The Design and Implementation of a
Context Switching FPGA

Sanders, A Lockheed Martin Company
PTP2-B007
65 River Road
Hudson, NH 03051

Stephen M. Scalera
sscal era@sanders.com
Phone: (603) 885-0679 FAX: (603) 885-7623

Abstract

Dynamic reconfiguration of field programmable gate
arrays (FPGASs) has recently emerged as the next step in
reconfigurable computing. Sanders, A Lockheed Martin
Company, is developing the enabling technology to
exploit dynamic reconfiguration. The device being
developed is capable of storing four configurations on-
chip and switching between them on a clock cycle basis.
Configurations can be loaded while other contexts are
active. A powerful cross-context data sharing mechanism
has been implemented. The current status of this work
and future work are described.

1 Introduction

History has seen the methodologies of computing evolve

from fixed hardware and fixed software (ENIAC), to fixed
hardware and reconfigurable software (microprocessors),

to reconfigurable hardware and reconfigurable software
(FPGAS). FPGAs have traditionally been utilized in
applications that demand the performance of application
specific integrated circuits (ASICs) while maintaining the
flexibility and rapid design cycle afforded by the use of
digital signal processors (DSPs). Although FPGAs are

not ideally suited for either requirement, they do offer an
excellent compromise. In the recent past, many research
efforts have examined the possibility of performance
enhancement due to run-time reconfiguration. However,

the best of today's commercially available technology
requires milliseconds to reconfigure. This reconfiguration
time, although acceptable for some applications, such as
the SPEAKeasy reconfigurable “softradio” developed by
Sanders, is an unacceptable delay for most real-time
systems. Although partial reconfiguration can reduce the
required reconfiguration time, this is believed to be an
alternative approach to dynamic reconfiguration. Being
able tocompletely reconfigure an FPGA at a rate that far
exceeds the necessary persistence of a hardware function,

Jose R. Vazquez
jvazquez@ede.sanders.Imco.com
Phone: (603) 885-0746 FAX: (603) 885-7623

while being able to share data between configuration
instantiations is believed to be tomorrow’s reconfigurable
computing computational model. This model of
computation shall be referred to asntext switching
reconfigurable computing and is a natural extension of
today's methodology. Arguably, context switching is not
unlike the very first mode of computation. In essence,
clock-cycle dynamic reconfiguration can be viewed as
fixed hardware andfixed software since the available
hardware can be thought of as being virtually infinite —
virtual hardware.

The context switching reconfigurable computing (CSRC)
technology being developed by Sanders extends
commercially available field programmable gate array
(FPGA) devices to include high speed changes between a
number of programmed functions without the need for
additional FPGAs. Each configuration, referred to as a
context, in a CSRC FPGA has the functionality similar to
that of many commercially available FPGAs. The context
switching can occur at significantly higher speeds than the
rate at which current FPGA technology can reconfigure.
In addition, wunlike commercial FPGAs, where
reprogramming destroys any resident data, the CSRC
FPGA affords the capability of data sharing between
contexts.

The concept of virtual hardware is an obvious benefit of
dynamic reconfiguration. If configurations can be
swapped in and out of an FPGA upon demand at a real-
time system rate, only the necessary hardware need be
instantiated at any given time. In this manner, a virtually
infinite algorithm cache or an infinite coprocessor can be
conceived. In other words, a high level system scheduler
can instantiate hardware as needed. In this manner, a
reduction in size, weight, and power can be achieved.
Additionally, given the CSRC FPGA, if the processing
requirements specify a sequential application of

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 22, 2008 at 11:05 from |IEEE Xplore. Restrictions apply.

agorithms, the context layers can be set up to share data
such that the output of one agorithm is immediately
available as the input to the next algorithm upon a context
switch. Thisis not possible with contemporary FPGAS.

A natural extension of the agorithm cache mode of
computation is the concept of mission phase
reprogrammability. As seen in Figure 1.1, an entire
mission can be mapped to a CSRC device. In this case,
different contexts can house different algorithmic phases
of a mission without requiring that an agorithm be
confined to a single context, depicted as layers in Figure
1.1

» Mission Phase Reconfiguration
—Navigation
<4— Logic Array —Destination recognition
—Image processing
—Target recognition
—Data compression
—Data encryption
—Radio waveform generation

Navigation —Transient data storage
Image

Processing « Data Dependent Reconfiguration
Data St —Image classification template match
2 DaStorage —Threshold sensitive filter selection

e}

« Software Acceleration
Encryption —Dynamic Link Libraries (DLL) in

% hardware called by software
Communications
* Virtual Hardware

Virtual —Stored “library” of configurations
Hardware —Hardware caching

Library —Configuration available and
configuration memory shift over time

Figure 1.1: Reconfiguration Benefits

Although Figure 1.1 identifies the obvious modes of
computation for gaining a performance enhancement, it is
believed that the true potential of context switching
requires a paradigm shift in agorithm implementation.
The capabilities of the CSRC architecture, which extend
dynamic reconfiguration to context switching, have the
potential to provide improved implementations of signal
processing algorithms over those currently available
through commercial FPGAs. The inherent ability of
CSRC to quickly perform different tasks and share results
among different configurations allows one to approach
algorithms from a different perspective, enabling
mathematical implementations previously inconceivable
without context switching.

Although the past few years have seen much interest in
context switching reconfigurable computing, it is believed
that this paper describes the first design and
implementation of such adevice. Up until now, all of the
substantiated work on this model of computation has been
theoretical. The emphasis of this paper is revea the
architecture of the context switchable FPGA being
developed by Sanders. It is hoped that this paper will
spark new ideas and facilitate algorithmic research that is
targeted towards a specific and real architecture. With
this achieved, as the world’'s first context switchable

silicon becomes available, members of the adaptive
computing systems (ACS) community will be capable of
taking full advantage of this new technology. IC

development status is advanced in section 3.

2 Architecture

Experience has shown that FPGAs afford the greatest
performance benefit when they are used to implement
algorithms with deep pipelines. However, pure dataflow
algorithms are rare. In fact, generating pipeline control
signals, implementing state machines, and interfacing with
external RAM or other integrated circuits, are critical,
although not typically areas of performance enhancement,
to an FPGA'’s successful system integration. With this in
mind, the CSRC device was designed to be a 4 bit DSP
dataflow engine that is simultaneously capable of
efficiently implementing glue logic. However, since
FPGA performance enhancements are oftentimes achieved
by implementing the minimum required bitwidth, the
CSRC device was developed to allow users to implement
scalable pipelines such that the wordwidth can be of any
size.

2.1 DataPipes

The CSRC device is arranged into 16-bit wide data pipes.
Each pipe is formed by a plurality of context switching
logic arrays (CSLAs) as seen in Figure 2.1. A single
CSLA is capable of processing two 16-bit words and
outputting a 16-bit result. The result of a CSLA is
available as an input to the two adjacent CSLAs in the
pipe. Hence, a pipe can naturally be used as a data path.
Information can easily flow from one end of the pipe to
the other. It is important to point out that in this device
data can non-preferentially flow in both directions. This
feature has great utility when sharing data among different
contexts. For example, one context could process data
from left to right, storing it's final result in the right-most
set of registers. Note that is quite possible that the final
result of a single context is actually an intermediate result
of the entire algorithm. Given this situation, an incoming
context can pick up where its predecessor context left off
by acquiring the intermediate data deposited on the
rightmost portion of the pipeline and processing it in a
pipeline that flows from right to left. From this simple
example, it can be seen that a data path that does not favor
data flow in either direction is more efficient for context
switching hardware because it alleviates the need to
reroute data from its physical origin in one context to its
physical input in the subsequent context.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 22, 2008 at 11:05 from |IEEE Xplore. Restrictions apply.

<
G-

vy
\A 4

CSL

\A 4

CSLA

A

i

Level 2
Routing

Figure 2.1: 16 Bit Data Pipe Comprised of CSLAS

Level 2 routing can be found alongside the pipe and
consists of 16-bit buses. See Figure 2.1. These busses are

not segmented and run the entire width of the CSRC
device. This type of bussing scheme implies that a signal
driven onto level 2 routing is available to any CSLA in the
pipe. Additionaly, this approach affords the possibility of
faster and less complicated programming tools than
segmented approaches because the timing is more
deterministic. Each CSLA has two 16-bit inputs, each of
which is capable of tapping into any of the Level 2 routing
busses. Similarly, the CSLA’s 16-bit output can drive any
of the Level 2 routing busses. Note that Level 2 routing
can be utilized as a bus architecture, can be broken down
and utilized by individual bits, or can be employed as any
combination of these.

| |
: v o
pl pe > < > < > <\ Level 3 Routing
gl > 7 gl —
ST

le
!

A
\A 4
CSLA
A
\A 4
'CSLA
A
\A 4
| |
CSLA -

Figure 2.2: Level 3 Routing Bridges Pipes

The CSRC device is formed by stacking up pipes one on
top of the other. Corresponding CSLAs on adjacent pipes
have dedicated wiring that allows them to pass along their
carry bit. This feature allows two adjacent pipes to be
bundled together and be used as a single 32-bit wide data
path. In actuality, physical 16-bit pipes can be broken
down into smaller logical pipes. Although hardware is

optimized to break pipes into nibbles, pipes can be n-bits
wide.

As seen in Figure 2.2, information driven onto a given
pipe’s Level 2 routing can be connected to Level 3 routing
which in turn makes the data available to any Level 2
routing on the chip. Similar to the Level 2 routing
structure, the Level 3 routing is not segmented and spans
the device. Note that conceptually the Level 2 and Level
3 routing are perpendicular to each other.

I/0 pins on the device are connected to Level 2 and Level
3 routing. All pins physically located on the top and
bottom edges of the device connect to Level 3 routing.
Pins on the left and right edges can connect to either Level
2 routing or directly into the dedicated routing that
normally connects adjacent CSLAs.

2.2 Context Switching Logic Array

A single CSLA is primarily composed of 16 context
switching logic cells (CSLCs) and Level 1 routing to
interconnect them. Figures 2.3 and 2.4 depict a CSLA
and the CSLA as it attaches to the Level 2 routing,
respectively. The CSLCs are numbered 0 through 15 and
their carry-in and carry-out chains are hardwired
appropriately so they can function as a single cohesive
unit. Level 1 routing consists of three 16-bit busses. Two
of these 16-bit busses are inputs from the Level 2 routing.
The third 16-bit bus is hardwired to the outputs of the
CSLCs. Level 1 routing was designed with two modes of
operation in mind.

2.3 Routing M odes of Operation

As previously mentioned, it is believed that the most
beneficial FPGA is capable of exploiting its inherent DSP
strengths while simultaneously being capable of
implementing the often required glue logic. Hence, the
CSRC FPGA has been designed with two modes of
operation in mind: (1) Deep pipeline mathematical
operations that can be of arbitrary bitwidth & (2) Random
logic implementations that encompass control, state
machines, and interfacing with external RAM or other
integrated circuits. As a direct result, the CSRC FPGA
exhibits two types, or modes, of routing.

23.1 BusRouting

The first operational mode of routing is bus routing. The
design goal was to provide users with the ability to route
entire 16-bit words in and out of CSLAs while

maintaining bitwidth order (i.e. the most significant bit

(MSB) in the MSB position and the least significant bit
(LSB) in the LSB position). Given that the four

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 22, 2008 at 11:05 from |IEEE Xplore. Restrictions apply.

]

rir

:1“!!

yri-d
rddrded

0000 0000 9000 0000
$358 %3558 gt ge88
0000 90000 5000 0000
Id 3

0000
2823 8888 8888 9358
0000 0000 Q000 0000
0000 0000 Q000 0000

°

5
o
0009 Q000 < 9000 Q000
fodeed Q000 < 0000 9000
Q00 0000 < 0000 0000
0000 30060 q 0000 0000
223

Figure 2.3: Context Switching Logic Array & Level 1 Routing

3352
3358

Level 1 Routing
N

9003/
3338
8838

Level 2 Routing

Figure 2.4: Context Switching Logic Array with Level 1 & Level 2 Routing

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 22, 2008 at 11:05 from IEEE Xplore. Restrictions apply.

data inputs to the CSLC are labeled as A, B, C, and D,
enough programmable connections are contained in the
Level 1 switching matrices to ensure that one of the input
buses can be routed into the A inputs of al of the 16
CSLCs. The least significant bit of the bus feeds the A-
input of the least significant CSLC and so on. In essence,
this bus can be considered the A-input (16-bits wide) for
the entire CSLA under this bus routing mode of operation.
Note that the second 16-bit bus can be used to feed the B
inputs of the CSLCs within a CSLA in a similar fashion.
The final bus connection is hardwired to the 16-bit output
of the CSLA and attaches to the Level 2 routing. Note that
this output is also a direct connect between neighboring
CSLAs. As previously described, this non-directional
direct connect alows for fast routing between CSLAS
within a pipe by aleviating the need for Level 2 routing if
the output of a pipe stage is feeding a neighboring CSLA.

2.3.2 Bitwise Routing

The second mode of operation is bitwise routing. No
matter how data processing intensive a design might be
there is almost always a need for control logic whether it

is simple glue logic or more complex state machines. For

this reason the bitwise routing mode of operation is
necessary. The basic premise is that the output of any
given CSLC within a CSLA should have at least one
possible path to connect to at least one input of al other
CSLCs within the same CSLA. A simple pattern of
programmable connections was developed to enable this
feature. All the A-inputs of all the CSLCsin a CSLA can

tap into the four least significant bits of al three Level 1
routing busses (this includes the output bus to provide a
means of local feedback without having to waste Level 2
routing resources). Similarly the B-inputs and the C-
inputs tap into the next 4 bit bundles within each level 1
routing bus, and finally the D-inputs tap into the four most
significant bits on every bus. As a result, the four least
significant CSLCs, which drive the corresponding four-
least significant bits of the output bus, are capable of
driving any A-input on any CSLC within the same CSLA.

For this reason these four CSLCs are known as “A-
drivers” under the bitwise routing mode of operation.
Similarly, B-drivers refers to CSLCs 4 through 7, C-
drivers to CSLCs 8 through 11, and D-drivers to CSLCs
12 through 15. Furthermore, since connections between
Level 1 and Level 2 and connections between Level 2 and
Level 3 maintain proper bit order (LSBs to LSBs and
MSBs to MSBs) any A-driver can drive the A-input of
any CSLC anywhere in the chip. For these same reasons,
the same functionality applies to the B, C, and D-drivers.

In addition to the four main inputs (A, B, C, & D), each
CSLC has a clock enable / tri-state control line. Both of
these control lines tap into the four most significant bits of

the three Level 1 buses, hence, they are controlled by D-
drivers. As seen in Figure 2.5, the clock enable / tri-state
control line is a single control line to the CSLC. For this
reason, the user can choose to use this control line to
control either the clock enable or the tri-state buffer.

24 CSLC

The CSLC is the heart of computation for the CSRC
device. As seen in Figure 2.5, the CSLC is composed of
carry logic, a four input lookup table (CSLUT), a context
switching flip-flop (CSFF) and a tri-state buffer. The carry
logic unit is capable of generating carry bits for either
additions or subtractions. The carry logic chain is
connected by dedicated connections. The chain can be
connected, disconnected, or fed a logic zero or logic one
every four bits. In this manner, the bus routing mode can
be utilized to generate a pipeline granularity of four bits.
However, in reality, the buswidths can be of an arbitrary
bitwidth, n. Note that bitwidths with a modulo 4 m,
wherem is greater than zero, will disallomt CSLCs from
supporting a mathematical pipe that requires the starting
of a carry chain.

. > ROM | | |y
¢) L o ey
TR Sy

P pmecco > 3 i

[: L): RAM » 1 v N

L1 ST R(LUT)L

H L--- Final »

"""" > Device,

Figure 2.5: Context Switching Logic Cell Architecture

The outputs of the carry logic feed the CSLUT which
consists of 16 context switching configuration bits
(CSBits) that are multiplexed together. The 4 inputs serve
as the select lines therefore implementing a programmable
function. Note that the contents of each of the CSLUTSs

are unigue in each context and specified in the
configuration bitstream.
The CSBits implement context switching itself. Each

CSBit holds a single programming bit for every context.
However, only the active context’s value drives whatever
logic the CSBiIt is controlling. A detailed description of
the context switching functionality afforded by these
CSBits is described in section 2.6.

Unlike some commercial FPGAs, the lookup table can not
serve as a memory element because the CSLUT is
composed of CSBits, not SRAM. Instead a separate
context switching RAM (CSRam) provides memory

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 22, 2008 at 11:05 from |IEEE Xplore. Restrictions apply.

storage facilities. The CSRam, which is only available in
the final CSRC device, implements the global sharing
scheme. This data sharing scheme is similar to traditional
blackboard data sharing. Any data written to a CSRam
memory is available to al the CSRam elements that are
physically collocated among different contexts. Whatever
data value is last written into the active CSRam before
deactivation of the current context will be seen by all
other collocated CSRams upon the activation of their
respective contexts. In fact, one can envision writing to a
CSRam in one context and having its contents be used as a
LUT in another context. Additionaly, it is the CSRam
that will allow for large amounts of data passing between
contexts to facilitate modes of computation such as
moving the algorithm through the data. This mode of
computation is advantageous due to the fact that the on/off
chip accesses are minimized by loading the data on chip
and keeping it on chip until the entire agorithm has been
run on the data.

Both the CSRam and the CSLUT will coexist in the final
CSRC device and their outputs will be multiplexed
together. The select line of this MUX is yet another
control line to the CSLC and it is connected to Level 1
routing in the same fashion as the clock enable / tri-state
control (driven by D-drivers). The output of this MUX
can then be registered or passed directly out of the CSLC
as seen in Figure 2.5. In either case, the user has the
ability to tri-state the output of the CSLC. Note that if the
data is to be registered, it will be done in the context
switching flip-flop (CSFF). During regular operation
within a single context, the CSFF appears to the users as a
norma D-flip-flop (DFF). The DFF connects to the
global clock and it is controlled by the clock enable input
tothe CSLC.

25 CSIo

The context switching input/output cell is used to facilitate
on/off chip data accesses. As can be seen in Figure 2.6,
the CSIO cell is bi-directional, can provide latched or
direct outputs, and has a programmable pull-up resistor on
the output. In addition, the CSIO cell can tri-state its
output. Since on/off chip access time is oftentimes a
limiting factor of FPGAS, a programmable drive strength
capability has been included to insure maximum
performance. The output drive strength can be selected to
be 2mA, 6mA, or 12mA. Findly, the flip-flop in the
CSIO cdll utilizes a different sharing scheme than the flip-
flop in the CSLC. Note that since it is believed that
sharing data between contexts within a CSIO cell is
unlikely to be a key feature, the global sharing scheme is
implemented for the CSIO cell DFFs rather than the more
complex sharing scheme that is implemented in the
CSLC’s DFF.

‘7

Qfﬁzb»ug :
el

FF

2

A
L)
Q
L

(—l

Figure 2.6: Context Switching Input/Output Cell Architecture

2.6 Data Sharing/ Context Switching

Research indicates that the major benefits of context
switching are afforded by sharing data between contexts
and being able to switch between contexts very rapidly.
For this reason, a great emphasis has been placed on the
development of a device that meets both of these needs.
The two sharing schemes that have been designed and
implemented are Global Sharing and Private/Public
Addressable Sharing (P/PASS). The global sharing
scheme is used in the CSIO DFF and in the CSRam while
P/PASS is used in the CSLCs by the CSFF. Global
Sharing, as previously described, is simply a common
memory element between all contexts. Hence, all contexts
view these same memory elements and when any context
writes to the memory element, the change is seen by all
contexts upon their respective activation.

The data sharing scheme used by the CSFF, P/PASS, truly
exposes the novelty of the CSFF and is depicted in Figure
2.7. With this type of sharing, each CSFF within each
context supported in hardware has a corresponding
register. These registers are known pas/ate registers
since they belong to a particular context and can only be
accessed by a specific DFF within the context.
Additionally, there is a single active register per CSFF.
The active register is what the user actually utilizes during
uninterrupted context execution. Upon switching
contexts, the outgoing (active) context saves its
intermediate values to its private registers. This feature
enables many of the capabilities that the NSA would need
to develop secure kernels by isolating intermediate data.
Additionally, a context cachoose to write its values to a
public register (on a Logic Cell by Logic Cell basis)
which can be addressed by any and all of the contexts. In
this manner, the sharing of data between DFFs within
contexts is enabled. The number of public registers
available in a P/PASS implementation is independent of
the number of contexts supported directly by hardware.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 22, 2008 at 11:05 from |IEEE Xplore. Restrictions apply.

Hence, public registers must be addressed when used.
Note that the CSRC device affords two public registers.
Upon activation, a context can choose to restore its
previous state by reading from the private register or it
can opt to load a state from either public register (on a
Logic Cell by Logic Cell basis).

P/PASS provides a means to keep secure data isolated
while at the same time alowing data to be shared (if so
desired) using public registers. This architecture scales to
implementations with more contexts than hardware
supports, allows sharing data between contexts that do not
necessarily follow one another in time, and provides a
clean and solid foundation to add features such as
interrupt handling and hardware recursion.

ctxt 1—»ctxt 3

Dedicated context registers get
updated every time a switch
occurs (1,2, 3 or 4).

Public sharing registers can be
addressed (A or B).

Upon becoming active, a context
can either restore it's previous
data or'load a public register.

ctxt 1 @ savePublic?

@ savePublic Address
CtXt 3 @) Load Public Address

@ Restore Private or Public? Determineswhether the datais restored from a public register

Savedata to public r egister

Deter mines Address of public register the datais stored to

Determines which public register the data can beread from

Figure 2.7: Private/Public Addressable Sharing Scheme

Since some modes of computation, such as the virtual
coprocessor, require rapid reconfiguration, the CSRC
device was designed to be capable of switching contexts

on asingle clock cycle. A key point to be made is that

this single cycle context switching not only includes
completely reconfiguring the CSRC device but completely
executing all of the data sharing schemes. In fact, the
active context can be swapped so rapidly that a context

can be processing data on one clock edge, switch to a new
configuration (including data sharing) and be processing
data in the new configuration on the very next clock edge.
SPICE simulations indicate that it is possible to switch
contexts in fewer than 5 nanoseconds. A cavesat to this
rapid context switching is that time will be required to
distribute the “switch to” lines throughout the chip. These
lines indicate which context the device is supposed to
switch to upon receiving the “switch” signal. However,
given that the “switch to” lines are stable, the context
switch can take place as described above. Note that this
delay in switching is merely a latency and can therefore be
factored into the logic that initiates a switch. Since the
switch can be initiated by the active context or via
external stimulus this latency is easily accounted for.

2.7 Programming

The bitstreams for the CSRC FPGAs are downloaded
serially. The user is required to specify which context is
about to be downloaded and then supply a clock and data.
By repeating this process four times, the user can
configure all four on-chip configurations. Note that the
configuration being downloaded can not be active during
configuration download. However, inactive contexts can
be downloaded while another context is active and
running. Additionally, a bitstream may be downloaded by
the active context. In this manner, one can envision the
possibility of passing compressed or encrypted bitstreams
into the active context so that it may download an inactive
context after uncompressing or decrypting the bitstream.

The device will power up, prior to downloading
bitstream(s), in a known state possessed by all four
configurations. This provides the user with the ability to
determine if the device is operational prior to use. The
known state, although yet undetermined will either be
benign or of some simple functionality providing some
level of built-in self-test (BIST).

Software will be available with the device that generates
bitstreams for the CSRC devices from VHDL. The user
will be required to manually partition the logic among the
contexts if the algorithm should span multiple contexts.
However, in such a case, the toolkit will be capable of
simultaneously placing and routing the logic in each
context so that intermediate data passage is optimized.
This is believed to be a key element of context switching
data sharing because if each of the contexts, which are to
share data, are individually and sequentially placed and
routed “in a vacuum”, the placement restraints imposed on
each context would compound and rapidly become
prohibitively constraining.

3 Status

Sanders is developing this technology in two phases. The
first phase involves the development of a small prototype
version of the CSRC technology. This chip will serve
both as a concept validation tool and a platform for
acquiring empirical data about the performance
enhancements afforded by this new technology. The
subsequent phase entails the development and fabrication
of a larger version of the prototype with a few additional
features. Both the prototype and the larger more capable
final device are full custom IC designs being designed and
fabricated on National Semiconductor’s u3bne. The
prototype CSRC device is currently in fabrication while
the final device is scheduled to be fabricated in September
of 1998.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 22, 2008 at 11:05 from |IEEE Xplore. Restrictions apply.

4 Acknowledgments

This material is based upon work supported by
DARPA/ITO under contract number F30602-96-C-0350
and Sanders IR&D.

5 References

[1] A.DeHon, “DPGA-Coupled Microprocessors:
Commodity Ics for the 21st Century”, IEEE
Workshop on FPGAs for Custom Computing
Machines, 1995.

[2] A. DeHon, “Reconfigurable Architectures for
General-Purpose Computing”, PhD Dissertation —
MIT, 1996.

[3] R. Bittner & P. Athanas, “Wormhole Run-Time
Reconfiguration”, ACM/SIGDA International
Symposium on Field Programmable Gate Arrays,
1997.

[4] J.Burns, A. Donlin, J. Hogg, S Singh, M. de Wit, “A
Dynamic Reconfiguration Run-Time System”, IEEE
Symposium on FPGAs for Custom Computing
Machines, 1997.

[5] S. Kelem, “Mapping a Real-Time Video Algorithm to
a Context-Switched FPGA”, Poster Session, IEEE
Symposium on FPGAs for Custom Computing
Machines, 1997.

[6] R. Ong, “Programmable Logic Device Which Stores
More Than One Configuration and Means for
Switching Configurations”, US Patent 5,426,378,
1995.

[7] S. Scalera, J. Murray, & S. Lease, “A Mathematical
Benefit Analysis of Context Switching
Reconfigurable Computing”, Reconfigurable
Architectures Workshop, 1998.

[8] S. Trimberger, “A Time-Multiplexed FPGA”, IEEE
Symposium on FPGAs for Custom Computing
Machines, 1997.

[9] E. Tau, D. Chen, I. Eslick, J. Brown, A. DeHon, “A
First Generation DPGA Implementation’, FPD '94 —
Third Canadian Workshop on Field-Programmable
Devices, 1995.

[10]J. Villasenor, B. Schoner, K. Chia, C. Zapata,
“Configurable Computing Solutions for Automatic
Target Recognition”, IEEE Symposium on FPGAs
for Custom Computing Machines, 1996.

[11]M.J. Wirthlin & B.L. Hutchings, “Density
Enhancement of a Neural Network Using FPGAs and
Run-Time Reconfiguration, IEEE Workshop on
FPGAs for Custom Computing Machines, 1994.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 22, 2008 at 11:05 from |IEEE Xplore. Restrictions apply.

