Automatic Layout Generation Using Silicon Ensemble

CheeWe Ng cheewe@mtl.mit.edu

This document can be downloaded from http://www-mtl.mit.edu/research/icsystems/research/presentations.html

Outline

- Overview of Design Flow From High-level description to IC Layout
- Tutorial Example
- Setting up Tools
- Where to find more information

Place and Route

We'll come back to this picture to talk about setting up the libraries for these tools.

IC Layout

Outline

- Overview of Design Flow From High-level description to IC Layout
- Tutorial Example
- Setting up Tools
- Where to find more information

Tutorial Example

• 4 bit adder in VHDL

```
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_signed.all;
entity example is
port(A: in std_logic_vector(3 downto 0);
      B: in std_logic_vector(3 downto 0);
      Y: out std_logic_vector(3 downto 0));
end example;
architecture behavior of example is
begin
Y \le A + B;
end;
```


Step 1:Design Analyzer

- At the prompt (assuming the path and license environment variable is set), type design_analyzer
- Read in the VHDL file by using the
- Open the command window by using the Setup -> Command Window menu
- At the command window prompt, type compile

Design Analyzer

Analysis tools

Synthesized schematic

Step 1 (continued)

- Next, save your design as a Verilog netlist by using the File \longrightarrow Save As menu.
- The Verilog netlist will look like:

Step 2: Silicon Ensemble

• Run silicon ensemble by typing seultra

Help

Console

Silicon Ensemble (Import L

Filter

 Import ".lef" files that tells SE where the pins of each cell are located: File→Import LEF

These are provided by the cell-library provider, e.g. Artisan Components

DIECO	ory and File List
[Up	one directory]
tsmc1	8_41m.1ef
tsmc1	.8_41m_antenna.1ef
tsmc1	.8_51m.1ef
tsmcl	.8_51m_antenna.lef
tsmc1	.8_61m.1ef
tsmc1	8_61m_antenna.lef
Selec	tion
ler/c	heewe/artisan/current/aci/
Rep	ort File
impo	rtlef.rpt
- Opt	ions
	oar Evicting Docign Data 🔲 Ev
	ase Sensitive Names

Anantha, Charlie, and Harry's groups can look at /vader/cheewe/artisan/current/aci/sc/

c/lef/ts	mc18_41m.1ef]
	Browse

Step 2 (continued)

- Import Verilog netlist from logic synthesis
 - Need to import a module declaration of all the standard-cells in Verilog as well.
 - Be sure to specify the name of the top module, e.g. "example"

- Verilog Top	Module
i i i i i i i i i i i i i i i i i i i	
Compiled Ve	erilog Reference Li
••••••••••••••••••••••••••••••••••••••	
– Compiled Vi	erilog Output Libra
tsmc18	
– Options –	
Power Nets	vdd!
	gnd!
Ground Nets	
Ground Nets Logic 1 Net	vdd!
Ground Nets Logic 1 Net Logic 0 Net	vdd! gnd!

Help

Vanables

Step 2 (continued)

• Floorplan —>Initialize Floorplan menu

Design Statistics Die Size Constraint 🔷 Aspect Ratio Number of: 12 Blocks Cells 0 🔷 Height AspectRatio 12 IO Pade 0 IO Pine 22 Corner Pade 0 Nets 🔷 Width Area (Square Microns) Cells 256,133 ✓ Fixed Size Blocks 0.000 IOe. 0.000 IO To Core 10 To Core Distance Core Area Parameters Distance: Row Utilization(%) Left / Right microns 🖃 1q.0000 Region for. Row Spacing tracks Vdd and Block Halo Per Side crons Top/Bottom microns 💷 10,00 Flip Every Other Row Abut Rows Gnd rings Expected Results Calculate Aspect Ratio: 1.00 Width: 37,359 microns, Height: 37,359 microns, Core row utilization = 97.59%. Chip Area = 1395.695 sq. microns. IO to Core Distance (microns): X: 10.000 Y: 10.000 Number of Standard Cell Rows = 3. Design is core-limited. 0K Variables Apply Cancel

Silicon Ensemble (after Floorplan)

Rows for cellplacement

Space for Vdd and Gnd Rings

Step 2 (continued)

Place —> Place IOs
 Place —> Place Cells

* Random	🔲 Power Driven Placement
	Timing Analysis Beport File Fin Placement Generate Congestion Map
Top / Bottom METAL2	Optimize : Timing Signal Integrity Options Report File
Loft / Right METALD	OK Cancel Options

Scan Chains

LERARY. goopt. cpt

Help

Silicon Ensemble (after placement)

Placed cells with Vdd and Gnd Rails

Unused Slots

Placed IO Pins

Step 2 (continued)

Place Filler Cells	
Add Postendcap Postendcap	st
FILL 1 is a standard call Pin	East Net
with no transistors	
Special Pins	
You can deselect all	Special
the options	
Area ×1 -17,1600 Y1 -16,800	0
X2 17,8200 Y2 17,360	

Step 2 (continued)

- Add power and ground rings:
 - − Route → Plan Power and Click "Add Rings"

	Primary Ring Nets "gnd(" "vdd("							
Ring Width								
	Ding	Layer	Core Ring Width	Core Ring Spacing				
& position	Horizontal	METAL	1 <u>,</u> 0000	Center 🖃	0.0000			
	Vertical	METAL2 💷	1 <u>,</u> 0000	Center 🖃	0.0000			
	Secondary Ring							
	Nets							
	Rènj	Layer	Core Ring Width	Care Ring Spacing				
	Horizontal	METALI 🗖	0.0000	Center 🗖	0.0000			
	Vertical	METAL2 🗖	0.0000	Center 🖬	0.0000			
	ОК		Apply	Cancel				

– Route—>Connect Rings"

	Block Ring Width
	0.0000
-	0.0000

Silicon Ensemble (w/ rings and filler cells)

Vdd and Gnd Rings

Filler Cells

Step 2 (continued)

• Routing: Route >> WRoute

- Routing Mode							
🔷 Global Route Only							
 Global and Final Route Incremental Final Route 	Auto Search And Repair Redo Global Route for violations						
Timing Driven Routing							
OK Cancel	Options Variables Help						

Silicon Ensemble (placed & routed)

Routing

Step 2 (finally...)

• Export to GDSII (stream format) to be imported into Virtuoso: File->Export

example,gds2	Browse	Map file	13 P 16 M 17 V
gds2.map Report Filo 2.08248:21 sydes2 s jani.	Browse	the layer numbers	18 M 27 V 28 M
Structure Name Library Name Nate to Domaina	eniby - 6	for gds2	20 W 29 V 31 M 40 N/
Units Cancel	iis ⊒ Variables Heln		41 N/ 42 N/ 43 N/

OLY1; IETAL1; **IA12**; **IETAL2; IA23**; IETAL3; **IA34**; IETAL4; AME METAL1; AME METAL2; AME METAL3; AME METAL4; ELL;

Step 3: Cadence Virtuoso

• Run Design Framework by typing icfb

Menu to run Library Manager and to import GDSII from Silicon Ensemble

🔁 icro – Log: // mindtrap/home0/cheewe/CDS.log.1529

File Tools Options Technology File

in tooll.partition] 'layout' - it has not been registered. Loading auCore.cxt Loading schYiew.cxt Loading selectSv.cxt

mouse L:

M :

 \mathbf{R} :

0 cfb

Step 3 (continued)

• Import GDSII file from Silicon Ensemble: File →Import-Stream

OK Cancel Defaults Apply			Help	,		User	-De			
User-Det	fined Data	And Optio	ns	User-Defined Data Options		ок	Cancel	Defaults	Apply	
Template	: File	Load	Save	X		Cell Nam	e Map Tal	ole		Ĭ
Run Direc	ctory			٠.		Layer Ma	ap Table			lay
Input File				example.gds2	-11	Tort Fon	t Map Tab	le		fon
Top Cell I	Name			example	-11	Restore	Pin Attribu	ite		Q
Output			◆ Opus DB ◇ ASCII Dump ◇ TechFile User-Defined Property M			erty Mappir	ng File	¥		
Library N	lame			tsncvŽ	—	User-De	fined Prop	erty Separa	ator	P
ASCII Te	chnology I	File Name		tech.tf		User-De	fined SKII	L File	/	Ĭ
Scale UU	I/DBU			0.00100000						
Units				ϕ micron ϕ millimeter ϕ mil			File	es fro	om tl	ne f
Process	Nice Value	: 0-20		0			<u>م</u> م	тсл	ЛС	
Error Me	ssage File						c.g.			

Anantha, Charlie, and Harry's groups can look at /vader/cheewe/tsmc/Virtuoso

User-Defined Data

He	lp
jer.nap <u>;</u>	
nt.nap	
	_
	—
	—
	_

foundry,

Virtuoso Layout

		8]	V	7(J	lt
 				/ * '			
				Į	끤		
					2		
			ц.	ole			
				eık			
 ما	(h	÷6	ot	C			

Outline

- Overview of Design Flow From High-level description to IC Layout
- Tutorial Example
- Setting up Tools
- Where to find more information

Setting Up Tools

Design Analyzer

- Needs
 - DesignWare (comes with Design Analyzer)
 - Standard-cell "back-end views"
- These files are usually named *.db, *.sldb, *.lib

Setting up Design Analyzer

• Need a .synopsys_dc.setup in the directory you run design analyzer.

```
search_path= search_path + ${synopsys_root}/libraries/syn-
${synopsys_root}/dw/sim_ver]+
/u/vader/cheewe/artisan/current/aci/sc/synopsys"+
 /u/vader/cheewe/artisan/current/aci/sc/vhdl"
target_library=typical.db
symbol_library=typical.db
synthetic_library=dw_foundation.sldb
# additions from DesignWare Foundation Quick Reference
link_library={typical.db, dw_foundation.sldb}
synlib_wait_for_design_license={"DesignWare-Foundation"}
```


Setting up Silicon Ensemble

• Need a se.ini in the directory Silicon Ensemble is launched:

from /u/vader/cheewe/artisan/aci/sc/lef/README # Silicon Ensemble floorplan variables - required for TSMC .18 set v plan.rgrid.Mloffset 560 ; set v plan.rgrid.M2offset 660 ; set v plan.rgrid.M3offset 560 ; set v groute.Allow.OffGrid.PinAccess false ; set v froute.Allow.OffGrid.PinAccess false ; set v froute.Avoid.OffGrid.Blockage true ; set v froute.Build.OffGrid.SPins false ;

```
# so that pins are labeled with [] which is compatible with
# spice and verilog
SET VAR INPUT.VERILOG.BUS.DELIM "[]";
```


Setting up Design Framework

- Need to create a library that has the "frontend" layout views of all the standard-cells, and the display.drf file:
 - Import the GDSII layout views from the cell provider into a new library, like previously described.
 - Set up the display resource, like you would with any technology.

Cadence Display Resource

• LSW: File -> Display Resource Editor File ->Load

Molsw 🗉	🔀 💽 Display Resource Editor					E
Edit Help	<u>Filo V</u> icw					Help
tsmcv/1	Application /irtuosc =		Devic	e display -	New	
🔳 Inst 🔳 Pin	Tech Lib Name 🛛 tsmcv4 🛁					
AV NV AS NS	Layens	Fill Style	Fill Color	Outline Color	Stipple	Lire Style
ref dg PHELL dg	♦ A'1 ♦ LSW					
HHELL dg	PWELL drawing					
HVPH dg PSUB dg	NWELL drawing	<u>}</u>				
WITH dg	HVPW drawing					
NDIFF dg	DIFF drawing					
POLY1 dg POLY2 dg	NDIFF drawing				<u> </u>	
POLY3 dg	POLY1 drawing				111 988 /// 101 V	
H2Y dg	Apply		Ed15	Edit	Edit	Edit
N3V dg P2V dg	Packet, redridder_L. is reference by layer(s) - (ref drawing)					

Outline

- Overview of Design Flow From High-level description to IC Layout
- Tutorial Example
- Setting up Tools
- Where to find more information

Where to find more information?

- Synopsys SOLD (Anantha Group) acroread /usr/synopsys/current/doc/online/synth/ dctut/toc.pdf
- Cadence Openbook: (MTL Users) openbook -f /amd/mtlcad/cadence/DES4.3/doc/ASICpnr/ silref/silrefTOC.obk