
“14” is the unit y direction, and “11” is the unit z direction.

The corners in the image were marked by hand, so that the image feature locations
are not particularly accurate. The above algorithm was run, with the result that the
principal point was about (42, 109), and sx and sy were nearly identical. With the calibration
parameters now in hand, the exterior orientation algorithm of Section 2.6.2 was run. This
algorithm yielded

R =

 −0.9387 0.3442 −0.0190
0.0419 0.1688 0.9848
0.3422 0.9236 −0.1729

 , (2.143)

and

Rt =

 −2.3566
−0.3677
23.5270,

 (2.144)

which is the translation from the camera origin to three-dimension coordinate system origin,
measured in the camera reference frame. This says that the camera was about 23 units away
from the Rubik’s cube, We also note that the condition number, defined in Section 2.6.2,
for this problem was approximately 4.2, indicating that the efficient exterior orientation
method was also extremely stable for this situation.
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Figure 2-16: Image used for camera calibration.
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2.8 Summary

This chapter was concerned with giving a detailed mathematical introduction to the struc-
ture, motion, and orientation recovery problem. At first glance, this recovery would seem
to be a straightforward geometry problem; however, the diversity of problem formulations,
and the complexity of the solution approaches given in this chapter should have dispelled
this notion.

This chapter relates to the main theme of the thesis by giving a solid introduction to the
various orientation problems, as well as the two dominant modeling approaches, feature-
based and gradient-based methods. We focused on the perspective projection; we should
note that other approximate image formation models are receiving a great deal of interest,
because the equations are much easier to solve [5], [6], [180].

For two data sets, the transformation in three-dimensional coordinates due to motion
is described by (2.5). For images, (2.6) and (2.7) describe the coplanarity constraint for
matched feature points. Section 2.2.1 describes the simple, approximate linear methods for
recovering the motion, as well as the accurate, nonlinear iterative methods.

The other major model, the gradient based methods for relative orientation, was treated
in Section 2.3. The brightness change constraint equation (2.29) and (2.30), and its special-
izations are the important concepts here. We saw that the planar scene situation admitted
a closed-form solution; we will treat this case more extensively in Chapter 4, by analyzing
the accuracy of the approach, as well as offering an efficient hardware realization for the
algorithm.

Estimation of motion from three perspective views was also introduced in Section 2.4,
for both feature-based and gradient-based approaches. This multiple view situation will
be treated more extensively in Chapter 5, where we are more concerned about accurately
combining information, by taking into account the relative information content in different
types of observations.

Section 2.5 treated absolute orientation, an important operation for registering mod-
els and observations. Using the Orthogonal Procrustes algorithm, the absolute orientation
problem is easily and exactly solved. This ease of solution is in contrast to all other orienta-
tion problems, and in fact has led researchers to investigate generalizations of the absolute
orientation; we investigate this in greater detail in Chapter 5.

Section 2.6 dealt with the exterior orientation problem and photogrammetry, mathemat-
ically described by (2.99). The resultant approach for exterior orientation given in Section
2.6.1 served as an introduction to the use of multivariate polynomials in comper vision.
The classical bundle adjustment technique (Appendix C) is closely related to this problem.
While exact in the maximum likelihood sense, the complexity of the bundle adjustment
method gives little insight into the orientation problem; we will reexamine this issue in
greater detail in Chapter 5 by adopting an estimation-theoretic approach. Standard esti-
mation theory concepts, such as error ellipses and Fisher information matrices, will give a
more intuitive development, as well as allowing for a generalization to many different types
of data sets.

While mainly a review chapter, there were several novel ideas put forth:

• the convergence rate analysis of iterative solution for a moving planar scene (Section
2.3.3),

• the linear exterior orientation method (Section 2.6.2), which compared favorably in
both computation cost and estimation performance to the current resultant-based
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approach.

The development of these items required use of signal processing concepts to understand
the effects of noise; more extensive use of these concepts will be made in Chapters 4 and 5.
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Chapter 3

Efficient Real-Time Computation
and Field Programmable Gate
Arrays

3.1 Introduction and Chapter Overview

To date, all of the research effort on orientation and photogrammetry has been algorithmic
in nature. The computations were designed to be run on a conventional, general purpose
computer or workstation. With the availability of reprogrammable devices comes the op-
portunity to implement efficient, custom, real-time versions of these algorithms, but only if
the challenges inherent in optimizing the hardware design can be overcome.

Researchers have recognized the importance of customized implementation for DSP, im-
age processing, and computer vision problems [66], [201], [202]. Recently, Ratha and Jain
[153] describe the mapping of filtering, segmentation, and fingerprint classification to an
FPGA-based computer. Efficient FPGA implementations of feature point selection and
tracking for image sequences has also received attention. Fiore et al. [59] approximated an
eigenvalue-based window tracking algorithm, obtaining nearly identical performance with
just a handful of additions and comparisons. Benedetti and Perona [17] had a less effi-
cient approximation, requiring multiplications and squarings. Extremely high-performance
template matching has been demonstrated using FPGA computers for Synthetic Aperture
Radar (SAR) target detection [62], [107], [194].

Lightweight, power-efficient processing is being increasingly demanded for incorporation
into video processing and image understanding systems. Several ongoing DARPA programs
[138], [143] are researching efficient methods, from low-level devices to advanced algorithms,
for gathering, transmitting, and understanding image data.

Techniques for reduced precision computation have received recent attention. Care must
be used by the designer when simple wordlength reduction methods, such as truncation,
are used. Simple methods can introduce biases and excessive noise. Several authors have
introduced schemes that reduce the bias of truncation with little additional cost; see [54]
for details.

Wordlength reduction introduces noise into the data stream, so the designer must bal-
ance the need for an efficient implementation with output quality. To perform this tradeoff,
Barnes et al. [14] modeled the effect of truncation as injection of additive white uniform
noise. The algorithm wordlengths can be determined by minimizing either the cost or
variance metric, subject to constraints on the other metric. Generally, this is a nonlin-
ear optimization problem (although Fiore and Lee [61] derived the optimal wordlengths in
closed-form for a standard adaptive LMS filter). Choi and Burleson [32] used this prob-
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lem formulation, and proposed a branch-and-bound solution method. Simulation-based
approaches have perhaps received the most attention; indeed, this is the approach used in a
commercially-available CAD tool [72]. Recently, Fiore [56] has investigated Pareto-optimal
solutions, which attempt to simultaneously minimize both metrics.

The remainder of this chapter is organized as follows. Section 3.2 reviews the technolo-
gies used to implement real-time systems. Older devices (essentially software-based) are
reviewed first in order to set the stage for the newer class of custom computing devices. Be-
cause the ever-increasing device density seems to engender a similar increase for demanding
processing, it appears we will never have “enough” processing power. For custom com-
puting then, we will periodically be faced with the wordlength optimization problem. To
this end, Section 3.3 introduces a new and powerful approach, based on the Markov Chain
Monte Carlo (MCMC) method. By using this well known algorithm, we are guaranteed,
with probability one, to find all interesting optimal designs. Experience has shown that the
algorithm gives good results fast. Also in Section 3.3 is a usable new iteration that bounds
the achievable cost and quality for a particular algorithm, which is very useful information.
In many cases, this algorithm can be used to initialize the MCMC approach.

While Section 3.3 is concerned with globally optimizing a particular design, Section 3.4
is concerned with a more local optimization approach, which I have termed “lazy rounding.”
This new heuristic approach is based on optimizing the wordlength reduction of the addition
operation; despite its simplicity, the approach has received a great deal of interest [58], [54].
We derive the method in this section and also apply it to the design of truncated multipliers.
Since the majority of custom computing designs appear to be centered around custom
additions and multiplications, this technique is highly relevant to the custom computing
field.

Section 3.5 touches upon another aspect of a successful mapping of an algorithm to
custom hardware: that of rearranging the computation to minimize the number of expensive
multiplications. We show in this section how this problem is intimately related to that of
decomposing tensors into sums of rank-1 outer products. Also, due to the extreme difficulty
of this task in general, we explore a new, heuristic approach.

In Section 3.6 we apply these optimization concepts to the efficient FPGA calculation
of a critical algorithm for orientation problems, the singular value decomposition. We
will make use of the specialized structure given in Section 3.6 to accelerate algorithms for
multiple view orientation in Chapter 5. Section 3.7 examines the mapping of a particular
preprocessing stage for absolute orientation.

Finally, Section 3.8 summarizes the main results of this chapter, and put the contribution
of these ideas into the proper perspective.

3.2 Real-Time Technology

Real-time system designers face a constant struggle to balance efficiency, speed, and upgrad-
ability. In this section, we briefly review some of the technologies that are used to implement
real-time systems, with special attention paid to the newest class of device, the field pro-
grammable gate array.

3.2.1 Microprocessors

A stored program computer provides a highly versatile real-time system, allowing the ex-
ecution of a wide range of algorithms. This approach has the benefit of minimization an
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amortized non-recurring engineering (NRE) cost, because one hardware design may be used
for many applications. This minimization is the primary driving force behind the popu-
larity of the stored-program computer, and the most visible member of that family, the
microprocessor.

Unfortunately, the price of versatility is (comparatively) low-performance. Because a
stored-program is being executed, large amounts of chip area must be devoted to the pro-
gram sequencer, or controller. Only a fixed number of instructions are supported. Also,
very rigid structuring of data accesses between memory and computational units are re-
quired. Of late, the area requirements of the controller have increased dramatically, due to
the inclusion of onboard local program and data memory, or caches. These caches are used
in an attempt to reduce much of the overhead associated with stored-program execution.
They also in effect provide more wires from the memory to the processing units, thereby
allowing the processing units to operate closer to full capacity.

The multitasking nature of the environments where most microprocessors are used,
namely personal computers, also has a detrimental influence the performance of these chips.
Specifically, the overhead in terms of speed and area of supporting dynamic linking and
virtual memory access can greatly reduce the throughput capability of the device.

Generally, the arithmetic-logic unit (ALU) of a microprocessor can perform only a small
set of basic operations. Typically, designers of these chips focus on operations that are
most likely to be used in a variety computing fields, such as computer graphics, financial
computing, networking (and Internet access), and embedded process controllers. The basic
arithmetic operations that support all these application areas are addition/subtraction and
multiplication/division. Binary operations, such as bit-wise ANDing, ORing, etc., as well
as bit rotations and shifts are generally supported as well. It has only been in the last
ten years that there has been a high enough gate count on a single chip to support the
larger operations of multiplication and division at near single-cycle operation. Generally,
the sustained execution of these operations falls far short of the peak execution rate, usually
because of the bussing and memory structure.

General purpose microprocessors tend to have full implementations of floating point
arithmetic, because most users do not understand or (justifiably) cannot be bothered with
the intricacies of fixed point algorithm implementation. While convenient for software
developers, floating point functionality comes at a price: it is area consuming, and rarely
single cycle. Because of the large size of these units, even for simple operations such as
addition, it is nearly impossible to achieve performance speedup of an algorithm through
parallelization of floating point units.

Another problem with general purpose microprocessors is that the advertised processing
rate is often difficult to achieve, because of the necessity of using compilers. Compilers trans-
late high level programs into machine executable code. The skill of the compiler designer
is often the deciding factor that makes or breaks the reputation of a given processor. Real-
time performance is often impossible to achieve from a high-level language implementation,
because the general purpose compiler for a new device is rarely fully optimized.

Despite all these drawback, the general purpose microprocessor has flourished; unde-
niably, they are the single most useful integrated circuit ever devised. Because of their
popularity, manufacturers have been able overcome the aforementioned limitations through
massive investment in process improvement; the clock speed and gate count of these de-
vices are always at the cutting edge of technology, because the return on investment is
unmatched.
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3.2.2 DSP Microprocessors

Very few general purpose microprocessors have direct hardware implementations of arith-
metic and mathematical operations beyond the basic arithmetic operations, simply because
it is not cost effective to do so. Since these devices generally do not satisfy the needs of
small, efficient real-time signal processing systems, in the last decade, a new type of device
emerged: the digital signal processing (DSP) microprocessor.

Of late, the telecommunications industry has been the driving force behind this type
of processor, with many varieties and subspecies of DSP microprocessors flourishing. The
DSP microprocessor closely resembles a conventional, general purpose microprocessor in
that it executes stored programs, has a program controller, ALU, and memory interface.
The main difference is that its ALU is optimized for signal processing. Sustained, single
cycle multiply-accumulate operations are the norm. This is generally accomplished through
specialized memory access instructions, which are designed to keep the ALU processing at
100 percent capacity.

Of course, sacrifices must be made in order to achieve this type of guaranteed through-
put. Generally, multitasking and virtual memory support are eliminated, as well as some
other niceties to support complicated operating systems. There are many devices that
forego floating point functionality, supplying only fixed point processing. These devices
exist because the systems they are targeted to require either very low power operation,
or must be extremely inexpensive to manufacture. The companies using these devices are
willing to expend the additional design effort to field products with these devices, because
the extra development cost will be recouped quickly by a larger market share.

It should also be clear that the division between general purpose and DSP microproces-
sors is not sharp; rather, a spectrum of devices exist. DSP algorithms may be run on all
these devices, but with differing levels of design effort, final unit cost, and capabilities.

3.2.3 Application-Specific Integrated Circuits (ASICs)

While the DSP microprocessor revolutionized the design and development of real-time signal
processing systems, there are many applications which require processing throughput far
beyond what may be supplied by a DSP microprocessor. Many radar and image processing
algorithms, for instance, must operate in throughput ranges up to four orders of magnitude
larger than may be supplied by a single device. Very few customers have the ability to buy
and maintain systems consisting of large numbers of microprocessors. Instead, a different
processing paradigm is employed: application-specific integrated circuits (ASICs).

ASICs are custom hardware circuits that provide precisely the functionality needed for
a specific task. By carefully tuning the ASIC design for the specific task, gains in efficiency,
cost, size, and power consumption over microprocessors may be had.

ASICs, and their older cousins, fully-custom designed integrated circuits, are not new;
by definition, they predate microprocessors. More importantly, DSP engineers traditionally
sought a solution among ASICs when faced with a large, processing intensive, real-time
design problem. The advent of the DSP microprocessor ate away at the low-end market
segment, and indeed continues to do so. Despite this, the ASIC design industry continues
to thrive, solely because there exist processing tasks that cannot be handled (and never will
be handled), by DSP microprocessors. Indeed, performance speed up of thousands, or even
millions, times that achievable by a general purpose microprocessor for specific problems
have been achieved by custom ASIC designs.
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ASICs are applied to tasks which justify the increased cost of designing specialized
logic. All modern personal computers have one or several ASICs to perform tasks such as
video control, sound generation, hard disk accessing, and memory management. The final
designed ASIC is often very inexpensive to manufacture; products with a large potential
market are therefore the driving force behind the ASIC industry.

For signal and image processing applications, ASICs are very successfully applied to
problems which exhibit a high degree of parallelism. Systolic arrays, whose characteristics
include a regular, repetitious structure, usually simple processing elements, and mostly local
interconnections, are often implemented in ASICs.

Another class of DSP designs which find common ASIC implementations are those that
consist of a deep processing pipeline. In these problems, pipeline stages correspond to
different steps of an algorithm; When processing of a piece of data is completed at one
stage of the pipeline, the data is then moved on to the next pipeline processing stage.

Many DSP tasks can be naturally decomposed into systolic or pipelined computational
structures, and for many years, DSP implementation was solely the province of ASIC de-
signers.

The usual analogy is that of an assembly line. In contrast, a general purpose micro-
processor may be viewed analogously to a craftsman; the craftsman can do a good job on
nearly any task, whereas the assembly line produces essentially only one item, but at fantas-
tic rates of speed. Also, it is very expensive to retool the assembly line to produce a different
product. Finally, to minimize expenses, great pains are taken to ensure smooth flow of the
assembly line, with no idle workers. For ASICs and general purpose microprocessors, the
same comments apply. To get fantastic performance on essentially one algorithm, an ASIC
is the answer. However, the end volume must justify the cost. The ASIC had better solve
the correct problem, because it cannot generally be used for other problems.

Even as there was a continuum of devices among general purpose and DSP microproces-
sors, the boundary between ASICs and microprocessors is not really sharp. Many vendors
offer standardized microprocessor “cores,” which may be incorporated into a custom ASIC.

While attractive from a computational throughput viewpoint, the drawback of ASICs
are their NRE cost and design time. Clearly, with more flexibility available over micropro-
cessors, comes the burden of actually specifying the contents of the ASIC. Thus, experienced
teams are generally required to successfully complete an ASIC in a timely manner. Also,
these skills are relatively specialized; while it is common for many people to write software
on a daily basis, comparatively few people design ASICs.

Hardware synthesis tools ease this development process. However, the comments made
earlier about compilers apply here as well. In fact, the problem is actually worse, because
there are many more degrees of freedom in the design.

We close this section by noting that many computer vision tasks are suitably imple-
mented an analog VLSI. Mcquirk et al. [126], [127] implemented a focus-of-expansion (FOE)
analog array. McIlrath (nee Dron) [47], [48] built an analog network for edge detection and
image reconstruction. McIlrath [125] is constructing a specialized CCD imaging array, which
incorporates processing directly on the imager. Horn [88] proposed an a resistive network
for recovering “lightness,” which is related to the reflectance of scene objects. Comments
made earlier about about the development cost and performance of ASICs also apply to the
analog devices: the devices offer the lowest power and highest performance of any approach,
but the circuits are so specialized that it is often not economical to build them.
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Figure 3-1: A typical FPGA device configuration.

3.2.4 Field Programmable Gate Arrays

The high risk, large up-front cost, and long design time of ASICs prompted the development
of a whole new industry and device family: field programmable gate arrays (FPGAs).
Actually, FPGAs have their roots in older programmable logic devices (PLDs). In their
early years, FPGAs were seen merely as large PLDs. Within the past five or so years,
however, DSP designers have increasingly used FPGAs to take the place of ASICs for
some processing tasks [109]. Hauck [80], Mangione-Smith et al. [123], and Goslin [70]
provide readable summaries of FPGA technology. Other work includes that of Mirsky and
DeHon [131], and Whittig [204]. FPGAs are ideally suited for pipelined, dataflowgraph
applications. Many researchers have mapped high performance DSP applications into these
devices. Some examples are:

• Filters and FFTs [55], [70], [106], [130], [197],

• Frequency estimation [60], [186],

• IR detection [24],

• Feature detection and tracking [17], [59],

• Template Matching [62], [107], [194],

• Segmentation [153].
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Unlike ASICs, which are programmed at the factory, the function implemented by an
FPGA can be modified repeatedly by the user, long after the device has left the factory.

For many arithmetic intensive applications, such as signal and image processing, an
ASIC would provide significant computational speedup. Unfortunately, due to the cost
and development effort, such a custom ASIC is never created. These applications are then
relegated to slower performance software implementations on DSP microprocessors. FPGAs
correct this problem by providing near ASIC performance with the flexibility of software.

There are many arithmetic operations which could benefit from custom implementation,
and which have known, efficient, special purpose implementations, but for which custom
ASICs are not available. For instance, functions not provided by the ALU of a microproces-
sor (i.e. square roots, CORDIC, and eigenvalue calculations), operations with non standard
wordlength requirements (very low or very high precision), and complex functions composed
of specific operation sequences (i.e. matrix multiplication). These operations are all typi-
cally very time consuming in software; an FPGA could greatly improve the performance,
without the associated cost and risk of an ASIC design.

FPGAs devices are typically organized as an array of small configurable logic blocks
(CLB), embedded in a sea of routing resources (as shown in Figure 3-1). The CLBs are
generally identical in terms of their capabilities.

Around the perimeter of the device are usually input/output logic blocks (IOBs). In
addition to merely providing connections to the package pins, the IOBs typically have the
ability to to perform simple functions, such as complementing, registering, tristating, as
well as providing for the different voltage levels associated with different logic families.

The routing resources of FPGAs connect the internal processing logic blocks to each
other and the IOBs. Typically, multiple levels of routing are arranged into a hierarchy. At
the lowest level, a complete nearest neighbor interconnection is usually provided. Next,
long lines which traverse the length and width of the device are provided. Finally, a small
number of global routes are provided. Critical signals, such as clock and reset lines, are
typically hardwired by the manufacturer. To connect logic blocks to the various routing
wires, embedded in the logic array is another array of routing blocks. The logic blocks are
directly connected to the routing blocks, as are the long lines. The routing blocks are then
configured to provide the desired connections.

The reconfigurability of FPGAs has only recently been been used as part of the real time
system design. Real time system designers make use of the reconfiguration capability in sev-
eral ways. The least demanding method is to switch between functions on command, which
is the hardware equivalent of finishing one program and loading another. Reconfiguration
times on the order of a second are generally acceptable for a wide range of applications.
The ability to execute multiple hardware functions in a time share mode can thus been
seen to reduce the system cost because multiple single use ASICs are not required. Clearly,
though, the throughput of the FPGA will not in any way compare to that achievable by
multiple, custom ASICs, so this approach must be considered carefully.

Most FPGA devices in operation today require a second or more to switch from one
configuration to another (this presupposes that the configurations have been previously
designed). A reconfiguration time on the order of a second is perfectly suitable for testing
alternative circuit designs, or for occasionally upgrading products in the field There are
newer devices that can actually reconfigure must faster; one experimental device can actually
reconfigure the entire array in one clock cycle. A very hot topic in the FPGA research
community are devices that continually adapt the hardware function they implement in
real time as a function of the data and processing environment. While the mechanics of
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rapid configuration are non-trivial, the biggest challenge with this data-dependent, dynamic
reconfiguration is the control strategies required for specifying the new design.

The various levels of reconfigurability found in FPGAs comes at a great price: recon-
figurability costs gates. In fact, very large portions of the devices are dedicated to the
reconfiguration and routing (in some cases, almost 90 percent). Thus, FPGAs will always
be limited to an order of magnitude smaller usable gate count than an identical ASIC tech-
nology. FPGAs also suffer in terms of speed as compared to ASICs. Because of the fixed,
general purpose routing structure on the FPGA, routing between CLBs will in general be
slower than a custom route on an ASIC. For similar reasons, the power dissipation of FPGAs
compared to a custom ASIC design is also much higher.

Today’s FPGAs also have other limitations; not all computations are well suited to
FPGA implementation. FPGAs excel at bit-level operations, such as comparisons and
integer arithmetic, but are a poor match for high precision floating point operations. Only
recently have there been devices with large, onboard RAM. Most FPGAs require external
memories for intermediate result storage. Algorithms with branching are an extremely
poor match to an FPGA implementation (i.e. resources must be allocated to all branch
possibilities, resulting in many unused gates for a given piece of data).

The challenge of using FPGAs is thus clear: one must seek algorithms which can be
decomposed into low precision operations, that utilize as much spatial locality in data move-
ment as possible, and that can be deeply pipelined or parallelized to limit I/O operations.
The benefits that accrue if this can be done are great: dramatic decreases in cost, size,
and power dissipation, with an increase in throughput has been demonstrated over micro-
processors for appropriately mapped functions. Compared to ASICs, dramatically reduced
development risk, time, and cost, as well as the ability to field upgrade virtually for free,
are the benefits that FPGAs offer.

Real time designers have come to realize that a powerful approach is to include micropro-
cessors, FPGAs, and external memory in a design. This combination allows the strengths
of each device to be used to the fullest.

3.2.5 FPGA Details

The FPGAs that we consider here have CLBs arranged in a rectangular array, embedded
in a sea of routing resources. Usable gate counts of over 1 million gates are commonly
available, with system clock speeds of 50MHz, and over 500 I/O pins.

Figure 3-2 shows a simplified view of a CLB for the most popular family of FPGAs, the
Xilinx 4000 (XC4000) family [207]. The CLB contains two 4-input lookup tables, (the F and
G lookup tables, or LUTs), and one 3-input lookup table (the H LUT). The F and G LUTs
can both implement any function of four variables. When the F, G, and H LUTs are used
together, any function of five boolean variables may be implemented, and some functions
of nine variables as well. Unused inputs can be treated as “don’t cares,” so functions with
fewer variables than stated above may be implemented.

Each CLB contains two flip-flops, which may be bypassed if desired. The flip-flops have
clock lines, clock enables, and asynchronous sets and clears (not shown in Figure 3-2). Both
the registered and unregistered outputs are available for use every clock cycle. Each flip-flop
may be preloaded to a zero or one at powerup.

The XC4000 family has a built-in fast ripple-carry chain, connecting the F and G LUTs.
This capability allows a single CLB to implement two bits of a ripple carry adder (RCA).
The carry chain is so fast that it is extremely difficult to justify using any other method
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Figure 3-2: Simplified view of a Xilinx 4000 CLB.

of “fast” addition, such as carry lookahead adders (CLA), carry save adders (CSA), or
conditional-sum adders [35]. Of course, this fast carry chain consumes silicon area and
dissipates power, so in effect, algorithms that do not use it are wasteful. Control modes are
available to allow the combined F and G LUTs to implement subtractors, adder/subtractors,
incrementers, and 1’s complementers, and 2’s complementers. Figure 3-3 shows the basic
implementation of the RCA.

The LUTs and multiplexers (MUXs) shown in Figure 3-2 are configured during powerup
by the device to the settings specified by the user’s design software. Thus, the LUTs are
really RAMs, which are loaded with the appropriate bit patterns to implement the user’s
boolean functions. The control lines for the MUXs are also driven by hidden RAM bits,
loaded at powerup, and generally not alterable during operation.

The RAM implementation of the LUTs also leads to a very powerful capability of the
XC4000 family: hardware hooks are in-place so that each F and G LUT may be configured
as a user accessible 16× 1 RAM. Essentially, the F and G inputs become the address lines
of the RAM, and the auxiliary D inputs become the read/write, and data input signals.
(This capability is not shown in Figure 3-2.)

A related capability that the XC4000 family possesses is to configure the F and G LUTs
as “RAM-pipes.” This is essentially means that both a read and a write may occur in one
clock cycle, which allows the construction of a fixed length shift register. Each LUT is
able to implement a one bit wide shift register, of up to 16 delays. Note that the internal
shifts are not accessible in this mode. This shifting capability can lead to a large savings in
flip-flop usage.

Multipliers are also commonly implemented in FPGAs; Figure 3-4 shows a 4× 4 signed
Pezaris array multiplier [121], built from Full Adder cells, AND gates, and NAND gates.
Figure 3-5 shows a floorplan of the 4 × 4 signed multiplier. The grey shaded areas in the
figure indicate how basic building blocks and interconnect are to be replicated for different
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Figure 3-4: Signed, nonpipelined Pezaris array multiplier.

sized multipliers. Figure 3-6 shows this in more detail. In this figure, the numbers inside
the grey shaded areas are the row and column sizes in CLBs needed for the region. The
text accompanying each area is the required functionality inside each CLB within the area.
Figures 3-4, 3-5, and 3-6 show how to floorplan the multiplier, and what logic functions
belong in each CLB, as a function of operand size.

These figures show the calculation of all the product bits, which is often unecessary be-
cause of observation noise; in Section 3.4, we will investigate optimal truncation approaches
that save on hardware cost and yet maintain desired rounding noise characteristics.

Figure 3-7 shows an extremely simplified view of a portion of the routing structure of the
XC4000 family. Between each row and column of CLBs are a series of wires, categorized by
the number of rows (or columns) that are skipped before interruption. At the appropriate
intersection of horizontal and vertical lines, are switch matrix units (not shown in Figure 3-
7). This switches are configured at powerup to connect the horizontal and vertical channels.
Clearly, the routing and switch units occupy a large percentage of real estate on the chip.
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3.3 Wordlength Optimization Methods for FPGAs

In order to reduce hardware requirements, one must round or truncate data at various
points throughout an algorithm. Many operations such as multiplication or accumulation
can greatly expand the wordlength of the data. If these operations are cascaded, then
without some form of wordlength reduction, excessive hardware growth results.

Wordlength reduction introduces noise into the data stream, so the designer must bal-
ance the need for an efficient implementation with output quality. To perform this tradeoff,
we model the effect of truncation as the injection of additive white uniform noise [142] (
Barnes et al. [14] showed conditions for which this is appropriate).

In this section, we address the problem of finding good wordlength combinations for
DSP and computer vision flowgraphs. Each arc i of the flowgraph will have a wordlength
bi bits associated with it. We desire to find vectors b = [b1 . . . bn]T of wordlengths so that
good combinations of a given cost function C(b) and a given performance function V (b)
result.

This problem has been treated at a rudimentary level in the literature. For linear
systems (i.e. filters, FFTs), analysis has been extensively used to determine the effect of
roundoff errors [9], [41], [142], [205]. For nonlinear problems, locally greedy approaches that
use a sensitivity measure to determine the greatest cost reduction are typical [55], [102].

Simulation-based approaches have perhaps received the most attention; indeed, this is
the approach used in a commercially-available CAD tool [72]. A simulation-only approach
can be time-consuming, and is highly dependent on the inputs signals presented to it. Also,
the simulations must be repeated for every proposed wordlength combination [108]. Kim et
al. [104] and Sung and Kum [175] use a full precision simulation to gather statistics about
the distribution of numbers on each arc in the flowgraph. The range is then estimated
using these statistical measures. While range information is necessary, the sensitivity of
the function to rounding on a particular arc is also of importance. Choi and Burleson
[32] properly account for this sensitivity by using the allowable noise variance as a design
constraint.

3.3.1 Determination of Performance Function V (b)

For simplicity, we will use rounding noise variance in the output of the calculation as the
performance function V (b). Clearly, other metrics may be used, such as mean square error
(MSE), and signal-to-noise ratio (SNR). Using variance rather than MSE is appropriate if
there is no bias introduced by the wordlength reduction. Care must be used by the designer
when simple wordlength reduction methods, such as truncation, are used. Fortunately,
for adders and multipliers, which are common DSP building blocks, several authors have
introduced wordlength reduction schemes that reduce the bias of truncation with little
additional cost; see [43], [54], [105], [116], [161] for details.

In order to determine the performance function V (b), we use classical results from
numerical analysis. We wish to examine the sensitivity of the calculation y = f(x). Let
the vector x represent both the primary inputs to the algorithm as well as the additional
inputs created by the injection of additive noise. The change in the output y as a function
of a change in the inputs is approximately calculated by expanding f(x) in a Taylor series
and keeping only the first order terms,

∆y =
∑
j

∂f(x)
∂xj

∆xj. (3.1)
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This shows that partial derivative of the calculation acts as a “transfer function,” which
determines the contribution of noise to the output of the calculation. Since the partial
derivative varies, depending on the values of the primary inputs, the transfer function
changes, depending on the particular operating point.

Analysis of the absolute error is appropriate for fixed point implementations, which is
what we focus on in this thesis. As an aside, we note that it is straightforward to show
similar results for relative error propagation, which is the appropriate measure for floating
point implementations. Indeed, Stoer and Bulirsch [172] give the following formula for
relative error propagation:

εy =
∑
j

xj
f(x)

∂f(x)
∂xj

εxj , (3.2)

where εxj , is the relative error in an input xj, and εy is the relative error in the output y.
If one were willing to map the input space of x, the worst case transfer functions could be

calculated. This will of course be computationally prohibitive except for small or specialized
problems. The following is a usable suboptimal approach. For each injection point, obtain
the transfer function from the injection point to the output, while maintaining all the aux-
iliary paths from the other primary inputs. Next, derive what the worst case inputs would
be that maximize the first derivative of the transfer function. Use this maximal derivative
to determine the constant scale factor in determining the output noise contribution.

The gain coefficients of the transfer function are therefore

si = max
xi

∣∣∣∣∂f(x)
∂xi

∣∣∣∣ . (3.3)

Elementary probability gives the output noise variance as

σ2
y =

∑
i

s2
iσ

2
xi , (3.4)

where σ2
xi is the rounding noise variance of an input xi. If arc i has maximum absolute

value Mi, we first round this up to the next power of two to prevent overflows:

M̃i = 2dlog2(Mi)e. (3.5)

Now, rounding arc i to bi bits introduces uniform noise with range [−M̃i2−bi , M̃i2−bi ]. The
variance of this noise is [14]

σ2
xi =

1
12
M̃2
i 2−2bi . (3.6)

V (b) 4= σ2
y =

∑
i

1
12s

2
i M̃

2
i 2−2bi ,

=
∑
i ai2

−2bi ,

(3.7)

with ai
4
= s2

i M̃
2
i /12.

We shall use the form of V (b) in (3.7) to find optimal designs. The ranges Mi and the
maximum absolute slopes si must be determined in order to calculate the ai. In simple
cases, these values can be hand calculated. However, for complicated flowgraphs, this be-
comes tedious. One may therefore need to resort to search-based methods to approximately
determine these values.

The approach described above relies on maximum absolute slopes. Functions with points
where the slope is infinite will thus present a problem to this method. In this situation,
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two approaches may be taken. The first is to simply bound the independent variables away
from the singular point. The second approach is to use an upper bound on the wordlength
that may be known a priori.

3.3.2 Pareto-Optimal Designs

Here, we investigate Pareto-optimal solutions, which attempt to simultaneously minimize
both C(b) and V (b) metrics.

Consider a known cost function C(b) and known variance function V (b). We propose
many random combinations b, calculate C(b) and V (b), and plot the variance versus the
cost (the association between the particular b that generated each data point is maintained).
The combinations of interest are those on the boundary of the set of data points closest to
the coordinate axes.

These points are known as Pareto-optimal points [20]. A point is Pareto-optimal if no
other point has both lower cost and variance. This curve provides a designer flexibility in
choosing designs, when one is not quite sure how much cost can be tolerated (or how much
output noise can be tolerated). Clearly, given the lower bounding curve, if one finally is
also given a hard cost constraint, then the optimal design (i.e. minimum variance subject
to not exceeding the cost constraint) is easily determined. Another situation where all the
lower bounding points are needed is when one is populating a design library.

Note that if we relax the integer constraint on the elements of b, a convex continuous
lower bounding curve usually results (as long as C(b) and V (b) are continuous). With
integer constraints, the true lower bounding curve may not be convex (and is certainly not
continuous).

We can find the lower bounding curve on the Pareto-optimal solutions. Consider convex
combinations of the C(b) and V (b):

g(b;α)
4
= C(b) + αV (b), α ≥ 0. (3.8)

If we minimize this with respect to b,

bopt(α) = arg min
b
g(b;α), (3.9)

then bopt(α) is a Pareto-optimal solution. To see this, assume that the solution bopt(α)
were not Pareto-optimal. By definition, there exists a b such that both C(b) < C(bopt)
and V (b) < V (bopt) are true. Multiplying the second inequality by α and adding to the
first inequality, we obtain

g(b;α) < g(bopt;α), (3.10)

which contradicts (3.9).
Thus, (3.9) may be used to derive a lower bounding curve on the Pareto-optimal solu-

tions. We first relax the integrality constraint on b, and also relax any other constraints
that may be placed on the wordlengths. Then, α is initialized to zero, bopt(α) is found via
(3.9), and C(bopt(α)) is plotted against V (bopt(α)). We then slightly increase α, and repeat
the procedure. Each minimization is initiated by the previous value of bopt(α) to speed the
optimization. The method is robust because V (b) is a convex function (due to the form
(3.7)), and experience has shown that C(b) is generally convex as well. This implies that
g(b;α) is a convex function, so minimization is straightforward.
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3.3.3 Lower Bound Minimization Algorithm

For a fixed α we desire to perform the minimization

b∗ = arg min
b
C(b) + αV (b), (3.11)

where we relax the integer constraints on b. Taking gradients and setting equal to zero,

∇C(b) + α∇V (b) = 0. (3.12)

Using (3.7) (the definition of V (b)) and rearranging (3.12),

ai2−2bi(−2 ln 2) = − 1
α
∇C(b)i, i = 1, . . . ,N. (3.13)

Taking logarithms and rearranging gives

bi = −1
2

log2
∇C(b)i
2αai ln 2

, i = 1, . . . ,N. (3.14)

This is a set of nonlinear equations for the optimal b. To actually solve them, we define an
iteration

b
(k+1)
i = −1

2
log2
∇C(b)(k)

i

2αai ln 2
, i = 1, . . . ,N, (3.15)

where k is the iteration index.

Convergence Rate

Recall that the convergence of an iteration of the form x(k+1) = f
(
x(k)

)
to the solution

x∗ = f (x∗), is governed by the Jacobian of f(x). We can easily see this by relating the error
of the kth iteration to the error of the (k + 1)st. Let the error at the kth step be defined as

e(k) = x(k) − x∗, (3.16)

and similarly for e(k+1). Linearizing f(x) about x∗ gives,

f(x) ≈ f (x∗) +
∂f
∂x

∣∣∣∣
x∗

(x− x∗) . (3.17)

Evaluating at x = x(k) and rearranging,

f
(
x(k)

)
− f (x∗) ≈ ∂f

∂x

∣∣∣
x∗

(
x(k) − x∗

)
,

x(k+1) − x∗ ≈ ∂f
∂x

∣∣∣
x∗

(
x(k) − x∗

)
,

e(k+1) ≈ ∂f
∂x

∣∣∣
x∗

e(k).

(3.18)

Or finally,
e(k+1) ≈ Je(k), (3.19)

where J = ∂f/∂x|x∗ is the Jacobian matrix of the iteration. An iteration of the form
x(k+1) = f

(
x(k)

)
will converge if the magnitude of the largest eigenvalue of J is less than

one at the equilibrium point x∗.
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To calculate the Jacobian of the iteration (3.15), let

fi(b) = −1
2

log2
∇C(b)i
2αai ln 2

, i = 1, . . . ,N. (3.20)

Taking derivatives and cancelling common terms gives the elements of the Jacobian matrix
as

Ji,j =
∂fi(b)
∂bj

= − 1
(2 ln 2)

∂∇C(b)i
∂bj

1
∇C(b)i

, i, j = 1, . . . ,N. (3.21)

For most flowgraphs, J is a sparse matrix. This is because two nodes i and j can only
appear together in a term of C(b) if the two nodes are connected to a common functional
block. For i and j such that the two nodes are not connected to a common functional block,
∇C(b)i does not depend on j, so that ∂∇C(b)i/∂bj = 0, and hence Ji,j = 0.

It is interesting to note that J does not depend on either the variance injection scale
factors ai or the particular value of α. For cost functions C(b) that are separable, in that
they can be written as a sum of terms which only depend on one variable, (3.21) gives J = 0.
This really means that we can independently solve for each component of b in (3.14). For
the special case of a linear cost function,

C(b) =
N∑
i=1

cibi, (3.22)

we can actually get a closed-form expression for the optimal b from (3.15):

bi = −1
2

log2
ci

2αai ln 2
, i = 1, . . . ,N. (3.23)

A similar result was derived by Fiore and Lee [61], where the α played the role of a Lagrange
multiplier in the constrained optimization problem: minimize C(b), subject to V (b) = A.

Eigenvalue Upper Bound

If we desire to monitor the iterations when solving (3.11) using the iteration (3.15), we can
calculate J using (3.21) and then find the largest eigenvalue at every step. A more efficient
alternative is to make use of the inequality [171]

‖J‖22 ≤ ‖J‖1‖J‖∞, (3.24)

where ‖J‖p is the induced p-norm of a matrix J. In particular,

‖J‖1 = max
j

N∑
i=1

|Jij |, (3.25)

‖J‖∞ = max
i

N∑
j=1

|Jij |, (3.26)

and ‖J‖2 is equal to the largest singular value σ1 of J. It is also known that σ1 > |λ1|,
where λ1 is the largest eigenvalue of J.

Given all this, we can calculate an upper bound on λ1 of J by calculating (3.25) and
(3.26), taking the product of these two quantities, and then comparing this to one. If the
product is less than one, then the iteration (3.15) is stable. If the product is greater than
one, it may indicate that the iteration is unstable. In this case, a more careful calculation
of the eigenvalue λ1 is required. For sparse J, the calculation of (3.25) and (3.26) will be
particularly efficient, requiring only absolute values and additions.
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Quadratic Cost Function

The special case where C(b) is a quadratic form also deserves special attention. We make
the reasonable assumption that all Ci,j ≥ 0. In this case, C(b)+αV (b) is a convex function,
and therefore has only one minimum. We have

C(b) = bTCb, (3.27)

∇C(b)i = 2
N∑
k=1

Ci,kbk, (3.28)

and
∂∇C(b)i
∂bj

= 2Ci,j . (3.29)

Substituting into (3.21), we obtain

Ji,j = − Ci,j

(2 ln 2)
∑N
k=1Ci,kbk

, i, j = 1, . . . ,N. (3.30)

Summing over j,

N∑
j=1

|Ji,j | =
∑N
j=1Ci,j

(2 ln 2)
∑N
k=1Ci,kbk

≤
∑N
j=1Ci,j

(2 ln 2) min(b)
∑N
k=1Ci,k

=
1

(2 ln 2) min(b)
, i = 1, . . . ,N.

(3.31)
Since (3.31) held for all i, it holds for the i that maximizes

N∑
j=1

|Ji,j|, (3.32)

or, in other words,

‖J‖∞ ≤
1

(2 ln 2) min(b)
. (3.33)

We can similarly obtain a bound on ‖J‖1. Summing over i, we have

N∑
i=1

|Ji,j | =
N∑
i=1

(
Ci,j

(2 ln 2)
∑N
k=1Ci,kbk

)
≤ 1

(2 ln 2) min(b)

N∑
i=1

(
Ci,j∑N
k=1Ci,k

)
, j = 1, . . . ,N.

(3.34)
Therefore,

‖J‖1 = max
j

N∑
i=1

|Ji,j | ≤
1

(2 ln 2) min(b)
max
j

N∑
i=1

(
Ci,j∑N
k=1Ci,k

)
. (3.35)

A more convenient, but slightly looser bound can be obtained via

N∑
k=1

Ci,k ≥ Ci,j. (3.36)

Using this, the bound in (3.35) becomes

‖J‖1 ≤
N

(2 ln 2) min(b)
. (3.37)
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Combining the bounds (3.33) and (3.37) with (3.24), we obtain the sufficient condition for
stability for a quadratic cost function:

min(b) ≥
√
N

2 ln 2
. (3.38)

For example, with N = 64, if all components of b have at least 6 bits, the iteration is
converging.

3.3.4 Sampling Approaches for Feasible Designs

We are given functions C(b) and V (b) and wish to find Pareto-optimal integer n-dimensional
vectors b. We assume there is a maximum wordlength allowable, so that 1 ≤ bi ≤ N . Typ-
ical values for the maximum wordlength is N = 32 or N = 64. The value n may be small
or quite large. In the absence of other constraints, there are a large number of possible
combinations, in fact Nn of them. This is exponential in terms of n, so we do not expect
to be able to exhaustively search the space. Also note that, for N = 32, a value of n ≥ 20
would result in more than 2100 ≈ 1030 combinations, which effectively places a limit on the
size of n for exhaustive search.

Often, we may wish to consider constraining the allowable b combinations in some way.
For example, a square law device cannot produce an output with more than twice the
number of input bits. It seems reasonable then to prune the feasible region using these
“natural” constraints, if it is convenient to do so.

There are other types of constraints that we may not be able to ignore. For example, the
design options for a particular component may not allow arbitrary wordlength combinations
on its inputs. Another way that this may arise is that we do not have a formula for the
cost and variance for all b combinations (perhaps we were lazy in compiling these formulas,
a very real possibility if the formulas are generated by computer). Also, we may have
some idea of where the optimal cost/variance points lie in the plane; this manifests itself
as a (rather complicated) constraint on the allowable b’s. Finally, if we are considering
partitioning the design into several FPGAs using a particular cut of the flowgraph, there
may be constraints on the number of wires that may cross the cuts, and also constraints on
the total cost within a particular FPGA.

The foregoing arguments lead us to strongly consider sampling from a feasible subset
defined by a set of constraints. Since C(b) and V (b) can be arbitrarily complicated, we
can in general do no better than sampling uniformly over the feasible region, at least
initially. One could perform local greedy optimizations to slightly improve a solution found
by uniform sampling.

We now demonstrate a naive Monte Carlo approach for uniform sampling, which we
will improve upon in the next section. The algorithm may not produce points that are
truly Pareto-optimal, and we have no way to detect this (in polynomial time); however, we
shall prove that with high probability, all Pareto-optimal points will be found if we sample
enough times.

Magnitude Calculation Example

In this section we derive optimal designs for the magnitude operation y =
√
a2 + b2. Figure

3-8 shows a flowchart of this operation, with the wordlength definitions b1 through b6. We
further assume that the inputs are bounded by 0 ≤ a ≤ 1 and 1/2 ≤ b ≤ 1. This is done to
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Figure 3-8: Flowchart for magnitude calculation.

avoid the infinite slope at a = b = 0. For each noise injection point, we must find the worst
case absolute slope and maximum arc absolute value. Table 3.1 tabulates these calculations.

Coeff. f(x) f ′(x) a,b x max f ′ ai Mi mi Val.
α1

√
x2 + b2 x√

x2+b2
b = 1/2 1 2√

5
4
5 1 1 1

15

α2

√
a2 + x2 x√

a2+x2 a = 0 1 1 1 1 1 1
12

α3

√
x+ b2 1

2
√
x+b2

b = 1/2 0 1 1 1 1 1
12

α4

√
a2 + x 1

2
√
a2+x

a = 0 1/4 1 1 1 1 1
12

α5
√
x 1

2
√
x

1/4 1 1 2 4 1
3

α6 x 1 1/4 1 1
√

2 4 1
3

Table 3.1: Gain coefficient calculation for magnitude example.

Thus, from Table 3.1, we have that the output variance is given by

σ2 =
4
5
σ2

1 + σ2
2 + · · ·+ σ2

6, (3.39)

where σi is the noise injected at point i. Writing this in terms of the wordlengths bi using
(3.6) and (3.7),

V (b) =
1
15

2−2b1 +
1
12

(
2−2b2 + 2−2b3 + 2−2b4

)
+

1
3

(
2−2b5 + 2−2b6

)
(3.40)

Now that we have the variance equation, let us postulate a cost function. A reasonable
one is

C(b) = b21 + b22 + max(b3, b4) + 1 + b5b6. (3.41)

The b21 and b22 terms in this cost function result from implementing the squaring function
with a Pezaris array multiplier (see Section 3.2.5 and [121]). The “max” term assumes using
a ripple carry adder. The multiplicative term b5b6 comes from the square-root implemen-
tation given by Hwang ([96], Figure 11.2), and is only approximate.

For the purposes of this section, this cost function is good enough. For any real FPGA
design, each of these terms would have additional scale factors to reflect the relative cost
of adders, multipliers, etc. Also, for different regimes of b, the implementation style may
change. For example, we may switch from a Pezaris array to some other multiplier configu-
ration [57], [121], [140], [195], resulting in a cost function that has a very complicated (but
known) formula.
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Figure 3-9: Cost vs. variance for naive Monte Carlo random sampling.

For the magnitude design, thirty thousand random b vectors were drawn uniformly from
1 ≤ bi ≤ 32. Only about ten-thousand actually satisfied the natural wordlength constraints
(the rest were discarded). The cost versus variance for the feasible points is plotted in
Figure 3-9. Note that most of the sample points are dominated by the comparatively few
Pareto-optimal points.

3.3.5 Markov Chain Monte Carlo Method

The major problem with the previous naive sampling approach was that constraints on
the wordlength allocations made it difficult to sample uniformly from the set of feasible
allocations. If the constraints made the feasible set small, then many random samples were
wasted because they fell into the infeasible region. Another problem is that most of the
random samples are not even close to the Pareto-optimal lower boundary, and are thus
wasted. We therefore look for a method to uniformly sample from a potentially arbitrary-
shaped feasible region. This section is concerned with using random walks on Markov chains
to perform this sampling.

Markov Chain Basics

A Markov chain is a discrete-time stochastic process for which the state at time t depends
only on the state at time t − 1. The relationship between one time step and the next is
probabilistic. The probability that the chain is in state j at time t, given that the chain is
in state i at time t− 1, is given by

P (St = j | St−1 = i) = Pij , (3.42)

where the numbers Pij are given. These numbers are collected into a transition matrix P.
Clearly, 0 ≤ Pij ≤ 1 and

∑
i Pij = 1. We will concern ourselves here only with Markov

chains with a finite number of states, that are aperiodic and ergodic [134]. For these chains,
after a suitable number of time steps, the probability that the chain is in state i is defined
as πi. We collect these into a row vector π, called the stationary distribution, or steady
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state probability vector. If at some time step we are in the stationary distribution π, then
at the next step we will still be in the stationary distribution, yielding

π = πP. (3.43)

A result, known as the Fundamental Theorem of Markov chains, states that the stationary
distribution π is unique for the Markov chains we consider here.

A random walk on a graph is closely related to the state sequence on a Markov chain.
Given and undirected (multi)graph G with k states, we can construct its underlying Markov
chain M as follows. Replace each undirected arc by two directed arcs (one in each direction).
The transition probability on an arc leaving vertex v is set to be 1/d(v), where d(v) is the
degree of (number of arcs leaving) vertex v. Often, we associate one or more self-loops with
each vertex of G (thus increasing the total degree and changing the transition probabilities
of M accordingly). This will be done to remove any potential periodicity in M .

Let m be the total number of edges in G. Then it is shown in [134] that

πv = d(v)/2m. (3.44)

From (3.44), if we can construct a graph where d(v) is constant for all v, then P will be
symmetric. In this case P is called doubly stochastic and the stationary distribution π will
in fact be a uniform distribution, π = [1, . . . , 1]/k. This is the crucial construction we need
to enable (near) uniform sampling from a state space. We construct an appropriate graph
G (and hence a Markov chain M), run M for “a long time” to ensure that we are in the
stationary distribution, and then take as our sample the state we are in at that time.

The key question of course is: “How long is a long time?” To answer this, we examine
the eigenvalues λi of P. We order the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λk, and it is easy to
show that λ1 = 1 corresponds to the eigenvector π. If we start in an initial distribution q(0)

and run M for t cycles, then the distribution at time t is q(t) = q(0)Pt. From elementary
linear algebra, the eigenvalues of Pt are λti. All eigenvalues less than one approach zero
exponentially fast, so that q(t) → π. Clearly, the magnitude of λ2 controls the convergence
rate.

We define the relative pointwise distance (RPD) ∆(t) at a time t. Letting q(t) be the
actual distribution of M at time t, the RPD is then

∆(t) = max
i

|qi(t)− πi|
πi

. (3.45)

The speed at which ∆(t) goes to zero for increasing t thus determines how long we must
run M to ensure that we are in the stationary distribution.

Sinclair and Jerrum [162] prove a key result that relates ∆(t) to λ2:

∆(t) ≤ λt2
minj 6=1 πj

. (3.46)

For a doubly stochastic P, πj = 1/k, and this implies

∆(t) ≤ kλt2, (3.47)

which is a slightly tighter bound than the one derived in [134]. The practical importance of
this relationship is that we will only need O(log(k)) steps to reach a desired level of RPD.
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Multidimensional Nearest Neighbor Mesh for Uniform Generation

Rather than the naive Monte Carlo sampling algorithm used in Section 3.3.4, instead we
use a special Markov chain, that will easily incorporate any constraints on the b. The states
of the chain are the allowable combinations of b that satisfy all constraints. Transitions in
the chain are allowed to either increment or decrement one element of the current b vector,
provided that the new state is feasible. Also, we allow self-loops; a state may transition to
itself.

With no constraints, this Markov chain is a multidimensional nearest neighbor mesh in
n dimensions. With constraints, we merely delete states that are not feasible, so that the
chain is a subset of the nearest neighbor mesh.

Constraining the transitions to the nearest neighbors is a conservative approach. It
relies on the observation that the feasible region will usually be convex or nearly-convex (if
we relax integrality constraints). Under this condition, we have a good chance that a local
move will not attempt to cross a boundary. If we were to increase the allowable distance
that a transition could take, we would increase the probability that a boundary is crossed,
thus wasting a step.

With no self-loops, this chain would be bipartite (i.e. consider the checkerboard for n =
2). Self-loops remove this problem, as well as provide a way to adjust transition probabilities.
For uniform generation of feasible states, we must get the transition probabilities correct.
Consider the underlying undirected graph G of the Markov chain M . Nodes in the “interior”
of the feasible region have 2n neighbors, and one self-loop arc. Thus, the maximum degree
is 2n + 1. For any states on the boundary of the region, we add as many self-loops as
necessary to bring the degree up to 2n+ 1. We now have that the transition matrix for M
is doubly stochastic, so that the steady state distribution is uniform. Figure 3-10 shows an
example of this chain with no constraints for n = 2.

We note that with too many constraints, the feasible region might not consist of a single
connected component. Since there could be a large number of states, it is probable that we
would not be able to detect this situation (in polynomial time).

As a practical matter, we do not generate and store the chain. Also, for boundary
states, we do not need to augment the number of self-loops beyond the one already present.
When we are in a state, we randomly pick one of the 2n+ 1 destinations. If the destination
happens to be infeasible, we stay in the current state, and try again.

This approach was tried for the magnitude design. Figure 3-11 shows the results of this
method for ten-thousand time steps. The natural wordlength constraints for the magnitude
operations were used to define a feasible region for this example.

To show the power of the Markov chain approach, a constraint on the allowable cost
and variance combinations was added to the design problem. Figure 3-12 shows the results.
In the figure, the upper bounding curve is the cost/variance constraint. The cost/variance
combinations achieved by the random walk are denoted by the dots. The curve in the
middle of the dots is the set of Pareto-optimal solutions given by a naive sampling approach.
Notice the vast improvement this constraint affords; we only generate random samples
near the true Pareto-optimal boundary. It would appear that the added upper bounding
constraint did not disconnect the feasible region, because we seem to have good coverage in
Figure 3-12 (although this is not a proof).

The drawback of this approach is that one must guess at the location of the upper
bounding curve. Figure 3-12 actually suggests an iterative approach that appears to reduce
the number of random samples needed. We iteratively guess at an upper bounding curve,
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Figure 3-10: Underlying Markov chain for n = 2. All horizontal and vertical arcs have
transition probability equal to 1/5. The self-loops have different probabilities, depending
on their location within the array.
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Figure 3-11: Cost vs. variance for Markov chain random sampling.
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Figure 3-12: Markov chain random sampling with cost/variance constraint.

and run the Markov chain to improve our guess at the set of Pareto-optimal solutions.
From this current set, we adjust the upper bounding curve, and repeat the iteration. At
each step, we run the Markov chain for only a fraction of the number of steps that we did
in Figures 3-9 and 3-11. While the total number of samples will be about the same, the
iterative approach will (hopefully) take more of these samples in the good region of the
cost/variance plane.

This approach was used to generate Figure 3-13. Each of five iterations used two-
thousand time steps. At the end of the iteration, the Pareto-optimal points were found. A
polynomial was passed through these points, and this polynomial was raised up in variance
slightly so that the feasible region would be less likely to be disconnected. All of the tested
b combinations are plotted, with a solid line drawn through the final optimal set. Clearly,
the algorithm avoided very bad points in the upper right hand corner of the plot.

Partitioning

The Markov chain approach can be easily extended to perform partitioning in addition to
wordlength allocation. In this problem, we allow the design to occupy several FPGAs, and
the signal flowgraph is divided up among the FPGAs. To be feasible, a partition must not
overload any one FPGA, and must not require more interconnections among the FPGAs
than are available.

Partitioning can be a difficult problem. If we fix the wordlength allocations, (thereby
also fixing the costs), then partitioning becomes an integer programming problem. To be
required to solve this for every attempted wordlength allocation would result in a very slow
algorithm.

To more efficiently compute good partitions, we extend the state space of the Markov
chain. In addition to the current wordlength allocation, the state will be augmented with
one decision variable per functional unit in the flowgraph (i.e. for the magnitude calculation,
there are four functional units). The value of a new decision variable indicates the FPGA
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Figure 3-13: Iterated Markov chain random sampling.

to which the functional unit is assigned. As before, we randomly walk around the feasible
region, collecting Pareto-optimal solutions. As the partition changes, the set of constraints
will change, because different sets of wires are now involved in different cuts. The Markov
chain approach easily handles this situation.

3.3.6 Time Required to Reach the Stationary Distribution

We saw in the preceding section that a Markov chain approach could profitably be employed
to find good designs. Since we assume no a priori knowledge of the locations of these good
designs, we constructed the chain so that eventually, uniform sampling from the feasible
region resulted. In practice, we do not run for a long time, and then take only one sample.
Instead, the current implementation is analyzed at every step, and good ones are retained.
The time to reach the stationary distribution is still of interest, because we want to be
guaranteed that by the end of a run, we would visit interesting states with equal probability.

In this section, we analyze the time required to reach the stationary (uniform) distri-
bution. We first analyze the case of n = 1 (i.e. only one wordlength to assign). We then
extend this result to more general n, using a separability argument.

Case n = 1

Consider the case n = 1. This corresponds to the 1D Markov chain, shown in Figure 3-14.
The number of states N is the maximum number of bits we will allow for the wordlength.
Clearly, the stationary distribution is uniform. The time to reach the stationary distribution
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Figure 3-14: Underlying Markov chain for n = 1.
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Figure 3-15: Difference between 1st and 2nd eigenvalues for 1D Markov chain.

is dependent on the second largest eigenvalue λ2 of the transition matrix P, where
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The closer λ2 is to the maximum eigenvalue (=1), the longer it takes to reach the stationary
distribution. We can easily calculate 1 − λ2 for various values of N ; these are plotted in
Figure 3-15.

Figure 3-15 shows that the eigenvalue separation with respect to N is linear on a log-log
scale, over the range of interest in N . From the plot we thus have

log10(1− λ2) ≈ −2 log10(N) + 0.5,

1− λ2 ≈ 10−2 log10(N)+0.5,

λ2 ≈ 1−
√

10N−2.

(3.49)

This result can be compared with a theoretical calculation of the eigenvalue spread. A
Markov chain will mix rapidly if it is unlikely to get stuck in any subset of the states.
This property is measured by a quantity known as the conductance of the chain. For any
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connected subset S and its complement S̄ of states in the chain, we define the capacity CS
as

CS =
∑
i∈S

πi, (3.50)

and the ergodic flow FS ,
FS =

∑
i∈S,j∈S̄

pijπi. (3.51)

CS is the probability of being in the set S, and FS is the probability of leaving S. Defining
the conductance of the set S as ΦS = FS/CS , we see that ΦS is the conditional probability
of leaving S given that we are in S. The minimum of the ΦS over all sets S in the chain
(subject to CS ≤ 1/2) is defined to be the global conductance Φ of the chain. Clearly, Φ
is a measure of the likelihood of getting stuck in some set of states, and should be related
somehow to λ2. It is proved in [162] that this relationship is

λ2 ≤ 1− Φ2

2
. (3.52)

For the 1D chain of Figure 3-14, we can find the minimum ΦS by maximizing the number
of states in S while minimizing the probability of leaving S (equivalently, maximizing CS
and minimizing FS). It is easily seen that S = {1, . . . ,N/2} will produce the minimum Φ.
This is calculated as

CS =
1
2
, FS =

1
3N

, Φ =
2

3N
. (3.53)

Combining this with (3.52) gives

λ2 ≤ 1− 2
9N2

, (3.54)

which is compatible with the result given in (3.49).
We have thus shown that the eigenvalue spread is polynomial in 1/N . This is quite

encouraging, because it implies very fast convergence to the stationary distribution.
With the value of λ2 as a function of N known, we can now calculate the relative

pointwise distance (RPD) ∆(t) as a function of the number of steps t, and k = N . Recall
that

∆(t) ≤ Nλt2. (3.55)

If we require the RPD to be less than some δ, then it is sufficient to require

Nλt2 ≤ δ

t ln(λ2) ≤ ln(δ/N)

t ≤ ln(δ)−ln(N)
ln(λ2) .

(3.56)

We can use (3.49) and (3.56) to plot t as a function of δ and N ; this is shown in Figure 3-16.
This figure shows that for reasonable wordlengths (i.e. N ≤ 32), at most a few thousand
steps are required to guarantee that we have reached the stationary distribution.
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Figure 3-16: Number of steps required to reach uniform stationary distribution for 1D
Markov chain.

Case n > 1, No Constraints

Realistic design problems of course have n > 1. For example, the magnitude calculation
problem had n = 6. The underlying Markov chain is now an n-dimensional nearest-neighbor
mesh. The n = 2 case is shown in Figure 3-10. By choosing the self-loop probabilities
correctly, it is clear that this Markov chain again has a uniform stationary distribution.

We could go through an analysis similar to the n = 1 case. However, this would be
tedious because the P matrix structure becomes complicated. Also, it seems that such an
approach would be unenlightening for understanding the behavior as n increases. We can,
however, avoid this complexity by realizing that the Markov chain is “separable,” in the
sense that we are able to consider only one dimension at a time.

For simplicity, we consider only interior nodes (i.e. not on the boundary) of the mul-
tidimensional Markov chain. Since the number of nodes on the boundary is insignificant
compared to the number of nodes in the interior (for large enough N), we can ignore the
fact that the self-loop transitions probabilities change slightly.

Consider movement in the direction corresponding to the first dimension (i.e. horizon-
tally in Figure 3-10). Our current location in any of the other dimensions has no effect on
our ability to move in the direction of the first dimension.

We can consider “lifting” a one-dimensional Markov chain out of this multidimensional
one in the following manner: Whenever a transition along the first dimension is chosen,
make the corresponding transition in the 1D Markov chain. If any other dimension is
chosen, the 1D Markov chain performs a self-loop.

On average, we will make a transition in the lifted Markov chain twice for every 2n +
1 transitions in the multidimensional Markov chain. This corresponds to rescaling t in
(3.56) to t/(n + 1/2) (N and λ2 remain as defined for the 1D case). Therefore, for the
multidimensional Markov chain, to reach an RPD of δ, the expected number of required
times steps is

t =
ln(δ) − ln(N)

ln(1−
√

10N−2)

(
n+

1
2

)
. (3.57)

For the magnitude calculation example, we had n = 6, N = 32, yielding t = 15764 from
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(3.57). We saw in practice that 10,000 to 20,000 steps gave reasonably uniform coverage
over the cost/variance plane for the naive sampling approach, thereby giving us confidence
in our analysis.

We can also derive a theoretical bound for this multidimensional Markov chain, and show
that (3.57) is compatible with this bound. We again use the global conductance argument
to estimate an upper bound on λ2. We need to find a set of states S of the Markov chain
with a large CS and a small FS . It is not too difficult to see that one such S is the set of
states with b1 ≤ N/2. That is, S will contain half of the states of the chain. We partition S
from S̄ by selected for S all the states with the first index less than or equal to N/2. Now,
CS=1/2, and FS will be determined by the size of the boundary between S and S̄. The
steady state distribution of being in any state is 1/Nn, and the boundary consists of Nn−1

states, so we obtain

FS =
1

2n+ 1
Nn−1

Nn
=

1
2n+ 1

1
N
, (3.58)

Φ =
2

(2n+ 1)N
, (3.59)

and finally

λ2 ≤ 1− 2
(2n + 1)2N2

. (3.60)

This of course is extremely encouraging, because the eigenvalue separation is a (low-order)
polynomial function of the inverse of both n and N (rather than exponential), so we expect
rapid mixing. We can check to see that the bound (3.57) is compatible with (3.60) (and
perhaps tighter). From (3.56) and (3.60), we have

t ≤ ln(δ)− ln(N)
ln(1− 2

(2n+1)2N2 )
. (3.61)

We use the approximation ln(1− x) ≈ x/(x− 1) for small x to rewrite (3.61) as

t ≤ (ln(N)− ln(δ))

(
(2n + 1)2N2

2
− 1

)
. (3.62)

We can perform similar manipulations on the time bound in (3.57) to obtain

t = (ln(N)− ln(δ))
(
n+

1
2

)(
N2/
√

10 − 1
)
. (3.63)

Clearly, the right-hand side of (3.63) is larger than the right-hand side of (3.62) for large
enough n, so our calculated result agrees with the (loose) theoretical upper bound.

Case n > 1, With Constraints

As mentioned previously, there frequently are inherent constraints on the wordlengths. For
example, the magnitude operation had a constraint b2 ≤ 2b1 (as well as other constraints).
Additionally, with the iterated Markov chain approach, we add a constraint on the achiev-
able cost and variance. The underlying Markov chain for the problem with constraints can
thus be more general than the regular lattice structure shown in Figure 3-10. Figure 3-17
gives an example Markov chain with constraints on the allowable wordlengths.
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Figure 3-17: Markov chain with constraints on allocated wordlengths.

We can construct the Markov chain corresponding to the constraints as follows. Start
with the n-dimensional lattice and remove nodes that are in the infeasible region. Any
arcs between feasible and infeasible nodes become self-loops for the feasible node. By
appropriately weighting the self-loop arcs, a uniform stationary distribution is obtained.
Clearly, one would not wish to explicitly perform this construction, because it would require
an exponential amount of work.

It is not guaranteed that the Markov chain so formed is connected, even for a convex
feasible region. To test for connectivity requires time linear in the number of nodes, which
here can be exponential time. We therefore must assume connectivity, but we cannot verify
this assumption. This renders our algorithm Monte Carlo in nature. The practical effect
of having a disconnected graph is that we may not discover good existing cost/variance
combinations by a particular random walk.

For this situation, analyzing the number of steps required for convergence to the station-
ary distribution seems like it could be very complicated in general. We will therefore only
make a few observations. For situations where the feasible region is convex and consists of a
large number of nodes, it is reasonable to assume that most nodes are in the interior of the
chain. Many reasonable hardware related constraints result in convex sets (i.e. hyperplane
boundaries resulting from linear inequalities give half-space feasible sets). The number of
boundary points in this situation is thus negligible in comparison to the number of interior
points. This same argument led to the bound on t in (3.57) in the previous section, so
(3.57) applies here as well.

For nonconvex constraints, or for problems where many constraints significantly prune
the feasible region, the number of boundary points is not negligible compared to the number
of interior points. About all we can hope for in this case is that the total number of feasible
points is small (at least compared to the full exponential set). This would mitigate the
effect of a bad asymptotic running time.
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3.3.7 Simulated Annealing Approach

In the preceding random sampling approaches, we attempted to uniformly sample from the
feasible region because we did not know where the optimal points were to be found.

Typically in optimization, one would actually use cost information to direct the search,
resulting in a local search method. The drawback to this approach is that local searches
get stuck in local minima, rather than a global minimum. A method known as Simulated
Annealing attempts to solve this problem by occasionally allowing moves to a higher cost
state, rather than always downhill. As the algorithm progresses, the allowable probability of
moving uphill is slowly decreased, so that the algorithm converges to the global minimum.

Following the derivation in [21], we formulate this method as a random walk on a
Markov chain. We use our nearest neighbor mesh Markov chain with feasibility constraints,
as in Section 3.3.5, although we will modify the transition rules slightly. Also, we will not
be seeking Pareto-optimal solutions here; rather, we shall assume a maximum allowable
variance constraint and attempt to minimize the cost.

Recall from Section 3.3.5 that we would select a feasible neighbor y of the current state
x with probability 1/(2n + 1). Here, we modify this rule slightly. We perform an initial
selection of y according to the above rule. We then test if the cost C(y) at y is at least as
good as the cost at x (i.e. C(y) ≤ C(x)). If so, then we take the step. If, however, the cost
is higher at y, then we move to y with probability

e(C(x)−C(y))/T , (3.64)

and stay in x otherwise. T is a positive constant, usually referred to as the “temperature,”
in analogy with the physical annealing method used in manufacturing. T controls the
probability that a step will increase the current cost. When T is large, we have a high
probability that a step towards increasing cost will be allowed; in fact, at T = ∞, we
are back to our original Markov chain of Section 3.3.5. When T is small, steps towards
increasing cost are very unlikely; at T = 0, only downhill steps are allowed, corresponding
to a conventional local search method.

Now let us examine the steady state probabilities π of this chain. Define the (constant)
normalizing term

A =
∑
z∈F

e−C(z)/T , (3.65)

where F is the set of feasible states. It is shown in [21] that the steady state probabilities
are given by

π(x) =
e−C(x)/T

A
. (3.66)

For very small T , this means that if we let the algorithm run long enough, almost all of the
steady state probability is concentrated in states at which the cost is minimized globally.

To avoid being stuck in a local minimum for a prolonged period, we start with a high
temperature, and slowly decrease it, according to

T (t) =
T0

log t
, (3.67)

where T0 is the initial temperature, and t is the time step number.
To test this approach we set a variance upper bound of 10−8 and attempt to minimize

the cost. A value T0 = 250 was used to set the initial temperature. Figure 3-18 shows
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Figure 3-18: Simulated annealing cost at each time step.
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Figure 3-19: Simulated annealing cost/variance path.

the cost of the first 5000 steps of this Markov chain simulation, which clearly increases
occasionally. Figure 3-19 shows the cost versus variance of these steps. The lowest cost
implementation that was found over the steps was b = [12, 13, 14, 13, 14, 14]T . It had a cost
of 523 and a variance of 9.25× 10−9. This is in close agreement with Figure 3-13.

3.3.8 Summary

Section 3.3 was concerned with formulating and effectively solving the wordlength design
problem for algorithms where approximate calculations are allowed. The first order ap-
proximation embodied by the maximum gradient calculation in Section 3.3.1 allowed us to
easily write a variance performance function V (b). When combined with a cost function,
we saw the desirability of finding Pareto-optimal designs in Section 3.3.2, and an effective
algorithm for finding a lower bounding curve on these designs in Section 3.3.3. To find
actual designs, a randomized search method was proposed and analyzed in Section 3.3.5.
This algorithm solves the wordlength design problem that, remarkably, still confounds most
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hardware designers. The algorithm can be easily tailored to incorporate various constraints
that arise in real systems, such as partitioning amongst multiple devices fixed input/output
wordlengths and formats, coarse granularity of available library cell wordlengths, or getting
close to a fixed cost/variance target.

3.4 Reducing Bias: Lazy Rounding

We have seen that intermediate results DSP hardware frequently must be truncated or
rounded to maintain reasonable wordlengths. Noise and bias are introduced into the signal
due to these operations. For the addition operation, we introduce and investigate two meth-
ods which have reduced variance and bias and yet maintain the computational simplicity
of truncation. Essentially, each method drives the least significant carry input of the adder
string with a very simple boolean function.

3.4.1 Introduction

In this section, we mainly focus on reducing the wordlength of the addition operation. This
has practical importance for FPGA-based DSP systems. For instance, in one very popular
FPGA family [207], the ripple carry adder (RCA) is highly optimized. For this family, we
look for methods that make use of two-input adders, rather than multirow compression
[195] or merged arithmetic [176] approaches.

In the following, we first introduce and analyze two simplified rounding schemes for
addition operations. The methods are then applied to parallel multiplication. This work
was first introduced by Fiore [54], and expanded in [58], where the application of the method
to IIR filtering and complex multiplication was also treated.

3.4.2 Lazy Rounding Schemes

For two’s complement data, simply truncating the intermediate result involves the minimal
amount of hardware, but it introduces a bias in the data. Rounding is unbiased (for infinite
precision data) and has the same noise variance as truncation. However, rounding introduces
an adder into the data path, which may be an excessive amount of hardware. For finite
precision data, rounding is actually slightly biased. The so called “round-to-nearest-even”
method, which is the IEEE standard [64], can be used to overcome this problem. However,
in addition to an extra adder, there is zero detection logic to conditionally add another bit.

If the intermediate result to be rounded is going to be added to another value that is also
going to be rounded, then there are two new methods presented here that can be applied.
The first method, “lazy rounding” (LR), consists of simply ORing the most significant bits
(MSBs) to be eliminated and applying this result to the carry-input of the adder chain.
This is shown in Figure 3-20. Flow diagrams for all the methods considered in this paper
are shown in Figure 3-21. In this and subsequent figures, truncation is denoted by “b c,”
and rounding is denoted by “[ ].”

Note that we are assuming that the two inputs to be rounded are statistically uncor-
related, as is often done to simplify the analysis (a more detailed study of this model is
given in [14]). For either truncation or rounding, the error is thus assumed to be a uni-
form random variable, in an interval equal in length to one bit of precision [142]. For our
purposes, we assume rounding and truncation to integer values. The error due to rounding
a value y, is er = y − [y], and is assumed to have a uniform probability density function
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(PDF) between −1/2 and 1/2. Similarly, the error due to truncation, et = y − byc, is also
a uniform random variable between 0 and 1.

When we add two such uncorrelated random variables, the error PDF is the convolution
of the two input PDFs [147]. We therefore expect triangle-shaped error PDFs for the sum of
errors for simple rounding or truncation before addition. Figure 3-22 shows the error PDFs
of the methods. The figure was obtained by simulation, but it is relatively straightforward
to derive the PDFs analytically. This figure assumes that a large number of bits are being
eliminated from the wordlength. Results will also be shown for the case where only a small
number bits are being eliminated from the wordlength.

Since the spread of the PDF for the LR scheme is smaller than that of either truncation
or rounding, we have hopes that the error variance is less (it is). There is a bias with this
scheme, but it is 1/4 that of truncation.

The error PDF of LR in Figure 3-22 leads us to consider another new rounding scheme,
dubbed “really lazy rounding” (RLR). With LR, since we are ORing two random bits, we
will add a zero into the adder chain one-fourth of the time. Noting that the bias of LR is
also one-fourth, we realize that if we also add a one into the chain for the (0, 0) case as well,
the bias will go to zero. This means we are simply forcing a one into the adder chain all
the time (as shown in Figure 3-21). We can also obtain this result by simply attempting to
correct for the bias of truncation. From Figure 3-22, we must add a one to remove the bias.

The error PDF for RLR is also shown in Figure 3-22. It is unbiased, and has the same
variance as both rounding and truncation. Thus, if one is rounding a large number of bits,
RLR can be used in place of rounding. Table 3.2 summarizes the error mean, variance, and
mean square error of the four methods.

The above results must be modified slightly if we are eliminating only a small number
of bits from the wordlength. This is because the error PDFs become discrete probabil-
ities rather than continuous functions. For example, consider the error variance of LR,
which asymptotically gives a signal-to-noise ratio (SNR) gain over the other methods of
10 log10

1
6/

10
96 = 2.04dB. Figure 3-23a shows the actual SNR gain as a function of the num-

ber of bits eliminated. As this number increases, the SNR gain approaches that of the
infinite precision case. Figure 3-23b shows the error variances of the methods as a function
of bits eliminated. Figure 3-23c shows the biases of the methods. It is interesting to note
that in addition to having the minimum variance, the LR scheme has zero bias when exactly
two bits are eliminated. Finally, Figure 3-23d shows the mean square errors of the methods.
These figures give guidance to the designer who must balance bias, SNR performance, and
hardware size.

Other mean/variance combinations can also be achieved by randomly utilizing more than

BITS TO BE TRUNCATED

CARRY INPUT

Figure 3-20: Lazy rounding for the sum of two uncorrelated numbers.
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Figure 3-21: Flow diagrams for various wordlength reduction schemes. The filled dot indi-
cates addition.

one of the methods in Table 3.2. Let the proportion of times that we perform truncation,
LR, and RLR by denoted by θt, θl, and θr respectively, with θt + θl + θr = 1. The overall
mean µ and variance σ2 are calculated from µ

σ2

1

 =

 1 1
4 0

1
6

10
96

1
6

1 1 1


 θt
θl
θr

 . (3.68)

Alternatively, desired values of µ and σ2 can be given, and then (3.68) can be solved for
the θ’s. If the solution results in all of the θ’s being between zero and one, then the desired
values of µ and σ2 are feasible.

We can also solve for the combination of θt, θl, and θr that gives the minimum mean
square error, µ2 +σ2. It is not difficult to show that this is achieved when θt = 0, θl = 1/2,
and θr = 1/2. With these values, we find that µ = 1/8, σ2 = 0.1354, and the mean square
error equals 0.1510. Thus, alternating between LR and RLR achieves a lower mean square
error than using either method singly.

3.4.3 LR Parallel Multiplier Design

High speed multiplication is a common signal processing operation. Many researchers have
documented parallel multiplication methods [38], [121], [57]. For example, Dadda’s ap-
proach [38] is to form the diamond-shaped tableaux of partial product bits, and then to

Table 3.2: Asymptotic Error Mean and Variance of Rounding Schemes.

Method Mean Var. MSE Work
Rounding 0 1/6 1/6 Extra Adder
Truncation 1 1/6 7/6 None
Lazy Rounding 1/4 10/96 1/6 OR Gate
Really Lazy Rounding 0 1/6 1/6 Cin = 1
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Figure 3-22: Error PDFs for wordlength reduction schemes.

successively reduce the number of rows. Dadda chooses the target number of rows after
each iteration via a simple pattern. Figure 3-24 illustrates this method for the case of
12 × 12 unsigned multiplication. The number of full adders (FAs) and half adders (HAs)
are tabulated for each stage, totaling 99 FAs and 11 HAs. After this reduction to two rows,
a conventional fast-carry adder is used to produce the final product.

Considerable savings in hardware results if we ignore some of the low order bits in the
initial tableaux. Of course, this approximation introduces some error, which we propose to
reduce via LR. Figure 3-25 shows the initial tableaux and subsequent reduction steps that
result from the truncation of all bits beyond the twelfth column. Now only 55 FAs and 7
HAs are required for this reduced Dadda scheme. This approach can also be applied to the
more modern Compressor multiplication schemes [195].

There has been previous work with these truncated multipliers [116], [161]. Both of
these previous approaches truncate lower order bit columns. These methods correct for
the bias that is introduced by precalculating and adding in a correction constant. The LR
method presented here implicitly introduces a correction constant, without adding an extra
row to the tableaux.

The simple truncated multiplier approach of Figure 3-25 was compared against the LR
approach. Figure 3-26 shows a comparison of the error for 1000 uniform random multipli-
cation pairs. To generate this truncation error histogram, all product bits below the twelfth
MSB were dropped. Recall that we are motivated to seek methods that use the optimized
RCA of [207]. To this end, an LR approach that examined all the product bits in the
thirteenth column and combined them pairwise was also tested, as shown in Figure 3-26.
Clearly, both the error mean and variance are reduced by the LR method.

The performance of the two approaches as more bits are retained is shown in Figure
3-27. Figure 3-27a compares the error means of the two methods as the number of bits
increases. Figure 3-27b compares the variances of the rounding noise of the two schemes.
The figure shows that the LR approach introduces much less noise when relatively few
multiplier product bits are used. The benefit decreases as a larger percentage of the bits
are used.
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Figure 3-23: Performance of wordlength reduction schemes.

3.4.4 Summary

In this section, two lazy rounding schemes were presented that allow the designer to reduce
noise variance or bias. The methods can be applied widely in situations where one must
prune the wordlength of internal computations to maintain reasonable hardware complexity.
Random combinations of the two methods lead to a continuum of methods with differing
bias/variance properties. For truncated multiplication, further work comparing the lazy
rounding approaches to the correction constant approaches has been performed by Fiore
[58].

8FA 4HA
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17FA 1HA

19FA 1HA

Figure 3-24: Dadda’s scheme for partial product reduction (12 × 12 multiplication).
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Figure 3-25: 12× 12 multiplication with lower bits truncated.
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3.5 Reducing Multiplications: Efficient Computation of Mul-
tiple Bilinear Forms

3.5.1 Introduction

For many computational tasks, we seek to reduce the number of multiplications. This is
especially important in custom hardware implementations, because multiplications can be
costly in terms of gate count. Much work has been done in the past on reducing the number
of multiplications for convolutions, fast Fourier transforms (FFT), and matrix multiplica-
tion. All of these problems are examples of efficiently evaluating multiple bilinear forms of
indeterminants q and p:

qTA1p,
...

qTAmp,
(3.69)

where q and p are column vectors, and the Ai are appropriately sized, known, constant
matrices. In this section, we will review what little is known about this problem, offer a
new, heuristic algorithm to design low multiplicative-complexity algorithms, and then apply
it to some common computer vision examples.

Winograd [203] observed that the canonical decomposition of the trilinear tensor Aijk
formed from the matrices Ai is in fact a minimal multiplication algorithm to evaluate the
bilinear forms (3.69):

T =
∑
i

∑
j

∑
k

Aijkqipjzk =
r∑

m=1

lmq (q)lmp (p)lmz (z), (3.70)

where lmq , lmp , and lmz are linear operators. Here, r is the rank of the tensor, and is equal to
the minimum number of multiplications possible. Unfortunately, we do not know a method
to determine this canonical form. If such an approach can be found, then this will provide
a clear, constructive answer to the minimal multiplication problem. (Comon and Mourrain
[33] provide related information about decomposing totally symmetric tensors. Even this
related problem is difficult.)

When there is only one bilinear form to calculate, we shall show that the optimal de-
composition is easy to compute. With more than one form, there are only two special
cases where closed form solutions are known. The first special case is when there are two
symmetric bilinear forms, and one of them is positive definite; an algorithm to perform this
is given in [68]. The second special case is found in the field of blind system identification,
which has produced an algorithm known as joint diagonalization [40], [114], [190]. This can
produce the desired decomposition (3.70), but only under very special circumstances; the
rank r must be no larger than the minimum dimension of the Ai’s.

We note in passing that we can easily derive a constructive algorithm that gives an
upper bound on the number of multiplications required. Let q be q × 1, and p be p × 1.
We have

qTAip = vec(qTAip)
= (p⊗ q)T vec(Ai)
= vecT (Ai)(p⊗ q),

(3.71)

where “⊗” is the Kronecker product (the identity used in this equation is given in [26],
[210]). By stacking all the row vectors vecT (Ai) into a single matrix A, we have constructed
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an algorithm that uses pq multiplications of indeterminants (i.e. form p ⊗ q using pq
multiplications, then premultiply this vector by A). For m >> pq, could be a reasonable
approach; for much smaller m, this is generally inefficient.

In this section, we show how to use the more familiar singular value decomposition
(SVD) algorithm to find good implementations. We treat the case of a single bilinear form
separately, because it is much simpler than the general case. For the multiple bilinear form
problem, we introduce a set of matrices which can be represented by a small set of outer
products. The size of the set is in fact the number of multiplications needed by the resulting
efficient algorithm.

A word is in order about how we count multiplications. Multiplication of an indetermi-
nant by a constant is not counted. The motivation for this is that multiplying by, say, a
power of 2, consumes no hardware resources. Multiplication by many other numbers may
also be efficiently implemented by additions. Since additions generally require much fewer
resources than multiplications, we can consider additions to be “free.” Of course, care must
be used if the precision of the constants are excessive. Then, the additive complexity may
be quite large. Unfortunately, our algorithm, and indeed none of the algorithms for con-
volutions, FFTs, and matrix multiplications to date, take the complexity of additions into
account. The only recourse we have then is to examine the final efficient algorithm for high
precision constants, and make a determination if the additive complexity is low enough.

We also note that all of the resulting efficient algorithms described in this paper will
work for matrices in place of the scalar indeterminant components of q and p. The matrices
of course must be compatibly sized, and the ordering of the indeterminants must not be
swapped (because matrix multiplication is not commutative).

3.5.2 Single Bilinear Form

The procedure to efficiently evaluate a single bilinear form is sufficiently less complicated
than for multiple forms that we treat it separately. It also provides some insight for the
multiple form problem.

For a single bilinear form qTAp, the minimal number of multiplications may be found
simply from A = USV,T the SVD of A. Let the rank of A be r, so that

qTAp =
r∑
j=1

σj
(
qTuj

) (
vTj p

)
. (3.72)

This is in the correct “add-multiply-add” form for minimal complexity bilinear algorithms
[22], [203], and r is the minimal number of multiplications. For example, if we have the
bilinear form

F = 3q1p1 + q1p2 + q2p1 + 3q2p2, (3.73)

4 multiplications would be required for a direct implementation. We write this as

F = qTAp, (3.74)

with

A =

[
3 1
1 3

]
=

[
1 1
1 −1

] [
2 0
0 1

][
1 1
1 −1

]
. (3.75)

We thus write
F = 2(q1 + q2)(p1 + p2) + (q1 − q2)(p1 − p2), (3.76)

102



which only requires r = 2 multiplications.
If we directly use the SVD, we have the decomposition

F = 4(0.7071q1 + 0.7071q2)(0.7071p1 + 0.7071p2)
+2(−0.7071q1 + 0.7071q2)(−0.7071p1 + 0.7071p2),

(3.77)

which requires only 2 multiplications of indeterminants, but challenges our notion of not
counting multiplications by known constants. For this particular example, it is easy to
transform from (3.77) to (3.76) by visual inspection. For larger problems, however, the
transformation may not be so obvious. Fortunately, programs such as MATLAB have the
ability to produce a “rational” basis for a subspace. For example, with

A =

[
1 2 3
3 2 1

]
, (3.78)

we have
qTAp = 2(q1 + q2)(p1 + p2 + p3)− (q1 + q2)(p1 − p3) (3.79)

using a rational basis for the various subspaces.

3.5.3 Multiple Bilinear Forms

We will work with a standard form Qp, where the elements of the matrix Q are linear com-
binations of the components of q = [q1, . . . , qk]T . We need not consider linear combinations
of the components of p, because it is easy to reduce such a problem to the standard form.
For example,[

q1 q2

q1 + q2 q3

][
p1 + p2

p1 − p2

]
=

[
q1 q2

q1 + q2 q3

] [
1 1
1 −1

][
p1

p2

]

=

[
q1 + q2 q1 − q2

q1 + q2 + q3 q1 + q2 − q3

][
p1

p2

]
.

(3.80)

We may also transform more general problems QP into the standard form. Here, P is a
matrix of linear combinations of the elements of p. The required transformation in this
case is to work with the matrix-vector product: Q

. . .
Q


 P1

...
Pn

 , (3.81)

where Pi is the ith column of the matrix P. If necessary, we then perform a transformation
as in (3.80).

We thus desire an efficient method to compute Qp. Consider premultiplying by a series
of vectors r(i),

r(i)TQp = qTR(i)p, i = 1, . . . ,m, (3.82)

where the matrix R(i) is found from the elements of r(i). We desire to represent the matrices
R(i) as weighted sums of common outer products

R(i) =
J∑
j=1

σ
(i)
j ujvTj , i = 1, . . . ,m, (3.83)
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where the size J of the sets of vectors {uj} and {vj} is to be minimized (thus minimizing
the number of multiplications). We therefore have

qTR(i)p =
ki∑
j=1

σ
(i)
j

(
qTuj

) (
vTj p

)
. (3.84)

Stacking the quadratic forms in (3.84) into a vector and factoring, we have
qTR(1)p

...
qTR(m)p

 =


σ

(1)
1 · · · σ

(1)
n

...
...

σ
(m)
1 · · · σ

(m)
n



(
qTu1

) (
vT1 p

)
...(

qTun
) (

vTnp
)
 . (3.85)

The vector of bilinear forms may be rewritten as
qTR(1)p

...
qTR(m)p

 =


r(1)TQp

...
r(m)TQp

 =


r(1)T

...
r(m)T

Qp
4
= R̃Qp. (3.86)

As long as we choose the r(i) so that R̃ is invertible, we can combine (3.86) with (3.85) to
obtain

Qp = R̃−1


σ

(1)
1 · · · σ

(1)
n

...
...

σ
(m)
1 · · · σ

(m)
n



(
qTu1

)(
vT1 p

)
...(

qTun
) (

vTnp
)
 , (3.87)

which is in the required “add-multiply-add” form, with the minimal number of multiplica-
tions.

We now address the central problem of finding the set of vectors {uj} and {vj}. Our
approach is to look for outer products that reduce the rank of one or more of the R(i).
Preferably, if a single outer product can reduce the rank of many of the R(i), then large
savings in multiplications may be achieved. Clearly, greedy approaches that try to find the
largest subset, or perhaps approaches that randomly choose subsets, may be applied. Once
a suitable outer product is found, we subtract scaled versions of it from the appropriate
subset of the R(i), thus reducing their rank. The procedure is repeated, resulting in a net
reduction of the total rank of the entire set of modified R(i). When all the modified R(i)

are zero matrices, the algorithm terminates.
The final multiplication count of this method depends on the ordering that we combine

outputs. It also depends on the starting matrix R̃. Thus, several repeated trials of the
algorithm may be needed to find good results. Unfortunately, there is no guarantee that
a given result will be optimal. Also, the method is plagued by roundoff error, so that one
must set to zero any small numbers that arise during the calculations. Care must be used
if the bilinear forms contain anything other than reasonably small integers.

Hand-Calculation Examples

We now consider a small example. Let[
e
f

]
=

[
q1 q2

q1 + q2 q1 − q2

][
p1

p2

]
. (3.88)
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We have [
r1 r2

] [ q1 q2

q1 + q2 q1 − q2

]
=
[
q1 q2

] [ r1 + r2 r2

r2 r1 − r2

]
. (3.89)

Setting r(1) = [1 0]T leads to

R(1) =

[
1 0
0 1

]
=

[
1 0
0 1

][
1 0
0 1

][
1 0
0 1

]T
= U(1)S(1)V(1)T . (3.90)

Similarly, setting r(2) = [0 1]T leads to

R(2) =

[
1 1
1 −1

]
=

[
1 1
1 −1

] [
1 0
0 1

] [
1 0
0 1

]T
= U(2)S(2)V(2)T . (3.91)

Since both R(1) and R(2) are rank 2, we look for a common rank-reducing outer product.
Our inspired choice is

u1 =

[
1
0

]
, v1 =

[
1
0

]
, (3.92)

so that

u1vT1 =

[
1 0
0 0

]
, (3.93)

We subtract off appropriate multiples of this from the R(i):

R(1) − u1vT1 =

[
0 0
0 1

]
=

[
0
1

] [
0 1

]
, (3.94)

and

R(2) − 2u1vT1 =

[
−1 1
1 −1

]
=

[
1
−1

] [
−1 1

]
. (3.95)

We therefore have

e =

([
q1 q2

] [ 1
0

])([
1 0

] [ p1

p2

])
+

([
q1 q2

] [ 0
1

])([
0 1

] [ p1

p2

])
,

(3.96)
and

f =

(
2
[
q1 q2

] [ 1
0

])([
1 0

] [ p1

p2

])
+

([
q1 q2

] [ 1
−1

])([
−1 1

] [ p1

p2

])
.

(3.97)
This can be written more simply as

e = q1p1 +q2p2

f = 2q1p1 +(q1 − q2)(p1 − p2),
(3.98)

which has only 3 unique multiplication.
For another small example, consider e

f
g

 =

 q1 + q2 q1 − q2

q1 2q1

q2 q1 − 2q2

[ p1

p2

]
. (3.99)
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We have

[
r1 r2 r3

]  q1 + q2 q1 − q2

q1 2q1

q2 q1 − 2q2

 =
[
q1 q2

] [ r1 + r2 r1 + 2r2 + r3

r1 + r3 −r1 − 2r3

]
. (3.100)

Setting r(1) = [1 0 0]T leads to

R(1) =

[
1 1
1 −1

]
. (3.101)

Similarly, setting r(2) = [0 1 0]T leads to

R(2) =

[
1 2
0 0

]
. (3.102)

Finally, setting r(3) = [0 0 1]T leads to

R(3) =

[
0 1
1 −2

]
. (3.103)

Since R(2) is rank 1, we choose its singular vectors as the covering vectors. We need to
determine multiples of the outer product to subtract from R(1) and R(2), so that their rank
is reduced from 2 to 1. We therefore seek

R(1) − αu1vT1 =

[
1− α 1− 2α

1 −1

]
(3.104)

to have low rank. Equivalently, we desire the determinant to equal zero, or

0 = (1− α)(−1) − (1− 2α)(1), (3.105)

which is solved by α = 2/3. We solve a similar equation to reduce the rank of R(3):

R(3) − βu1vT1 =

[
−β 1− 2β
1 −2.

]
. (3.106)

Setting β = 1/4 drops the rank. With these settings of α and β, we have

R(1) − 2
3
u1vT1 =

[
1/3 −1/3
1 −1

]
=

[
1/3
1

] [
1 −1

]
(3.107)

and

R(3) − 1
4
u1vT1 =

[
−1/4 1/2

1 −2

]
=

[
−1/4

1

] [
1 −2

]
. (3.108)

We can therefore write the equations for e, f , and g as

e = qTR(1)p = 2
3q1(p1 + 2p2) +(1

3q1 + q2)(p1 − p2)
f = qTR(2)p = q1(p1 + 2p2)
g = qTR(3)p = 1

4q1(p1 + 2p2) +(−1
4q1 + q2)(p1 − 2p2),

(3.109)

which has only 3 unique multiplications.
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3.5.4 Recovery of the Common Rank-Reducing Outer Product

We are given a subset of the matrices R(1), . . . ,R(m), and in this section we relabel the
subset as R(1), . . . ,R(l) for convenience. We seek vectors u and v such that each of

R(i) − αiuvT , i = 1, . . . , l (3.110)

is of lower rank than their corresponding R(i). Let U(i)S(i)V(i)T = R(i) be the SVDs, where
we assume that columns of U(i), S(i), and V(i) corresponding to zero singular values have
been removed. That is, the S(i) are square, and U(i) and V(i) are at least as tall as they
are wide.

We have
R(i) − αiuvT = U(i)S(i)V(i)T − αiU(i)δ

(i)
1 δ

(i)T
2 V(i)T,

= U(i)
(
S(i) − αiδ(i)

1 δ
(i)T
2

)
V(i)T,

(3.111)

where
u = U(i)δ

(i)
1 ,

v = V(i)δ
(i)
2 ,

(3.112)

for all i = 1, . . . , l. This last equation states that u is in the span of all the U(i) and v is in
the span of all the V(i), which is a necessary condition. We thus require each of

S(i) − αiδ(i)
1 δ

(i)T
2

(3.113)

to be lower rank than their corresponding (full rank, diagonal) matrix S(i). For simplicity,
we choose α1 = 1, δ(i)

1 = [1 0 . . . 0]T and δ
(1)
2 (1) = 1. Clearly, the rank of S(1) is lowered

for arbitrary choice of the remaining elements of δ(1)
2 .

We must find all the δ(i)
2 for i = 2, . . . , l. These can not be chosen arbitrarily, due to the

relationship (3.112). Using (3.112) with i = 1, we modify (3.113) as

S(i) − αiδ(i)
1 δ

(i)T
2

= S(i) − αi
(
U(i)TU(1)δ

(1)
1

) (
V(i)TV(1)δ

(1)T
2

)
.

(3.114)

Reducing the rank of (3.114) is equivalent to reducing the rank of(
U(i)TU(1)

)−1
S(i)

(
V(1)TV(i)

)−1
− αiδ(1)

1 δ
(1)T
2 , (3.115)

assuming the inverses exist. The inverses may fail to exist if, for example, U(1) ⊥ U(i). In
this case, there can be no vector u common to all linear spans of the U(i), so the algorithm
terminates.

We therefore now assume that the inverses in (3.115) exist. Let

W(i) 4=
(
U(i)TU(1)

)−1
S(i)

(
V(1)TV(i)

)−1
, (3.116)

which must be full rank by our previous comments. By construction, the rank one ma-
trix δ(1)

1 δ
(1)T
2 has nonzero elements only in the first row. Thus, the determinant of W(i) −

αiδ
(1)
1 δ

(1)T
2 is an affine combination of the unknown elements in δ

(1)T
2 , times αi. The coeffi-

cients multiplying the elements of δ(1)T
2 are simply the determinant cofactors of the W(i).
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More explicitly, we require the determinant |W(i) − αiδ(1)
1 δ

(1)T
2 | = 0. We have

|W(i) − αiδ(1)
1 δ

(1)T
2 | =

∣∣∣∣∣∣∣∣
W1,1 − αi W1,2 − αiδ(1)

2 (2) · · ·
W2,1 W2,2 · · ·
...

...

∣∣∣∣∣∣∣∣
=
∑
k(−1)k+1c

(i)
k

(
W1,k − αiδ(1)

2 (k)
)

= 0,

(3.117)

where c(i)k is the cofactor of W (i)
1,k (we merely calculate and use c(i)k in what follows). Rear-

range (3.117) as
αi
∑
k

(−1)k+1c
(i)
k δ

(1)
2 (k) =

∑
k

(−1)k+1c
(i)
k W1,k, (3.118)

or

αi

c(i)1 +
∑
k>1

(−1)k+1c
(i)
k δ

(1)
2 (k)

 =
∑
k

(−1)k+1c
(i)
k W1,k, (3.119)

because we set δ(1)
2 (1) = 1. If the right-hand side

∑
k(−1)k+1c

(i)
k W1,k equals zero, then either

αi = 0, or c(i)1 +
∑
k>1(−1)k+1c

(i)
k δ

(1)
2 (k) = 0 (or both). The solution αi = 0 is unacceptable,

because R(i) will not be altered. We thus assume αi 6= 0 in what follows, but we need to
check that this is true at the very end of the algorithm. Thus, if

∑
k(−1)k+1c

(i)
k W1,k = 0,

we contribute the linear equation

c
(i)
1 +

∑
k>1

(−1)k+1c
(i)
k δ

(1)
2 (k) = 0, (3.120)

to a set of linear equations. If
∑
k(−1)k+1c

(i)
k W1,k is not zero, then we rearrange (3.119) as

c
(i)
1 +

∑
k>1

(−1)k+1c
(i)
k δ

(1)
2 (k) =

(∑
k

(−1)k+1c
(i)
k W1,k

)
1
αi
, (3.121)

or finally, ∑
k>1

(−1)k+1c
(i)
k δ

(1)
2 (k)−

(∑
k

(−1)k+1c
(i)
k W1,k

)
1
αi

= −c(i)1 , (3.122)

which is linear in δ
(1)
2 (k) and 1/αi. Therefore, when

∑
k(−1)k+1c

(i)
k W1,k is not zero, we

contribute one linear equation of the form (3.122).
Due to the presence of the αi, the set of linear equations will generally be underdeter-

mined. If they are consistent, then there are a multitude of possible solutions for δ(1)
2 and

the αi. Usually, a pseudoinverse approach is used to solve for the minimum norm solution.
In this case, however, the minimum norm solution is not appropriate, because it could lead
to extremely large values of the αi. Since we really just want a solution, our ad hoc approach
is to set the αi in (3.122) equal to one. Clearly, other approaches are possible that improve
the chances that the equations will be consistent.

Once we have δ(1)T
2 chosen, the proper determination of the αi is a simple generalized

eigenvalue problem. We use δ(1)T
1 and the calculated δ

(1)T
2 to obtain u and v, then seek all

αi such that
R(i) − αiuvT , i = 1, . . . , l (3.123)
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is reduced rank. In other words, we seek αi such that the equations(
R(i) − αiuvT

)
x(i) = 0 (3.124)

each have solutions. Rearranging,

R(i)x(i) = αi
(
uvT

)
x(i), (3.125)

which is simply a generalized eigenvalue calculation. Therefore, given u and v, to determine
the correct αi, solve each of the generalized eigenvalue problems (3.125) for useful αi. Note
that we must reject any αi = 0, and perhaps complex αi. We also must reject any extremely
small or large αi because these most likely result from roundoff errors. If we can not find
usable αi for all equations, then the method concludes that there is no common rank-
reducing outer product for the set R(i).

3.5.5 Complex Multiplication Experiment

Recall that calculating (e+ jf) = (a+ jb) · (c+ jd) the straightforward way,

e = ac− bd, f = ad+ bc, (3.126)

four real multiplications and two real additions are required. The algorithm of the previous
section was run, producing the 3 multiplication code below:

t1 = a(c+ d)
t2 = (a+ b)d
t3 = (a− b)c
e = t1 − t2
f = t1 − t3

(3.127)

3.5.6 Quaternion Multiplication Experiment

Recall from Section 2.2 that quaternions can be effectively used in orientation problems; cas-
caded rotations of points can be carried out by multiplying the corresponding unit quater-
nions (see Appendix B). Here we search for an efficient implementation of quaternion
multiplication

◦
r=
◦
q
◦
p, where

◦
r4=


r0

rx
ry
rz

 , ◦
q4=


q0

qx
qy
qz

 , ◦
p4=


p0

px
py
pz

 . (3.128)

Recall that the left quaternion matrix Q associated with a quaternion
◦
q is given by (see

Appendix B):

Q 4=


q0 −qx −qy −qz
qx q0 −qz qy
qy qz q0 −qx
qz −qy qx q0

 . (3.129)

Using the left quaternion matrix representation, the quaternion product can be written as
◦
q
◦
p= Q

◦
p . (3.130)
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The composition of rotations may be represented as the product of unit quaternions.
Using the matrix representation of a quaternion, we see that only 16 multiplications and
12 additions are needed to compose two quaternions, whereas 27 multiplications and 18
additions are needed to form the product of two rotation matrices.

The algorithm of the previous section was run, producing the 10 multiply straightline
code below:

t1 = q0(p0 + px + py + pz)
t2 = (q0 + qx + qy − qz)px
t3 = (q0 + qz)(py + pz)
t4 = (q0 − qy)(2p0 + px + pz)
t5 = (q0 + 2qx + qy)(px − pz)
t6 = (q0 − qz)(2p0 − px + py)
t7 = (qy + qz)pz
t8 = (q0 − 2qx + qz)(px + py)
t9 = (qy − qz)(px − py)
t10 = (q0 − qx)p0

r0 = t1 − t2 − t3 + t9
rx = t1 − t3 + t7 − t10

ry = t1 − t2 − t4/2 + t5/2
rz = t1 − t2 − t6/2− t8/2

(3.131)

3.6 Efficient SVD FPGA Implementation for Orientation Prob-
lems

In this section, we apply some of the hardware optimization principles developed earlier
in the chapter to the problem of efficiently calculating the singular value decomposition
(SVD). We will make use of the approach given here to accelerate algorithms for multiple
view orientation in Chapter 5.

The SVD is one of the most elegant and satisfying algorithms in linear algebra. It pro-
vides not only quantitative information about the structure of matrices and linear equations,
but also has stable, efficient, and extremely accurate numerical computational procedures.
The solution to many optimization problems become simple and obvious with the correct
application of the SVD.

It should perhaps be no surprise then that the SVD has found very widespread use in
signal processing and adaptive filtering [81], beamforming and direction finding, optimiza-
tion and control theory [27], and of course, computer vision [10], [31], [149], [189]. While
the SVD exists for complex matrices, we focus here on purely real matrices.

The SVD theorem is simple to state. Given an M ×N matrix A, there exist matrices
UM×M , SM×N , and VN×N such that

A = USVT, (3.132)

where U and V are orthonormal and S is diagonal with

S = diag(σ1, σ2, . . . , σr), (3.133)

and σ1 ≥ σ2 ≥ . . . ≥ σr > 0. In (3.133), r is called the “rank” of A, and we have
that r ≤ min(M,N). The theorem was first proved by Beltrami [15], (translated in [16]),
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rediscovered several times, and perhaps finally becoming well recognized through the work
of Eckart and Young [49].

3.6.1 Jacobi Method

In this section, we focus on the efficient FPGA computation of the SVD of a symmetric,
square matrix. This is in fact the same as an eigenvalue decomposition, and in this case
we have U = V. For this situation, we will develop the method known variously as the
“Jacobi” method (sometimes called the “Givens” method). The Jacobi method employs a
sequence of 2×2 plane rotations, each of which is designed to zero out a pair of off-diagonal
elements of a matrix. Gradually, the data matrix is reduced to diagonal form, although the
zeros created by a rotation are generally filled in by subsequent rotations. Nevertheless,
the algorithm does converge quite rapidly. (Recently, Mackey [122] proposed a quaternion-
based method that zeroes the 2 × 2 off-diagonal blocks of a 4 × 4 matrix; the algorithm
requires fewer iterations to converge, but more work at each iteration.)

The utility of this approach is that the calculation and application of the plane rotations
is simple and modular, and is particularly well suited to custom computing implementation.
Also, a systolic array approach is known that allows for especially high speed processing if
desired.

The algorithm proceeds by a sequence of basic transformations of the data matrix A.
In each transformation, the matrix is pre- and post-multiplied by a particular orthogonal
matrix. The (k + 1)st transformation is given as

Tk+1 : A(k+1) = J(k)TA(k)J(k). (3.134)

Here, the superscripts indicate iteration number. The matrices J(k) are orthonormal and are
in fact of a special form that we shall see shortly. If we write out the result of p applications
of the transformation (3.134), we have

A(p) = J(p−1)T · · ·J(1)TJ(0)TA(0)J(0)J(1) · · ·J(p−1), (3.135)

with A(0) = A. If after p iterations, the matrix A(p) is diagonal (or as close to diag-
onal as we desire), we then extract the main diagonal of A(p) and call this the matrix
S. Since the product of orthornomal matrices in (3.135) is also orthonormal, by setting
V = J(0)J(1) · · ·J(p−1), we have the desired decomposition.

The orthonormal matrices J(k) are of the special form

J(k) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · ck · · · sk · · · 0
...

...
. . .

...
...

0 · · · −sk · · · ck · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


, (3.136)

where the matrix is the same as the identity matrix except for four elements, located at the
four intersections of the ith and jth rows and columns. The special elements are ck = cos θk
and sk = sin θk for some angle θk.

111



The rotations by J(k) are designed to zero the (i, j) and (j, i) elements, moving their
energy to the main diagonal. This leaves the matrix A(k+1) with less off-diagonal energy
than A(k). We could seek the greatest energy reduction at each stage by searching for
the off-diagonal elements with the maximum energy. However, this greatly increases the
amount of work at each stage, and precludes parallel implementations.

What is typically done is to use a sequence of “sweeps,” and each sweep is “cyclic” (by
rows or columns). This means that we apply the transformation (3.134) for the M(M−1)/2
distinct pairs (i, j) in a cyclic order. We repeat for as many sweeps as necessary until the
convergence criteria is met. This algorithm is known to converge (but this is definitely not
obvious).

With the overall strategy thus defined, we must now address the computation of J(k), the
efficient formation of the running product that calculates V, and of course, the calculation
of A(k+1).

Referring to (3.134) and (3.136), we see that the left-most J(k) only alters columns i
and j of A(k), while the right-most J(k) only alters rows i and j. All other elements of A(k)

are unchanged, and in fact, we do not access them for this iteration. The four elements of
A(k) at the intersection of the rows and columns i and j determine the elements ck and sk
of J(k). We can extract the relevant 2× 2 submatrices from (3.134) and (3.136) and write
the diagonalization requirement as a

(k+1)
ii 0

0 a
(k+1)
jj

 =

 ck −sk

sk ck


 a

(k)
ii a

(k)
ij

a
(k)
ji a

(k)
jj


 ck sk

−sk ck

 . (3.137)

By expanding the above matrix product, equating the off diagonal terms and dividing by
cksk, we have the requirement

0 = a
(k)
ii − a

(k)
jj −

sk
ck
a

(k)
ji +

ck
sk
a

(k)
ij . (3.138)

Since a(k)
ji = a

(k)
ij , if we make the definitions

tk =
sk
ck
, (3.139)

and

b =
a

(k)
jj − a

(k)
ii

2a(k)
ij

, (3.140)

we have that (3.138) becomes
t2k + 2btk − 1 = 0. (3.141)

It is a simple matter then to solve the above equation for tk (either solution is acceptable).
Since tk = tan θk, we may therefore obtain the elements ck and sk. We have therefore
determined the matrix J(k).

3.6.2 FPGA Implementation

We now turn to the question of the efficient implementation of the update transformation
(3.134). We first examine the post-multiplication of A(k) by J(k). Only columns i and j of
A(k) are altered. If we notionally extract these two columns of A(k), and also extract the
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2 × 2 rotation submatrix of J(k), we see that we have exactly a sequence of M operations
isomorphic to a complex multiplication. We know from Section 3.5.5 that this operation
can be implemented using three real multiplications and three real additions per operation
(with 2 preadditions performed before the M rotations). Thus, for a total of 3M multipli-
cations and 3M + 2 additions the post multiplication in (3.134) can be performed. Similar
comments apply to the premultiplication in (3.134). We must also update the estimate
of V by postmultiplying the current estimate by J(k). Again, this is exactly the same
type of operation as the post-multipication of A(k). The operation count is therefore 9M
multiplications and 9M + 2 additions.

For FPGA implementation, an efficient procedure then is to implement a high speed
complex multiplication algorithm in hardware, and stream the various rows and columns
of A(k) and the current estimate of V through in a pipelined fashion. Only three parallel
multipliers and three adders are needed in this approach, so a large wordlength could be
accommodated. With a proper implementation, we can therefore achieve a 3-to-1 speedup
over a conventional processing implementation. Given the ubiquitous nature of the SVD,
this is a valuable efficiency gain. Of course, the speedup can increase linearly with the
addition of multiple FPGAs.

FPGA technology allows for an alternative implementation of this rotation operation:
the so called “CORDIC” algorithm [22], [95], [196], [198]. This algorithm is especially suited
to the rotation of a two-dimensional vector by a given angle. Generally, rotation of a vector
by an angle θ requires a matrix-vector multiplication of the form[

x′

y′

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x
y

]
. (3.142)

There is a special set of angles for which a more computationally efficient method exists to
perform this rotation. These angles are of the form

θl = tan−1 2−l for l = 0, 1, . . . . (3.143)

The angles are typically stored in a table for subsequent processing.
Using trigonometric identities, it can be shown that

sin(θl) =
2−l√

1 + 2−2l
, (3.144)

and
cos(θl) =

1√
1 + 2−2l

. (3.145)

Therefore, a rotation of a vector (x,y) by θl can be evaluated as

x′ =
1√

1 + 2−2l
(x+ 2−ly), (3.146)

y′ =
1√

1 + 2−2l
(y − 2−lx). (3.147)

To rotate an angle by −θl, the same equations are used with the sign of 2−l changed.
The above special set of angles can be used to rotate a vector by an arbitrary angle θ.

Any angle can be decomposed as

θ = η1
π

4
+
∞∑
l=0

ηl tan−1 2−l, (3.148)
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or,

θ =
∞∑

l=−1

ηlθl, (3.149)

where ηl is either 1 or -1. To rotate by the angle θ, rotate the vector sequentially by the
amount θl in the directions specified by the ηl. The iterations are truncated after a suitable
number have been performed. The error in the angle using n iterations is bounded by
tan−1 21−n ≈ 21−n.

The ηl are computed each iteration by comparing the current angle with the desired
angle. If the current angle is larger, then the angle increment tan−1 2−l is subtracted from
the current angle to form the next estimate. If the current angle is too small, the angle
increment is added to the current angle. When the CORDIC algorithm is implemented, the
scaling factors are generally ignored during the iterations. That is, the operations

x′ = (x+ 2−ly) (3.150)

and
y′ = (y − 2−lx) (3.151)

are performed for each θl. This greatly simplifies the iterations, but introduces a magnitude
gain. After n iterations, the magnification is

n∏
l=1

√
1 + 2−2l, (3.152)

which, fortunately, is independent of the signs of the individual rotations. This gain can
be removed after the iterations are completed if necessary. For the SVD, we can remove it
at the very end of the algorithm, if we use a cyclic sweep method. Table 3.3 tabulates this
gain as a function of the number of stages; note that gain quickly converges to a constant.

Hardware implementations of the CORDIC algorithm typically use two accumulators
and barrel shifters to perform the iterations (and possibly another accumulator for angle
accumulation). The throughput of this accumulator-based operation is thus dependent on
the number of iterations performed, which determines the accuracy of the method. The
wordlength of the accumulators must accommodate the longest results, which are typically
at the end of the calculation.

For greater throughput, the iterations can be pipelined along multiple computational
units. Now rotations can be performed at a rate equal to one pipeline stage delay. To
reduce hardware, the size of the adders at each stage can now be made different.

Table 3.3: CORDIC gain as function of the number of stages.

Num. Stages Magnification
1 1.1180
2 1.1524
3 1.1614
4 1.1637
5 1.1642
6 1.1644
7 1.1644
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Figure 3-28: Parallel-pipelined implementation of the CORDIC algorithm (pipeline delay
registers not shown). The θl are hardwired. Alternatively, the “+/−” control signals could
be calculated in software for a given pass.

If we lay each stage out in a parallel-pipelined manner, the shift that implements the
multiplications by 2−l for stage l becomes hardwired, and we do not need to devote any hard-
ware resources to this operation. Therefore, each stage consists of two adder/subtractors
(one to update the x and y coordinates each), and an adder to calculate the angle rotation
direction, as shown in Figure 3-28. Alternatively, if the number of bits of precision on the
angle calculation is small enough, the sequence of rotation directions may simply be stored
in a ROM.

Note that the angle increment magnitudes θl are fixed, and only their sign direction at
each stage must be determined. This means that in a parallel-pipelined design, one input
of each adder is hardwired, so that we do not need to supply a stream of angle increment
values from some memory source.

A word about representing angles in two’s complement integer format is in order. Both
the two’s complement system and angles in radian measure exhibit a “wrap-around” effect.
An effective representation of angles is to store 2m−1/π times the radian value of the angle,
where m is the number of bits in the two’s complement word. Thus, the wrap-around points
coincide. Modulo arithmetic on angles is performed simply by ignoring carry bits beyond
the wordlength.

We may assign a custom wordlength to the inputs of each adder in each stage, in an
effort to save on hardware cost. The MCMC design algorithm of Section 3.3.5 may then
be used to find good wordlength combinations. Lazy rounding (Section 3.4) may also be
extensively used, as there is likely to be many occurrences of truncated bits, especially in
stages with the largest l’s.
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Assume that the inputs x and y are limited to the range −1 ≤ x, y ≤ 1, which we rep-
resent as two’s complement fractions. If the CORDIC algorithm is implemented according
to (3.146) and (3.147), the outputs are limited to the range −

√
2 ≤ x′, y′ ≤

√
2. If we

implement it without correcting for the magnitude gain from Table 3.3, then the output
range is −1.1644

√
2 ≤ x′, y′ ≤ 1.1644

√
2, which we round up to [−2, 2] in order to determine

the output format (as in (3.5)). Moreover, due to the actions of the control lines, this range
is valid at the output of every stage of the algorithm in Figure 3-28.

Recall from Section 3.3.1 that to calculate contribution due to noise from stage i, we
need to find the max absolute slope si. The calculation of the noise variance due to lazy
rounding is straightforward but tedious, due to the numerous paths from any particular
rounding point to the outputs. Using (3.3), the gain si due to these numerous paths, from
stage i to the output as function of the total number of stages n is given in Table 3.4.
This is used in (3.4), along with the formula for the variance of lazy rounding (from Table
3.2 or Figure 3-23 for higher accuracy). The lazy rounding variance must be appropriately
scaled, by 4 · 2−2bi+1 , because of the range [−2, 2] and because the development in Section
3.4 assumed that the final output format was integer, rather than the fractional format
which we use here.

Table 3.4: Gain si from stage i to final stage n.

i n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
1 1.5000 1.8750 2.1094 2.2412 2.3112 2.3474
2 1.1250 1.2188 1.2744 1.3046 1.3204
3 1.0312 1.0547 1.0684 1.0758
4 1.0078 1.0137 1.0171
5 1.0020 1.0034
6 1.0005

Another complicating factor is that because of the increasing shift amounts of half of
the adder inputs in Figure 3-28, we must really take into account that the model used in
lazy rounding is not exactly accurate for this case. We are led to consider three cases for
the wordlength bi+1 at the output of stage i: bi+1 less than bi, bi+1 greater than the length
of the shifted input (which is bi + i − 1), and finally, bi+1 between these two boundaries.
After some tedious arithmetic, we arrive at the formula

σ2
i =



5
122−2bi+1 − 2

32−2bi , bi+1 < bi,

1
32−2bi+1 − 1

32−4bi+1 , bi ≤ bi+1 < bi + i− 1,

0, bi + i− 1 ≤ bi+1,

(3.153)

for i = 1, . . . , n− 1. The total variance is

V (b) =
n∑
i=2

s2
iσ

2
i (3.154)

and the cost is

C(b) =
n∑
i=2

bi. (3.155)
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Figure 3-29: CORDIC cost/variance combinations using lazy rounding.

Using this information, the MCMC algorithm of Section 3.3 was used to design good
wordlength combinations for the CORDIC algorithm. The number of stages was set at
n = 16, and a 32-bit input wordlength was assumed. Figure 3-29 shows the Pareto-optimal
cost/variance combinations, and Figure 3-30 shows the points visited by the MCMC random
walk during a particular iteration. As an example, of the 443 Pareto-optimal designs found,
the 300th one had a cost of 539, and the wordlengths were

b = [32, 32, 33, 35, 37, 37, 37, 36, 37, 36, 37, 36, 37, 36, 37, 36]T (3.156)
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Figure 3-30: Design space exploration of CORDIC using lazy rounding. Points plotted are
the design alternatives visited by the MCMC random walk for a particular iteration.
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3.7 FPGA Implementation of Absolute Orientation

Recall from Section 2.5 the absolute orientation problem: Align two sets of three-dimensional
feature points by a rotation and translation. In Section 2.5 we saw the SVD-based method
for performing absolute orientation. We form the 3×N matrix L from the centroid-removed
left coordinate-system data points l̃i, and similarly for R, the matrix formed from the right
coordinate-system data points r̃i. We then form the 3× 3 matrix RLT, and take the SVD.
In this section, we address this problem using a straightforward FPGA design. By tailoring
the wordlengths, we shall be able to simultaneously speed up the computation and also
deliver improved accuracy.

For large N , the major computational load is the formation of RLT . This requires 9N
multiplications. Perhaps more importantly, the outputs will have approximately double the
dynamic range of the inputs, so that roundoff errors are more likely using conventional DSP
microprocessors. As an aside, one may wonder if the efficient bilinear form algorithm of
Section 3.5 can be applied here. However, since each of the nine outputs consists of a single
product, it is known from the work of Winograd ( [203], Chap. 3, Thm. 2) that we cannot
implement the outer product r̃ĩlTi in less than nine multiplications.

For the design, we make use of the outer product decomposition of the matrix product:

RLT =
N∑
i=1

r̃ĩlTi . (3.157)

Each pairing i will be processed sequentially in consecutive clock cycles for i = 1, . . . ,N .
For each i, we must calculate the nine multiplications corresponding to the rank-1 outer
product r̃ĩlTi, and then add the multiplication outputs to nine accumulators. We assume
without loss of generality that the inputs are scaled so that they are 2’s complement fixed-
point fractions, with range from -1 to 1. The multiplier outputs are then also confined to
this range, and the accumulator outputs are confined to the range ±dlog2Ne.

Let the number of bits of used at the multiplier j inputs be bj1. If a full precision
multiplier is built, the number of bits produced at its output is b2j1. To save on hardware cost,
we will consider sending (and calculating) a fewer number of bits, bj2, to the accumulator.
Let the number of bits input to accumulator j be bj2. The accumulators will be constructed
so that all bj2 +dlog2Ne output bits are produced, but a smaller number, bj3 might be send
to the SVD computation.

For simplicity, we assume that the 3×3 SVD is performed in software. Thus, we are not
concerned with its computational cost, but only its noise variance propagation properties.
To assess the quality function V (b) of a proposed wordlength combination b, we could
use several metrics. The simplest is of course the sum of the noise variances at the SVD
inputs. Another possibility is the sum of the noise variances in the calculated rotation
matrix Q components. Still another possibility is the noise variance of the components of
the associated unit quaternion q. Finally, we might want to take into account the errors in
the translation direction which is calculated from the rotation matrix. The correct choice
must therefore be dependent on the user’s application. For simplicity, we will use the total
variance at the input to the SVD algorithm as our metric.

The MCMC design method, described in detail in Section 3.3.5, was used to identify ac-
tual wordlength combinations of interest. Figure 3-31 shows a dataflowgraph of the portion
implemented in FPGA. Figure 3-32 shows the resulting Pareto-optimal combinations. Fig-
ure 3-33 shows the design space exploration performed in the last iteration of the algorithm,
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Figure 3-31: Flowgraph of absolute orientation preprocessing in FPGA.

with the cost/variance bound in place to avoid exploring the upper right-hand corner of the
design space.

Figure 3-34 shows the resulting FPGA floorplan using the Xilinx floorplanner tool. One
can clearly see the nine multiply-accumulate structures (in addition to some interface and
control logic). The truncated multiplier structures were designed using Xilinx’s “Core”
series of VHDL libraries [207], rather than the lazy rounding approach of Section 3.4.
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Figure 3-32: Optimal cost/variance designs for FPGA implementation of absolute orienta-
tion.
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Figure 3-33: Design space exploration with cost/variance upper bound to limit excursions.
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Figure 3-34: FPGA floorplan for custom wordlength absolute orientation.
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3.8 Summary

This chapter was concerned with the various aspects of efficient hardware implementa-
tion that are needed for real-time computer vision systems. The methods and techniques
presented nicely illustrate the approach to efficient implementations through simultaneous
consideration of the algorithm and technology.

The techniques presented in this chapter appear to be different in many respects; how-
ever, they share the common goal of reducing operations complexity, while meeting the
algorithm performance goals.

Section 3.2 provided a detailed understanding of the FPGA device family. Like software
or ASICS, FPGAs are here to stay; it therefore behooves real-time computer vision system
designers to learn about and to use these devices.

Section 3.3 presented the method for reducing system complexity by wordlength reduc-
tion. The approach taken was to first model the noise due to wordlength reduction by
equations (3.1)-(3.7), which allowed us to seek designs with optimal cost/variance charac-
teristics. A useful lower bound on these designs and an algorithm to compute this bound
was given in Section 3.3.3.

Finding actual designs is a combinatorial optimization problem, which is difficult in gen-
eral. Section 3.3.4 investigated the MCMC method to perform this optimization. This tech-
nique has proven useful in many other scientific fields, as it does for solving the wordlength
optimization problem. The key idea that makes the MCMC useful is that the deviation
from the stationary distribution of the Markov chain as a function of time can be made
arbitrarily small, as given by (3.45) and (3.46).

Section 3.4 presented the lazy rounding method for reducing system complexity by
focusing on the operations of addition and multiplication, which typically represent the
major portion of any orientation algorithm implementation and custom computing design.

Section 3.5 presented the method for reducing system complexity by the more conven-
tional approach of eliminating costly multiplications in the evaluation of bilinear forms.
Section 3.5.3 presented an algorithm for multiple bilinear forms. While not optimal, it
seems to work well in practice.

Finally, Sections 3.6 and 3.7 applied some of these ideas to the design of custom proces-
sors for the SVD and absolute orientation operation.

Although all of the problems presented here are well studied, the chapter featured several
new and exciting design approaches:

• the lower bound approach and calculation for optimal wordlength designs (Section
3.3.3),

• applying the well known MCMC approach to finding actual designs (Section 3.3.5),

• the simple and efficient lazy rounding techniques of Section 3.4,

• the algorithm to search for common rank-reducing outer products (Section 3.5.3).

The development of these techniques required concepts from graph theory, statistical me-
chanics, computer arithmetic, dynamic systems, and signal processing. This illustrates the
fact that device technology and algorithms should be considered together; not only can
we use efficient devices to implement algorithms in real-time, but we can also use efficient
algorithms to help optimize hardware designs. This close interplay between algorithm and
implementation is at the heart of a successfully engineered system.
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Chapter 4

Constrained Estimation and
Motion Vision

4.1 Introduction and Chapter Overview

As we saw in Chapter 2, there are a great variety of orientation problem formulations and
solution methods. For example, the linear approaches are favored by many computer vision
researchers because of their speed, whereas photogrammetric work requires high accuracy.
In this chapter we more closely examine general solution methods which enforce (perhaps
inconvenient) constraints. We will take the viewpoint that one should maximize the like-
lihood function of the data, subject to parametric constraints supplied by the orientation
problem at hand.

Since we are taking the maximum likelihood viewpoint, it would be helpful perhaps to
review this idea. We assume that there is a signal s(n;θ), where s is a vector of signal
values, θ is a vector of unknown, nonrandom parameters, and n is the time index. Due to
noise, we cannot directly observe s, but rather a corrupted version y:

y(n) = s(n;θ) + v(n). (4.1)

For simplicity, assume that v(n) is N(0, I). Under this assumption, the observed data is
also distributed normally, with

y(n) ∼ N(s(n;θ), I). (4.2)

When viewed as a function of the unknown parameters θ, the distribution L(θ; y(n))
4
=

N(y(n) − s(n;θ), I) is known as the likelihood function [103], [200]. Maximum likelihood
estimation (MLE) seeks the value of the parameter vector θ that best explains the observed
data y. That is, we seek

θml = arg max
θ

L(θ; y(n)) = arg max
θ

lnL(θ; y(n)). (4.3)

For normal distributions, this is easily done symbolically; for other distributions, numerical
iterations are often employed.

Maximum likelihood estimation is therefore well established for the signal and data
model of (4.1). In some cases, however, it may be very unclear what the signal s(n;θ) is.
This arises when s(n;θ) is determined implicitly as a function of θ, rather than explicitly.
In many situations, while s(n;θ) is well-defined in that a given value of θ implies a unique
value of s(n;θ), it may be difficult or impossible to explicitly write an algebraic formula
for s(n;θ). We may in fact be given only a set of constraint equations that define the
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relationship between θ and s(n;θ). This is typical for orientation problems. Nevertheless,
we may still seek to estimate θ by maximizing the likelihood function L(θ; y(n)); we merely
must ensure that none of the constraints are violated at the purported optimum. This
optimum could be termed the constrained maximum likelihood estimate. However, we will
still denote it by θmle, to recognize the fact that notionally there is no difference between this
estimate and the more conventional MLE (although there will certainly be a computational
difference).

A small example will illustrate these concepts. Let θ = [θ1, θ2]T, and let s(n;θ) be
implicitly defined by the constraints

s(n;θ) = θ, n = 1, . . . ,N, (4.4)

and
θ1 + θ2 = 1. (4.5)

In this case, it is easy to express s(n;θ) explicitly as a function of θ1, and to then solve for
the MLE via (4.1). Following this procedure, one obtains

θ1,ml =
1 + Y 1 + Y 2

2
, (4.6)

where Y 1 is the mean of the first component of the 2×1 vector of observed data Y1, . . . ,YN

(and similarly for Y 2. Since θ2 = 1 − θ1, we may use the invariance property of the MLE
to write

θ2,ml = 1− 1 + Y 1 + Y 2

2
. (4.7)

If we were to ignore the constraint (4.5), we would obtain the estimate

θest = [Y 1, Y 2]T , (4.8)

which is incorrect, because in general Y 1 + Y 2 6= 1. Thus, to obtain the MLE, it is not
acceptable to ignore constraints. This is precisely the chief complaint about projective-
geometry approaches to motion recovery; orthogonality constraints are ignored.

The above procedure relied on removing the redundant variable θ2 from the problem,
thereby removing the inconvenient constraint. For more complicated problems, this ap-
proach may not be possible. A way to avoid this problem is to use a Lagrange multiplier
approach. We therefore seek

θml = arg max
θ,λ

lnL(θ; y(n)) + λ(θ1 + θ2 − 1). (4.9)

Straightforward calculations show that (4.6) and (4.7) are again obtained.
Another simple demonstration is to obtain the total least squares (TLS) equations from

an MLE problem. Let the true signal s(n;θ) consist of a true matrix At, and a true vector
bt. Elements of At and bt are independently corrupted with additive noise perturbations,
each distributed as N(0, 1), resulting in the observed signal consisting of Ao and bo. We
relate the signal to some unobserved parameters by the constraint Atx = bt. Thus, the
parameters θ to be estimated are At, x, and bt. The constrained MLE equation is

θml = arg max
At,x,bt,λ

lnL(θ; Ao,bo) + λT (Atx− bt) . (4.10)
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We make the definitions
Âo

4
= [Ao | − bo],

Ât
4= [At | − bt],

x̂
4= [xT | 1]T ,

(4.11)

so that
Âtx̂ = 0 (4.12)

is obtained. By the Gaussian assumption, (4.10) is equivalent to

θml = arg min
At,x,bt,λ

J = ‖Âo − Ât‖2F + λT Âtx̂. (4.13)

Taking the derivative and setting equal to zero gives

∂J

∂Ât

= 0 = −2
(
Âo − Âml

)
+ λx̂Tml, (4.14)

which clearly indicates that Âo − Âml must be rank-1. We can find Âml easily by taking
the SVD of Âo and setting the minimal singular value equal to zero. This minimizes
‖Âo − Âml‖2F . The matrix Âml has a null space, and the estimate x̂ml is the vector in this
null space (defined up to a scale factor), so that the constraint Âtx̂ = 0 is satisfied. We
then rescale x̂ml so that its last component is equal to one, and recover Aml, bml, and xml
from (4.11). Thus, TLS may be regarded as a constrained MLE problem.

The remainder of this chapter is organized as follows. Because orientation problems do
not exactly fall into the “observation = signal + noise” category, more powerful techniques
are required for high accuracy. Section 4.2 addresses this issue with a new approach: the
Constrained Maximum Likelihood (CML) solution. The development of this CML approach
was partly driven by the need to address several deficiencies present in current approaches.

In Section 4.3 we apply the CML technique to the estimation of motion parameters for
a planar scene. This technique is compared with current techniques, and a also a simpler
heuristic bias correction approach. An FPGA implementation is then presented; we make
extensive use of the approaches derived in Chapter 3 in performing this design.

4.2 Constrained Maximum Likelihood Solutions

Given the desirability of correctly enforcing all constraints in an estimation problem, it seems
surprising that many practitioners do not do this. This can be understood in cases where
the computational complexity of an exact solution is too high. In other cases, however, it
appears that researchers resort to ad hoc procedures that have no optimality properties.
The purpose of this section is to address this problem by developing a general purpose
constrained maximum likelihood solution to a set of linear equations.

4.2.1 Introduction

TLS is used to solve a set of inconsistent linear equations, Ax ≈ y, when there are errors
not only in the observations y, but in the modeling matrix A as well. TLS seeks the least-
squares perturbation of both y and A that leads to a consistent set of equations. When
y and A have a defined structure, we desire the perturbations to also have this structure.
Unfortunately, standard TLS does not generally preserve perturbation structure, so other
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methods are required. This problem is of particular importance in solving for camera
orientation.

In this section, we examine this problem using a new probabilistic framework. We de-
rive an approach to determine the most probable set of perturbations, given an a priori
perturbation probability density function. While this approach is applicable to both Gaus-
sian and non-Gaussian distributions, we will specialize to the uncorrelated Gaussian case; a
more detailed treatment, along with a comparison to existing methods, is given by Fiore and
Verghese in [63]. (In [63] is given example applications in system identification, frequency
estimation, Bayesian estimation, and the specialization to standard TLS.)

Solving a set of inconsistent linear equations Ax ≈ y is a ubiquitous problem in signal
processing, computer vision, and control systems applications. For example, linear predic-
tion seeks to model the next value of a sequence as a fixed linear combination of several
past values of the sequence [187]. Linear prediction and more general estimation problems
lead to a set of inconsistent linear equations.

When the inconsistency is due to y being a noise-corrupted version of a consistent right-
hand side to the set of equations, an optimal solution is frequently determined by ordinary
least squares (OLS). In this approach, the solution x that minimizes the (squared) 2-norm
of the residual between Ax and y is sought. This solution is xols = A+y, where A+ is the
pseudoinverse of A [68]; the corresponding estimate of the noise corrupting the right-hand
side is ∆y = Axols − y.

Often, however, one would like to consider perturbing the modeling matrix A in addition
to y. This situation may arise when the model is uncertain, or was formed from noisy data,
or was deliberately approximated, a case that arises during the iterative linearization of a
nonlinear least squares fitting problem. The solution that minimizes the total sum of the
squares of the perturbations in A and y is termed the total least squares (TLS) solution
[68], [192]. This can be found simply via the singular value decomposition (SVD) algorithm
[68].

TLS thus considers perturbing the modeling matrix A in addition to y by seeking ∆A

and ∆y such that
(A + ∆A)x = y + ∆y. (4.15)

Defining
Â = [A | − y],
∆̂ = [∆A | −∆y],

(4.16)

and

x̂ =

[
x
1

]
, (4.17)

(4.15) becomes
(Â + ∆̂)x̂ = 0. (4.18)

The total perturbation to be minimized is ‖∆̂‖2F , where ‖ · ‖F is the Frobenius norm. The
solution to (4.18) is (see [68]) to set x̂ equal to the right singular vector of Â associated
with the minimum singular value of Â. The optimal x is then obtained by scaling x̂ and
using (4.17). In practice, to obtain this one singular vector, one may perform a complete
SVD or perform a Rayleigh quotient iteration [68].

Frequently, the improvement given by the TLS solution over the OLS solution is minimal
and perhaps not worth the added computational effort. This is largely because the TLS
approach destroys any structure that may be inherent in the problem. For example, if A has
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Toeplitz structure, we may desire the perturbations to also have Toeplitz structure, to reflect
an assumption of Toeplitz structure on the underlying matrix A+∆A. Unfortunately, TLS
does not enforce this desire. Indeed, this is the chief complaint about the “linear methods”
for relative orientation [30], [44], [78], [117], [146].

This limitation has led numerical analysts to investigate structured TLS (STLS) algo-
rithms. Abatzoglou and Mendel [1] proposed the constrained total least squares (CTLS)
method, in which elements of the perturbation matrix are represented as linear combina-
tions of a smaller perturbation vector. De Moor [42] proposed an STLS method in which
an affine structure is imposed on the final perturbed matrices. He solves this problem via
iterative application of the generalized SVD algorithm. Lemmerling, De Moor, and Van
Huffel [113] showed that these two methods were essentially equivalent. Van Huffel et al.
[191] describe the structured total least norms (STLN) algorithm, which was derived from
earlier work by Rosen et al. [157]. The STLN approach minimizes an induced p-norm of
the perturbations.

The method derived in Section 4.2.2 is related to the methods of [1] and [191]. We
propose a framework that incorporates perturbation models more directly than existing
methods, which will provide insight into the nature of the STLS problem.

The remainder of this section is organized as follows. In Section 4.2.2, we develop the
probabilistic approach. We derive the Gaussian specialization in Section 4.2.4. Finally,
Section 4.2.5 provides a summary and conclusions.

4.2.2 Derivation of New Method

All of the existing methods seek to minimize a norm of the perturbation vector. In the
absence of better criteria, this is of course a reasonable approach. However, in signal
processing applications, we often have better metrics available to us. Specifically, we may
know the prior statistics of the noise that contaminates the data measurements, or perhaps
the prior statistics of the parameters to be estimated. Utilizing this prior information will
lead to improved performance.

It is not obvious how one would express prior information in the CTLS or STLN ap-
proaches, although one can interpret CTLS as assuming that the noise is zero-mean AWGN.
The solution given here starts directly from the given prior density function of the noise
perturbations, thus more directly incorporating prior information into the model. Note
that we can construct a prior PDF to simulate any induced p-norm metric of the STLN
approach, so the method given here encompasses all STLN formulations.

We assume that x is an unknown, nonrandom parameter vector. We will derive the
general formula for the estimator, which will be applicable for many model and data per-
turbation densities. We will then specialize to the Gaussian case, so that comparisons to
the previous approaches can easily be made.

As do [1], [2], [42], [157], and [191], we model the elements of ∆A and ∆y as known, linear
combinations of the elements of a random vector a. The linear combinations are usually
chosen so that the structure of the perturbations ∆A and ∆y mimic the structure of the data
A and y. In this situation, the structure of ∆A and ∆y in the presence of perturbations is
maintained. We note in passing that this method and those in the previously cited papers
allow for perturbation structure that is not identical to the structure in the data; in this
case, the structure in the data is not maintained.

Let the probability that a particular noise vector realization a occurs be given by the
prior joint PDF p(a). We allow quite general p(a), which represents a significant general-
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ization of the STLN and CTLS approaches. Without loss of generality, we can assume that
p(a) has its mean at the origin. If the mean were nonzero, then we could simply bias the
corresponding elements of A and y by values determined from a.

We may view the observed data A and y as noise-corrupted versions of underlying or
“true” nonrandom At and yt, where Atx = yt, A = At−∆A, and y = yt−∆y. The max-
imum likelihood estimates of the unknown, nonrandom parameters x, At, and yt are found
as the values that maximize the likelihood function f(A,y ; x,At,yt). This is precisely
equivalent to maximizing p(a) subject to (4.15) and the structural constraints. We will call
the resulting x the constrained maximum likelihood (CML) estimate, denoted by xcml. We
have added the qualifier “constrained” to signify that this is an ML estimate obtained by
considering the (nonlinear) constraints among the unknown nonrandom parameters, as well
as the (linear) structured constraints in the noise model.

Care must be used here because there is an implicit assumption that there exist a and
x such that equality (4.15) holds. Generally, if there are not enough degrees of freedom
in the perturbations, then for some data A and y a solution may not exist. One method
to guarantee a solution is to devote a new uncorrelated additive perturbation element to
each element of y, in addition to any structured perturbations already contained in y. Of
course, the values that these additional perturbations assume at the solution may be quite
large, if the data does not fit the assumed structure model.

The approach developed below can be viewed as an iterative hill-climbing scheme, il-
lustrated in Figure 4-1. We shall show that the current estimate for x constrains the
perturbations a to lie on a hyperplane in the space defined by the elements of a. At each
iteration, the a that maximizes p(a) on the current hyperplane is found; using this value of
a, the next estimate for x is found. This defines a new hyperplane, for which the process is
repeated. The iterations terminate when there is no change in the hyperplane. The uncon-
strained maximum of p(a) will generally not be on this terminal constraint hyperplane. In
the specialized Gaussian case, we will show that the optimal constrained a can in fact be
derived from x in closed-form, thus simplifying the calculations.

To develop the method, the key transformation (similar to one performed in [1], [2], and
[191]) is to represent the vector ∆̂x̂ in (4.18) in terms of a. This is accomplished by defining
a matrix X such that

Xa = ∆̂x̂. (4.19)

The matrix X consists of the elements of x, suitably repeated. Thus, X captures the
structure of the perturbations in ∆̂.

Note that we can have arbitrary linear combinations of the perturbation elements for
each entry of ∆̂. For example, we could have

∆̂x̂ =

 2a1 + a2 a3

−a3 + a2 a1

a1 2a2 + a3

[ x1

1

]

=

 2x1 x1 1
1 x1 −x1

x1 2 1


 a1

a2

a3

 = Xa.

(4.20)

The general rule for constructing X is: if bk is the coefficient of ak in the (i, j)th element
of ∆̂, then bk is also the coefficient of xj in the (i, k)th element of X. This rule originated
in [157] and [191]. It is unique, up to a trivial reordering of the elements of a. For small
problems, such as (4.20), it easier to do the manipulation by inspection.
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Figure 4-1: Conceptual view of the CML optimization method. Initially, a is constrained
to hyperplane H(x̂0), corresponding to the initial estimate x̂0. The optimal constrained a
and a new estimate x̂1 are found at point p. A new hyperplane H(x̂1) is derived at p, and
the constrained optimization is repeated to arrive at q.

This approach will be valid as long as X has full row rank. Otherwise, we are not
guaranteed that a solution a can be found to exactly satisfy the constraints at values of x̂
where X loses rank. This situation was considered in greater detail in [63]; for simplicity,
in this thesis we assume that X has full row rank.

We now state and prove the main result of this section.
Proposition: The constrained maximum likelihood estimate xcml is given by

xcml = arg max
x

(
max

b
p(−X+Âx̂ + Bxb)

)
, (4.21)

where X is the matrix constructed from x as in (4.19), and Bx is a basis of the null space
of X.

Proof. Multiplying out (4.18) and substituting in (4.19) gives

Xa = −Âx̂. (4.22)

This is the equation that constrains a to a hyperplane specified by x. Since we have assumed
that there is at least one a that satisfies (4.22), the most general solution is

a = −X+Âx̂ + Bxb, (4.23)

where Bx is a basis for the null space of X, b is an arbitrary vector, and X has full row rank.
The basis Bx will in general depend on the particular value of x, because X depends on
x. With the Bx corresponding to the particular guess x, we can implement the likelihood
maximization in the form shown in (4.21) by substituting (4.23) into the likelihood function
p(a) and maximizing over x and b. Thus, through our choice of x and a, we have effectively
picked the optimal x, At, and yt estimates according to the CML criteria (which completes
the proof).
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If the structure of X is simple enough, Bx can be expressed symbolically as a function
of x. If, due to the complexity of X, it is not desirable or feasible to calculate Bx symboli-
cally, we must resort to a numerical scheme, where we have a current guess x, and then find
the basis Bx numerically. Given the availability of general-purpose multivariable optimiza-
tion software (i.e. MATLAB’s “fmins” function, which implements a Nelder-Mead simplex
search method [151]), there is no notional difference between the cases where Bx is deter-
mined symbolically or numerically (although the former case may be less computationally
demanding).

4.2.3 Gradient Method

If we desire a better optimization technique (than, say, the Nelder-Mead method), we must
provide gradient information. Assume that p(a) is differentiable and that for a given guess
x we have determined the optimal a by varying b in (4.21). To further increase p(a), we
must vary our guess x so that the change in a is as aligned as possible with dp(a)/da.
Straightforward calculus allows us to determine the change in x that will achieve this.

For a particular guess x, we start with (4.22), where we assume that at least one a exists
that exactly solves this equation. Taking differentials,

X da + dX a = −Â dx̂
X da +

(∑N
i=1

∂X
∂xi

dxi
)

a = −A dx

X da +
[
∂X
∂x1

a | . . . | ∂X
∂xN

a
]
dx = −A dx,

(4.24)

or finally

[X |M]

[
da
dx

]
= 0 (4.25)

with
M = A +

[
∂X
∂x1

a | . . . | ∂X
∂xN

a
]
. (4.26)

By (4.25), the vector of differentials [daT dxT ]T must be confined to the null space of
[X | M]. Let the matrix B represent a basis for this null space, and let v be an arbitrary
vector. Conformally partitioning B into upper part B1 and lower part B2, we have[

da
dx

]
= Bv =

[
B1

B2

]
v. (4.27)

To move uphill, we would choose da = s dp(a)/da if possible, where s is a positive step size.
However, due to the constraint (4.27), it may not be possible to go exactly uphill. For a
small enough step size, the best approach is to move in a direction as close as possible to the
dp(a)/da direction. The step direction that achieves this is found by projecting dp(a)/da
onto the subspace in which da lies. We thus have

v = sB+
1

dp(a)
da

, (4.28)

which, combined with (4.27), gives

dx = sB2B+
1

dp(a)
da

. (4.29)
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In a competent implementation, the step size s must of course be adaptively updated during
the algorithm by taking trial steps, or perhaps by implementing the well-known Armijo rule
[20].

In summary, a local maximum of the constrained maximum likelihood problem (4.21)
is found by the iteration:

Gradient Iteration

• Given a current estimate x, find the optimal a in the hyperplane by maximizing p(a)
over b using (4.23).

• Evaluate M using (4.26), calculate the null space basis B, and evaluate dp(a)
da .

• Set x = x + dx, where dx is obtained from (4.29), and repeat until convergence.

For notational simplicity, we do not distinguish between infinitesimal and incremental per-
turbations.

We note that in this method the b are the only independent variables in the iteration,
whereas in the STLN approach, the variables a and x are treated as independent. If a is
large, the latter approach results in a considerably larger search space than in the method
given here.

To assess the computational cost of each iteration, let the sizes of the various vectors
and matrices be as follows: A and ∆A are M ×N , x is N ×1, a is Q×1, X is M ×Q, Bx is
Q×(Q−M), and b is (Q−M)×1. The sizes of Bx and b assume that X has full row rank,
and that Q ≥M ≥ N . The maximization over b in the first step of the iteration requires a
(Q−M)-dimensional search. We assume that a and dp(a)/da are calculated as byproducts
of this optimization. The number of operations to form M is O(MNQ), while calculation
of B and B+

1 require O((Q + N)2(Q + N −M)), dx requires O((Q + N −M)(Q + N)),
and Bx requires O(Q2(Q −M)) operations. At worst, when Q = M = N , this is O(Q3)
operations plus a (Q−M)-dimensional search per iteration.

4.2.4 Specialization to the Gaussian and Similar PDFs

If p(a) is purely a nonincreasing function of the scalar J = aTR−1a for some positive definite
symmetric matrix R, as in the zero-mean Gaussian case, then we can considerably simplify
(4.21). For the remainder of this section we will assume the PDF is zero-mean Gaussian.
However, all comments in this section do in fact apply to the more general class of PDFs.

Minimizing the quadratic form aTR−1a subject to the linear constraints (4.22) gives
the standard result

a = −RXT (XRXT )−1Âx̂. (4.30)

The minimum J is therefore

J = x̂T ÂT (XRXT )−1Âx̂, (4.31)

which is the function of x̂ that has to be minimized for the Gaussian case. We note that this
objective function (4.31) is effectively the one obtained in [1], [2]. In fact, this derivation
shows that Abatzoglou and Mendel’s approach can be interpreted as solving for the optimal
parameters x while assuming a Gaussian prior density for the perturbations a. Therefore,
for the Gaussian case, we have eliminated all “nuisance” parameters (a and b) from the
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estimation problem. This should be contrasted to the STLN approach, where the nuisance
parameters a must be updated at every iteration step along with the solution vector x.

Examining (4.31), we see that J is entirely a function of x. We can consider forming
the gradient vector dJ/dx, and performing a steepest descent minimization. We show in
[63] that the elements of the gradient vector are given by

∂J
∂xi

=
(
2ÂT

i − x̂T ÂT (XRXT )−1

· ( ∂X
∂xi

RXT + XR∂XT

∂xi
)
)

(XRXT )−1Âx̂,
(4.32)

where Âi is the ith column of Â. To evaluate the gradient, all that is needed are the
∂X/∂xi, and these are derived easily from X.

4.2.5 Summary and Conclusions

This section was concerned with the problem of obtaining maximum likelihood solutions
to inconsistent linear equations, subject to a given structure of the required perturbations,
and a prior perturbation PDF. By formulating the optimality criterion in a probabilistic
framework, we were able to propose simple cost metrics which could then be optimized by
general purpose optimization routines.

We gave several formulas for use by general purpose optimization routines, including
gradient formulas for the case of differentiable PDFs. If the PDF is not differentiable at all
points, optimization can still be performed by also considering the behavior at corners of
the PDF.

We also showed here and in [63] that the existing TLS and CTLS methods were special
cases of the CML approach; for CTLS, the derivation appears simpler than in [1], [2].
Furthermore, with the CML approach, it is apparent what happens when no feasible solution
exists or if there are infeasible manifolds.

In the next section, we apply the CML technique to the problem of estimating the
motion of a planar scene using brightness gradients.

4.3 CML Estimate of Motion Parameters for Planar Scene

4.3.1 CML Approach

Recall from Section 2.3.3 that for gradient-based relative orientation for a planar scene, the
brightness change constraint equation (BCCE) (2.30) led to the equation

c+ v · ω + (r · n)(s · t) = 0. (4.33)

for every pixel in the image. In (4.33), c is the brightess time gradient, ω is the instantaneous
rotation, t is the translation, n is the planar normal vector, and r, s, and v functions of
the pixel coordinates. Negahdaripour and Horn [136] find a least-squares estimate of ω, n,
and t by minimizing

arg min
ω,t,n

J =
∫ ∫

(c+ v ·ω + (r · n)(s · t))2 dx dy. (4.34)

By considering all the image points, robustness against noise is obtained. However, (4.34)
is not a maximum likelihood estimator, so the quality of the estimates obtained via (4.34) is
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called into question. In what follows, we will derive the exact MLE for the motion parame-
ters, and compare to an efficient approximate method suitable for FPGA implementation.

It will prove advantageous to work with an alternate form of (4.33); this is given by

ct + rTPtst = 0, (4.35)

where

Pt =

 p1 p2 p3

p4 p5 p6

p7 p8 p9

 , (4.36)

and where the t subscript indicates the “true” parameters. In this equation, ct is the true
time-gradient of brightness Et,t, Pt is the true essential matrix, r = [x, y, 1]T, and

st =

 −Et,x
−Et,y

xEt,x + yEt,y

 . (4.37)

(The notation Et,t, Et,x, and Et,y stands for the true first partial derivatives of the brightness
E, not the second partial derivatives.) Also note that in Section 2.3.3, the essential matrix
was denoted by “E.” We have relabeled it to “P” here in this section to avoid confusion.

Negahdaripour and Horn showed how to recover ω, t, and n uniquely from Pt; thus if
we find a maximum likelihood estimator of Pt, we may use the MLE invariance property
to claim that we have an MLE for ω, t, and n.

Rearrange (4.35) into the form
aTt p = −ct, (4.38)

where,
p = [p1 p2 p3 p4 p5 p6 p7 p8]T , (4.39)

at =



−xEt,x
−xEt,y

x2Et,x + xyEt,y
−yEt,x
−yEt,y

xyEt,x + y2Et,y
−Et,x
−Et,y


. (4.40)

Note that we have used (4.37) and have set p9 = 0.
For each pixel, we observe noisy versions of Et,t, Et,x, and Et,y, denoted by Eo,t, Eo,x,

and Eo,y, and desire the maximum likelihood estimates pml. (We could also obtain Eml,t,
Eml,x, and Eml,y if desired.) Assume the noisy observations are obtained from the true
values by

Eo,x = Et,x −∆Ex
Eo,y = Et,y −∆Ey
Eo,t = Et,t −∆Et,

(4.41)

where, for simplicity, we assume that ∆Ex, ∆Ey, and ∆Et are all distributed as N(0, σ2).
For each pixel, take all the vectors aTt obtained from (4.40) and all the scalars ct and stack
them vertically, obtaining

Atpt = −ct, (4.42)
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with

At =

 aTt1
...

aTtn

 , ct =

 ct1
...
ctn

 . (4.43)

We perform similar operations on the observed data:

Ao =

 aTo1
...

aTon

 , co =

 co1
...
con

 , (4.44)

with

ao =



−xEo,x
−xEo,y

x2Eo,x + xyEo,y
−yEo,x
−yEo,y

xyEo,x + y2Eo,y
−Eo,x
−Eo,y


. (4.45)

From (4.41), we have
Ao = At −∆A
co = ct −∆c.

(4.46)

Making the definitions,
Ât

4= [At | ct],
Âo

4= [Ao | co],
∆̂

4
= [∆A | ∆c],

p̂T
4
= [pT | 1]T ,

(4.47)

we have finally (
Âo + ∆̂

)
p̂ = 0. (4.48)

If ∆A were not structured, we could simply use TLS to solve for the optimal p. Since it is
structured, we must use a CML formulation, as detailed in Section 4.2. To use CML, we
make the rearrangement

∆̂p̂ = Xα, (4.49)

where

α =



∆Ex1

∆Ey1

∆Et1
...

∆Exn
∆Eyn
∆Etn


, (4.50)

and

X =

 bT1
. . .

bTn

 (4.51)
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with

bi =

 −xp1 + x2p3 − yp4 + xyp6 − p7

−xp2 + xyp3 − yp5 + y2p6 − p8

1

 . (4.52)

That is, X is block diagonal, with each block bi depending only on pixel i’s coordinates
and the (global) value of p.

The CML estimate of p is found via

p̂cml = arg min
p

p̂T ÂT
o

(
XXT

)−1
Âop̂. (4.53)

Using (4.44) and (4.51), we simplify (4.53) as

p̂cml = arg min
p

p̂T
(

n∑
i=1

âoiâToi
‖bi‖2

)
p̂, (4.54)

which may also be expressed as

p̂cml = arg min
p

n∑
i=1

‖âToip̂‖2

‖B̃ip̂T ‖2
(4.55)

with

âo =



−xEo,x
−xEo,y

x2Eo,x + xyEo,y
−yEo,x
−yEo,y

xyEo,x + y2Eo,y
−Eo,x
−Eo,y
Eo,t


, (4.56)

and

B̃i =

 −x 0 x2 −y 0 xy −1 0 0
0 −x xy 0 −y y2 0 −1 0
0 0 0 0 0 0 0 0 1

 . (4.57)

Numerical procedures similar to the ones developed in Section 4.2 can now be applied to
calculated the estimate p̂cml.

4.3.2 Bias Removal Approach

We saw in the previous section the CML approach for obtaining the motion parameters
of a planar scene. While the solution obtained this way can be considered optimal, one
must resort to iterative techniques for the solution. At the other extreme of course are the
“linear” techniques, which are computationally efficient because they ignore inconvenient
nonlinear constraints.

It would appear that most researchers tend to fall into one of these two camps. However,
through the use of straightforward estimation concepts, we can explore an intermediate
approach.
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Recall that in Section 2.3.3, we showed how to solve for the motion parameters given
the matrix A and the vector c. These quantities are derived from the r, s, and c quantities
from at least eight pixels (usually much more), to form the overdetermined set of linear
equations (4.42). This equation is solved in the least squares sense, yielding estimates of
the {e′i}. These values were then used to construct the essential matrix, from which the
motion parameters could be derived in a closed-form, using the approach given in [136].

Thus, the approach taken in [136] and given in Section 2.3.3 is to solve for the {e′i} via
e′ = −A+c. Unfortunately, in this situation, the pseudoinverse solution is not the optimal
choice because the perturbations are not restricted to the right hand side vector of (4.42).
That is, the elements of A have significant errors in them because they were formed from
image brightness data. Actually, the elements of A are derived from the spatial gradients of
the image, which are usually more noisy than the image brightness data. A TLS approach,
which allows changes in the elements of A is also generally not appropriate, because TLS
ignores the perturbation structure constraints.

Instead of exactly modeling the errors in the data, as was done for the CML approach,
let us instead form A using the linear method, and then try to “repair” it, in a statistical
sense. To do this, we derive the expected error of the elements of the normal equation
matrix, and then merely subtract this bias off. This approach has been used before for
orientation problems by Kanatani and his cohorts [101], [139].

Let us consider the effect of gradient errors on the estimates of the motion parameters.
The matrix ATA which appears in the pseudoinverse solution is composed of a sum of outer
products

AtA =
N∑
i

aaT , (4.58)

where the summation is taken over N independent pixels. Since we set p′9 = 0, we can
redefine a as

a = (r⊗ s)T = [r1s1 r1s2 r1s3 r2s1 r2s2 r2s3 r3s1 r3s2]T , (4.59)

where we recall that r = [x y 1]T and s is given in (2.33).
Assume that the spatial gradients Ex and Ey are perturbed by additive white Gaussian

noise, wx and wy, respectively. We assume for simplicity that wx and wy are uncorrelated
with zero mean and known variance σ2. Because of the noise, we work with

s̃ = s + ∆s = s +

 −wx
−wy

xwx + ywy

 . (4.60)

The noise perturbs a, so we are forced to work with

ã = a + ∆a, (4.61)
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where ∆a is defined as

∆a = r⊗∆s =



r1∆s1

r1∆s2

r1∆s3

r2∆s1

r2∆s2

r2∆s3

r3∆s1

r3∆s2


=



−xwx
−xwy

x2wx + xywy
−ywx
−ywy

xywx + y2wy
−wx
−wy

xwx + ywy


. (4.62)

We wish to form aaT but instead we must form

ããT = (a + ∆a)(a + ∆a)T = aaT + a∆aT + ∆aaT + ∆a∆aT (4.63)

When we sum the outer products ããT over many pixels to form an estimate ÃT Ã of ATA
in (4.58), we get an averaging effect, so we can use expected values. Taking the expectation
with respect to wx and wy of both sides of (4.63) gives

E
{
ããT

}
= aaT + aE

{
∆aT

}
+E {∆a}aT +E

{
∆a∆aT

}
, (4.64)

where E{·} denotes the expectation or ensemble average. Since E{∆a} = 0, we have

E
{
ããT

}
= aaT +E

{
∆a∆aT

}
. (4.65)

Thus, on average, our estimate of aaT is biased by the covariance matrix of ∆a. Define this
covariance matrix as

∆
4= E

{
∆a∆aT

}
. (4.66)

We can determine the expected values of the entries of ∆ with the simplifying assumption
that the x and y coordinates of the pixels are symmetric about the origin of the image
plane. In this case,

N∑
i

xk =
N∑
i

yk = 0, (4.67)

for odd k. Since we assumed that wx and wy were zero mean Gaussian random variables,
we have also

E

{
N∑
i

wkx

}
= E

{
N∑
i

wky

}
= 0. (4.68)

for odd k. The elements of the matrix ∆ are composed of sums of terms of the form

xk1yk2wk3
x w

k4
y , (4.69)

and thus on average, only those elements of ∆ with even exponents k1, k2, k3, and k4 are
nonzero. Making the definitions

α =
N∑
i

x2 =
N∑
i

y2 (4.70)
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and

β =
N∑
i

x4 +
N∑
i

x2y2 =
N∑
i

y4 +
N∑
i

x2y2, (4.71)

we can determine the expected value of the elements of ∆. For example,

E {∆11} = ασ2. (4.72)

Similarly,
E {∆22} = E {∆44} = E {∆55} = ασ2, (4.73)

E {∆33} = E {∆66} = βσ2, (4.74)

E {∆77} = E {∆88} = Nσ2, (4.75)

E {∆37} = E {∆73} = E {∆68} = E {∆86} = −ασ2. (4.76)

All other E {∆ij} = 0. We thus have obtained the average bias in the formation of ATA.
A similar analysis of the expected bias can be performed on ATc, the right hand side vector
formed during the pseudoinverse solution. If we assume that the error in the time derivatives
c are uncorrelated with the errors in the spatial derivatives, then it can be shown that the
expected bias in ATc is zero.

A straightforward procedure thus presents itself for removing the bias in solving the
normal equations. With a known noise variance σ2, we simply subtract off the average
∆ determined from (4.72) through (4.76) from the matrix ÃT Ã formed from the gradient
data. We then solve for the motion parameters from

e′ = −
(
ÃT Ã−∆

)−1
ÃTc. (4.77)

We note that any performance improvement over the conventional linear approach is avail-
able at the additional cost of only twelve subtractions, which is negligible when compared to
the formation of the matrix ÃT Ã and the solving of the ensuing eigenvalue/vector problem.

4.3.3 Experimental Comparison

In this section, using a series of Monte Carlo runs, we compare the performance of the
various methods for planar scene motion recovery. The four methods were the OLS linear
method of Section 2.3.3, the CML method of Section 4.2, the bias removal (OLSB) method
of Section 4.3.2, and the simple TLS method mentioned in Section 4.3.2.

For each run, a synthetic scene consisting of Gaussian shaped blobs was generated. The
scene was transformed via the perspective equation to generate the image plane data. Ana-
lytic spatial and time derivatives were also calculated, based on the true motion parameters.
Noise was then added to the true gradients. The motion parameter estimates were then
solved for using the various approaches

This procedure was repeated for 10 different noise realizations at each signal-to-noise
ratio (SNR). To measure the performance of each approach, we were interested in the
angular errors of our estimates of ω, n̂, and t̂, as well as the relative error in the estimates
of the magnitudes |ω| and |n||t|. A very wide field of view (80 degrees) was assumed.
Figures 4-2 - 4-9 show sample images and derivatives, as well as the various motion fields
and processing results for different motions. We note from these figures that generally, the
maximum likelihood and bias removal methods attain about the same level of performance,
and that both perform better than the OLS and TLS methods.
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Figure 4-2: Contour plot of planar scene, spatial and time derivatives, and motion field for
first test image. Scene plane is parallel to image plane. ω = [0 0 0.1]T, t = [0 0 − 2]T, and
n = [0 0 − 0.1]T .
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Figure 4-3: Comparison of angle and magnitude errors for motion field of Figure 4-2.
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Figure 4-4: Motion field for ω = [0 0 0]T, t = [0 0 2]T, and n = [0 0 − 0.1]T .

5 10 15 20 25
0

10

20

30

40

t a
ng

 e
rr

OLS

5 10 15 20 25
0

10

20

30

40
TLS

5 10 15 20 25
0

10

20

30

40
MLE

5 10 15 20 25
0

10

20

30

40
OLSB

5 10 15 20 25
0

10

20

30

40

n 
an

g 
er

r

5 10 15 20 25
0

10

20

30

40

5 10 15 20 25
0

10

20

30

40

5 10 15 20 25
0

10

20

30

40

5 10 15 20 25
0

0.1

0.2

0.3

0.4

|n
||t

| r
el

 e
rr

SNR (dB)
5 10 15 20 25

0

0.1

0.2

0.3

0.4

SNR (dB)
5 10 15 20 25

0

0.1

0.2

0.3

0.4

SNR (dB)
5 10 15 20 25

0

0.1

0.2

0.3

0.4

SNR (dB)

Figure 4-5: Comparison of angle and magnitude errors for motion field of Figure 4-4.
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Figure 4-6: Motion field for ω = [0 0 0]T, t = [1 1 0]T, and n = [0 0 − 0.1]T .
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Figure 4-7: Comparison of angle and magnitude errors for motion field of Figure 4-6.
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Figure 4-8: Motion field for ω = [1 0 0.1]T, t = [0 0 1]T, and n = [0.0079 0 − 0.1]T .
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Figure 4-9: Comparison of angle and magnitude errors for motion field of Figure 4-8.
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4.3.4 FPGA Implementation

In Section 4.3.3, we saw how the bias removal approach rivaled the CML approach in
terms of accuracy of motion recovery parameters. Since this method is also reasonably
computationally efficient, we examine an implementation of it in FPGA technology.

When we form the normal equations, we must calculate the summation

ATA =
∑

aaT , (4.78)

where the summation is over all the image pixels. Recall that for each pixel,

a =



−xEx
−xEy

x2Ex + xyEy
−yEx
−yEy

xyEx + y2Ey
−Ex
−Ey


, (4.79)

where x and y are the image plane coordinates of the pixel. In order to visit and process
each pixel only once, we form the outer product aaT for each pixel, and maintain a running
accumulation. Since aaT is symmetric, there are 1 + 2 + · · ·+ 8 = 36 unique accumulations
that must be formed.

In a DSP microprocessor implementation (where multiplies cost the same as additions),
we would first form a, requiring at best 8 clock cycles. Thus, at best 8 + 36 = 44 clocks per
pixel are needed by a DSP microprocessor to form ATA. This is a rather high computational
load, which limits the achievable frame rate for large images. Table 4.1 shows the maximum
achievable frame rate as a function of image size for a DSP microprocessor with a 50MHz
clock rate. Also shown in the table is the frame rate for an FPGA implementation which we
describe below. Clearly, for larger image sizes, the FPGA approach can support real-time
operation, whereas the DSP approach cannot.

Table 4.1: Frame rate in frames/sec. as a function of image size for DSP microprocessor
and FPGA implementation.

Image Size Number of Ops. Per Frame Frame Rate (DSP) Frame Rate (FPGA)
128× 128 721 × 103 69.4 3051.8
256× 256 2.9× 106 17.3 762.9
512× 512 11.5 × 106 4.3 190.7

1024 × 1024 46.1 × 106 1.1 47.7

An FPGA implementation has the potential to greatly speed up the calculations. Indeed,
if we could fit 44 multiply/accumulations onto an FPGA, then we could process each pixel
in a single clock cycle, for a factor of 44 speedup. While FPGA densities are currently
increasing, this brute force approach is still beyond the capabilities of a single device.
We could potentially perform some sharing of intermediate products, but this will not be
sufficient.
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Summation-By-Parts

What is needed then is a clever method to reduce the computational cost. Fortunately,
there is some structure, not within a pixel’s computations, but across pixel computations,
that we can use to our advantage.

Assume that we are processing the pixels in raster order. Along a scan line, pixels have
a constant y coordinate, and the x coordinates increment from one pixel to the next. We
therefore have to accumulate products of powers of the x coordinate and functions of the
image gradients. There is actually a technique, known as “summation-by-parts” (SBP) [23],
[60], which may used in this situation. SBP is a discrete-time version of the continuous-time
calculus operation “integration by parts.”

Assume we must calculate the summation

S =
N∑
k=1

fkxk, (4.80)

where fk are known, fixed coefficients, and xk is data (not x coordinates). Generally, SBP is
useful when fk is a polynomial in k (or can be well approximated by a low order polynomial
in k). Recall from integration by parts, that if we are integrating a product of functions,
then we can get the same result by differentiating one of the functions, and integrating the
other function. There is another term as well, which will correspond to some end effects in
the SBP formula.

Guided by the integration by parts methods, in order to reduce the degree of the poly-
nomial fk, we integrate xk. In other words, we desire to evaluate the sum according to the
following decomposition:∑N

k=1 fkxk = gN · (xN )
+gN−1 · (xN + xN−1)
+gN−2 · (xN + xN−1 + xN−2)

...
+g1 · (xN + xN−1 + xN−2 + . . .+ x1).

(4.81)

The terms in the parenthesis are simply a running accumulation of the data xk, from high
indices to low indices. We find the values of the g’s in terms of the f ’s by equating coefficients
of the unknowns xk and solving the set of linear equations: fN

...
f1

 =

 1 · · · 1
. . .

...
1


 gN

...
g1

 . (4.82)

Inverting the matrix gives,

 gN
...
g1

 =


1 −1

. . . . . .
...

1 −1
1


 fN

...
f1

 . (4.83)

Or, in other words,

gk =

{
fk − fk−1 k 6= 1,

fk k = 1.
(4.84)
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With exception of the endpoint, the sequence gk is thus the difference of the fk’s. For
fk a polynomial of degree d, gk will be a polynomial of degree d − 1. By iterating this
procedure, we can reduce the degree of the polynomial to 0. In this case, the coefficients
are constant, and thus may be calculated by a single multiplication, rather than N different
multiplications.

Consider, for example, fk = k. From (4.84), gk = 1, for all k. Figure 4-10 shows the
structure for fk = k. The data is input in the reverse order xN , xN−1, . . . , x1. The first
accumulator produces the running accumulation xN + xN−1 + . . .+ xN−l+1 at time l. This
sequence goes into the second accumulator, which produces the required value

∑
k kxk at

time N . The commutator samples the second accumulator output at time N to produce
the desired output. Notice from the figure that no multiplications are required, only two
additions per input sample.

POLYACC Structure

To calculate aaT in (4.78), we shall need to evaluate sums of products of several different
polynomials with the image gradient data. By iterating the SBP procedure, we generate
polynomials of all degrees from d down to 0. Figure 4-11 shows a structure that takes
advantage of this observation. In the figure, all commutators are sampled at time N .
The network of scalings and adders after the commutators are required to cancel the end
effects that arise due to the compound formula in (4.84). Since the constants are simple
combinations of powers of two, we count them as additions, rather than multiplications.
We note that similar structures are known in the literature, although derived differently
from here; see Wong and Siu [206] and the references therein.

For an M ×M image, we have as coordinate values ±fk = k − 1
2 , for k = 1, . . . ,M/2,

in one dimension. If we treat the positive and negative coordinates separately, then the
structure in Figure 4-12 evaluates the required sums of products along a scanline. At the
pixel data rate, only 5 additions per pixel are required by this structure. This should be
contrasted with the four multiplications per pixel that would be required if the multiplica-
tions were actually performed (and the various powers of k− 1/2 were precalculated). One
should also observe that there is a wordlength growth associated with the accumulators.
Custom wordlength sizes are not a problem for FPGA implementations, but are highly
problematic for DSP microprocessors. Thus, the structure in Figure 4-12, which we term a
“polynomial accumulator” (POLYACC), is favored for FPGA implementation, but not for
DSP microprocessor implementation.

For sums of products of two-dimensional functions, we can make use of the POLYACC
structure if the coefficient polynomials of x and y are separable. That is, the required
summation is

S =
∑N
k=1

∑N
l=1 fkglxk,l

=
∑N
k=1 fk

(∑N
l=1 glxk,l

)
.

(4.85)

The second line of (4.85) shows the preferred ordering of the calculations. The summation
in the parenthesis are evaluated for every x-direction scanline using the POLYACC struc-
ture. The result is a single number for each scanline. These numbers are then fed into
another POLYACC structure (operating at a much lower data rate), corresponding to the
y-direction. In both the x and y cases, positive and negative indices are handled separately,
and the indices start at the out edge of the image and are decremented. Figure 4-13 shows
the pixel input scanning pattern required to use the nested POLYACC approach.
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Figure 4-10: Multiplierless architecture to evaluate
∑N
k=1 kxk.

With the basic POLYACC structure now understood, we return to the computation of
B = aaT . The matrix B is symmetric, so we need only to calculate the elements Bij for
j ≥ i. Using (4.79), these coefficients, as functions of the image coordinates x and y, and
the image gradients Ex and Ey, are given in (4.86) - (4.97) below:

B1,1 = x2E2
x, B1,2 = x2ExEy, B1,3 = −x3E2

x − x2yExEy, B1,4 = xyE2
x, (4.86)

B1,5 = xyExEy, B1,6 = −x2yE2
x − xy2ExEy, B1,7 = xE2

x, B1,8 = xExEy, (4.87)

B2,2 = x2E2
y , B2,3 = −x3ExEy − x2yE2

y , B2,4 = xyExEy, B2,5 = xyE2
y , (4.88)

B2,6 = −x2yExEy − xy2E2
y , B2,7 = xExEy, B2,8 = xE2

y , (4.89)

B3,3 = x4E2
x + 2x3yExEy + x2y2E2

y , B3,4 = −x2yE2
x − xy2ExEy, (4.90)

B3,5 = −x2yExEy − xy2E2
y , B3,6 = x3yE2

x + 2x2y2ExEy + xy3E2
y , (4.91)

B3,7 = −x2E2
x − xyExEy, B3,8 = −x2ExEy − xyE2

y , (4.92)

B4,4 = y2E2
x, B4,5 = y2ExEy, B4,6 = −xy2E2

x − y3ExEy, (4.93)

B4,7 = yE2
x, B4,8 = yExEy, (4.94)

B5,5 = y2E2
y , B5,6 = −xy2ExEy − y3E2

y , B5,7 = yExEy, B5,8 = yE2
y , (4.95)

B6,6 = x2y2E2
x + 2xy3ExEy + y4E2

y , B6,7 = −xyE2
x − y2ExEy, (4.96)

B6,8 = −xyExEy − y2E2
y , B7,7 = E2

x, B7,8 = ExEy, B8,8 = E2
y . (4.97)

These equations show that we need to process the functions E2
x, E2

y , and ExEy through
nested POLYACC structures. Figures 4-14 and 4-15 show an architecture for performing
this calculation. In Figure 4-14, the image gradients Ex and Ey are multiplied and squared
to form E2

x, E2
y , and ExEy. These functions are then each passed through separate x-

direction POLYACCs to form the various sums of products of powers of x and the image
gradient functions. The outputs of this first bank of three POLYACCs, can now be fed into
a second bank of y-direction POLYACCs, which operate at a much slower data rate. The
outputs of the second bank of POLYACCs are then combined as necessary in Figure 4-15
to form the elements of B. Since processing is done on image quadrants, we must perform
four passes, and simply add the correspond B from each pass.
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Figure 4-11: Multiplierless architecture to evaluate multiple sum of products of data with
weights 1, k, k2, k3, and k4.

For simplicity, we could also only implement the first bank of POLYACCs from Figure
4-14 in an FPGA. There would only be a total of 2M pieces of data for M2 pixels to post-
process in software, which is negligible in terms of the total computation time. In any case,
we predict approximately a 44× speedup over a pure DSP software implementation. Table
4.1 shows the approximate frame rate as a function of image size.
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Figure 4-14: Using polynomial accumulator structure (Figure 4-12) to calculate Normal
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Figure 4-15: Using polynomial accumulator structure (Figure 4-12) to calculate Normal
equations matrix B (Part II).
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Wordlength Analysis

We now analyze the wordlength requirements of the accumulator chain structure (Figure
4-10). Of course, the methods of Chapter 3 could be applied to the entire circuit of Figure
4-12 or Figure 4-14. However, limiting our analysis to the chain of accumulators will allow
us to derive approximate analytical expressions for the wordlengths. These will in turn
provide insight into the nature of the optimal wordlengths, and provide starting states for
the MCMC search.

Assume we have a chain of L accumulators as in Figure 4-10. Let node i denote the arc
in the flowgraph after the stage i accumulator, and node 0 denotes the input arc. We will
consider truncating at nodes i = 0, . . . , L. Note that no truncation is allowed within the
feedback portion of a stage, since the accumulator will generally become unstable. Let the
number bits after truncation at node i be given by bi.

From Section 3.3.1, we must first calculate the numerical range at each node. Assume
that the node 0 range is [−1, 1] (i.e. M0 = 1). The range at node 1 is of course [−N,N ],
and we can easily derive using combinatorial formulas ([210], page 37) that the range at
node i is represented by

Mi =

(
N − 1 + i

i

)
(4.98)

for i = 1, . . . , L. We make the approximation that M̃i = Mi (i.e. in (3.5), we assume the
range is a power of 2). The slope si of the transfer function from node i to the output is
easily found to be si = ML/Mi, i = 0, . . . , L. From the variance formula (3.7) we have that
the variance at the output of the kth stage is (after simplification)

Vk(b) =
1
12

(
N − 1 + k

k

)2 k∑
i=0

2−2bi , k = 0, . . . , L. (4.99)

Since Vk(b) is monotonically increasing as k increases, the worst case noise variance occurs
at k = L, so we concentrate just on this output.

We now calculate the cost C(b) to implement the L stages. The cost of stage i is
proportional to log2N + bi−1, because this is the width of the accumulator in full adders
(and is also the width of the storage elements). The total cost is thus proportional to

C(b) = L · log2N +
L−1∑
i=0

bi. (4.100)

With V (b) and C(b) now approximately given, we could perform the MCMC algorithm
of Section 3.3.5, but in this case this is unnecessary. Because of the symmetry in the cost
and variance formulas, we see that at the optimum all the wordlengths b0, b1, . . . , bL−1 are
equal to each other. The final wordlength bL has no cost impact, so we just set it as large
as possible. All the Pareto-optimal points are therefore given by b0 = b1 = · · · = bL−1

4
= b,

and we can plot the cost versus variance, parameterized by b, as shown in Figure 4-16.
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number of full adders and storage elements. The image size is 1024 × 1024.
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4.4 Summary

In this chapter, we were concerned with accurately solving complex motion equations. We
saw that enforcing all (nonlinear) constraints led to an accurate, albeit complicated, solution
approach. However, by selectively choosing what types of constraints to enforce, an efficient
FPGA implementation to enable real-time operation was possible. By knowing the optimal
approach that enforces all constraints, we are in a position to make a system engineering
judgement as to whether or not the approximate solution is “good enough”. Thus, in
the chapter we have given a concrete demonstration of the main theme of this thesis; by
considering both the algorithm and implementation we can achieve nearly optimal results
in an extremely efficient FPGA device.

We reviewed the maximum likelihood concept in Section 4.1, and provided motivation for
why poor estimates result when one ignores parametric constraints. The methods presented
in that section relied on removing parameters from the estimation problem. Because this is
often inconvenient or impossible, Section 4.2 developed the constrained maximum likelihood
approach. The key result was the optimization criterion given in (4.21). Also of great
interest is the Gaussian specialization given in (4.31), which is often sufficient for motion
estimation.

We then applied this idea to the direct-method estimation of motion for a planar scene in
Section 4.3; the CML cost function for this case is given by (4.54)–(4.57). While the solution
obtained this way can be considered optimal, one must resort to iterative techniques for the
solution. To speed up this iteration, could apply the techiques from Chapter 3 to design
a custom computing datapath to calculate (4.54)–(4.57) for each iteration. However, in
Section 4.3.2, we explored an alternative approach. There, we did not strictly enforced all
constraints, but rather, we enforced them in a statistical sense. Enforcing the constraints in
this manner was extremely simple (i.e. (4.77)). We also saw through extensive simulation in
Section 4.3.3 that this bias removal approach performed nearly as well as the optimal CML
approach. Moreover, the simplicity of the approach lends itself well to an efficient FPGA
implementation; in Section 4.3.4 we used the summation-by-parts technique in addition to
the techniques from Chapter 3 to perform the design optimization.

In this chapter there were several novel ideas put forth:

• the CML optimization criterion (Section 4.2),

• the application of the bias removal approach to the planar scene motion problem
(Section 4.3.2),

• the FPGA implementation of the direct method for a planar scene (Section 4.3.4).

The development of these items required use of signal processing concepts to under-
stand the effects of noise. The second item also required a substantial use of the efficient
FPGA design techniques from Chapter 3. In the next chapter, we extend the idea of more
accurately modeling the perturbations of the data to the problem of more than two data
sets.
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Chapter 5

Multiple Type and Multiple View
Orientation

5.1 Introduction and Chapter Overview

In this chapter, we explore the topic of orientation and photogrammetry using multiple
(more than two) data sets. This topic is currently receiving a great deal of interest due to
the possibility of obtaining more accurate scene reconstructions than are possible with only
two data sets. This chapter explores the unification of multiple view orientation data using
error ellipses into a common processing framework, so that a suitable custom computing
architecture can be formulated.

Researchers have sought to use multiple views to further improve the accuracy of the
estimated camera motion, and for scene reconstruction (as we saw in Section 2.4). Accurate
scene reconstruction can also be used to aid on obstacle avoidance for moving platforms,
and for recognition of known objects in the environment.

Historically, scene reconstruction was first performed by photogrammetrists, with the
emphasis placed on accuracy. A typical application was to build maps from aerial pho-
tographs. As shown in Appendix C, a Newton-Raphson iteration is the main computational
algorithm for solving this problem. Since data collection was (and still is) rather expensive,
the emphasis on highly accurate methods is understandable.

More recently, the computer vision community has taken great interest in this problem,
but from a different viewpoint. The research emphasis is now placed on fast and robust
methods, in order to construct systems that can act in real-time. In this chapter, we will
explore both of these aspects.

The remainder of this chapter is organized as follows. Section 5.2 briefly summarizes
some of the previous literature addressing the multiple view orientation problem. Section
5.3 reviews the optimal combination of noisy estimates using a statistical approach based on
error ellipses. These results are then used in Section 5.4 to cast all interesting orientation
problems into a unified framework. Conventional orientation problems such as absolute,
exterior, and relative orientation fit naturally into this framework. Error ellipses are used
in a slightly different manner in Section 5.5, where an efficient, approximate algorithm
for multiple frame orientation using pairwise orientation estimates is considered. While
not exact, the linear approach covered in this section appears to work well in practice.
In Section 5.5.8, we use the FPGA-based SVD implementation derived in Section 3.6 to
accelerate the linear epipolar algorithm. Finally, Section 5.6 summarizes the main results
and contributions of the chapter.
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5.2 Previous Work on Multiple View Orientation

The problem of obtaining orientation from multiple views has received attention in the
literature. Okutomi and Kanade [141] use a linear array of cameras with known position
and orientation to not only form a dense depth map, but also to find feature correspondences
across the images. They minimize a combined cost function, which is essentially a measure
of the similarity of a base image with the other images within small windows about the
purported associated feature points. To avoid a costly multidimensional search, the authors
parameterize the window locations by the inverse depth of the point. By scanning through a
range of inverse depths, the various disparities in the multiple images are easily calculated,
and the cost function are then easily calculated. Thus, for each point in the base image, a
one-dimensional search is performed. An update to this approach using a moving stereo rig
was recently reported by Yi and Oh [208].

Many researchers have noted that poor estimation performance often results when fea-
ture point observations are noisy, and a line of research attempting to characterize the
uncertainty in motion estimates has been followed.

Zhang [209] gives a detailed account of robust methods to estimate the orientation
parameters and the resulting uncertainty for two views. Using the implicit function theorem
from the book by Faugeras [51], Zhang derives expressions for the covariance matrix of
a solution to a general minimization problem, a form into which the calculation of the
fundamental matrix may be cast. Related work by Czurka et al. [37] uses error ellipses to
characterize the uncertainty of the fundamental matrix for uncalibrated stereo pairs. Luong
and Faugeras [120] also briefly consider the fundamental matrix error ellipses.

Thomas and Oliensis [177] take an incremental approach to the structure from motion
problem. They use the conventional two-frame algorithm to estimate the structure and
motion for the most recent image pair, along with the various error covariances of the
estimates. This most recent estimate is then fused with previous structure estimate, using
a standard Kalman filter approach. Their approach shares many features with the error
ellipse approach presented in this chapter.

Because of the difficulty in solving motion equations resulting from the pinhole camera
model, many researchers attempt to relax this model. Marugame, Katto, and Ohta [124]
attempt structure recovery using several perspective cameras and one scaled orthographic
camera. They take a projective geometric approach, and solve for the projection matrices
using the SVD. Nonlinear constraints among the parameters are not explicitly enforced.

Recent work has attempted to cast photogrammetry and other orientation problems as
an absolute orientation problem, subject to non-isotropic noise. Hill, Cootes, and Taylor [87]
consider the absolute orientation problem with nonscalar weights. They provide an iterative
algorithm, which is the standard update of an incremental rotation matrix, given a current
rotation matrix. Hel-Or and Werman [84], [85] make a similar modeling assumption. Both
of these approaches offer high accuracy, at the cost of a slow, iterative solution method.
The method proposed in this chapter can be seen in some ways as an extension of these
two approaches.

It has been recently recognized that multiple views lead to tensor constraints on the
orientation parameters. Work on three views by Avidan and Shashua [11], Stein [167]
Hartley [79] is well studied. It is known that for four or more views, quadlinear constraints
are sufficient. Any view beyond the fourth only adds redundant observations, rather than
adding more constraints [159]. The work in this line of research is mainly focused on
characterizing solutions to tensor equations, using concepts from algebraic geometry [36].

157



In contrast to these algebraic geometry approaches, this chapter follows a more “signal
processing” approach, where we are more concerned about accurately combining information
by taking into account the relative information content in the different observations.

5.3 Optimal Combination of Estimates

In estimation problems, one must not only be concerned with obtaining the actual estimate,
but also the stability of that estimate in the presence of noise. For example, in classical
parameter estimation, the quantities to be estimated are considered to be unknown, non-
random parameters. For any unbiased estimator, the Fisher Information Matrix (FIM)
provides information about the sensitivity of the solution. Specifically, this matrix can be
thought of as a “curvature” matrix about the true solution. If one were to perform an
eigendecomposition of the information matrix, then the eigenvectors indicate the direction
of the principal axes of the error ellipse about the true parameter values, and the eigenvalues
indicate the length of the principal axes.

The lengths of the principal axes of the error ellipse are quite important. The information
matrix is the inverse of the estimator covariance matrix. Thus, both matrices have the same
set of eigenvectors, which form an orthonormal set due to symmetry of the matrices. In
the case where the covariance matrix is positive definite, the information matrix is also
positive definite, with its eigenvalues being simply the reciprocal of those of the covariance
matrix. Thus, for directions in the parameter space with large covariance, the curvature
of the information matrix will be small. This indicates that our parameter estimate will
exhibit sensitivity to noise in the direction of low curvature. Another way to view this case
is that we have high uncertainty in the parameter estimates in directions of low curvature.
Conversely, for directions in the parameter space with small covariance, the curvature of
the information matrix will be large. In these directions, noise will have very little effect on
the parameter estimates.

For the limiting case where the covariance matrix has zero eigenvalues, the curvature
in these directions is infinite, which implies that there is no uncertainty in the parameter
estimates in these directions.

Using the FIM for curvature estimates has one drawback: the matrix often depends on
the values of the true parameters, and not just the data. We thus must seek another form
for the curvature matrix. A method that in principle will always allow the determination of
a covariance and hence curvature matrix, is to linearize the estimator about the operating
point of the estimator output vector. Once the linearization is performed, we then deter-
mine the covariance matrix of the estimator output vector from the knowledge of the data
covariance matrix. Indeed, consider an estimator

x̂ = f(y), (5.1)

where x̂ is the vector estimate of the unknown parameters, y is the data vector, and f() is
the (perhaps complicated) function representing the estimation procedure. By performing a
Taylor series expansion about the nominal estimate x̂, and discarding high order terms, we
see that small perturbations y′ in the data lead to small perturbations x̂′ in the estimate.
These perturbations are connected by the linear equation

x̂′ = Hy′, (5.2)
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where H is the Jacobian matrix of f(), evaluated at the nominal estimate x̂. Postmultiplying
both sides of (5.2) by their transposes gives

x̂′x̂
′T = Hy′y

′THT . (5.3)

Taking expected values,
E
{
x̂′x̂

′T
}

= HE
{
y′y

′T
}

HT , (5.4)

or,
Λx̂′ = HΛy′HT , (5.5)

where Λx̂′ is the covariance matrix of the estimate perturbation x̂′ and Λy′ is the covariance
matrix of the data perturbation y′. Generally, we are given Λy′ , and often it is assumed
to be diagonal or even a scaled identity matrix (i.e. Λy′ = σ2I). Thus, given the data
perturbation covariance matrix, we can use (5.5) to calculate the estimator covariance
matrix. The estimator curvature matrix is the inverse of Λx̂′ . For any zero eigenvalues
of Λx̂′ , we increase them by some small amount ε so that the inversion can be carried
out (or better, use the pseudoinverse). Note that because Λŷ′ is symmetric and positive
semidefinite, Λx̂′ is itself symmetric, and positive semidefinite.

A simple example will illustrate this idea. Let an estimator for the unknown parameters
x̂ satisfy

x̂2
1 = 2y1 + 4y2

x̂2 = 2y2
1 − y2.

(5.6)

For this estimator, the value of x̂1 is given implicitly as a function of the data, rather than
explicitly. Taking the derivative with respect to a small perturbation in the data,

2x̂1x̂
′
1 = 2y′1 + 4y′2
x̂′2 = 4y1y

′
1 − y′2.

(5.7)

Rearranging to isolate the output perturbations gives

x̂′1 = y′1
x̂1

+ 2y′2
x̂1

x̂′2 = 4y1y
′
1 − y′2,

(5.8)

which in matrix form is [
x̂′1
x̂′2

]
=

[
1
x̂1

2
x̂1

4y1 −1

] [
y′1
y′2

]
. (5.9)

Using (5.5) and assuming Λy′ = σ2I gives

Λx̂′ = σ2

[
1
x̂1

2
x̂1

4y1 −1

] [
1
x̂1

4y1
2
x̂1
−1

]
= σ2

 5
x̂2

1

4y1−2
x̂1

4y1−2
x̂1

16y2
1 + 1

 . (5.10)

We see that the covariance matrix only depends on the data and the estimated output
values, which are also functions of the data. The true parameter values were not needed.

If one is not comfortable with the derivative approach given above, an equivalent ap-
proach that explicitly shows the perturbations can be used. Our problem (5.6) becomes

(x̂1 + f1)2 = 2(y1 + e1) + 4(y2 + e2)
(x̂2 + f2) = 2(y1 + e1)2 − (y2 + e2),

(5.11)
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where e = [e1 e2]T is the data perturbation vector and f = [f1 f2]T is the estimator
perturbation vector. Expanding (5.11) gives

x̂2
1 + 2x̂1f1 + f2

1 = 2(y1 + e1) + 4(y2 + e2)
(x̂2 + f2) = 2(y2

1 + 2y1e1 + e2
1)− (y2 + e2).

(5.12)

Linearizing (5.12) gives
2x̂1f1 = 2e1 + 4e2

f2 = 4y1e1 − e2.
(5.13)

In performing the linearization, we only keep terms that are exactly linear in the components
of either e or f . Constant terms, quadratic terms, and higher order terms are removed.
Writing (5.13) in matrix form gives[

f1

f2

]
=

[
1
x̂1

2
x̂1

4y1 −1

][
e1

e2

]
, (5.14)

which is exactly the same form as (5.9).
If the data for this problem happened to be y = [0, 1]T, then by (5.6), x̂ = [2, −1]T and

by (5.10),

Λx̂′ = σ2

[
5/4 −1
−1 1

]
, and Λ−1

x̂′
=

1
σ2

[
4 4
4 5

]
. (5.15)

The relatively large negative off-diagonal terms in the covariance matrix Λx̂′ tell us to expect
sensitivity to noise, approximately parallel to the line x̂1 = −x̂2 and through x̂ = [2 − 1]T .
Indeed, the eigendecomposition of Λ−1

x̂′
is

Λ−1
x̂′

=
1
σ2

[
0.7497 0.6618
−0.6618 0.7497

] [
0.4689 0

0 8.5311

] [
0.7497 −0.6618
0.6618 0.7497

]
. (5.16)

From (5.16), we see that the curvature is relatively low along the direction parallel to
[0.7497 − 0.6618]T, thus indicating relatively large uncertainty in that direction.

If we had another estimator for x̂, it would generally have a different error ellipse,
oriented in a different direction. If the angle between the major axes of the two different
error ellipses is large enough, we expect that combining the estimates will produce a much
more reliable estimate. This is illustrated in Figure 5-1.

If we have several different individual estimators x̂i for the same quantities, as well
as the estimator covariance matrices Λx̂′i

, we might be interested in combining their esti-
mates in some optimal manner. For small enough perturbations where the linearization
holds, the probability density function (PDF) of each estimate is Gaussian, and is denoted
Ni = N(x̂i,Λx̂′i

). The global estimate also has a Gaussian density, and we therefore desire
the point where this global density is maximized. If we assume that the local estimate
perturbations are uncorrelated from one i to the next, the optimal global density is the
product of the local densities, and the maximum is found via

x̂opt = arg maxx
∏
iNi,

= arg maxx
∑
i ln(Ni),

= arg minx
∑
i(x− x̂i)TΛ−1

x̂′i
(x− x̂i).

(5.17)
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Figure 5-1: Combining estimates using error ellipses. The “+” symbols indicate the indi-
vidual estimates and the “∗” indicates the combined estimate.

As an aside, an approximation to this approach which may at times be useful is to use only
the major axis of the covariance matrix from each estimate. Each estimate contributes a
line in the parameter space, and the problem is to the find the point closest to all the lines
in the least square sense.

We can find the solution to (5.17) in closed-form. Expanding and collecting like terms
in the last line of (5.17) gives

x̂opt = arg min
x

∑
i

x̂Ti Λ−1
x̂′i

x̂i − 2x̂Ti Λ−1
x̂′i

x + xTΛ−1
x̂′i

x, (5.18)

since Λ−1
x̂′i

is symmetric. This gives the same answer as

x̂opt = arg minx
∑
i x

TΛ−1
x̂′i

x− 2x̂Ti Λ−1
x̂′i

x,

= arg minx xT
(∑

i Λ
−1
x̂′i

)
x− 2

(∑
i x̂

T
i Λ−1

x̂′i

)
x.

(5.19)

Taking the derivative and setting equal to zero gives (again using symmetry)

0 = 2

(∑
i

Λ−1
x̂′i

)
x̂opt − 2

∑
i

Λ−1
x̂′i

x̂i. (5.20)
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Finally, we obtain

x̂opt =

(∑
i

Λ−1
x̂′i

)−1∑
i

Λ−1
x̂′i

x̂i. (5.21)

This is the key equation that gives a compact formula for the optimal combinations of
estimates, and we will make extensive use of it throughout the chapter. It actually has a
nice interpretation, which is: to optimally combine estimates, weight them by their (Fisher)
information matrices, then add. This quantity is then equal to the optimal combined
estimate, weighted by its (Fisher) information matrix.

5.4 Unification of Orientation using Error Ellipses

We saw in Section 5.3 how to combine multiple noisy estimates of a vector quantity through
the use of error ellipses. In this section, we apply this idea to the problem of recovering
motion parameters from noisy observations. Using this formulation, it will not matter if the
observations are image feature points, 3-dimensional measured feature points, or perhaps
even 3-dimensional stereo reconstructed points; the error ellipse approach handles all these
cases in the same fashion.

Many authors have previously been concerned with more accurate modeling of errors
in motion recovery algorithms. Ohta and Kanatani [139] discuss the absolute orientation
problem in the presence of anisotropic and inhomogeneous noise. Those authors note that
the conventional least squares solution [10], [89], [189] is inappropriate in many situations,
namely if the 3-dimensional points are reconstructed from stereo pairs or range sensors. To
solve for motion, Ohta and Kanatani apply a method they call “renormalization,” which is
exactly the same as the statistical bias removal approach we saw in Section 4.3.2.

Czurka et al. [37] use error ellipses to characterize the uncertainty of the fundamental
matrix for uncalibrated stereo pairs. Hill, Cootes, and Taylor [87] consider the absolute
orientation problem with nonscalar weights. They provide an iterative algorithm, which is
the standard update of an incremental rotation matrix, given a current rotation matrix.
Hel-Or and Werman [84], [85] make a similar modeling assumption. They start with the
image plane perturbations, translated these to spherical coordinates, and then perform
another change of variables to cartesian coordinates using Jacobian matrices. Since Hel-Or
and Werman are working with covariance matrices, some of the elements of these matrices
are necessarily infinite, a modeling approach that I would rather avoid. Simply working
with FIMs solves this problem rather nicely, without the uneccessary change of variables.
Although some of our FIMs are not invertible, from Section 5.3 we know that this merely
corresponds to an extremely elongated error ellipse, so the lack of invertibility will not be
a problem.

Assume we have two sets of corresponding noisy features, {li} and {ri}, for i = 1, . . . , n,
where the set elements are 3×1 vectors representing world coordinates in different coordinate
systems. Associated with each li is an information matrix Λ−1

li
, and associated with each ri

is an information matrix Λ−1
ri . As in Section 5.3, we will need to model the corresponding

feature point data as noisy observations of an unknown quantity. The noise-free version of
the points ri are therefore rotated by the rotation matrix Q and then translated by t into
the li coordinate reference frame. If we let {xi} be the set of 3× 1 vectors of true locations
in the li coordinate frame, then both li and Qri+ t may be considered “estimates” of xi. If
we assume that the estimates are unbiased, then using (5.21), these estimates are optimally
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combined as

x̂i =
(
Λ−1

li
+ QΛ−1

ri QT
)−1 (

Λ−1
li

li + QΛ−1
ri QT (Qri + t)

)
=
(
Λ−1

li
+ QΛ−1

ri QT
)−1 (

Λ−1
li

li + QΛ−1
ri ri + QΛ−1

ri QT t
)
.

(5.22)

Some observations about (5.22) are in order. If in reality, one set of features (say, the
li) are image points, then we have li = lipi, where li is the unknown depth of image point
pi. As we shall see, the beauty of the error ellipse approach is that we will never have to
carry around unknown depths in the equations for motion recovery.

The FIM of the estimate x̂i is

Λ−1
x̂i

= Λ−1
li

+ QΛ−1
ri QT . (5.23)

The main diagonal elements of this FIM have the interesting property that their sum does
not depend on the unknown Q. This can be seen by taking the trace of the FIM:

tr(Λ−1
x̂i

) = tr(Λ−1
li

+ QΛ−1
ri QT )

= tr(Λ−1
li

) + tr(QΛ−1
ri QT )

= tr(Λ−1
li

) + tr(Λ−1
ri ).

(5.24)

This is of interest because of the known inequality (see [103], page 65)

[Λ−1
x̂i

]jj ≥
1

[Λx̂i
]jj
, (5.25)

where the term in the denominator is the variance of the jth component of the estimate x̂.
Combining this with (5.24), we have

tr(Λ−1
li

) + tr(Λ−1
ri ) ≥

∑
j

1
[Λx̂i

]jj
. (5.26)

From (5.26) we see that definite, easily calculable lower bounds exist on the achievable
variances in the components of the estimate.

5.4.1 FIM Catalogue

We now catalogue the various FIMs for observations according to the nature of the obser-
vation.

(i) In the absolute orientation problem it is generally assumed that the location errors
are spherical, so that

Λ−1
Abs = σ−2I. (5.27)

This situation is illustrated in Figure 5-2.
(ii) Under orthographic projection, we have no information on the feature point’s z-

coordinate, and therefore

Λ−1
Ortho = σ−2

 1 0 0
0 1 0
0 0 0

 , (5.28)
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ERROR ELLIPSES

Figure 5-2: Error Ellipses for absolute orientation feature points.

(which points out the abuse of notation that can develop, because the matrix Λ−1
Ortho is

not invertible). With this model, the error ellipse is essentially stretched to infinity in the
z-direction, as illustrated in Figure 5-3.

(iii) Under perspective projection, we generally model the uncertainty in the observation
as occuring only in the image plane. With this model we have a circular error ellipse in the
image plane, and no information in the direction of the point p = [u, v, 1]T . In order to
obtain a symmetric FIM, we construct a perpendicular triad for the principal axes of the
error ellipse. One direction will be in the p direction, the second direction will be in the
image plane and is given by p1 = [−v, u, 0]T, and the third direction is found from the
cross product of p and p1 to be p2 = [−u, −v, u2 + v2]T . This is shown in Figure 5-4. We
require

pT

‖p‖Λ
−1
Persp1

p
‖p‖ = 0,

pT1
‖p1‖Λ

−1
Persp1

p1

‖p1‖ = σ−2,

pT2
‖p2‖Λ

−1
Persp1

p2

‖p2‖ = λσ−2,

(5.29)

for some λ, chosen so that the slice of the error ellipse in the image plane is circular. By
choosing

Λ−1
Persp1 = σ−2

u2+v2

[
p p1 p2

]  0
1

1


 pT

pT1
pT2



= σ−2

u2+v2

 −v −u
u −v
0 u2 + v2

[ −v u 0
−u −v u2 + v2

]
,

(5.30)

we obtain the proper FIM. If both u = 0 and v = 0, we simply use the orthographic
projection FIM given in (5.28), since Λ−1

Persp1 → Λ−1
Ortho as u2 + v2 → 0.

(iv) An approximation that may be helpful is to assume we have no information in the
direction of the image feature point, and that the error ellipse is circular in the plane normal
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Figure 5-3: Unified Orthographic Projection. (a) True orthographic projection. (b) Ellipses
resulting from image feature point location uncertainties.

to the direction of the image feature point. This is a mild generalization of the orthographic
projection, which is appropriate for a narrow FOV, and is illustrated in Figure 5-5. (It would
be exact if we had a “hemispherical focal plane array.”) The FIM in this case is

Λ−1
Persp2 = σ−2

(
I− ppT

pTp

)
. (5.31)

The beauty of using the FIMs in either (5.28), (5.30), or (5.31) is that the inconve-
nient homogeneous scale factors corresponding to unknown depth can never appear in the
reconstruction (5.22) because we have from either (5.28), (5.30), or (5.31)

Λ−1
i lipi = 0. (5.32)

(v) The FIM (5.31) is related to an error model for “range images”. That is, we assume
that we have a device (a laser, perhaps) that provides an estimate of the distance in a
measured direction. In this case, the FIM is

Λ−1
Range = σ−2

(
I− ppT

pTp

)
+ σ−2

d
ppT

pTp

= σ−2I + (σ−2
d − σ−2)ppT

pTp
.

(5.33)

(vi) For a calibrated stereo rig (i.e. Q and t known), we may use (5.22) to reconstruct
the points in space, and thereby consider the reconstructed points as “observations” (see
Figure 5-7). The FIM of these observations then is simply

Λ−1
Stereo = Λ−1

l + QΛ−1
r QT, (5.34)

where Λ−1
r is obtained from either (5.30) or (5.31).

(vii) For a sequential updating approach to camera motion, where we have an updated
estimate of the 3-dimensional locations for every newly acquired data frame, (5.22) and
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Figure 5-4: Unified Perspective Projection. Ellipses resulting from circular image feature
point location uncertainties. The minor principal axes of the ellipse are all different lengths.

(5.23) yields a particularly simply recursive updating procedure. Let Qk and tk be the kth

motion relative to a fixed world frame, and pk a particular point in image k. Then

Λ−1
x̂k

= Λ−1
x̂k−1

+ QkΛ−1
pk

QT
k,

=
∑k
m=1 QmΛ−1

pmQT
m,

(5.35)

and also
Λ−1

x̂k
x̂k = Λ−1

x̂k−1
x̂k−1 + QkΛ−1

pk
pk + QkΛ−1

pk
QT
k tk,

=
∑k
m=1 QmΛ−1

pm(pm + QT
mtm).

(5.36)

The top lines of (5.35) and (5.36) would be used in the sequential updating approach,
and the bottom lines for a batch approach. The updating is very inexpensive, due to sharing
of calculations between the two equations. For the sequential approach, we do not actually
calculate x̂k in (5.36), but instead perform the iteration

yk = yk−1 + QkΛ−1
pk

pk + QkΛ−1
pk

QT
k tk. (5.37)

At any time k, if the actual estimate x̂k is required, we calculate this using

x̂k = Λx̂k
yk. (5.38)

This sequential formulation is similiar to an approach taken recently by Thomas and Oliensis
[177].
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Figure 5-5: Unified Perspective Projection Approximation. (a) True perspective projection.
(b) Ellipses resulting from image feature point location uncertainties. The principal axes of
the ellipse are not in the image plane.
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Figure 5-6: Unified Range Image. Ellipses resulting from angular and range uncertainties.
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Figure 5-7: Unified Stereo Projection. Ellipses resulting from image feature point location
uncertainties in reconstruction from stereo.
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5.4.2 Reduction to Standard Models

Next, we show how the reconstructions given by (5.22) reduce to reasonable and satisfying
results for absolute, exterior, and relative orientation. For absolute orientation, let the
variances in (5.27) of the left and right data sets be denoted by σ2

l and σ2
r . Substituting

(5.27) into (5.22) gives after simplification

x̂i =
σ−2
l

σ−2
l + σ−2

r
li +

σ−2
r

σ−2
l + σ−2

r
(Qri + t). (5.39)

From (5.39), we see that the optimal estimate is a convex combination of the left and right
data sets (with ri brought into the left coordinate frame, of course). As the relative sizes
of σ2

l and σ2
r change, (5.39) will accordingly change the weighting of the two data sets in

the optimal estimate. In the extreme, when the variance of one data set is infinite, the
algorithm will totally ignore that data set.

For exterior orientation, we have Λ−1
li

from either (5.30) or (5.31) (we use the latter here
for illustration) and Λ−1

ri from (5.27). Let p be the image point of li. Defining α = σ2
r/σ

2
l ,

and noting that Λ−1
li

li = 0, we have from (5.22)

x̂i = σ−2
r

(
σ−2
l

(
I− ppT

pTp

)
+ σ−2

r I
)−1

(Qri + t)

=
(
(1 + α)I− αppT

pTp

)−1
(Qri + t) .

(5.40)

At α = 0, we see that the image data is ignored. Bringing the matrix over to the left hand
side, and letting α→∞, the 3-dimensional data ri becomes unreliable. The equation thus
approaches (

I− ppT

pTp

)
x̂i =

1
α

(Qri + t)→ 0, (5.41)

and the only solution is the homogeneous solution x̂i = zp, for some unknown depth z.
This is the ray emanating from the camera center of projection (COP) in the direction of
the observed image feature point.

For relative orientation, we obtain both Λ−1
li

and Λ−1
ri from either (5.30) or (5.31).

Noting now that both Λ−1
li

li = 0 and Λ−1
ri ri = 0, we have from (5.22)

x̂i =
(
Λ−1

li
+ QΛ−1

ri QT
)−1 (

QΛ−1
ri QT

)
t. (5.42)

As α = σ2
r/σ

2
l →∞, the right image is increasingly unreliable, and we get the same behavior

as in the exterior orientation situation (i.e. the estimate is along the ray in the left coordinate
system). For α→ 0, we rearrange (5.42), set Λ−1

li
= 0, and premultiply by QT, giving

Λ−1
ri QT x̂i = Λ−1

ri QT t. (5.43)

Bringing everything over to the left hand side and factoring,

Λ−1
ri QT (x̂i − t) = 0. (5.44)

Again, only the homogeneous solution is possible, which is QT (x̂i − t) = zp (the z and p
are the right-hand depth and right-hand image coordinates). Thus, the optimal estimate
is the ray emanating from the right-hand camera COP, in the direction of the right-hand
image feature point, measured here in the left hand coordinate system.

In summary, the optimal estimate (5.22) does indeed give reasonable results for absolute,
exterior, and relative orientation reconstructions.
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5.4.3 Estimating Motion with Error Ellipses

Recall that from the maximum likelihood estimate given by (5.17), we were able to obtain
the best combination of estimates in closed-form in (5.21) and apply it to motion estimation
in (5.22). If we were to substitute (5.22) into the ML cost function (5.17) and add the cost
functions for all observed points, we would obtain the total cost as a function of the rotations,
translations, and the observed data. This ML cost could then be minimized through choice
of the rotations and translations, yielding optimal estimates. We do this now for the various
orientation problems. The optimization criterion is

Qopt, topt = arg min
Q,t

J, (5.45)

with
J =

∑
i (x̂i − li)T Λ−1

li
(x̂i − li)

+ (x̂i − (Qri + t))T QΛ−1
ri QT (x̂i − (Qri + t)) ,

(5.46)

where x̂i is the reconstructed 3-dimensional point using the appropriate formula from Sec-
tion 5.4.2 and where i is the index of matched feature points in the data sets.

(i) For absolute orientation, we take Λ−1
li

= Λ−1
ri = I, and (5.46) becomes

J =
∑
i

(x̂i − li)
T (x̂i − li) + (x̂i − (Qri + t))T (x̂i − (Qri + t)) . (5.47)

Substituting the optimal estimate x̂i = (li + Qri + t)/2 from (5.39) into (5.47) gives after
simplification

J =
∑
i

‖Qri + t− li‖2. (5.48)

This is precisely the minimization problem solved by the standard absolute orientation
approach using the Orthogonal Procrustes method. This development also serves as a
convincing proof that the standard absolute orientation method is a maximum likelihood
method (for Gaussian noise perturbations of feature point locations).

(ii) For relative orientation, we have Λ−1
li

and Λ−1
ri from (5.30). Since Λ−1

li
li = Λ−1

ri ri =
0, (5.46) becomes

J =
∑
i x̂

T
i Λ−1

li
x̂i + (x̂i − t)T QΛ−1

ri QT (x̂i − t) ,

=
∑
i x̂

T
i

(
Λ−1

li
+ QΛ−1

ri QT
)

x̂i − 2x̂Ti QΛ−1
ri QT t + tTQΛ−1

ri QT t.
(5.49)

From (5.22) we have
(
Λ−1

li
+ QΛ−1

ri QT
)

x̂i = QΛ−1
ri QT t. Substituting this into (5.49), we

have

J =
∑
i x̂

T
i QΛ−1

ri QT t− 2x̂Ti QΛ−1
ri QT t + tTQΛ−1

ri QT t,

=
∑
i t
TQΛ−1

ri QT t− x̂Ti QΛ−1
ri QT t,

=
∑
i t
TQΛ−1

ri QT t− tTQΛ−1
ri QT

(
Λ−1

li
+ QΛ−1

ri QT
)−1

QΛ−1
ri QT t,

= tT
∑
i

(
QΛ−1

ri QT −QΛ−1
ri QT

(
Λ−1

li
+ QΛ−1

ri QT
)−1

QΛ−1
ri QT

)
t,

= tT
∑
i

(
QΛ−1

ri QT
(
Λ−1

li
+ QΛ−1

ri QT
)−1

Λ−1
li

)
t,

(5.50)
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where, in the last line, we have used the matrix identity A−A(B+A)−1A = A(B+A)−1B.
We see then that topt is simply determined in closed-form from Q = Qopt as the eigenvector
corresponding to the minimum eigenvalue of∑

i

(
QΛ−1

ri QT
(
Λ−1

li
+ QΛ−1

ri QT
)−1

Λ−1
li

)
, (5.51)

and Qopt is chosen so that the minimum eigenvalue of the matrix in (5.51) is minimized.
Note that we can only determine t up to a scale factor, which is well known for the relative
orientation problem. As long as there is some motion, the matrix inverse required in (5.51)
exists, and we have therefore decoupled the estimation of the rotation and translation.

To find Qopt then requires a search with three degrees of freedom (i.e. use the unit
quaternion representation). Although the minimum eigenvalue can be written in closed-
form as a function of the unit quaternion elements, this does not appear to be fruitful.

(iii) For exterior orientation, we have Λ−1
li

li = 0 and Λ−1
ri = I, and (5.46) becomes

J =
∑
i x̂

T
i Λ−1

li
x̂i + (x̂i − (Qri + t))T (x̂i − (Qri + t)) . (5.52)

From (5.22) we have x̂i =
(
Λ−1

li
+ I
)−1

(Qri + t) and therefore

x̂i − (Qri + t) =
((

Λ−1
li

+ I
)−1
− I
)

(Qri + t)

= −
(
Λ−1

li
+ I
)−1

Λ−1
li

(Qri + t),

(5.53)

(again using the matrix identity). We also have

x̂Ti Λ−1
li

x̂i = (Qri + t)TΛ−1
li

(
Λ−1

li
+ I
)−2

(Qri + t), (5.54)

where we have used the fact that Λ−1
li

and
(
Λ−1

li
+ I
)−1

are commutative. Substituting
(5.53) and (5.54) into (5.52), we obtain after simplification

J =
∑
i

(Qri + t)TΛ−1
li

(
Λ−1

li
+ I
)−1

(Qri + t). (5.55)

We can solve for topt as a function of Qopt in closed-form by differentating J with respect
to t and setting the result equal to zero. We obtain

topt = −
(∑

i

Ai

)−1(∑
i

AiQoptri

)
, (5.56)

where Ai
4
= Λ−1

li

(
Λ−1

li
+ I
)−1

. To obtain an equation for Qopt, we substitute (5.56) into
(5.55). After some tedious algebra, we obtain

J =
∑
i

(Qri)TAi(Qri)−
(∑

i

AiQri

)T (∑
i

Ai

)−1(∑
i

AiQri

)
(5.57)

which is a quadratic form in the elements of Q. To find Qopt then, one would minimize
the quadratic form subject to Q being a rotation matrix (see Appendix E for an interesting
duality approach to this sort of optimization).
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(iv) In the most general two-dataset case, we have the estimate x̂i from (5.22), and
defining Ai = Λ−1

li
and Bi = QΛ−1

ri QT, we rewrite the estimate as

x̂i = (Ai + Bi)−1Aili + (Ai + Bi)−1Bi(Qri + t). (5.58)

We will rewrite this equation in several ways, using the matrix identities

(A + B)−1A = I− (A + B)−1B,

(A + B)−1B = I− (A + B)−1A,

A(A + B)−1 = I−B(A + B)−1,

B(A + B)−1 = I−A(A + B)−1,

A(A + B)−1B = B(A + B)−1A,

(5.59)

where the last identity is proved using the second and fourth identities:

A(A + B)−1B = A(I− (A + B)−1A),

= A−A(A + B)−1A,

= (I−A(A + B)−1)A,

= B(A + B)−1A.

(5.60)

Using the first identity in (5.59), (5.58) becomes

x̂i = li − (Ai + Bi)−1Bili + (Ai + Bi)−1Bi(Qri + t),

x̂i − li = (Ai + Bi)−1Bi(Qri + t− li).
(5.61)

Using the second identity in (5.59), (5.58) becomes

x̂i = (Ai + Bi)−1Aili(Qri + t)− (Ai + Bi)−1Ai(Qri + t),

x̂i − (Qri + t) = −(Ai + Bi)−1Ai(Qri + t− li).
(5.62)

We substitute the last lines of these last two equations into (5.46), obtaining

J =
∑
i (Qri + t− li)T

(
Bi(Ai + Bi)−1Ai(Ai + Bi)−1Bi

+Ai(Ai + Bi)−1Bi(Ai + Bi)−1Ai
)

(Qri + t− li),
(5.63)

where we have made use of the fact that all the matrices are symmetric. We may greatly
simplify the matrix expression in (5.63) using the last identity of (5.59)

Bi(Ai + Bi)−1Ai(Ai + Bi)−1Bi

+ Ai(Ai + Bi)−1Bi(Ai + Bi)−1Ai,
= Ai(Ai + Bi)−1Bi(Ai + Bi)−1Bi

+ Ai(Ai + Bi)−1Bi(Ai + Bi)−1Ai,
= Ai(Ai + Bi)−1Bi(Ai + Bi)−1(Ai + Bi),
= Ai(Ai + Bi)−1Bi.

(5.64)
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We thus obtain

J =
∑
i

(Qri + t− li)TAi(Ai + Bi)−1Bi(Qri + t− li). (5.65)

This shows that the optimal rotation and translation can be obtained as the minimizers of
the sum of the weighted fitting errors, Qri + t − li. If the Ai and Bi are invertible, then
we may rewrite (5.65) in a more familiar form using the identity(

A(A + B)−1B
)−1

= B−1(A + B)A−1 = B−1 + A−1, (5.66)

so
A(A + B)−1B = (A−1 + B−1)−1. (5.67)

We thus have

J =
∑
i(Qri + t− li)T (A−1

i + B−1
i )−1(Qri + t− li),

=
∑
i(Qri + t− li)T (Λli + QΛriQ

T )−1(Qri + t− li).
(5.68)

We see then that the optimal weighting matrix for the fitting error Qri + t − li is the
inverse covariance matrix of that fitting error, a rather satisfying result. Hill, Cootes, and
Taylor [87] allude to this result, but mainly concentrate on using a fixed weighting matrix
for their nonscalar absolute orientation problem. We note that this expression is only valid
for invertible Λri and Λli , and therefore is not suitable for image data (which limits the
applicability of the work of Hill et al. ). In contrast, our more general form in (5.65) works
well with image data.

We can of course obtain the translation estimate in closed-form from the rotation esti-
mate by differentiating (5.65) to obtain

topt = −
(∑

i

Ai(Ai + Bi)−1Bi

)−1(∑
i

Ai(Ai + Bi)−1Bi(Qoptri − li)

)
, (5.69)

with Ai = Λ−1
li

and Bi = QoptΛ−1
ri QT

opt

(v) If we have more than two datasets, it is clear that the ML criterion (5.45) generalizes
to handle this situation. Now we have to optimize over several rotations and translations; in
practice, this can be a difficult computational problem, with the attendant initialization and
convergence issues that accompany any multidimensional nonlinear optimization problem.
Critical to the success of this method then is the availability of a good starting approxima-
tion for the motion parameters; this issue is addressed by a new, efficient algorithm in the
next section for the case where the datasets are all camera images.
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5.5 A Linear Epipolar Algorithm for Multiframe Orientation

In this section, we attempt recovery of the orientation of M calibrated cameras frames by
first determining the epipoles. This will allow us to decouple the camera rotations and
translations, allowing for an efficient, linear solution. Moreover, the use of the SVD (or
perhaps EVD) will allow a noniterative solution. This is in contrast to various iterative
approaches, which must estimate and reorthogonalize a rotation matrix at each iteration.
The general strategy for this approach is as follows:

• For each image pair, calculate the Essential matrix and the corresponding epipoles.

• For each image triple, calculate the angle between the baselines, and use the law of
sines to determine the relative baseline lengths.

• Use the baseline lengths and the baseline angles to constrain the dot products of the
baseline vectors. Solve the dot-product problem for the centers of projection (COP).

• Solve for the camera rotations using the calculated baselines.

For each of the above steps, we use the SVD as the main computational algorithm. The
following sections provide more detail on the required computations.

5.5.1 Calculation of Epipoles

Recall from Section 2.2 that an epipole is the image in one camera of the COP of the other
camera, as shown in Figure 2-2. With the exception of the epipole, only one epipolar line
goes through any image point. Also, all epipolar lines go through the camera’s epipole.

Also recall from Section 2.2 that without measurement noise, each pair of corresponding
image points pl = [xl yl 1]T and pr = [xr yr 1]T satisfy the constraint

pTl Epr = 0, (5.70)

where E is the essential matrix. If we substitute the right epipole er for pr into (5.70) we
have

pTl Eer = 0, (5.71)

for any pl. This is because all epipolar lines goes through the epipole. For (5.71) to hold
for any left image point, it must be true that er lies in the right null space of E. Similar
reasoning shows that the left epipole el lies in the left null space of E. Recall that without
noise, the true essential matrix is determined by E = BR, where B is the skew-symmetric
representation of the cross product with the baseline translation t, and R is the rotation
matrix. From this, we see that ideally E is rank-2. Thus, the left and right epipoles are
determined from the left and right singular vectors corresponding to the only singular value
of E that equals zero. In practice, since we form E numerically, we chose the singular
vectors corresponding to the minimum singular value.

To find E, we use the linear normalized 8-point algorithm [78] for each pair of images.
The entire calculation for the epipoles is summarized as:

1. Normalize the feature points by forming p̃il = pil/‖pil‖ and similarly p̃ir = pir/‖pir‖.
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2. Form the matrix

A =

 aT1
...

aTN

 , (5.72)

with ai = (p̃il ⊗ p̃ir) and “⊗” is the Kronecker product.

3. Calculate the SVD A = USVT, and let v = [v1, . . . , v9]T be the left singular vector
corresponding to the minimum singular value.

4. Form E as

E =

 v1 v2 v3

v4 v5 v6

v7 v8 v9

 . (5.73)

5. Calculate the SVD E = USVT, set the left epipole el equal to U(:, 3), and set the
right epipole er equal to V(:, 3). The epipoles are each determined only up a sign
ambiguity, which we correctly resolve in Section 5.5.2.

We also note that other options are available for epipole calculation. For example, we
could use image triplets and form the trilinear tensor. In this case, Hartley [79] shows that
the epipoles lie in the left and right null spaces of the various two-dimensional slices of the
the trilinear tensor. Of course, all the various nonlinear two-frame approaches [90], [91]
may be used.

Error Ellipse Analysis

Error ellipses can be used to understand the behavior of the 8-point and normalized 8-point
algorithm in estimating the epipoles. When we estimate the essential parameters using
TLS on A in (5.72), we are assuming the noise in each element of the matrix is zero-mean
IID white Gaussian noise (i.e. see (4.10)–(4.14) and the associated text for this proof).
Unfortunately, because of the way A is formed, the perturbations are not independent at
all – there is some correlation. This skews the results obtained by the 8-point algorithm.

To determine the deviation from the TLS assumptions, we assume that perturbations
in different rows of A are uncorrelated, and that the covariance matrix for perturbations in
row i are equal to 9× 9 covariance matrix Λi. Let the true normalized image feature point
locations be given by p̃ilt and p̃irt, and let the observations be given by

p̃il = p̃ilt + ci
p̃ir = p̃irt + di,

(5.74)

where ci and di are independent zero-mean Gaussian perturbations with covariance matrices
Λci and Λdi. We develop our result for general Λci and Λdi, and then specialize them for
both the unnormalized and normalized 8-point algorithm.

We have that

E{ai} = E{p̃il ⊗ p̃ir} = E{(p̃ilt + ci)⊗ (p̃irt + di)}
= E{p̃ilt ⊗ p̃irt}+E{p̃ilt ⊗ di}+E{ci ⊗ p̃irt}+E{ci ⊗ di}
= p̃ilt ⊗ p̃irt,

(5.75)
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because the last three expectations are all zero. Thus (5.75) shows that each row of A is
unbiased. Now we calculate the covariance of each row:

Λi = E{(p̃il ⊗ p̃ir)(p̃il ⊗ p̃ir)T } − (p̃ilt ⊗ p̃irt)(p̃ilt ⊗ p̃irt)T, (5.76)

and
E{(p̃il ⊗ p̃ir)(p̃il ⊗ p̃ir)T }

= E{p̃ilp̃Til ⊗ p̃irp̃Tir}
= E{(p̃ilt + ci)(p̃ilt + ci)T ⊗ (p̃irt + di)(p̃irt + di)T }
= E{(p̃iltp̃Tilt + cip̃Tilt + p̃iltcTi + cicTi )
⊗(p̃irtp̃Tirt + dip̃Tirt + p̃irtdTi + didTi )}

= E{p̃iltp̃Tilt ⊗ p̃irtp̃Tirt + p̃iltp̃Tilt ⊗ didTi
+cicTi ⊗ p̃irtp̃Tirt + cicTi ⊗ didTi }

=
(
p̃iltp̃Tilt + Λci

)
⊗
(
p̃irtp̃Tirt + Λdi

)
(5.77)

We thus have that

Λi = p̃iltp̃Tilt ⊗Λdi + Λci ⊗ p̃irtp̃Tirt + Λci ⊗Λdi, (5.78)

which shows that the covariance for each row depends on the actual values of the data
and the matrices Λci and Λdi. We again note that TLS would assume that Λi = σ2I; the
amount that Λi differs from σ2I is an indication of the error that will result from the 8-point
algorithm.

We now discuss the usual values of Λci and Λdi. For the unnormalized 8-point algo-
rithm it is easy to see that we replace the various normalized p̃(·) quantities in the above
development with the unnormalized p(·). In this situation the only error is in the first two
coordinates of these three-element vectors, so we have

Λci = Λdi = σ2

 1
1

0

 , i = 1, . . . ,M. (5.79)

For the normalized 8-point algorithm, where we calculate the various p̃(·) quantities by
scaling the p(·) quantities so that they have unit length, the covariance matrices Λci and
Λdi are data-dependant and are thus a little more complicated. It turns out that the form
is exactly identical to the information form shown in (5.30). For example, if pli = [ui vi 1]T

then

Λci =
σ2

u2
i + v2

i

 −vi −ui
ui −vi
0 u2

i + v2
i

[ −vi ui 0
−ui −vi u2

i + v2
i

]
, (5.80)

This can be seen by considering Figure 5-4; this is the same figure we would draw to
determine the covariance matrix of projecting an image plane point (ui, vi) onto a sphere.
An analogous situation is the correspondence between the unnormalized covariance matrices
in (5.79) and the orthographic projection information matrix (5.28).

With the formulas (5.79) and (5.80) for the covariance matrices Λi, we are in a position
to illustrate the deviation of these matrices from a scaled identity matrix. Essentially, for
each formula, Λi is low-rank, and the remaining nonzero eigenvalues are not all equal to
each other. This is easy to see because Λci and Λdi are rank-2 for both the unnormalized
and normalized 8-point algorithm. Using the fact that the rank of a Kronecker product of
two matrices is the product of the ranks, in (5.78) we see that Λi is the sum of two rank-2
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matrices and one rank-4 matrix. Thus, Λi is at most rank-8, a rather extreme deviation
from a scaled identity matrix. Compounding the situation, the null axes of the Λi error
ellipses depend on the data; there is no way that a simple transformation or change of
variables can align all of them (thereby precluding the use of a weighted TLS approach to
removing the null axes and reduce the problem’s dimensionality).

5.5.2 Resolving the Epipole Sign Ambiguity

The essential matrix yields the direction of the epipoles, but not whether they point to the
front or the back of the cameras. Knowing the signs of the epipoles is important in correctly
formulating the dot-product constraints of Section 5.5.5.

In some situations the epipole signs are trivially determined. For example, when images
are acquired from a single moving camera, which is generally facing in the forward direction
of motion, then the epipoles from earlier image frames to later image frames have positive
z-element, and the epipoles from later image frames to earlier image frames have negative
z-element. Another situation in which the epipole signs may be easily determined occurs
when we are tracking multiple cameras over time. Assuming we have correctly calculated
the epipole signs at one time instant, then epipole signs at the next time instant should be
similar.

If we cannot assume that one of the above situations holds true, then we must explicitly
solve for the correct epipole signs. Recall from Section 2.2.1 that when we solve the relative
orientation problem,

Pr = RPl + t (5.81)

we obtain two possible rotation matrices R (i.e. (2.16) and (2.17) ), and two possible
translations t (ignoring the unrecoverable scale factor, we have a sign ambiguity for t).
Only one of the four possible combinations of R and t will yield positive depth values for
all the reconstructed feature points in three-dimensions (assuming reasonable SNR). We
therefore carry out this reconstruction, and find the correct rotation and translation sign.

We can save a little bit of work on this step by determining only the depth zr and zl of
the points Pr and Pl, for a postulated R, t pairing. Factoring out the depths from (5.81),

zrpr = zlRpl + t, (5.82)

or [
−Rpl pr

] [ zl
zr

]
= t. (5.83)

Since this is overdetermined and only approximate, we solve for the depths using OLS:

[
zl
zr

]
=

[
pTr pr pTr Rpl

pTr Rpl pTl pl

][
−tTRpl

tTpr

]
(pTr pr)(pTl pl)− (pTr Rpl)2

. (5.84)

By the Cauchy-Schwartz inequality the denominator of (5.84) is nonnegative, so we may
simply ignore it for the purposes of determining the depth signs.

The translation sign is the critical component for determining the epipole signs. If the
third component t3 of t is positive, then the COP for the left camera is in front of the right
camera, and the corresponding right-to-left camera epipole sign is positive; if t3 < 0, the
epipole sign is negative. By rearranging (5.81), we have that similar comments apply to the
sign of the third component of −RT t and the left-to-right camera epipole sign.
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Figure 5-8: Geometry for law of sines.

5.5.3 Determining Baseline Angles and Lengths

From the previous section, we now have the epipole locations for each pair of images. If we
consider three images, then their COPs form a triangle. We can recover the shape of this
triangle from the corresponding epipole locations.

Let the COPs of the images be denoted by the points O1, O2, and O3. Let the length
of the baseline translation connecting O1 and O2 be denoted as l12, and similarly define
l13 and l23. Also, let the angle opposite l12 be be denoted by θ12, with θ13, θ23 similarly
defined. Figure 5-8 shows this geometry. With these definitions, the law of sines [88] states
that

sin θ12

l12
=

sin θ13

l13
=

sin θ23

l23
. (5.85)

This is easily rearranged into matrix-vector form as 0 sin θ23 − sin θ13

− sin θ23 0 sin θ12

sin θ13 − sin θ12 0


 l12

l13

l23

 =

 0
0
0

 (5.86)

The sines in (5.86) are easily determined from the epipoles. For example, if e2 and e3

denote the (unit-length) epipoles of O2 and O3 respectively in image 1, then cos θ23 = eT2 e3,
and therefore sin θ23 =

√
1− (eT2 e3)2. (Note that since 0 ≤ θij ≤ π, the signs of the sine

functions must all be positive.)
Because of noise, we do not solve (5.86) for each image triple individually. Rather, we

solve for all the lengths lij simultaneously, by forming the lij into a large M(M − 1)/2 × 1
vector l and filling in a sparse 3M(M − 1)(M − 2)/2 ×M(M − 1)/2 matrix A with the
appropriate sine information from each matrix of the form (5.86). We then get the best
estimate of l from the SVD A = USVT, by setting l equal to the column of V corresponding
to the minimum singular value.

5.5.4 Forming the Dot-Product Constraints

We now have the baseline lengths, determined up to an unknown scale factor. With these
baseline lengths, and the cosines of the angles between the baselines, we can write equations
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for the COPs (the Oi’s). Let each COP Oi be represented algebraically by a 3-dimensional
vector oi. For the first image triple, we have

o2 − o1

l12
· o3 − o1

l13
= cos θ23 = eT2 e3, (5.87)

or
(o2 − o1)T (o3 − o1) = l12l13eT2 e3, (5.88)

or finally

[
1 −1 −1 1

] 
oT1 o1

oT1 o2

oT1 o3

oT2 o3

 = l12l13eT2 e3. (5.89)

By considering all other image triples, we obtain a set of similar equations, with the
right hand sides known from our previous calculations, and the unknown o′is combined
in dot products on the left hand sides. If we stack all these equations together into a
large M(M − 1)(M − 2)/2 ×M(M + 1)/2 matrix A, and attempt to solve for all the dot
products using ordinary least squares, we find that the matrix is rank-deficient. This is
because there are some unrecoverable degrees of freedom in the coordinate frame of the
oi’s relative to the world coordinate frame. We are therefore free to assign one of the
COPs, say o0, to the origin [0 0 0]T of the new coordinate frame. This assignment means
that oT0 oi = 0, for all i. By removing the corresponding columns in A, we will obtain a
sparse, full-rank M(M − 1)(M − 2)/2 ×M(M − 1)/2 matrix, allowing us to solve for all
the remaining dot products using ordinary least squares. The reduced matrix (or, perhaps
better, its pseudoinverse) may be precalculated, allowing us to greatly reduce the real-time
computational load.

5.5.5 Solving the Dot-Product Constraints

We now have a set of constraints oTi oj = aij with aij known for all possible combinations
of 1 ≤ i, j ≤ N = M − 1. (Actually, we have a0j = ai0 = 0, but we remove the zeroeth
camera from the problem since it was mapped to the origin.)

We are thus given all N(N − 1)/2 possible dot-products from N 3-dimensional points,
and our goal is to find the N points. Define the 3×N matrix of unknowns

X =
[

o1 · · · oN
]
, (5.90)

and the matrix of dot-products (which is also called a “Gram matrix”)

A =

 a1,1 · · · a1,N
...

...
aN,1 · · · aN,N

 . (5.91)

Note that because A is symmetric, we are guaranteed that it has real eigenvalues and real,
orthonormal eigenvectors [174].

We are thus attempting to find the rank-3 matrix X such that XTX ≈ A. A straight-
forward procedure is to choose the best low-rank approximation to the matrix square root
of A. That is, first decompose A into its eigenvalue/vector expansion,

A = VDVT, (5.92)
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where V is orthonormal and D is diagonal and is partitioned as

D =

[
D3 0
0 DN−3

]
, (5.93)

and D3 is of size 3× 3. Then, set the estimate X̂ of the true X to be

X̂ =
[ √

D3 0
]
VT . (5.94)

The solution (5.94) is not unique. In fact, pre-multiplication of X̂ by any 3×3 orthonor-
mal matrix Q results in a valid solution because

(QX̂)T (QX̂) = X̂TQTQX̂ = X̂T X̂. (5.95)

Therefore, we can determine X̂ only up to an arbitrary rotation and flip.
This solution minimizes

‖X̂T X̂−A‖2F , (5.96)

where ‖ · ‖2F is the Frobenius norm. The error norm in (5.96) may be rewritten in terms
of the error in approximating the data ai,j. Let Â = X̂T X̂ be the matrix of reconstructed
dot-products, with âi,j = [Â]i,j. We have

‖X̂T X̂−A‖2F = ‖Â−A‖2F

=
∑N
i=1

∑N
j=1(âi,j − ai,j)2

= 2
∑N−1
i=1

∑N
j=i+1(âi,j − ai,j)2 +

∑N
i=1(âi,i − ai,i)2.

(5.97)

Clearly, this solution minimizes a weighted sum of the squared reconstruction errors. The
squared errors in the dot-product reconstructions, (âi,j−ai,j)2, for i 6= j, are weighted twice
as much as the squared error in the reconstruction of the magnitude-squared of the points.
This means that the method will not try as hard to maintain the measured magnitude-
squared (ai,i’s) of the points as it would for a least-squares solution.

5.5.6 Solving for Camera Attitudes

From (5.94) we thus have the solution for the COPs oi, up to an arbitrary scaling, rotation
and possibly a flip. In many applications, this would perhaps be sufficient. However, if we
desire the camera attitudes in the new coordinate frame, we can obtain this information
from the oi.

We of course could perform the relative orientation operation between all pairs of images,
and somehow enforce consistency among all the pairwise rotations. However, since we
already have calculated good camera COPs, we desire to use this global information to our
advantage.

By performing the subtraction t = oi − oj , we obtain the translation from camera
j and camera i. If we properly determine the camera attitudes in the new coordinate
frame, then the epipolar direction from camera j to camera i will align with t. For each
camera j, we therefore seek to align all epipoles to camera i 6= j with the difference oi− oj
(normalized to unit length). This is exactly the Orthogonal Procrustes problem, which we
solve efficiently using the SVD. This yields the attitude of camera j in the new coordinate
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frame. Incidently, the determinant of the orthogonal matrix produced by the Orthogonal
Procrustes procedure indicates if we have chosen the flip reconstruction in Section 5.5.5. In
the noiseless case, the determinants of all the camera attitude matrices would be equal to
−1 if the flip reconstruction had been chosen. If this situation occurs, a simply remedy is
to negate the third components of the oi’s before recovering the camera attitude matrices.

5.5.7 Experiment

A MATLAB simulation was conducted to check the veracity of the approach given in the
previous sections, and to get an indication of the required accuracy for the image feature
point locations. Figure 5-9 shows a typical setup. There were 10 cameras and 50 feature
points, all of which were visible to all of the cameras (this is not a requirement, however).
The points were projected into the cameras’ image planes, and a small amount of noise was
added to the image feature locations. In this example, the noise corresponded to a little
over 3 pixels of error, assuming 1000×1000 pixel images. Figure 5-10 shows a typical image.

The lengths between the camera centers were recovered (up to an unknown scale factor)
using the approach given in Section 5.5.3. Also note that the pseudo “condition” number
(the ratio of the maximum singular value to the second smallest singular value) of the
sine matrix used to determine the lengths for this scene was approximately 2. (This was
generally true for many different trials). As with the linear exterior orientation algorithm
of Section 2.6.2, the extremely low condition number indicates that this approach will not
be sensitive (at least at high SNR) to feature location noise. Figure 5-11 shows the true
length versus the computed length for all lij pairs. Note that even with the large amount
of image location noise, the scatter plot is nearly linear, indicating good length recovery.

Next, the camera COPs were recovered using the dot-product solution of Section 5.5.5,
and the camera attitudes recovered using the algorithm in Section 5.5.6. Figure 5-12 shows
the results of this operation. To generate the figure, the arbitrary rotation and scaling be-
tween the original scene and our reconstruction was removed using the absolute orientation
algorithm. This was done only for convenience in comparing to the true scene; in reality,
this transformation cannot be accomplished without auxillary information.

181



−15

−10

−5

0

5

10

−5

0

5

−15

−10

−5

0

110

6
3

8

4

5
2

9

7

Figure 5-9: Multicamera scene. The “+” indicate the camera center of projection. The
lines emanating from the +’s is the principal image axis. The dots are the feature points
(50 in this example). The × is the origin of the space.
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Figure 5-10: A typical image (for camera 10). The “+” denote the true image point location,
the “×” denote the noise-perturbed location. Based on a 1000×1000 pixel image, the mean
pixel location error is 3.24 pixels.
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Figure 5-11: Scatter plot of true lengths between pairs of COPs and estimated lengths.
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Figure 5-12: Results of camera placement estimation. The “+” denote the true COPs, the
“×” denote the estimated COPs. Also shown are the true and estimated principal axis of
the cameras.
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5.5.8 Operations Count and FPGA Implementation

The linear epipolar algorithm gives good results for camera motion and point location
reconstruction. However, the amount of operations required can become large as the number
M of images grows. Table 5.1 shows the number of operations required (as determined by
MATLAB’s “FLOPS” command). From the table, we see that calculating the lengths
between all pairs of COPs begins to dominate the number of computations as M increases
(i.e. at M = 15, 73.8% of the calculations are devoted to length calculation).

Table 5.1: Operations Count for Linear Epipolar Algorithm. M is the number of images.
The number of points was set at N = 50.

M Epipoles Lengths Form Dot-Prods. Solve Dot-Prods. Cam. Att.
5 1,259,824 133,053 38,985 14,021 7,559
7 2,647,490 1,877,459 482,066 183,791 12,434
10 5,584,447 28,520,776 6,715,686 2,836,679 22,026
15 13,296,890 568,963,721 129,242,216 58,888,294 41,041

The operation of determining of the lengths thus becomes a candidate for FPGA acceler-
ation. Recall that Section 3.6 developed the hardware efficient approach for calculating the
SVD of a symmetric matrix using the CORDIC algorithm. Also recall that the CORDIC
rotations are done in “cyclic sweeps,” for each distinct pair of rows and columns.

To apply this efficient SVD design to the length calculation in Section 5.5.3, we first
premultiply the large 3M(M − 1)(M − 2)/2 ×M(M − 1)/2 matrix A of sine values by its
transpose AT . The resulting matrix ATA is symmetric and of size M(M − 1)/2×M(M −
1)/2. The required number of CORDIC rotations for a given column pair is thus M(M−1),
and the number of column pairs per cyclic sweep is (after simplification) M(M + 1)(M −
1)(M − 2)/8.

Table 5.2: Number of CORDIC operations per sweep and execution times for length calcu-
lation. M is the number of images. A single CORDIC unit is assumed.

M #CORDICs Exec. time Exec. time
(per sweep) (1 sweep) (10 sweeps)

5 900 18µs 180µs
10 89,100 1.8ms 18ms
15 1,146,600 22.9ms 229ms
20 6,822,900 136.5ms 1.37sec
30 82,123,650 1.64sec 16.4sec
40 473,943,600 9.48sec 94.8sec

This means we have to perform a total of M2(M + 1)(M − 1)2(M − 2)/8 CORDIC
rotations per sweep. Haykin [81] states that for matrices of the sizes we consider here,
on the order of 4 to 10 sweeps are required. With this information, Table 5.2 gives the
total execution time for various M for a single pipelined CORDIC processor of Figure 3-28,
operating at a 50MHz clock rate. We can in fact do better than this because the particular
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CORDIC design wordlengths given by (3.156) required only 539 CLBs. Modern devices
have available more than 20 times this number of CLBs. We could thus perform many
CORDIC rotations in parallel, allowing us to speed up the calculations shown in Table
5.2 by an order of magnitude, while still requiring only a single FPGA device (of course,
multiple devices may be used to further increase the processing speed).

5.6 Summary

This chapter was concerned with determining camera orientation and the three-dimensional
structure of a scene using multiple data sets. The goal was to show the use of the optimal
combination of estimates formula (5.21) in solving for the motion and structure parameters,
and to compare to perhaps simple, less accurate methods. We saw the power of the approach
through its ability to unify many different types of orientation problems. We also saw its
limitations – the equations for the optimal rotation are generally very complex.

This chapter relates to the main theme of the thesis by detailing the statistically optimal
method of dealing with multiple data sets; knowing the best method allows one to assess
the value of suboptimal, but computationally efficient custom computing approaches.

Section 5.2 introduced the standard concepts of error ellipses, covariance matrices, and
Fisher information matrices. The critical equation there was the optimal combination for-
mula (5.21).

To be able to apply this formula to orientation problems, we needed to be able to
determine the FIM of the observations for the various orientation problems. Section 5.4.1 did
just that; the FIMs for a wide variety of models, from three-dimensional data to calibrated
stereo, are given by (5.27)–(5.34). Section 5.4.2 showed how this formulation reduced to
reasonable results for the reconstructed three-dimensional feature point locations.

Section 5.4.3 then discussed how to actually compute motion estimates from the various
data sets. The maximum likelihood cost function (5.46) was optimized through the choice of
rotation and translation estimates. An interesting point that does not seem to be mentioned
in the literature is that for two datasets, the translation estimate can always be determined
from the rotation estimate (i.e. by using (5.69) ) regardless of the form of the data, thereby
reducing the search space dimensionality from five to three.

To optimally estimate the multiple rotations and translations for images using the meth-
ods in Section 5.4.3 we need good starting values for the ensuing iteration. These initial
motion estimates should be easy to compute and have some sort of global, approximate en-
forcement of motion consistency; this was neatly provided by the linear epipolar algorithm
of Section 5.5. Section 5.5 was primarily concerned with an efficient method for orientation
of multiple calibrated cameras from feature point matches. Pairwise epipole locations were
first extracted, which then allowed us to reconstruct the locations of the camera center
of projections (up to an unrecoverable global rotation, scale, and possibly a flip). With
the centers of projections calculated, pairwise epipoles are once more used to calculate the
camera attitudes.

The approach presented in Section 5.5 made extensive use of the SVD, for calculating
the essential matrix and epipoles, determining the relative lengths between camera centers
of projections, solving the dot-product constraints, and finally, for solving the Orthogonal
Procrustes problem. Since it is known that the various subproblems in Sections 5.5.1-
5.5.5 are not exactly solved by linear methods such as the SVD, one must view this method
presented in this section as being appropriate for low feature point location noise situations.
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Nevertheless, the simulation performed in Section 5.5.7 shows reasonable performance for a
realistic situation. Finally, in Section 5.5.8 we applied the FPGA-based CORDIC approach
from Chapter 3 to accelerate the length calculation of the linear epipolar approach.

Other opportunities to accelerate the computations of Section 5.5 are easily envisioned.
For example, we could calculate the epipoles in Section 5.5.1 by forming the matrix ATA
and then solving the ensuing eigenvector problem. A custom FPGA design would perform
the multiplications and additions required to form the matrix ATA. Complexity could be
reduced slightly by taking advantage of the structure in the outer products aiaTi, although
there will still be many multiplications required. In this situation, the ability to implement
many multiplier units in parallel in an FPGA will lead to a dramatic speedup. Reduced
wordlength processing would also be employed, using the MCMC method of Chapter 3.

In solving the least squares problem of Section 5.5.4, we multiply a known vector
by the pseudoinverse of a large, sparse matrix A. Because the nonzero elements of A
are constrained to be ±1, the pseudoinverse matrix elements are generally of low com-
plexity. For example, for M = 5, the elements of (66 · A+) are elements of the set
{−10,−5, 1, 2, 4, 5, 7, 10, 17, 22}. The required matrix-vector product can be efficiently im-
plemented using only shifts and additions, without the need for multiplication operations.

Still other opportunities exist to speed up the processing of Section 5.5. The CORDIC
SVD custom FPGA design of Section 3.6 could be used to accelerate the eigendecomposition
required in Section 5.5.5 to solve the dot-product constraints for the camera COPs. The
custom FPGA implementation of absolute orientation, designed Section 3.7 could be used
to accelerate the camera attitude calculation required in Section 5.5.6.

This chapter contained several contributions to orientation and photogrammetry field:

• Using perhaps non-invertible FIMs to describe data in a unified format, and showing
the resulting relationship between this general representation and known special cases
(Section 5.4),

• the fast, approximate, SVD-based epipolar algorithm for multiple frame orientation
(Section 5.5).

The approaches to solving the multiple view and data set orientation problems given in this
chapter again demonstrate the interplay between algorithms and efficient implementations.
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Chapter 6

Summary and Future Directions

Computer vision processing has increased in importance in numerous applications in recent
years; this has been largely due to new developments in microelectronic technology, but
has also relied on corresponding advances in algorithm-specific design techniques. Some
of the newest and most exciting applications on the horizon are highly dependent on cost-
effective, reliable, and low-power implementations of high-performance systems. It is natural
to expect that the methods and techniques put forth in this thesis can be applied to other
orientation and computer vision problems; we mention here a few possibilities.

For consumer applications, custom computing will allow more wearable (or pocketable)
devices to be manufactured compactly and inexpensively. As an example, consider portable
biometric devices. Biometrics seeks to measure biological features (i.e. fingerprints) in order
to verify a person’s identity. Currently, this operation is usually confined to entry points
of buildings or controlled access areas, so efficiency is generally not a concern. We can
envision that using the techniques of this thesis, portable biometric verification, perhaps
incorporated into a credit-card, could become feasible. This would allow more widespread
usage of biometrics for identity verification.

Robotic and vehicle navigation are obvious applications which can benefit from low-cost
and robust vision processing. Being able to detect obstacles, estimate time to collision, and
calculate deviations from the planned route, are all requirements of any mobile system.

Surveillance applications easily benefit from custom computing. For example, the ability
to automatically distinguish motion as human vs. animal or machine, or perhaps friendly
vs. unfriendly would relieve security personnel of the tedious task of staring at television
monitors for hours on end. For automobile traffic monitoring, the ability to measure traffic
flow and to detect accidents automatically in real-time, would allow for the widespread
distribution of sensors, so that a more complete picture of the traffic situation could be
known to all travelers.

For military applications, efficient vision processing will be essential to the operation of
mobile sensor networks. For example, one sensor might recognize an object or target. Other
sensors would then reprogram so that they might efficiently recognize and locate the object
as well. To make this possible, the ability to implement a variety of algorithms efficiently
is essential.

In support of these possible applications, research into the basic techniques will continue
to receive attention, and some areas where we can expect continued activity are mentioned
below.

Direct methods (i.e. calculation of motion from image brightness and temporal gradients)
provide many opportunities for custom computing acceleration. We saw in Chapter 4 the
design of a circuit for estimating the motion of a planar scene. A similar custom computing
design good be obtained for accelerating Stein’s direct method based on the trifocal tensor
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(covered briefly in Section 2.4).
Optical flow methods were not covered in depth in this thesis. The calculation of

optical flow requires the calculation and processing of first and second derivatives of image
brightness data; there are many similarities between optical flow based orientation and
direct methods in this regard. Optical flow calculation may be more complicated because of
the need for regularization, often done interactively under user control. Custom computing
acceleration of the basic optical flow calculation then would greatly improve the usability
of interactive optimization.

Gradient-based methods for complex scenes encounter problems at occlusion boundaries
because various smoothness assumptions no longer apply, and there is a tremendous amount
of literature on methods proposed to overcome this problem. Of current interest are Markov
random fields approaches. These are iterative and computationally intensive approaches,
which are closely related to the MCMC technique and simulated annealing. We can easily
imagine a custom processor which accelerates the computation at each image pixel. Thus,
custom computing may offer a way to perform joint segmentation and motion estimation in
real-time. This type of architecture could also allow extension of real-time motion estimation
to non-rigid scenes.

In this thesis, we mainly focused on calibrated cameras; indeed Section 2.7 showed how
a known object could be used to efficiently calibrate a camera. Not covered in this thesis is
the large and extremely active area of research concerning the use of uncalibrated cameras
to recover scene structure and camera orientation. Clearly, custom implementation of these
projective geometry approaches is a possibility. Similar comments apply to the various
orthographic, scaled orthographic, and paraperspective image formation models that are
receiving attention in the literature.

This thesis has focused on the design and implementation aspect of orientation and
photogrammetry, encompassing theory, algorithms, architectures and circuits. Although
many of the core orientation algorithms have been known for quite sometime, it is only
recently that the emergence of implementation technology has allowed their economical
and widespread application.

While the field of custom computing has been active for the last decade, the specific focus
on the codesign of algorithm and implementation has taken on an increased importance due
to the rapid expansion of consumer demand for high-performance products. In contrast to
the past, custom computing algorithm implementations are not used in a standalone system,
but are typically placed within a larger overall application, often performing real-time high-
performance tasks.

Many challenges remain for designers of portable, cost-effective, real-time systems. One
of the most interesting questions in the custom computing field is to what extent the cur-
rent FPGA architectures should be altered to better support high-performance numerical
computations. For example, ongoing research is investigating architectures based on 4 or
8-bit data paths, as opposed to the one-bit datapaths of today. Other research is aimed at
incorporating general-purpose microprocessors and FPGA resources on the same die, in an
attempt to get the best features of both technologies. Many of the applications studied by
researchers in their attempt to refine FPGA architectures have been in high-profile areas,
such as wireless communications, automatic target recognition, and image compression. It
is hoped that this thesis has provided the background and motivation for similar treated of
high-performance orientation architectures.

Orientation and model-based target recognition have been applied to traditional pin-
hole camera images and image sequences, where no computational effort is required to form
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the images. Of growing importance is the area of computed imagery, where we must perform
significant amount of digital signal processing to obtain an image in the first place. Examples
include synthetic aperture radar (both strip-map and spotlight mode), x-ray tomography,
acoustic tomography for both medical ultrasound imaging and ocean acoustic imaging,
optical tomography for non-line-of-site propagation media (i.e. turbulent atmospheric and
oceanographic imagery), and hyperspectral processing for remote sensing of environmental
changes.

While the scientific communities for these specialties are enamored of the beautifully
rendered images obtained from these sensing modalities, it is the engineer who must become
increasingly concerned with the formation of these images. From a detection and estimation
viewpoint, it is not the computed images themselves that are important; rather, it is the
ability to extract and match features to models that must become of paramount interest.

We therefore expect to see custom computing as a way to integrate image formation,
feature extraction, precision platform orientation, photogrammetry for environmental re-
mote sensing, and model-based detection, in a way that not only improves the total system
performance, but at a drastically reduced system cost and computation time. This will
enable the high-speed prescreening of voluminous, high-dimensional data sets, which are
already well beyond the two-dimensional realm of pin-hole camera images.

There are of course many issues that were not covered in this thesis. In the hardware
realm, for example, systolic arrays that implement orthogonal decompositions and matrix
multiplications are well known. In the next few years, FPGA densities will increase enough
to allow these systolic algorithms to be efficiently implemented. Also not covered are power-
dissipation issues. The algorithms of Chapter 3 could easily be adapted to include power
consumption as an optimization criterion.

In the last few years, the field of algebraic geometry has found increasing application to
engineering problems. Many of the orientation and photogrammetry problems considered
in this thesis can be cast into the form of solving high-dimensional multivariate polynomial
equations. System designers are generally put off by the requirement to solve these equa-
tions in real-time. With the increasing understanding that methods better than a generic
constrained optimization exist, we can expect to see more application of algebraic geometry
to computer vision problems in the future.

Closely related to algebraic geometry is tensor analysis. Long the realm of physicists,
tensor concepts have been steadily invading the computer vision literature. Current work
is focused on the nature of constraints given by multiple images. In the signal processing
field, tensors are being used to solve for unknowns that appear as products in the relevant
equations; since this also characterizes most orientation and photogrammetry problems, we
can expect an influx of ideas from this direction into the computer vision field.

Clearly, no thesis could cover in depth all these relevant topics on algorithms and im-
plementation. What this thesis did was to find design approaches that had immediate
applicability to most orientation and photogrammetric problems. It is hoped that the
methods and results developed in this thesis have established a foundation that will serve
as a basis for further research.
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Appendix A

Acronyms

ALU: Arithmetic and Logic Unit
ASIC: Application Specific Integrated Circuit
ATM: Automated Teller Machine
ATR: Automatic Target Recognition
AWGN: Additive White Gaussian Noise
BCCE: Brightness Change Constraint Equation
CAD: Computer Aided Design
CAT: Computer Aided Tomography
CCD: Charge Coupled Device
CLA: Carry Lookahead Adder
CLB: Configurable Logic Block
CML: Constrained Maximum Likelihood
COP: Center of Projection
CORDIC: Coordinate Rotation, Digital Computer
CRLB: Cramer-Rao Lower Bound
CSA: Carry Save Adder
CTLS: Constrained Total Least Squares
DARPA: Defense Research Project Agency
DFT: Discrete Fourier Transform
DSP: Digital Signal Processing (or Processor)
EKF: Extended Kalman Filter
EVD: Eigenvalue Decomposition
FA: Full Adder cell
FFT: Fast Fourier Transform
FIM: Fisher Information Matrix
FIR: Finite Impulse Response
FOE: Focus of Expansion
FOV: Field of View
FPGA: Field Programmable Gate Array
GPS: Global Positioning System
IEKF: Iterated, Extended Kalman Filter
IIR: Infinite Impulse Response
IOB: Input/Output Logic Block
IR: Infrared
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LMS: Least Mean-Squares
LR: Lazy Rounding
LSB: Least Significant Bit
LUT: Lookup Table
MAP: Maximum a posteriori (estimation)
MAV: Micro Air-Vehicle
MCMC: Markov Chain Monte Carlo Method
MHz: MegaHertz
MLE: Maximum Likelihood Estimation
MRI: Magnetic Resonance Imaging
MSB: Most Significant Bit
MSE: Mean Square Error
MUX: Multiplexer
NRE: Non-recurring Engineering
OLS: Ordinary Least Squares
PDF: Probability Density Function
PLD: Programmable Logic Device
POLYACC: Polynomial Accumulator
RAM: Read/Write Memory
RCA: Ripple Carry Adder
RLR: Really Lazy Rounding
ROM: Read-Only Memory
RPD: Relative Pointwise Distance
SAR: Synthetic Aperture Radar
SBP: Summation By Parts
STLN: Structured Total Least Norms
STLS: Structured Total Least Squares
SVD: Singular Value Decomposition
TLS: Total Least Squares
UAV: Unmanned Aerial Vehicle
VHDL: VHSIC Hardware Design Language
VHSIC: Very High Speed Integrated Circuit
VLSI: Very Large Scale Integration
XC4000: Xilinx 4000 family of FPGAs
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Appendix B

Quaternion Algebra

Quaternions are frequently used to represent rotations. This material is taken mainly from
Horn [88], [89], [91], and Dron [48].

Quaternions are elements of a 4D vector space and can be represented as a vector,

◦
q4=


q0

qx
qy
qz

 , (B.1)

or a combination of a scalar component and a 3D vector component,

◦
q4= (q0,q), (B.2)

where

q
4=

 qx
qy
qz

 . (B.3)

Because quaternions may be thought of as a vector, common vector operations such as the
inner product of two quaternions, transpose, and multiplication of a matrix by a quaternion
are defined normally.

An element of 3D Euclidean space may be represented by a quaternion with zero scalar
part. A scalar may be represented as a quaternion with a zero vector part. The conjugate
◦
q
∗

of a quaternion
◦
q is defined by

◦
q
∗4= (q0,−q). (B.4)

The addition
◦
c=
◦
a +

◦
b of quaternions is defined by

(c0, c)
4
= (a0 + b0,a + b). (B.5)

Addition of quaternions is associative and commutative, with the additive identity being
(0,0).

The multiplication of two quaternions is given by

◦
a
◦
b
4= (a0b0 − a · b, a0b + b0a + a× b). (B.6)

Quaternion multiplication is associative (but not commutative),

◦
a (
◦
b
◦
c) = (

◦
a
◦
b)
◦
c . (B.7)
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The multiplicative identity is
◦
e4= (1,0). The squared magnitude of a quaternion is given by

‖
◦
q ‖2 4=

◦
q
◦
q
∗
=
◦
q ·
◦
q= q2

0 + q2
x + q2

y + q2
z (B.8)

This shows that a nonzero quaternion has an inverse

◦
q
−1

=
◦
q
∗

‖
◦
q ‖2

(B.9)

Some useful quaternion identities are:(◦
a
◦
a
∗)

=
(◦
a · ◦a

) ◦
e

(
◦
a
◦
b
)∗

=
◦
b
∗ ◦
a
∗

(◦
a
◦
c
)
·
( ◦

b
◦
c
)

=
(
◦
a ·
◦
b
)(◦

c · ◦c
)

(
◦
a
◦
b
)
·
(
◦
a
◦
b
)

=
(◦
a · ◦a

)( ◦
b ·

◦
b
)

(◦
a
◦
c
)
·
◦
b =

◦
a ·
( ◦

b
◦
c
)
.

(B.10)

A 3D vector can be represented by a quaternion with zero scalar part. If
◦
a,
◦
b, and

◦
c

are quaternions with zero scalar part then

◦
a
∗

= − ◦a
∗

◦
a ·
◦
b = a · b

◦
a
◦
b = (−a · b,a× b)

◦
a ·
( ◦

b
◦
c
)

=
◦
a · (b× c) = [abc].

(B.11)

The last identity represents the triple product.
It is extremely useful on occasion to represent quaternion multiplication in a matrix-

vector product format. We define a left quaternion matrix Q associated with a quaternion
◦
q by

Q 4=


q0 −qx −qy −qz
qx q0 −qz qy
qy qz q0 −qx
qz −qy qx q0

 . (B.12)

Using the left quaternion matrix representation, the quaternion product can be written as

◦
a
◦
b= A

◦
b . (B.13)
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Similarly, we define a right quaternion matrix Q associated with a quaternion
◦
q by

Q 4=


q0 −qx −qy −qz
qx q0 qz −qy
qy −qz q0 qx
qz qy −qx q0

 . (B.14)

Using the right quaternion matrix representation, the quaternion product can be written as

◦
a
◦
b= B ◦a . (B.15)

A unit quaternion corresponds to a rotation in 3D; a unit quaternion is one whose
magnitude is unity, so that

‖
◦
q ‖ = 1. (B.16)

The inverse of a unit quaternion is just its conjugate.
The unit quaternion

◦
q that represents a rotation by an angle θ about an axis ω̂ is given

by
◦
q=

(
cos

θ

2
, ω̂ sin

θ

2

)
, (B.17)

where ‖ω̂‖ = 1. A vector a may be rotated by a unit quaternion to a new vector b using

◦
b=
◦
q◦a
◦
q
∗
, (B.18)

where a0 = b0 = 0. This may be written using quaternion matrices as

◦
q◦a
◦
q
∗
= (Q ◦a)

◦
q
∗
= Q∗(Q ◦a) = QTQ ◦a (B.19)

So ◦
b = QTQ ◦a

=

[
1 0
0 R

]
◦
a,
, (B.20)

where R is an orthonormal rotation matrix. Expanding terms allows us to find R in terms
of the unit quaternion:

R =

 q2
0 + q2

x − q2
y − q2

z 2(qxqy − q0qz) 2(qxqz + q0qy)
2(qxqy + q0qz) q2

0 − q2
x + q2

y − q2
z 2(qyqz − q0qx)

2(qxqz − q0qy) 2(qyqz + q0qx) q2
0 − q2

x − q2
y + q2

z

 . (B.21)

Noting that
(−

◦
q)
◦
a (−

◦
q
∗
) =

◦
b=
◦
q◦a
◦
q
∗
, (B.22)

we see that −
◦
q and

◦
q represent the same rotation. Thus, the space of rotations is isomorphic

to one hemisphere of a unit 3D sphere.
Rotations may be composed using unit quaternions. Let a be rotated by

◦
q into b, then

b be rotated by
◦
p into c:

◦
b =

◦
q◦a
◦
q
∗
,

◦
c =

◦
p
◦
b
◦
p
∗
.

(B.23)
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We have
◦
c =

◦
p (
◦
q◦a
◦
q
∗
)
◦
p
∗
,

= (
◦
p
◦
q)
◦
a (
◦
q
∗ ◦
p
∗
),

= (
◦
p
◦
q)
◦
a (
◦
p
◦
q)∗,

(B.24)

where
◦
p
◦
q is a unit quaternion. Thus, composition of rotations corresponds to multiplication

of unit quaternions.
We note that it takes fewer operations to multiply two quaternions than it does to

multiply two rotation matrices. Also, due to finite wordlength effects, a sequence of rotations
may no longer be orthonormal. For quaternions, simply rounding to the nearest orthonormal
quaternion is easy, whereas finding the nearest orthonormal matrix to a given matrix is hard.
For this reason, quaternions find extensive use in computer graphics

When converting a unit quaternion to a rotation matrix, (B.21) may be used directly,
but a more efficient method is to use the following “straight line code:”

t1 = q2
x,

t2 = q2
y ,

t3 = q2
z ,

t4 = q0qx,
t5 = q0qy,
t6 = q0qz,
t7 = qxqy,
t8 = qxqz,
t9 = qyqz,

R1,1 = 1− 2(t2 + t3),
R2,2 = 1− 2(t1 + t3),
R3,3 = 1− 2(t1 + t2),
R1,2 = 2(t7 − t6),
R2,1 = 2(t7 + t6),
R3,1 = 2(t8 − t5),
R1,3 = 2(t8 + t5),
R2,3 = 2(t9 − t4),
R3,2 = 2(t9 + t4),

(B.25)

for a total of 9 multiplications and 9 additions. This assumes that the quaternion is indeed
normalized, so that q2

0 = 1− q2
x − q2

y − q2
z .

Converting from a perfectly orthonormal rotation matrix R to a unit quaternion
◦
q would

appear to be a simple matter. We note that

q2
0 = cos2 θ

2
=

tr(R) + 1
4

, (B.26)

and that ω̂ may be obtained by solving the eigenvector equation

Rω̂ = ω̂. (B.27)

We then use (B.17) to recover
◦
q.
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Perhaps more simply, we note that the diagonal of R in (B.21) and the unit magnitude
constraint give four linear equations, which may be summarized as:

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
1 1 1 1



q2

0

q2
x

q2
y

q2
z

 =


R1,1

R2,2

R3,3

1

 . (B.28)

Inverting the matrix gives
q2

0

q2
x

q2
y

q2
z

 =
1
4


1 1 1 1
1 −1 −1 1
−1 1 −1 1
−1 −1 1 1



R1,1

R2,2

R3,3

1

 . (B.29)

To resolve the sign ambiguities, we choose q0 ≥ 0 and note that the off-diagonal com-
ponents of R give the following three equations:[

1 1
1 −1

] [
qyqz
q0qx

]
= 1

2

[
R3,2

R2,3

]
,

[
1 1
1 −1

] [
qxqz
q0qy

]
= 1

2

[
R1,3

R3,1

]
,

[
1 1
1 −1

] [
qxqy
q0qz

]
= 1

2

[
R2,1

R1,2

]
.

(B.30)

From these equations we extract the products q0qx, q0qy, q0qz as

q0qx = (R3,2 −R2,3)/4,
q0qy = (R1,3 −R3,1)/4,
q0qz = (R2,1 −R1,2)/4.

(B.31)

Because we chose q0 ≥ 0, the signs of qx, qy, and qz may therefore be determined simply as

sign(qx) = sign(R3,2 −R2,3),
sign(qy) = sign(R1,3 −R3,1),
sign(qz) = sign(R2,1 −R1,2).

(B.32)
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We can summarize this procedure using the straight line code:

t1 = R1,1 +R2,2,
t2 = R1,1 −R2,2,
t3 = 1 +R3,3,
t4 = 1−R3,3,
t5 = t3 + t1,
t6 = t3 − t1,
t7 = t4 + t2,
t8 = t4 − t2,
q0 =

√
t5/2,

t9 =
√
t7/2,

t10 =
√
t8/2,

t11 =
√
t6/2,

qx = sign(R3,2 −R2,3)t9,
qy = sign(R1,3 −R3,1)t10,
qz = sign(R2,1 −R1,2)t11,

(B.33)

for a total of 4 square roots and 11 additions.
We noted earlier that the composition of rotations may be represented as the product

of unit quaternions. Using the matrix representation of a quaternion, we see that only
16 multiplications and 12 additions are needed to compose two quaternions, whereas 27
multiplications and 18 additions are needed to form the product of two rotation matrices.

Note the structure of the left quaternion matrix representation in (B.12); it is suggestive
of a trick used to calculate a complex multiplication using only three real multiplications
[22]. Recall that calculating (e+ jf) = (a+ jb) · (c+ jd) the straightforward way,

e = ac− bd, f = ad+ bc, (B.34)

four real multiplications and two real additions are required. The more subtle method [22]
requires only three real multiplications (but five additions):

e = (a− b)d+ a(c− d), f = (a− b)d+ b(c+ d). (B.35)

Rewriting (B.34) in a matrix-vector format,[
e
f

]
=

[
a −b
b a

] [
c
d

]
, (B.36)

we notice that the structure of the matrix in (B.36) is identical to the structure of the left
quaternion matrix Q, if we view Q as a 2×2 block matrix with 2×2 sub-blocks. Therefore,
to apply this idea to quaternion composition, we make the associations

◦
r=
◦
q
◦
p= Q

◦
p=

[
A - B
B A

] [
c
d

]
(B.37)

where

A =

[
q0 −qx
qx q0

]
, B =

[
qy qz
qz −qy

]
, (B.38)
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c =

[
p0

px

]
, d =

[
py
pz

]
, (B.39)

and

e =

[
r0

rx

]
, f =

[
ry
rz

]
. (B.40)

We thus have

A−B =

[
q0 − qy −qx − qz
qx − qz q0 + qy

]
, (B.41)

and

c− d =

[
p0 − py
px − pz

]
, c + d =

[
p0 + py
px + pz

]
. (B.42)

The term (A−B)d is calculated in the straightforward way using

(A−B)d =

[
q0 − qy −qx − qz
qx − qz q0 + qy

] [
py
pz

]
, (B.43)

which requires four multiplications To calculate the terms A(c− d) and B(c + d), we use
the complex multiplication trick again, to further reduce the number of multiplications to
three for each of these terms. The total number of multiplications for the entire algorithm
is thus 10. The total procedure can be summarized by the straightline code:

t1 = p0 − py,
t2 = p0 + py,
t3 = px − pz,
t4 = px + pz,
t5 = (q0 − qx)t3,
t6 = q0(t1 − t3),
t7 = qx(t1 + t3),
t8 = t5 + t6,
t9 = t5 + t7,
t10 = (qz − qy)t4,
t11 = qy(t2 + t4),
t12 = qz(t2 − t4),
t13 = t10 + t11,
t14 = t10 + t12,
t15 = q0 − qy,
t16 = q0 + qy,
t17 = qx − qz,
t18 = qx + qz,
t19 = t15py − t18pz,
t20 = t17py + t16pz,
r0 = t19 + t8,
rx = t20 + t9,
ry = t19 + t13,
rz = t20 + t14.

(B.44)

The procedure requires only 10 multiplications and 24 additions.
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There are, however, more efficient implementations of quaternion multiplication. The
following straight line code computes the quaternion product

◦
r=
◦
q
◦
p using only eight multi-

plications and 27 additions:

t1 = (qz − qy)(py − pz),
t2 = (q0 + qx)(p0 + px),
t3 = (q0 − qx)(py + pz),
t4 = (qy + qz)(p0 − px),
t5 = (qz − qx)(px − py),
t6 = (qz + qx)(px + py),
t7 = (q0 + qy)(p0 − pz),
t8 = (q0 − qy)(p0 + pz),
t9 = t6 + t7 + t8,
t10 = (t5 + t9)/2,
r0 = t1 + t10 − t6,
rx = t2 + t10 − t9,
ry = t3 + t10 − t8,
rz = t4 + t10 − t9.

(B.45)
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Appendix C

Multiple Photographs - Bundle
Adjustment and Photogrammetry

Photogrammetrists typically use iterative Newton-Raphson approaches for aerotriangula-
tion and photographic surveys. It usually the case that multiple, overlapping photographs
are taken, arranged in a grid-like fashion. With availability of known, surveyed ground
control point, the problem thus becomes one of a simultaneous adjustment of the image co-
ordinates, camera location and attitude, and control points. In this section we will review
this method, following the approach outlined in [163].

We now proceed to cast the solution of sets of nonlinear equations, which result from
the general perspective projection camera model, into the above framework. In general, a
problem model consisting of m equations, involving n unknowns and r measurements can
be expressed as

f1(θ; y) = 0,
...

fm(θ; y) = 0,
(C.1)

where θ is an n× 1 vector of unknown, nonrandom parameters, and y is an r× 1 vector of
observations or known values. These nonlinear equations must be linearized before they can
be used in an iterative adjustment solution. Generally, Newton’s first order approximation
is used. Let the measured values be denoted as y00, and let these be related to the true
values y, via

y = y00 + v, (C.2)

where v is a vector of Gaussian noise variables. Furthermore, let θ0 be an estimate of θ
such that

θ = θ0 + δθ, (C.3)

where δθ is the needed correction to the approximation. Linearizing the fi about the current
point given by θ0 and y00,

fi(θ; y) ≈ fi(θ0; y00) +
[
∂fi
∂y

]0

· v +
[
∂fi
∂θ

]0

· δθ, (C.4)

where the vector of partial derivatives evaluated at current values is denoted by
[
∂fi
∂·

]0
. We

may thus replace the set of nonlinear equations with an approximate set of linear equations
as

Av + Bδθ = c, (C.5)
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where A is m×r, and B is m×n. Both of these matrices are composed of partial derivatives.
The vector c is equal to the negative of the current value of the set of function in (C.1):

c = −

 f1(θ0; y00)
...

fm(θ0; y00)

 . (C.6)

A least squares solution to the set of equations (C.5) yields the most probable set of residuals
v and a set of corrections δθ. It is easily shown that solution to this problem is given by

BT (AW−1AT )−1Bδθ = BT (AW−1AT )−1c, (C.7)

where W is an error weighting matrix. In fact, it is the Fisher information matrix (FIM)
of the residuals v.

We now apply this technique to the multiple exterior orientation problem, given in
(2.99). We now assume that there are m photographs covering an area in which there are n
feature points of interest. Also, let r of these points be control points, whose position have
been somehow previously determined. For ease of development, we also assume that all n
points appear in all m photographs. This assumption is easily relaxed by properly applying
a weight matrix, as we shall see shortly.

Our goal is to determine all exterior orientation parameters Ri and ti for i = 1, . . . ,m
from noisy measurements. We now have

lij

 xij
yij
f

 = Ri(aj + ti), j = 1, . . . , n, i = 1, . . . ,m. (C.8)

To eliminate the unknown projective parameters lij , for each image i we divide the first two
rows by the third and rearrange, giving

fx
4= xij − f [r11i r12i r13i](aj+ti)

[r31i r32i r33i](aj+ti)
≈ 0,

fy
4= yij − f [r21i r22i r23i](aj+ti)

[r31i r32i r33i](aj+ti)
≈ 0,

(C.9)

where

Ri =

 r11i r12i r13i

r21i r22i r23i

r31i r32i r33i



=

 cosωi sinωi 0
− sinωi cosωi 0

0 0 1


 cosφi 0 sinφi

0 1 0
− sinφi 0 cosφi


 1 0 0

0 cosκi sinκi
0 − sinκi cos κi

 .
(C.10)

In (C.10), ωi, φi, and κi are the Euler angles of the rotation of image i. Let xij = x00
ij + vxij

and yij = y00
ij +vyij, where x00

ij and y00
ij are the measured image coordinates and vxij and vyij

are the least squares corrections needed to account for random errors in the measurements.
Similarly, let

ωi = ω0
i + δωi

φi = φ0
i + δφi

κi = κ0
i + δκi

ti = t0
i + δti

aj = a0
j + δaj ,

(C.11)
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where the superscript “0” denotes a current estimate and the δ’s are corrections to the
estimate. With these definitions, we linearize (C.9):

vij + Ḃij δ̇i + B̈ij δ̈j = cij . (C.12)

In (C.12), the superscript “one-dot” is used to denote corrections to the exterior orientation
parameters, and “two-dots” is used to denote corrections to the 3-dimensional coordinates.
We have

δ̇i =


δωi
δφi
δκi
δti

 , δ̈j =
[
δaj

]
, (C.13)

Ḃij =


∂f0
x

∂ωi

∂f0
x

∂φi

∂f0
x

∂κi

∂f0
x

∂tTi

∂f0
y

∂ωi

∂f0
y

∂φi

∂f0
y

∂κi

∂f0
y

∂tTi

 , B̈ij =


∂f0
x

∂aTi

∂f0
y

∂aTi

 , (C.14)

and finally,

vij =

[
vxij
vyij

]
, cij = −

[
f0
x

f0
y

]
. (C.15)

We now form the ground control equations. Let aj = a00
j + vaj , where a00

j are the mea-
sured 3-dimensional locations, and vaj are the least squares corrections needed to account
for random errors in the measurements. From (C.11), we obtain

a00
j + vaj = a0

j + δaj , (C.16)

or
vaj − δaj = a0

j − a00
j , (C.17)

which is represented as
v̈j − δ̈j = c̈j . (C.18)

We now form the equations for the exterior orientation parameter updates. These can
be derived in a manner similar to (C.18):

vωi
vφi
vκi
vti

−

δωi
δφi
δκi
δti

 =


ω0
i − ω00

i

φ0
i − φ00

i

κ0
i − κ00

i

t0
i − t00

i

 , (C.19)

or simply
v̇i − δ̇i = ċi. (C.20)

We are now in a position to collect all the equations for all photographs and points. The
complete set of collinearity equations (C.12) for point j on the m photographs is v1j

...
vmj

+


Ḃ1j

. . .
Ḃmj



δ̇1
...
δ̇m

+


B̈1j

...
B̈mj

 δ̈j =

 c1j
...

cmj ,

 , (C.21)
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which may be expressed simply as

vj + Ḃj δ̇ + B̈j δ̈j = cj . (C.22)

Since it is assumed that each point j is imaged in all m photographs, each point gives rise
to a set of equations as above. Collecting all these for all n points: v1

...
vn

+


Ḃ1

. . .
Ḃn

 δ̇ +


B̈1
...

B̈n



δ̈1
...
δ̈n

 =

 c1
...

cn,

 , (C.23)

or finally
v + Ḃδ̇ + B̈δ̈ = c. (C.24)

Next, the observation equations for the exterior orientation parameters and for the
known ground control points are collected. The complete set of exterior orientation equa-
tions can be stacked together as: v̇1

...
v̇m

−

δ̇1
...
δ̇m

 =

 ċ1
...

ċm

 , (C.25)

which is written as
v̇ − δ̇ = ċ. (C.26)

Similarly, the complete set of observation equations for the ground control points is v̈1
...

v̈n

−

δ̈1
...
δ̈n

 =

 c̈1
...

c̈n,

 , (C.27)

which is written as
v̈ − δ̈ = c̈. (C.28)

Combining (C.24), (C.26), and (C.28) gives a complete mathematical model of the
update problem:  v

v̇
v̈

+

 Ḃ B̈
−I 0
0 −I

[ δ̇
δ̈

]
=

 c
ċ
c̈

 , (C.29)

or
v̄ + B̄δ = c̄. (C.30)

It is a simple matter to show that the optimal least squares update δ can be found from
the normal equations

(B̄TW̄B̄)δ = B̄TW̄c̄, (C.31)

where W̄ is the FIM of the perturbations v̄. We construct W̄ as follows. Let Wij be
the FIM of the measurement (xij , yij). Stacking the weight matrices for all the image
coordinates for point j gives

Wj =

 W1j

. . .
Wmj

 . (C.32)
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Next, stacking these equations for all n points gives

W =

 W1

. . .
Wn

 . (C.33)

Similarly, let the FIM of the exterior orientation parameter measurements be given by Ẇi.
Assuming no correlation among the orientation parameters of different photographs, the
complete set of weight matrices for all m photographs is

Ẇ =


Ẇ1

. . .
Ẇm

 . (C.34)

Similarly, let the FIM of the ground control point j measurements be given by Ẅj .
Again assuming no correlation among the different control points, the complete set of weight
matrices for all ground coordinates is

Ẅ =


Ẅ1

. . .
Ẅn

 . (C.35)

Finally, we have

W̄ =

 W
Ẇ

Ẅ

 . (C.36)

The matrix W allows us to relax the assumption that every point is observed in every
image. By setting the corresponding element of W to zero, we are informing the algorithm
that we have no information about the point. Consequently, the “residual” in fitting to the
point is not penalized. From an information theoretic viewpoint, this is exactly the correct
procedure.

We mention finally that photogrammetrists use refined methods of solving (C.31), uti-
lizing the sparsity and structure of the matrices. The ability to do this is partially a result
of the pattern in which images are typically taken (generally a rectangular grid). By num-
bering the images in a raster order, banded, sparse matrices result, allowing for efficient
computational procedures.

From an estimation viewpoint, this procedure is optimal in that least squares methods
are applied to exactly the quantities that are subject to measurement errors. We therefore
have a constrained maximum likelihood procedure.
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Appendix D

Polynomial Coefficients for
Resultant-Based Exterior
Orientation

The expressions for the even bi coefficients in Section 2.6.1, equation (2.109), are as follows:

b0 = d4
12a

2
3 + 2a7d

2
12a3 + d8

12 + 2d6
12a3 + a2

7 + 2a7d
4
12, (D.1)

b2 = −d6
12a

2
1 + 2a6d

4
12 − 4a7d

2
12 − d2

12a
2
5

+2d4
12a2a3 + 2a6a7 − 4d6

12 − 6d4
12a5c12

+2a7d
2
12a2 − 2a7a3 − 2d6

12c12a1

+16a7c
2
12d

2
12 − 2d4

12a5a1 − 2d2
12a5a3c12

+2a6d
2
12a3 − 2a2

3d
2
12 + 4a7c

2
12a3 + 2a7c12a5

+4d4
12c

2
12a3 + 6a7c12d

2
12a1 + 2d6

12a2

−6d4
12a3 + 2d4

12a3a1c12,

(D.2)

b4 = 4a6c
2
12a3 + 2a6c12a5 + 16a6c

2
12d

2
12

+8d4
12 + 4a7 + 8d2

12a3 − 2a6a3 − 4a6d
2
12 + 16a7c

4
12

−6d4
12a2 + 3d4

12a
2
1 + d4

12a
2
2 − 2a7a2

+6a6c12d
2
12a1 − 4a3a1d

2
12c12

−2d2
12a4a3c12 − 2d2

12a5a2c12

−4d2
12a5c

2
12a1 + 2d4

12a2a1c12

+2a7c12a4 − 6a7c12a1 + 4a7c
2
12a2 + 8a7c

3
12a1

+12a5d
2
12c12 + 4a5d

2
12a1 + 2a5a3c12

+6d4
12c12a1 − 8d2

12c
2
12a3 − 2d2

12a4a5

−6d4
12a4c12 − 2d4

12a4a1 − 8d2
12a5c

3
12

+4d4
12c

2
12a2 + 2a6d

2
12a2 − 4a2d

2
12a3

+a2
5 + a2

6 + a2
3 − 16a7c

2
12,

(D.3)

b6 = 8a6c
3
12a1 − 6a6c12a1 + 4a6c

2
12a2

+2a1a3c12 + 2a6c12a4 − 4a3 − 8d2
12 + 16d2

12c
2
12

+4a6 − 2a1a5 + 8d2
12a2 − 2a6a2 − 3a2

1d
2
12 − 16a6c

2
12

+2a4a5 − 4a5c12 + 8a5c
3
12 − d2

12a
2
4 − 2a2

2d
2
12

+2a2a3 + 8a3c
2
12 − 4a2a1d

2
12c12

−2d2
12a4a2c12 − 4d2

12a4c
2
12a1

+12a4d
2
12c12 + 4a4d

2
12a1 + 2a4a3c12

+2a5a2c12 + 4a5c
2
12a1 − 8d2

12c
2
12a2

−8d2
12a4c

3
12 + 16a6c

4
12,

(D.4)
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b8 = 2a4a2c12 + 16c412 + 4a4c
2
12a1 + a2

1

+a2
4 − 2a1a4 + 8a4c

3
12 + 4− 4a2 + 2a1a2c12

−4a1c12 + a2
2 + 8a1c

3
12 − 4a4c12 + 8a2c

2
12 − 16c212.

(D.5)
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Appendix E

A Duality Approach to Minimizing
a Quadratic Form with Quadratic
Constraints

Here we consider a duality approach to the minimization of a quadratic form, subject to
quadratic constraints. This problem arises is several machine vision tasks, including relative
orientation and scene reconstruction.

Given symmetric matrices A, B1, . . . ,Bn, we desire the solution vector x such that

min
x

xTAx, (E.1)

subject to the constraints
xTBix = ci, i = 1, . . . , n. (E.2)

Let x∗ denote the optimal feasible value of x. We will assume that A is positive definite,
and that at least one of the Bi’s (say, B1) is positive definite. Without loss of generality, we
can therefore assume that B1 is the identity matrix (by performing a change of variables,
if necessary). We further assume that each ci is a nonnegative scalar. We assume that at
least one feasible point exists. This problem has the same solution as:

min
x

xTAx +
n∑
i=1

λi
(
xTBix− ci

)
, (E.3)

subject to
xTBix = ci, i = 1, . . . , n. (E.4)

Here, the scalars λi are Lagrange multipliers, which we collect into a vector λ. If we
relax some constraints in (E.4), then we lower bound the optimal value of (E.3), because
we are enlarging the feasible region. To get the tightest lower bound, we thus choose the
λi’s to maximize the lower bound:

max
λ

min
x

xTAx +
n∑
i=1

λi
(
xTBix− ci

)
, (E.5)

subject to
xTBix = ci, i = 1, . . . ,m, (E.6)

with m < n. For our purposes, it will be convenient to take m = 1, giving the restriction

‖x‖2 = xTx = c1. (E.7)
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In order to use (E.5), we first choose a fixed setting λ, and then find x that minimizes
(E.3). The goal then is to find the λ that makes the ensuing minimization over x as “poor”
as possible.

There are several properties of this dual formulation that make it particularly attractive.
First, the dual objective function J(λ) is bounded from above by all the feasible solutions.
Next, for a given λ, the optimal x is easily found. Rearranging (E.3) gives

J(λ) = xT
(

A +
n∑
i=1

λiBi

)
x−

n∑
i=1

λici. (E.8)

To minimize J(λ) in (E.8) with respect to x, subject to (E.7), we simply find the eigenvector
v corresponding to the minimum eigenvalue of

A +
n∑
i=1

λiBi. (E.9)

We then set x equal to
√
c1v, in order to satisfy (E.7).

The next useful property of the dual formulation is that the dual objective function is
concave. This is implies that any local maximum is also the global maximum. To show
concavity, assume we have evaluated (E.3) at two locations, λ and λ′. For any intermediate
point given by θλ+ (1− θ)λ′, with 0 ≤ θ ≤ 1,

J(θλ+ (1− θ)λ′) = minx xTAx +
∑n
i=1 (θλi + (1− θ)λ′i)

(
xTBix− ci

)
,

= minx θ
(
xTAx +

∑n
i=1 λi

(
xTBix− ci

))
+(1− θ)

(
xTAx +

∑n
i=1 λ

′
i

(
xTBix− ci

))
,

≥ θJ(λ) + (1− θ)J(λ′)

. (E.10)

The inequality in the last line follows because the minimizing x’s for J(λ) and J(λ′) are
free to be chosen separately. Thus, (E.10) demonstrates that the dual objective function is
concave.

Another useful property of the dual approach is that the set of λi’s that we must consider
is convex, and that we can iteratively shrink the search region for the optimal λi’s while
keeping the set convex. To show convexity, assume we have two fixed settings of λ′ and λ′′

such that

minx′ θx′
T (A +

∑n
i=1 λ

′
iBi) x′ ≥ θc ≥ 0 and

minx′′(1− θ)x′′T (A +
∑n
i=1 λ

′′
i Bi) x′′ ≥ (1− θ)c ≥ 0,

(E.11)

with 0 ≤ θ ≤ 1. Then, for any other x, we have

θxT (A +
∑n
i=1 λ

′
iBi) x ≥ minx′ θx′

T (A +
∑n
i=1 λ

′
iBi) x′ and

(1− θ)xT (A +
∑n
i=1 λ

′′
iBi) x ≥ minx′′(1− θ)x′′T (A +

∑n
i=1 λ

′′
i Bi) x′′.

(E.12)

Adding these equations and using (E.11), we obtain

xT
(

A +
n∑
i=1

(θλ′i + (1− θ)λ′′i )Bi

)
x ≥ c. (E.13)
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Since this is true for any x, it is true in particular for the x that minimizes the left-hand
side of (E.13), so that

min
x

xT
(

A +
n∑
i=1

(θλ′i + (1− θ)λ′′i )Bi

)
x ≥ c, (E.14)

which shows that the set is convex. If we are at some λ, with objective value c, then we
can simply perform a line search in the direction of increasing c. At the maximum objective
value on this line, we pick a new search direction and repeat the search.
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