

A CCSDS-Based Communication System for a Single Chip On-Board Computer

Daixun Zheng, Tanya Vladimirova, Martin Sweeting Surrey Space Centre University of Surrey, Guildford, Surrey, UK, GU2 7XH Tel: +44(0)1483 689278 Fax:+44(0)1483 686021 email: T.Vladimirova@eim.surrey.ac.uk

Outline

- Introduction
- SoC Research
- System Level Integration
- □ CCSDS Software Package
- Simulation Experiment
- Conclusions

Objectives

- To implement a simplified yet RELIABLE Consultative Committee of Space Data Systems (CCSDS) TLM & TC space communication system satisfying the needs of a single chip on-board computer (OBC) of a small satellite.
- To simulate the operation of the software on a single-chip OBC prototype.

SoC Research

Integration of CAN, EDAC and LEON Processor IP Cores

CAN IP Core - CAN Card

Communication under the Control of the LEON Processor

- System Frequency: 14.7456 MHz
- Baud Rate: 307,197 bps

System Frequency: 25 MHz

Baud Rate: 312,500 bps

CAN IP Core - CAN Card

Data Transmission

🛄 Tera Term - COM2 VT 🛛 🗖 🗙	😤 CAN-PCS	_ 🗆 🗵
<u>F</u> ile <u>E</u> dit <u>S</u> etup C <u>o</u> ntrol <u>W</u> indow	and BTD0 set on CON cand	
<u>H</u> elp	BTR1 set on CAN card	
> Begin!	Μ Debuα Op	
uartport value: / setup value: 25a0800		
status value: 418	Destination set to 80 cmd:s 128	
Hessage value: aatt50 aattti	Source set to 128	
Send Message 0K!	Cmd:Recv: F 80 T128 S3 L7 FF AA 00 FF FF AA 00 00	
RX message x : 1200a 4	End:Recv: F 80 T128 S0 L7 19 00 00 9B 27 78 00 00	
HaitSend Message OK!	Incoming TLM response sequence 0 for channel 0, value 7874459 (0x782	79B)
RX Hessage x : 1200a 4	cmd:Recv: F 80 T128 S0 L7 19 01 00 13 6B 78 00 00	
waitSend Hessage OK!	Incoming TLM response sequence 0 for channel 1, value 7891731 (0x786	B13>
RX message x : 1200a 4	cmd:Recv: F 80 T128 S0 L7 19 02 00 00 8D 78 00 00	
waitSend Message OK!	Incoming TLM response sequence 0 for channel 2, value 7900416 (0x788 1 3	D00)
RX message x : 1200a 4	cmd:Recv: F 80 T128 S0 L7 19 03 00 88 C1 78 00 00	
KX Hessage X : 80 18 3 0 88 C1 78 0 µaitSend Message OK!	Incoming TLM response sequence 0 for channel 3, value 7913864 (0x780)	188)
RX message x : 1200a 4	cmd:Recv: F 80 T128 S0 L7 19 04 00 27 41 78 00 00	
KX message x : 80 18 4 0 27 41 78 0	Incoming TLM response sequence 0 for channel 4, value 7880999 (0x784	127)

CAN IP core

CAN Card

CAN IP Core - CAN Card

High Speed Transmit Test

🛄 Tera Term - COM 🗖 🗖 🗙		🚜 CAN-PCS	_ 🗆 ×
File Edit Setup Control Window Help RX message x : a0 ff 2 2 2 2 2 2 ↓ µaitSend Message 0K! RX message x : 7051060 8 RX message x : a0 ff 4 4 4 4 4 ↓ µaitSend Message 0K! RX message x : a0 ff 6 6 6 6 6 € Window PaitSend Message 0K! RX message x : a0 ff 6 6 6 6 6 € PaitSend Message 0K!		! Transmitting Press any key to stop Transmission stopped. cmd:Recv: F 80 T128 S0 L7 19 01 01 01 01 01 01 Recv: F 80 T128 S0 L7 19 05 05 05 05 05 05 00 Recv: F 80 T128 S0 L7 19 08 08 08 08 08 08 08 00 Recv: F 80 T128 S0 L7 19 02 02 02 02 02 02 00 Recv: F 80 T128 S0 L7 19 06 06 06 06 06 06 00 Recv: F 80 T128 S0 L7 19 09 09 09 09 09 09 00 Recv: F 80 T128 S0 L7 19 03 03 03 03 03 03 00 Image: Provide the state of th	▲ 1 00 ▼

CAN IP Core

CAN Card

Integration of an EDAC IP Core and the LEON Processor

The EDAC core is integrated with	
LEON through the system bus.	

Daixun Zheng, Tanya Vladimirova, Martin Sweeting

G:\\ramupId_right.XES									x											
	-	10	1000	03	10	00	00	82	10	60	00	81	98	40	00	40	00	22	10	
	—	10	1010	01	00	00	00	40	00	00	64	9C	23	ΑO	40	01	00	00	00	_
	-	10	1020	82	10	20	01	91	D0	20	00	01	00	00	00	Α7	50	00	00	_
	-	10	1030	ΑE	10	00	01	83	34	E0	01	Α9	2C	E0	07	82	15	00	01	
	-	10	1040	81	E0	00	00	81	90	40	00	01	00	00	00	01	00	00	00	
	-	10	1050	01	00	00	00	E0	3B	ΑO	00	E4	ЗB	ΑO	08	E8	ЗB	ΔO	10	
	-	10	1060	EC	3B	ΑO	18	F0	3B	ΑO	20	F4	3B	ΑO	28	F8	ЗB	ΑO	30	
	-	10	1070	FC	ЗB	ΑO	38	81	E8	00	00	82	10	00	17	81	C4	40	00	
	-	10	1080	81	CC	80	00	Α7	50	00	00	Α9	2C	E0	01	ÅΒ	34	E0	07	
	-	10	1090	ÅΆ	15	40	14	81	95	40	00	01	00	00	00	01	00	00	00	
	-	10	10A0	01	00	00	00	81	E8	00	00	81	E8	00	00	E0	1B	ΔO	00	
	-	10	10B0	E4	1B	ΔO	08	E8	1B	ΔO	10	EC	1B	ÅΟ	18	F0	1B	ΔO	20	-
4																				

Data Memory – Right Bank

B	G	۱۱	ramupId_left.	XES															. 🗆	×
	+	10	00101000	8B	CC	00	00	19	CC	D1	00	92	41	9E	00	9E	00	BD	CC	
	+	10	00101010	79	00	00	00	9E	00	00	E2	72	C4	λ4	9E	79	00	00	00	-
	+	10	00101020	19	CC	4F	79	5E	B9	4F	00	79	00	00	00	1C	52	00	00	_
	+	10	00101030	03	CC	00	79	60	B0	ЗÅ	79	BB	1Å	34	B8	19	86	00	79	103
	+	10	00101040	92	3A	00	00	92	27	9E	00	79	00	00	00	79	00	00	00	1001
	+	10	00101050	79	00	00	00	ЗÅ	6E	Δ4	00	09	6E	A4	66	5C	6E	Å4	CC	1001
	+	10	00101060	6F	6E	λ4	ÀÀ	F6	6E	À4	4F	C5	6E	λ4	29	90	6E	À4	83	1003
	+	10	00101070	AЗ	6E	A4	E5	92	5C	00	00	19	CC	00	74	92	46	9E	00	1001
	+	10	00101080	92	20	EΒ	00	1C	52	00	00	BB	1Å	ЗÀ	79	49	B0	ЗÀ	B8	1831
	+	10	00101090	30	86	9E	FF	92	6D	9E	00	79	00	00	00	79	00	00	00	1001
	+	10	001010A0	79	00	00	00	92	5C	00	00	92	5C	00	00	ЗÅ	21	Å4	00	
	+	10	001010B0	09	21	λ4	66	5C	21	À4	CC	6F	21	λ4	ÀÀ	F6	21	À4	4F	-
Ш	•																		•	11.

Parity Memory – Left Bank

Synthesis Results Based on Xilinx Virtex V800

Virtex XCV-800 FPGA

- Synthesis Tool: Synplify 6.0 +
- LEON + CAN + EDAC => 43% of XCV800

Why CCSDS?

- ❑ Standard space industry communication protocol.
- Employed on numerous missions ranging from relatively simple low earth missions to deep space probes.
- Could lead to spacecraft interoperability, re-usable systems and mission cross support – not just for inhouse missions but across the CCSDS space agencies members.

CCSDS = Cross Support & Interoperability+STANDARD

CCSDS TC & TLM Data Flow

CCSDS Software Package Structure & Interfaces

Ground

Spacecraft

- A simplified software implementation of the CCSDS TLM and TC Command Operation Protocol (COP-1) based on FARM and FOP.
- Both the FARM and FOP systems contain the minimal CCSDS requirements to provide a reliable CCSDS communication system.
- The Reed-Solomon Encoder and Decoder are based on a C code, written by Phil Karn, KA9Q

CCSDS Software Package

- **FARM** Software Subsystem:
 - Produces the TC frame acceptance for the spacecraft.
 - Develops TC report mechanisms to the FOP via CLCWs (inside TLM frames).
- **FOP** Software Subsystem:
 - Processes the CLCWs (TLM frame).
 - Transmits or retransmits the TC frames back to the FARM.
- □ TLM Coding Subsystem:
 - Reed-Solomon Encoder/Decoder.
 - (255, 223) Reed-Solomon Code, E = 16.
 - Field generator polynomial:

 $F(x) = x^8 + x^7 + x^2 + x + 1.$

• Symbol Interleaving: 1.

CCSDS Software - TC

CCSDS TC Frame Transmitter:

- Formats the TC packets of length 275 bytes.
- Formats the TC frames of length 280 bytes.
- Calculates the error detection code (BCH).
- Insets the TC packets into the TC frames.
- Inserts the TC frames into Codeblocks.
- Formats the CLTUs.
- Inserts the Codeblocks into the CLTUs.

CCSDS TC Frame Receiver:

- Subtracts the Codeblocks from the CLTUs.
- Subtracts the TC frames from the Codeblocks.
- Decodes (BCH) the TC frames and TC packets.

CCSDS Software - TLM

- □ CCSDS TLM Frame Transmitter (CCSDS TLM_Tx):
 - Formats the TLM packet of length 256 byte.
 - Formats the TLM frame of length 268 bytes.
 - Calculates the CRC of length 2 bytes (included in TLM Frame).
 - Inserts the TLM packets into the TLM frames.
 - Formats the Attached Synchronous Marker (ASM)
 - Transmits the full CCSDS TLM frame.
- □ CCSDS TLM Frame Receiver (CCSDS TLM_Rx):
 - Decodes the TLM frames (checks the CRC).
 - Subtracts the TLM packets from the TLM frames.
 - Inserts the TLM packet into buffer for future HL usage.

Simulation Scheme

Space Segment (XESS Prototyping Board)

Experimental Setup

Experimental Setup - Details

- □ Processor LEON 2-1.0.2a VHDL IP core (SPARC V8) (ESA)
 - Working Frequency 25 MHz
 - UART Baud Rate 38,400 bps
 - Internal S-Record Boot Loader
- On-Board Network (Node 1) HurriCANe VHDL IP core (ESA)
 - Baud Rate: 312,500 bps
- EDAC EDAC VHDL IP core (SSTL)
 - Double-bit correcting Quasi-Cyclic (16,8) shortened EDAC code
- Prototyping Board XESS XSV800 (Xilinx Virtex 800 FPGAs)
 - Up to 100 MHz programmable oscillator
 - 16M Bits SRAM (Two banks 512K x 16)
 - 16M Bits flash RAM
- On-Board Application Program S-Record File
 - 160K Bytes (CCSDS_SC Software Package)

Simulation Results Transmission of a CLTU TC Frame from TC_Tx to TC_Rx

"E:\research\ccsds\SRC\Ccsds_gnd\Debug\Ccsds_gnd.exe"	
CLTU Frame:	🛄 Tera Term - COM1 ¥T
eb 90 0 1 5 17 0 0 1 be 0 1 1 c 0 0 0 d8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>File Edit Setup Control Window Help</u>
000000000000000000000000000000000000000	The Received CLTU Frame
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 c5 c5 c5 c5 c5 c5 c5 79 c5 c5 c5 c5 c5 c5 79	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CLTU frame with MSB -> LSB	as as as as as se Writing data - TC frame (After BCH Decoding): be 1.5.17.0.0.1.48.0.1.1 - 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
17 9 0 80 a0 e8 0 0 80 7d 0 80 80 30 0 0 1b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
000000000000000000000000000000000000000	
<u> </u>	
, , , , , , , , , , , , , , , , , , ,	
, , , , , , , , , , , , , , , , , , ,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
000000a3 a3 a3 a3 a3 a3 a3 9e a3 a3 a3 a3 a3 a3 a3 a3 a3 a	THE CLTU HAS BEEN RECEIVED SUCCESSFULLY BCH EXAMINATION: all TC data received with NO errors The number of correct TC bytes received is 338 of 338
THE TRANSMISSION OF THE CTLU HAS BEEN SUCCESSFUL	
The number of correct TC bytes sent is 338 of 338 (including two CLTU Tails)	
Ground Segment (PC)	Spacecraft Segment (OBC)

Simulation Results

Transmission of TC & TLM between the CAN Core and the CAN Card

🛄 Tera Term - COM1 ¥T
<u>File E</u> dit <u>S</u> etup C <u>o</u> ntrol <u>W</u> indow <u>H</u> elp
Send TC (Idle) To The CAN Card! status value: 4 Sending Message! RX message x : 50 0 0 0 0 0 0 0 Send Message OK! Received TLM message from the CAN card RX message x : a0 18 0 0 8d dd 78 0 status value: 4 waiting Send Message OK!

Simulation Results

SPACE C

Transmission of a TLM Frame from TLM_Tx to TLM_Rx

🖬 決定 「E:\research\ccsds\SRC\Ccsds_gnd\Debug\Ccsds_gnd.exe" 📃 📕		
The Received R-S Encoded TLM frame (Part 1)		
58 f3 3f b8 0 48 80 80 18 c 0 80 3 40 0 9f 18 0 0 m 3 7 0 0 0 0 0 0 0 0 0		
	🛄 Tera Term - COM1 VT 📃 📃	
	Elle Ealt Setab Calitral <u>Williagon H</u> elb	
	THE TLM FRAME (MSB>LSB, Including the CLCW)	
	58 f3 3f b8 0 48 80 80 18 c 0 80 3 40 0 9f <mark>18 0 0 b1 bb 1e 0</mark> 0 0 0 0 0 0	0 0
rinal error positions: 154 1/ 16 15	0000000000000000000000000000000000000	0 0
Profe Copyected: 4		00
		0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0
		0 0
		00
	IK-S Encoded ILM Frame (Part 1) (MSB> LSB):	
The Received R-S Encoded TLM frame (Part 2)		0 0
28 13 31 78 6 6 6 6 6 6 8 6 6 6 6 6 6 6 6 6 6 6		0 0
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0 0
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa		0 0
		0 0
		56
	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	00
The LLn Frame (Part 2) (IFIEK R-S DECUDING)	R-S Encoded TLM Frame (Part 2) (MSR> LSR).	
		0 0
		óŏ
		óŏ
		ó ó
		ó ó 👝
		ó ŏ 💻
The decoded TLM frame:	0 0 0 3c 9a 32 75 b2 a5 2a eb 1d 20 fc c2 23 d3 cd 4c a0 eb b3 a e0 b3 9c	d 54
1a cf fc 1d 8 12 1 1 18 38 8 1 c8 2 8 f9 <mark>18 8 8 8 dd 78 8</mark> 8 8 8 8 8 8 8	b3 bc b0 aa 64 ac fc cf	_
	THE TRANSMISSION OF R-S ENCODED TLM FRAME HAS BEEN SUCCESSFUL	•
	1 ²	
D D D D D D D D D D D D D D D D D D D		
THE LLA PARTE THE BEEN RECEIVED SUCCESSFULLY		
The number of convect TLM buter received with no errors		
The number of correct full syces received is zee of zee they including Han/		
Ground Segment (PC) <	Spacecraft Segment (UBC)	

Conclusions

- A simplified, yet reliable, standalone software implementation of the CCSDS protocol has been developed.
- The CCSDS software package features a modular structure which can facilitate easy expansions of functionality to suit specific mission requirements.
- The software imposes minimal memory footprint and performance requirements on the OBC.
- The functionality of the package has been verified via simulation using a single-chip OBC subsystem prototyped in a high density FPGA.
- The CCSDS software supported by a single-chip OBC and a thin-layer hardware interface can provide a cost effective and flexible communication solution for low-cost small satellites.
- The availability of a communication system, specifically designed to meet the needs of a single-chip OBC, will facilitate further research in miniaturisation of small satellites.