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CHAPTER 10

SYNTHESIS OF FPGAS AND TESTABLE ASICS

DON W. BOULDIN
Electrical Engineering, 1508 Middle Drive, University of Tennessee, Knoxville, TN 37996-2100 U.S.A.,
Tel: (865)-974-5444, Fax: (865)-974-5483, E-mail: dbouldin@tennessee.edu

Abstract: Industrial designers and educators who plan to design microelectronic systems (e.g.
hardware accelerators, co-processors, etc.) are increasingly capturing their designs using
hardware description languages such as VHDL and Verilog. The designs are then most
often synthesized into programmable logic components such as field-programmable gate
arrays (FPGAs) offered by Xilinx, Altera, Actel and others. This approach places the
emphasis on high-level design which reduces time to market by relying on synthesis
software and programmable logic to produce working prototypes rapidly. These proto-
types may then be altered as requirements change or converted into high-volume mask
gate arrays or other application-specific integrated circuits (ASICs) when the demand
is known to be sufficient. These ASICs, however, must be designed to be testable to
screen out those with manufacturing defects. Hence, scan logic must be inserted, test
vectors generated and fault grading performed to ensure a high level of testability. These
efforts complicate and delay the conversion of FPGA designs to ASICs but must be
considered by designers of microelectronic systems. Topics covered include: design flow;
system partitioning; hardware description languages (HDLs); specifying behavioral con-
trol; specifying structural components; critical paths; placement and routing; technology
choices; FPGA applications; rapid prototyping; retargeting; manufacturing defects; scan
chain insertion; test vector generation; fault grading, and ASIC production

Keywords: VHDL, FPGA, ASIC, synthesis, programmable logic, testing

1. INTRODUCTION

Designing microelectronic systems involves mapping application requirements into
specifications that can then be implemented using appropriate microelectronic com-
ponents. These specifications must be represented at every level of abstraction
including the system, behavior, structure, physical and process levels. Internal func-
tions must be described as well as the interactions among these components and
the external world.
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Some of the distinguishing characteristics (Bouldin, 1991) of microelectronic
systems are:
– specified hierarchically,
– conform to an interface specification,
– incorporate computing (analog and/or digital processing),
– constructed using microelectronic components, and
– involve input/output devices (e.g. sensors and actuators).

Some example microelectronic systems are:
– a portable instrument for monitoring environmental data,
– an accelerator coprocessor board in a personal computer,
– a controller for a robot or an automobile, and
– a data compressor for transmitting facsimiles or images.

This chapter presents an overview of the methodology for developing microelec-
tronic systems. Thus, the role of hardware description languages, synthesis, physical
placement and routing software, programmable logic, testing and microelectronic
components will be delineated. Several caveats to this methodology in terms of
price and performance will also be discussed.

2. MICROELECTRONIC COMPONENTS

The designer of a microelectronic system frequently employs several existing inte-
grated circuits (ICs) to meet the requirements of an application and thus adds value
to the final product by interconnecting components in a unique way. Increasingly,
software is also added to provide flexibility that further distinguishes the designer’s
product from those produced by competitors. Use of existing components reduces
the time required to implement the design and generally leads to higher profits. The
components are relatively inexpensive since they are commodity parts produced
in high volume (millions of copies). Microprocessors and other VLSI/LSI compo-
nents such as digital signal processing chips are frequently the most cost-effective
since thousands of gates costing only tens of dollars (or millions of gates costing
only hundreds of dollars) can be utilized. SSI and MSI components are appropri-
ate for tasks which involve mostly external communication and very little internal
processing. Packaging is the dominant factor influencing the cost of these compo-
nents. Hence, SSI and MSI components are rarely the best choice for implementing
logic functions requiring hundreds of gates. Analog components such as operational
amplifiers, analog-to-digital converters and digital-to-analog converters are utilized
to interface to sensors and actuators.

Off-the-shelf components are by necessity general-purpose so optimum perfor-
mance and/or cost for a specific application may not be achieved. However, a variety
of user-specified components or application-specific integrated circuits (ASICs) can
be developed by the designer if the situation warrants. In these cases, the designer
is able to implement only those functions needed for a special-purpose application
so that very little of the physical space is wasted. Thus, the production cost per
integrated circuit is held to a minimum.
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Techniques have been developed to permit the designer to use a programmable
power supply to specify one or two of the layers in some semicustom integrated
circuits. These field-programmable gate arrays (FPGAs) contain fewer functions
than mask gate arrays whose layers are specified using optical masks since space
is required for the programmable links. FPGAs are also slower because of the
increased resistance and capacitance of the links. However, the time required for
customization is only a few minutes or hours as compared to several weeks for the
mask gate arrays or ASICs (Trimberger, 1994).

FPGAs are presently used to implement logic functions up to 200,000 gates or
more with a production quantity of 200,000 or less. Mask gate arrays (MGAs) or
standard-cell ASICs are used for designs requiring more gates, higher speed or
higher volume production. In one style of MGAs, the vendor prefabricates rows of
gates with spaces or channels between the rows allocated for interconnections. In
another style, the chip appears as a sea of gates (actually transistors) in which some
of the gates are used for processing and others for interconnections. The first style
is used for less complex designs since the physical space is used less efficiently.
Both styles have been adopted to make the task of performing automatic placement
and routing straightforward. Mask gate arrays can be fabricated in only 3-5 weeks
since the vendor stockpiles wafers and needs only to have the interconnection masks
made and the wafers processed for the remaining layers.

FPGAs that are equivalent in number of gates to MGAs may cost 2-10 times
as much. The additional silicon area or processing consumed for the programming
elements and the on-board addressing circuitry make the fabrication of FPGAs
much more expensive. On the positive side, extensive testing can be performed by
the supplier prior to delivery to the designer, reducing some product development
costs.

3. PRODUCT DEVELOPMENT

The development of a product requires careful consideration of many factors
including the requirements of the application, the availability of appropriate micro-
electronic components, familiarity with electronic design automation tools and the
experience of the designers. Perhaps equally significant are other factors such as
the perceived demand in the marketplace, the market window (period in which the
product is expected to sell), the presence of competition, and the risk of developing
and introducing new technologies, These factors combine to place a tremendous
pressure on developers to accelerate the design and prototyping stages of product
development in an effort to reduce the time-to-market to a minimum. Studies (Huber
and Rosneck, 1991) have shown that for every month’s delay in being introduced to
the market, a ten percent decrease in profits is experienced. Thus, those in market-
ing must proceed swiftly to ascertain the functionality desired by the customer and
those in design must quickly capture these in hardware. The designer must use his
time wisely and cleverly but not overlook errors (such as the now infamous division
error detected in the Pentium chip (Wirbel, 1994). Whenever these processes are
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performed too quickly, there is an increased risk of errors in the design, or just as
unfortunate, an increased risk that what is produced will not satisfy the customer’s
needs.

Time-to-market pressures force designers to select off-the-shelf or semicustom
components as described above. It is generally very beneficial to produce a hardware
prototype as soon as possible since extensive verification of the design cannot
be determined without it. Statistics (Huber and Rosneck, 1991) have shown that
for mask gate array designs only one set of masks is required in order to obtain
prototypes which are fully functional in a stand-alone mode. This mode consists
of testing the single integrated circuit on a tester using the same vectors that
were applied to the software simulator that modeled the IC. In essence, electronic
design automation tools have matured sufficiently that this first-pass success has
become routine for digital circuitry. However, these same statistics have shown
that these working prototypes fail about half the time when placed in the final
system when they are subjected to inputs and outputs from other components.
This failure has been attributed to insufficient system-level simulation or modeling.
While simulating, designers are just not subjecting the new ASIC to a realistic
view of its ultimate environment. Even if a high degree of realism can be achieved,
the simulation may consume an overwhelming amount of resources (computer
time, memory and disk space). In some cases, no adequate model even exists.
For example, image manipulation circuitry must be presented to the human for
evaluation and our understanding of the human visual system is still quite primitive.
In other cases, analog circuitry is involved and is not modeled with sufficient
precision.

This situation has provided great impetus to programmable logic since a design
can be implemented temporarily using FPGAs and then later retargeted to mask
gate arrays. Thus, the designer can practice using programmable logic and embed
the hardware in the full system environment to perform verification to ensure that
he has captured the design correctly. Since the penalty for making an error is quite
small at this point compared to having to endure the expense for additional mask
and wafer processing, designers can rush through the software simulation. Although
some design errors may not be caught until testing the hardware, at least these tests
can be applied and evaluated quickly, usually at full system speed. These hardware
prototypes can also be shipped to potential customers for beta testing. In fact, the
prototypes can be considered as first-release production products which can be
updated later with a new part or, in the case of reconfigurable components, with a
new configuration file. The developers are thus given the opportunity to be more
certain that what is about to be produced in quantity will satisfy the customers.
Therefore, the risks involved are reduced significantly.

Conversion from FPGAs to mask gate arrays is generally performed in order to
obtain a more cost-effective solution if the demand for the product is sufficient. To
calculate when this cross-over point occurs, the designer must evaluate not only
the costs of the FPGA parts versus the mask gate array parts but also the number
needed and the cost of conversion.
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Table 1. Comparison of product development

Design Stage FPGA (weeks) ASIC (weeks)

Design Specification 1.0 1�0
Design Entry 1.6 1�6
Functional Simulation 2.4 4�0
Test Vector Generation 0.0 6�4
Vendor Interface 0.0 1�6
Prototype Test 1.6 1�6
Prototype Lead Time 0.0 2�0
Production Lead Time 0.0 6�0
Total Design Cycle 7.0 24�0

Table 2. Comparison of product costs

Expense FPGA (dollars/part) ASIC (dollars/part)

Raw unprogrammed part 8�00 4�00
Design/Simulation 3�15 7�92
Manuf. Test Vectors 0 2�88
Place/Route/Masks 0 2�20
Final Part 11�15 17�00

Tables 1 and 2 (after Lytle, 1997) compare the product development cycles and
the major costs of the two technologies. In both cases, 20,000 copies of the part
must be produced and each part must contain 20,000 gates. It is assumed that the
slower speed of the FPGA part is acceptable. It should be noted that in 2006 these
numbers are more likely to be 200,000 gates and 200,000 copies but the procedure
for performing the calculations here has not changed.

The initial difference between the two technologies is the additional time required
for simulation. Because the penalty for making an error using a mask gate array
is several thousand dollars and a schedule slip would further damage time-to-
market and anticipated profits, the designer is likely to spend almost twice as long
simulating the mask gate array.

The next significant difference in developing these technologies is the need to
generate manufacturing test vectors for the mask gate array. Unquestionably, this
stretches the development time and adds to the overall cost, as shown in Table 2.
Even though the FPGA initially costs twice as much as the mask gate array, the
additional expenses for generating manufacturing test vectors and for the vendor’s
one-time manufacturing charges make the final mask gate array cost more than the
final programmed FPGA. Thus, for this example, the cross-overpoint for converting
to the mask gate array is greater than 20,000 parts. This number has risen by a
factor of two in just the past two years because of rapidly falling prices for FPGAs
(Lytle, 1997).
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4. DESIGN METHODOLOGY

Figure 1 illustrates the prevalent design methodology for semicustom components.
The designer begins by interpreting the application requirements into architectural
specifications which can be implemented in one or more microelectronic technolo-
gies. It is not likely that this step will be automated since it involves mapping abstract
concepts (often described in narrative form) into precise statements which depend
on the capabilities of available microelectronic components. This task is extremely
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Figure 1. Design of a microelectronic system for multiple technologies
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complex and the quality of the resulting implementation is greatly impacted by the
experience and creativity of the designer.

4.1 Hardware Description Languages and Synthesis

Once the application requirements are understood, the designer translates the
architectural specifications into behavior and/or structure representations. Behav-
ior denotes the functionality required as well as the ordering of operations and
completion of tasks in specified times. A structural description consists of a set of
components and their interconnection. These components may be primitives or col-
lections of primitives. Both behavior and structure may be specified using hardware
description languages such as Verilog or VHDL (Very High Speed Integrated Cir-
cuit Hardware Description Language). These text-based languages permit complex
hierarchies to be managed efficiently and may even be required for large designs
consisting of thousands of logic gates. HDLs can be translated automatically into
net-lists of library components using synthesis software. This software performs
essentially three functions: (1) translation from text to a Boolean mathematical
representation, (2) optimization of this representation based on one or more criteria
such as size or delay or testability, and (3) mapping or binding of the optimized
mathematical representation to a technology-specific library of components.

HDLs appear initially like other software languages and deceive many designers
into thinking that writing code in an HDL is just like writing other software
code. However, these languages are tailored for describing hardware and thus
permit concurrent operations. A traditional electrical engineer expects hardware
components to be active simultaneously and HDLs permit this situation to be
modeled. However, traditional computer programmers expect a single CPU that
performs operations sequentially. These programmers have expressed dismay at
trying to program multiprocessors operating in parallel, but that is exactly why
HDLs are used. Thus, a designer who visualizes the hardware will write code which
is more efficiently manipulated by the synthesis software. However, he should avoid
micro-managing the hardware description too much or otherwise there is nothing
left for the synthesis tool to do.

The use of synthesis benefits the designer in several ways. First, it enables him
to capture the design in a straightforward manner that may more closely parallel
the same way in which the designer envisioned the tasks. This is especially true
for describing the behavior of a controller or finite state machine since often the
designer is thinking in terms of a collection of if-then-else processes. The text is
easily modified in many cases and facilitates the management of large designs. This
is not to say, however, that text should be used exclusively. Graphical schematics
are often superior at expressing the interconnection of components. Fortunately,
electronic design automation tools have been developed which permit graphical
schematics to be produced from textual representations and vice-versa. Thus, a
description can even be a mixture of text and graphics so that the designer can use
whichever representation is warranted.
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Another benefit of synthesis is improvement in the designer’s productivity. It
takes only a few minutes for the synthesis tool to perform a variety of optimizations
on the captured design so the designer does not have to spend hours or perhaps
days looking for redundancies or trying to minimize delays. The synthesis tool can
be invoked multiple times to provide several candidate solutions from which the
designer can select at his leisure. This process essentially trades computer cycles for
human sweat. It has been reported that a novice designer using synthesis can obtain
a solution in a few days which approximates the same quality as that which an
experienced designer might obtain in several weeks. However, synthesis should not
be considered a panacea since inefficient mapping can result in larger and slower
designs than those produced by humans.

In addition to improved productivity, another benefit of using synthesis is the
ability to retarget the design without having to recapture it. Figure 1 illustrates
that the design can be captured once and the synthesis tool invoked more than
once with different technology libraries. Obviously this is of great benefit when
programmable logic is used to practice for the final design that is implemented
for cost considerations using mask gate arrays. However, this approach can be
helpful whenever the designer decides to switch families of programmable logic.
For example, a design which takes several months to develop can immediately take
advantage of new product offerings. This approach can also be used to select the
most cost-effective part for a particular application since it is possible to evaluate
several technologies before purchasing the best one. Similarly, the designer may
find it necessary to switch to a second source for mask gate arrays and retargeting
can make this easy. Just having the retargeting capability in hand maintains a
competitive environment for the hardware suppliers that can impact both their price
and service.

For those designers who believe they can produce higher quality designs manu-
ally, there is still a role for synthesis. The software can be used to obtain an adequate
solution quickly and then the designer can pinpoint those portions which need his
expert attention. Thus, he can use his time wisely and enhance an otherwise poor
solution.

4.2 Physical Placement and Routing

Once the synthesis tool produces a net-list of technology-specific library compo-
nents the design is ready to be placed and routed. The effort required for designs
of even a few thousand gates is prohibitive if performed entirely by a human. It
is much more efficient to invoke placement and routing software for this task and
to intervene only in rare cases in which the software does not find a solution for
some nets. The designer can also accept a partial solution and micro-manage the
placement and routing of only those critical nets which restrict operating the system
clock at a higher frequency. The complexity of the placement and routing task is
so great that software cannot be used to obtain an exact solution but instead must
be invoked iteratively in a clever manner. The prevailing algorithm in use today
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is based on simulated annealing since this optimization routine is tuned to obtain
a global optimum rather than accept some local optimum and stop searching the
solution space.

Placement and routing is highly order dependent in that the options remaining for
a net are reduced each time another has been routed. Consequently, nets designated
by the designer to be critical are routed first. This ensures that these nets will be
given preferrential treatment and are highly likely to be acceptable. However, some
of the remaining nets may not be treated so kindly and more intervention will be
required. Fortunately, acceptable solutions can be obtained quickly or the designer
can elect to use a larger part which has more logic and routing resources. This adds
expense but at least the design gets implemented.

Programmable logic differs from mask parts in that the programming elements
introduce a significant RC delay which makes FPGAs perhaps five or ten times
slower than MGAs which use metal vias and lines for interconnection. To counter
this problem to some degree, FPGA suppliers use segments of varying length to
avoid stepping into too many puddles. This process also adds complexity to the
optimization routines in the placement and routing software.

5. PRODUCING TESTABLE ASICS

FPGA prototypes may then be altered as requirements change or converted into
high-volume mask gate arrays or other application-specific integrated circuits
(ASICs) when the demand is known to be sufficient. These ASICs, however, must
be designed to be testable to screen out those with manufacturing defects. Hence,
scan logic must be inserted, test vectors generated and fault grading performed to
ensure a high level of testability. These efforts complicate and delay the conversion
of FPGA designs to ASICs but must be considered by designers of microelectronic
systems.

5.1 Testing Requirements

Test stimuli which validate the desired functional behavior of a circuit provide for
functional testing only. Every design must be subjected to these tests to ensure that
the application requirements are met by the circuit that is under construction. In
essence, if the application requires an adder function then the circuit being designed
must be checked to demonstrate that addition is being performed and not subtraction
or some other unwanted function.

Functional test stimuli are first used inside a simulator to validate the desired
behavior. They are then applied to the first hardware prototypes to be sure that
the desired circuit has been manufactured. Once a golden copy of the circuit has
been produced in hardware, additional copies of the part are tested to be certain
they are true replicas of the golden one. This additional testing of the production
copies is termed manufacturing testing. Manufacturing tests are required since the
semiconductor manufacturing process can contain numerous defects which in turn
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lead to yields of less than 100%. In fact, yields of 20-50% are not uncommon with
new processes (Weste and Eshraghian, 1993).

To screen out defective circuits, several steps are taken. First, a calibration coupon
is placed on each wafer in 4-6 locations. These are probed to determine whether
the calibration circuits behave within acceptable tolerance on the wafer in question.
Next, power is applied to individual dies on the wafer and the circuits are probed
to determine if the quiescent current is within an acceptable range. Those circuits
not passing this test are marked with an ink dot and discarded. Those passing are
packaged for subsequent, more extensive tests.

Packaged integrated circuits are generally placed first on a stand-alone tester and
subjected to a variety of test stimuli at a relatively low speed of 1 Mhz. Those which
pass are then subjected to higher speed tests and possibly burn-in or environmental
tests. ICs which pass all of these tests are shipped to the designer who then inserts
each IC into the target system and runs complete system-level, at-speed tests to be
certain that only working parts are sent to the customer.

5.2 Faults, ATPG and Scannable Logic

Manufacturing defects may manifest themselves in a variety of ways including
shorts and opens which make the logic nodes appear to be stuck at one or stuck
at zero. Some defects give rise to the desired behavior but only after unacceptable
delays. Fortunately, these faults can be modeled and graded so that only those parts
which exhibit an acceptable quality level (generally above 98%) will be sent to
the customer. Also, numerous techniques have been developed for automatic test
pattern generation (ATPG) so that these goals can be achieved.

It is not uncommon to apply ATPG software to a circuit only to learn that a
portion of the circuit is either uncontrollable or unobservable from the primary
inputs/outputs. One countermeasure is to insert a probe point in the circuitry which
can be accessed externally. Perhaps the simplest means of implementing these
probes is to connect external terminals to existing internal storage elements. If the
circuit is still not controllable or observable, additional storage elements may be
inserted or the circuit rearranged. This activity is termed design-for-testability.

One means of accessing internal probes while minimizing the space consumed
for interconnections is to connect them in serial fashion. This produces a chain of
flip-flops which enable external data to be scanned in and responses to be scanned
out. Since the flip-flops must be able to support normal circuit operation as well
testing, each one must be preceded by a multiplexer. These devices are therefore
known as scannable flip-flops. This additional wiring and multiplexing adds slightly
to the overall cost of the circuitry but must be included or else faulty parts will be
sent to the customer.

The use of scannable flip-flops at the periphery of the circuit is termed boundary
scan. Having access at these points is sufficient to determine whether a detected
fault lies within the part or in one of its neighbors. Built-in self-test (BIST) refers
to circuitry within the component which generates or applies test stimuli to the
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remaining internal circuitry. One obvious advantage of BIST is the fact that the
tests are applied at full-speed. Another is the ease of access to internal functions and
an almost unlimited number of inputs and outputs. Yet another benefit of including
BIST is that the test may be initiated at any time, even after being shipped to the
customer. Thus, the customer can reinitiate the BIST and be reassured whether the
part is working faithfully.

Both FPGAs and ASICs must be testing for manufacturing defects. In the case of
FPGAs, the vendor can perform these tests prior to shipping them to the application
designer. Hence, the application designer needs only to generate functional tests and
check that the programming of each part is a faithful reproduction of his prototype.
However, the application designer who uses ASICs must shoulder the additional
burden of generating and applying warranted manufacturing tests. Thus, it is the
responsibility of the application designer to use scannable flip-flops, generate the
manufacturing test patterns and perform fault grading. If the fault grade is too low,
the designer must insert additional scannable flip-flops or redesign the circuitry. All
of this must be done prior to manufacturing in order to be certain that the desired
level of fault grading can be achieved. After the parts have been fabricated, each
one must be subjected to these manufacturing tests to screen out the faulty ones.

6. SUMMARY

Designers of microelectronic systems are increasingly capturing their designs using
hardware description languages such as VHDL and Verilog. Designs requiring up to
200,000 gates and less than 200,000 copies are most often synthesized into FPGAs.
When higher performance or larger quantities are warranted, these designs are
retargeted to ASICs. However, ASICs must be designed to be testable to screen out
those with manufacturing defects. Hence, scan logic must be inserted, test vectors
generated and fault grading performed to ensure a high level of testability.
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