

CHECKING THE SPARTAN3 INPUTS/OUTPUTS

Prof. Don Bouldin

- 1. cp ~bouldin/webhome/protected/551-hw3a.tar.gz .
- 2. gunzip 551-hw3a.tar
- 3. tar -xvf 551-hw3a.tar
- 4. cd 551-hw3a
- 5. ./presynth-sim

This will bring up the following window:

🗾 /hw3a/clock_50mhz 1							
🗾 /hw3a/btn0 🛛 0							
⊕– <mark>,∏</mark> /hw3a/swt 00	0001111 1010	1010		00001	111		
⊕– <mark>,∏</mark> /hw3a∧led 00	0001111 00000	(10101010					10000.
⊕– <mark>,∏</mark> /hw3a/seg 01	1010101 00000	UUU <mark>(01</mark>	010101				
	11 1001	11 X11	10 <u>(</u> 1101 (10	11)0111)11	<u>10 (1101 (101</u>	1 /0111	
🗾 /hw3a/reset_pb_flag 1							
🗾 /hw3a/pb_flag 🛛 0				<u></u> г			
🗾 /hw3a/clock_10hz 0							┎╴╢╌╻┝╴
🗾 /hw3a/initialize 1							
⊕– /hw3a/seg_3 11	1110000 <mark>UUUUU</mark>	01010101					X1111.
⊕– /hw3a/seg_2 11	1110000 <mark>UUUUU</mark>	01010101					X1111.
⊕– /hw3a/seg_1 11	1110000 <mark>UUUUU</mark>	01010101					X1111.
Now 00	000 ns 0 ms		н н н 1:	lııı sec		1500 m	1 I I 8 -
Cursor 1 89	980 ns						16504489
480 ms to 1764 ms	Now: 1	680 ms Delta:	:3				

After btn0 is pressed (properly), the pb_flag is set.

Then while dig "0111" is displayed , swt<7:0> are read and pb_flag is reset.

Now, synthesize the VHDL source file using *Synplify_Pro* into the Spartan3 part by typing:

6. synplify_premier_dp _batch -tcl synplify-spartan3.tcl

The synthesized net-list is now under a subdirectory, rev_1, so copy the appropriate files:

7.	cp spartan3-fit	rev_1
8.	cp spartan3-bitgen	rev_1
9.	cp stim-hw3a.do	rev_1
10.	cp hw3a.ucf	rev_1
11.	cp vsim-post-spartan3	rev_1
12.	cd	rev 1

Generate the Spartan3 layout using the *Xilinx* fitter:

13. ./spartan3-fit hw3a

Note the resources used by observing:

14. grep Slices hw3a.mrp

Perform post-layout simulation by typing:

15. ./vsim-post-spartan3 hw3a

Generate the configuration file (hw3a_r.bit) by typing:

16. ./spartan3-bitgen

Downloading

- 1. Use a PC which has a parallel port and the Xilinx ISE software installed.
- 2. Connect the power to the Spartan3 board. The digits should display "PASS".
- 3. Connect the parallel cable between the PC and the JTAG connector on the board.
- 4. Transfer the file (hw3a_r.bit) to the PC using ssh and ftp.
- 5. Invoke IMPACT by selecting:

START \rightarrow All Programs \rightarrow Xilinx ISE \rightarrow Accessories \rightarrow IMPACT

- 6. Under "mode", select "Configuration".
- 7. Right-click the mouse and select "cable auto connect".
- 8. Right-click the mouse and select "initialize chain".
- 9. Locate "hw3a_r.bit" and click OK.
- 10. At the next prompt, select BYPASS.
- 11. Point the mouse cursor over the xc3s200 part and right-click to select "PROGRAM". Click OK.
- 12. When finished, select File \rightarrow Exit.

👽 C:\Documents a	and Settings\T	EMP\Desktop\	hw3a.ipf [Configura	tion Mode] - iMPACT
File Edit View Mod	de Operations '	Output Debug	Help	
🗅 🚅 🖬 🐰 🛛	e e e #	86 11 00	住田 昔 昔 〇	🏣 鸀 🐶
Boundary-Scan	Slave Serial	SelectMAP	Desktop Configura	ation
TDI xc3si hw3a_ TDO	Version: UserCod Security: Chksum: Device p Device p 200 x r.bit B	0 le: not yet read not secured not applicable programmed course rcf02s rPASS		

APPENDIX

hw3a.vhd

```
ln #
                                    sim:/hw3a : hw3a.vhd
  1
  2 -- hw3a.vhd -- Demonstrate basic functions
  3 -----
                         _____
                                 _____
  4 -- Author: Don Bouldin, Univ. of Tennessee, 9/19/05
  5 ------
                              -----
                                        _____
  6 -- This module tests basic functions and I/O on the Spartan3 board.
  7 ----
  8
  9 library IEEE;
 10 use IEEE.STD_LOGIC_1164.ALL;
 11 use IEEE.STD_LOGIC_ARITH.ALL;
 12 use IEEE.STD_LOGIC_UNSIGNED.ALL;
 13
 14 entity hw3a is
 15 Port (
16 clock_50MHz : in std_logic;
 17
 18 btn0: in std_logic;
 19
 20
 21 swt : in std_logic_vector(7 downto 0);
 22 -- swt(7) = most significant sliding switch; OFF = LOW; ON = HIGH
 23 -- swt(0) = least significant sliding switch; OFF = LOW; ON = HIGH
 24
 25
 26 led : out std_logic_vector(7 downto 0);
 27 -- led(7) = most significant led is ON when active HIGH
28 -- led(0) = least significant led is ON when active HIGH
 29
 30
 31 seg : out std_logic_vector(7 downto 0);
 32 -- segment lights when active LOW
33 -- seg(0) = seg-a
 34 -- seg(1) = seg-b
 35 -- seg(2) = seg-c
 36 -- seg(3) = seg-d
 37 -- seg(4) = seg-e
 38 -- seg(5) = seg-f
 39 -- seg(6) = seg-g
 40 - seg(7) = dp
 41
```

```
In #
                                             sim:/hw3a : hw3a.vhd
 41
 42
 43 dig : out std_logic_vector(3 downto 0)
44 -- dig(3) = most significant digit is displayed when active LOW
45 -- dig(0) = least significant digit is displayed when active LOW
 46
 47);
 48 end hw3a;
 49
 50 architecture Behavioral of hw3a is
 51
 52 SIGNAL reset_pb_flag, pb_flag, clock_10hz: std_logic;
 53
 54 SIGNAL initialize : STD_LOGIC;
 55
 56 SIGNAL seg_3 : std_logic_vector(7 downto 0);
57 SIGNAL seg_2 : std_logic_vector(7 downto 0);
58 SIGNAL seg_1 : std_logic_vector(7 downto 0);
 59 SIGNAL seg_0 : std_logic_vector(7 downto 0);
 60
 61 COMPONENT hierarch
 62
                PORT (
 63
             clock_50Mhz, btn0, reset_pb_flag: IN STD_LOGIC;
 64
             pb_flag, clock_10Hz : OUT STD_LOGIC
 65
                           );
 66 END COMPONENT:
 67
 68 -- Use Port Map to connect signals between components in the hiearchy
 69
 70 BEGIN
 71
 72 hw3a : hierarch PORT MAP (clock_50Mhz => clock_50Mhz,
                                              btn0 => btn0,
 73
 74
                              reset_pb_flag => reset_pb_flag,
                                                   pb_flag => pb_flag,
clock_10hz => clock_10hz
 75
 76
 77
                                                                 );
 78
```

```
ln #
                                             sim:/hw3a.thw3a.vhd
 79 -- begin loop
 80 PROCESS
 81 BEGIN
 82
 83
                                    -- initialize will be initialized to '0' at power up
 84
          IF initialize = '0' THEN
 85
                                    -- This code resets the critical signals once at power
 86
 87 reset_pb_flag <= '0';
 88
 89 led(7 downto 0) <= "00000000";</pre>
 90
 91 seg_3(7 downto 0) <= "11111111";
92 seg_2(7 downto 0) <= "11111111";
93 seg_1(7 downto 0) <= "11111111";
94 seg_0(7 downto 0) <= "11111111";
 95
 96 ELSE
 97
               initialize <= '1';</pre>
 98
 99 -- display each of the four digits for 0.1 second each forever
100
101
102 seg(7 downto 0) <= seg_0(7 downto 0) ;
103 dig <= "1110" ;
                                                      --digit(0) is ON
105 alg <= "1110" ;
104 -- now wait for 0.1 second
105 WAIT UNTIL clock_10hz'EVENT and clock_10hz = '1';
106
107 seg(7 downto 0) <= seg_1(7 downto 0) ;
108 dig(3 downto 0) <= "1101" ;
                                                                       --digit(1) is ON
                                         3
109 -- now wait for 0.1 second
110
                         WAIT UNTIL clock_10hz'EVENT and clock_10hz = '1';
111
112
113 seg(7 downto 0) <= seg_2(7 downto 0);
114 dig(3 downto 0) <= "1011" ;</pre>
                                                                       --digit(2) is ON
115 -- now wait for 0.1 second
116
                         WAIT UNTIL clock_10hz'EVENT and clock_10hz = '1';
117
118 seg(7 downto 0) <= seg_3(7 downto 0);
119 dig(3 downto 0) <= "0111";</pre>
                                                                       --digit(3) is ON
                                          )
120 -- now wait for 0.1 second
121
                         WAIT UNTIL clock 10hz'EVENT and clock 10hz = '1';
122
123
```

```
123
124 -- repeat display until USER sets sliding switches and then presses btn0
125
126 -- if btn0_pressed has NOT occurred then skip to repeat this loop,
127 -- else copy the switch settings and update the display
128
129
       IF pb flag = '1' THEN
130
131 -- copy the sliding switch settings to the leds
132 led(7 downto 0) <= swt(7 downto 0);</pre>
133
134 -- copy the sliding switch settings to the internal digit segments
135 seg_3(7 downto 0) <= not (swt(7 downto 0)) ;
136 seg_2(7 downto 0) <= not (swt(7 downto 0)) ;
137 seg_1(7 downto 0) <= not (swt(7 downto 0)) ;</pre>
138 seg_0(7 downto 0) <= not (swt(7 downto 0)) ;
139
140 reset_pb_flag <= '1';
141 -- now wait for 0.1 second
142
                       WAIT UNTIL clock 10hz'EVENT and clock 10hz = '1';
143 reset pb flag <= '0';
144 ELSE
145 END IF;
146
147 END IF;
148
149 -- repeat loop
150 END PROCESS
151
152 END Behavioral;
153
```

presynth-sim

#./presynth-sim \$1
vlib work
vcom -work work \$1.vhd
vsim \$1 -do stim-\$1.do

stim-hw3a.do

add wave btn0 pb_flag swt led seg dig force clock_50mhz 1 0, 0 10 -r 20 force btn0 0 run 520 ms force swt "10101010" run 10 ms force btn0 1 run 50 ms force btn0 0 run 520 ms force swt "00001111" run 10 ms force btn0 1 run 50 ms force btn0 0 run 520 ms

synplify_spartan3.tcl

#synplify premier dp -batch -tcl synplify-spartan3.tcl add file hw3a.vhd impl -add rev_1 impl -active "rev_1" set_option -technology spartan3 set_option -part xc3s200 set_option -package ft256 set_option -grade -5 set option -synthesis onoff pragma 0 #map options set option -frequency 50.00 set_option -fanout_limit 500 set_option -pipe 0 set_option -retiming 0 set_option -fixgatedclocks 0 project -run synthesis

<u>spartan3-fit</u>

#./spartan3-fit filename
source /usr/local/xilnx/10.1i/ISE/settings.sh
ngdbuild \$1.edf
map -cm speed -timing \$1.ngd
par \$1.ncd -w \$1_r.ncd
trce -u 100 \$1_r.ncd -o \$1_r.twr
netgen -sta -w \$1_r.ncd \$1_sta.v -ofmt verilog
netgen -sim -tb -w \$1_r.ncd \$1_sim.vhd -ofmt vhdl

spartan3-bitgen

#./spartan3-bitgen
source /usr/local/xilnx/9.1i/ISE/settings.sh
bitgen hw3a_r.ncd

vsim-post-spartan3

#./vsim-post-spartan3 filename
vlib work
vmap simprim /usr/local/xilinx/10.1/ISE/vhdl/mti_se/simprim
vcom -work work \$1_sim.vhd
vsim \$1 -do stim-\$1.do -sdftyp \$1_sim.sdf

hw3a.ucf

```
#hw3-05 I/O Pin Assignments
#
NET "btn0" LOC = "M13";
#NET "btn1" LOC = "M14";
#NET "btn2" LOC = "L13";
#NET "btn3" LOC = "L14" ;
#
NET "dig(0)" LOC = "E13";
NET "dig(1)" LOC = "F14";
NET "dig(2)" LOC = "G14";
NET "dig(3)" LOC = "d14";
NET "led(0)" LOC = "K12";
NET "led(1)" LOC = "P14";
NET "led(2)" LOC = "L12";
NET "led(3)" LOC = "N14";
NET "led(4)" LOC = "P13";
NET "led(5)" LOC = "N12";
NET "led(6)" LOC = "P12";
NET "led(7)" LOC = "P11";
NET "clock_50MHz" LOC = "T9";
NET "seg(0)" LOC = "E14";
NET "seg(1)" LOC = "G13";
NET "seg(2)" LOC = "N15";
NET "seg(3)" LOC = "P15";
NET "seg(4)" LOC = "R16";
NET "seg(5)" LOC = "F13";
NET "seg(6)" LOC = "N16";
NET "seg(7)" LOC = "P16";
NET "swt(0)" LOC = "F12";
NET "swt(1)" LOC = "G12";
NET "swt(2)" LOC = "H14";
NET "swt(3)" LOC = "H13";
NET "swt(4)" LOC = "J14";
NET "swt(5)" LOC = "J13";
NET "swt(6)" LOC = "K14";
NET "swt(7)" LOC = "K13";
```