The McGraw-Hill Companies

CMOS Digital Integrated Circuits

Chapter 1 Introduction

S.M. Kang and Y. Leblebici

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Some History

Shockley, Bardeen, Brattain – Bell Labs		M.
Single-transistor integrated circuit Jack Kilby – Texas Instruments	1958	
Invention of CMOS logic gates Wanlass & Sah – Fairchild Semiconductor	1963	
First microprocessor (Intel 4004) 2,300 MOS transistors, 740 kHz clock frequency	1970	
Very Large Scale Integration	1978	

Chips with more than ~20,000 devices

Invention of the transistor (BJT)

1947

More Recently

Ultra Large Scale Integration

System on Chip (SoC)

20 ~ 30 million transistors in 2002

The chip complexity has increased by a factor of 1000 since its first introduction, but the term **VLSI** remained virtually universal to denote digital integrated systems with high complexity.

As a result of the continuously increasing integration density and decreasing unit costs, the semiconductor industry has been one of the fastest growing sectors in the worldwide economy.

Industry Trends

More portable, wearable, and more powerful devices for ubiquitous and pervasive computing...

Some Leading-Edge Examples

Intel Pentium 4 0.13µ process 55 million transistors 2.4GHz clock 145mm²

Some Leading-Edge Examples

IBM S/390 Microprocessor 0.13 μm CMOS process 7 layers Cu interconnect 47 million transistors 1 GHz clock 180 mm²

Evolution of Minimum Feature Size

Evolution of Minimum Feature Size

Moore's Law

© CMOS Digital Integrated Circuits – 3rd Edition

Evolution of Memory Capacity

ITRS - International Technology Roadmap for Semiconductors

YEAR	2002	2005	2008	2011	2014
TECHNOLOGY	130 nm	100 nm	70 nm	50 nm	35 nm
CHIP SIZE	400 mm ²	600 mm ²	750 mm ²	800 mm ²	900 mm ²
NUMBER OF TRANSISTORS (LOGIC)	400 M	1 Billion	3 Billion	6 Billion	16 Billion
DRAM CAPACITY	2 Gbits	10 Gbits	25 Gbits	70 Gbits	200 Gbits
MAXIMUM CLOCK FREQUENCY	1.6 GHz	2.0 GHz	2.5 GHz	3.0 GHz	3.5 GHz
MINIMUM SUPPLY VOLTAGE	1.5 V	1.2 V	0.9 V	0.6 V	0.6 V
MAXIMUM POWER DISSIPATION	130 W	160 W	170 W	175 W	180 W
MAXIMUM NUMBER OF I/O PINS	2500	4000	4500	5500	6000

Predictions of the worldwide semiconductor / IC industry about its own future prospects...

Shrinking Device Dimensions

YEAR	2002	2005	2008	2011	2014
TECHNOLOGY	130 nm	100 nm	70 nm	50 nm	35 nm
CHIP SIZE	400 mm ²	600 mm ²	750 mm ²	800 mm ²	900 mm ²
NUMBER OF TRANSISTORS (LOGIC)	400 M	1 Billion	3 Billion	6 Billion	16 Billion
DRAM CAPACITY	2 Gbits	10 Gbits	25 Gbits	70 Gbits	200 Gbits
MAXIMUM CLOCK FREQUENCY	1.6 GHz	2.0 GHz	2.5 GHz	3.0 GHz	3.5 GHz
MINIMUM SUPPLY VOLTAGE	1.5 V	1.2 V	0.9 V	0.6 V	0.6 V
MAXIMUM POWER DISSIPATION	130 W	160 W	170 W	175 W	180 W
MAXIMUM NUMBER OF I/O PINS	2500	4000	4500	5500	6000

Increasing Function Density

YEAR	2002	2005	2008	2011	2014
TECHNOLOGY	130 nm	100 nm	70 nm	50 nm	35 nm
CHIP SIZE	400 mm ²	600 mm ²	750 mm ²	800 mm ²	900 mm ²
NUMBER OF TRANSISTORS (LOGIC)	400 M	1 Billion	3 Billion	6 Billion	16 Billion
DRAM CAPACITY	2 Gbits	10 Gbits	25 Gbits	70 Gbits	200 Gbits
MAXIMUM CLOCK FREQUENCY	1.6 GHz	2.0 GHz	2.5 GHz	3.0 GHz	3.5 GHz
MINIMUM SUPPLY VOLTAGE	1.5 V	1.2 V	0.9 V	0.6 V	0.6 V
MAXIMUM POWER DISSIPATION	130 W	160 W	170 W	175 W	180 W
MAXIMUM NUMBER OF I/O PINS	2500	4000	4500	5500	6000

Increasing Clock Frequency

YEAR	2002	2005	2008	2011	2014
TECHNOLOGY	130 nm	100 nm	70 nm	50 nm	35 nm
CHIP SIZE	400 mm ²	600 mm ²	750 mm ²	800 mm ²	900 mm ²
NUMBER OF TRANSISTORS (LOGIC)	400 M	1 Billion	3 Billion	6 Billion	16 Billion
DRAM CAPACITY	2 Gbits	10 Gbits	25 Gbits	70 Gbits	200 Gbits
MAXIMUM CLOCK FREQUENCY	1.6 GHz	2.0 GHz	2.5 GHz	3.0 GHz	3.5 GHz
MINIMUM SUPPLY VOLTAGE	1.5 V	1.2 V	0.9 V	0.6 V	0.6 V
MINIMUM SUPPLY VOLTAGE MAXIMUM POWER DISSIPATION	1.5 V 130 W	1.2 V 160 W	0.9 V 170 W	0.6 V 175 W	0.6 V 180 W

Decreasing Supply Voltage

YEAR	2002	2005	2008	2011	2014
TECHNOLOGY	130 nm	100 nm	70 nm	50 nm	35 nm
CHIP SIZE	400 mm ²	600 mm ²	750 mm ²	800 mm ²	900 mm ²
NUMBER OF TRANSISTORS (LOGIC)	400 M	1 Billion	3 Billion	6 Billion	16 Billion
DRAM CAPACITY	2 Gbits	10 Gbits	25 Gbits	70 Gbits	200 Gbits
MAXIMUM CLOCK FREQUENCY	1.6 GHz	2.0 GHz	2.5 GHz	3.0 GHz	3.5 GHz
MINIMUM SUPPLY VOLTAGE	1.5 V	1.2 V	0.9 V	0.6 V	0.6 V
MAXIMUM POWER DISSIPATION	130 W	160 W	170 W	175 W	180 W
MAXIMUM NUMBER OF I/O PINS	2500	4000	4500	5500	6000

Process Technology Node (nm)

5-layer cross-section of chip

Typical Chip Cross Section

System-on-Chip

Integrating all or most of the components of a hybrid system on a single substrate (silicon or MCM), rather than building a conventional printed circuit board.

- 1. More compact system realization
- 2. Higher speed / performance
 - Better reliability
 - Less expensive !

New Direction: System-on-Chip (SoC)

Products have a shorter life-cycle !

Better strategy

Structured Design Principles

- **Hierarchy:** "Divide and conquer" technique involves dividing a module into submodules and then repeating this operation on the sub-modules until the complexity of the smaller parts becomes manageable.
- **Regularity:** The hierarchical decomposition of a large system should result in not only **simple**, but also **similar** blocks, as much as possible. Regularity usually reduces the number of different modules that need to be designed and verified, at all levels of abstraction.
- **Modularity:** The various functional blocks which make up the larger system must have well-defined functions and interfaces.
- Locality: Internal details remain at the local level. The concept of locality also ensures that connections are mostly between neighboring modules, avoiding long-distance connections as much as possible.

Hierarchy of a 4-bit Carry Ripple Adder

16-bit adder complete layout

4-bit adder with Manchester carry

Carry/propagate circuit layout

Manchester carry circuit layout

Output buffer/latch circuit layout

Regularity

2-input MUX

VLSI Design Styles

Full Custom Design

Following the partitioning, the transistor level design of the building block is generated and simulated.

The example shows a 1-bit full-adder schematic and its SPICE simulation results.

© CMOS Digital Integrated Circuits – 3rd Edition

Full Custom Design

The main objective of full custom design is to ensure fine-grained regularity and modularity.

Full Custom Design

A carefully crafted full custom block can be placed both along the X and Y axis to form an interconnected two-dimensional array.

Example: Data-path cells

© CMOS Digital Integrated Circuits – 3rd Edition

Full Custom SRAM Cell Design

Mapping the Design into Layout

Manual full-custom design can be very challenging and time consuming, especially if the low level regularity is not well defined !

VLSI Design Styles

HDL-Based Design

1980's

Hardware Description Languages (HDL) were conceived to facilitate the information exchange between design groups.

1990's

The increasing computation power led to the introduction of logic synthesizers that can translate the description in HDL into a synthesized gate-level net-list of the design.

2000's

Modern synthesis algorithms can optimize a digital design and explore different alternatives to identify the design that best meets the requirements.

HDL-Based Design

The design is synthesized and mapped into the target technology.

The logic gates have one-to-one equivalents as standard cells in the target technology.

© CMOS Digital Integrated Circuits – 3rd Edition

VLSI Design Styles

Mask Gate Array

Mask Gate Array

VLSI Design Styles

Field Programmable Gate Array

Field Programmable Gate Array

Internal structure of a CLB

Field Programmable Gate Array

