The new IIT standard cell library

What's New?

- Support for AMI 0.35um library
- Renamed ami06 to ami05 to be more consistent
- New cells: Asynchronous Set/Reset Flip-Flop, Latch, Clock buffers
- Support for stacked vias (for Virtuoso, not Magic)
- AMI 0.5 has lef files for both stacked vias and non-stacked vias (429 flow)
- LEF and TLF files now support Cadence Encounter
- All libraries now include Cadence Schematics
- Added metal6 to TSMC 0.18um library
- Added layer resistance and capacitance to all libraries
- Added supply and filler pads to all timing libraries
- Fixed AMI 0.5um pad flow to route to VDD/GND pads with full metal width
- New flow scripts for Encounter
- New flow scripts for Cadence BuildGates Synthesis
- Encounter flow offers
 - o timing-driven placement and routing
 - o static timing analysis (replaces Primetime)
 - o clock tree synthesis
 - o in-place-optimization and netlist modifications
 - Geometry and Connection Verification (DRC)
- Enhanced Synthesis scripts
 - All modifications in the script header
 - o Script body remains constant
 - o Automatic generation of timing constraints
 - o Output of toplevel constraints for Encounter

Where are the files located?

All files are still in /import/cad2/iit_stdcells

The old library is moved to /import/cad2/iit_stdcells_preDFFSR

Library	Path	Comments
AMI 0.5um	./ami06/main	- Default LEF file to exclude stacked vias
		- Replace with iit05_stdcells_pads.stacked.lef
		to get stacked vias
		- Pad synthesis no longer supported (insert
		padframe in RTL code)
AMI 0.35um	./ami035/main	- As of now, library based on TSMC 0.35um
		- Uses stacked vias, Magic not supported
TSMC 0.25um	./tsmc025/main	- Uses stacked vias, Magic not supported
TSMC 0.18um	./tsmc018/main	- Now uses 6 metal layers
		- Uses stacked vias, Magic not supported

What is the new Design Flow

How to setup a new design?

- 1. Simulate and test all Verilog RTL code
- 2. Make a run directory, e.g. "seultra" or "encounter"
- 3. Copy templates into that directory, e.g.
 - cp /import/cad2/iit_stdcells/tsmc018/main/* ./encounter
- 4. If the RTL code contains pads, include iitXXX_stdcells.v in the verilog command line

How to run Synthesis with Synopsys Design Compiler

- 1. Customize compile_dc.scr
 - a. Specify the names of all Verilog files
 - b. Specify the toplevel names
 - c. Specify the target clock frequency (in MHz)
 - d. Specify the name of the clock pin
 - e. Specify the input and output delays (or accept the default value of 1ns)
- 2. Run "dc_shell -f compile_dc.scr
- 3. The results
 - a. The gate-level netlist (.vh)
 - b. The toplevlel timing constraints (.sdc)
 - c. Timing report: timing.rep
 - d. Area report: cell.rep
 - e. Power report: power.rep

How to run Synthesis with Cadence BuildGates

- 4. Customize compile_bgx.scr
 - a. Specify the names of all Verilog files
 - b. Specify the toplevel names
 - c. Specify the target clock frequency (in MHz)
 - d. Specify the name of the clock pin
 - e. Specify the input and output delays (or accept the default value of 1ns)
- 5. Run "bgx_shell –f compile_bgx.scr
- 6. The results
 - a. The gate-level netlist (.vh)
 - b. The toplevlel timing constraints (.sdc)
 - c. Timing report: timing.rep
 - d. Area report: cell.rep
 - e. Power report: power.rep
 - f.

How to place&route with Silicon Ensemble (old flow)

- 1. Customize seultra.scr
- 2. Run "se_shell -f seultra.scr"
- 3. The results
 - a. Layout file "final.gds2"

How to place&route with Encounter (new flow)

- 4. Customize encounter.conf
 - a. Enter the toplevel name at the top
 - b. Uncomment the "encounter.io" line if there are pads
- 5. Run "encounter -init encounter.tcl"
- 6. Either enter "win" to open the GUI with the chip or "exit" to quit
- 7. The results
 - a. Layout file "final.gds2"
 - b. Final netlist ".v" (Encounter modifies the netlist to add buffers)
 - c. Final timing report: "timing.rep.5.final"
 - d. Other timing reports from various place&route stages: "timing.rep*"

How to create a Magic Layout (only AMI 0.5um)

- 1. If used "seultra": run "iitcells_se2magic"
- 2. If used "encounter: run "iitcells_enc2magic"

How to create a Cadence Layout

- 1. If used "seultra": run "iitcells_se2icfb"
- 2. If used "encounter: run "iitcells_enc2icfb"

How to run a design with pads

- 1. Insert pads in the RTL code of your design (see the example designs)
- 2. Simulate the RTL code to make sure it still works
- 3. Run Synthesis as usual
- 4. For Silicon Ensemble: no change necessary
- 5. For Encounter
 - a. Uncomment the "encounter.io" line in "encounter.conf"
 - b. Make sure the name in "encounter.io" match the pads in the RTL code
 - c. You can modify the "encounter.io" file to specify pads locations
 - d. Now run Encounter as usual

What if I am using AMI 0.5um but I want stacked vias

- 1. Stacked vias make routing much easier because
 - a. The router can change layers without "stair cases"
 - b. The router can connect to the cell anywhere, not just on the pin
 - c. Everything except the pin used to be an obstruction, even though it was still part of the net and valid for connection
- 2. There is a LEF file "iit05_stdcells_pads.stacks.lef
- 3. Edit "seultra.scr" or "encounter.conf" to use that LEF file instead
- 4. Run as usual
- 5. Final layout not valid for Magic