A Two-Dimensional Topological Compactor
With Octagonal Geometry

Paul de Dood!

i'Comput.er Science Division
University of California
Berkeley, CA 94720

We present a two-dimensional layout compactor with
octagonal geomeiry. We discuss layout optimization
algorithms used within a topological framework. We
presenl the results of comparing the compactor against
a standard set of benchmarks. This version of the com-
pactor uses an iterative greedy layoul oplimization al-
gorithm with wire minimization and produces leafcells
more compact than others published.

1 Introduction

Early work in compaction largely resulted in one-
dimensional compactors [4,8,14]. These compactors,
while fast, produce layout with area and wire length
greater than would result from manual means. This is
largely due to wires being treated as rigid in the direc-
tion perpendicular to the direction of compaction. Var-
ious methods of introducing wire jogs were attempted
and produced better results [1]. However, the number of
possible locations for jog insertion grows exponentially
with the size of the cell.

Shin and Lo followed by Shin, Sangiovanni-
Vincentelli, and Séquin attempted to overcome the
shortcomings of one-dimensional compactors by em-
ploying quasi two-dimensional compaction strategies
[11,12]. They used one-dimensional compactors as a
preconditioner before attempting two-dimensional com-
paction of the cell. These approaches are a significant
improvement over straight one-dimensional compactors.

Earlier work in two-dimensional compactors by
Mosteller, Frey and Suaya [9] have shown the feasibility
of their approach. Cells produced by their compactor
were as good or better than hand-compacted cells. How-
ever, running times were very long.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery, To copy otherwise, or to republish,
requires a fee and/or specific permission.

John WawrzynekT

Erwin Liut Roberto Sua.ya1

IComl;mt.er Science Laboratory
SRI International
Menlo Park, CA 94025

The developmient of algorithms for single-layer rout-
ing from a topological description of the wires resulted
in the development of our compactor. The routability
of a design is based on a theorem proved by Maley [7)
and independently by Valainis, et al. [13] and also Gao
et al [2]. This routability theorem states:

If the distance between every pair of bubbles
of a cell is greater or equal to the topological
design rule between them, then a design rule
violation free routing of the wires exists.

As explained in section 2.1, bubbles are the primitives
which define the features of the layout. The routability
theorem allows us to discard the geometric positions of
the wires while maintaining only their topological infor-
mation. By enforcing the conditions of the routability
theorem during layout optimization, we guarantee that
a design rule violation free routing of the cell exists. Af-
ter layout optimization, this routing is calculated and
the new wire geometries are created. An advantage of
this method is that during layout optimization, wires
are continuously deformed (i.e. jogged) in an optimal
way, without needing to calculate the exact jog points
during layout optimization.

Our compaction process is divided into three phases:

1. Topological Extraction: Starting with an uncom-
pacted symbolic layout of a cell in the OCT repre-
sentation [3], a triangulation data structure is built
storing the circuit’s transistors and contacts along
with a tiling of the cell area using triangles. The
wiring topology is maintained but the wires’ geo-
metric positions are discarded. This data structure
is used to represent the cell layout throughout the
compaction process.

2. Layout Optimization: The layout is compacted
through a sequence of movements of transistors and
contacts. An incremental topological design-rule
checker is used during layout optimization to ensure
that sufficient space is reserved for later insertion
of wires.

28th ACM/IEEE Design Automation Conference®

©1991 ACM 0-89791-395-7/91/0006/0727 $1.50

Paper 41.3
727

3. Wire Reconstruction: Once a compacted layout has
been achieved, a topological wire router creates the
geometric positions of the wires such that there are
no design rule violations and that the length of each
wire is minimum.

In section 2, we discuss the topological framework of
the compactor and wire router. Section 3 discusses our
optimization algorithms. In section 4, we compare the
results of our compactor, named BOLT, against the re-
sults of other compactors using a standard set of bench-
marks.

2 Topological Framework

2.1 Layout Primitives

A bubble B is composed of one or more octagons, such
that all octagons have a common center, and each oc-
tagon has a radius and a layer associated with it. A
wire segment is composed of one or more stretched oc-
tagons, such that all stretched octagons have a common
center line, and each stretched octagon has a radius and
a layer associated with it. A wire W connecting two fer-
minal bubbles is a concatenation of wire segments such
that all the wire segments have exactly the same layers
and the corresponding radii, and for each layer on the
wire, the terminal bubbles contain the same layer as the
wire, with equal or larger radii. CMOS transistors are
constructed from 10 bubbles and 5 wires, as shown in
Figure 1.

Figure 1: Bubble representation of a CMOS transistor.

2.2 The Triangulation Database

The layers of a cell layout are assigned to several planes.
Each plane contains that set of layers that interact with
each other. Each plane is then divided into a set of
non-overlapping triangles [10]. This basic triangulation
technique is adapted to store the topological layout in-
formation as explained in detail in [13]. The bubble
centers are linked by the edges of the triangulation and
each wire is recorded as two terminal bubbles and a list
of triangle edges that the wire crosses.

An important operation in this data structure is edge
swapping; the existing diagonal of a convex quadrilateral

Paper 41.3
728

in the triangulation is replaced by the other diagonal.
Another important operation is the forcing of an edge
to link two bubbles in the layout. To force an edge, the
envelope is first identified. The envelope is a sequence of
triangles which enclose the line joining the two bubbles.
The edges contained by the envelope are then swapped
until there is an edge linking the two bubbles. It has
been shown in [5] that such a sequence of swaps always
exists. Once an edge is forced, it directly links two bub-
bles.

The topological design rule between two bubbles is
the minimum separation of the bubbles such that the
wires on the edge linking the bubbles can be linearly ar-
ranged without causing a spacing design rule violation.
If the distance between the two bubbles is less than their
topological design rule, there is a topological design rule
violation (DRV) between the bubbles.

2.3 Routing

By applying the routability theorem, the layout opti-
mization algorithm guarantees that there is sufficient
room to route the wires. Wire routing, done after lay-
out optimization, is the reconstruction of the wire ge-
ometries from the wire topologies stored in the triangu-
lation database. Through a process of wire tightening
and design rule violation removal, the router generates
the optimum® (minimum length) route of each wire for
the given topology. The details of the wire routing al-
gorithm are discussed in [6].

2.4 Bubble Moving

The algorithm for moving a bubble in the layout is?:

for each plane p {
move bubble b0 in plane p;
seal hull around bO;
check for DRV’s;
while (DRV’s) do {
move b0 back sufficiently to
remove DRV;
seal hull around bO;
check for DRV’s;

The hull around a moving bubble By is the set of
bubbles that are sufficiently close to By such that they
could have a DRV with By. To determine the set of
hull bubbles all triangles that intersect By, called hull
triangles, must be sealed. As shown in Figure 2, the
edge of the hull triangle opposite By is the hull edge Ej.

A hull triangle A By By B; is sealed if By cannot have a
DRV with any bubble in the sector £By BgBs. Although

1The use of non-curvilinear geometry results in multiple opti-
mum routes each having the same wire length.
2For clarity, we make some simplifications in this discussion.

there are no bubbles within ABgBj Bj, the region be-
yond the hull edge Ej could contain any arbitrary set
of bubbles. The sealing criterion we use is:

DR(Bo, B1) + |Ex| < |E2|

or

DR(Bo, B2) + |Ex| < |E:|

|E| is the distance between the two endpoints of the
edge. DR(Bo, B) is the topological design rule from
- Bp to B, where each octagon of B is assumed to be an
octagon of whichever layer results in the largest possible
design rule between By and B, instead of it’s actual
layer. If this criterion is satisfied, then no bubble in
the sector £B; BgB; can have a DRV with By, and the
triangle is said to be sealed. The proof of this statement
is beyond the scope of this paper.

Figure 2: A hull triangle of the moving bubble By.

If a hull triangle is not sealed, the hull edge E} is
swapped. This results in the replacement of the hull
triangle by two new hull triangles, as shown in Fig-
ure 3. This hull expansion terminates quickly because
the number of hull triangles needed before By seals is on
average constant, regardless of the number of bubbles
in the cell being compacted [13].

Figure 3: The result of swapping a hull edge.

Once the hull of By is sealed, By is checked for DRV’s
against every hull bubble. By is said to collide with
those bubbles which have a DRV to By. If By collides
with any bubbles, it is moved back sufficiently to remove
the DRV(s). .

A subset of bubbles, such as the set of bubbles that
define a transistor, may be constrained to move as a

unit. To perform this move, the bubbles are first or-
dered such that those bubbles furthest in the direction
of motion are moved first, while those bubbles trailing
behind the front bubbles are moved afterwards. The
bubbles are then moved, in order, in a given direction
as far as dictated by the layout optimization algorithm.
If any bubble has a collision which prevents it from mov-
ing the full distance, the other bubbles are moved back
until all bubbles in the group have moved by the same
amount. Note, it is not necessary to check for DRV’s
during the backward move as design rule checking was
already performed during the forward move.

3 Layout Optimization
Algorithms

3.1 Flow Algorithm

The flow algorithm attempts to move all bubbles as far
as possible in a given direction. The bubbles, ordered
by position, are moved one at a time until they collide
with another bubble or the border of the cell.

By using the flow algorithm in two perpendicular
directions the result is similar to the result of one-
dimensional compactors with the addition of automatic
jog insertion. However, the ability of bubbles to move
in any direction, regardless of the number of wires at-
tached to them can present a problem. Where in non-
topological compactors the wires are usually too rigid
and need to have jogs introduced, in our topological
compactor the automatic jog insertion of wires allows
the bubbles to move too freely. The wires stretch to al-
low their terminating bubbles to move as far as possible
in one direction and can interfere with compaction in the
perpendicular direction. In order to offset this problem,
we developed a wire length reduction algorithm.

3.2 Wire Length Reduction

To adequately reduce cell area, it is necessary to reduce
total wire length. Reducing wire length is also useful
in reducing the parasitic resistance and capacitance on
critical wires.

The wire length reduction algorithm, called relaz, also
moves bubbles one at a time in a given direction. How-
ever, instead of moving a bubble By as far as possible,
By is moved to its preferred point. The preferred point
for B is the point at which the length of the wires at-
tached to Bo—weighted by their width and layer—is
locally minimized.

Because the geometric positions of wires is not known
until after routing, it is necessary to estimate the geo-
metric positions of the wires in order to reduce the wires’
length.

The list of edges that a wire topologically crosses is
the edge list of that wire. Every edge which the wire

Paper 41.3
729

crosses topologically, the wire also crosses geometrically.
The wire estimation routine attempts to determine this
crossing point for one of the edges in the wires’ edge list.

A wire cannot cross an edge at a point where the wire
would have a DRV to either of the bubbles linked by the
edge. The remaining portion of the edge, called a win-
dow, defines the interval at which the wire could cross
the edge. Figure 4 shows a partial edge list of a wire with
the windows highlighted on the edges. Starting from the
moving bubble and stepping through the edges in the
edge list, the window for each edge in the edge list is de-
termined until a window is found which cannot be seen
by the bubble through all of the previous windows. The
last window which the bubble can see is the wrapping
window and the edge which the wrapping window is on
is the wrapping edge. At the wrapping window, the wire
turns out of sight either to the left or to the right. If the
wire turns to the right, as is the case in Figure 4, the
rightmost point of the wrapping window is the estimate
of the crossing point for the wrapping edge. This point
is circled in the figure. If the wire turns left, the left-
most point of the window is the estimate of the crossing
point for the wrapping edge. Once an estimate for the
crossing point of an edge is determined, it is assumed
that the wire will pull the moving bubble towards that
point. The force of the pull is dependent on the layer
of the wire, as well as the wire’s width. Currently, the
capacitance per unit length of the wire times the wire’s
width is used as an estimate of the magnitude of the
force.

Figure 4: Estimating wire position

The sum of the forces exerted on a bubble by wires
attached to the bubble will pull the bubble towards its
preferred point.

3.3 Iterative Optimization Algorithm

The iterative optimization algorithm uses both the flow
and relax algorithms. For a given direction, the bubbles
are moved as far as possible in that direction according

Paper 41.3
730

to the flow algorithm. Then, the bubbles are moved
back in the opposite direction according to the relax al-
gorithm. The net result is that the cell is as narrow
as possible along the axis of compaction, but those bub-
bles that did not coniribute to the width in that direction
(i.e. the bubbles not on the critical path) are moved such
that wire length is minimized. This process is repeated
for different octagonal directions. The ordering of com-
paction directions is under user control, but we have
found that the order which produces the densest lay-
out is a spiral (i.e. E, NW, S, NE, W, SE, N, SW). Of
course, the spiral pattern can be repeated as long as the
cell area continues to decrease.

We have also been developing and experimenting with
other optimization algorithms within our topological
framework. These other algorithms include simulated
annealing and other statistical methods, as well as rule-
based approaches.

4 Results

We compared the results of the iterative optimization
algorithm as described above with the results of other
compactors using the benchmarks of the ICCD 87 com-
paction workshop [1] and the results of the new MACS
compactor[11]. These benchmark examples include two
leaf cells entitled afa and afavg, as well as some hierar-
chical multipliers.

The afa cell compacted by BOLT is shown in Figure 5.
For clarity, the wells are not shown in the figure, though
they are present.

Figure 5: Compacted benchmark cell of an AND-full-
adder (afa)

The area comparisons for the two leaf cells and the
2 by 2 multiplier are given in Table 1. The area total
includes that area needed for wells.

Because the code has not yet been sufficiently opti-
mized for speed, running times for compaction are sig-
nificantly greater than other compactors. However, as
we optimize the code, we expect to obtain running times
comparable to other compactors, though still greater.

| Compactor | Area (u?) |
afa
BOLT 123.45 x 162.9 = 20110.0
MACS.2D 130.5 x 169.5 = 22119.8
MACS 143 x 166 = 23738.0
Zorro 140.5 x 171 = 24025.5
SPARCS 157 x 180 = 28260.0
Symbolics 160 x 189 = 30240.0
afavg
BOLT 114.9 x 156.75 = 18010.6
MACS.2D 129.75 x 144.75 = 18781.3
Zorro 128.5 x 151 = 19403.5
MACS 142 x 145 = 20590.0
SPARCS 157 x 151 = 23707.0
Symbolics 154 x 154 = 23716.0
mul2z?2
BOLT 264.6 x 233.7 = 61837.0
MACS 309 x 252 = 77868.0
Zorro 312 x 252 = 78624.0
SPARCS 343 x 255 = 87465.0
Symbolics 370 x 270 = 99900.0

Table 1: Area comparison of benchmark examples

5 Conclusion

In this paper, we present new compaction algorithms
used within a topological framework. These algorithms
have been implemented in the OCT environment in the
form of an experimental leafcell compactor. The algo-
rithms provide full two-dimensional compaction using
octagonal geometry and automatically make optimal
wire jogs. Preliminary results show that our iterative
greedy algorithm with wire length reduction produces
leafcells more compact than all others published. More
advanced layout optimization algorithms are currently
under development.

While this compactor may be used as a stand-alone
leafcell compactor, our goal is to develop a compactor
for hierarchical collections of cells. In hierarchical com-
paction the total area is often strongly dependent on the
inter-cell connections. A difficult tradeoff must be faced
between “stretching” cells to match with their neigh-

bors and “river routing” between them. Because this
compactor automatically jogs wires in the process of
compacting the layout, this tradeoff is easily resolved.

References

[1] D. G. Boyer. Symbolic Layout Compaction Bench-
marks - Results. In IEEE International Conf. on Com-
puter Design, 1987.

[2] F. Gao, M. Jerrum, M. Kaufmann, K. Mehlhorn,
W. Rulling, and C. Storb. On Continuous Homotopic
One Layer Routing. In Proceedings of 4th Annual Sym-
posium on Computational Geometry, 1988.

[3] D. S. Harrison, P. Moore, R. L. Spickelmier, and A. R.
Newton. Data Management and Graphics Editing in
the Berkeley Design Environment. In 4th International
Conference on Computer-Aided Design (ICCAD 86),
pages 24-27, New York, New York, November 1986.
Institute of Electrical and Electronic Engineers.

[4] Min-Yu Hsueh. Symbolic Layout and Compaction of
Integrated Circuits. PhD thesis, University of California
at Berkeley, Berkeley, California, December 1979.

[5] E. Liu. Two Dimensional IC Layout Compaction. PhD
thesis, University of Calgary, Calgary, Alberta, Canada,
December 1986.

[6] E. Liu, P. de Dood, R. Suaya, and J. Wawrzynek. A
Topological Framework for Compaction and Routing.
In Advanced Research in VLSI, 1991.

[7] F. M. Maley. Single Layer Wire Routing. PhD thesis,
Massachusetts Institute of Technology, August 1987.

[8] R.C. Mosteller. REST—A Leaf Cell Design System. In
Very Large Scale Integration, University of Edinburgh,
Edinburgh, Scotland, August 1981. Academic Press.

[9] R. C. Mosteller, A. Frey, and R. Suaya. 2-D Com-
paction - a Monte Carlo Method. In Proceedings of the
Stanford Conference on Advanced Research in VLSL
MIT Press, 1987.

[10] F. Preparata and M. I. Shomos. Computational Geomn-
etry An Introduction. Springer-Verlag, 1985.

[11] H. Shin and C. Lo. An efficient two-dimensional lay-
out compaction algorithm. In 26th ACM/IEEE Design
Automation Conference, 1989.

[12] H. Shin, A. Sangiovanni-Vincentelli, and C. H. Séquin.
Zone-Refining Techniques for IC Layout Compaction.
IEEE Transactions on CAD of ICs and System, 9(2),
February 1990.

[13] J. Valainis, S. Kaptanoglu, E. Liu, and R. Suaya. Two
Dimensional IC Layout Compaction Based on Topolog-
ical Design Rule Checking. JEEE Transactionson CAD
of ICs and System, 9(3), March 1990.

[14] N. Weste. Virtual grid symbolic layout. In Proc. 18th
Design Automation Conf., pages 225-233, 1981.

Paper 41.3
731

