
ModelSim® SE Reference Manual

Software Version 6.5b

© 1991-2009 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely
at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation

8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
Telephone: 503.685.7000

Toll-Free Telephone: 800.592.2210
Website: www.mentor.com

SupportNet: supportnet.mentor.com/
Send Feedback on Documentation: supportnet.mentor.com/user/feedback_form.cfm

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other third parties. No one is permitted to use these Marks without the
prior written consent of Mentor Graphics or the respective third-party owner. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/terms_conditions/trademarks.cfm.

http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/user/feedback_form.cfm
http://www.mentor.com/terms_conditions/trademarks.cfm

ModelSim SE Reference Manual, v6.5b 3

Table of Contents

Chapter 1
Syntax and Conventions . 15

Documentation Conventions . 15
File and Directory Pathnames . 16

Design Object Names . 16
Object Name Syntax . 16
SystemC Class, Structure, and Union Member Specification . 17
SystemVerilog Scope Resolution Operator . 18
Specifying Names . 19
Escaping Brackets and Spaces in Array Slices . 21
Environment Variables and Pathnames . 21
Name Case Sensitivity . 21
Extended Identifiers . 22

Wildcard Characters. 22
Using the WildcardFilter Preference Variable . 22

Simulator Variables . 28
Simulation Time Units. 28
Argument Files. 28
Command Shortcuts. 29
Command History Shortcuts . 30
Numbering Conventions . 30

VHDL Numbering Conventions . 30
Verilog Numbering Conventions . 32

GUI_expression_format. 32
Expression Typing . 32
Expression Syntax. 33
Signal and Subelement Naming Conventions. 38
Grouping and Precedence . 38
Concatenation of Signals or Subelements. 38
Record Field Members . 40
Searching for Binary Signal Values in the GUI . 40

Chapter 2
Commands . 43

.main clear. 56
abort . 57
add button . 58
add dataflow . 60
add list. 62
add memory . 67
add testbrowser . 69
add watch . 70

Table of Contents

4 ModelSim SE Reference Manual, v6.5b

add wave . 72
add_cmdhelp . 79
add_menu . 80
add_menucb . 82
add_menuitem. 84
add_separator . 86
add_submenu . 87
alias . 88
batch_mode . 89
bd. 90
bookmark add wave . 91
bookmark delete wave . 93
bookmark goto wave. 94
bookmark list wave . 95
bp. 96
cd. 102
cdbg. 103
change . 106
change_menu_cmd . 109
check contention add. 110
check contention config . 112
check contention off . 113
check float add . 114
check float config . 115
check float off . 116
check stable off . 117
check stable on . 118
checkpoint . 119
compare add . 121
compare annotate . 126
compare clock . 127
compare configure . 129
compare continue . 131
compare delete . 132
compare end . 133
compare info . 134
compare list . 136
compare options . 137
compare reload . 141
compare reset . 142
compare run . 143
compare savediffs . 144
compare saverules. 145
compare see. 146
compare start. 148
compare stop . 150
compare update . 151
configure . 152
context. 157

Table of Contents

ModelSim SE Reference Manual, v6.5b 5

coverage attribute . 159
coverage clear . 162
coverage exclude. 164
coverage goal . 171
coverage open . 173
coverage report . 174
coverage save . 182
coverage testnames . 184
coverage weight . 185
dataset alias . 187
dataset clear. 188
dataset close . 189
dataset config . 190
dataset current . 192
dataset info . 193
dataset list . 194
dataset open. 195
dataset rename. 196
dataset restart . 197
dataset save . 198
dataset snapshot . 199
delete . 202
describe . 203
disablebp . 204
disable_menu . 205
disable_menuitem . 206
do. 207
down . 209
drivers . 212
dumplog64 . 213
echo . 214
edit. 215
enablebp . 216
enable_menu . 217
enable_menuitem . 218
encoding . 219
environment . 220
examine . 222
exit. 227
find . 228
find infiles . 233
find insource . 234
formatTime . 235
force . 236
gdb dir . 240
getactivecursortime . 241
getactivemarkertime . 242
help . 243
history . 244

Table of Contents

6 ModelSim SE Reference Manual, v6.5b

jobspy . 245
layout. 246
lecho . 248
left . 249
log . 252
lshift . 255
lsublist . 256
mem compare . 257
mem display . 258
mem list. 261
mem load. 262
mem save . 266
mem search . 268
messages clearfilter. 271
messages setfilter . 272
modelsim. 273
next . 274
noforce . 275
nolog . 276
notepad . 278
noview. 279
nowhen . 280
onbreak . 281
onElabError. 283
onerror. 284
onfinish . 285
pause . 286
pop. 287
power add . 288
power off. 290
power on . 292
power report . 294
power reset . 297
precision . 298
printenv . 299
process report . 300
profile clear . 301
profile interval. 302
profile off . 303
profile on. 304
profile option. 305
profile reload. 306
profile report . 307
project . 310
property list . 312
property wave . 314
push . 316
pwd . 317
quietly . 318

Table of Contents

ModelSim SE Reference Manual, v6.5b 7

quit . 319
qverilog . 320
radix . 322
radix define . 324
radix names . 326
radix list . 327
radix delete . 328
readers . 329
report . 330
restart. 332
restore . 334
resume. 335
right . 336
run . 338
runStatus . 340
sccom . 342
scgenmod . 350
sdfcom. 353
search . 354
searchlog . 357
see . 359
seetime . 360
setenv . 361
shift . 362
show . 363
simstats . 364
status . 366
step . 367
stop . 368
suppress. 369
tb . 370
tcheck_set . 371
tcheck_status . 374
Time . 376
toggle add . 379
toggle disable . 382
toggle enable . 383
toggle report . 384
toggle reset . 386
tr color. 387
tr order. 390
tr uid . 392
transcribe. 394
transcript . 395
transcript file . 396
tssi2mti . 397
typespec. 398
ui_VVMode . 399
unsetenv . 400

Table of Contents

8 ModelSim SE Reference Manual, v6.5b

up. 401
vcd add . 403
vcd checkpoint . 405
vcd comment. 406
vcd dumpports. 407
vcd dumpportsall. 409
vcd dumpportsflush. 410
vcd dumpportslimit . 411
vcd dumpportsoff . 412
vcd dumpportson. 413
vcd file . 414
vcd files. 416
vcd flush . 418
vcd limit . 419
vcd off . 420
vcd on . 421
vcd2wlf . 422
vcom . 423
vcover attribute . 440
vcover merge. 442
vcover ranktest . 447
vcover merge, “Code Coverage”, coverage goal. coverage weightvcover report. 450
vcover stats . 458
vcover testnames. 460
vdel . 461
vdir . 463
vencrypt. 466
verror. 468
vgencomp . 470
view. 472
virtual count . 476
virtual define . 477
virtual delete . 478
virtual describe . 479
virtual expand . 480
virtual function . 481
virtual hide . 484
virtual log . 485
virtual nohide . 487
virtual nolog . 488
virtual region. 490
virtual save . 491
virtual show. 492
virtual signal . 493
virtual type . 497
vlib . 499
vlog . 501
vmake . 524
vmap . 526

Table of Contents

ModelSim SE Reference Manual, v6.5b 9

vopt . 527
vsim. 548
vsim<info> . 580
vsim_break . 581
vsource . 582
wave . 583
wave create . 587
wave edit . 590
wave export. 593
wave import . 594
wave modify . 595
when . 598
where. 605
wlf2log . 606
wlf2vcd . 609
wlfman . 610
wlfrecover . 614
write cell_report . 615
write format. 616
write list . 618
write preferences. 619
write report . 620
write timing. 622
write transcript . 623
write tssi . 624
write wave. 626
xml2ucdb. 628

Chapter 3
AVM Encyclopedia . 633

Class Index. 633
Classes for Components. 638

avm_env . 639
avm_named_component . 641
avm_random_stimulus . 646
avm_stimulus . 648
avm_subscriber . 649
avm_threaded_component . 650
avm_verification_component . 651

Classes for Comparators . 651
avm_algorithmic_comparator . 653
avm_in_order_built_in_comparator . 655
avm_in_order_class_comparator . 656
avm_in_order_comparator . 657

Classes for Connectors. 659
avm_*_export . 660
avm_*_imp . 662
avm_*_port . 664

Table of Contents

10 ModelSim SE Reference Manual, v6.5b

avm_analysis_port . 666
avm_blocking_master_imp. 667
avm_blocking_slave_imp . 669
avm_connector_base. 671
avm_master_imp. 675
avm_nonblocking_master_imp. 677
avm_nonblocking_slave_imp . 679
avm_port_base . 681
avm_slave_imp . 683
avm_transport_imp . 685
analysis_imp . 686
analysis_port . 687
global_analysis_ports . 688
tlm_*_imp. 689

Classes for Channels . 689
analysis_fifo . 691
tlm_fifo . 692
tlm_req_rsp_channel. 695
tlm_transport_channel. 698

TLM Interfaces . 698
analysis_if #(type T=int) . 699
tlm_blocking_get_if . 700
tlm_blocking_get_peek_if . 701
tlm_blocking_peek_if . 702
tlm_blocking_put_if . 703
tlm_blocking_master_if . 704
tlm_blocking_slave_if. 705
tlm_get_if . 706
tlm_get_peek_if . 707
tlm_master_if . 709
tlm_nonblocking_get_if . 711
tlm_nonblocking_get_peek_if . 712
tlm_nonblocking_master_if . 713
tlm_nonblocking_peek_if . 715
tlm_nonblocking_put_if . 716
tlm_nonblocking_slave_if. 717
tlm_peek_if . 719
tlm_put_if . 720
tlm_slave_if. 721
tlm_transport_if. 723

Transactions . 723
avm_built_in_clone. 724
avm_built_in_comp . 725
avm_built_in_converter . 726
avm_built_in_pair . 727
avm_class_clone . 728
avm_class_comp. 729
avm_class_converter. 730
avm_class_pair . 731

Table of Contents

ModelSim SE Reference Manual, v6.5b 11

avm_transaction . 732
Reporting . 733

avm_report_client . 734
avm_report_handler . 739
avm_report_server . 742
avm_reporter . 744

Index

End-User License Agreement

12 ModelSim SE Reference Manual, v6.5b

List of Examples

Example 1-1. Base- and Descendant-Class Specification . 17
Example 1-2. SystemVerilog Scope Resolution Operator Example 19

13 ModelSim SE Reference Manual, v6.5b

List of Figures

Figure 2-1. find infiles Example . 233
Figure 2-2. find insource Example. 234
Figure 3-1. UML Diagram for Components . 638
Figure 3-2. UML Diagram for Comparator Classes . 652
Figure 3-3. UML Diagram for Connectors . 659
Figure 3-4. UML Diagram for Channels . 690
Figure 3-5. UML Diagram for Reporting Classes . 733

ModelSim SE Reference Manual, v6.5b 14

List of Tables

Table 1-1. Conventions for Command Syntax . 15
Table 1-2. Examples of Object Names . 20
Table 1-3. Wildcard Characters in HDL Object Names . 22
Table 1-4. WildcardFilter Arguments . 24
Table 1-5. WildcardFilter Argument Groups . 26
Table 1-6. Keyboard Shortcuts for Command History . 30
Table 1-7. VHDL Number Conventions: Style 1 . 31
Table 1-8. VHDL Number Conventions: Style 2 . 31
Table 1-9. Verilog Number Conventions . 32
Table 1-10. Constants Supported for GUI Expresssions . 34
Table 1-11. Array Constants Supported for GUI Expresssions . 34
Table 1-12. Variables Supported for GUI Expresssions . 35
Table 1-13. Array Variables Supported for GUI Expresssions . 35
Table 1-14. Operators Supported for GUI Expresssions . 36
Table 1-15. Casting Conversions Supported for GUI Expresssions 37
Table 1-16. VHDL Logic Values Used in GUI Search . 41
Table 1-17. Verilog Logic Values Used in GUI Search . 41
Table 2-1. Supported Commands . 43
Table 2-2. Comparing Reference Objects to Test Objects . 121
Table 2-3. runStatus Command States . 340
Table 2-4. runStatus -full Command Information . 340
Table 2-5. Field Arguments for Window Searches . 355
Table 2-6. Output Fields for tcheck_status Command . 375
Table 2-7. Warning Message Categories for vcom -nowarn . 434
Table 2-8. Order and Type of Ranked Tests . 447
Table 2-9. Design Unit Properties . 463
Table 2-10. Warning Message Categories for vlog -nowarn . 517
Table 2-11. Warning Message Categories for vopt -nowarn . 543
Table 2-12. Wave Window Commands for Cursor . 583
Table 2-13. Wave Window Commands for Zooming . 583
Table 2-14. Wave Window Commands for Controlling Display . 583
Table 2-15. Wave Window Commands for Expanded Time Display 584
Table 3-1. Class Index . 633
Table 3-2. Exports and Interfaces . 660
Table 3-3. Interface Implementations . 663
Table 3-4. Ports and Interfaces . 664
Table 3-5. Deprecated Implementations . 689

ModelSim SE Reference Manual, v6.5b 15

Chapter 1
Syntax and Conventions

Documentation Conventions
This manual uses the following conventions to define ModelSim™ command syntax.

Note
Neither the prompt at the beginning of a line nor the <Enter> key that ends a line is
shown in the command examples.

Table 1-1. Conventions for Command Syntax

Syntax notation Description

< > angled brackets surrounding a syntax item indicate a
user-defined argument; do not enter the brackets in
commands

[] square brackets generally indicate an optional item; if
the brackets surround several words, all must be
entered as a group; the brackets are not entered1

1. One exception to this rule is when you are using Verilog syntax to designate an array
slice. For example,

add wave {vector1[4:0]}

The square brackets in this case denote an index. The braces prevent the Tcl interpreter
from treating the text within the square brackets as a Tcl command.

{ } braces indicate that the enclosed expression contains
one or more spaces yet should be treated as a single
argument, or that the expression contains square
brackets for an index; for either situation, the braces
are entered

… an ellipsis indicates items that may appear more than
once; the ellipsis itself does not appear in commands

| the vertical bar indicates a choice between items on
either side of it; do not include the bar in the command

monospaced type monospaced type is used in command examples

comments included with commands are preceded by
the number sign (#); useful for adding comments to
DO files (macros)

ModelSim SE Reference Manual, v6.5b16

Syntax and Conventions
File and Directory Pathnames

File and Directory Pathnames
Several ModelSim commands have arguments that point to files or directories. For example, the
-y argument to vlog specifies the Verilog source library directory to search for undefined
modules. Spaces in file pathnames must be escaped or the entire path must be enclosed in
quotes. For example:

vlog top.v -y C:/Documents\ and\ Settings/projects/dut

or

vlog top.v -y "C:/Documents and Settings/projects/dut"

Design Object Names
Design objects are organized hierarchically. Each of the following objects creates a new level in
the hierarchy:

• VHDL — component instantiation statement, block statement, and package

• Verilog — module instantiation, named fork, named begin, task and function

• SystemVerilog — class, package, program, and interface

• SystemC — module instantiation

Object Name Syntax
The syntax for specifying object names in ModelSim is as follows:

[<datasetName><datasetSeparator>][<pathSeparator>][<hierarchicalPath>]
<objectName>[<elementSelection>]

where

• datasetName — is the logical name of the WLF file in which the object exists. The
currently active simulation is the “sim” dataset. Any loaded WLF file is referred to by
the logical name specified when the WLF file was loaded. Refer to the chapter
“Recording Simulation Results With Datasets” in the User’s Manual for more
information.

• datasetSeparator — is the character used to terminate the dataset name. The default is
colon (:), though a different character (other than backslash (\)) may be specified as
the dataset separator via the DatasetSeparator variable in the modelsim.ini file. The
default is a colon (:). This character must be different than the pathSeparator character.

• pathSeparator — is the character used to separate hierarchical object names. Normally,
a backslash (/) is used for VHDL and a period (.) is used for Verilog, although other
characters (except a backslash (\)) may be specified via the PathSeparator variable in

Syntax and Conventions
File and Directory Pathnames

ModelSim SE Reference Manual, v6.5b 17

the modelsim.ini file. This character must be different than the datasetSeparator. Both
(.) and forward slash (/) can be used for SystemC. Neither (.) nor (/) can be used
when referring to the contents of a SystemVerilog package or class.

• hierarchicalPath — is a set of hierarchical instance names separated by a path
separator and ending in a path separator prior to the objectName. For example,
/top/proc/clk.

• objectName — is the name of an object in a design.

• elementSelection — indicates some combination of the following:

o Array indexing — Single array elements are specified using either parentheses "()"
or square brackets "[]" around a single number.

o Array slicing — Slices (or part-selects) of arrays are specified using either
parentheses (()) or square brackets ([]) around a range specification. A range is
two numbers separated by one of the following: " to ", " downto ", or a colon (:).
See Escaping Brackets and Spaces in Array Slices for important information about
using square brackets in ModelSim commands.

o Record field selection — A record field is specified using a period (.) followed by
the name of the field.

o C++ class, structure, and union member selection — A class, structure, or union
member is specified using the record field specification syntax, described just above.

SystemC Class, Structure, and Union Member
Specification

You can specify members of SystemC structures and classes using HDL record syntax. The
syntax for specifying members of a base class using ModelSim is different than C++. In C++, it
is not necessary to specify the base class:

<instance>.<base_member>

Whereas, in ModelSim you must include the name of the base class:

<instance>.<base>.<base_member>

Example 1-1. Base- and Descendant-Class Specification

Let’s say you have a base class and a descendant class:

class dog
{

private:
int value;

};

ModelSim SE Reference Manual, v6.5b18

Syntax and Conventions
File and Directory Pathnames

class beagle : public dog
{

private:
int value;
dog d;

};

You have an sc_signal<> of type beagle somewhere in your code:

sc_signal<beagle> spot;

Legal names for viewing this signal are:

spot
spot.*
spot.value
spot.dog
spot.dog.*
spot.dog.value

Now, to examine the member value of the base class dog, you would type:

exa spot.dog.value

To examine the member value of member d, you would type:

exa spot.d.value

To examine the member value, you would type:

exa spot.value

SystemVerilog Scope Resolution Operator
SystemVerilog offers the scope resolution operator, double colon (::), for accessing classes
within a package and static data within a class. The example below shows various methods of
using this operator as well as alternatives using standard hierarchical references.

Syntax and Conventions
File and Directory Pathnames

ModelSim SE Reference Manual, v6.5b 19

Example 1-2. SystemVerilog Scope Resolution Operator Example

package myPackage;
class packet;

static int a[0:1] = {1, 2};
int b[0:1];
int c;

function new;
b[0] = 3;
b[1] = 4;
c = a[0];

endfunction
endclass

endpackage : myPackage

module top;
myPackage::packet my = new;
int myint = my.a[1];

endmodule

The following examine examples access data from the class packet.

examine myPackage::packet::a
examine /top/my.a

Both of the above commands return the contents of the static array a within class packet.

examine myPackage::packet::a(0)
examine /top/my.a(0)

Both of the above commands return the contents of the first element of the static array a
within class packet.

examine /top/my.b

Return the contents of the instance-specific array b.

examine /top/my.b(0)

Return the contents of the first element of the instance-specific array b.

When referring to the contents of a package or class, you cannot use the standard path
separators, a period (.) or a forward slash (/).

Specifying Names
We distinguish between four "types" of object names: simple, relative, fully-rooted, and
absolute.

• Simple name — does not contain any hierarchy. It is simply the name of an object (e.g.,
clk or data[3:0]) in the current context.

ModelSim SE Reference Manual, v6.5b20

Syntax and Conventions
File and Directory Pathnames

• Relative name — does not start with a path separator and may or may not include a
dataset name or a hierarchical path (e.g., u1/data or view:clk). A relative name is relative
to the current context in the current or specified dataset.

• Fully-rooted name — starts with a path separator and includes a hierarchical path to an
object (e.g., /top/u1/clk).There is a special case of a fully-rooted name where the top-
level design unit name can be unspecified (e.g., /u1/clk). In this case, the first top-level
instance in the design is assumed.

• Absolute name — is an exactly specified hierarchical name containing a dataset name
and a fully rooted name (e.g., sim:/top/u1/clk).

The current dataset is used when accessing objects where a dataset name is not specified as part
of the name. The current dataset is determined by the dataset currently selected in the Structure
window or by the last dataset specified in an environment.

The current context in the current or specified dataset is used when accessing objects with
relative or simple names. The current context is either the current process, if any, or the current
instance if there is no current process or the current process is not in the current instance. The
situation of the current process not being in the current instance can occur, for example, by
selecting a different instance in the Structure tab or by using the environment to set the current
context to a different instance.

Table 1-2 contains examples of various ways of specifying object names.

Table 1-2. Examples of Object Names

Object Name Description

clk specifies the object clk in the current context

/top/clk specifies the object clk in the top-level design unit.

/top/block1/u2/clk specifies the object clk, two levels down from the top-level
design unit

block1/u2/clk specifies the object clk, two levels down from the current
context

array_sig[4] specifies an index of an array object

{array_sig(1 to 10)} specifies a slice of an array object in VHDL or SystemC;
see Escaping Brackets and Spaces in Array Slices for more
information

{mysignal[31:0]} specifies a slice of an array object in Verilog or SystemC;
see Escaping Brackets and Spaces in Array Slices for more
information

record_sig.field specifies a field of a record, a C++ class or structure
member, or a C++ base class

Syntax and Conventions
File and Directory Pathnames

ModelSim SE Reference Manual, v6.5b 21

Escaping Brackets and Spaces in Array Slices
Because ModelSim is a Tcl-based tool, you must use curly braces ({}) to "escape" square
brackets and spaces when specifying array slices. For example:

toggle add {data[3:0]}
toggle add {data(3 to 0)}

For complete details on Tcl syntax, refer to Tcl Command Syntax.

Further Details
As a Tcl-based tool, ModelSim commands follow Tcl syntax. One problem people encounter
with ModelSim commands is the use of square brackets ([]) or spaces when specifying array
slices. As shown on the previous page, square brackets are used to specify slices of arrays (e.g.,
data[3:0]). However, in Tcl, square brackets signify command substitution. Consider the
following example:

set aluinputs [find -in alu/*]

ModelSim evaluates the find command first and then sets variable aluinputs to the result of the
find command. Obviously you don’t want this type of behavior when specifying an array slice,
so you would use curly brace escape characters:

add wave {/s/abc/data_in[10:1]}

You must also use the escape characters if using VHDL syntax with spaces:

add wave {/s/abc/data_in(10 downto 1)}

Environment Variables and Pathnames
You can substitute environment variables for pathnames in any argument that requires a
pathname. For example:

vlog -v $lib_path/und1

Assuming you have defined $lib_path on your system, vlog will locate the source library file
und1 and search it for undefined modules. Refer to Environment Variables for more
information.

Name Case Sensitivity
Name case sensitivity is different for VHDL and Verilog. VHDL names are not case sensitive
except for extended identifiers in VHDL 1076-1993 or later. In contrast, all Verilog names are
case sensitive.

ModelSim SE Reference Manual, v6.5b22

Syntax and Conventions
Wildcard Characters

Names in ModelSim commands are case sensitive when matched against case sensitive
identifiers, otherwise they are not case sensitive. SystemC names are case sensitive.

Extended Identifiers
The following are supported formats for extended identifiers for any command that takes an
identifier.

{\ext ident!\ }
Note that trailing space before closing brace is required

\\ext\ ident\!\\
All non-alpha characters escaped

Wildcard Characters
Wildcard characters can be used in HDL object names in some simulator commands. Table 1-3
shows the conventions for allowable wildcard characters.

Note
A wildcard character does not match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* will not match either of those.

Using the WildcardFilter Preference Variable
The WildcardFilter preference variable controls which object types are excluded when
performing wildcard matches for the following commands:

• add dataflow

• add list

• add memory

• add watch

Table 1-3. Wildcard Characters in HDL Object Names

Character Syntax Description

* matches any sequence of characters

? matches any single character

[] matches any one of the enclosed
characters; a hyphen can be used to
specify a range (for example, a-z, A-Z,
0-9); can be used only with the find
command

Syntax and Conventions
Wildcard Characters

ModelSim SE Reference Manual, v6.5b 23

• add wave

• find

• log

The default behavior is to exclude the following object types:

• VHDL shared variables in packages and design units, constants, generics, and
immediate assertions

• Verilog parameters, specparams, memories

• PSL and SystemVerilog assertions, covers, and endpoints

• Signals in cells

Note
Your WildcardFilter settings are persistent from one invocation to the next.

Procedure

Determining the Current WildcardFilter Variable Settings

Enter the following command:

set WildcardFilter

which returns a list of currently set arguments for exclusion.

Changing the WildcardFilter Settings from the Command Line

Refer to the list of WildcardFilter arguments in Table 1-4 to determine what you want to
exclude from wildcard matches, then enter the following command:

set WildcardFilter "<argument> ..."

Note that you must enclose the space-separated list of arguments in quotation marks.

Changing the WildcardFilter Settings back to the Default

Enter the following command:

set WildcardFilter default

Changing the WildcardFilter settings from the GUI

1. Choose Tools > Wildcard Filter from the main menu.

2. Select the individual Filters you want to exclude from wildcard searches (Table 1-4
describes each option), or select Composite Filters to activate related filters (Table 1-5
describes each composite option).

ModelSim SE Reference Manual, v6.5b24

Syntax and Conventions
Wildcard Characters

3. Click OK.

WildcardFilter Argument Descriptions

Table 1-4 provides a list of the WildcardFilter arguments.

Table 1-4. WildcardFilter Arguments

Argument Description

Alias VHDL Alias

Architecture VHDL Architecture

Assertion Concurrent SystemVerilog or PSL assertion

Block VHDL or Verilog block

CellInternal Signals in cells, where a cell is defined as 1) a module within a
‘celldefine 2) a Verilog module found with a library search
(using either vlog -v or vlog -y) and compiled with vlog +libcell
or 3) a module containing a specify block

Class Verilog class

ClassReference SystemVerilog class reference

ClockingBlock Verilog clocking block

Compare Waveform comparison signal

Configuration Verilog configuration

Constant VHDL constant

Cover SystemVerilog or PSL cover statements

Covergroup SystemVerilog or PSL covergroup

Coverpoint Verilog coverpoint

Cross Verilog cross

Endpoint SystemVerilog assertion objects created for sequences on which
the method “ended/triggered” is used.
PSL assertion objects created for sequences for which the builtin
function “ended()” is used.

Foreign VHDL foreign

Function Verilog function

Generate VHDL generate

Generic VHDL generic

ImmediateAssert VHDL immediate assertions

Integer VHDL integer

Syntax and Conventions
Wildcard Characters

ModelSim SE Reference Manual, v6.5b 25

Interface SystemVerilog interface

Memory Verilog memories

Module Verilog module

NamedEvent Verilog named event

Net Verilog net

Package VHDL package

ParamClass Verilog parameterized class

Parameter Verilog parameter

Port Verilog port

Primitive Verilog primitive

Process VHDL process

Property Assertion property

Real Verilog real registers

Reg Verilog register

Root All objects

ScExport SystemC export

ScHierChannel SystemC hierarchical channel

ScMethod SystemC method

ScModule SystemC module

ScPort SystemC port

ScPrimChannel SystemC primitive channel

ScThread SystemC thread

ScVariable SystemC variable

Sequence SystemVerilog sequence

Signal VHDL signal

SpecParam Verilog specparam

Statement Verilog statement

Task Verilog task

TaThreadMon Assertion thread monitor object

Time Verilog time registers

Table 1-4. WildcardFilter Arguments

Argument Description

ModelSim SE Reference Manual, v6.5b26

Syntax and Conventions
Wildcard Characters

Table 1-5 provides a list of the group aliases of WildcardFilter arguments.

TrStream Transaction stream

TrStreamArray Transaction stream array

Variable VHDL shared variables in packages and design units.

VirtualExpr Virtual expression

VirtualRegion Virtual region

VirtualSignal Virtual signal

vlGenerateBlock Verilog generate block

vlPackage Verilog package

vlProgram Verilog program

vlTypedef Verilog typedef

Table 1-5. WildcardFilter Argument Groups

Group Argument Specific arguments included

AllVHDLScopes Architecture, Block, Generate, Package, Foreign

AllVHDL Architecture, Block, Generate, Package, Foreign, Process,
Signal, Variable, Constant, Generic, Alias

AllVerilogScopes Block, vlGenerateBlock, Module, Task, Function,
Statement, Class, Cross, Covergroup, Coverpoint,
vlPackage, vlTypedef, ParamClass, ClockingBlock

AllVerilogVars Parameter, Reg, Integer, Time, Real, SpecParam, Memory,
NamedEvent, ClassReference

AllVerilog Block, vlGenerateBlock, Module, Primitive, Task,
Function, Statement, Net, Parameter, Reg, Integer, Time,
Real, SpecParam, Memory, NamedEvent, Class, Cross,
Covergroup, Coverpoint, vlPackage, vlTypedef,
ParamClass, ClockingBlock, ClassReference

VirtualSignals VirtualSignal, VirtualExpr

Virtual VirtualRegion, VirtualSignal, VirtualExpr

SystemCSignals ScPrimChannel, ScPort, ScExport

SystemCProcess ScMethod, ScThread

SystemC ScModule, ScPrimChannel, ScVariable, ScPort,
ScMethod, ScThread, ScExport, ScHierChannel

Table 1-4. WildcardFilter Arguments

Argument Description

Syntax and Conventions
Wildcard Characters

ModelSim SE Reference Manual, v6.5b 27

TR TrStream, TrStreamArray

AllHDLScopes Architecture, Block, Generate, Package, Foreign,
vlGenerateBlock, Module, Task, Function, Statement,
Class, Cross, Covergroup, Coverpoint, vlPackage,
vlTypedef, ParamClass, ClockingBlock

AllHDLSignals Signal, Variable, Constant, Generic, Alias, Net, Parameter,
Reg, Integer, Time, Real, SpecParam, Memory,
NamedEvent, VirtualSignal, VirtualExpr, ClassReference

AllVariables Variable, Constant, Generic, Alias, Parameter, Reg,
Integer, Time, Real, SpecParam, Memory, NamedEvent,
ClassReference

AllHDLSignalsVars Signal, Variable, Constant, Generic, Alias, Net, Parameter,
Reg, Integer, Time, Real, SpecParam, Memory,
NamedEvent, VirtualSignal, VirtualExpr, ClassReference

AllHDL Architecture, Block, Generate, Package, Foreign,
vlGenerateBlock, Signal, Variable, Module, Task,
Function, Statement, Net, Parameter, Reg, Integer, Time,
Real, SpecParam, Memory, NamedEvent, VirtualSignal,
VirtualExpr, Class, Cross, Covergroup, Coverpoint,
vlPackage, vlTypedef, ParamClass, ClockingBlock,
ClassReference

AllScopes Architecture, Block, Generate, Package, Foreign,
vlGenerateBlock, Module, Task, Function, Statement,
VirtualRegion, ScModule, Class, Cross, Covergroup,
Coverpoint, vlPackage, vlTypedef, ParamClass,
ClockingBlock

AllSignals Signal, Net, Parameter, Reg, Integer, Time, Real,
SpecParam, Memory, NamedEvent, VirtualSignal,
VirtualExpr, ScPrimChannel, Endpoint, ScPort, TrStream,
TrStreamArray, ScExport, ClassReference

AllSignalsVars Signal, Variable, Constant, Generic, Alias, Net, Parameter,
Reg, Integer, Time, Real, SpecParam, Memory,
NamedEvent, VirtualSignal, VirtualExpr, ScPrimChannel,
Endpoint, ScVariable, ScPort, TrStream, TrStreamArray,
ScExport, ClassReference

AllConstants Constant, Generic, Parameter, SpecParam

AllProcesses Process, ScMethod, ScThread

Table 1-5. WildcardFilter Argument Groups

Group Argument Specific arguments included

ModelSim SE Reference Manual, v6.5b28

Syntax and Conventions
Simulator Variables

Simulator Variables
ModelSim variables can be referenced in simulator commands by preceding the name of the
variable with the dollar sign ($) character. ModelSim uses global variables for simulator state
variables, simulator control variables, simulator preference variables, and user-defined
variables. Refer to modelsim.ini Variables in the User’s Manual for more information on
variables.

The report command returns a list of current settings for either the simulator state or simulator
control variables.

Simulation Time Units
You can specify the time unit for delays in all simulator commands that have time arguments.
For example:

force clk 1 50 ns, 1 100 ns -repeat 1 us
run 2 ms

Note that all the time units in a ModelSim command need not be the same.

Unless you specify otherwise as in the examples above, simulation time is always expressed
using the resolution units that are specified by the UserTimeUnit variable.

By default, the specified time units are assumed to be relative to the current time unless the
value is preceded by the character @, which signifies an absolute time specification.

Argument Files
You can load additional arguments into some commands by using argument files, which are
specified with the -f argument. The following commands support the -f argument:

vlog vcom sccom vopt vsim

The -f <filename> argument specifies a file that contains additional command line arguments.
The following sections outline some syntax rules for argument files.

Default Variable, Constant, Generic, Parameter, SpecParam,
Memory, Assertion, Cover, Endpoint, CellInternal,
ImmediateAssert

Table 1-5. WildcardFilter Argument Groups

Group Argument Specific arguments included

Syntax and Conventions
Command Shortcuts

ModelSim SE Reference Manual, v6.5b 29

• Single Quotes — allows you to group arbitrary characters so that no character
substitution occurs within the quotes, such as environment variable expansion or
escaped characters.

+acc=rn+'\mymodule’
//does not treat the ‘\’ as an escape character

• Double Quotes — allows you to group arbitrary characters so that Tcl-style backslash
substitution and environment variable expansion is performed.

+acc=rn+"\\mymodule\\$VAR"
// escapes the path separators (\) and substitues
// your value of ‘$VAR’

• Unquoted — the following are notes on what occurs when some information is not
quoted:

o Tcl backslash substitution — any unquoted backslash (\) will be treated as an escape
character.

+acc=rn\\mymodule
// the leading '\' is considered an escape character

o Environment variable expansion — any unquoted environment variable, such as
$envname, will be expanded. You can also use curly braces in your environment
variable, such as ${envname}.

+acc=rn\\$MODULE
// the leading '\' is considered an escape character and the
// variable $MODULE is expanded

• Newline Character — you can specify arguments on separate lines in the argument file,
with the newline characters treated as space characters. There is no need to put '\' at the
end of each line.

• Comments — Comments within the argument files follow these rules:

o All text in a line beginning with // to its end is treated as a comment.

o All text bracketed by /* … */ is treated as a comment.

Command Shortcuts
• You may abbreviate command syntax, but there’s a catch — the minimum number of

characters required to execute a command are those that make it unique. Remember, as
we add new commands some of the old shortcuts may not work. For this reason
ModelSim does not allow command name abbreviations in macro files. This minimizes
your need to update macro files as new commands are added.

• Multiple commands may be entered on one line if they are separated by semi-colons (;).
For example:

ModelSim SE Reference Manual, v6.5b30

Syntax and Conventions
Command History Shortcuts

ModelSim> vlog -nodebug=ports level3.v level2.v ; vlog -nodebug top.v

The return value of the last function executed is the only one printed to the transcript.
This may cause some unexpected behavior in certain circumstances. Consider this
example:

vsim -c -do "run 20 ; simstats ; quit -f" top

You probably expect the simstats results to display in the Transcript window, but they
will not, because the last command is quit -f. To see the return values of intermediate
commands, you must explicitly print the results. For example:

vsim -do "run 20 ; echo [simstats]; quit -f" -c top

Command History Shortcuts
You can review simulator command history or rerun previous commands by using keyboard
shortcuts at the ModelSim/VSIM prompt. Table 1-6 contains a list of these shortcuts.

Numbering Conventions
Numbers in ModelSim can be expressed in either VHDL or Verilog style. You can use two
styles for VHDL numbers and one for Verilog.

VHDL Numbering Conventions
There are two types of VHDL number styles:

Table 1-6. Keyboard Shortcuts for Command History

Shortcut Description

!! repeats the last command

!n repeats command number n; n is the VSIM prompt
number (e.g., for this prompt: VSIM 12>, n =12)

!abc repeats the most recent command starting with "abc"

^xyz^ab^ replaces "xyz" in the last command with "ab"

up and down arrows scrolls through the command history with the keyboard
arrows

click on prompt left-click once on a previous ModelSim or VSIM
prompt in the transcript to copy the command typed at
that prompt to the active cursor

his or history shows the last few commands (up to 50 are kept)

Syntax and Conventions
Numbering Conventions

ModelSim SE Reference Manual, v6.5b 31

VHDL Style 1
[-] [radix #] value [#]

A ‘-’ can also be used to designate a "don’t care" element when you search for a signal value or
expression in the List or Wave window. If you want the ‘-’ to be read as a "don’t care" element,
rather than a negative sign, be sure to enclose the number in double quotes. For instance, you
would type "-0110--" as opposed to -0110--. If you don’t include the double quotes, ModelSim
will read the ‘-’ as a negative sign. For example:

16#FFca23#
2#11111110
-23749

VHDL Style 2
base "value"

For example:

B"11111110"
X"FFca23"

Searching for VHDL Arrays in the Wave and List Windows
Searching for signal values in the Wave or List window may not work correctly for VHDL
arrays if the target value is in decimal notation. You may get an error that the value is of
incompatible type. Since VHDL does not have a radix indicator for decimal, the target value
may get misinterpreted as a scalar value. Prefixing the value with the Verilog notation 'd should
eliminate the problem, even if the signal is VHDL.

Table 1-7. VHDL Number Conventions: Style 1

Element Description

- indicates a negative number; optional

radix can be any base in the range 2 through 16 (2, 8, 10, or 16); by default,
numbers are assumed to be decimal; optional

value specifies the numeric value, expressed in the specified radix; required

is a delimiter between the radix and the value; the first # sign is required
if a radix is used, the second is always optional

Table 1-8. VHDL Number Conventions: Style 2

Element Description

base specifies the base; binary: B, octal: O, hex: X; required

"value" specifies digits in the appropriate base with optional underscore
separators; default is decimal; required

ModelSim SE Reference Manual, v6.5b32

Syntax and Conventions
GUI_expression_format

Verilog Numbering Conventions
Verilog numbers are expressed in the style:

[-] [size] [base] value

A ‘-’ can also be used to designate a "don’t care" element when you search for a signal value or
expression in the List or Wave windows. If you want the ‘-’ to be read as a "don’t care" element,
rather than a negative sign, be sure to enclose the number in double quotes. For instance, you
would type "-0110--" as opposed to 7'b-0110--. If you don’t include the double quotes,
ModelSim will read the ‘-’ as a negative sign. For example:

’b11111110 8’b11111110
’Hffca23 21’H1fca23
-23749

GUI_expression_format
The GUI_expression_format is an option of several simulator commands that operate within the
ModelSim GUI environment. The expressions help you locate and examine objects within the
List and Wave windows (expressions may also be used through the Edit > Search menu in both
windows). The commands that use the expression format are:

compare add, compare clock, compare configure, configure, examine, searchlog, virtual
function, virtual signal down, left, right, up

Expression Typing
GUI expressions are typed. The supported types consist of the following scalar and array types.

Scalar Types
The scalar types are as follows: boolean, integer, real, time (64-bit integer), enumeration, and
signal state. Signal states are represented by the nine VHDL std_logic states: ’U’ ’X’ ’0’ ’1’ ’Z’
’W’ ’L’ ’H’ and ’-’.

Table 1-9. Verilog Number Conventions

Element Description

- indicates a negative number; optional

size the number of bits in the number; optional

base specifies the base; binary: ‘b or ‘B, octal: ‘o or ‘O, decimal: ‘d or ‘D, hex: ‘h
or ‘H; optional

value specifies digits in the appropriate base with optional underscore separators;
default is decimal; required

Syntax and Conventions
GUI_expression_format

ModelSim SE Reference Manual, v6.5b 33

Verilog states 0, 1, x, and z are mapped into these states and the Verilog strengths are ignored.
Conversion is done automatically when referencing Verilog nets or registers.

SystemC scalar types supported are: all the C/C++ types except class, structure, union, and
array, as well as SystemC types sc_logic and sc_bit.

Array Types
The supported array types are signed and unsigned arrays of signal states. This would
correspond to the VHDL std_logic_array type. Verilog registers are automatically converted to
these array types. The array type can be treated as either UNSIGNED or SIGNED, as in the
IEEE std_logic_arith package. Normally, referencing a signal array causes it to be treated as
UNSIGNED by the expression evaluator; to cause it to be treated as SIGNED, use casting as
described below. Numeric operations supported on arrays are performed by the expression
evaluator via ModelSim’s built-in numeric_standard (and similar) package routines. The
expression evaluator selects the appropriate numeric routine based on SIGNED or UNSIGNED
properties of the array arguments and the result.

The enumeration types supported are any VHDL enumerated type. Enumeration literals may be
used in the expression as long as some variable of that enumeration type is referenced in the
expression. This is useful for sub-expressions of the form:

(/memory/state == reading)

The supported SystemC aggregate types are the C/C++ array types: union, class, structure, and
array. Also supported are the SystemC array types: sc_bv<w>, sc_lv<w>, sc_int<w>, etc.

Expression Syntax
GUI expressions generally follow C-language syntax, with both VHDL-specific and Verilog-
specific conventions supported. These expressions are not parsed by the Tcl parser, and so do
not support general Tcl; parentheses should be used rather than braces. Procedure calls are not
supported.

A GUI expression can include the following elements: Tcl macros, constants, array constants,
variables, array variables, signal attributes, operators, and casting.

Tcl Macros
Macros are useful for pre-defined constants or for entire expressions that have been previously
saved. The substitution is done only once, when the expression is first parsed. Macro syntax is:

$<name>

Substitutes the string value of the Tcl global variable <name>.

ModelSim SE Reference Manual, v6.5b34

Syntax and Conventions
GUI_expression_format

Constants

Array Constants, Expressed in Any of the Following Formats

Table 1-10. Constants Supported for GUI Expresssions

Type Values

boolean value true false TRUE FALSE

integer [0-9]+

real number <int>|([<int>].<int>[exp]) where the optional [exp] is: (e|E)[+|-][0-
9]+

time integer or real optionally followed by time unit

enumeration VHDL user-defined enumeration literal

single bit constants expressed as any of the following:
0 1 x X z Z U H L W ’U’ ’X’ ’0’ ’1’ ’Z’ ’W’ ’L’ ’H’ ’-’ 1’b0 1’b1

Table 1-11. Array Constants Supported for GUI Expresssions

Type Values

VHDL # notation <int>#<alphanum>[#]
Example: 16#abc123#

VHDL bitstring "(U|X|0|1|Z|W|L|H|-)*"
Example: "11010X11"

Verilog notation [-][<int>]’(b|B|o|O|d|D|h|H) <alphanum>
(where <alphanum> includes 0-9, a-f, A-F, and ’-’)
Example: 12’hc91 (This is the preferred notation because it removes the
ambiguity about the number of bits.)

Based notation 0x…, 0X…, 0o…, 0O…, 0b…, OB…
ModelSim automatically zero fills unspecified upper bits.

Syntax and Conventions
GUI_expression_format

ModelSim SE Reference Manual, v6.5b 35

Variables

Array variables

Signal attributes
<name>’event
<name>’rising
<name>’falling
<name>’delayed()
<name>’hasX

The ’delayed attribute lets you assign a delay to a VHDL signal. To assign a delay to a signal in
Verilog, use “#” notation in a sub-expression (e.g., #-10 /top/signalA).

The hasX attribute lets you search for signals, nets, or registers that contains an X (unknown)
value.

See Examples of Expression Syntax below for further details on ’delayed and ’hasX.

Table 1-12. Variables Supported for GUI Expresssions

Variable Type

Name of a signal The name may be a simple name, a VHDL or Verilog style extended
identifier, or a VHDL or Verilog style path. The signal must be one of
the following types:
-- VHDL signal of type INTEGER, REAL, or TIME
-- VHDL signal of type std_logic or bit
-- VHDL signal of type user-defined enumeration
-- Verilog net, Verilog register, Verilog integer, or Verilog real
-- SystemC primitive channels of type scalar (e.g. bool, int, etc.)

NOW Returns the value of time at the current location in the WLF file as the
WLF file is being scanned (not the most recent simulation time).

Table 1-13. Array Variables Supported for GUI Expresssions

Variable Type

Name of a signal -- VHDL signals of type bit_vector or std_logic_vector
-- Verilog register
-- Verilog net array
-- SystemC primitive channels of type vector (e.g. sc_bv, sc_int, etc.)
A subrange or index may be specified in either VHDL or Verilog
syntax. Examples: mysignal(1 to 5), mysignal[1:5], mysignal (4),
mysignal [4]

ModelSim SE Reference Manual, v6.5b36

Syntax and Conventions
GUI_expression_format

Operators

Note
Arithmetic operators use the std_logic_arith package.

Table 1-14. Operators Supported for GUI Expresssions

Operator Description Operator Description

&& boolean and sll/SLL shift left logical

|| boolean or sla/SLA shift left arithmetic

! boolean not srl/SRL shift right logical

== equal sra/SRA shift right arithmetic

!= not equal ror/ROR rotate right

=== exact equal1

1. This operator is allowed to be compatible with other simulators.

rol/ROL rotate left

!== exact not equal1 + arithmetic add

< less than - arithmetic subtract

<= less than or equal * arithmetic multiply

> greater than / arithmetic divide

>= greater than or equal mod/MOD arithmetic modulus

not/NOT/~ unary bitwise inversion rem/REM arithmetic remainder

and/AND bitwise and |<vector_expr> OR reduction

nand/NAND bitwise nand ^<vector_expr> XOR reduction

or/OR/| bitwise or

nor/NOR bitwise nor

xor/XOR bitwise xor

xnor/XNOR bitwise xnor

Syntax and Conventions
GUI_expression_format

ModelSim SE Reference Manual, v6.5b 37

Casting

Examples of Expression Syntax
/top/bus & $bit_mask

This expression takes the bitwise AND function of signal /top/bus and the array constant
contained in the global Tcl variable bit_mask.

clk’event && (/top/xyz == 16’hffae)

This expression evaluates to a boolean true when signal clk changes and signal /top/xyz
is equal to hex ffae; otherwise is false.

clk’rising && (mystate == reading) && (/top/u3/addr == 32’habcd1234)

Evaluates to a boolean true when signal clk just changed from low to high and signal
mystate is the enumeration reading and signal /top/u3/addr is equal to the specified
32-bit hex constant; otherwise is false.

(/top/u3/addr and 32’hff000000) == 32’hac000000

Evaluates to a boolean true when the upper 8 bits of the 32-bit signal /top/u3/addr equals
hex ac.

/top/signalA'delayed(10ns)

This expression returns /top/signalA delayed by 10 ns.

/top/signalA'delayed(10 ns) && /top/signalB

This expression takes the logical AND of a delayed /top/signalA with /top/signalB.

Table 1-15. Casting Conversions Supported for GUI Expresssions

Casting Description

(bool) convert to boolean

(boolean) convert to boolean

(int) convert to integer

(integer) convert to integer

(real) convert to real

(time) convert to 64-bit integer

(std_logic) convert to 9-state signal value

(signed) convert to signed vector

(unsigned) convert to unsigned vector

(std_logic_vector) convert to unsigned vector

ModelSim SE Reference Manual, v6.5b38

Syntax and Conventions
GUI_expression_format

virtual function { (#-10 /top/signalA) && /top/signalB}
mySignalB_AND_DelayedSignalA

This evaluates /top/signalA at 10 simulation time steps before the current time, and takes
the logical AND of the result with the current value of /top/signalB. The '#' notation uses
positive numbers for looking into the future, and negative numbers for delay. This
notation does not support the use of time units.

((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode == writing)

Evaluates to a boolean true when WLF file time is between 23 and 54 microseconds, clk
just changed from low to high, and signal mode is enumeration writing.

searchlog -expr {dbus'hasX} {0 ns} dbus

Searches for an ’X’ in dbus. This is equivalent to the expression: {dbus(0) == 'x' ||
dbus(1) == 'x'} This makes it possible to search for X values without having to
write a type specific literal.

Signal and Subelement Naming Conventions
ModelSim supports naming conventions for VHDL and Verilog signal pathnames, VHDL array
indexing, Verilog bit selection, VHDL subrange specification, and Verilog part selection. All
supported naming conventions for VHDL and Verilog are valid for SystemC designs.

Examples in Verilog and VHDL syntax:

top.chip.vlogsig
/top/chip/vhdlsig
vlogsig[3]
vhdlsig(9)
vlogsig[5:2]
vhdlsig(5 downto 2)

Grouping and Precedence
Operator precedence generally follows that of the C language, but we recommend liberal use of
parentheses.

Concatenation of Signals or Subelements
Elements in the concatenation that are arrays are expanded so that each element in the array
becomes a top-level element of the concatenation. But for elements in the concatenation that are
records, the entire record becomes one top-level element in the result. To specify that the
records be broken down so that their subelements become top-level elements in the
concatenation, use the concat_flatten directive. Currently we do not support leaving full arrays
as elements in the result. (Please let us know if you need that option.)

Syntax and Conventions
GUI_expression_format

ModelSim SE Reference Manual, v6.5b 39

If the elements being concatenated are of incompatible base types, a VHDL-style record will be
created. The record object can be expanded in the Objects and Wave windows just like an array
of compatible type elements.

Concatenation Syntax for VHDL
<signalOrSliceName1> & <signalOrSliceName2> & ...

Concatenation Syntax for Verilog
&{<signalOrSliceName1>, <signalOrSliceName2>, ... }
&{<count>{<signalOrSliceName1>}, <signalOrSliceName2>, ... }

Note that the concatenation syntax begins with "&{" rather than just "{". Repetition multipliers
are supported, as illustrated in the second line. The repetition element itself may be an arbitrary
concatenation subexpression.

Concatenation Directives
A concatenation directive (as illustrated below) can be used to constrain the resulting array
range of a concatenation or influence how compound objects are treated. By default, the
concatenation will be created with a descending index range from (n-1) downto 0, where n is the
number of elements in the array.

(concat_range 31:0)<concatenationExpr> # Verilog syntax
(concat_range (31:0))<concatenationExpr> # Also Verilog syntax
(concat_range (31 downto 0))<concatenationExpr> # VHDL syntax

The concat_range directive completely specifies the index range.

(concat_ascending) <concatenationExpr>

The concat_ascending directive specifies that the index start at zero and increment
upwards.

(concat_flatten) <concatenationExpr>

The concat_flatten directive flattens the signal structure hierarchy.

(concat_noflatten) <concatenationExpr>

The concat_noflatten directive groups signals together without merging them into one
big array. The signals become elements of a record and retain their original names.
When expanded, the new signal looks just like a group of signals. The directive can be
used hierarchically with no limits on depth.

(concat_sort_wild_ascending) <concatenationExpr>

The concat_sort_wild_ascending directive gathers signals by name in ascending order
(the default is descending).

ModelSim SE Reference Manual, v6.5b40

Syntax and Conventions
GUI_expression_format

(concat_reverse) <concatenationExpr>

The concat_reverse directive reverses the bits of the concatenated signals.

Examples of Concatenation
&{ "mybusbasename*" }

Gathers all signals in the current context whose names begin with "mybusbasename",
sorts those names in descending order, and creates a bus with index range (n-1) downto
0, where n is the number of matching signals found. (Note that it currently does not
derive the index name from the tail of the one-bit signal name.)

(concat_range 13:4)&{ "mybusbasename*" }

Specifies the index range to be 13 downto 4, with the signals gathered by name in
descending order.

(concat_ascending)&{ "mybusbasename*" }

Specifies an ascending range of 0 to n-1, with the signals gathered by name in
descending order.

(concat_ascending)((concat_sort_wild_ascending)&{"mybusbasename*" })

Specifies an ascending range of 0 to n-1, with the signals gathered by name in ascending
order.

(concat_reverse)(bus1 & bus2)

Specifies that the bits of bus1 and bus2 be reversed in the output virtual signal.

Record Field Members
Arbitrarily-nested arrays and records are supported, but operators will only operate on one field
at a time. That is, the expression {a == b} where a and b are records with multiple fields, is not
supported. This would have to be expressed as:

{(a.f1 == b.f1) && (a.f2 == b.f2) ...}

Examples:

vhdlsig.field1
vhdlsig.field1.subfield1
vhdlsig.(5).field3
vhdlsig.field4(3 downto 0)

Searching for Binary Signal Values in the GUI
When you use the GUI to search for signal values displayed in 4-state binary radix, you should
be aware of how ModelSim maps between binary radix and std_logic. The issue arises because

Syntax and Conventions
GUI_expression_format

ModelSim SE Reference Manual, v6.5b 41

there is no “un-initialized” value in binary, while there is in std_logic. So, ModelSim relies on
mapping tables to determine whether a match occurs between the displayed binary signal value
and the underlying std_logic value.

This matching algorithm applies only to searching using the GUI. It does not apply to VHDL or
Verilog test benches.

For comparing VHDL std_logic/std_ulogic objects, ModelSim uses the table shown below. An
entry of “0” in the table is “no match”; an entry of “1” is a “match”; an entry of “2” is a match
only if you set the Tcl variable STDLOGIC_X_MatchesAnything to 1. Note that X will match
a U, and - will match anything.

For comparing Verilog net values, ModelSim uses the table shown below. An entry of “2” is a
match only if you set the Tcl variable “VLOG_X_MatchesAnything” to 1.

This table also applies to SystemC types: sc_bit, sc_bv, sc_logic, sc_int, sc_uint, sc_bigint,
sc_biguint.

Table 1-16. VHDL Logic Values Used in GUI Search

Search
Entry

Matches as follows:

U X 0 1 Z W L H -

U 1 1 0 0 0 0 0 0 1

X 1 1 2 2 2 2 2 2 1

0 0 2 1 0 0 0 1 0 1

1 0 2 0 1 0 0 0 1 1

Z 0 2 0 0 1 0 0 0 1

W 0 2 0 0 0 1 0 0 1

L 0 2 1 0 0 0 1 0 1

H 0 2 0 1 0 0 0 1 1

- 1 1 1 1 1 1 1 1 1

Table 1-17. Verilog Logic Values Used in GUI Search

Search
Entry

Matches as follows:

0 1 Z X

0 1 0 0 2

1 0 1 0 2

Z 0 0 1 2

X 2 2 2 1

ModelSim SE Reference Manual, v6.5b42

Syntax and Conventions
GUI_expression_format

ModelSim SE Reference Manual, v6.5b 43

Chapter 2
Commands

You enter the commands in this chapter either on the command line of the Main window or in
macro files. Some commands are automatically entered on the command line when you use the
ModelSim graphical user interface.

Note that in addition to the simulation commands listed in this chapter, you can also use the Tcl
commands described in the Tcl man pages (use the Main window menu selection: Help > Tcl
Man Pages).

Table 2-1 provides a brief description of each ModelSim command. For more information on
command details, arguments, and examples, click the link in the Command name column.

Table 2-1. Supported Commands

Command name Action

.main clear clears the Main window transcript

abort halts the execution of a macro file interrupted by a breakpoint or
error

add button adds a user-defined button to the Main window button bar

add dataflow adds the specified object to the Dataflow window

add list lists VHDL signals and variables, and Verilog nets and registers,
and their values in the List window

add log also known as the log command; see log

add memory opens the specified memory in the MDI frame of the Main
window

add testbrowser adds .ucdb files to the Test Management Browser

add watch adds signals or variables to the Watch window

add wave adds VHDL signals and variables, and Verilog nets and registers
to the Wave window

add_cmdhelp adds an entry to the command-line help; use the help command to
display the help text

add_menu adds a menu to the menu bar of the specified window, using the
specified menu name

add_menucb creates a checkbox within the specified menu of the specified
window

ModelSim SE Reference Manual, v6.5b44

Commands

add_menuitem creates a menu item within the specified menu of the specified
window

add_separator adds a separator as the next item in the specified menu path in the
specified window

add_submenu creates a cascading submenu within the specified menu path of
the specified window

alias creates a new Tcl procedure that evaluates the specified
commands

batch_mode returns a 1 if ModelSim is operating in batch mode, otherwise
returns a 0

bd deletes a breakpoint

bookmark add wave adds a bookmark to the specified Wave window

bookmark delete wave deletes bookmarks from the specified Wave window

bookmark goto wave zooms and scrolls a Wave window using the specified bookmark

bookmark list wave displays a list of available bookmarks

bp sets a breakpoint

cd changes the ModelSim local directory to the specified directory

cdbg provides command-line equivalents of the menu options that are
available for C Debug.

change modifies the value of a VHDL variable or Verilog register
variable

change_menu_cmd changes the command to be executed for a specified menu item
label, in the specified menu, in the specified window

check contention add enables contention checking for the specified nodes

check contention config writes checking messages to a file

check contention off disables contention checking for the specified nodes

check float add enables float checking for the specified nodes

check float config writes checking messages to a file

check float off disables float checking for the specified nodes

check stable off disables stability checking

check stable on enables stability checking on the entire design

checkpoint saves the state of your simulation

Table 2-1. Supported Commands (cont.)

Command name Action

Commands

ModelSim SE Reference Manual, v6.5b 45

compare add compares signals in a reference design against signals in a test
design

compare annotate marks a compare difference as "ignore" or tags it with a text
message

compare clock defines a clock to be used with clocked-mode comparisons

compare configure modifies options for compare signals or regions

compare continue continues difference computation that had been suspended

compare delete deletes a signal or region from the current comparison

compare end closes the currently open comparison

compare info lists the results of the comparison

compare list lists all the compare add commands currently in effect

compare options sets defaults for options used in other compare commands

compare reload reloads a comparison previously saved with the compare
savediffs command

compare reset clears the current compare differences

compare run runs the comparison on selected signals

compare savediffs saves comparison differences to a file that can be reloaded later

compare saverules saves comparison setup information to a file that can be reloaded
later

compare see displays a comparison difference in the Wave window

compare start starts a new dataset comparison

compare stop halts active difference computation

compare update updates the comparison differences

configure invokes the List or Wave widget configure command for the
current default List or Wave window

context provides several operations on a context’s name

coverage attribute displays attributes in the currently loaded database

coverage clear clears all coverage data obtained during previous run commands.
Undocumented for 6.4

coverage exclude loads an exclusion filter file; or, allows you to exclude specific
lines in a source file or rows within a table.

coverage goal Sets the value of UCDB-wide goals

Table 2-1. Supported Commands (cont.)

Command name Action

ModelSim SE Reference Manual, v6.5b46

Commands

coverage report produces a textual output of the coverage statistics that have been
gathered up to this point

coverage save saves current coverage statistics to a file that can be reloaded
later, preserving instance-specific information

coverage testnames displays test names in the current UCDB file loaded

coverage weight sets a global per-type weight for total coverage calculations

dataset alias assigns an additional name to a dataset

dataset clear clears the current simulation WLF file

dataset close closes a dataset

dataset config configures WLF file settings after dataset is open

dataset info reports information about the specified dataset

dataset list lists the open dataset(s)

dataset open opens a dataset and references it by a logical name

dataset rename changes the logical name of an opened dataset

dataset restart unloads specified or current dataset

dataset save saves data from the current WLF file to a specified file

dataset snapshot saves data from the current WLF file at a specified interval

delete removes objects from either the List or Wave window

describe displays information about the specified HDL object

disablebp turns off breakpoints and when commands

disable_menu disables the specified menu within the specified window

disable_menuitem disables the specified menu item within the specified menu path
of the specified window

do executes commands contained in a macro file

down searches for signal transitions or values in the specified List
window

drivers displays in the Main window the current value and scheduled
future values for all the drivers of a specified VHDL signal or
Verilog net

dumplog64 dumps the contents of the vsim.wlf file in a readable format

echo displays a specified message in the Main window

edit invokes the editor specified by the EDITOR environment variable

Table 2-1. Supported Commands (cont.)

Command name Action

Commands

ModelSim SE Reference Manual, v6.5b 47

enablebp turns on breakpoints and when commands turned off by the
disablebp command

enable_menu enables a previously-disabled menu

enable_menuitem enables a previously-disabled menu item

environment displays or changes the current dataset and region environment

examine examines one or more objects, and displays current values (or the
values at a specified previous time) in the Main window

exit exits the simulator and the ModelSim application

find displays the full pathnames of all objects in the design whose
names match the name specification you provide

find infiles searches the specified files and prints to the Transcript window
those lines from the files that match the specified pattern.

find insource searches all source files related to the current design and prints to
the Transcript window those lines from the files that match the
specified pattern.

formatTime global format control for all time values displayed in the GUI

force applies stimulus to VHDL signals and Verilog nets

gdb dir sets the source directory for FLI/PLI/VPI C source code when
using C Debug

getactivecursortime gets the time of the active cursor in the Wave window

getactivemarkertime gets the time of the active marker in the List window

help displays in the Main window a brief description and syntax for the
specified command

history lists the commands executed during the current session

jobspy controls and monitors batch jobs

layout allows you to perform operations on GUI layouts

lecho takes one or more Tcl lists as arguments and pretty-prints them to
the Main window

left searches left (previous) for signal transitions or values in the
specified Wave window

log creates a wave log format (WLF) file containing simulation data
for all objects whose names match the provided specifications

lshift takes a Tcl list as an argument and shifts it in-place one place to
the left, eliminating the left-most element

Table 2-1. Supported Commands (cont.)

Command name Action

ModelSim SE Reference Manual, v6.5b48

Commands

lsublist returns a sublist of the specified Tcl list that matches the specified
Tcl glob pattern

mem compare compares the selected memory to a reference memory or file

mem display displays the memory contents of a selected instance to the screen

mem list displays a flattened list of all memory instances in the current or
specified context after a design has been elaborated

mem load updates the simulation memory contents of a specified instance

mem save saves the contents of a memory instance to a file in any of the
supported formats: Verilog binary, Verilog hex, and MTI memory
pattern data

mem search finds and prints to the screen the first occurring match of a
specified memory pattern in the specified memory instance

modelsim starts the ModelSim GUI without prompting you to load a design;
valid only for Windows platforms

next continues a search; see the search command

noforce removes the effect of any active force commands on the selected
object

nolog suspends writing of data to the WLF file for the specified signals

notepad opens a simple text editor

noview closes a window or set of windows in the ModelSim GUI

nowhen deactivates selected when commands

onbreak specifies command(s) to be executed when running a macro that
encounters a breakpoint in the source code; in effect only during a
run command

onElabError specifies one or more commands to be executed when an error is
encountered during elaboration; in effect only during a vsim
command

onerror specifies one or more commands to be executed when a Tcl
command in a dofile encounters an error; not dependent on a run
command

pause interrupts the execution of a macro

pop moves one level up the C callstack

power add specifies the signals or nets to track for power information

power off works in conjunction with the power add command to make vsim
stop updating toggle activity data for the specified signal or net

Table 2-1. Supported Commands (cont.)

Command name Action

Commands

ModelSim SE Reference Manual, v6.5b 49

power on works in conjunction with the power add command to make vsim
begin or resume updating toggle activity data for the specified
signal or net

power report writes out the power information for the specified signals or nets

power reset resets power information to zero for the signals or nets specified
with the power add command

precision determines how real numbers display in the GUI

printenv echoes to the Main window the current names and values of all
environment variables

process report creates textual report of all processes displayed in the Process
window

profile clear clears any statistical performance or memory allocation data that
has been gathered during previous run commands

profile interval selects the frequency with which the profiler collects samples
during a run command

profile off disables runtime statistical performance and memory allocation
profiling

profile on enables runtime profiling of where your simulation is spending its
time and where memory is allocated

profile option allows various profiling options to be changed

profile reload reads in raw profile data from an external file created during
memory allocation profiling

profile report produces a textual output of the profiling statistics that have been
gathered up to this point

project performs common operations on new projects

property list changes one or more properties of the specified signal, net, or
register in the List Window

property wave changes one or more properties of the specified signal, net, or
register in the Wave Window

push moves one level down the C callstack

pwd displays the current directory path in the Main window

quietly turns off transcript echoing for the specified command

quit exits the simulator

qverilog compiles, optimizes, and simulates a Verilog or SystemVerilog
design in one step

Table 2-1. Supported Commands (cont.)

Command name Action

ModelSim SE Reference Manual, v6.5b50

Commands

radix specifies the default radix to be used

radix define creates or modifies a user-defined radix

radix names returns a list of currently defined radix names

radix list returns the complete definition of a radix

radix delete removes the radix definition from the named radix

readers displays the names of all readers of the specified object

report displays the value of all simulator control variables, or the value
of any simulator state variables relevant to the current simulation

restart reloads the current dataset if the current dataset is not the active
simulation ("sim") and resets the simulation time to zero, in effect
acting just like a restart of a simulation

restore restores the state of a simulation that was saved with a checkpoint
command during the current invocation of vsim

resume resumes execution of a macro file after a pause command or a
breakpoint

right searches right (next) for signal transitions or values in the
specified Wave window

run advances the simulation by the specified number of timesteps

sccom compiles SystemC design units

scgenmod creates the equivalent SystemC foreign module declaration for a
VHDL entity or Verilog module, and writes it to standard output

sdfcom compiles SDF files

search searches the specified window for one or more objects matching
the specified pattern(s)

searchlog searches one or more of the currently open logfiles for a specified
condition

seetime scrolls the List or Wave window to make the specified time
visible

setenv sets an environment variable

shift shifts macro parameter values down one place

show lists objects and subregions visible from the current environment

simstats reports performance-related statistics about active simulations

status lists all currently interrupted macros

Table 2-1. Supported Commands (cont.)

Command name Action

Commands

ModelSim SE Reference Manual, v6.5b 51

step steps to the next HDL statement

stop stops simulation in batch files; used with the when command

suppress prevents the specified message(s) from displaying

tb displays a stack trace for the current process in the Transcript
window

tcheck_set modifies reporting or X generation status of a timing check

tcheck_status prints the current status of timing checks to the Transcript
window

toggle add enables collection of toggle statistics for the specified nodes

toggle disable disables collection of toggle statistics for the specified nodes

toggle enable re-enables collection of toggle statistics for the specified nodes

toggle report displays to the Transcript window a list of all nodes that have not
transitioned to both 0 and 1 at least once

toggle reset resets the toggle counts to zero for the specified nodes

tr color modifies the color of a specific transaction or stream of
transactions in a wave window, or all wave windows

tr uid displays to the Transcript window a list of all active transactions
and their IDs

tr order controls which attributes are visible in a transaction and the order
in which they appear

transcribe displays a command in the Transcript window, then executes the
command

transcript controls echoing of commands executed in a macro file; also
works at top level in batch mode

transcript file sets or queries the pathname for the transcript file

tssi2mti converts a vector file in Technology Standard Events Format
(TSSI) into a sequence of force and run commands

typespec queries class names and class relationships of SystemVerilog
classes

unsetenv deletes an environment variable

up searches for signal transitions or values in the specified List
window

vcd add adds the specified objects to the VCD file

Table 2-1. Supported Commands (cont.)

Command name Action

ModelSim SE Reference Manual, v6.5b52

Commands

vcd checkpoint dumps the current values of all VCD variables to the VCD file

vcd comment inserts the specified comment in the VCD file

vcd dumpports creates a VCD file that captures port driver data

vcd dumpportsall creates a checkpoint in the VCD file that shows the current values
of all selected ports

vcd dumpportsflush flushes the VCD buffer to the VCD file

vcd dumpportslimit specifies the maximum size of the VCD file

vcd dumpportsoff turns off VCD dumping and records all dumped port values as x

vcd dumpportson turns on VCD dumping and records the current values of all
selected ports

vcd file specifies the filename and state mapping for the VCD file created
by a vcd add command

vcd files specifies filenames and state mapping for the VCD files created
by the vcd add command; supports multiple VCD files

vcd flush flushes the contents of the VCD file buffer to the VCD file

vcd limit specifies the maximum size of the VCD file

vcd off turns off VCD dumping and records all VCD variable values as x

vcd on turns on VCD dumping and records the current values of all VCD
variables

vcd2wlf translates VCD files into WLF files

vcom compiles VHDL design units

vcover attribute displays attributes in the currently loaded database

vcover merge merges multiple code coverage data files offline

vcover ranktest ranks the specified input files according to their contribution to
cumulative coverage

vcover merge, “Code
Coverage”, coverage goal.
coverage weightvcover
report

reports on multiple code coverage data files offline

vcover stats produces summary statistics from multiple coverage data files

vcover testnames displays test names in the current UCDB file loaded

vdel deletes a design unit from a specified library

vdir lists the contents of a design library

Table 2-1. Supported Commands (cont.)

Command name Action

Commands

ModelSim SE Reference Manual, v6.5b 53

vencrypt encrypts Verilog code contained within encryption envelopes

verror prints a detailed description of a message number

vgencomp writes the equivalent VHDL component declaration for a Verilog
module to standard output

view opens a ModelSim window and brings it to the front of the display

virtual count counts the number of currently defined virtuals that were not read
in using a macro file

virtual define prints the definition of a virtual signal or function in the form of a
command that can be used to re-create the object

virtual delete removes the matching virtuals

virtual describe prints a complete description of the data type of one or more
virtual signals

virtual expand produces a list of all the non-virtual objects contained in the
virtual signal(s)

virtual function creates a new signal that consists of logical operations on existing
signals and simulation time

virtual hide causes the specified real or virtual signals to not be displayed in
the Objects window

virtual log causes the sim-mode dependent signals of the specified virtual
signals to be logged by the simulator

virtual nohide redisplays a virtual previously hidden with virtual hide

virtual nolog stops the logging of the specified virtual signals

virtual region creates a new user-defined design hierarchy region

virtual save saves the definitions of virtuals to a file

virtual show lists the full path names of all the virtuals explicitly defined

virtual signal creates a new signal that consists of concatenations of signals and
subelements

virtual type creates a new enumerated type

vlib creates a design library

vlog compiles Verilog design units and SystemVerilog extensions

vmake creates a makefile that can be used to reconstruct the specified
library

vmap defines a mapping between a logical library name and a directory

Table 2-1. Supported Commands (cont.)

Command name Action

ModelSim SE Reference Manual, v6.5b54

Commands

vopt produces an optimized version of your design

vsim loads a new design into the simulator

vsim<info> returns information about the current vsim executable

vsim_break stop the current simulation before completion

vsource specifies an alternative file to use for the current source file

wave commands for manipulating cursors, for zooming, and for
adjusting the wave display view in the Wave window

wave create creates an editable waveform that can be used to create stimulus
and drive simulation

wave edit edits a created waveform

wave export exports created waveforms to a stimulus file

wave import imports an EVCD file previously created with a wave export
command

wave modify modifies the parameters of a created waveform

when instructs ModelSim to perform actions when the specified
conditions are met

where displays information about the system environment

wlf2log translates a ModelSim WLF file to a QuickSim II logfile

wlf2vcd translates a ModelSim WLF file to a VCD file

wlfman outputs information about or a new WLF file from an existing
WLF file

wlfrecover attempts to repair an incomplete WLF file

write cell_report creates a report of cell instances in the design that are optimized

write format records the names and display options in a file of the objects
currently being displayed in the List or Wave window

write list records the contents of the most recently opened or specified List
window in a list output file

write preferences saves the current GUI preference settings to a Tcl preference file

write report prints a summary of the design being simulated

write timing prints timing information about the specified instance

write transcript writes the contents of the Main window transcript to the specified
file

Table 2-1. Supported Commands (cont.)

Command name Action

Commands

ModelSim SE Reference Manual, v6.5b 55

write tssi records the contents of the default or specified List window in a
“TSSI format” file

write wave records the contents of the most currently opened or specified
Wave window in PostScript format

xml2ucdb converts an XML file into a .ucdb file

Table 2-1. Supported Commands (cont.)

Command name Action

ModelSim SE Reference Manual, v6.5b56

Commands
.main clear

.main clear
The .main clear command clears the Main window Transcript window.

The behavior is the same as selecting Edit > Clear when the Transcript window is active.

Syntax

.main clear

Arguments

None

See also

Main Window, Transcript Window, transcript, transcript file

Commands
abort

ModelSim SE Reference Manual, v6.5b 57

abort
This command halts the execution of a macro file interrupted by a breakpoint or error.

When macros are nested, you may choose to abort the last macro only, abort a specified number
of nesting levels, or abort all macros. You can specify this command within a macro to return
early.

Syntax

abort [<n> | all]

Arguments

• <n>

(optional) An integer, greater than 0, that specifies the number of nested macro levels to
abort, where the default value of is 1.

• all

(optional) A literal that instructs the tool to abort all levels of nested macros.

See also

onbreak onElabError onerror

ModelSim SE Reference Manual, v6.5b58

Commands
add button

add button
This command adds a user-defined button to the Main window button bar. New buttons are
added to the right side of the Standard toolbar.

Returns the path name of the button widget created. You may want to remember this path name,
which is similar to:

.dockbar.tbf0.standard.tb.button_49

in case you ever want to remove the button.

To remove a button you have previously added you can use the destroy Tcl command with the
button’s path name as an argument, for example:

destroy .dockbar.tbf0.standard.tb.button_49

Syntax

add button <text> <cmd> [Disable | NoDisable] [{<option> <value> ...}]

Arguments

• <text>

(required) A string that specifies the label to appear on the face of the button.

• <cmd>

(required) A string that defines the command to be executed when the button is clicked.

If your command contains any whitespace or non-alphanumeric characters you must enclose
the command in braces ({}).

You can specify multiple commands by separating them with a semicolon.

You can echo the command and display the return value in the Transcript window by
prefixing the command with the transcribe command. Transcribe will also echo the results
to the Transcript window.

• Disable | NoDisable

(optional) A choice of literals that specify the appearance of the button.

Disable — the button is inactive and grayed-out during a run.

NoDisable — the button is active and available during a run.

• {<option> <value>} ...

(optional) A pair of strings, which are repeatable, that specify Tk button widgets you want
to apply to the button.

You must enclose your option/value pairs in braces ({}).

Note
To specify any option/value pairs, you must specify either Disable or NoDisable.

Commands
add button

ModelSim SE Reference Manual, v6.5b 59

You can use any properties belonging to Tk button widgets. Useful options are foreground
color (-fg), background color (-bg), width (-width), and relief (-relief).

For a complete list of available options, use the configure command addressed to the newly-
created widget. For example:

.dockbar.tbf0.standard.tb.button_51 config

or you can access the Tk documentation for button widgets by selecting Help > Tcl Man
Pages, which displays HTML help. You then can select the links: Tk commands then
buttons.

Examples

• Create a button labeled “pwd” that invokes the transcribe command with the pwd Tcl
command, and echoes the command and its results to the Transcript window. The button
remains active during a run.

add button pwd {transcribe pwd} NoDisable

• Create a button labeled “date” that echoes the system date to the Transcript window. The
button is disabled during a run; its colors are: blue foreground, yellow background, and
red active background.

add button date {transcribe exec date} Disable \
{-fg blue -bg yellow -activebackground red}

• Create a “doit” button and underline the second character of the label, the "o" of "doit".

add button doit {run 1000 ns; echo did it} Disable {-underline 1}

• Change the command that the button executes to "run 10000" and the button’s
background color to red; you must know the button’s path name that was returned after
the initial creation of the button.

.dockbar.tbf0.standard.tb.button_13 config -command {run 10000} -bg red

See also

transcribe

ModelSim SE Reference Manual, v6.5b60

Commands
add dataflow

add dataflow
The add dataflow command adds the specified process, signal, net, or register to the Dataflow
window. Wildcards are allowed.

Syntax

add dataflow <object> ... [-connect <source_net> <destination_net>]
{ [-in] [-out] [-inout] | [-ports] } [-internal] [-nofilter] [-recursive] [-window <wname>]

Arguments

• <object> ...

(required) A string, which is repeatable in a space separated list, that specifies a process,
signal, net, or register that you want to add to the Dataflow window, where wildcards are
allowed. Refer to the section “Wildcard Characters” for wildcard usage as it pertains to the
add commands.

• -connect <source_net> <destination_net>

(optional) A switch and option set that computes and displays in the Dataflow window all
paths between the source_net and destination_net. Refer to the section "Automatically
Tracing All Paths Between Two Nets" in the User’s Manual for more information.

• -in

(optional) A literal that specifies to add ports of mode IN.

• -inout

(optional) A literal that specifies to add ports of mode INOUT.

• -internal

(optional) A literal that specifies to add internal (non-port) objects.

• -nofilter

(optional) A literal that specifies that the WildcardFilter Tcl preference variable be ignored
when finding signals or nets.

The WildcardFilter Tcl preference variable identifies types to ignore when matching objects
with wildcard patterns.

• -out

(optional) A literal that specifies to add ports of mode OUT.

• -ports

(optional) A literal that specifies to add all ports. This switch has the same effect as
specifying -in, -out, and -inout together.

• -recursive

(optional) A literal that specifies that the scope of the search is to descend recursively into
subregions. If omitted, the search is limited to the selected region.

Commands
add dataflow

ModelSim SE Reference Manual, v6.5b 61

You can specify -r as an alias to this switch.

• -window <wname>

(optional) A switch and argument pair that adds the object(s) to the specified Dataflow
window.

<window> — the name of the dataflow window, as shown in the window’s tab.

This switch is useful for when you have multiple dataflow windows open.

You can open a new dataflow window by entering:

view dataflow -new

See also

Examples

• Add all objects in the design to the dataflow window.

add dataflow -r /*

• Add all objects in the region to the dataflow window.

add dataflow *

• Open a new Dataflow window with "DFLOW" as its title, then add signals to it.

set DFLOW [view dataflow -new -title DFLOW]
add dataflow -window $DFLOW /top/mysignals

The custom window title "DFLOW" is saved as a TCL variable, then called using the ’$’
prefix.

Dataflow Window Using the
WildcardFilter
Preference Variable

ModelSim SE Reference Manual, v6.5b62

Commands
add list

add list
The add list command adds the following objects and their values to the List window:

• VHDL signals and variables

• Verilog nets and registers

• User-defined buses

• SystemC primitive channels (signals)

If you do not specify a port mode, such as -in or -out, add list displays all objects in the selected
region with names matching the object name specification.

See “Wildcard Characters” for wildcard usage as it pertains to the add commands.

Syntax

add list [-width <integer>] [-allowconstants] [-depth <level>] {[-in] [-inout] [-out] | [-ports]}
[-internal] [-label <name>] [-nodelta] [-trigger | -notrigger] [-radix <type> | -<radix_type>]
[-radixenumnumeric | -radixenumsymbolic] [-recursive] [-optcells] [-window <wname>]
{<object> ... | <object_name> {sig ...}}

Arguments

• <object> ...

(required) A string, which is repeatable in a space-separated list, that specifies the name(s)
of the object to be listed, where wildcards are allowed. Refer to the section “Wildcard
Characters” for wildcard usage as it pertains to the add commands.

Note that the WildcardFilter Tcl preference variable identifies types to ignore when
matching objects with wildcard patterns.

You can add variables as long as they are preceded by the process name. For example:

add list myproc/int1

• <object_name> {sig ...}

(required) A group of arguments, enclosed in braces ({ }), that creates a user-defined bus
with the specified object name containing the specified signals (sig) concatenated within the
user-defined bus.

sig — A space-separated list of signals, enclosed in braces ({ }), that are included in the
user-defined bus. The signals may be either scalars or various sized arrays as long as
they have the same element enumeration type.

For example:

add list {mybus {a b y}}

• -allowconstants

For use with wildcard searches. (optional) A switch that specifies that constants matching
the wildcard search should be added to the List window.

Commands
add list

ModelSim SE Reference Manual, v6.5b 63

This command does not add constants by default because they do not change.

• -depth <level>

(optional) A switch and argument pair that restricts a recursive search, as specified with
-recursive, to a certain level of hierarchy.

<level> — an integer greater than or equal to zero.

For example, if you specify -depth 1, the command descends only one level in the hierarchy.

• -in

For use with wildcard searches. (optional) A switch that specifies that the scope of the
search is to include ports of mode IN if they match the object specification.

• -inout

For use with wildcard searches. (optional) A switch that specifies that the scope of the
search is to include ports of mode INOUT if they match the object specification.

• -internal

For use with wildcard searches. (optional) A switch that specifies that the scope of the
search is to include internal objects (non-port objects) if they match the object specification.
VHDL variables are not selected.

• -label <name>

(optional) A switch and argument pair that specifies an alternative signal name to be
displayed as a column heading in the listing.

<name> — specifies the label to be used at the top of the column. You must enclose
<name> in braces ({ }) if it includes any whitespace.

This alternative name is not valid in a force or examine command. However, you can use it
in a search with the list option.

• -nodelta

(optional) A switch that specifies that the delta column not be displayed when adding
signals to the List window. Identical to configure list -delta none.

• -optcells

For use with wildcard searches. (optional) A switch that allows Verilog optimized cell ports
to be visible when using wildcards. By default Verilog optimized cell ports are not selected
even if they match the specified wildcard pattern.

• -out

For use with wildcard searches. (optional) A switch that specifies that the scope of the
search is to include ports of mode OUT if they match the object specification.

• -ports

For use with wildcard searches. (optional) A switch that specifies that the scope of the
search is to include all ports. This switch has the same effect as specifying -in, -out, and
-inout together.

ModelSim SE Reference Manual, v6.5b64

Commands
add list

• -radix <type> | -<radix_type>

(optional) A choice between switches that specify the radix for the objects that follow in the
command. Valid entries (or any unique abbreviations) are:

If no radix is specified for an enumerated type, the default representation is used.

If you specify a radix for an array of a VHDL enumerated type, ModelSim converts each
signal value to 1, 0, Z, or X.

You can change the default radix for the current simulation using the radix command. You
can change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file.

• -radixenumnumeric

(optional) Displays SystemVerilog and SystemC enums as numbers rather than strings. The
current radix setting controls the actual enum value displayed, except when the radix setting
is ASCII. If the current radix setting is ASCII, the value of SystemVerilog and SystemC
enums are displayed as a string. This option overrides the global setting of the default radix
(the DefaultRadix variable in the modelsim.ini file).

• -radixenumsymbolic

(optional) Reverses the action of the -radixenumnumeric option and sets the global setting
of the default radix (the DefaultRadix variable in the modelsim.ini file) to symbolic.

• -recursive

For use with wildcard searches. (optional) A switch that specifies that the scope of the
search is to descend recursively into subregions. If omitted, the search is limited to the
selected region. You can use the -depth argument to specify how far down the hierarchy to
descend. You can use "-r" as an alias to this switch.

• -trigger | -notrigger

(optional) A choice of switches that specify whether objects should be updated in the List
window when the objects change value.

-radix binary -binary

-radix ascii -ascii

-radix unsigned -unsigned

-radix decimal -decimal

-radix octal -octal

-radix hex -hex

-radix symbolic -symbolic

-radix time -time

-radix default -default

Commands
add list

ModelSim SE Reference Manual, v6.5b 65

• -width <integer>

(optional) A switch and argument pair that specifies the column width in characters.

• -window <wname>

(optional) A switch and argument pair that adds objects to the specified List window
<wname> (e.g., list2).

You should use this switch to specify a particular window when multiple instances of that
window type exist.

This option selects an existing window, but does not create a new window. Use the view
command with the -new option to create a new window.

Examples

• List all objects in the design.

add list -r /*

• List all objects in the region.

add list *

• List all input ports in the region.

add list -in *

• Display a List window containing three columns headed a, sig, and array_sig(9 to 23).

add list a -label sig /top/lower/sig {array_sig(9 to 23)}

• List clk, a, b, c, and d only when clk changes.

add list clk -notrigger a b c d

• Lists clk, a, b, c, and d every 100 ns.

config list -strobeperiod {100 ns} -strobestart {0 ns} -usestrobe 1
add list -notrigger clk a b c d

• Creates a user-defined bus named "mybus" consisting of three signals; the bus is
displayed in hex.

add list -hex {mybus {msb {opcode(8 downto 1)} data}}

• Lists the object vec1 using symbolic values, lists vec2 in hexadecimal, and lists vec3 and
vec4 in decimal.

add list vec1 -hex vec2 -dec vec3 vec4

• Open a new List window with "SV_Signals" as its title, then add signals to it.

set SV_Signals [view list -new -title SV_Signals]
add list -window $SV_Signals /top/mysignals

ModelSim SE Reference Manual, v6.5b66

Commands
add list

The custom window title "SV_Signals" is saved as a TCL variable, then called using the
’$’ prefix.

See also

add wave log Extended
Identifiers

Using the
WildcardFilter
Preference Variable

Commands
add memory

ModelSim SE Reference Manual, v6.5b 67

add memory
The add memory command displays the contents and sets the address and data radix of the
specified memory in the MDI frame of the Main window.

See “Wildcard Characters” for wildcard usage as it pertains to the add commands.

Syntax

add memory [-addressradix {decimal | hex}] [-dataradix <radix_type>] [-radixenumnumeric |
-radixenumsymbolic] [-wordsperline <num>] <object_name> ...

Arguments

• -addressradix {decimal | hex}

(optional) A switch and argument pair that specifies the address radix for the memory
display.

decimal — (default) sets the radix to decimal. You can abbreviate this argument to "d".

hex — sets the radix to hexidecimal. You can abbreviate this to "h".

• -dataradix <radix_type>

(optional) A switch and argument pair that specifies the data radix for the memory display.

If you do not specify this switch, the command uses the global default radix.

<type> — Valid entries (or any unique abbreviations) are:

If you do not specify a radix is specified for an enumerated type, the command uses the
symbolic representation.

You can change the default radix for the current simulation using the radix command. You
can change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file. Changing the default radix does not change the radix of the currently-
displayed memory. Use the add memory command to re-add the memory with the desired
radix, or change the display radix from the Memory window Properties dialog.

• -radixenumnumeric

(optional) Displays SystemVerilog and SystemC enums as numbers rather than strings. The
current radix setting controls the actual enum value displayed, except when the radix setting

-binary

-unsigned

-decimal

-octal

-hex

-symbolic

-default

ModelSim SE Reference Manual, v6.5b68

Commands
add memory

is ASCII. If the current radix setting is ASCII, the value of SystemVerilog and SystemC
enums are displayed as a string. This option overrides the global setting of the default radix
(the DefaultRadix variable in the modelsim.ini file).

• -radixenumsymbolic

(optional) Reverses the action of the -radixenumnumeric option and sets the global setting
of the default radix (the DefaultRadix variable in the modelsim.ini file) to symbolic.

• -wordsperline <num>

(optional) A switch and argument pair that specifies how many words are displayed on each
line in the memory window.

By default, the information displayed will wrap based on the width of the window.

• <object_name> ...

(required) A string, which is repeatable in a space-separated list, that specifies the
hierarchical path of the memory to be displayed.

Wildcard characters are allowed. (Note that the WildcardFilter Tcl preference variable
identifies types to ignore when matching objects with wildcard patterns.)

See also

Memory and
Memory Data
Windows

Using the
WildcardFilter
Preference Variable

Commands
add testbrowser

ModelSim SE Reference Manual, v6.5b 69

add testbrowser
The add testbrowser command adds .ucdb file(s) to the test management browser.

Syntax

add testbrowser <ucdb_filename> [<ucdb_filename>...]

Arguments

• <ucdb_filename> [<ucdb_filename>...]

(required: at least one .ucdb) A string that specifies the name of the .ucdb file(s) to be added.

Wildcard characters are allowed. (Note that the WildcardFilter Tcl preference variable
identifies types to ignore when matching objects with wildcard patterns.)

See also

“Verification
Browser Window”

Using the
WildcardFilter
Preference Variable

ModelSim SE Reference Manual, v6.5b70

Commands
add watch

add watch
The add watch command adds signals and variables to the Watch window in the Main window.
SystemC objects and user-defined buses may also be added.

See “Wildcard Characters” for wildcard usage as it pertains to the add commands.

Syntax

add watch <object_name> ... [-radix <type>] [-radixenumnumeric | -radixenumsymbolic]

Arguments

• <object_name> ...

(required) A string, which is repeatable in a space-separated list, that specifies the name of
the object to be added.

Wildcard characters are allowed. (Note that the WildcardFilter Tcl preference variable
identifies types to ignore when matching objects with wildcard patterns.)

Variables must be preceded by the process name. For example,

add watch myproc/int1

• -radix <type>

(optional) A switch and argument pair that specifies a user-defined radix.

If you do not specify this switch, the command uses the global default radix.

<type> — Valid entries (or any unique abbreviations) are:

• -radixenumnumeric

(optional) Displays SystemVerilog and SystemC enums as numbers rather than strings. The
current radix setting controls the actual enum value displayed, except when the radix setting
is ASCII. If the current radix setting is ASCII, the value of SystemVerilog and SystemC
enums are displayed as a string. This option overrides the global setting of the default radix
(the DefaultRadix variable in the modelsim.ini file).

-binary

-ascii

-unsigned

-decimal

-octal

-hex

-symbolic

-time

-default

Commands
add watch

ModelSim SE Reference Manual, v6.5b 71

• -radixenumsymbolic

(optional) Reverses the action of the -radixenumnumeric option and sets the global setting
of the default radix (the DefaultRadix variable in the modelsim.ini file) to symbolic.

See also

Watch window Using the
WildcardFilter
Preference Variable

ModelSim SE Reference Manual, v6.5b72

Commands
add wave

add wave
The add wave command adds the following objects to the Wave window:

• VHDL signals and variables

• Verilog nets and registers

• SystemVerilog class objects

• SystemC primitive channels (signals)

• Dividers and user-defined buses.

If no port mode is specified, add wave will display all objects in the selected region with names
matching the object name specification.

See “Wildcard Characters” for wildcard usage as it pertains to the add commands.

Syntax

add wave [-allowconstants] [-clampanalog {0 | 1}] [-color <standard_color_name>]
[-depth <level>] [-expand <signal_name>] [-format <type> | -<format>]
[-group <group_name> [<sig_name1> ...]] [-height <pixels>]
{[-in] [-inout] [-out] | [-ports]} [-internal] [-max <real_num>] [-min <real_num>]
[-noupdate] [-position <location>] [-radix <type> | -<radix_type>]
[-radixenumnumeric | -radixenumsymbolic] [-recursive] [-time]
[[-divider [<divider_name> ...]…] | [-label <name> | {<object_name> {sig ...}}] …]
[-window <wname>] [-optcells]

Arguments

• -allowconstants

For use with wildcard searches. (optional) A switch that specifies that constants matching
the wildcard search should be added to the Wave window.

By default, constants are ignored because they do not change.

• -clampanalog {0 | 1}

(optional) A switch and argument pair that clamps the display of an analog waveform to the
values specified by -max and -min. Specifying a value of 1 prevents the waveform from
extending above the value specified for -max or below the value specified for -min.

0 — not clamped

1 — (default) clamped

• -color <standard_color_name>

(optional) A switch and argument pair that specifies the color used to display a waveform.

<standard_color_name> — You can use either of the following:

standard X Window color name — enclose 2-word names in quotes ("), for example:

Commands
add wave

ModelSim SE Reference Manual, v6.5b 73

-color "light blue"

rgb value — for example:

-color #357f77

• -depth <level>

(optional) A switch and argument pair that restricts a recursive search, as specified with
-recursive to a specified level of hierarchy.

<level> — an integer greater than or equal to zero. For example, if you specify -depth 1,
the command descends only one level in the hierarchy.

• -divider [<divider_name> ...]

(optional) A switch and argument pair that adds a divider to the Wave window.

<divider_name> ... — A string, which is repeatable in a space separated list, that
specifies the name of the divider, which appears in the pathnames column.

When you specify more than one <divider_name>, the command creates a divider for
each name.

You cannot begin a name with a hyphen (-).

You can begin a name with a space, but you must enclose the name within quotes (")
or braces ({ })

If you do not specify this argument, the command inserts an unnamed divider.

• -expand <signal_name>

(optional) A switch and argument pair that instructs the command to expand a compound
signal immediately, but only one level down.

<signal_name> — a string that specifies the name of the signal. This string can include
wildcards.

• -format <type> | -<format>

(optional) A choice between switches that specify the display format of the objects. Valid
entries are:

-format literal -literal Literal waveforms are displayed
as a box containing the object
value.

-format logic -logic Logic signals may be U, X, 0, 1,
Z, W, L, H, or ‘-’.

-format analog-step -analog-step Analog-step changes to the new
time before plotting the new Y.

-format analog-interpolated -analog-interpolated Analog-interpolated draws a
diagonal line.

ModelSim SE Reference Manual, v6.5b74

Commands
add wave

The way each state is displayed is specified by the logic type display preference (refer to
modelsim.ini Variables).

The Y-axis range of analog signals is bounded by -max and -min switches. Refer to “Wave
Window” for more information on analog formats of waveform signals.

• -group <group_name> [<sig_name1> ...]

(optional) A switch and argument group that creates a wave group with the specified
group_name.

<group_name> — a string that specifies the name of the group. You must enclose this
argument in quotes (") or braces ({ }) if it contains any white space.

<sig_name> ... — a string, which is repeatable in a space separated list, that specifies the
signals to add to the group. This command creates an empty group if you do not
specify any signal names.

• -height <pixels>

(optional) A switch and argument pair that specifies the height, in pixels, of the waveform.

• -in

For use with wildcard searches. (optional) A switch that specifies that the scope of the
search is to include ports of mode IN if they match the object_name specification.

• -inout

For use with wildcard searches. (optional) A switch that specifies that the scope of the
search is to include ports of mode INOUT if they match the object_name specification.

• -internal

For use with wildcard searches. (optional) A switch that specifies that the scope of the
search is to include internal objects (non-port objects) if they match the object_name
specification.

• -label <name>

(optional) A switch and argument pair that specifies an alternative name for the signal being
added. For example,

add wave -label c clock

adds the clock signal, labeled as "c".

This alternative name is not valid in a force or examine command; however, it can be used
in a search command with the wave option.

-format analog-backstep -analog-backstep Analog-backstep plots the new
Y before moving to the new
time.

-format event Displays a mark at every
transition.

Commands
add wave

ModelSim SE Reference Manual, v6.5b 75

• -max <real_num>

(optional) A switch and argument pair that specifies the maximum Y-axis data value to be
displayed for an analog waveform. Used in conjunction with the -min switch; the value you
specify for -max must be greater than the value you specify for -min.

• -min <real_num>

(optional) A switch and argument pair that specifies the minimum Y-axis data value to be
displayed for an analog waveform. Used in conjunction with the -max switch; the value you
specify for -min must be less than the value you specify for -max.

For example, if you know the Y-axis data for a waveform varies between 0.0 and 5.0, you
could add the waveform with the following command:

add wave -analog -min 0 -max 5 -height 100 my_signal

Note
Although -offset and -scale are still supported, the -max and -min arguments provide an
easier way to define upper and lower limits of an analog waveform.

• -noupdate

(optional) A switch that prevents the Wave window from updating when a series of add
wave commands are executed in series.

• <object_name> ...

(required) A string, which is repeatable in a space separated list, that specifies the names of
objects to be included in the Wave window. Wildcard characters are allowed. Note that the
WildcardFilter Tcl preference variable identifies types to ignore when matching objects
with wildcard patterns.

Variables may be added if preceded by the process name. For example,

add wave myproc/int1

• {<object_name> {sig ...}}

(required) A group of arguments, enclosed in braces ({ }), that creates a user-defined bus
with the specified object name containing the specified signals (sig) concatenated within the
user-defined bus.

sig — A space-separated list of signals, enclosed in braces ({ }), that are included in the
user-defined bus. The signals may be either scalars or various sized arrays as long as
they have the same element enumeration type.

Note
You can also select Wave > Combine Signals (when the Wave window is selected) to
create a user-defined bus.

ModelSim SE Reference Manual, v6.5b76

Commands
add wave

• -optcells

(optional) A switch that specifies that optimized cell ports are visible when using wildcards.
By default optimized cell ports are not selected even if they match the specified wildcard
pattern.

• -out

For use with wildcard searches. (optional) A switch that specifies that the scope of the
search is to include ports of mode OUT if they match the object_name specification.

• -ports

For use with wildcard searches. (optional) A switch that specifies that the scope of the
listing is to include ports of modes IN, OUT, or INOUT.

• -position <location>

(optional) A switch and argument pair that specifies where the command adds the signals.

<location> — can be any of the following:

top — adds the signals to the beginning of the list of signals.

bottom | end — adds the signals the end of the list of signals.

before | above — adds the signals to the location before the first selected signal in the
wave window.

after | below — adds the signals to the location after the first selected signal in the
wave window.

<integer> — adds the signals beginning at the specified point in the list of signals.

• -radix <type> | -<radix_type>

(optional) A choice between switches that specify the radix for the objects that follow in the
command. Valid entries (or any unique abbreviations) are:

If no radix is specified for an enumerated type, the default representation is used.

If you specify a radix for an array of a VHDL enumerated type, ModelSim converts each
signal value to 1, 0, Z, or X.

-radix binary -binary

-radix ascii -ascii

-radix unsigned -unsigned

-radix decimal -decimal

-radix octal -octal

-radix hex -hex

-radix symbolic -symbolic

-radix time -time

-radix default -default

Commands
add wave

ModelSim SE Reference Manual, v6.5b 77

You can change the default radix for the current simulation using the radix command. You
can change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file.

• -radixenumnumeric

(optional) Displays SystemVerilog and SystemC enums as numbers rather than strings. The
current radix setting controls the actual enum value displayed, except when the radix setting
is ASCII. If the current radix setting is ASCII, the value of SystemVerilog and SystemC
enums are displayed as a string. This option overrides the global setting of the default radix
(the DefaultRadix variable in the modelsim.ini file).

• -radixenumsymbolic

(optional) Reverses the action of the -radixenumnumeric option and sets the global setting
of the default radix (the DefaultRadix variable in the modelsim.ini file) to symbolic.

• -recursive

For use with wildcard searches. (optional) A switch that specifies that the scope of the
search is to descend recursively into subregions.

If you do not specify this switch, the search is limited to the selected region. You can use the
-depth argument to specify how far down the hierarchy to descend.

• -time

Use time as the radix for Verilog objects that are register-based types (register vectors, time,
int, and integer types).

• -window <wname>

(optional) A switch and argument pair that adds objects to the specified window <wname>
(e.g., wave2). Used to specify a particular window when multiple instances of that window
type exist. Selects an existing window; does not create a new window. Use the view
command with the -new option to create a new window.

Examples

• Display an object named out2. The object is specified as being a logic object presented
in gold.

add wave -logic -color gold out2

• Display a user-defined, hex formatted bus named address.

add wave -hex {address {a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0}}

• Wave all objects in the region.

add wave *

• Wave all input ports in the region.

add wave -in *

ModelSim SE Reference Manual, v6.5b78

Commands
add wave

• Create a user-defined bus named "mybus" consisting of three signals. Scalar1 and
scalar2 are of type std_logic and vector1 is of type std_logic_vector (7 downto 1). The
bus is displayed in hex.

add wave -hex {mybus {scalar1 vector1 scalar2}}

Slices and arrays may be added to the bus using either VHDL or Verilog syntax. For
example:

add wave {vector3(1)}
add wave {vector3[1]}
add wave {vector3(4 downto 0)}
add wave {vector3[4:0]}

• Add the object vec1 to the Wave window using symbolic values, adds vec2 in
hexadecimal, and adds vec3 and vec4 in decimal.

add wave vec1 -hex vec2 -dec vec3 vec4

• Add a divider with the name "-Example-". Note that for this to work, the first hyphen of
the name must be preceded by a space.

add wave -divider " -Example- "

• Add an unnamed divider.

add wave -divider
add wave -divider ""
add wave -divider {}

• Open a new Wave window with "SV_Signals" as its title, then add signals to it.

set SV_Signals [view wave -new -title SV_Signals]
add wave -window $SV_Signals /top/mysignals

The custom window title "SV_Signals" is saved as a TCL variable, then called using the
’$’ prefix.

See also

add list log Extended
Identifiers

Using the
WildcardFilter
Preference Variable

Concatenation
Directives

Commands
add_cmdhelp

ModelSim SE Reference Manual, v6.5b 79

add_cmdhelp
The add_cmdhelp command adds the specified command name, description, and command
arguments to the command-line help. You can then access the information using the help
command.

To delete an entry, invoke the command with an empty command description and arguments.
See examples.

Syntax

add_cmdhelp {<command_name>} {<command_description>} {<command_arguments>}

Arguments

• {<command_name>}

(required) A string, enclosed in braces ({ }), that specifies the command name that will be
entered as an argument to the help command. The command_name must not interfere with
an already existing command_name.

• {<command_description>}

(required) A string, enclosed in braces ({ }), that specifies a description of the command.

• {<command_arguments>}

(required) A space-separated list of arguments, enclosed in braces ({ }), for the command. If
the command doesn’t have any arguments, enter {}.

Examples

• Add a command named "date" with no arguments.

add_cmdhelp date {Displays date and time.} {}

VSIM> help date
Displays date and time.
Usage: date

• Add the change date command.

add_cmdhelp {change date} {Modify date or time.} {-time|-date <arg>}

VSIM> help change date
Modify data or time.
Usage: change date -time|-date <arg>

• Deletes the change date command from the command-line help.

add_cmdhelp {change date} {} {}

ModelSim SE Reference Manual, v6.5b80

Commands
add_menu

add_menu
The add_menu command adds a menu to the menu bar of the specified window, using the
specified menu name. Use the add_menuitem, add_separator, add_menucb, and add_submenu
commands to complete the menu.

Returns the full Tk pathname of the new menu.

Color and other Tk properties of the menu may be changed, after creating the menu, using the
Tk menu widget configure command.

Syntax

add_menu <window_name> <menu_name> [<shortcut> [-hide_menubutton]]

Arguments

• <window_name>

(required) A string that specifies the Tk path of the window to contain the menu.

To add a menu to the Main window you must express this value as: "". For example,

add_menu "" mymenu

To add a menu to any other window, you must determine the window_name by executing
the view command, for example:

view wave
.main_pane.wave

Note that all window windows, other than the Main window, begin with a period (.).

• <menu_name>

(required) A string that specifies the name to be given to the Tk menu widget.

• <shortcut>

(optional) An integer that specifies the number of the letter in the menu name that is to be
used as the shortcut. Numbering starts with 0 (first letter = 0, second letter = 1, third letter =
2, and so on). Optional unless you specify -hide_menubutton, in which case <shortcut> is
required. Default is "-1", which indicates no shortcut is to be used.

• -hide_menubutton

(optional) A switch that specifies that the new menu is not to be displayed. You can add the
menu later by calling tk_popup on the menu path widget. Note that you must specify
<shortcut> if you specify -hide_menubutton.

Examples

The following Tcl code is an example of creating user-customized menus. It adds a menu
containing a top-level item labeled "Do My Own Thing...", which prints
"my_own_thing.signals", and adds a cascading submenu labeled "changeCase" with two

Commands
add_menu

ModelSim SE Reference Manual, v6.5b 81

entries, "To Upper" and "To Lower", which echo "my_to_upper" and "my_to_lower"
respectively. A checkbox that controls the value of myglobalvar (.signals:one) is also added.

set myglobalvar 0
set wname [view wave]; #Gets path to Wave window
proc AddMyMenus {wname} {
 global myglobalvar
 set cmd1 "echo my_own_thing $wname"
 set cmd2 "echo my_to_upper $wname"
 set cmd3 "echo my_to_lower $wname"

WindowName Menu MenuItem label Command
---------- ---- -------------------- -------
add_menu $wname mine
add_menuitem $wname mine "Do My Own Thing..." $cmd1
add_separator $wname mine ;#------------------ -------
add_submenu $wname mine changeCase
add_menuitem $wname mine.changeCase "To Upper" $cmd2
add_menuitem $wname mine.changeCase "To Lower" $cmd3
add_submenu $wname mine vars
add_menucb $wname mine.vars "Feature One" -variable

myglobalvar
-onvalue 1
-offvalue 0
-indicatoron 1

}
AddMyMenus $wname

This example is available in the following DO file:

<install_dir>/examples/misc/addmenu.do.

You can run the DO file to add the "Mine" menu shown in the illustration, or modify the file for
different results.

To execute the DO file, select Tools > Execute Macro (Main window), or use the do command.

See also

add_menucb add_menuitem add_separator add_submenu

change_menu_cmd

ModelSim SE Reference Manual, v6.5b82

Commands
add_menucb

add_menucb
The add_menucb command creates a checkbox within the specified menu of the specified
window. A checkbox is a small box with a label. Clicking on the box will toggle the state, from
on to off or the reverse.

When the box is "on", the Tcl global variable <var> is set to <onval>. When the box is "off", the
global variable is set to <offval>. Also, if something else changes the global variable, its current
state is reflected in the state of the checkbox. Returns nothing.

Syntax

add_menucb <window_name> <menu_name> <Text> -variable <var> -onvalue <onval>
-offvalue <offval> [-indicatoron {0 | 1}]

Arguments

• <window_name>

(required) A string that specifies the Tk path of the window to contain the menu.

To add a menu to the Main window you must express this value as: "". For example,

add_menucb "" mymenu

To add a menu to any other window, you must determine the window_name by executing
the view command, for example:

view wave
.main_pane.wave

Note that all windows, other than the Main window, begin with a period (.).

• <menu_name>

(required) A string that specifies the name of the Tk menu widget. Required.

• <Text>

(required) A string that specifies the text to be displayed next to the checkbox.

• -variable <var>

(required) A switch and argument pair that specifies the global Tcl variable to be reflected
and changed.

• -onvalue <onval>

(required) A switch and argument pair that specifies the value to set the global Tcl variable
to when the box is "on".

• -offvalue <offval>

(required) A switch and argument pair that specifies the value to set the global Tcl variable
to when the box is "off".

Commands
add_menucb

ModelSim SE Reference Manual, v6.5b 83

• -indicatoron {0 | 1}

(required) A switch and argument pair that specifies whether or not the status indicator is
displayed.

0 — off

1 — (default) on

Examples

add_menucb $wname mine.vars "Feature One" \
-variable myglobalvar($wname:one) -onvalue 1 -offvalue 0 -indicatoron 1

The add_menucb command is also used as part of the add_menu example.

See also

add_menu add_menuitem add_separator add_submenu

change_menu_cmd

ModelSim SE Reference Manual, v6.5b84

Commands
add_menuitem

add_menuitem
The add_menuitem command creates a menu item within the specified menu of the specified
window. May be used within a submenu.

Returns nothing.

Syntax

add_menuitem <window_name> <menu_path> <Text> <Cmd> [<shortcut>]

Arguments

• <window_name>

(required) A string that specifies the Tk path of the window to contain the menu.

To add a menu to the Main window you must express this value as: "". For example,

add_menu "" mymenu

To add a menu to any other window, you must determine the window_name by executing
the view command, for example:

view wave
.main_pane.wave

Note that all windows, other than the Main window, begin with a period (.).

• <menu_path>

(required) A string that specifies the name of the Tk menu widget plus submenu path.

• <Text>

(required) A string that specifies the text to be displayed.

• <Cmd>

(required) A string that specifies the command to be executed when the menu item is
selected with the left mouse button.

To echo the command and display the return value in the Main window, prefix the
command with the transcribe command. Transcribe will also echo the results to the
Transcript window.

• <shortcut>

(optional) An integer that specifies the number of the letter in the menu name that is to be
used as the shortcut. Numbering starts with 0 (first letter = 0, second letter = 1, third letter =
2, and so on). Default is "-1", which indicates no shortcut is to be used.

Examples

add_menuitem $wname user "Save Results As..." $my_save_cmd

The add_menuitem command is also used as part of the add_menu example.

Commands
add_menuitem

ModelSim SE Reference Manual, v6.5b 85

See also

add_menu add_menucb add_separator add_submenu

change_menu_cmd

ModelSim SE Reference Manual, v6.5b86

Commands
add_separator

add_separator
The add_separator command adds a separator as the next item in the specified menu path in
the specified window.

Returns nothing.

Syntax

add_separator <window_name> <menu_path>

Arguments

• <window_name>

(required) A string that specifies the Tk path of the window to contain the menu.

To add a menu to the Main window you must express this value as: "". For example,

add_menu "" mymenu

To add a menu to any other window, you must determine the window_name by executing
the view command, for example:

view wave
.main_pane.wave

Note that all windows, other than the Main window, begin with a period (.).

• <menu_path>

(required) A string that specifies the name of the Tk menu widget plus submenu path.

Examples

add_separator $wname user

The add_separator command is also used as part of the add_menu example.

See also

add_menu add_menucb add_menuitem add_submenu

change_menu_cmd

Commands
add_submenu

ModelSim SE Reference Manual, v6.5b 87

add_submenu
The add_submenu command creates a cascading submenu within the specified menu path of
the specified window. May be used within a submenu.

Returns the full Tk path to the new submenu widget.

Syntax

add_submenu <window_name> <menu_path> <name> [<shortcut>]

Arguments

• <window_name>

(required) A string that specifies the Tk path of the window to contain the menu.

To add a menu to the Main window you must express this value as: "". For example,

add_menu "" mymenu

To add a menu to any other window, you must determine the window_name by executing
the view command, for example:

view wave
.main_pane.wave

Note that all windows, other than the Main window, begin with a period (.).

• <menu_path>

(required) A string that specifies the name of the Tk menu widget plus submenu path.

• <name>

(required) A string that specifies the name to be displayed on the submenu.

• <shortcut>

(optional) An integer that specifies the number of the letter in the menu name that is to be
used as the shortcut. Numbering starts with 0 (first letter = 0, second letter = 1, third letter =
2, and so on). Default is "-1", which indicates no shortcut is to be used.

Examples

The add_submenu command is used as part of the add_menu example.

See also

add_menu add_menucb add_menuitem add_separator

change_menu_cmd

ModelSim SE Reference Manual, v6.5b88

Commands
alias

alias
The alias command displays or creates user-defined aliases. Any arguments passed on
invocation of the alias will be passed through to the specified commands.

Returns nothing. Existing commands (e.g., run, env, etc.) cannot be aliased.

Syntax

alias [<name> ["<cmds>"]]

Arguments

• <name>

(optional) A string that specifies the new procedure name to be used when invoking the
commands.

• "<cmds>"

(optional) A string, enclosed in quotes ("), that specifies the command or commands to be
evaluated when the alias is invoked. You must separate multiple commands with a
semicolon (;).

Examples

• List all aliases currently defined.

alias

• List the alias definition for the specified name if one exists.

alias <name>

• Create a Tcl procedure, "myquit", that when executed, writes the contents of the List
window to the file mylist.save by invoking write list, and quits ModelSim by invoking
quit.

alias myquit "write list ./mylist.save; quit -f"

Commands
batch_mode

ModelSim SE Reference Manual, v6.5b 89

batch_mode
The batch_mode command returns a 1 if ModelSim is operating in batch mode, otherwise it
returns a 0. It is typically used as a condition in an if statement.

Syntax

batch_mode

Arguments

None

Examples

Some GUI commands do not exist in batch mode. If you want to write a script that will work in
or out of batch mode, you can use the batch_mode command to determine which command to
use. For example:

if [batch_mode] {
log /*

} else {
add wave /*

}

See also

“Modes of Operation”

ModelSim SE Reference Manual, v6.5b90

Commands
bd

bd
The bd command deletes a breakpoint. You can delete multiple breakpoints by specifying
separate information groupings on the same command line.

Syntax

bd {{<filename> <line_number>} | {<id_number> | <label>} ...

Arguments

• <filename>

(required) A string that specifies the name of the source file in which the breakpoint is to be
deleted. The filename must match the one used previously to set the breakpoint, including
whether you used a full pathname or a relative name.

• <line_number>

(required) A string that specifies the line number of the breakpoint to be deleted.

• <id_number>

(required) A string that specifies the identification number of the breakpoint to be deleted.

If you are deleting a C breakpoint, the identification number will have a "c" prefix.

• <label>

(required) A string that specifies the label of the breakpoint to be deleted. The label is
specified with the -label switch to the bp command.

Examples

• Delete the breakpoint at line 127 in the source file named alu.vhd.

bd alu.vhd 127

• Delete the breakpoint with id# 5.

bd 5

• Delete the breakpoint with the label top_bp

bd top_bp

• Delete the breakpoint with id# 6 and the breakpoint at line 234 in the source file named
alu.vhd.

bd 6 alu.vhd 234

• Delete the C breakpoint with id# c.4.

bd c.4

See also

bp onbreak “C Debug”

Commands
bookmark add wave

ModelSim SE Reference Manual, v6.5b 91

bookmark add wave
The bookmark add wave command creates a named reference to a specific zoom range and
scroll position in the specified Wave window. Bookmarks are saved in the wave format file and
are restored when the format file is read.

You can also interactively add a bookmark through the GUI by selecting the
Wave > Bookmarks > Bookmarks menu item.

Syntax

bookmark add wave <label> [[<range_start> [<unit>]] <range_end> [<unit>] [<topindex>]]
[-window <window_name>]

Arguments

• <label>

(required) A string that specifies the name for the bookmark.

• [<range_start> [<unit>]] <range_end> [<unit>]

(optional) A group of strings that specify the beginning and end points of the zoom range.
You must enclose these arguments within braces ({}) or quotation marks ("").

If you do not specify the <range_start> argument the bookmark will begin with zero.

The tool uses your current time unit if you do not specify <unit>.

The complete grouping of <range_start> and <range_end> must also be enclosed in braces
({ }) or quotes (" "), for example:

{{100 ns} {10000 ns}}
{10000}

• <topindex>

(optional) An integer that specifies the vertical scroll position of the window. You must
specify a zoom range to specify topindex. The number identifies which object the window
should be scrolled to. For example, specifying 20 means the Wave window will be scrolled
down to show the 20th object.

• -window <window_name>

(optional) A switch and argument pair that specifies the window to which the bookmark will
be added. If this argument is omitted, the bookmark is added in the current default Wave
window.

Examples

• Add a bookmark named "foo" to the current default Wave window. The bookmark
marks a zoom range from 10ns to 1000ns and a scroll position of the 20th object in the
window.

bookmark add wave foo {{10 ns} {1000 ns}} 20

ModelSim SE Reference Manual, v6.5b92

Commands
bookmark add wave

See also

bookmark delete
wave

bookmark goto
wave

bookmark list wave write format

Commands
bookmark delete wave

ModelSim SE Reference Manual, v6.5b 93

bookmark delete wave
The bookmark delete wave command deletes bookmarks from the specified Wave window.

You can also interactively delete a bookmark through the GUI by selecting the
Wave > Bookmarks > Bookmarks menu item.

Syntax

bookmark delete wave {<label> | -all] [-window <window_name>]

Arguments

• <label>

(required) A string that specifies the name of the bookmark to delete. You must specify this
argument unless you specify -all.

• -all

(optional) A switch that specifies that all bookmarks in the window be deleted.

• -window <window_name>

(optional) A switch and argument pair that specifies the window from which bookmark(s)
will be deleted. Optional. If this argument is omitted, bookmark(s) in the current default
Wave window are deleted.

Examples

• Delete the bookmark named "foo" from the current default Wave window.

bookmark delete wave foo

• Delete all bookmarks from the Wave window named "wave1".

bookmark delete wave -all -window wave1

See also

bookmark add wave bookmark goto
wave

bookmark list wave write format

ModelSim SE Reference Manual, v6.5b94

Commands
bookmark goto wave

bookmark goto wave
The bookmark goto wave command zooms and scrolls a Wave window using the specified
bookmark.

You can also interactively navigate between bookmarks through the GUI by selecting the
Wave > Bookmarks > Bookmarks menu item.

Syntax

bookmark goto wave <label> [-window <window_name>]

Arguments

• <label>

(required) A string that specifies the bookmark to go to.

• -window <window_name>

(optional) A switch and argument pair that specifies the Wave window to which the
bookmark applies. Optional. Bookmarks can be used only in the windows in which they
were originally created.

See also

bookmark add wave bookmark delete
wave

bookmark list wave write format

Commands
bookmark list wave

ModelSim SE Reference Manual, v6.5b 95

bookmark list wave
The bookmark list wave command displays a list of available bookmarks in the Transcript
window.

Syntax

bookmark list wave [-window <window_name>]

Arguments

• -window <window_name>

(optional) A switch and argument pair that specifies the Wave window to which the
bookmark applies. Optional. Bookmarks can be used only in the windows in which they
were originally created.

See also

bookmark add wave bookmark delete
wave

bookmark goto
wave

write format

ModelSim SE Reference Manual, v6.5b96

Commands
bp

bp
The bp or breakpoint command either sets a file-line breakpoint or returns a list of currently set
breakpoints.

A set breakpoint affects every SystemC instance in the design unless you use the -inst <region>
argument.

Note
You cannot set breakpoints when running in full optimization mode. Increase the
visibility of the design by setting the +acc argument to vopt. Refer to the chapter
“Optimizing Designs with vopt” in the User’s Manual for more information.

Syntax

Setting an HDL breakpoint

bp <filename> <line_number> [-id <id_number>| -label "<string>"]
[-inst <region> [-inst <region> ...] [-appendinst] [-disable]
[-cond "<condition_expression>"] [<command>…]

Setting a C breakpoint

bp -c <location> [-id <id_number> | -label "<string>"] [-inst <region> [-inst <region> ...]
[-appendinst] [-disable] [-cond "<condition_expression>"] [<command>…]

Querying a breakpoint

bp [-query <filename> [<line_number> ...]]

Reporting all breakpoints

bp

Arguments

• <filename>

(required for an HDL breakpoint) A string that specifies the name of the source file in which
to set the breakpoint.

• <line_number>

(required for an HDL breakpoint) A string that specifies the line number at which the
breakpoint is to be set.

• -c

(required for a C breakpoint) Applies the bp command and its arguments to SystemC
instances in the design.

• <location>

(required for a C breakpoint) A string that specifies the location of the breakpoint in a
SystemC design, or when you are using “C Debug”.

Commands
bp

ModelSim SE Reference Manual, v6.5b 97

<location> — one of the following:

<function_name> — sets the C breakpoint at the entry to the specified function.

[<file_name>:]<line_number> — sets the C breakpoint at the specified line number
of the file. If you do not specify a file name, the breakpoint is set at the line
number of the current C or SystemC file.

*0x<hex_address> — sets the C breakpoint at the specified hex address.

• -id <id_number>

(optional) A switch and argument pair that attempts to assign this id number to the
breakpoint. The command returns an error if the id number you specify is already used.

Note
Id numbers for breakpoints are assigned from the same pool as those used for the when
command. So even if you have not specified a given id number for a breakpoint, that
number may still be used for a when command.

• -label "<string>"

(optional) A string enclosed in quotation marks (") or braces ({ }) that adds a level of
identification to the breakpoint. The quotation marks or braces are required only if <string>
does not contain spaces or special characters.

• -inst <region> [-inst <region> ...]

(optional) A switch and argument pair that sets a SystemC or HDL breakpoint so it applies
only to the specified instance, where <region> represents the full path to the instance. To
apply multiple instance-path conditions on a single breakpoint, specify -inst <region>
multiple times. By default, this overrides the previous breakpoint condition (you can use the
-appendinst argument to append conditions instead).

NOTE: You can also specify this instance by choosing Tools > Breakpoints... from the
main menu and using the Modify Breakpoints dialog box. Refer to Modifying File-Line
Breakpoints in the User’s Manual for more information.

• -appendinst

(optional) When specifying multiple breakpoints with -inst, append each instance-path
condition to the earlier condition. This overrides the default behavior, in which each
condition overwrites the previous one.

• -disable

(optional) A switch that sets the breakpoint to a disabled state. You can enable the
breakpoint later using the enablebp command. This command enables breakpoints by
default.

• -cond "<condition_expression>"

(optional) A switch and argument pair that specifies condition(s) that determine whether the
breakpoint is hit. You must enclose the condition expression within quotation marks (").

ModelSim SE Reference Manual, v6.5b98

Commands
bp

If the condition is true, the simulation stops at the breakpoint. If false, the simulation
bypasses the breakpoint. A condition cannot refer to a VHDL variable (only a signal).

The -cond switch re-parses expressions each time the breakpoint is hit. This allows
expressions with local references to work. Condition expressions referencing items outside
the context of the breakpoint must use absolute names. This is different from the behavior in
previous ModelSim versions where a relative signal name was resolved at the time the bp
command was issued, allowing the breakpoint to work even though the relative signal name
was inappropriate when the breakpoint is hit.

Note
You can also specify this expression by choosing Tools > Breakpoints... from the main
menu and using the Modify Breakpoints dialog box. Refer to Modifying File-Line
Breakpoints in the User’s Manual for more information.

The condition expression can use these operators:

The operands may be object names, signame’event, or constants. Subexpressions in
parentheses are permitted. The command will be executed when the expression is evaluated
as TRUE or 1. The formal BNF syntax for an expression is:

condition ::= Name | { expression }

expression ::= expression AND relation
| expression OR relation
 | relation

relation ::= Name = Literal
| Name /= Literal
| Name ' EVENT
| (expression)

Literal ::= '<char>' | "<bitstring>" | <bitstring>

The "=" operator can occur only between a Name and a Literal. This means that you cannot
compare the value of two signals (for example, Name = Name is not valid).

You can construct a breakpoint such that the simulation breaks when a SystemVerilog Class
is associated with a specific handle, or address:

bp <filename> <line_number> -cond "this==<class_handle>"
bp <filename> <line_number> -cond "this!=<class_handle>"

where you can obtain the class handle with the examine -handle command. The string "this"
is a literal that refers to the specific line_number.

Operator

equals ==, =

not equal !=, /=

AND &&, AND

OR ||, OR

Commands
bp

ModelSim SE Reference Manual, v6.5b 99

You can construct a breakpoint such that the simulation breaks when a line number is of a
specific class type or extends the specified class type:

bp <filename> <line_number> -cond "this ISA <class_type_name>"

where class_type_name is the actual class name, not a variable.

• <command>…

(optional) A string, enclosed in braces ({ }) that specifies one or more commands that are to
be executed at the breakpoint. You must separate multiple commands with semicolons (;) or
placed them on multiple lines.

NOTE: You can also specify this command string by choosing Tools > Breakpoints... from
the main menu and using the Modify Breakpoints dialog box. Refer to Modifying File-Line
Breakpoints in the User’s Manual for more information.

Any commands that follow a run or step command are ignored. A run or step command
terminates the breakpoint sequence. This rule also applies if you use a macros within the
command string.

You cannot use a restore command.

If many commands are needed after the breakpoint, you could place them in a macro file.

• -query <filename> [<line_number> ...]

(optional) A switch and argument group that returns information about the breakpoints set
in the specified file. The information returned varies depending on which arguments you
specify. The output contains six fields of information. For example:

bp -query top.vhd 70
1 1 top.vhd 70 2 1

o {1 | 0} — Indicates whether a breakpoint exists at the location.

o 1 — always reports a 1

o <file_name>

o <line_number>

o <id_number>

o {1 | 0} — Indicates whether the breakpoint is enabled

If you specify this command with no arguments, it returns a list of all breakpoints in the
design containing the following information. For example:

bp
bp top.vhd 70;# 2

o bp — an echo of the command

o <file_name>

o <line_number>

ModelSim SE Reference Manual, v6.5b100

Commands
bp

o # <id_number>

Examples

• List all existing breakpoints in the design, including the source file names, line numbers,
breakpoint id#s, and any commands that have been assigned to breakpoints.

bp

• Set a breakpoint in the source file alu.vhd at line 147.

bp alu.vhd 147

• Execute the macro.do macro file when the breakpoint is hit.

bp alu.vhd 147 {do macro.do}

• Set a breakpoint on line 22 of test.vhd. When the breakpoint is hit, the values of
variables var1 and var2 are examined. This breakpoint is initially disabled; it can be
enabled with the enablebp command.

bp -disable test.vhd 22 {echo [exa var1]; echo [exa var2]}

• Set a breakpoint in every instantiation of the file test.vhd at line 14. When that
breakpoint is executed, the Tcl command is run. This Tcl command causes the simulator
to continue if the current simulation time is not 100.

bp test.vhd 14 {if {$now /= 100} then {cont}}

• Set a breakpoint so that the simulation pauses whenever clk=1 and prdy=0:

bp test.vhd 14 -cond "clk=1 AND prdy=0"

• Set a breakpoint with the label top_bp

bp top.vhd 14 -label top_bp

• Set a breakpoint for line 15 of a.vhd, but only for the instance a2:

bp a.vhd 15 -inst "/top/a2"

• Set multiple breakpoints in the source file test.vhd at line 14. The second instance will
overwrite the conditions of the first.

bp test.vhd 14 -inst /test/inst1 -inst /test/inst2

• Set multiple breakpoints at line 14. The second instance will append its conditions to the
first.

bp test.vhd 14 -inst /test/inst1 -inst /test/inst2 -appendinst

• Set a breakpoint for a specific variable of a particular class type:

set x [examine -handle my_class_var]
bp top.sv 15 -cond "this == $x"

Commands
bp

ModelSim SE Reference Manual, v6.5b 101

• List the line number and enabled/disabled status (1 = enabled, 0 = disabled) of all
breakpoints in testadd.vhd.

bp -query testadd.vhd

• List details about the breakpoint on line 48.

bp -query testadd.vhd 48

• List all executable lines in testadd.vhd between lines 2 and 59.

bp -query testadd.vhd 2 59

• Sets a C breakpoint at the entry to C function and_gate_init.

bp -c and_gate_init

• Sets a C breakpoint at line 46 in the file and_gate.c.

bp -c and_gate.c:46

• Sets a C breakpoint at line 44 in the current C or SystemC file.

bp -c 44

• Sets a C breakpoint at hexadecimal address 0xff130504.

bp -c *0xff130504

• Sets a C breakpoint for instances sctop.a.b and sttop.a.d.

bp -c -inst "sctop.a.b sctopa.d"

• Sets a C breakpoint for all instances whose name begins with sctop.a.c.

bp -c -inst "sctop.a.c*"

Note
Any breakpoints set in VHDL code and called by either resolution functions or functions
that appear in a port map are ignored.

See also

add button bd disablebp enablebp

onbreak when “SystemC
Simulation”

“C Debug”

ModelSim SE Reference Manual, v6.5b102

Commands
cd

cd
The cd command changes the ModelSim local directory to the specified directory.

This command cannot be executed while a simulation is in progress. Also, executing a cd
command will close the current project.

Syntax

cd [<dir>]

Arguments

• <dir>

(optional) A string that specifies a full or relative directory path to which to change. If you
do not specify a directory, the command changes to your home directory.

Commands
cdbg

ModelSim SE Reference Manual, v6.5b 103

cdbg
The cdbg command provides command-line equivalents of the menu options that are available
for C Debug.

For some of the commands there is a required argument "on | off". The value can be either “on”
or “off.” For example:

cdbg enable_auto_step on
cdbg stop_on_quit off

Syntax

cdbg {allow_lib_step {on | off} | auto_find_bp | debug_on | enable_auto_step {on | off} |
init_mode_complete | init_mode_setup | interrupt | keep_user_init_bps {on | off} | quit |
refresh_source_window | set_debugger <path> | show_source_balloon {on | off} |
stop_on_quit {on | off} | trace_entry_point {on | off} [<function_name>]}

Arguments

• allow_lib_step {on | off}

An argument that enables (off) or disables (on) stepping out from OSCI library functions
(off). When you try to step inside OSCI library functions, C Debug automatically steps out
to the last user function that was called. Note that setting this argument to “on” disables the
stepping out action.

• auto_find_bp

An argument that sets breakpoints on all currently known function entry points. Refer to
“Finding Function Entry Points with Auto Find bp".

Equivalent to selecting Tools > C Debug > Auto find bp.

• debug_on

An argument that enables the C Debugger.

Equivalent to selecting Tools > C Debug > Start C Debug.

• enable_auto_step {on | off}

An argument that enables (on) or disables (off) auto-step mode. Refer to “Identifying All
Registered Function Calls”.

Equivalent to selecting Tools > C Debug > Enable auto step.

• init_mode_complete

An argument that instructs C Debug to continue loading the design without stopping at
functions calls. Refer to “Debugging Functions During Elaboration”.

Equivalent to selecting Tools > C Debug > Complete load. Not supported on Windows
platform.

ModelSim SE Reference Manual, v6.5b104

Commands
cdbg

• init_mode_setup

An argument that enables initialization mode. Refer to “Debugging Functions During
Elaboration”.

Equivalent to selecting Tools > C Debug > Init mode. Not supported on Windows
platform.

• interrupt

An argument that reactivates the C debugger when stopped in HDL code.

Equivalent to selecting Tools > C Debug > C Interrupt or clicking the 'C Interrupt' toolbar
button.

• keep_user_init_bps {on | off}

An argument that specifies whether breakpoints set during initialization mode are retained
after the design finishes loading. Refer to “Debugging Functions During Elaboration”.

Equivalent to toggling the 'Keep user init bps' button in the C Debug setup dialog.

• quit

An argument that quits the C Debugger.

Equivalent to selecting Tools > C Debug > Quit C Debug.

• refresh_source_window

An argument that re-opens a C source file if you close the Source window inadvertently
while stopped in the C debugger.

Equivalent to selecting Tools > C Debug > Refresh.

• set_debugger <path>

An argument that sets the path to your gdb installation.

Equivalent to selecting Tools > C Debug > C Debug Setup and entering a custom path.
The argument path is required and is the complete pathname to the gdb executable. For
example:

 cdbg set_debugger_path /usr/bin/gdb

• show_source_balloon {on | off}

An argument that enables (on) or disables (off) the source balloon popup.

Equivalent to toggling the 'Show balloon' button on the C Debug setup dialog.

• stop_on_quit {on | off}

An argument that enables (on) or disables (off) debugging capability when the simulator is
exiting. Refer to “Debugging Functions when Quitting Simulation”.

Equivalent to toggling the 'Stop on quit' button on the C Debug setup dialog.

Commands
cdbg

ModelSim SE Reference Manual, v6.5b 105

• trace_entry_point {on | off} [<function_name>]

An argument that helps debug an FLI/PLI application when a design is loaded with vsim -
trace_foreign. ModelSim stops at a C breakpoint each time a named FLI or PLI function is
called from your application. Once at the breakpoint, use the tb and pop commands to
investigate the C code at the place the function was called.

ModelSim SE Reference Manual, v6.5b106

Commands
change

change
This command modifies the value of a:

• VHDL constant, generic, or variable

• Verilog register or variable

• C variable if running C Debug

You cannot use this command on generics or parameters if you optimized the design, unless you
used the +floatgenerics or +floatparameters switches. These switches allow the generics and
parameters to remain floating after the optimization. Refer to the section "Optimizing
Parameters and Generics" in the User’s Manual for more information.

Syntax

change <variable> <value>

Arguments

• <variable>

(required) A string that specifies the name of an object. The name can be a full hierarchical
name or a relative name, where a relative name is relative to the current environment.

You cannot use Wildcards.

The following sections list supported objects:

• VHDL

o Scalar variable, constant, or generics of all types except FILE.

Generates a warning when changing a VHDL constant or generic. You can suppress
this warning by setting the TCL variable WarnConstantChange to 0 or in the [vsim]
section of the modelsim.ini file.

o Scalar subelement of composite variable, constant, and generic of all types except
FILE.

o One-dimensional array of enumerated character types, including slices.

o Access type. An access type pointer can be set to "null"; the value that an access type
points to can be changed as specified above.

• Verilog

o Parameter.

o Register or memory.

o Integer, real, realtime, time, and local variables in tasks and functions.

o Subelements of register, integer, real, realtime, and time multi-dimensional arrays
(all dimensions must be specified).

Commands
change

ModelSim SE Reference Manual, v6.5b 107

o Bit-selects and part-selects of the above except for objects whose basic type is real.

• C

o Scalar C variables of type int, char, double, or float.

o Individual fields of a C structure.

o SystemC primitive channels are not supported.

The name can be a full hierarchical name or a relative name. A relative name is relative to
the current environment. Wildcards cannot be used. Required.

• <value>

(required) A string that defines a value for the <variable>. The specified value must be
appropriate for the type of the variable. You must enclose any <value> that contain spaces
within quotation marks or curly braces.

Note that the initial type of a parameter determines the type of value that it can be given. For
example, if a parameter is initially equal to 3.14 then only real values can be set on it. Also
note that changing the value of a parameter or generic will not modify any design elements
that depended on the parameter or generic during elaboration (for example, sizes of arrays).

Examples

• Change the value of the variable count to the hexadecimal value FFFF.

change count 16#FFFF

• Change the value of the element of rega that is specified by the index (i.e., 16).

change {rega[16]} 0

• Change the value of the set of elements of foo that is specified by the slice (i.e., 20:22).

change {foo[20:22]} 011

• Set the value of x (type double) to 1.5.

change x 1.5

• Set the value of structure member a1.c1 (type int) to 0.

change a1.c1 0

• Set val_b (type char *) to point to the string my_string.

change val_b my_string

• Set val_b (type char *) to point to the string my string. Since there is a space in the value,
it must be enclosed by quotation marks or curly braces.

change val_b "my string"

ModelSim SE Reference Manual, v6.5b108

Commands
change

• Set the Verilog register file_name to "test2.txt". Note that the quote marks are escaped
with ’\’.

change file_name \"test2.txt\"

• Set the time value of the mytimegeneric variable to 500 ps. The time value is enclosed
by curly braces (or quotation marks) because of the space between the value and the
units.

change mytimegeneric {500 ps}

See also

force

Commands
change_menu_cmd

ModelSim SE Reference Manual, v6.5b 109

change_menu_cmd
The change_menu_cmd command changes the command to be executed for a specified menu
item label, in the specified menu, in the specified window.

The menu path and label must already exist for this command to function. Returns nothing.

Syntax

change_menu_cmd <window_name> <menu_path> <label> <Cmd>

Arguments

• <window_name>

(required) A string that specifies the Tk path of the window containing the menu. The path
for the Main window must be expressed as "". All other window pathnames begin with a
period (.).

• <menu_path>

(required) A string that specifies the name of an existing Tk menu widget plus any submenu
path.

• <label>

(required) A string that specifies the current label on the menu item.

• <Cmd>

(required) A string that specifies the new Tcl command to be executed when selected.

See also

add_menu, add_menucb, add_menuitem, add_separator, add_submenu

ModelSim SE Reference Manual, v6.5b110

Commands
check contention add

check contention add
The check contention add command enables contention checking for the specified nodes.

The allowed nodes are Verilog nets and VHDL signals of types std_logic and std_logic_vector.
This command ignores any other node types or nodes that do not have multiple drivers.

Syntax

check contention add {[-in] [-out] [-inout] | [-ports]} [-internal] [-r] <node_name>...

Arguments

• -in

(optional) A switch that enables checking on nodes of mode IN.

• -inout

(optional) A switch that enables checking on nodes of mode INOUT.

• -internal

(optional) A switch that enables checking on internal (non-port) objects. Default behavior if
no arguments are specified.

• -out

(optional) A switch that enables checking on nodes of mode OUT.

• -ports

(optional) A switch that enables checking on nodes of modes IN, OUT, or INOUT. Default
behavior if no arguments are specified.

• -r

(optional) A switch that specifies that contention checking is enabled recursively into
subregions. If omitted, contention check enabling is limited to the current region.

• <node_name>...

(required) A string that specifies the name of a node.

Description

Bus contention checking detects bus fights on nodes that have multiple drivers. A bus fight
occurs when two or more drivers drive a node with the same strength and that strength is the
strongest of all drivers currently driving the node. The following table provides some examples
for two drivers driving a std_logic signal:

driver 1 driver 2 fight

Z Z no

0 0 yes

1 Z no

Commands
check contention add

ModelSim SE Reference Manual, v6.5b 111

Detection of a bus fight results in an error message specifying the node and its drivers’ current
driving values. If a node's drivers later change value and the node is still in contention, a
message is issued giving the new values of the drivers. A message is also issued when the
contention ends. The bus contention checking commands can be used on VHDL and Verilog
designs.

See also

check contention config, check contention off

0 1 yes

L 1 no

L H yes

driver 1 driver 2 fight

ModelSim SE Reference Manual, v6.5b112

Commands
check contention config

check contention config
The check contention config command allows you to write checking messages to a file. By
default, any messages display on your screen.

You may also configure the contention time limit.

Syntax

check contention config [-file <filename>] [-time <limit>]

Arguments

• -file <filename>

(optional) A switch and argument pair that specifies a file to which to write contention
messages. When you specify this switch, check contention messages will not be displayed
to the screen.

• -time <limit>

(optional) A switch and argument pair that specifies a time limit that a node may be in
contention. Contention is detected if a node is in contention for as long as or longer than the
limit. The default limit is 0.

See also

check contention add, check contention off

Commands
check contention off

ModelSim SE Reference Manual, v6.5b 113

check contention off
The check contention off command disables contention checking for the specified nodes.

Syntax

check contention off [-all] {[-in] [-out] [-inout] | [-ports]} [-internal] [-r] <node_name> ...

Arguments

• -all

(optional) A switch that disables contention checking for all nodes that have checking
enabled.

• -r

(optional) A switch that specifies that contention checking is disabled recursively into
subregions. If omitted, contention check disabling is limited to the current region.

• -in

(optional) A switch that disables checking on nodes of mode IN.

• -out

(optional) A switch that disables checking on nodes of mode OUT.

• -inout

(optional) A switch that disables checking on nodes of mode INOUT.

• -internal

(optional) A switch that disables checking on internal (non-port) objects.

• -ports

(optional) A switch that disables checking on nodes of modes IN, OUT, or INOUT.

• <node_name> ...

(required) A string that specifies the named node(s).

See also

check contention add, check contention config

ModelSim SE Reference Manual, v6.5b114

Commands
check float add

check float add
The check float add command enables float checking for the specified nodes.

The allowed nodes are Verilog nets and VHDL signals of type std_logic and std_logic_vector
(other types are silently ignored).

You can set a time limit (the default is zero) for float checking using the -time <limit>
argument to the check float config command. If you choose to modify the limit, you should do
so prior to invoking any check float add commands.

Syntax

check float add {[-in] [-out] [-inout] | [-ports] } [-internal] [-r] <node_name> ...

Arguments

• -r

(optional) A switch that specifies that float checking is enabled recursively into subregions.
If omitted, float check enabling is limited to the current region.

• -in

(optional) A switch that enables checking on nodes of mode IN.

• -out

(optional) A switch that enables checking on nodes of mode OUT.

• -inout

(optional) A switch that enables checking on nodes of mode INOUT.

• -internal

(optional) A switch that enables checking on internal (non-port) objects.

• -ports

(optional) A switch that enables checking on nodes of modes IN, OUT, or INOUT.

• <node_name> ...

(required) A string that enables checking for the named node(s).

Description

Bus float checking detects nodes that are in the high impedance state for a time equal to or
exceeding a user-defined limit. This is an error in some technologies. Detection of a float
violation results in an error message identifying the node. A message is also issued when the
float violation ends. The bus float checking commands can be used on VHDL and Verilog
designs.

See also

check float config, check float off

Commands
check float config

ModelSim SE Reference Manual, v6.5b 115

check float config
The check float config command allows you to write checking messages to a file (messages
display on your screen by default). You may also configure the float time limit.

Syntax

check float config [-file <filename>] [-time <limit>]

Arguments

• -file <filename>

(optional) A switch and argument pair that specifies a file to which to write float messages.
If this option is selected, the messages are not displayed to the screen.

• -time <limit>

(optional) A switch and argument pair that specifies a time limit that a node may be floating.
An error is detected if a node is floating for as long as or longer than the limit. The default
limit is 0. Note that you should configure the time limit prior to invoking any check float
add commands.

See also

check float add, check float off

ModelSim SE Reference Manual, v6.5b116

Commands
check float off

check float off
The check float off command disables float checking for the specified nodes.

Syntax

check float off [-all] {[-in] [-out] [-inout] | [-ports]} [-internal] [-r] <node_name> ...

Arguments

• -all

(optional) A switch that disables float checking for all nodes that have checking enabled.

• -r

(optional) A switch that specifies that float checking is disabled recursively into subregions.
If omitted, float check disabling is limited to the current region.

• -in

(optional) A switch that disables checking on nodes of mode IN.

• -out

(optional) A switch that disables checking on nodes of mode OUT.

• -inout

(optional) A switch that disables checking on nodes of mode INOUT.

• -internal

(optional) A switch that disables checking on internal (non-port) objects.

• -ports

(optional) A switch that disables checking on nodes of modes IN, OUT, or INOUT.

• <node_name> ...

(required) A string that disables checking for the named node(s).

See also

check float add, check float config

Commands
check stable off

ModelSim SE Reference Manual, v6.5b 117

check stable off
The check stable off command disables stability checking.

You may later enable it with check stable on, and meanwhile, the clock cycle numbers and
boundaries are still tracked.

Syntax

check stable off

Arguments

• None

See also

check stable on

ModelSim SE Reference Manual, v6.5b118

Commands
check stable on

check stable on
The check stable on command enables stability checking on the entire design.

Syntax

check stable on [-file <filename>] [-period <time>] [-strobe <time>]

Arguments

• -file <filename>

(optional) A switch and argument pair that specifies a file to which to write the error
messages. If this option is selected, the messages are not displayed to the screen.

• -period <time>

(optional) A switch and argument pair that specifies the clock period (which is assumed to
begin at the time the check stable on command is issued). This option is required the first
time you invoke the check stable on command. It is not required if you later enable
checking after it was disabled with the check stable off command.

• -strobe <time>

(optional) A switch and argument pair that specifies the elapsed time within each clock
cycle that the stability check is performed. The default strobe time is the period time. If the
strobe time falls on a period boundary, then the check is actually performed one timestep
earlier. Normally the strobe time is specified as less than or equal to the period, but if it is
greater than the period, then the check will skip cycles.

Description

Design stability checking detects when circuit activity has not settled within a period you define
for synchronous designs. You specify the clock period for the design and the strobe time within
the period during which the circuit must be stable. A violation is detected and an error message
is issued if there are pending driver events at the strobe time. The message identifies the driver
that has a pending event, the node that it drives, and the cycle number. The design stability
checking commands can be used on VHDL and Verilog designs.

Examples

• Performs a stability check 99 ps into each even numbered clock cycle (cycle numbers
start at 1).

check stable on -period "100 ps" -strobe "199 ps"

See also

check stable off

Commands
checkpoint

ModelSim SE Reference Manual, v6.5b 119

checkpoint
The checkpoint command saves the state of your simulation, including:

• modelsim.ini settings

• the simulation kernel state

• the vsim.wlf file

• the list of the design objects shown in the List and Wave windows

• the file pointer positions for files opened under VHDL and the Verilog $fopen system
task

• the states of foreign architectures

• VCD output

• Toggle statistics are saved (see the toggle report command)

However, it does not save the following:

• Changes you made interactively while running vsim are not saved; for example, macros,
virtual objects, command-line interface additions like user-defined commands, and
states of graphical user interface

• Transactions

Once saved, a checkpoint file may be used with the restore command during the same
simulation to restore the simulation to a previous state. A VSIM session may also be started
with a checkpoint file by using the vsim -restore command.

Compression of the checkpoint file is controlled by the CheckpointCompressMode variable in
the modelsim.ini file.

If a checkpoint occurs while ModelSim is writing a VCD file, the entire VCD file is copied into
the checkpoint file. Since VCD files can be very large, it is possible that disk space problems
could occur. Consequently, ModelSim issues a warning in this situation.

Checkpoint files are platform dependent, therefore you cannot checkpoint on one platform and
restore on another.

If checkpointing DPI code that works with heap memory, use mti_Malloc() rather than raw
malloc() or new. Any memory allocated with mti_Malloc() is guaranteed to be restored
correctly. Any memory allocated with raw malloc() will not be restored correctly, and simulator
crashes can result.

Syntax

checkpoint <filename>

ModelSim SE Reference Manual, v6.5b120

Commands
checkpoint

Arguments

• <filename>

(required) An argument that specifies the name of the checkpoint file.

See also

restore, restart, vsim, “Checkpointing and Restoring Simulations”

Commands
compare add

ModelSim SE Reference Manual, v6.5b 121

compare add
The compare add command creates an object that is a comparison between signals in a
reference design against signals in a test design. You can specify whether to compare two
signals, all signals in the region, or just ports or a subset of ports. Constant signals such as
parameters and generics are ignored.

Refer to “Waveform Compare” for a general overview of waveform comparisons.

The names of the added comparison objects take the form:

<path>/\refSignalName<>testSignalName\

If you compare two signals from different regions, the signal names include the uncommon part
of the path. Table 2-2 shows how comparisons work between specified reference objects and
test objects.

The compare add command supports arguments that specify how each signal state matches
std_logic or Verilog values (e.g., -vhdlmatches, see below). Since state matching can also be set
on a global basis with the compare options command or PrefCompare() Tcl variables,
ModelSim follows state match settings in this order:

1. Use local matching values specified when the compare was created using compare add
or subsequently configured using compare configure.

2. If no local values were set, use global matching values set with the compare options
command.

3. If no compare options were set, use default matching values specified by PrefCompare
Tcl variables.

Table 2-2. Comparing Reference Objects to Test Objects

Reference object Test object Result

signal signal compare the two signals

signal region compare a signal with a name matching
the reference signal in the specified test
region

region region compare all matching signals in both
regions

glob expression signal legal only if the glob expression selects
only one signal

glob expression region compare all signals matching the glob
expression that match signals in the test
region

ModelSim SE Reference Manual, v6.5b122

Commands
compare add

Syntax

compare add -clock <name> [-help] [-label <label>] [-list] [-<mode>] [-nowin] [-rebuild]
[-recursive] [-separator <string>] [-tol <delay>] [-tolLead <delay>] [-tolTrail <delay>]
[-verbose] [-vhdlmatches {<ref-logic-value>=<test-logic-value>:…}]
[-vlogmatches {<ref-logic-value>=<test-logic-value>:…}] [-wavepane <n>]
[-when {<expression>}] <referencePath> [<testPath>]
[-wave] [-win <wname>]

Arguments

• -clock <name>

Specifies the clock definition to use when sampling the specified regions. Required for a
clocked comparison; not used for asynchronous comparisons.

• -help

Lists the description and syntax for the compare add command in the Transcript window.
Optional.

• -label <label>

Specifies a name for the comparison when it is displayed in the Wave window. Optional.

• -list

Causes specified comparisons to be displayed in the default List window. Optional.

• -<mode>

Specifies the mode of signal types that are compared. Optional. The actual values the option
may take are -in, -out, -inout, -internal, -ports, and -all. You can use more than one mode
option in the same command.

• -nowin

Specifies that compare signals shouldn’t be added to any window. Optional. By default,
compare signals are added to the default Wave window. See -wave below.

• -rebuild

Rebuilds a fragmented bus in the test design region and compares it with the corresponding
bus in the reference design region. Optional. If a signal is found having the same name as
the reference signal, the -rebuild option is ignored. When rebuilding the test signal, the
name of the reference signal is used as the wildcard prefix.

• -recursive

Specifies that signals should also be selected in all nested subregions, and subregions of
those, etc. Optional.

• -separator <string>

Used with the -rebuild option. When a bus has been broken into bits (bit blasted) by a
synthesis tool, ModelSim expects a separator between the base bus name and the bit

Commands
compare add

ModelSim SE Reference Manual, v6.5b 123

indication. This option identifies that separator. The default is "_". For example, the signal
"mybus" might be broken down into "mybus_0", "mybus_1", etc.

• -tol <delay>

Specifies the maximum time a test signal edge is allowed to lead or trail a reference edge in
an asynchronous comparison. Optional. The default is 0. If a unit (e.g., ps) is used with the
time value, the time must be placed in curly braces.

• -tolLead <delay>

Specifies the maximum time a test signal edge is allowed to lead a reference edge in an
asynchronous comparison. Optional. The default is 0. If a unit (e.g., ps) is used with the time
value, the time must be placed in curly braces.

• -tolTrail <delay>

Specifies the maximum time a test signal edge is allowed to trail a reference edge in an
asynchronous comparison. Optional. The default is 0. If a unit is used (e.g., ps) with the time
value, the time must be placed in curly braces.

Graphical representation of tolLead and tolTrail

• -verbose

Prints information in the Transcript window confirming the signals selected for comparison
and any type conversions employed. Optional.

• -vhdlmatches {<ref-logic-value>=<test-logic-value>:…}

Specifies how VHDL signal states in the reference dataset should match values in the test
dataset. Optional. Values are specified in a colon-separated list of match values. For
example:

-vhdlmatches {X=XUD:Z=ZD:1=1HD}

Default is:

{U=UWXD:X=UWXD:0=0LD:1=1HD:Z=ZD:W=UWXD:L=0LD:H=1HD:D=UX01ZWLHD}

The 'D' character represents the '-' "don't care" std_logic value.

Reference Signal

Test Signal

tolLead
tolTrail

ModelSim SE Reference Manual, v6.5b124

Commands
compare add

• -vlogmatches {<ref-logic-value>=<test-logic-value>:…}

Specifies how Verilog signal states in the reference dataset should match values in the test
dataset. Optional. Values are specified in a colon-separated list of match values. For
example:

-vlogmatches {0=0:1=1:Z=Z}

Default is:

{0=0:1=1:Z=Z:X=X}.

• -wavepane <n>

Specifies the pane of the Wave window in which the differences will be viewed. Optional.

• -wave

Specifies that compare signals be added automatically to the default Wave window.
Optional. Default.

• -when {<expression>}

Specifies a conditional expression that must evaluate to "true" or "1" for differences to be
reported. Optional. The expression is evaluated at the start of an observed difference. See
GUI_expression_format for legal expression syntax.

• -win <wname>

Specifies a particular window to which to add objects. Optional. Used to specify a particular
window when multiple instances of that window type exist.

• <referencePath>

Specifies either an absolute or relative path to the reference signal or region, or a glob
expression. Required. Relative paths are relative to the current context of the reference
dataset. If you specify a glob expression, it will match signals only in the containing context.

• <testPath>

Specifies an absolute or relative path to the test signal or region. Cannot be a glob
expression. Optional. If omitted, the test path defaults to the same path as <referencePath>
except for the dataset name.

Examples

• Select signals in the reference and test dataset top region according to the default mode.
Uses asynchronous comparison with the default tolerances. Assumes that the top regions
of the reference and test datasets have the same name and contain the same signals with
the same names.

compare add /*

• Select port signals of instance .test_ringbuf.ring_inst in both datasets to be compared
and sampled on strobe myclock10.

Commands
compare add

ModelSim SE Reference Manual, v6.5b 125

compare add -port -clock myclock10 gold:.test_ringbuf.ring_inst

• Select all signals in the cpu region to be compared asynchronously using the default
tolerances. Requires that the reference and test relative hierarchies and signal names
within the cpu region be identical, but they need not be the same above the cpu region.

compare add -r gold:/top/cpu test:/testbench/cpu

• Specify that signal gold:.top.s1 should be sampled at clock12 and compared with
test:.top.s1, also sampled at clock12.

compare add -clock clock12 gold:.top.s1

• Specify that signal gold:/asynch/abc/s1 should be compared asynchronously with signal
sim:/flat/sigabc using a leading tolerance of 3 ns and a trailing tolerance of 5 ns.

compare add -tolLead {3 ns} -tolTrail {5 ns} gold:/asynch/abc/s1
sim:/flat/sigabc

• Cause signals test:.counter2.cnt_dd to be rebuilt into bus test:.counter2.cnt[…] and
compared against gold:.counter1.count.

compare add -rebuild gold:.counter1.count test:.counter2.cnt

See also

compare add, compare annotate, compare clock, compare configure, compare continue,
compare delete, compare end, compare info, compare list, compare options, compare reload,
compare reset, compare run, compare savediffs, compare saverules, compare see, compare start,
compare stop, compare update, and “Waveform Compare”

ModelSim SE Reference Manual, v6.5b126

Commands
compare annotate

compare annotate
The compare annotate command either flags a comparison difference as "ignore" or adds a
text string annotation to the difference. The text string appears when the difference is viewed in
info popups or in the output of a compare open command.

Syntax

compare annotate [-ignore] [-noignore] [-text <message>] <idNum1> [<idNum2>…]

Arguments

• -ignore

Flags the specified difference as "ignore." Optional.

• -noignore

Undoes a previous -ignore command. Optional.

• -text <message>

Adds a text string annotation to the difference that is shown wherever the difference is
viewed. Optional.

• <idNum1>

Identifies the difference number to annotate. Required. You can obtain a difference number
by using the compare start command or a popup dialog. Difference numbers are ordered by
time of the difference start, but there may be more than one difference starting at a given
time.

• <idNum2>…

Identifies a second, third, etc. difference number to be annotated in the same way as
idNum1. Optional. These are individual references; ranges of numbers cannot be specified.

Examples

• Flag difference numbers 1, 2, and 10 as "ignore."

compare annotate -ignore 1 2 10

• Annotate difference number 12 with the message "THIS IS A CRITICAL PROBLEM."

compare annotate -text "THIS IS A CRITICAL PROBLEM" 12

See also

compare add, compare info, and “Waveform Compare”

Commands
compare clock

ModelSim SE Reference Manual, v6.5b 127

compare clock
The compare clock command defines a clock that can then be used for clocked-mode
comparisons. In clocked-mode comparisons, signals are sampled and compared only at or just
after an edge on some signal.

Syntax

compare clock [-delete] [-offset <delay>] [-rising | -falling | -both] [-when {<expression>}]
<clock_name> <signal_path>

Arguments

• -delete

Deletes an existing compare clock. Optional.

• -offset <delay>

Specifies a time value for delaying the sample time beyond the specified signal edge.
Optional. The default is 0. If a unit (e.g., ps) is used with the time value, the time must be
placed in curly braces.

• -rising

Specifies that the rising edge of the specified signal should be used. Optional. This is the
default.

• -falling

Specifies that the falling edge of the specified signal should be used. Optional. The default
is rising.

• -both

Specifies that both the rising and the falling edge of the specified signal should be used.
Optional. The default is rising.

• -when {<expression>}

Specifies a conditional expression that must evaluate to "true" or "1" for that clock edge to
be used as a strobe. Optional. The expression is evaluated at the time of the clock edge,
rather than after the delay has been applied. See GUI_expression_format for legal
expression syntax.

• <clock_name>

A name for this clock definition. Required. This name will be used with the compare add
command when doing a clocked-mode comparison.

• <signal_path>

A full path to the signal whose edges are to be used as the strobe trigger. Required.

ModelSim SE Reference Manual, v6.5b128

Commands
compare clock

Examples

• Define a clocked compare strobe named "strobe" that samples signals on the rising edge
of signal gold:.top.clock.

compare clock -rising strobe gold:.top.clock

• Define a clocked compare strobe named "clock12" that samples signals 12 ns after the
rising edge of signal gold:/mydesign/clka.

compare clock -rising -delay {12 ns} clock12 gold:/mydesign/clka

See also

compare add, “Waveform Compare”

Commands
compare configure

ModelSim SE Reference Manual, v6.5b 129

compare configure
The compare configure command modifies options for compare signals and regions. The
modified options are applied to all objects in the specified compare path.

Syntax

compare configure [-clock <name>] [-recursive] [-tol <delay>] [-tolLead <delay>]
[-tolTrail <delay>] [-vhdlmatches {<ref-logic-value>=<test-logic-value>:…}]
[-vlogmatches {<ref-logic-value>=<test-logic-value>:…}] [-when {<expression>}]
<comparePath>

Arguments

• -clock <name>

Changes the strobe signal for the comparison. Optional. If the comparison is currently
asynchronous, it will be changed to clocked. This switch may not be used with the -tol,
-tolLead, and -tolTrail options.

• -recursive

Specifies that signals should also be selected in all nested subregions, and subregions of
those, etc. Optional.

• -tol <delay>

Specifies the default maximum time the test signal edge is allowed to trail or lead the
reference edge in an asynchronous comparison. Optional. The default is 0. If a unit is used
(e.g., ps) with the time value, the time must be in curly braces.

• -tolLead <delay>

Specifies the maximum time a test signal edge is allowed to lead a reference edge in an
asynchronous comparison. Optional. The default is 0. If a unit (e.g., ps) is used with the time
value, the time must be placed in curly braces.

• -tolTrail <delay>

Specifies the maximum time a test signal edge is allowed to trail a reference edge in an
asynchronous comparison. Optional. The default is 0. If a unit is used (e.g., ps) with the time
value, the time must be placed in curly braces.

• -vhdlmatches {<ref-logic-value>=<test-logic-value>:…}

Specifies how VHDL signal states in the reference dataset should match values in the test
dataset. Optional. Values are specified in a colon-separated list of match values. For
example:

-vhdlmatches {X=XUD:Z=ZD:1=1HD}

Default is:

{U=UWXD:X=UWXD:0=0LD:1=1HD:Z=ZD:W=UWXD:L=0LD:H=1HD:-=UX01ZWLHD}

ModelSim SE Reference Manual, v6.5b130

Commands
compare configure

• -vlogmatches {<ref-logic-value>=<test-logic-value>:…}

Specifies how Verilog signal states in the reference dataset should match values in the test
dataset. Optional. Values are specified in a colon-separated list of match values. For
example:

-vlogmatches {0=0:1=1:Z=Z}

Default is:

{0=0:1=1:Z=Z:X=X}

• -when {<expression>}

Specifies a conditional expression that must evaluate to "true" or "1" for differences to be
reported. Optional. The expression is evaluated at the start of an observed difference. See
GUI_expression_format for legal expression syntax.

• <comparePath>

Identifies the path of a compare signal, region, or glob expression. Required.

See also

compare add, “Waveform Compare”

Commands
compare continue

ModelSim SE Reference Manual, v6.5b 131

compare continue
This command is used to continue with comparison difference computations that were
suspended using the compare stop button or Control-C. If the comparison was not suspended,
compare continue has no effect.

Syntax

compare continue

Arguments

• None

See also

compare stop, “Waveform Compare”

ModelSim SE Reference Manual, v6.5b132

Commands
compare delete

compare delete
The compare delete command deletes a comparison object from the currently open
comparison.

Syntax

compare delete [-recursive] {<objectPath> }

Arguments

• -recursive

Deletes a region recursively. Optional.

• {<objectPath> }

Path to the comparison object to be deleted (e.g., {compare:/top/\clk<>clk\ }). Required.
The comparison object must be "escaped" correctly so the braces ’{}’ and trailing space are
required.

See also

compare add, “Waveform Compare”

Commands
compare end

ModelSim SE Reference Manual, v6.5b 133

compare end
The compare end command closes the active comparison without saving any information.

Syntax

compare end

Arguments

• None

See also

compare add, “Waveform Compare”

ModelSim SE Reference Manual, v6.5b134

Commands
compare info

compare info
The compare info command lists the results of the comparison in the Main window transcript.
To save the information to a file, use the -write argument.

Syntax

compare info [-all] [-count] [-primaryonly] [-signals] [-secondaryonly]
[<startNum> [<endNum>]] [-summary] [-write <filename>]

Arguments

• -all

Lists all differences (even those marked as "ignore") in the output. Optional. By default,
ignored differences are not listed in the output of a compare info command.

• -count

Returns the total number of primary differences found.

• -primaryonly

Lists only differences on individual bits, ignoring aggregate values such as a bus. Optional.

• -signals

Returns a Tcl list of compare signal names that have at least one difference.

• -secondaryonly

Lists only aggregate value differences such as a bus, ignoring the individual bits.

• <startNum> [<endNum>]

Specifies the difference numbers to start and end the list with. Optional. If omitted,
ModelSim starts the listing with the first difference and ends it with the last. If just endNum
is omitted, ModelSim ends the listing with the last difference.

• -summary

Lists only summary information. Optional.

• -write <filename>

Saves the summary information to <filename> rather than the Main window transcript.
Optional.

Examples

• List all errors in the Main window transcript.

compare info

• List only an error summary in the Main window transcript.

compare info -summary

• Write errors 20 through 50 to the file myerrorfile.

Commands
compare info

ModelSim SE Reference Manual, v6.5b 135

compare info -write myerrorfile 20 50

See also

compare add, compare annotate, “Waveform Compare”

ModelSim SE Reference Manual, v6.5b136

Commands
compare list

compare list
Displays in the Transcript window a list of all the compare add commands currently in effect.

Syntax

compare list [-expand]

Arguments

• -expand

Expands groups specified by the compare add command to individual signals. Optional.

See also

compare add, “Waveform Compare”

Commands
compare options

ModelSim SE Reference Manual, v6.5b 137

compare options
The compare options command sets defaults for various waveform comparison commands.
Those defaults are used when other compare commands are invoked during the current session.
To set defaults permanently, edit the appropriate PrefCompare() Tcl variable.

Refer to “Simulator GUI Preferences” for details.

If no arguments are used, compare options returns the current setting for all options. If one
option is given that requires a value, and if that value is not given, compare options returns the
current value of that option.

Syntax

compare options [-addwave][-noaddwave] [-ignoreVlogStrengths]
[-noignoreVlogStrengths] [-maxsignal <n>] [-maxtotal <n>] [-listwin <name>] [-<mode>]
[-separator <string>] [-tol <delay>] [-tolLead <delay>] [-tolTrail <delay>] [-track]
[-notrack] [-vhdlmatches {<ref-logic-value>=<test-logic-value>:…}]
[-vlogmatches {<ref-logic-value>=<test-logic-value>:…}] [-wavepane <n>]
[-wavewin <name>]

Arguments

• -addwave

Specifies that new comparison objects are added automatically to the Wave window.
Optional. Default. You can specify that objects aren’t added automatically using the
-noaddwave argument. Related Tcl variable is PrefCompare(defaultAddToWave).

• -noaddwave

Specifies that new comparison objects are not added automatically to the Wave window.
Optional. The default is to add comparison objects automatically. Related Tcl variable is
PrefCompare(defaultAddToWave).

• -ignoreVlogStrengths

Specifies that Verilog net strengths should be ignored when comparing two Verilog nets.
Optional. Default. Related Tcl variable is PrefCompare(defaultIgnoreVerilogStrengths).

• -noignoreVlogStrengths

Specifies that Verilog net strengths should not be ignored when comparing two Verilog
nets. Optional. Related Tcl variable is PrefCompare(defaultIgnoreVerilogStrengths).

• -listwin <name>

Causes specified comparisons to be displayed in the specified List window. Optional.
Related Tcl variable is PrefCompare(defaultListWindow).

• -maxsignal <n>

Specifies an upper limit for the total differences encountered on any one signal. When that
limit is reached, ModelSim stops computing differences on that signal. Optional. The
default is 100. Related Tcl variable is PrefCompare(defaultMaxSignalErrors).

ModelSim SE Reference Manual, v6.5b138

Commands
compare options

• -maxtotal <n>

Specifies an upper limit for the total differences encountered. When that limit is reached,
ModelSim stops computing differences. Optional. The default is 1000. Related Tcl variable
is PrefCompare(defaultMaxTotalErrors).

• -<mode>

Specifies the default mode of signal types that are compared with the compare add
command. Optional. The actual values the option may take are -in, -out, -inout, -internal, -
ports, and -all. More than one mode option may be used in the same compare options
command.

• -separator <string>

Used with the -rebuild option of the compare add command. When a bus has been broken
into bits (bit blasted) by a synthesis tool, ModelSim expects a separator between the base
bus name and the bit indication. This option identifies that separator. The default is "_". For
example, the signal "mybus" might be broken down into "mybus_0", "mybus_1", etc.
Optional. Related Tcl variable is PrefCompare(defaultRebuildSeparator).

• -tol <delay>

Specifies the default maximum time the test signal edge is allowed to trail or lead the
reference edge in an asynchronous comparison. Optional. The default is 0. If a unit is used
(e.g., ps) with the time value, the time must be in curly braces.

You can specify different values for the leading and trailing tolerances using -tolLead and -
tolTrail.

• -tolLead <delay>

Specifies the default maximum time the test signal edge is allowed to lead the reference
edge in an asynchronous comparison. Optional. The default is 0. If a unit (e.g., ps) is used
with the time value, the time must be in curly braces. Related Tcl variables are
PrefCompare(defaultLeadTolerance) and PrefCompare(defaultLeadUnits).

• -tolTrail <delay>

Specifies the default maximum time the test signal edge is allowed to trail the reference
edge in an asynchronous comparison. Optional. The default is 0. If a unit is used
(e.g., ps) with the time value, the time must be in curly braces. Related Tcl variables are
PrefCompare(defaultTrailTolerance) and PrefCompare(defaultTrailUnits).

Commands
compare options

ModelSim SE Reference Manual, v6.5b 139

Graphical representation of tolLead and tolTrail

• -track

Specifies that the waveform comparison should track the current simulation. Optional.
Default. The differences will be updated at the end of each run command, so if you want to
see differences soon after they occur, use many relatively short run commands. Related Tcl
variable is PrefCompare(defaultTrackLiveSim).

• -notrack

Specifies that the waveform comparison should not track the current simulation. Optional.
Related Tcl variable is PrefCompare(defaultTrackLiveSim).

• -vhdlmatches {<ref-logic-value>=<test-logic-value>:…}

Specifies how VHDL signal states in the reference dataset should match values in the test
dataset. Optional. Values are specified in a colon-separated list of match values. For
example:

-vhdlmatches {X=XUD:Z=ZD:1=1HD}

Default is:

{U=UWX-:X=UWXD:0=0LD:1=1HD:Z=ZD:W=UWXD:L=0LD:H=1HD:-=UX01ZWLHD}

Related Tcl variable is PrefCompare(defaultVHDLMatches).

• -vlogmatches {<ref-logic-value>=<test-logic-value>:…}

Specifies how Verilog signal states in the reference dataset should match values in the test
dataset. Optional. Values are specified in a colon-separated list of match values. For
example:

-vlogmatches {0=0:1=1:Z=Z}

Default is:

{0=0:1=1:Z=Z:X=X}

Related Tcl variable is PrefCompare(defaultVLOGMatches).

• -wavepane <n>

Specifies the default pane of the Wave window in which compare differences will be
viewed. Optional. Related Tcl variable is PrefCompare(defaultWavePane).

Reference Signal

Test Signal

tolLead
tolTrail

ModelSim SE Reference Manual, v6.5b140

Commands
compare options

• -wavewin <name>

Specifies the default name of the Wave window in which compare differences will be
viewed. Optional. Related Tcl variable is PrefCompare(defaultWaveWindow).

Examples

• Return the current value of all options.

compare options

• Set the maxtotal option to 2000 differences.

compare options -maxtotal 2000

• Return the current value of the maxtotal option.

compare options -maxtotal

• Set the option to ignore Verilog net strengths.

compare options -ignoreVlogStrengths

• Verilog X will now match X, Z, or 0.

compare options -vlogxmatches {0=0:1=1:Z=Z:X=XZ0}

• VHDL std_logic X will now match 'U', 'X', 'W', or 'D'.

compare options -vhdlmatches {X=UXWD}

• Set the leading tolerance for asynchronous comparisons to 300 picoseconds.

compare options -tolLead {300 ps}

• Set the trailing tolerance for asynchronous comparisons to 250 picoseconds.

compare options -tolTrail {250 ps}

See also

compare add, compare clock, “Waveform Compare”

Commands
compare reload

ModelSim SE Reference Manual, v6.5b 141

compare reload
The compare reload command reloads comparison differences to allow their viewing without
recomputation. Prior to invoking compare reload, you must open the relevant datasets with the
same names that were used during the original comparison.

Syntax

compare reload <rulesFilename> <diffsFilename>

Arguments

• <rulesFilename>

Specifies the name of the file that was previously saved using the compare saverules
command. Required. Must be the first argument.

• <diffsFilename>

Specifies the name of the file that was previously saved using the compare savediffs
command. Required.

See also

compare add, compare savediffs, compare saverules, compare run, compare start, “Waveform
Compare”

ModelSim SE Reference Manual, v6.5b142

Commands
compare reset

compare reset
Clears the current compare differences, allowing another compare run command to be executed.
Does not modify any of the compare options or any of the signals selected for comparison. This
allows you to re-run the comparison with different options or with a modified signal list.

Syntax

compare reset

Arguments

• None

See also

compare add, compare run, and “Waveform Compare”

Commands
compare run

ModelSim SE Reference Manual, v6.5b 143

compare run
The compare run command runs the difference computation on the signals selected via a
compare add command. Reports in the Transcript window the total number of errors found.

Syntax

compare run [<startTime>] [<endTime>]

Arguments

• <startTime>

Specifies when to start computing differences. Optional. Default is zero. If a unit (e.g., ps) is
used with the time value, the time must be in curly braces. The default units are determined
by the simulation resolution. (Default simulation resolution is nanoseconds. Simulation
resolution can be changed with the -t argument of the vsim command).

• <endTime>

Specifies when to end computing differences. Optional. Default is the end of the dataset
simulation run that ends earliest. If a unit (e.g., ps) is used with the time value, the time must
be placed in curly braces.

Examples

• Compute differences over the entire time range.

compare run

• Compute differences from 5.3 nanoseconds to 57 milliseconds.

compare run {5.3 ns} {57 ms}

See also

compare add, compare end, compare start, “Waveform Compare”

ModelSim SE Reference Manual, v6.5b144

Commands
compare savediffs

compare savediffs
The compare savediffs command saves the comparison results to a file that can be reloaded
later. To be able to reload the file later, you must also save the comparison setup using the
compare saverules command.

Syntax

compare savediffs <diffsFilename>

Arguments

• <diffsFilename>

Specifies the name of the file to create. Required. To load the file at a later time, use the
compare reload command.

See also

compare add, compare reload, compare saverules, “Waveform Compare”

Commands
compare saverules

ModelSim SE Reference Manual, v6.5b 145

compare saverules
The compare saverules command saves the comparison setup information (or "rules") to a file
that can be re-executed later. The command saves compare options, clock definitions, and
region and signal selections.

Syntax

compare saverules [-expand] <rulesFilename>

Arguments

• -expand

Expands groups specified by the compare add command to individual signals. Optional. If
you added a region with the compare add command and then deleted signals from that
region, you must use the -expand argument or the rules will not reflect the signal deletions.

• <rulesFilename>

Specifies the name of the file to which you want to save the rules. Required. To load the file
at a later time, use the compare reload command.

See also

compare add, compare reload, compare savediffs, “Waveform Compare”

ModelSim SE Reference Manual, v6.5b146

Commands
compare see

compare see
The compare see command displays the specified comparison difference in the Wave window
using whatever horizontal and vertical scrolling are necessary. The signal containing the
specified difference will be highlighted, and the active cursor will be positioned at the starting
time of the difference.

Syntax

compare see [-first] [-last] [-next] [-nextanno] [-previous] [-prevanno] [-wavepane <n>]
[-wavewin <name>]

Arguments

• -first

Shows the first difference, ordered by time. Optional. Performs the same action as the Find
First Difference button in the Wave window.

• -last

Shows the last difference, ordered by time. Optional. Performs the same action as the Find
Last Difference button in the Wave window.

• -next

Shows the next difference (in time) after the currently selected difference. Optional.
Performs the same action as the Find Next Difference button in the Wave window.

• -nextanno

Shows the next annotated difference (in time) after the currently selected difference.
Optional. Performs the same action as the Next Annotated Difference button in the Wave
window.

• -previous

Shows the previous difference (in time) before the currently selected difference. Optional.
Performs the same action as the Previous Difference button in the Wave window.

• -prevanno

Shows the previous annotated difference (in time) before the currently selected difference.
Optional. Performs the same action as the Previous Annotated Difference button in the
Wave window.

• -wavepane <n>

Specifies the pane of the Wave window in which the difference should be shown. Optional.

• -wavewin <name>

Specifies the name of the Wave window in which the difference should be shown. Optional.

Examples

• Show the earliest difference (in time) in the default Wave window.

Commands
compare see

ModelSim SE Reference Manual, v6.5b 147

compare see -first

• Show the next difference (in time) in the default Wave window.

compare see -next

See also

compare add, compare run, “Waveform Compare”

ModelSim SE Reference Manual, v6.5b148

Commands
compare start

compare start
The compare start command begins a new dataset comparison. The datasets that you’ll be
comparing must already be open.

Syntax

compare start [-batch] [-maxsignal <n>] [-maxtotal <n>] [-refDelay <delay>]
[-testDelay <delay>] <reference_dataset> [<test_dataset>]

Arguments

• -batch

Specifies that comparisons will not be automatically inserted into the Wave window.
Optional.

• -maxsignal <n>

Specifies an upper limit for the total differences encountered on any one signal. When that
limit is reached, ModelSim stops computing differences on that signal. Optional. The
default limit is 100. You can change the default using the compare options command or by
editing the PrefCompare(defaultMaxSignalErrors) variable in the pref.tcl file.

• -maxtotal <n>

Specifies an upper limit for the total differences encountered. When that limit is reached,
ModelSim stops computing differences. Optional. The default limit is 1000. You can
change the default using the compare options command or by editing the
PrefCompare(defaultMaxTotalErrors) variable in the pref.tcl file.

• -refDelay <delay>

Delays the reference dataset relative to the test dataset. Optional. If <delay> contains a unit,
it must be enclosed in curly braces. Delays are applied to signals specified with the compare
add command. For each signal compared, a delayed virtual signal is created with "_d"
appended to the signal name, and these are the signals viewed in the Wave window
comparison objects. The delay is not applied to signals specified in compare "when"
expressions.

• -testDelay <delay>

Delays the test dataset relative to the reference dataset. Optional. If <delay> contains a unit,
it must be enclosed in curly braces. Delays are applied to signals specified with the compare
add command. For each signal compared, a delayed virtual signal is created with "_d"
appended to the signal name, and these are the signals viewed in the Wave window
comparison objects. The delay is not applied to signals specified in compare "when"
expressions.

• <reference_dataset>

The dataset to be used as the comparison reference. Required.

Commands
compare start

ModelSim SE Reference Manual, v6.5b 149

• <test_dataset>

The dataset to be tested against the reference. Optional. If not specified, ModelSim uses the
current simulation. The reference and test datasets may be the same.

Examples

• Begin a waveform comparison between a dataset named "gold" and the current
simulation. Assumes the gold dataset was already opened.

compare start gold

• This command sequence opens two datasets and starts a comparison between the two
using greater than default limits for total differences encountered.

dataset open gold_typ.wlf gold
dataset open bad_typ.wlf test
compare start -maxtotal 5000 -maxsignal 1000 gold test

See also

compare add, compare options, compare stop, “Waveform Compare”

ModelSim SE Reference Manual, v6.5b150

Commands
compare stop

compare stop
This command is used internally by the compare stop button to suspend comparison
computations in progress. If a compare run execution has returned to the VSIM prompt,
compare stop has no effect. Under Unix, entering a Control-C character in the window that
invoked ModelSim has the same effect as compare stop.

Syntax

compare stop

Arguments

• None

See also

compare run, compare start, “Waveform Compare”

Commands
compare update

ModelSim SE Reference Manual, v6.5b 151

compare update
This command is primarily used internally to update the comparison differences when
comparing a live simulation against a .wlf file. The compare update command is called
automatically at the completion of each simulation run if the "-track" compare option is in
effect.

The user can also call compare update periodically during a long simulation run to cause
difference computations to catch up with the simulation. This command does nothing if the -
track compare option was not in effect when the compare run command was executed.

Syntax

compare update

Arguments

• None

See also

compare run, “Waveform Compare”

ModelSim SE Reference Manual, v6.5b152

Commands
configure

configure
The configure command invokes the List or Wave widget configure command for the current
default List or Wave window.

To change the default window, use the view command.

Syntax

configure list | wave [-window <wname>] [<option> <value>]

---- List Window Arguments
[-delta [all | collapse | events | none]] [-gateduration [<duration_open>]]
[-gateexpr [<expression>]] [-usegating [<value>]] [-strobeperiod [<period>]]
[-strobestart [<start_time>]] [-usesignaltriggers [<value>]] [-usestrobe [<value>]]

---- Wave Window Arguments
[-childrowmargin [<pixels>]] [-cursorlockcolor [<color>]] [-gridauto [off | on]]
[-gridcolor [<color>]][-griddelta [<pixels>]] [-gridoffset [<time>]] [-gridperiod [<time>]]
[-namecolwidth [<width>]] [-rowmargin [<pixels>]] [-signalnamewidth [<value>]]
[-timecolor [<color>]] [-timeline [<value>]]
[-timelineunits [fs | ps | ns | us | ms | sec | min | hr]] [-valuecolwidth [<width>]]
[-vectorcolor [<color>]] [-waveselectcolor [<color>]] [-waveselectenable [<value>]]

Description

The command works in three modes:

• without options or values it returns a list of all attributes and their current values

• with just an option argument (without a value) it returns the current value of that
attribute

• with one or more option-value pairs it changes the values of the specified attributes to
the new values

The returned information has five fields for each attribute: the command-line switch, the Tk
widget resource name, the Tk class name, the default value, and the current value.

Arguments

• list | wave

Specifies either the List or Wave widget to configure. Required.

• -window <wname>

Specifies the name of the List or Wave window to target for the configure command. (The
view command allows you to create more than one List or Wave window). Optional. If no
window is specified the default window is used; the default window is determined by the
most recent invocation of the view command.

Commands
configure

ModelSim SE Reference Manual, v6.5b 153

• <option> <value>

-bg <color> — Specifies the window background color. Optional.

-fg <color> — Specifies the window foreground color. Optional.

-selectbackground <color> — Specifies the window background color when selected.
Optional.

-selectforeground <color> — Specifies the window foreground color when selected.
Optional.

-font — Specifies the font used in the widget. Optional.

-height <pixels> — Specifies the height in pixels of each row. Optional.

Arguments, List window only

• -delta [all | collapse | events | none]

The all option displays a new line for each time step on which objects change; collapse
displays the final value for each time step; events displays an "event" column rather than a
"delta" column and sorts List window data by event; and none turns off the display of the
delta column. To use -delta, -usesignaltriggers must be set to 1 (on). Optional.

• -gateduration [<duration_open>]

The duration for gating to remain open beyond when -gateexpr (below) becomes false,
expressed in x number of timescale units. Extends gating beyond the back edge (the last list
row in which the expression evaluates to true). Optional. The default value for normal
synchronous gating is zero. If -gateduration is set to a non-zero value, a simulation value
will be displayed after the gate expression becomes false (if you don’t want the values
displayed, set -gateduration to zero).

• -gateexpr [<expression>]

Specifies the expression for trigger gating. Optional. (Use the -usegating argument to
enable trigger gating.) The expression is evaluated when the List window would normally
have displayed a row of data. See the GUI_expression_format for information on expression
syntax.

• -usegating [<value>]

Enables triggers to be gated on (a value of 1) or off (a value of 0) by an overriding
expression. Default is off. Optional. (Use the -gatexpr argument to specify the expression.)
Refer to “Using Gating Expressions to Control Triggering” for additional information on
using gating with triggers.

• -strobeperiod [<period>]

Specifies the period of the list strobe. When using a time unit, the time value and unit must
be placed in curly braces. Optional.

• -strobestart [<start_time>]

Specifies the start time of the list strobe. When using a time unit, the time value and unit
must be placed in curly braces. Optional.

ModelSim SE Reference Manual, v6.5b154

Commands
configure

• -usesignaltriggers [<value>]

If 1, uses signals as triggers; if 0, not. Optional.

• -usestrobe [<value>]

If 1, uses the strobe to trigger; if 0, not. Optional.

Arguments, Wave window only

• -childrowmargin [<pixels>]

Specifies the distance in pixels between child signals. Optional. Default is 2. Related Tcl
variable is PrefWave(childRowMargin).

• -cursorlockcolor [<color>]

Specifies the color of a locked cursor. Default is red. Related Tcl variable is
PrefWave(cursorLockColor).

• -gridauto [off | on]

Controls the grid period when in simulation time mode.

off — (default) user-specified grid period is used.

on — grid period is determined by the major tick marks in the time line.

• -gridcolor [<color>]

Specifies the background grid color; the default is grey50. Optional. Related Tcl variable is
PrefWave(gridColor).

• -griddelta [<pixels>]

Specifies the closest (in pixels) two grid lines can be drawn before intermediate lines will be
removed. Optional. Default is 40. Related Tcl variable is PrefWave(gridDelta).

• -gridoffset [<time>]

Specifies the time (in user time units) of the first grid line. Optional. Default is 0. Related
Tcl variable is PrefWave(gridOffset).

• -gridperiod [<time>]

Specifies the time (in user time units) between subsequent grid lines. Optional. Default is 1.
Related Tcl variable is PrefWave(gridPeriod).

• -namecolwidth [<width>]

Specifies in pixels the width of the name column. Optional. Default is 150. Related Tcl
variable is PrefWave(nameColWidth).

• -rowmargin [<pixels>]

Specifies the distance in pixels between top-level signals. Default is 4. Related Tcl variable
is PrefWave(rowMargin).

Commands
configure

ModelSim SE Reference Manual, v6.5b 155

• -signalnamewidth [<value>]

Controls the number of hierarchical regions displayed as part of a signal name shown in the
pathname pane. Optional. Default of 0 displays the full path. 1 displays only the leaf path
element, 2 displays the last two path elements, and so on. Related Tcl variable is
PrefWave(SignalNameWidth). Can also be set with the WaveSignalNameWidth variable in
the modelsim.ini file.

• -timecolor [<color>]

Specifies the time axis color. Default is green. Optional. Related Tcl variable is
PrefWave(timeColor).

• -timeline [<value>]

Specifies whether the horizontal axis displays simulation time (default) or grid period count.
Default is zero. When set to 1, the grid period count is displayed. Related Tcl variable is
PrefWave(timeline).

• -timelineunits [fs | ps | ns | us | ms | sec | min | hr]

Specifies units for timeline display (does not affect the currently-defined simulation time).
Default is ns.

• -valuecolwidth [<width>]

Specifies in pixels the width of the value column. Default is 100. Related Tcl variable is
PrefWave(valueColWidth).

• -vectorcolor [<color>]

Specifies the vector waveform color. Default is #b3ffb3. Optional. Related Tcl variable is
PrefWave(vectorColor).

• -waveselectcolor [<color>]

Specifies the background highlight color of a selected waveform. Default is grey30. Related
Tcl variable is PrefWave(waveSelectColor).

• -waveselectenable [<value>]

Specifies whether the waveform background highlights when an object is selected. 1
enables highlighting; 0 disables highlighting. Default is 0. Related Tcl variable is
PrefWave(waveSelectEnabled).

To get a more readable listing of all attributes and current values, use the lecho command,
which pretty-prints a Tcl list.

There are more options than are listed here. See the output of a configure list or configure wave
command for all options.

Examples

• Display the current value of the strobeperiod attribute.

config list -strobeperiod

ModelSim SE Reference Manual, v6.5b156

Commands
configure

• Set the period of the list strobe and turns it on.

config list -strobeperiod {50 ns} -strobestart 0 -usestrobe 1

• Set the wave vector color to blue.

config wave -vectorcolor blue

• Set the display in the current Wave window to show only the leaf path of each signal.

config wave -signalnamewidth 1

See also

view, Simulator GUI Preferences

Commands
context

ModelSim SE Reference Manual, v6.5b 157

context
The context command provides several operations on a context's name. The option you specify
determines the operation.

Syntax

context dataset | exists | fullpath | isInst | isNet | isProc | isVar | join | parent | path | split | tail |
type <name>

Arguments

• context dataset <name>

Return the dataset name from the name.

• context exists <name>

Returns 1 if the name is valid, 0 otherwise.

• context fullpath <name>

Returns the full path (including the dataset prefix) of the specified name.

• context isInst <name>

Returns 1 if the name is an instance pathname, 0 otherwise.

• context isNet <name>

Returns 1 if the name is a Signal or Net pathname, 0 otherwise.

• context isProc <name>

Returns 1 if the name is a Process pathname, 0 otherwise.

• context join <name> <name> ...

Takes one or more names and combines them, using the correct path separator.

• context parent <name>

Returns the parent path of the name by removing the tail (see context tail).

• context path <name>

Returns the pathname portion of the name, removing the dataset name.

• context split <name>

Returns a list whose elements are the path components in the name. The first element of the
list will be the dataset name if one is present in the name, including the dataset separator.
For example, context split /foo/bar/baz returns / foo bar baz.

• context tail <name>

Returns all of the characters in the name after the last path separator. If the name contains no
separators then returns the name. Any trailing path separator is discarded.

ModelSim SE Reference Manual, v6.5b158

Commands
context

• context type <name>

Returns a string giving the acc type of the name.

• <name>

Name of a context object or region. Required. Does not have to be a valid object name
unless the specified option requires this (i.e., exists or isInst).

Commands
coverage attribute

ModelSim SE Reference Manual, v6.5b 159

coverage attribute
The coverage attribute command is used to display or set attributes in the currently loaded
database on the following types of attributes:

• Test Attributes — attributes for each test attribute record (one record is created for each
simulation that is saved). These attributes are name value pairs that represent testcase
information. Refer to the section "Predefined Attribute Data" for complete list of these
attributes.

• UCDB Attributes — attached globally to the UCDB file, read or written with "coverage
attribute -ucdb". Unlike test attributes, these are merged together during a vcover merge.
In the current system, the only attributes created by ModelSim are those related to the
test-associated merge. However, you can create attributes for your own use, accessible
through this CLI or the UCDB API.

• Object Attributes — attached to particular objects stored in the UCDB (ex. design units,
design instance scopes, a particular covergroup, or a particular cover directive). Some
attributes for different kinds of objects are created by ModelSim, but you can create or
read any attribute in the CLI or the UCDB API.

This command can be used both during simulation and with "vsim -viewcov", though in
simulation it can only be used for test attributes (the single test attribute record that exists in
simulation).

To apply filters (-select instance, -assert, -code, etc.):

1. Match paths first, with recursion (if specified).

2. Specify paths to be “thrown out” (those not matching the filter).

Syntax

To display or set test attributes

coverage attribute [-test <testname>] [-seed <str>] [-command <str>] [-comment <str>]
[-compulsory [0|1]] [-delete] [-tcl] [-concise] [[-name <str> -value <str>]...]

To display or set UCDB attributes

coverage attribute [-ucdb] [-tcl] [-concise] [[-name <str> -value <str>]...]

To display or set object attributes

coverage attribute [-match <str> | -path <obj> | -plansection <obj>]
[-du <duname>] [-select instance]
[-code {b | c | e | f | s | t}...] [-codeAll] [-tcl] [-concise] [[-name <str> -value <str>]...]

Arguments

• -code {b | c | e | f | s | t}...

Specifies this command applies to corresponding code coverage types: branch, condition,
expression, statement, toggle, FSM. Optional.

ModelSim SE Reference Manual, v6.5b160

Commands
coverage attribute

• -codeAll

Specifies this command applies to all coverage types. Optional. Equivalent to -code bcestf.

• -command <str>

Command to run the test: script command line, "knob settings", etc. Optional.

• -comment <str>

Comment on the testcase. Optional.

• -compulsory [0|1]

Indicates test is compulsory. Optional. By default, it is not compulsory (0).

• -concise

Print attribute values only, do not print other information. Optional.

• -delete

Delete specified name attributes. Optional

• -du <duname>

Apply to a design unit, e.g., "lib.primary(secondary)" secondary for VHDL only. Optional.

• -match <str>

Match the given pattern against the given coverage type(s) against some design unit(s)
specified by -du. Mutually exclusive with the -path argument. Optional.

• -name <str>

Attribute name. Used to add your own attributes to the test. Multiple -name arguments are
allowed. Optional.

• -path <obj>

Apply to a path in the UCDB. Optional. The <obj> can be used to specify a dataset other
than the current dataset. (See Object Name Syntax for instructions on how to specify a
dataset.) If no dataset is specified, the current dataset is used. Only one dataset name per
command invocation may be used or an error will result. Wildcards are acceptable. Relative
path can be used in conjunction with the -du switch.

• -plansection <obj>

Apply to a testplan section in the UCDB, as specified by <obj>. Optional. Wildcards are
acceptable. Relative path can be used in conjunction with -du.

• -sc

Specifies the command apply to SystemC coverage. Optional.

• -seed <str>

Random seed of the test run. Optional.

Commands
coverage attribute

ModelSim SE Reference Manual, v6.5b 161

• -select instance

Specifies the command applies to HDL instance scopes (VHDL architectures, interface
instances, etc.). Optional.

• -tcl

Prints attribute information in a Tcl format. Optional.

• -test <testname>

Specifies a test object for attributes. Required when used with vsim -viewcov. Optional
otherwise.

• -ucdb

Specifies global UCDB object for attributes. Optional.

• -value <str>

Value of attribute associated with -name. Multiple -value arguments are allowed. Optional.

Example

• Show all test records in a UCDB that has been loaded into coverage view mode:

coverage attribute -test *

See also

Verification Management, “Verification Browser Window”, “Understanding the Test Data in
the UCDB”, coverage exclude, coverage goal, coverage report, coverage save, coverage
testnames, coverage weight, vcover attribute, vcover merge, vcover ranktest, vcover stats

ModelSim SE Reference Manual, v6.5b162

Commands
coverage clear

coverage clear
The coverage clear command clears specified types of coverage data from the coverage
database.

When entered at the simulation prompt (simulation mode), performing coverage clear on an
instance affects the code coverage data of the associated design unit. The reverse is also true,
that if you perform "coverage clear" on a design unit, the associated instances of that design unit
are also cleared.

However, when issued at the vsim prompt with the vsim -viewcov command (batch or post-
processing modes), coverage clear does not synchronize code coverage data between instances
and associated design units. So, clearing an instance has no effect on code coverage data for
associated design units. Conversely, clearing a design unit has no affect on related instances.

Syntax

coverage clear [-code {b | c | e | f | s | t |}...] [-codeAll]
 [-du <du_name> | -instance <pathname>] [-path <obj>+] [-match <string>] [-recursive]

Arguments

• -code {b | c | e | f | s | t |}...

Clears code coverage data for coverage type: b=branch coverage; c=condition coverage;
e=expression coverage; s=statement coverage; t=toggle; f=Finite State Machine coverage.
More than one of the coverage types may be specified with a single argument. Optional.

• -codeAll

Specifies the command apply to all coverage types. Optional. Equivalent to -code bcestf.

• -du <du_name>

Specifies design unit to clear of specified types of coverage data. To specify all design units
in the current dataset, specify <du_name> as "*".

• -instance <pathname>

Clears the specified coverage data for the selected instance. Optional.

• -match <string>

Clears coverage data for instances or design units which match the specified <string>. Valid
only for use on UCDB files, in the Coverage View mode. Optional.

• -path <obj>+

Specifies that the subtrees being cleared are rooted at the specified design node. Multiple
objects may be specified. Optional. The <obj> can be used to specify a dataset other than the
current dataset. (See “Object Name Syntax” for instructions on how to specify a dataset.) If
no dataset is specified, the current dataset is used. Only one dataset name per command
invocation may be used or an error will result. This switch applies to a sub-hierarchy.

Commands
coverage clear

ModelSim SE Reference Manual, v6.5b 163

• -recursive

Specifies that the command is applied recursively. Optional. The default is for the query to
be restricted to the single object or objects specified in the command.

Example

• coverage clear

Clears all coverage data from the current simulation database (UCDB).

• coverage clear -cvg -directive

Clears data for all covergroups and covergroup directives.

• coverage clear -path /top/a/*

Clears coverage data from all /top/a.

See also

Code Coverage, coverage attribute, coverage exclude, coverage report, coverage save

ModelSim SE Reference Manual, v6.5b164

Commands
coverage exclude

coverage exclude
The coverage exclude command allows you to exclude the following from coverage statistics:

• specific code coverage items (statement, branch, expression or condition)

• specific code coverage types

• all code in specified source file(s)

• lines within a source file

• specific items on a line within a source file

• rows within a condition or expression truth table

• code inside specific design units or instances

• transitions or states within a Finite State Machine

• toggle nodes

This command and its arguments can be issued during simulation or in Coverage View (post-
process) mode. Refer to “Excluding Objects from Coverage” for more details.

File based exclusions cannot be cleared by scope. For example, an exclusion that was set using
-srcfile cannot be cleared later using -scope.

Syntax

For file-based, line-based, or wholesale exclusions:

coverage exclude
{ -srcfile <source_file> [-pragma] |

-du <du_name> [-srcfile <source_file>] [-pragma] |
-scope <scope_path> [-srcfile <source_file>] [-r] }

[-linerange [<ln>] ... [<ln>-<ln>] ...] [-item {<bces>} [<int> | <int-int>]+] [-allfalse]
[-dataset <name>] [-code {b | c | e | f | s | t}...] [-clear]

To exclude expression or condition rows:

coverage exclude
{ -srcfile <source_file> [-pragma] |

-du <du_name> [-srcfile <source_file>] [-pragma] |
-scope <scope_path> [-srcfile <source_file>] }

[-condrow <ln> [<rn>] ... [<rn>-<rn>] ...]
[-exprrow <ln> [<rn>] ... [<rn>-<rn>] ...]
[-item {<bces>} [<int> | <int-int>]+]
[-feccondrow <stmt_num row_num>]
[-fecexprrow <stmt_num row_num>]
[-dataset <name>] [-clear]

To exclude FSM states or transitions:

Commands
coverage exclude

ModelSim SE Reference Manual, v6.5b 165

 coverage exclude
{ -du <du_name> [-pragma] |

-scope <scope_path> }
{ -ftrans <state_var_name> [<transition_name>] ... |

-fstate <state_var_name> [<state_name>] ... }
[-dataset <name>] [-clear]

To exclude an entire state machine from coverage:

• if auto exclusions are enabled:

coverage exclude -fstate <state_var_name>

• if auto exclusions are not enabled:

coverage exclude -fstate <state_var_name> -ftrans <state_var_name>

To exclude toggle coverage:

coverage exclude
-togglenode <node_path> ... [-du <du_name> | -scope <scope_path> [-r]]
[-dataset <name>] [-in] [-out] [-inout] [-internal] [-ports] [-clear] [-pragma]

Arguments

• -allfalse

Modifies branch exclusion algorithm by applying exclusions to the false path of a branch
when the branch does not have an explicit "else". This argument applies to branch coverage
only. Branch coverage (on by default) must be turned on for this argument to take effect.
The line number(s) specified with the -linerange argument, if used, must include the line on
which the if-branch appears. For more information about allfalse and if-else branches, see
“Branch Coverage”.

• -code {b | c | e | f | s | t}...

Excludes coverage objects of the specified type from the specified dataset. b=branch
coverage; c=condition coverage; e=expression coverage; f=Finite State Machine coverage;
s=statement coverage; t=toggle coverage (either regular or extended). If -code is specified
without any modifier, all possible coverage types are excluded. More than one coverage can
be specified with each -code argument. If -item or -srcfile is used, -code f or t is not valid.

• -clear

Removes exclusions from dataset. Add exclusions if -clear is not specified.

• -condrow <ln> [<rn>] ... [<rn>-<rn>] ...

Specifies condition truth table row(s) <rn> in the specified line <ln> to be excluded from
coverage. Multiple rows, or ranges of rows, separated by spaces, are allowed. If no row
number is specified, all rows are excluded.

ModelSim SE Reference Manual, v6.5b166

Commands
coverage exclude

• -dataset <name>

Specifies dataset into which exclusions are to be applied. Only one dataset name per
command invocation may be used or an error will result. If not specified, the current dataset
is assumed ("sim" is the default when running interactively). All specified objects, such as
scopes, design units, or variable names, must be present in the named dataset. (See Object
Name Syntax for instructions on how to specify a dataset.)

• -du <du_name>

Specifies design unit to be excluded. Multiple -du specifications are allowed. Mutually
exclusive with -scope. To specify all design units in the current dataset, specify <du_name>
as "*" (e.g. coverage exclude -du *). You cannot use -du with -srcfile or -linerange when
<du_name> is "*".

• -exprrow <ln> [<rn>] ... [<rn>-<rn>] ...

Specifies expression truth table row(s) <rn> in the specified line <ln> to be excluded from
coverage. Multiple rows, or ranges of rows, separated by spaces, are allowed. If no row
number is specified, all rows are excluded.

• -feccondrow <stmt_num row_num>

Excludes specified row in focused expression coverage (FEC) condition coverage with a
specified line number from the report. Optional argument to -srcfile argument.

• -fecexprrow <stmt_num row_num>

Excludes specified row in focused expression coverage (FEC) expression coverage with a
specified line number from the report. Optional argument to -srcfile argument.

• -fstate <state_var_name> [<state_name>] ...

Specifies the Finite State Machine state or states to be excluded from coverage for the
specified FSM, specified with <state_var_name>. Multiple states, separated by white space,
are allowed. If no state name is specified, all states are excluded. By default, when a state is
excluded, all transitions to and from the state are excluded. This behavior is called "auto
exclusion". To explicitly control auto exclusion, set the vsim argument
-autoexclusionsdisable to fsm or none. To change the default behavior of the tool, set the
variable AutoExclusionsDisable in the modelsim.ini file.

• -ftrans <state_var_name> [<transition_name>] ...

Specifies the transition states to be excluded for the specified FSM (state_var_name).
<transition_name> is "<state_name>-><state_name>". Multiple transitions, separated by
white space, are allowed. If no transition is specified, all transitions are excluded. If
whitespace is present within the transition, it must be surrounded by curly braces.

• -in

Excludes the specified toggle nodes of mode IN. This argument is valid only when
-togglenode is specified.

Commands
coverage exclude

ModelSim SE Reference Manual, v6.5b 167

• -inout

Excludes the specified toggle nodes of mode INOUT. This argument is valid only when
-togglenode is specified.

• -internal

Excludes the specified toggle nodes of internal (non-port) objects. This argument is valid
only when -togglenode is specified.

• -item {<bces>} [<int> | <int-int>]+

Excludes specified coverage item(s) on a line of source code from database. The -item
argument can only be applied to coverage exclude command entries for the line number
specified with -linerange, -condrow, or -exprrow. <bces> is required and is used to specify
one or more of the coverage types to exclude: branch, condition, expression, and/or
statement. Items are numbered in left to right order within a line, regardless of hierarchy,
from 1 upward. Only one -item argument allowed with each coverage exclude command.
This argument may not be used with the -code tf argument.

• -linerange [<ln>] ... [<ln>-<ln>] ...

Specifies the line number(s) and/or range of line numbers to be excluded from code
coverage in the design source file -srcfile <source_file>. Multiple lines and line ranges are
permitted, separated by whitespace.

• When -linerange is not specified, all objects on all lines of the specified design unit,
scope, or source file are excluded. This is referred to as a "wholesale exclusion".

• -srcfile is required for -linerange unless -du or -scope is used, and only one source file is
used to implement the du or scope.

• If -srcfile is used together with -du/-scope, and -linerange is in effect, it is possible for
-linerange to specify lines other than lines used to implement the -du or -scope. Such
lines are ignored.

• General FSM (i.e. -code f) and toggle (i.e. -code t) coverage exclusions are not applied
when -linerange is used.

• -out

Excludes the specified toggle nodes of mode OUT. This argument is valid only when
-togglenode is specified.

• -ports

Excludes the specified toggle nodes of mode IN, OUT, or INOUT. This argument is valid
only when -togglenode is specified.

• -pragma

Adds or clears pragma and user exclusions. Optional. Operates with file-based exclusions (-
du and/or -srcfile) for all coverage types, including toggle exclusions (-togglenode). If the -
pragma argument is specified, both user and pragma exclusions are applied. If the option is
not specified, only user exclusions are applied.

ModelSim SE Reference Manual, v6.5b168

Commands
coverage exclude

• -r

Used with -scope only. Specifies that exclusions apply recursively into subscopes. If
omitted, the exclusions are limited to the current scope.

• -scope <scope_path>

Specifies the scope to be excluded. Multiple -scope specifications are allowed. Mutually
exclusive with the -du argument. To recursively exclude scopes, use with -r.

• -srcfile <source_file>

Specifies source file to be excluded. Required, unless -du or -scope is specified. Multiple
-srcfile specifications are allowed. General FSM (i.e. -code f) and toggle (i.e. -code t)
coverage exclusions do not apply if -srcfile is specified. However, in the case of wholesale
exclusions, -code f and -srcfile can be used together.

• -togglenode <node_path> ...

Specifies the named nodes for toggle exclusion. Multiple nodes separated by spaces are
allowed. Wildcards are accepted only in the final hierarchical component of <node_path>:
for example, a/b/c* is supported, whereas a/b*/c is not. If used with -scope or -du, specified
toggle nodes are relative to the scope or design unit. Part select toggle exclusions are
supported during active simulation only, not in Coverage View mode.

Examples

• Recursively exclude branch coverage from instance /top/dut.

coverage exclude -scope /top/dut -r -code b

• Exclude statement, else branch, expression and condition coverage from line 10 to
20 in file project1.vhd.

coverage exclude -srcfile project1.vhd -linerange 10-20

• Exclude statement, branch, expression, and condition coverage from instance
/top/dut in dataset tt from line 102 through 110 and line 200 through 250 in the
source file project1.vhd.

coverage exclude -scope /top/dut -dataset tt -srcfile
project1.vhd -linerange 102-110 200-250

• Remove statement, branch, expression, condition, and fsm exclusions from the
source file project1.vhd.

coverage exclude -clear -srcfile project1.vhd

• Add rows 2 through 4 from the condition truth table on line 115 to the code coverage
exclusions for source file project1.vhd.

coverage exclude -srcfile project1.vhd -condrow 115 2-4

• Add all rows from the expression truth table on line 220 to the code coverage
exclusions for source file project1.vhd.

Commands
coverage exclude

ModelSim SE Reference Manual, v6.5b 169

coverage exclude -srcfile project1.vhd -exprrow 220

 or

coverage exclude -srcfile project1.vhd -linerange 220 -code e

• Exclude transitions S1->S2 and S2->S0 for FSM state in instance /top/dut/fsm1.

coverage exclude -scope /top/dut/fsm1 -ftrans state S1->S2 S2->S0

• Exclude state S1 for FSM state in the design unit "fsm". If auto exclusions are on, all
transitions to and from S1 will also be excluded.

coverage exclude -du fsm -fstate state S1

• Remove user and pragma exclusions for all toggle coverage. This is equivalent to
'toggle enable -all'.

coverage exclude -du * -code t -clear -pragma

• Exclude all toggle coverage (equivalent to 'toggle disable -all')

coverage exclude -du * -code t -pragma

• Exclude toggle nodes a, b, and c in instance /top/dut.

coverage exclude -togglenode a b c -scope /top/dut

• Recursively exclude all input toggle nodes in instance /top/dut.

coverage exclude -togglenode * -scope /top/dut -in -r

What NOT to do: Illegal Examples

coverage exclude -srcfile project1.vhd -code s -allfalse

• -allfalse has no effect because branch coverage is not specified.

coverage exclude -srcfile project1.vhd -linerange 10-20 -code ft

• There is no file name and line number associated with FSM and toggle coverage.

coverage exclude -scope /top/dut -srcfile project1.vhd -linerange 10-20 -r

• -r does not work with -srcfile or -linerange

coverage exclude -du * -srcfile project1.vhd -linerange 10-20

• '-du *' does not work with -srcfile or -linerange

coverage exclude -scope /top/dut -srcfile project1.vhd -line 10-20 -pragma

• -pragma does not work with -scope

ModelSim SE Reference Manual, v6.5b170

Commands
coverage exclude

See also

“Code Coverage”, “Coverage Exclusions”, “Verification Management”, “Verification Browser
Window”, coverage report, coverage save, “Toggle Coverage”, toggle add, toggle enable,
toggle disable

Commands
coverage goal

ModelSim SE Reference Manual, v6.5b 171

coverage goal
The coverage goal command sets the value of UCDB-wide goals for different coverage types,
or goals for specific objects in the database.

Syntax

coverage goal [-cvp] [-bydu] [-byinstance] [-type] [-fstate] [-ftrans]
[-active] [-precision <int>] [<float percentage>]
[-du <du_name> | -path <path> | -plansection <section_name>]

<coverage_types>=
[-code {b | c | e | f | s | t}...] [-codeAll]

Arguments

• -active

Assertion directive active, per instance. Optional.

• -bydu

Modifier used to set per-du (code coverage only)

• -byinstance

Modifier used to set a per-instance goal (code coverage and covergroup). Optional.

• -code {b | c | e | f | s | t}...

Sets goal for code coverage data for coverage type: b=branch coverage; c=condition
coverage; e=expression coverage; s=statement coverage; t=toggle; f=Finite State Machine
coverage. More than one coverage type can be specified with each -code argument.
Optional.

• -codeAll

Specifies the command for all coverage types. Optional. Equivalent to -code bcestf.

• -cvp

Select coverpoint per-instance coverage. Optional.

• -du <du_name>

Sets the goal for a given design unit. Optional. Mutually exclusive with -path and
-plansection. Cannot be combined with any other arguments besides -precision or <float
percentage>.

• -fstate

Selects FSM state coverage. Optional.

• -ftrans

Selects FSM transition coverage. Optional.

ModelSim SE Reference Manual, v6.5b172

Commands
coverage goal

• <float percentage>

Value for goal or goal(s) between 0 and 100. Required in order to set goals: prints goal(s) if
left unspecified.

• -path <path>

Sets the goal for a given test plan item (-plan), design unit (-du) coverage/design object
(-path). Optional. The <path> can be used to specify a dataset other than the current dataset.
(See Object Name Syntax for instructions on how to specify a dataset.) If no dataset is
specified, the current dataset is used. Only one dataset name per command invocation may
be used or an error will result. Cannot be combined with any other arguments besides
-precision or <float percentage>.

• -plansection <section_name>

Sets the goal for a given test plan item. Optional. Mutually exclusive with -path and
-plansection. Cannot be combined with any other arguments besides -precision or <float
percentage>.

• -precision <int>

Precision for goal percentage. Default is 1 decimal place. Optional.

• -type

Modifier used to set covergroup type coverage. Optional.

See also

Code Coverage, "Verification Management", “Verification Browser Window”, coverage
attribute, coverage exclude, coverage report, coverage save, coverage weight

Commands
coverage open

ModelSim SE Reference Manual, v6.5b 173

coverage open
The coverage open command opens UCDB datasets for viewing in the GUI in Coverage View
mode. Datasets can be closed once open using dataset close.

This command is equivalent to the command vsim -viewcov.

Syntax

coverage open <filename> [<logicalname>]

Arguments

• <filename>

Specifies the <filename>.ucdb to open in Coverage View mode. At least one UCDB is
required.

• <logicalname>

Specifies the logical name for the UCDB dataset. Optional. This is a prefix that will identify
the dataset in the current session. By default the dataset prefix will be the name of the
specified UCDB file.

Examples

• Open the dataset file last.ucdb and assigns it the logical name test.

coverage open last.ucdb test

See also

“Coverage View Mode and the UCDB”, "Verification Management", “Verification Browser
Window”, coverage attribute, coverage exclude, coverage report, coverage save, coverage
weight, dataset close, vsim -viewcov option

ModelSim SE Reference Manual, v6.5b174

Commands
coverage report

coverage report
The coverage report command produces textual output of coverage statistics or exclusions. By
default, the command prints results to the Transcript window, and returns an empty string. You
can use the -file argument to save the output to a file.

You can choose from a number of report output options using the arguments listed below. You
can access the coverage report functionality from the GUI through right-clicking in the
Structure or Files windows and select Code Coverage > Coverage Reports from the popup
context menu; or, Tools > Code Coverage > Report.

By default, the command returns results from the current scope. To specify a certain path for the
report, you can use the -instance argument, such as:

• coverage report -instance <path>

Tip: A report response of "No match" indicates that the report was empty. For example,
"coverage report -du foo" where there is no design unit "foo" will result in "No match."

The command orders output on a by file basis unless you specify the -byinstance or -bydu
argument.

To produce reports offline (i.e., without a simulation loaded), use the vcover merge, “Code
Coverage”, coverage goal. coverage weightvcover report command.

Syntax

coverage report [<coverage_arguments>]

Global Arguments - Usable with any other arguments

coverage report
[-details [-dumptables] [-fecanalysis] [-metricanalysis]]
[-file <filename> [-append]] [-memory] [-precision <int>] [-recursive [-depth <n>]]
[-showambiguity] [-testextract <test_name_or_pattern>] [-xml] [-zeros]

Create HTML output from a UCDB

coverage report [-html [-verbose] [-nosource] [-noframes] [-nodetails] [-summary] [-htmldir
<outdir>] [-threshL <val>] [-threshH <val>] <input_ucdb>]

Filtering Arguments - Selects one or more coverage types to appear in the report

coverage report [-code {b | c | e | f | s | t}...] [-codeAll] [-testattr]

Code Coverage

coverage report [-bydu] [-byfile] [-byinstance] [-totals] [-noannotate]
[-library <libname>] [-du <du_name>] [-package <pkgname>]
[-setdefault [byfile | byinstance | bydu]] [-source <filename>]
[-instance <path>] [-recursive [-depth <n>]]

Commands
coverage report

ModelSim SE Reference Manual, v6.5b 175

Exclusion-specific Coverage Arguments

coverage report -excluded [[-pragma] | [-user]] [-code {b | c | e | f | s | t}...]
[-noexcludedhits] [-instance <path>]
[-file <filename> [-append]]

Toggle-specific Coverage Arguments

coverage report [-verbose] [-all]

Toggle coverage statistics are relevant only when reporting on instances or design units and are
not produced on a per file basis. Toggle data is summed for all instances, and is reported by port
or local name in the design unit, rather than by the connected signal. If you want toggle
coverage statistics, you must specify either the -byinstance, -bydu, -instance <path>, or -du
<du_name> arguments. If you do not use those arguments, or you use the -source <filename>
argument, toggle coverage statistics are excluded even if you specify -code t. To get an
itemized list of the signals, the -details argument is also required.

Arguments

• -all

When reporting toggles, creates a report that lists both toggled and untoggled signals.
Counts of all enumeration values are reported. Not a valid option when reporting on a
functional coverage database. Optional.

• -append

Appends the current coverage statistics to the named output file (-file <filename>).

• -bydu

Reports coverage statistics by design unit/module. Optional. The simulator will iterate
through all design units in the design and report coverage data for each. Each design unit
report will be the sum of all instances of that design unit and will be sorted by design unit
name. Can be used with the -recursive [-depth <n>] argument to report on all design units
contained within the specified design unit. Can be made the default with the -setdefault
bydu argument. You can also report coverage data for a specific design unit by using the -
du <du_name> argument.

• -byfile

Writes out a coverage summary for each source file in the design. Optional. This is the
default report generated. A report generated with -byfile does not contain toggle
information.

• -byinstance

Writes out a coverage summary for all instances and packages. Can be replace the default
(-byfile) with the -setdefault byinstance argument. Optional.

ModelSim SE Reference Manual, v6.5b176

Commands
coverage report

• -code {b | c | e | f | s | t}...

Specifies which code coverage statistics to include in the report. Optional. By default, the
report includes statistics for all categories you enabled at compile time. More than one
coverage type can be specified with the -code argument.

The coverage types allowed are as follows:

b — Include branch statistics.

c — Include condition statistics.

e — Include expression statistics.

f — Include finite state machine statistics.

s — Include statement statistics.

t — Include toggle statistics.

To report extended toggle coverage, ensure that you have compiled (vlog/vcom) with the
-code x argument, then use coverage report with -code t.

• -codeAll

Specifies the command apply to all coverage types. Equivalent to -code bcestf. Optional.

• -config

Specifies that the current configuration of each cover directive be included in the report.
Optional.

• -details [-dumptables] [-fecanalysis] [-metricanalysis]

Includes details associated with each coverage item in the output (both UDP and FEC). By
default, details are not provided. Optional.

-dumptables — forces printing of condition and expression truth tables even though
fully covered. Optional.

-fecanalysis — reports which input patterns can be applied to the inputs to increment the
expression/condition hit counts. Optional.

-metricanalysis — prints sum-of-product and basic sub-condition heuristic metrics from
UDP expression/condition view. It reports hit counts for all rows in UPD table. To
improve coverage numbers, find rows with 0 hits and exercise the inputs accordingly.
See “Condition and Expression Coverage” for more information on metrics.
Optional.

• -du <du_name>

Reports coverage statistics for the specified design unit. Optional. <du_name> is <library
name>.<primary>(<secondary>), where the library name is optional, and secondary name is
required only for VHDL. If there are parameterized instances, all are considered to match
the specified design unit.

Commands
coverage report

ModelSim SE Reference Manual, v6.5b 177

• -excluded [[-pragma] | [-user]]

Includes details on the exclusions in the specified coverage database input file. Optional.
The output is structured in Tcl command format (DO file).

By default, this option includes both user exclusions and source code pragma exclusions,
unless you specify -user or -pragma.

-pragma — When used with the -excluded argument, writes out only lines currently
being excluded by pragmas. Optional.

-user — When used with the -excluded argument, writes out files and lines currently
being excluded by the coverage exclude command. Optional.

• -file <filename>

Specifies a file name for the report. Optional. Default is to write the report to the Transcript
window. Environment variables may be used in the pathname.

• -html [-verbose] [-nosource] [-noframes] [-nodetails] [-summary] [-htmldir <outdir>]
[-threshL <val>] [-threshH <val>] <input_ucdb>

Generates an HTML coverage report on coverage data from a given UCDB file. Optional.
You can use the -verbose option with -html to enable logging output for each file
generated. The -html arguments listed below are not compatible with any other vcover
report arguments, with the exception of -binrhs.

<input_ucdb> — Specifies input UCDB file. Required, and only one is allowed.

-verbose — Prints out the files that are generated by the HTML report generator. Optional.

-nosource — Avoids generation of the annotated source. Optional. This argument is used if
you have no source code, or if you don’t want the annotated source to be generated. Note
that this prevents you from accessing source code related data from inside the generated
HTML report.

-noframes — Avoids generation of JavaScript-based tree for designs with a large number of
design scopes. The report comes up as a single frame containing the top-level summary
page and an HTML-only design scope index page is available as a link from the top-level
page.

-nodetails — Omits coverage detail pages, saving time and disk space during report
generation for very large designs.

-summary — Includes only the top summary page, the testplan summary page, and the list
of tests run in the generated report.

-htmldir <outdir> — Specifies the name of output directory for resulting UCDB (default:
"covhtmlreport"). Optional. Whether you specify an output directory or the default is used,
any file or directory of that name is completely removed prior to report generation to
prevent possible stale data.

-threshL <%> -threshH <val> — Specifies % of coverage at which colored cells change
from red to yellow. Optional.

ModelSim SE Reference Manual, v6.5b178

Commands
coverage report

-threshH <%> — Specifies % of coverage at which colored cells change from yellow to
green. Optional.

The default output filename is index.html in the default directory, covhtmlreport.

• -instance <path>

Writes out the source file summary coverage data for the specified instance. Optional. The
<path> can be used to specify a dataset other than the current dataset. (See Object Name
Syntax for instructions on how to specify a dataset.) If no dataset is specified, the current
dataset is used. Only one dataset name per command invocation may be used or an error will
result.

• -library <libname>

Only needs to be used when you have packages of the same name in different libraries.
Optional.

• -memory

Reports a coarse-grain analysis of capacity data for the following SystemVerilog constructs:

o Classes

o Queues, dynamic arrays, and associative arrays (QDAS)

o Assertion and cover directives

o Covergroups

o Solver (calls to randomize())

Optional. When combined with -cvg and -details, this command reports the detailed
memory usage of covergroup. These include the current persistent memory, current
transient memory, peak transient memory, and peak time of the following:

o Per covergroup type

o Per coverpoint and cross in the type

o Per covergroup instance (if applicable)

o Per coverpoint and cross in the instance (if applicable).

• -noannotate

Removes source code from the output report. Valid for code coverage only. Not applicable
with -xml argument. Optional.

• -noexcludedhits

Specifies that exclusions which received a hit are NOT included in the coverage calculations
shown in the report. By default, exclusions that have been hit are included in the
calculations. Optional.

Commands
coverage report

ModelSim SE Reference Manual, v6.5b 179

• -package <pkgname>

Prints a report on the specified VHDL package body. Needs to be of the form <lib>.<pkg>.
Optional. This argument is equivalent to -du.

• -precision <int>

Sets the decimal precision for printing functional coverage information. Valid values are
from 0 to 6 and default value is 1 (one). Optional.

• -recursive [-depth <n>]

Reports on the instance specified with -instance and every included instance, recursively.
Can also be used with -details and -totals but cannot be used with -zeros. Optional.

-depth <n>

Used with the -recursive argument, it specifies the maximum recursive depth. A depth
of 1 is the same as no recursion at all. Optional.

• -setdefault [byfile | byinstance | bydu]

Sets the coverage report default mode for the current invocation of ModelSim. Report
modes are by file (default), by instance, and by design unit. Optional.

• -showambiguity

When used, coverage report displays both minimum and maximum counts for any
conflicting toggle data in a UCDB that results from a combined merge (vcover merge
command performed with -combine).

• -source <filename>

Writes a summary of statement coverage data for a specific source file. Optional.
Environment variables may be used in the pathname.

• -testattr

Display test attributes in the report. Optional.

• -testextract <test_name_or_pattern>

Display test specific results in the report. Optional. Used to combine results from multiple
tests. The <test_name_or_pattern> is the test or pattern to extract. Multiple -testextract
arguments can be applied in same command. This argument is compatible with reports
generated in plain text and XML formats only, HTML reports are not supported. When
using this argument, a header line appears at the top of the report listing test name(s) used to
generate the report. Also, the word “hit” appears in place of the count number. UCDB files
store only the aggregated coverage counts from all tests, and test-specific numbers can’t be
reproduced.

• -totals

Writes out a total summary of the specified instance, recursively. Optional. Useful for
tracking changes. Without this argument, the report writes out an instance summary for each
of the instances. The report prints only one summary if -totals option is used. Also, when the
-totals argument is specified, the alias nodes are not counted.

ModelSim SE Reference Manual, v6.5b180

Commands
coverage report

• -verbose

Prints a report listing all the integer values and their counts an integer toggle encounters
during the run. Optional. List will include the number of active assertion threads (Active
Count) and number of active root threads (Peak Active Count) that have occurred up to the
current time.

• -xml

Outputs report in XML format. A report created with -xml does not contain source file lines
(calls -noannotate implicitly). Optional. This implicitly sets the -details argument. Refer to
“Coverage Reports” for more information.

• -zeros

Writes out a file-based summary of lines, including file names and line numbers, that have
not been executed (zero hits), annotates the source code, and supports the -source and
-instance options. Optional. Cannot be used in tandem with the -recursive argument.

For a detailed report that includes line numbers, use: coverage report -zeros -details.

Examples

• Write a top-level summary of the number of files, statements, branches, hits, and signal
toggles to myreport.txt.

coverage report -totals -file myreport.txt

• Write detailed branch, condition, and statement statistics, without associated source
code, to the transcript window.

coverage report -details -noannotate -code bcs

• Write a summary of code coverage for all instances to the Transcript window.

coverage report -byinstance

• Write code coverage details of all instances in the design to myreport.txt. The -details
argument reports coverage statistics for each statement, branch, condition and
expression.

coverage report -details -byinstance -file myreport.txt

• Write code coverage details of one specific instance to the Transcript window.

coverage report -details -instance /top/p

• Write toggle data from the test clyde40ns, listed by design unit, including both toggled
and untoggled signals.

coverage report -details -testextract clyde40ns -bydu -code t -all

• Write both pragma and user-based exclusions to the transcript window as follows:

coverage report -excluded

Commands
coverage report

ModelSim SE Reference Manual, v6.5b 181

coverage report -excluded
src/delta/delta.vhd
693-696
711-806
src/delta/micro.v
110-124
src/delta/pre.v
216-217
src/delta/testdel.vhd
1178-1274
src/delta/tx.vhd
148-149

• Write both pragma and user-based exclusions to the transcript window in TCL format as
follows:

coverage report -excluded
coverage exclude -add src/delta/delta.vhd 693-696 711-806
coverage exclude -add src/delta/micro.v 110-124
coverage exclude -add src/delta/pre.v 216-217
coverage exclude -add src/delta/testdel.vhd 1178-1274
coverage exclude -add src/delta/tx.vhd 148-149

• Write a summary of coverage by source file for coverage less than or equal to 90%.

coverage report -below 90 -file myreport.txt

• Write a list of statements with zero coverage to myzerocov.txt.

coverage report -zeros -byinstance -file myzerocov.txt

See also

“Code Coverage”, “Generating HTML Coverage Reports”, coverage save, vcover merge,
“Code Coverage”, coverage goal. coverage weightvcover report, coverage attribute, coverage
goal, coverage weight, vcover merge, vcover ranktest

ModelSim SE Reference Manual, v6.5b182

Commands
coverage save

coverage save
The coverage save command is used to save current coverage results of the specified type to the
unified coverage database (UCDB). If no type is specified then all types will be saved into the
database.

While code coverage data can also be saved with the $coverage_save system task (see System
Tasks and Functions Specific to the Tool in the User’s Manual), the coverage save command is
the preferred method of saving coverage data.

The report displays code coverage data from generate blocks.

Syntax

coverage save [-instance <path>][-code {b | c | e | f | s | t}...] [-codeAll]
[-du <du_name>] [-instance <path>] [-norecursive] [-onexit] <dbname>]

Arguments

• -code {b | c | e | f | s | t}...

Save only the designated coverage type: b=branch coverage; c=condition coverage;
e=expression coverage; f=Finite State Machine coverage; s=statement coverage; t=toggle.
Optional. More than one coverage type can be specified with a single -code argument
(example: “-code bces”).

• -codeAll

Specifies the command apply to all coverage types. Equivalent to -code bcestf. Optional.

• -du <du_name>

Saves coverage statistics for the specified design unit. Optional. Only supported during live
simulation, not in Coverage View mode.

<du_name> is <library name>.<primary>(<secondary>), where the library name is
optional, and secondary name is required only for VHDL. If there are parameterized
instances, all are considered to match the specified design unit.

• -instance <path>

Saves coverage data for only a specified instance and any of its children, recursively. Use
the -norecursive argument to exclude data from instance children. <path> is a path to the
instance. You can specify more than one instance during live simulation but only one
instance can be specified in Coverage View mode. Optional. <path> can also be used to
specify a dataset other than the current dataset. (See Object Name Syntax for instructions on
how to specify a dataset.) If no dataset is specified, the current dataset is used. Only one
dataset name per command invocation may be used or an error will result.

• -norecursive

When saving coverage by instance, excludes data from children of the specified instance.
Optional.

Commands
coverage save

ModelSim SE Reference Manual, v6.5b 183

• -onexit

Causes ModelSim to save coverage data automatically when the simulator exits. Optional.

• <dbname>

Designates the name of the database to save. Required.

Examples

• Save data from the current simulation into myfile1.ucdb:

coverage save myfile1

• Save data from current simulation (into somefile.ucdb) when the simulator exits:

coverage save -onexit somefile

• Save results for a specific design unit or instance in the design and all its children:

coverage save -instance ./path/inst1 mycov

See also

Code Coverage, Verification Management, coverage attribute, coverage report, coverage save,
vcover merge, vcover ranktest

ModelSim SE Reference Manual, v6.5b184

Commands
coverage testnames

coverage testnames
The coverage testnames command displays the testnames in the UCDB file currently loaded
into memory. If a merged file, it gives you a list of tests in the merged file.

This command is most useful if you use the -testextract of coverage analyze or coverage report,
because it requires the test name. By default, the testname is the name of the UCDB file, though
you can set it to whatever you would like. Set the test name, before saving the UCDB file, using
the command "coverage attribute -test mytestname".

This command is only available during post-simulation processing, when a UCDB file is
opened with vsim -viewcov.

Syntax

coverage testnames [-tcl]

Arguments

• -tcl

Print attribute information in a tcl format. Optional.

See also

Code Coverage, “Verification Browser Window”, coverage attribute, coverage exclude,
coverage goal, coverage report, coverage save, coverage weight, vcover merge, vcover ranktest,
vcover stats, vcover testnames

Commands
coverage weight

ModelSim SE Reference Manual, v6.5b 185

coverage weight
The coverage weight command sets a global per-type weight for total coverage calculations.

Specifically, the command sets both the overall weight for covergroups (by instance, or by
design unit), and weights for individual items (design units, instances, and/or cover directives,
cover directives, etc.). Use the -plansection, -path, and -du arguments to set the weights for
individual coverage items, design instances, design units,or test plan items. Setting weights for
individual items affects coverage the same was as option.weight or type_option.weight.

Syntax

Setting overall weight for covergroups

coverage weight [-bydu] [-byinstance] [-type] [-fstate] [-ftrans]
[-fail] [-pass] [-vpass] [-disabled] [-attempted] [-active]
[-code {b | c | e | f | s | t}...] [-codeAll]<integer_weight>

Setting weight for individual objects — used when objects are part of a verification (test) plan

coverage weight {-du <du_name> | -path <path> | -plansection <section_name>}
<integer_weight>

Arguments

• -active

Assertion directive active, per instance. Optional.

• -bydu

Modifier used to set per-du (code coverage only)

• -byinstance

Modifier used to set a per-instance goal (code coverage and covergroup). Optional.

• -code {b | c | e | f | s | t}...

Sets weight for code coverage data for coverage type: b=branch coverage; c=condition
coverage; e=expression coverage; s=statement coverage; t=toggle; f=Finite State Machine
coverage. More than one coverage type can be specified in a single -code argument
(example: “-code bces”). Optional.

• -codeAll

Specifies the command for all coverage types. Optional. Equivalent to -code bcestf.

• -du <du_name>

Sets the weight for a given design unit. Optional. Mutually exclusive with -path and -
plansection. Cannot be combined with any other arguments besides <integer_weight>.

• -fstate

Selects FSM state coverage. Optional.

ModelSim SE Reference Manual, v6.5b186

Commands
coverage weight

• -ftrans

Selects FSM transition coverage. Optional.

• <integer_weight>

Specifies the value for the weight: must be a natural integer, greater than or equal to 0.
Required in order to set weight: prints weight(s) if left unspecified. A weight of 0 turns off
the coverage summary for the specified item.

• -path <path>

Sets the weight for a given coverage/design object. Optional. Mutually exclusive with -du
and -plansection. Cannot be combined with any other arguments besides
<integer_weight>. <path> may also be used to specify a dataset other than the current
dataset. (See Object Name Syntax for instructions on how to specify a dataset.) If no dataset
is specified, the current dataset is used. Only one dataset name per command invocation
may be used or an error will result.

• -plansection <section_name>

Sets the weight for a given test plan section. Optional. Mutually exclusive with -du and
-path. Cannot be combined with any other arguments besides <integer_weight>.

• -type

Specifies the command for covergroup type coverage. Optional.

See also

Code Coverage, “Verification Management”, “Verification Browser Window”, coverage
attribute, coverage exclude, coverage goal,coverage report, coverage save, coverage testnames

Commands
dataset alias

ModelSim SE Reference Manual, v6.5b 187

dataset alias
This command assigns an additional name (alias) to a dataset. The dataset can then be
referenced by that alias. A dataset can have any number of aliases, but all dataset names and
aliases must be unique.

Syntax

dataset alias <dataset_name> [<alias_name>]

Arguments

• <dataset_name>

(required) Specifies the name of the dataset to which the alias is assigned. Use the root name
of the file only.

• <alias_name>

(optional) Specifies the alias name to assign to the dataset. Returns a list of all aliases
currently assigned to the specified dataset.

Examples

Assign the alias name “bar” to the dataset named “gold.”

dataset alias gold bar

Related Topics

• dataset clear
• dataset close
• dataset config
• dataset info
• dataset list
• dataset open
• dataset rename
• dataset restart
• dataset save
• dataset snapshot

ModelSim SE Reference Manual, v6.5b188

Commands
dataset clear

dataset clear
This command applies only to WLF based simulation datasets. It has no effect on coverage
(UCDB) datasets. All event data is removed from the current simulation WLF file, while
retaining all currently logged signals. Subsequent run commands will continue to accumulate
data in the WLF file.

If the command is executed when no design is loaded then the error: “Dataset not found:sim” is
returned. If the command is executed when a design is loaded, then the “sim:” dataset is cleared,
irrespective of which dataset is currently set. Clearing the dataset will clear any open wave
window based on the “sim:”.

Syntax

dataset clear

Examples

Clear data in the WLF file from time 0ns to 100000ns, then log data into the WLF file from
time 100000ns to 200000ns.

add wave *
run 100000ns
dataset clear
run 100000ns

Related Topics

• dataset alias
• dataset close
• dataset config
• dataset info
• dataset list
• dataset open
• dataset rename
• dataset restart
• dataset save
• dataset snapshot
• log
• Recording Simulation Results With

Datasets

Commands
dataset close

ModelSim SE Reference Manual, v6.5b 189

dataset close
This command closes an active dataset. To open a dataset, use the dataset open command.

Syntax

dataset close {<dataset_name> | -all}

Arguments

• <dataset_name> | -all

(required) Closes dataset(s).

<dataset_name> — Specifies the name of the dataset or alias you wish to close.

-all — Closes all open datasets and the simulation.

Related Topics

• dataset alias
• dataset clear
• dataset config
• dataset info
• dataset list
• dataset open
• dataset rename
• dataset restart
• dataset save
• dataset snapshot

ModelSim SE Reference Manual, v6.5b190

Commands
dataset config

dataset config
This command configures WLF file parameters after a WLF file has already been opened. It has
no effect on coverage datasets (UCDB).

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax

dataset config <dataset_name> [-wlfcachesize [<n>]] [-wlfdeleteonquit [0 | 1]] [-wlfopt [0 | 1]]

Arguments

• <dataset_name>

(required) Specifies the logical name of the dataset or alias you wish to configure. This
argument must precede the switches.

• -wlfcachesize [<n>]

(optional) Sets the size, in megabytes, of the WLF reader cache. Does not affect the WLF
write cache.

<n> — Any non-negative integer, in MB where the default is 256.

If you do not specify a value for <n>, this switch returns the size, in megabytes, of the WLF
reader cache.

• -wlfdeleteonquit [0 | 1]

(optional) Deletes the WLF file automatically when the simulation exits. Valid for the
current simulation dataset only.

0 — Disabled (default)

1 — Enabled

If you do not specify an argument, this switch returns the current setting for the switch.

• -wlfopt [0 | 1]

(optional) Optimizes the display of waveforms in the Wave window.

0 — Disabled

1 — Enabled (default)

If you do not specify an argument, this switch returns the current setting for the switch.

Examples

Set the size of the WLF reader cache for the dataset “gold” to 512 MB.

dataset config gold -wlfcachesize 512

Commands
dataset config

ModelSim SE Reference Manual, v6.5b 191

Related Topics

• dataset alias
• dataset clear
• dataset close
• dataset config
• dataset info
• dataset list
• dataset open
• dataset rename
• dataset restart
• dataset save
• dataset snapshot
• WLF File Parameter Overview
• vsim

ModelSim SE Reference Manual, v6.5b192

Commands
dataset current

dataset current
This command opens the specified dataset and sets the GUI context to the last selected context
of the specified dataset. All context dependent GUI data is updated and all context dependent
CLI commands start working with respect to the new context.

Syntax

dataset current [<dataset_name>]

Arguments

• <dataset_name>

(optional) Specifies the logical name of the dataset or alias you wish to display. If no dataset
name is specified, the command returns the name of the currently displayed dataset.

Related Topics

• dataset alias
• dataset clear
• dataset close
• dataset info
• dataset list
• dataset open
• dataset rename
• dataset restart
• dataset save
• dataset snapshot
• WLF File Parameter Overview
• vsim

Commands
dataset info

ModelSim SE Reference Manual, v6.5b 193

dataset info
This command reports a variety of information about a dataset.

Syntax

dataset info {name | file | exists} <dataset_name>

Arguments

• {name | file | exists}

(required) Identifies what type of information you want reported. Only one option per
command is allowed. The current options include:

name — Returns the actual name of the dataset. Useful for identifying the real dataset
name of an alias.

file — Returns the name of the WLF file or UCDB file associated with the dataset.

exists — Returns "1" if the dataset exists, "0" if it does not.

• <dataset_name>

(optional) Specifies the name of the dataset or alias for which you want information. If you
do not specify a dataset name, ModelSim uses the dataset of the current environment.

Related Topics

• dataset alias
• dataset clear
• dataset close
• dataset config
• dataset list
• dataset open
• dataset rename
• dataset restart
• dataset save
• dataset snapshot
• environment

ModelSim SE Reference Manual, v6.5b194

Commands
dataset list

dataset list
This command lists all active datasets.

Syntax

dataset list [-long]

Arguments

• -long

(optional) Lists the filename corresponding to the logical name of each dataset.

Related Topics

• dataset alias
• dataset clear
• dataset close
• dataset config
• dataset info
• dataset open
• dataset rename
• dataset restart
• dataset save
• dataset snapshot

Commands
dataset open

ModelSim SE Reference Manual, v6.5b 195

dataset open
This command opens a WLF file (representing a prior simulation) and/or UCDB file
(representing coverage data) and assigns it the logical name that you specify. To close a dataset,
use dataset close.

Syntax

dataset open <file_name> [<logical_name>]

Arguments

• <file_name>

(required) Specifies the WLF file or UCDB file to open as a view-mode dataset.

• <logical_name>

(optional) Specifies the logical name for the dataset. This is a prefix that will identify the
dataset in the current session. By default the dataset prefix will be the name of the specified
WLF or UCDB file.

Examples

Open the dataset file last.wlf and assign it the logical name test.

dataset open last.wlf test

Related Topics

• dataset alias
• dataset clear
• dataset close
• dataset config
• dataset info
• dataset list
• dataset rename
• dataset restart
• dataset save
• dataset snapshot
• vsim -view option

ModelSim SE Reference Manual, v6.5b196

Commands
dataset rename

dataset rename
This command changes the logical name of a dataset to the new name you specify.

Syntax

dataset rename <logical_name> <new_logical_name>

Arguments

• <logical_name>

Specifies the existing logical name of the dataset.

• <new_logical_name>

Specifies the new logical name for the dataset.

Examples

Rename the dataset file "test" to "test2".

dataset rename test test2

Related Topics

• dataset alias
• dataset clear
• dataset close
• dataset config
• dataset info
• dataset list
• dataset open
• dataset restart
• dataset save
• dataset snapshot

Commands
dataset restart

ModelSim SE Reference Manual, v6.5b 197

dataset restart
This command unloads the specified dataset or current dataset and reloads the file using the
same pathname. The contents of Wave and other coverage windows are restored for UCDB
datasets after a reload.

Syntax

dataset restart [<file_name>]

Arguments

• <file_name>

(optional) Specifies the WLF or UCDB file to open as a view-mode or coverage mode
dataset. If <filename> is not specified, the current dataset is restarted.

Related Topics

• dataset alias
• dataset clear
• dataset close
• dataset config
• dataset info
• dataset list
• dataset open
• dataset rename
• dataset save
• dataset snapshot

ModelSim SE Reference Manual, v6.5b198

Commands
dataset save

dataset save
This command writes data from the current simulation to the specified file. This lets you save
simulation data while the simulation is still in progress.

This command is equivalent to the coverage save command for coverage datasets.

Syntax

dataset save <dataset_name> <file_name>

Arguments

• <dataset_name>

(required) Specifies the name of the dataset you want to save.

• <file_name>

(required) Specifies the name of the file to save.

Examples

Save all current log data in the sim dataset to the file gold.wlf.

dataset save sim gold.wlf

Related Topics

• dataset alias
• dataset clear
• dataset close
• dataset config
• dataset info
• dataset list
• dataset open
• dataset rename
• dataset restart
• dataset snapshot

Commands
dataset snapshot

ModelSim SE Reference Manual, v6.5b 199

dataset snapshot
This command saves data from the current WLF file (vsim.wlf by default) at a specified interval.
It provides you with sequential or cumulative "snapshots" of your simulation data. This
command does not apply to coverage datasets (UCDB).

Syntax

dataset snapshot {-size <file_size> | -time <n>} [-dir <directory>]
[-disable] [-enable] [-file <file_name>] [-filemode {overwrite | increment}]
[-mode {cumulative | sequential}] [-report] [-reset]

Arguments

• -size <file_size>

(Required if -time is not specified.) Specifies that a snapshot occurs based on WLF file size.

<file_size> — Size of WLF file in MB.

• -time <n>

(Required if -size is not specified.) Specifies that a snapshot occurs based on simulation
time.

<n> — Any positive integer where the default unit is in ps.

• -dir <directory>

(optional) Specifies a directory into which the files should be saved. Either absolute or
relative paths may be used. Default is to save to the current working directory.

• -disable

(optional) Turns snapshotting off. All dataset snapshot settings from the current simulation
are stored in memory. All other options are ignored after you specify -disable.

• -enable

(optional) Turns snapshotting on. Restores dataset snapshot settings from memory or from a
saved dataset. (default)

• -file <file_name>

(optional) Specifies the name of the file to save snapshot data.

<file_name> — A specified file name where the default is vsim_snapshot.wlf. .wlf will
be appended to specified filename and, possibly, an incrementing suffix.

When the duration of the simulation run is not a multiple of the interval specified by -size or
-time, the incomplete portion is saved in the file vsim.wlf.

• -filemode {overwrite | increment}

(optional) Specifies whether to overwrite the snapshot file each time a snapshot occurs.

overwrite — (default)

ModelSim SE Reference Manual, v6.5b200

Commands
dataset snapshot

increment — A new file is created for each snapshot. An incrementing suffix (1 to n) is
added to each new file (for example, vsim_snapshot_1.wlf).

• -mode {cumulative | sequential}

(optional) Specifies whether to keep all data from the time signals are first logged.

cumulative — (default)

sequential — The current WLF file is cleared every time a snapshot is taken.

• -report

(optional) Lists current snapshot settings in the Transcript window. All other options are
ignored if you specify -report.

• -reset

(optional) Resets values back to defaults. The behavior is to reset to the default, then apply
the remainder of the arguments on the command line. See examples below. If specified by
itself without any other arguments, -reset disables dataset snapshot and resets the values.

Examples

• Create the file vsim_snapshot_<n>.wlf that is written to every time the current WLF file
reaches a multiple of 10 MB (i.e., at 10 MB, 20 MB, 30 MB, etc.).

dataset snapshot -size 10

• Similar to the previous example, but in this case the current WLF file is cleared every
time it reaches 10 MB.

dataset snapshot -size 10 -mode sequential

• Assuming simulator time units are ps, this command saves a file called gold_<n>.wlf
every 1000000 ps. If you run the simulation for 3000000 ps, three files are saved:
gold_1.wlf with data from 0 to 1000000 ps, gold_2.wlf with data from 1000001 to
2000000, and gold_3.wlf with data from 2000001 to 3000000.

dataset snapshot -time 1000000 -file gold.wlf -mode sequential
-filemode increment

Because this example sets the time interval to 1000000 ps, if you run the simulation for
3500000 ps, a file containing the data from 3000001 to 3500000 ps is saved as vsim.wlf
(default).

• Enable snapshotting with time=10000 and default mode (cumulative) and default
filemode (overwrite).

dataset snapshot -reset -time 10000

Commands
dataset snapshot

ModelSim SE Reference Manual, v6.5b 201

Related Topics

• dataset alias
• dataset clear
• dataset close
• dataset config
• dataset info
• dataset list
• dataset open
• dataset rename
• dataset restart
• dataset save

ModelSim SE Reference Manual, v6.5b202

Commands
delete

delete
This command removes objects from either the List or Wave window. Arguments to this
command are order dependent. Please read through the argument descriptions for more
information.

Syntax

delete list [-window <wname>] <object_name>

delete wave [-window <wname>] <object_name>

Arguments

• list

(Required if wave is not specified) Specifies the target is a list window. Must precede
<object_name>.

• wave

(Required if list is not specified) Specifies the target is a wave window. Must precede
<object_name>.

• -window <wname>

(optional) Specifies the name of the List or Wave window to target for the delete command.
(The view command allows you to create more than one List or Wave window.) If no
window is specified, the default window is used; the default window is determined by the
most recent invocation of the view command.

• <object_name>...

(required) Specifies the name of an object. Must match an object name used in an add list or
add wave command. Multiple object names are specified as a space separated list. Wildcard
characters are allowed.

Examples

• Remove the object vec2 from the list2 window.

delete list -window list2 vec2

• Remove all objects beginning with the string /test from the Wave window.

delete wave /test*

Related Topics

• add list
• add wave
• Wildcard Characters

Commands
describe

ModelSim SE Reference Manual, v6.5b 203

describe
This command displays information about the following types of simulation objects and design
regions in the Transcript window:

• VHDL — signals, variables, and constants

• Verilog — nets and registers

• C — variables

• SystemC — signals, ports, FIFOs, and member variables of modules

• Design region

VHDL signals,Verilog nets and registers, and SystemC signals and ports can be specified as
hierarchical names.

C variables can be described if you are running “C Debug”, and the variables are local to the
active call frame for the line in the function in the C source file where you are stopped.

For specific information related to viewing SystemC objects refer to “SystemC Object and Type
Display”.

Syntax

describe <name>...

Arguments

• <name>...

(required) The name of an HDL object, SystemC signal, or C variable for which you want a
description. Multiple object names are specified as a space separated list. Wildcard
characters are allowed. HDL object names can be relative or full hierarchical names.

Examples

• Print the type of C variable x.

describe x

• Print the type of what p points to.

describe *p

• Print the types of the three specified signals.

describe clk prw prdy

Related Topics

• add list
• add wave
• Wildcard Characters

ModelSim SE Reference Manual, v6.5b204

Commands
disablebp

disablebp
This command turns off breakpoints and when commands. To turn on breakpoints or when
commands again, use the enablebp command.

Syntax

disablebp [<id#> | <label>]

Arguments

• <id#>

(optional) Specifies the ID number of a breakpoint or when statement to disable.

Note that C breakpoint id#s are prefixed with "c.".

• <label>

(optional) Specifies the label name of a breakpoint or when statement to disable.

If you do not specify either of these arguments, all breakpoints and when statements are
disabled.

Use the bp command with no arguments to find labels and ID numbers for all breakpoints in the
current simulation. Use the when command with no arguments to find labels and ID numbers of
all when statements in the current simulation.

Note
Id numbers for breakpoints and when statements are assigned from the same pool. Even if
you have not specified a given id number for a breakpoint, that number may still be used
for a when command.

Related Topics

• bd
• bp
• C Debug
• enablebp
• onbreak
• resume
• when

Commands
disable_menu

ModelSim SE Reference Manual, v6.5b 205

disable_menu
This command disables the specified menu within the specified window.

The disabled menu will become grayed-out and nonresponsive.

Syntax

disable_menu <window_name> <menu_path>

Arguments

• <window_name>

(required) The path of the window containing the menu. The path for the Main window
must be expressed as "". All other window pathnames begin with a period (.) as shown in the
examples below.

• <menu_path>

(required) Name of the Tk menu-widget path.

Examples

• Disable the file menu of the Main window.

disable_menu "" File

• Disable the file menu of the mywindow window.

disable_menu .mywindow File

Related Topics

• add_menu
• disable_menuitem
• enable_menu

ModelSim SE Reference Manual, v6.5b206

Commands
disable_menuitem

disable_menuitem
This command disables a specified menu item within the specified menu path of the specified
window.

The menu item will become grayed-out and nonresponsive.

Syntax

disable_menuitem <window_name> <menu_path> <label>

Arguments

• <window_name>

(required) Tk path of the window containing the menu.

Note that the path for the Main window must be expressed as "". All other window
pathnames begin with a period (.) as shown in the example below.

• <menu_path>

(required) Name of the Tk menu-widget path. The path may include a submenu as shown in
the example below.

• <label>

(required) Menu item text.

Examples

• Locate the mywindow window, disable the Save Results As... menu item in the save
submenu of the file menu.

disable_menuitem .mywindow file.save "Save Results As..."

Related Topics

• add_menu
• disable_menu
• enable_menu

Commands
do

ModelSim SE Reference Manual, v6.5b 207

do
This command executes the commands contained in a macro file.

A macro file can have any name and extension. An error encountered during the execution of a
macro file causes its execution to be interrupted, unless an onerror command, onbreak
command, or the OnErrorDefaultAction Tcl variable has specified with the resume command.

Syntax

do <filename> [<parameter_value>...]

Arguments

• <filename>

(required) Specifies the name of the macro file to be executed. The name can be a pathname
or a relative file name. Pathnames are relative to the current working directory.

If the do command is executed from another macro file, pathnames are relative to the
directory of the calling macro file. This allows groups of macro files to be stored in a
separate sub-directory.

• <parameter_value>...

(optional) Specifies values that are to be passed to the corresponding parameters $1 through
$9 in the macro file. Multiple parameter values must be separated by spaces.

If you want to make the parameters optional (for example, specify fewer parameter values
than the number of parameters actually used in the macro), you must use the argc simulator
state variable in the macro. Refer to “Making Macro Parameters Optional”.

Note
While there is no limit on the number of parameters that can be passed to macros, only
nine values are visible at one time. Use the shift command to see the other parameters.

Examples

• Execute the file macros/stimulus and pass the parameter value 100 to $1 in the macro
file.

do macros/stimulus 100

• Where the macro file testfile contains the line

bp $1 $2

place a breakpoint in the source file named design.vhd at line 127.

do testfile design.vhd 127

ModelSim SE Reference Manual, v6.5b208

Commands
do

Related Topics

• Tcl and Macros (DO Files)
• Modes of Operation
• Using a Startup File
• DOPATH variable

Commands
down

ModelSim SE Reference Manual, v6.5b 209

down
This command searches for object transitions or values in the specified List window.

It executes the search on objects currently selected in the window, starting from the point of the
active cursor. The active cursor moves to the found location.

Use this command to move to consecutive transitions or to find the time at which an object
takes on a particular value, or an expression of multiple objects evaluates to true. See the up
command for related functionality.

The procedure for using down includes three steps:

1. Click on the desired object.

2. Click on the desired starting location.

3. Issue the down command. (The seetime command can initially position the cursor from
the command line, if desired.)

Returns: <number_found> <new_time> <new_delta>

Syntax

down [-expr <expression>] [-falling] [<n>] [-noglitch] [-rising] [-value <sig_value>]
[-window]

Arguments

• -expr <expression>

(optional) The List window is searched until the expression evaluates to a boolean true
condition.

<expression> — An expression that involves one or more objects, but limited to objects
that have been logged in the referenced List window. An object may be specified
either by its full path or by the shortcut label displayed in the List window.

See GUI_expression_format for the format of the expression. The expression must be
placed within curly braces.

• -falling

(optional) Searches for a falling edge on the specified object if that object is a scalar object.
If it is not a scalar object, the option will be ignored.

• <n>

(optional) Specifies to find the nth match. If less than n are found, the number found is
returned with a warning message, and the marker is positioned at the last match.

• -noglitch

(optional) Specifies that delta-width glitches are to be ignored.

ModelSim SE Reference Manual, v6.5b210

Commands
down

• -rising

(optional) Searches for a rising edge on the specified object if that object is a scalar object. If
it is not a scalar object, the option will be ignored.

• -value <sig_value>

(optional) Specifies the value of the object to match.

<sig_value> — A value specified in the same radix that the selected object is displayed.
Case is ignored, but otherwise the value must be an exact string match. We do not
support don’t-care bits.

• -window

(optional) Specifies an instance of the List window that is not the default. When <wname>
is not specified, the default List window is used. Use the view command to change the
default window.

<wname> — The name of a List window not currently the default.

Examples

• Find the next time at which the selected vector transitions to FF23, ignoring glitches.

down -noglitch -value FF23

• Go to the next transition on the selected object.

down

The following examples illustrate search expressions that use a variety of object attributes,
paths, array constants, and time variables. Such expressions follow the GUI_expression_format.

• Search down for an expression that evaluates to a boolean 1 when object clk just
changed from low to high and object mystate is enumeration reading and object
/top/u3/addr is equal to the specified 32-bit hex constant.

down -expr {clk’rising && (mystate == reading) && (/top/u3/addr == 32’habcd1234)}

• Search down for an expression that evaluates to a boolean 1 when the upper 8 bits of the
32-bit object /top/u3/addr equals hex ac.

down -expr {(/top/u3/addr and 32’hff000000) == 32’hac000000}

• Search down for an expression that evaluates to a boolean 1 when logfile time is
between 23 and 54 microseconds, clock just changed from low to high, and object mode
is enumeration writing.

down -expr {((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode == writing)}

Commands
down

ModelSim SE Reference Manual, v6.5b 211

Related Topics

• GUI_expression_format
• view
• seetime
• up

ModelSim SE Reference Manual, v6.5b212

Commands
drivers

drivers
This command displays the names and strength of all drivers of the specified object.

The driver list is expressed relative to the top-most design signal/net connected to the specified
object. If the object is a record or array, each sub-element is displayed individually.

Syntax

drivers <object_name>

Arguments

• <object_name>

(required) Specifies the name of the signal or net whose drivers are to be shown. All signal
or net types are valid. Multiple names and wildcards are accepted.

Example

drivers /top/dut/pkt_cnt(4)

Drivers for /top/dut/pkt_cnt(4):
St0 : Net /top/dut/pkt_cnt[4]
St0 : Driver /top/dut/pkt_counter/#IMPLICIT-WIRE(cnt_out)#6

In some cases, the output may supply a strength value similar to 630 or 52x, which indicates an
ambiguous verilog strength.

Related Topics

• readers
• Verilog LRM Std 1365-2005 section

7.10.2 "Ambiguous strengths: sources and
combinations"

Commands
dumplog64

ModelSim SE Reference Manual, v6.5b 213

dumplog64
This command dumps the contents of the specified WLF file in a readable format to stdout.

The WLF file cannot be opened for writing in a simulation when you use this command. This
command cannot be used in a DO file.

Syntax

dumplog64 <filename>

Arguments

• <filename>

(required) The name of the WLF file to be read.

ModelSim SE Reference Manual, v6.5b214

Commands
echo

echo
This command displays a specified message in the Transcript window.

Syntax

echo [<text_string>]

Arguments

• <text_string>

(required) Specifies the message text to be displayed. If the text string is surrounded by
quotes, blank spaces are displayed as entered. If quotes are omitted, two or more adjacent
blank spaces are compressed into one space.

Examples

• If the current time is 1000 ns, this command:

echo “The time is $now ns.”

returns the message:

The time is 1000 ns.

• If the quotes are omitted:

echo The time is $now ns.

all blank spaces of two or more are compressed into one space.

The time is $now ns.”

• echo can also use command substitution, such as:

echo The hex value of counter is [examine -hex counter].

If the current value of counter is 21 (15 hex), this command returns:

The hex value of counter is 15.

Commands
edit

ModelSim SE Reference Manual, v6.5b 215

edit
This command invokes the editor specified by the EDITOR environment variable. By default,
the specified filename will open in the Source window.

Syntax

edit [<filename>]

Arguments

• <filename>

(optional) Specifies the name of the file to edit. If the <filename> argument is omitted, the
editor opens the current source file. If you specify a non-existent filename, it will open a
new file. Either absolute or relative paths may be used.

Related Topics

• notepad
• EDITOR environment variable

ModelSim SE Reference Manual, v6.5b216

Commands
enablebp

enablebp
This command turns on breakpoints and when commands that were previously disabled.

Syntax

enablebp [<id#> | <label>]

Arguments

• <id#>

(optional) Specifies a breakpoint ID number or when statement to enable. Note that C
breakpoint id#s are prefixed with "c.".

• <label>

(optional) Specifies the label name of a breakpoint or when statement to enable.

If you don’t specify either of these arguments, all breakpoints are enabled.

Use the bp command with no arguments to find labels and ID numbers for all breakpoints in the
current simulation. Use the when command with no arguments to find labels and ID numbers of
all when statements in the current simulation.

Related Topics

• bd
• bp
• C Debug
• disablebp
• onbreak
• resume
• when

Commands
enable_menu

ModelSim SE Reference Manual, v6.5b 217

enable_menu
This command enables a previously disabled menu. The menu will be changed from grayed-out
to normal and will become responsive. Returns nothing.

Syntax

enable_menu <window_name> <menu_path>

Arguments

• <window_name>

(required) Tk path of the window containing the menu.

Note that the path for the Main window must be expressed as "". All other window
pathnames begin with a period (.) as shown in the example below.

• <menu_path>

(required) Name of the Tk menu-widget path.

Examples

• Enable the previously-disabled File menu of the Main window.

enable_menu "" File

• Enable the previously-disabled File menu of the mywindow window.

enable_menu .mywindow File

Related Topics

• add_menu
• disable_menu

ModelSim SE Reference Manual, v6.5b218

Commands
enable_menuitem

enable_menuitem
This command enables a previously disabled menu item.

The menu item changes from grayed-out to normal, and becomes responsive. Returns nothing.

Syntax

enable_menuitem <window_name> <menu_path> <label>

Arguments

• <window_name>

(required) Tk path of the window containing the menu.

Note that the path for the Main window must be expressed as "". All other window
pathnames begin with a period (.) as shown in the example below.

• <menu_path>

(required) Name of the Tk menu-widget path. The path may include a submenu as shown in
the example below.

• <label>

(required) Menu item text.

Examples

This command locates the mywindow window and enables the previously-disabled Save
Results As... menu item in the save submenu of the file menu.

enable_menuitem .mywindow file.save "Save Results As..."

Related Topics

• add_menuitem
• disable_menuitem

Commands
encoding

ModelSim SE Reference Manual, v6.5b 219

encoding
This command translates between the 16-bit Unicode characters used in Tcl strings and a named
encoding, such as Shift-JIS. There are four encoding commands used to work with the encoding
of your character representations in the GUI.

• encoding convertfrom — Convert a string from the named encoding to Unicode.

• encoding convertto — Convert a string to the named encoding from Unicode.

• encoding names — Returns a list of all valid encoding names.

• encoding system — Changes the current system encoding to a named encoding. If a new
encoding is omitted the command returns the current system encoding. The system
encoding is used whenever Tcl passes strings to system calls.

Syntax

encoding convertfrom <encoding_name> <string>

encoding convertto <encoding_name> <string>

encoding names

encoding system <encoding_name>

Arguments

• string — Specifies a string to be converted.

• encoding_name — The name of the encoding to use.

ModelSim SE Reference Manual, v6.5b220

Commands
environment

environment
This command has two forms, environment and env. It allows you to display or change the
current dataset and region/signal environment.

Syntax

environment [-dataset | -nodataset] [<pathname> | -forward | -back]

Arguments

• -dataset

(optional) Displays the specified environment pathname with a dataset prefix. Dataset
prefixes are displayed by default.

• -nodataset

(optional) Displays the specified environment pathname without a dataset prefix.

• <pathname>

(optional) Specifies a new pathname for the region/signal environment.

If omitted the command causes the pathname of the current region/signal environment to be
displayed.

• -forward

(optional) Displays the next environment in your history of visited environments.

• -back

(optional) Displays the previous environment in your history of visited environments.

Examples

• Display the pathname of the current region/signal environment.

env

• Change to another dataset but retain the currently selected context.

env test:

• Change all unlocked windows to the context "test:/top/foo".

env test:/top/foo

• Move down two levels in the design hierarchy.

env blk1/u2

• Move to the top level of the design hierarchy.

env /

Commands
environment

ModelSim SE Reference Manual, v6.5b 221

Related Topics

• See Object Name Syntax for information
on specifying pathnames.

• See Setting your Context by Navigating
Source Files for more information about
-forward and -back.

ModelSim SE Reference Manual, v6.5b222

Commands
examine

examine
This command has two forms, examine and exa. It examines one or more objects and displays
current values (or the values at a specified previous time) in the Transcript window.

It optionally can compute the value of an expression of one or more objects.

If the design is being optimized with vopt, some of the objects listed below may not be available
for viewing. See "Preserving Object Visibility for Debugging Purposes" for more information.

If you are using C Debug, examine can display the value of a C variable as well.

The following objects can be examined:

• VHDL — signals, shared variables, process variables, constants, and generics

• Verilog — nets, registers, parameters, and variables

• C — variables

• SystemC — signals, FIFOs, ports, and member variables of modules

When stopped in C code, examine (with no arguments) displays the values of the local variables
and arguments of the current C function. For specific information related to viewing SystemC
objects refer to “SystemC Object and Type Display”.

To display a previous value, specify the desired time using the -time option.

To compute an expression, use the -expr option. The -expr and the -time options may be used
together.

Virtual signals and functions may also be examined within the GUI (actual signals are
examined in the kernel).

The following rules are used by the examine command to locate an HDL object:

• If the name does not include a dataset name, then the current dataset is used.

• If the name does not start with a path separator, then the current context is used.

• If the name is a path separator followed by a name that is not the name of a top-level
design unit, then the first top-level design unit in the design is used.

• For a relative name containing a hierarchical path, if the first object name cannot be
found in the current context, then an upward search is done up to the top of the design
hierarchy to look for a matching object name.

• If no objects of the specified name can be found in the specified context, then an upward
search is done to look for a matching object in any visible enclosing scope up to an
instance boundary. If at least one match is found within a given context, no (more)
upward searching is done; therefore, some objects that may be visible from a given
context will not be found when wildcards are used if they are within a higher enclosing
scope.

Commands
examine

ModelSim SE Reference Manual, v6.5b 223

• The wildcards '*' and '?' can be used at any level of a name except in the dataset name
and inside of a slice specification.

• A wildcard character will never match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* won’t match either of those.

See Design Object Names for more information on specifying names.

Syntax

examine [-delta <delta>] [-env <path>] [-handle] {[-in] [-out] [-inout] | [-ports]} [-internal]
[-maxlen <integer>] [-expr <expression>] [-name] [-<radix_type>]
[-radix <type>] [-radixenumnumeric | -radixenumsymbolic] [-time <time>] [-value]
<name>…

Arguments

• -delta <delta>

(optional) Specifies a simulation cycle at the specified time step from which to fetch the
value where the default is to use the last delta of the time step. The objects to be examined
must be logged via the add list, add wave, or log command for the examine command to be
able return a value for a requested delta.

<delta> — Any non-negative integer.

• -env <path>

(optional) Specifies a path in which to look for an object name.

<path> — The specified path to a object.

• -expr <expression>

(optional) Specifies an expression to be examined. The expression must be logged via the
add list, add wave, or log command before the examine command will return a value for a
specified expression. The expression is evaluated at the current time simulation. If the -time
argument is also specified, the expression will be evaluated at the specified time. It is not
necessary to specify <name> when using this switch. See GUI_expression_format for the
format of the expression.

<expression> — Specifies an expression enclosed in braces ({}).

• -handle

(optional) Returns the memory address of the specified <name>. This value can be useful,
as a semi-unique tag, for advanced HDL designers when analyzing the simulation of their
design. This value is also used as the title of a box in the Watch window. This option will
not return any value if you are in -view mode.

• -in

(optional) Specifies that <name> include ports of mode IN.

• -out

(optional) Specifies that <name> include ports of mode OUT.

ModelSim SE Reference Manual, v6.5b224

Commands
examine

• -inout

(optional) Specifies that <name> include ports of mode INOUT.

• -internal

(optional) Specifies that <name> include internal (non-port) signals.

• -maxlen <integer>

(optional) Specifies the maximum number of characters in the output of the command.

<integer> — Any non-negative integer where 0 is unlimited.

• -ports

(optional) Specifies that <name> include all ports. Has the same effect as specifying -in,
-inout, and -out together.

• -name

(optional) Displays object name(s) and value(s). Related switch is -value.

The lecho command will return the output of an examine command in "pretty-print" format.
For example,

lecho [examine -name clk prw pstrb]

• -<radix_type>

(optional) Specifies the radix type for the objects that follow in the command. Valid entries
(or any unique abbreviations) are: binary, ascii, unsigned, decimal, octal, hex, symbolic,
time, and default.

If no radix is specified for an enumerated type, the default radix is used. You can change the
default radix for the current simulation using the radix command. You can change the
default radix permanently by editing the DefaultRadix variable in the modelsim.ini file.

• -radix <type>

(optional) Specifies a user-defined radix. The -radix <type> switch can be used in place of
the -<radix_type> switch. For example, -radix hexadecimal is the same as -hex.

<type> — binary, ascii, unsigned, decimal, octal, hex, symbolic, time, and default.

• -radixenumnumeric

(optional) Displays SystemVerilog and SystemC enums as numbers rather than strings. The
current radix setting controls the actual enum value displayed. If the current radix setting is
ASCII, the value of SystemVerilog and SystemC enums are displayed as a string instead of
a number. This option overrides the global setting of the default radix (the DefaultRadix
variable in the modelsim.ini file).

• -radixenumsymbolic

(optional) Reverses the action of the -radixenumnumeric switch and sets the global setting
of the default radix (the DefaultRadix variable in the modelsim.ini file) to symbolic.

Commands
examine

ModelSim SE Reference Manual, v6.5b 225

• -time <time>

(optional) Specifies the time value between 0 and $now for which to examine the objects.

<time> — A non negative integer where the default unit is the current time unit. If the
<time> field uses a unit other than the current unit, the value and unit must be placed
in curly braces. For example, the following are equivalent for ps resolution:

exa -time {3.6 ns} signal_a
exa -time 3600 signal_a

If an expression is specified it will be evaluated at that time. The objects to be examined
must be logged via the add list, add wave, or log command in order for the examine
command to be able to return a value for a requested time.

• -value

(default) Returns value(s) as a curly-braces separated Tcl list. Use to toggle off a previous
use of -name.

• <name>…

(required except when specifying -expr.) Specifies the name of any HDL or SystemC object.
All object types are allowed, except those of the type file. Multiple names and wildcards are
accepted. Spaces, square brackets, and extended identifiers require curly braces; see
examples below for more details. To examine a VHDL variable you can add a process label
to the name. For example, (make certain to use two underscore characters):

exa line__36/i

Examples

• Return the value of /top/bus1.

examine /top/bus1

• Return the value of the subelement of rega that is specified by the index (i.e., 16). Note
that you must use curly braces when examining subelements.examine

{rega[16]}

• Return the value of the contiguous subelements of foo specified by the slice (i.e., 20:22).
Note the curly braces.

examine {foo[20:22]}

• Note that when specifying an object that contains an extended identifier as the last part
of the name, there must be a space after the closing '\' and before the closing '}'.

examine {/top/\My extended id\ }

• In this example, the -expr option specifies a signal path and user-defined Tcl variable.
The expression will be evaluated at 3450us.

examine -time {3450 us} -expr {/top/bus and $bit_mask}

• Using the ${fifo} syntax limits the variable to the simple name fifo, instead of
interpreting the parenthesis as part of the variable. Quotes are needed when spaces are

ModelSim SE Reference Manual, v6.5b226

Commands
examine

involved; and by using quotes (") instead of braces, the Tcl interpreter will expand
variables before calling the command.

examine -time $t -name $fifo "${fifo}(1 to 3)" ${fifo}(1)

• Because -time is not specified, this expression will be evaluated at the current
simulation time. Note the signal attribute and array constant specified in the expression.

examine -expr {clk’event && (/top/xyz == 16’hffae)}

Commands like find and examine return their results as a Tcl list (just a blank-separated
list of strings). You can do things like:

foreach sig [find sig ABC*] {echo "Signal $sig is [exa $sig]" …}

if {[examine -bin signal_12] == “11101111XXXZ”} {…}

examine -hex [find *]

The Tcl variable array, $examine (), can also be used to return values. For example,
$examine (/clk). You can also examine an object in the Source Window by selecting it
with the right mouse button.

• Print the value of C variable x.

examine x

• Print the value *p (de-references p).

examine *p

• Print the structure member in1 pointed to by ip.

examine ip->in1

Related Topics

• Design Object Names
• Wildcard Characters
• DefaultRadix modelsim.ini variable
• GUI_expression_format
• C Debug
• "Preserving Object Visibility for

Debugging Purposes

Commands
exit

ModelSim SE Reference Manual, v6.5b 227

exit
This command exits the simulator and the ModelSim application.

If you want to stop the simulation using a when command, use a stop command within your
when statement, do not use an exit command or a quit command. The stop command acts like a
breakpoint at the time it is evaluated.

Syntax

exit [-force] [-code <integer>]

Argument

• -force

(optional) Quits without asking for confirmation. If this argument is omitted, ModelSim
asks you for confirmation before exiting.

• -code <integer>

(optional) Quits the simulation and issues an exit code.

<integer> — This is the value of the exit code. You should not specify an exit code that
already exists in the tool. Refer to the section "Exit Codes" in the User’s Manual for a
list of existing exit codes. You can also specify a variable in place of <integer>.

You should always print a message before executing the exit -code command to explicitly
state the reason for exiting.

Examples

You can use the exit -code syntax to instruct a vmake run to exit when it encounters an assertion
error. The onbreak command can specify commands to be executed upon an assert failure of
sufficient severity, after which the simulator can be made to return an exit status, as shown in
the following example

set broken 0
onbreak {
 set broken 88
 resume
}
run -all
if { $broken } {
 puts "failure -- exit status $broken"
exit -code $broken

} else {
 puts "success"
}
quit -f

The resume command gives control back to the commands following the run -all to handle the
condition appropriately.

ModelSim SE Reference Manual, v6.5b228

Commands
find

find
This command locates objects by type and name. Arguments to the command are grouped by
object type:

• Arguments for nets and signals

• Arguments for instances and blocks

• Arguments for virtuals

• Arguments for classes

• Arguments for objects

Syntax

find nets | signals [-internal] <object_name> … [-nofilter] {[-in] [-inout] [-out] | [-ports]}
[-recursive]

find instances | blocks [-recursive] {<object_name> … | -bydu <design_unit> ...} [-nodu]

find virtuals [-kind <kind>] [-unsaved] [-recursive] <object_name> …

find classes [<class_name>]

find objects [-class <class_name>] [-isa <class_name>] [<object_name>]

Arguments for nets and signals

When searching for nets and signals, the find command returns the full pathname of all nets,
signals, registers, variables, and named events that match the name specification. The order in
which arguments are specified is unimportant.

• -in

(optional) Specifies that the scope of the search is to include ports of mode IN.

• -inout

(optional) Specifies that the scope of the search is to include ports of mode INOUT.

• -internal

(optional) Specifies that the scope of the search is to include internal (non-port) objects.

• <object_name> …

(required) Specifies the net or signal for which you want to search. Multiple nets and signals
and wildcard characters are allowed. Wildcards cannot be used inside of a slice
specification. Spaces, square brackets, and extended identifiers require special syntax; see
the examples below for more details.

• -nofilter

(optional) Specifies that the WildcardFilter Tcl preference variable be ignored when finding
signals or nets.

Commands
find

ModelSim SE Reference Manual, v6.5b 229

• -out

(optional) Specifies that the scope of the search is to include ports of mode OUT.

• -ports

(optional) Specifies that the scope of the search is to include all ports. Has the same effect as
specifying -in, -out, and -inout together.

• -recursive

(optional) Specifies that the scope of the search is to descend recursively into subregions. If
omitted, the search is limited to the selected region.

Arguments for instances and blocks

When searching for instances, the find command returns the primary design unit name.

• -recursive

(optional) Specifies that the scope of the search is to descend recursively into subregions. If
omitted, the search is limited to the selected region.

• <object_name> …

(required if -bydu is not specified.) Specifies the name of an instance or block for which you
want to search. Multiple instances and wildcard characters are allowed.

• -bydu <design_unit> ...

(required if <object_name> is not specified.) Searches for a design unit.

<design_unit> ... — Name of a design unit to search for. Multiple design units and
wildcard characters are allowed. This argument matches the pattern specified by
<design_unit> of the instance, which must be in the form:
Library.Primary[Secondary]. The Secondary name is present only for design units
that have secondary names, such as VHDL. The Library name is the physical name
for the library.

• -nodu

(optional) Removes the "du" string from the names of design units found with -bydu
argument.

Arguments for virtuals

When searching for virtuals, all optional arguments must be specified before any object names.

• -kind <kind>

(optional) Specifies the kind of virtual object for which you want to search.

<kind> — A virtual object of one of the following kinds:

• designs

• explicits

• functions

ModelSim SE Reference Manual, v6.5b230

Commands
find

• implicits

• signals.

• -unsaved

Specifies that ModelSim find only virtuals that have not been saved to a format file.

• <object_name> …

(required) Specifies the virtual object for which you want to search. Multiple virtuals and
wildcard characters are allowed.

Arguments for classes

• <class_name>

(optional) Specifies the incrTcl class for which you want to search. Wildcard characters are
allowed. The options for class_name include nets, objects, signals, and virtuals. If you do
not specify a class name, the command returns all classes in the current namespace context.
See incrTcl commands in the Tcl Man Pages (Help > Tcl Man Pages) for more information.

Arguments for objects

• -class <class_name>

(optional) Restricts the search to objects whose most-specific class is class_name.

• -isa <class_name>

(optional) Restricts the search to those objects that have class_name anywhere in their
heritage.

• <object_name>

(optional) Specifies the incrTcl object for which you want to search. Wildcard characters are
allowed. If you do not specify an object name, the command returns all objects in the
current namespace context. See incrTcl commands in the Tcl Man Pages (Help > Tcl Man
Pages) for more information.

Description

The following rules are used by the find command to locate an object:

• If the name does not include a dataset name, then the current dataset is used.

• If the name does not start with a path separator, then the current context is used.

• If the name is a path separator followed by a name that is not the name of a top-level
design unit, then the first top-level design unit in the design is used.

• For a relative name containing a hierarchical path, if the first object name cannot be
found in the current context, then an upward search is done up to the top of the design
hierarchy to look for a matching object name.

• If no objects of the specified name can be found in the specified context, then an upward
search is done to look for a matching object in any visible enclosing scope up to an

Commands
find

ModelSim SE Reference Manual, v6.5b 231

instance boundary. If at least one match is found within a given context, no (more)
upward searching is done; therefore, some objects that may be visible from a given
context will not be found when wildcards are used if they are within a higher enclosing
scope.

• The wildcards '*' and '?' can be used at any level of a name except in the dataset name
and inside of a slice specification. Square bracket ([]) wildcards can also be used.

• A wildcard character will never match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* won’t match either of those.

• Because square brackets are wildcards in the find command, only parentheses (()) can be
used to index or slice arrays.

• The WildcardFilter Tcl preference variable is used by the find command to exclude the
specified types of objects when performing the search.

See Design Object Names for more information on specifying names.

Examples

• Find all signals in the entire design.

find signals -r /*

• Find all input signals in region /top that begin with the letters "xy".

find nets -in /top/xy*

• Find all signals in the design hierarchy at or below the region <current_context>/u1/u2
whose names begin with "cl".

find signals -r u1/u2/cl*

• Find a signal named s1. Note that you must enclose the object in curly braces because of
the square bracket wildcard characters.

find signals {s[1]}

• Find signals s1, s2, or s3.

find signals {s[123]}

• Find the element of signal s that is indexed by the value 1. Note that the find command
uses parentheses (()), not square brackets ([]), to specify a subelement index.

find signals s(1)

• Find a 4-bit array named data. Note that you must use curly braces ({}) due to the
spaces in the array slice specification.

find signals {/top/data(3 downto 0)}

• Note that when specifying an object that contains an extended identifier as the last part
of the name, there must be a space after the closing '\' and before the closing '}'.

ModelSim SE Reference Manual, v6.5b232

Commands
find

find signals {/top/\My extended id\ }

• If /dut/core/pclk exists, prints the message "pclk does exist" in the transcript. This would
typically be run in a Tcl script.

if {[find signals /dut/core/pclk] != ""} {
echo "pclk does exist"

• Find instances based on their names using wildcards. Send search results to a text file
that lists instance names, including the hierarchy path, on separate lines.

Search for all instances with u1 in path
set pattern_match "*u1*" ;

Get the list of instance paths
set inst_list [find instances -r *] ;

Initialize an empty list to strip off the architecture names
set ilist [list] ;

foreach inst $inst_list {
set ipath [lindex $inst 0]
 if {[string match $pattern_match $ipath]} {
 lappend ilist $ipath
 }
}
At this point, ilist contains the list of instances only--
no architecture names
#
Begin sorting list
set ilist [lsort -dictionary $ilist]

Open a file to write out the list
set fhandle [open "instancelist.txt" w]
foreach inst $ilist {
 # Print instance path, one per line
 puts $fhandle $inst
}

Close the file, done.
close $fhandle ;

Additional search options

To search for HDL objects within a specific display window, use the search command or select
Edit > Find.

Related Topics

• Design Object Names
• Wildcard Characters

Commands
find infiles

ModelSim SE Reference Manual, v6.5b 233

find infiles
This command searches for a string in the specified file(s) and prints the results to the
Transcript window. The results are individually hotlinked and will open the file and display the
location of the string.

When you execute this command in command-line mode from outside of the GUI, the results
are sent to stdout with no hotlinks.

Arguments for this command are order dependent.

Syntax

find infiles <string_pattern> <file>...

Arguments

• <string_pattern>

(required) The string you are searching for. You can use Tcl regular expression wildcards to
further restrict the search capability.

• <file>...

(required) The file(s) to search. You can use Tcl regular expression wildcards to further
restrict the search capability.

Example

Figure 2-2 shows a screen capture containing a few examples of the find infiles command
and the results.

Figure 2-1. find infiles Example

ModelSim SE Reference Manual, v6.5b234

Commands
find insource

find insource
This command searches for a string in the source files for the current design and prints the
results to the Transcript window. The results are hotlinked individually and will open the file
and display the location of the string.

When you execute this command in command-line mode from outside of the GUI, the results
are sent to stdout with no hotlinks.

Syntax

find insource <pattern>

Arguments

• <pattern>

(required) The string you are searching for. You can use regular expression wildcards to
further restrict the search. You must enclose <pattern> in quotes (") if it includes spaces.

Example

Figure 2-2 shows a couple of examples of the find insource command and the results.

Figure 2-2. find insource Example

Commands
formatTime

ModelSim SE Reference Manual, v6.5b 235

formatTime
This command provides global format control for all time values displayed in the GUI. When
specified without arguments, this command returns the current state of the three arguments.

Syntax

formatTime [[+|-]commas] [[+|-]nodefunits] [[+|-]bestunits]

Arguments

• [+|-]commas

(optional) Insert commas into the time value.

+ prefix — On

- prefix — Off. (default)

• [+|-]nodefunits

(optional) Do not include default unit in the time.

+ prefix — On

- prefix — Off. (default)

• [+|-]bestunits

(optional) Use the largest unit value possible.

+ prefix — On

- prefix — Off. (default)

Examples

• Display commas in time values.

formatTime +commas

Instead of displaying 6458131 ps, the GUI will display 6,458,131 ps.

• Use largest unit value possible.

formatTime +bestunits

Displays 8 us instead of 8,000 ns.

ModelSim SE Reference Manual, v6.5b236

Commands
force

force
This command allows you to apply stimulus interactively to VHDL signals and Verilog nets.
When executed without arguments, this command returns a list of the most recently applied
force commands and a list of forces coming from the Signal Spy signal_force() and
$signal_force() calls from within VHDL, Verilog, and SystemC source code.

It is possible to create a complex sequence of stimuli when the force command is included in a
macro file.

This command provides additional information with the -help switch.

There are a number of constraints on what you can and cannot force:

• You can force “Virtual Signals” if the number of bits corresponds to the signal value.
You cannot force virtual functions.

• You can force bit-selects or an entire register, you cannot force slices of a register

• You can force signals within SystemC modules, with the following limitations:

• Only mixed language boundary types are supported.

• The -drive option to force is not supported.

• Individual bits and slices may not be forced or unforced.

• You cannot force VHDL variables. See the change command for information on
working with VHDL variables.

• In VHDL and mixed models, you cannot force an input port that is mapped at a higher
level. In other words, you can force the signal at the top of the hierarchy connected to
the input port but you cannot force the input port directly.

• You cannot force a VHDL alias of a VHDL signal.

• You cannot force an input port that has a conversion function on the input.

Syntax

force [-freeze | -drive | -deposit] [-cancel [@]<time>[<unit>]] [-repeat [@]<time>[<unit>]]
<object_name> {<value>[[@]<time>[<unit>]]}...

Arguments

• -freeze

(optional) Freezes the object at the specified <value> until it is forced again or until it is
unforced with the noforce command.

• -drive

(optional) Attaches a driver to the object and drives the specified <value> until the object is
forced again or until it is unforced with the noforce command.

This option is illegal for unresolved signals or SystemC signals.

Commands
force

ModelSim SE Reference Manual, v6.5b 237

• -deposit

(optional) Sets the object to the specified <value>. The <value> remains until the object is
forced again, there is a subsequent driver transaction, or it is unforced with a noforce
command.

Note
If the -freeze, -drive, or -deposit options are not used, then -freeze is the default for
unresolved objects, and -drive is the default for resolved objects. If you prefer -freeze as
the default for resolved and unresolved VHDL signals, change the DefaultForceKind
variable in the modelsim.ini file.

• -cancel [@]<time>[<unit>]

(optional) Cancels the force command at the specified <time>.

@ — A prefix applied to <time> to specify an absolute time interval where the default is
to specify a relative time interval by omitting the @ character.

<time> — The time (either relative or absolute) at which to cancel the force command.
Any non-negative integer. A value of zero cancels the force at the end of the current
time period.

<unit> — A suffix specifying a time unit where the default is to specify the current time
unit by omitting <unit>. Valid time units are: fs. ps, ns, us, ms, sec, min, and hr.

-cancel 520 \\ Relative Time
-cancel 520ns \\ Relative Time

Enclose with curly braces ({}) when using spaces between the arguments. See the
example below.

-cancel {@ 520 ns} \\ Absolute Time

• -repeat [@]<time>[<unit>]

(optional) Repeats the force command. A repeating force command will force a value before
other non-repeating force commands that occur in the same time step.

@ — A prefix applied to <time> to specify an absolute time interval where the default is
to specify a relative time interval by omitting the @ character.

<time> — The time (either relative or absolute) at which to repeat the force command.
Any non-negative integer. A value of zero cancels the force at the end of the current
time period. Cancellation occurs at the last simulation delta cycle of a time unit.

<unit> — A suffix specifying a time unit where the default is to specify the current time
unit by omitting <unit>. Valid time units are: fs. ps, ns, us, ms, sec, min, and hr.

Enclose with curly braces ({}) when using spaces between the arguments.

• <object_name>

(required) Specifies the name of the HDL object to be forced. A wildcard is permitted only
if it matches one object. See Design Object Names for the full syntax of an object name. The
object name must specify a scalar type or a one-dimensional array of character enumeration.

ModelSim SE Reference Manual, v6.5b238

Commands
force

You may also specify a record subelement, an indexed array, or a sliced array, as long as the
type is one of the above.

• <value>

(required) Specifies the value to which the object is to be forced. The specified value must
be appropriate for the type.

A VHDL one-dimensional array of character enumeration can be forced as a sequence of
character literals or as a based number with a radix of 2, 8, 10 or 16. For example, the
following values are equivalent for a signal of type bit_vector (0 to 3):

Note
For based numbers in VHDL, ModelSim translates each 1 or 0 to the appropriate value
for the number’s enumerated type. The translation is controlled by the translation table in
the pref.tcl file. If ModelSim cannot find a translation for 0 or 1, it uses the left bound of
the signal type (type’left) for that value.

• [@]<time>[<unit>]

(optional) Specifies the time to which the <value> is to be applied.

@ — A prefix applied to <time> to specify an absolute time interval where the default is
to specify a relative time interval by omitting the @ character.

<time> — The time (either relative or absolute) to apply to <value>. Any non-negative
integer. A value of zero cancels the force at the end of the current time period.
Cancellation occurs at the last simulation delta cycle of a time unit.

<unit> — A suffix specifying a time unit where the default is to specify the current time
unit by omitting <unit>. Valid time units are: fs. ps, ns, us, ms, sec, min, and hr.

Enclose with curly braces ({}) when using spaces between the arguments.

Examples

• Force input1 to 0 at the current simulator time.

force input1 0

• Force bus1 to 01XZ at 100 nanoseconds after the current simulator time.

force bus1 01XZ 100 ns

Value Description

1111 character literal sequence

2#1111 binary radix

10#15 decimal radix

16#F hexadecimal radix

Commands
force

ModelSim SE Reference Manual, v6.5b 239

• Force bus1 to 16#F at the absolute time 200 measured in the resolution units selected at
simulation start-up.

force bus1 16#f @200

• Force input1 to 1 at 10 time units after the current simulation time and to 0 at 20 time
units after the current simulation time. This cycle repeats starting at 100 time units after
the current simulation time, so the next transition is to 1 at 100 time units after the
current simulation time.

force input1 1 10, 0 20 -r 100

• Similar to the previous example, but also specifies the time units. Time unit expressions
preceding the "-r" must be placed in curly braces since a space is used between the time
value and time unit.

force input1 1 10 ns, 0 {20 ns} -r 100ns

• Force signal s to alternate between values 1 and 0 every 100 time units until time 1000.
Cancellation occurs at the last simulation delta cycle of a time unit.

force s 1 0, 0 100 -repeat 200 -cancel 1000

So,

force s 1 0 -cancel 0

will force signal s to 1 for the duration of the current time period.

• Force siga to decimal value 85 whenever the value on the signal is 1.

when {/mydut/siga = 10#1} {
force -deposit /mydut/siga 10#85

}

Related Topics

• change
• DefaultForceKind
• Design Object Names
• Force Command Defaults
• noforce
• Virtual Signals

ModelSim SE Reference Manual, v6.5b240

Commands
gdb dir

gdb dir
This command sets the source directory search path for the C debugger and starts the C
debugger if it is not already running.

Syntax

gdb dir [<src_directory_path_1>] ...

Argument

• <src_directory_path_1>...

(optional) Specifies one or more directories for C source code. If no directory is specified,
the source directory search path is set to the gdb default–$cdir:$cwd. Either absolute or
relative paths may be used. Specify multiple paths as a space separated list. Wildcards and
relative paths are allowed.

Examples

Set the source directory search paths to ../dut/ and ../foo/.

gdb dir ../dut/ ../foo/

Related Topics

• C Debug
• Setting Up C Debug

Commands
getactivecursortime

ModelSim SE Reference Manual, v6.5b 241

getactivecursortime
This command gets the time of the active cursor in the Wave window and returns the time
value.

Syntax

getactivecursortime [-window <wname>]

Arguments

• -window <wname>

(optional) Specifies an instance of the Wave window that is not the default.

<wname> — The name of the window that is not the default.

Use the view command to change the default window.

Examples

getactivecursortime

Returns:

980 ns

Related Topics

• left
• right

ModelSim SE Reference Manual, v6.5b242

Commands
getactivemarkertime

getactivemarkertime
This command gets the time of the active marker in the List window.

Returns the time value. If -delta is specified, returns time and delta.

Syntax

getactivemarkertime [-window <wname>] [-delta]

Arguments

• -window <wname>

(optional) Specifies an instance of the List window that is not the default. Otherwise, the
default List window is used.

<wname> — The name of the window that is not the default.

Use the view command to change the default window.

• -delta

(optional) Returns the delta value where the default is to return only the time.

Examples

getactivemarkertime -delta

Returns:

980 ns, delta 0

Related Topics

• down
• up

Commands
help

ModelSim SE Reference Manual, v6.5b 243

help
This command displays in the Transcript window a brief description and syntax for the
specified command.

Syntax

help [<command> | <topic>]

Arguments

• <command>

(optional) Specifies the command for which you want help. The entry is case and space
sensitive.

• <topic>

(optional) Specifies a topic for which you want help. The entry is case and space sensitive.
Specify one of the following six topics:

Topic Description

commands Lists all available commands and
topics

debugging Lists debugging commands

execution Lists commands that control
execution of your simulation.

Tcl Lists all available Tcl commands.

Tk Lists all available Tk commands

incrTCL Lists all available incrTCL
commands

ModelSim SE Reference Manual, v6.5b244

Commands
history

history
This command lists the commands you have executed during the current session. History is a
Tcl command. For more information, consult the Tcl Man Pages (Help > Tcl Man Pages).

Syntax

history [clear] [keep <value>]

Arguments

• clear

(optional) Clears the history buffer.

• keep <value>

(optional) Specifies the number of executed commands to keep in the history buffer.

<value> — Any positive integer where the default is 50.

Commands
jobspy

ModelSim SE Reference Manual, v6.5b 245

jobspy
This command controls JobSpy, a tool for monitoring and controlling batch simulations and
simulation farms.

This command provides additional information with the -help switch.

Syntax

jobspy [-gui | -startd | -killd | jobs | status | <jobid> <command>]

Arguments

• -gui

(optional) Launches the JobSpy Job Manager GUI.

• -startd

(optional) Starts the jobspy daemon which enables job tracking. You must first set the
JOBSPY_DAEMON environment variable before starting the daemon. Refer to “Starting
the JobSpy Daemon” for further details.

• -killd

(optional) Terminates the JobSpy daemon.

• jobs

(optional) Returns a list of current jobs with a variety of status information (e.g., job ID,
current simulation time, start time, etc.).

• status

(optional) Returns the status of the JobSpy daemon.

• <jobid> <command>

(optional) Specifies a job ID to be processed by <command>. Use jobspy jobs to get a list of
job IDs.

<command> — A JobSpy simulator command. Refer to “Simulation Commands
Available to JobSpy” for a list of valid commands.

Related Topics

• Monitoring Simulations with JobSpy
• Running the JobSpy GUI
• Simulation Commands Available to

JobSpy
• Starting the JobSpy Daemon

ModelSim SE Reference Manual, v6.5b246

Commands
layout

layout
This command allows you to perform a number of editing operations on custom GUI layouts,
such as loading, saving, maximizing, and deleting.

The command options include:

• layout active – returns the current active window

• layout current – lists the current layout

• layout delete – removes the current layout from the .modelsim file (UNIX/Linux) or
Registry (Windows)

• layout load – opens the specified layout

• layout names – lists all known layouts

• layout normal – minimizes the current maximized window

• layout maximized – return a 1 if the current layout is maximized, or a 0 if minimized

• layout save – saves the current layout to the specified name

• layout togglezoom – toggles the current zoom state of the active window (from
minimized to maximized or maximized to minimized)

• layout zoomactive – maximizes the current active window

• layout zoomwindow – maximizes the specified window

Syntax

layout active

layout current

layout delete <name>

layout load <name>

layout names

layout normal

layout maximized

layout save <name>

layout togglezoom

layout zoomactive

layout zoomwindow <window>

Commands
layout

ModelSim SE Reference Manual, v6.5b 247

Arguments

• <name>

(required) Specifies the name of the layout.

• <window>

(required) The window specification can be any format accepted by the view command. The
window can be specified by its type (i.e., wave, list, objects, etc.), by the windowobj name (
i.e., .main_pane.wave, .main_pain.library, etc.), or by the tab name (i.e., wave1, list3, etc.)

Related Topics

• Layouts and Modes of Operation

ModelSim SE Reference Manual, v6.5b248

Commands
lecho

lecho
This command takes one or more Tcl lists as arguments and pretty-prints them to the Transcript
window.

Syntax

lecho <args> ...

Arguments

• <args> ...

Any Tcl list created by a command or user procedure. Specified as a space separated list.

Examples

• Print the Wave window configuration list to the Transcript window.

lecho [configure wave]

Commands
left

ModelSim SE Reference Manual, v6.5b 249

left
This command searches left (previous) for signal transitions or values in the specified Wave
window.

It executes the search on signals currently selected in the window, starting at the time of the
active cursor. The active cursor moves to the found location.

Use this command to move to consecutive transitions, to find the time at which a waveform
takes on a particular value, or to find an expression of multiple signals that evaluates to true. See
the right command for related functionality.

The procedure for using left entails three steps:

1. Click on the desired waveform.

2. Click on the desired starting location. (The seetime command can initially position the
cursor from the command line, if desired.)

3. Issue the left command.

Returns: <number_found> <new_time> <new_delta>

Syntax

left [-expr {<expression>}] [-falling] [<n>] [-rising] [-value <sig_value> [-noglitch]]
[-window <wname>]

Arguments

• -expr {<expression>}

(optional) The waveform display is searched until the expression evaluates to a boolean true
condition.

<expression> — An expression that involves one or more objects, but limited to objects
that have been logged in the referenced waveform display. An object may be
specified either by its full path or by the shortcut label displayed in the Wave
window.

See GUI_expression_format for the format of the expression. The expression must be
placed within curly braces ({}).

• -falling

(optional) Searches for a falling edge on the specified signal if that signal is a scalar signal.
If it is not a scalar signal, the option will be ignored.

• <n>

(optional) Specifies to find the nth match where the default is 1. If less than n are found, the
number found is returned with a warning message, and the cursor is positioned at the last
match.

ModelSim SE Reference Manual, v6.5b250

Commands
left

• -noglitch

(optional) Looks at signal values only on the last delta of a time step. For use with the -value
option only.

• -rising

(optional) Searches for a rising edge on the specified signal if that signal is a scalar signal. If
it is not a scalar signal, the option will be ignored.

• -value <sig_value>

(optional) Specifies the value of the object to match.

<sig_value> — A value specified in the same radix that the selected object is displayed.
Case is ignored, but otherwise the value must be an exact string match. Don’t-care
bits are not supported. Only one signal can be selected, but that signal may be an
array.

• -window <wname>

(optional) Specifies an instance of the Wave window that is not the default. When <wname>
is not specified, the default Wave window is used. Use the view command to change the
default window.

<wname> — The name of a Wave window not currently the default.

Examples

• Find the second time to the left at which the selected vector transitions to FF23, ignoring
glitches.

left -noglitch -value FF23 2

• Go to the previous transition on the selected signal.

left

The following examples illustrate search expressions that use a variety of signal attributes,
paths, array constants, and time variables. Such expressions follow the GUI_expression_format.

• Search left for an expression that evaluates to a boolean 1 when signal clk just changed
from low to high and signal mystate is the enumeration reading and signal /top/u3/addr
is equal to the specified 32-bit hex constant; otherwise is 0.

left -expr {clk’rising && (mystate == reading) && (/top/u3/addr == 32’habcd1234)}

• Search left for an expression that evaluates to a boolean 1 when the upper 8 bits of the
32-bit signal /top/u3/addr equals hex ac.

left -expr {(/top/u3/addr and 32’hff000000) == 32’hac000000}

• Search left for an expression that evaluates to a boolean 1 when logfile time is between
23 and 54 microseconds, clock just changed from low to high, and signal mode is
enumeration writing.

left -expr {((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode == writing)}

Commands
left

ModelSim SE Reference Manual, v6.5b 251

Note
“Wave Window Mouse and Keyboard Shortcuts” are also available for next and previous
edge searches. Tab searches right (next) and shift-tab searches left (previous).

Related Topics

• GUI_expression_format
• right
• seetime
• view

ModelSim SE Reference Manual, v6.5b252

Commands
log

log
This command creates a wave log format (WLF) file containing simulation data for all HDL
objects whose names match the provided specifications. Objects that are displayed using the
add list and add wave commands are automatically recorded in the WLF file. By default the file
is named vsim.wlf and stored in the current working directory. You can change the default name
using the -wlf option of the vsim command or by setting the WLFFilename variable in the
modelsim.ini file.

If no port mode is specified, the WLF file contains data for all objects in the selected region
whose names match the object name specification.

The WLF file contains a record of all data generated for the list and wave windows during a
simulation run. Reloading the WLF file restores all objects and waveforms and their complete
history from the start of the logged simulation run. See dataset open for more information.

For all transaction streams created through the SCV or Verilog APIs, logging is enabled by
default. A transaction is logged to the WLF file if logging is enabled at the beginning of a
simulation run when the design calls ::begin_transaction() or $begin_transaction. The effective
start time of the transaction (the time passed by the design as a parameter to ::begin_transaction)
is irrelevant. For example, a stream could have logging disabled between T1 and T2 and still
record a transaction in that period, through retroactive logging after time T2. A transaction is
always either entirely logged or entirely ignored.

Note
The log command is also known as the "add log" command.

Syntax

log [-class <classtype>] [-flush] [-howmany] {[-in] [-inout] [-out] | [-ports]}
[-internal] [-optcells] [-out] [-ports] [-recursive [-depth <level>]] <object_name> …

Arguments

• -class <classtype>

(optional) Log all objects of a class specified in <classtype> that are generated after the
command is invoked. Descends the hierarchy recursively to include all properties of
<classtype> that are also classes.

<classtype> — The type of class to be logged.

Caution
Using this switch can result in a large amount of logged data.

• -depth <level>

(optional) Restricts a recursive search (specified with the -recursive argument) to a certain
level of hierarchy.

Commands
log

ModelSim SE Reference Manual, v6.5b 253

<level> — Any non-negative integer. For example, if you specify -depth 1, the
command descends only one level in the hierarchy.

• -flush

(optional) Adds region data to the WLF file after each individual log command. Default is to
add region data to the log file for the following conditions:

o A command is executed that advances simulation time (e.g., run, step, etc.).

o You quit the simulation.

• -howmany

(optional) Returns an integer indicating the number of signals found.

• -in

(optional) Specifies that the WLF file is to include data for ports of mode IN whose names
match the specification.

• -inout

(optional) Specifies that the WLF file is to include data for ports of mode INOUT whose
names match the specification.

• -internal

(optional) Specifies that the WLF file is to include data for internal (non-port) objects whose
names match the specification.

• -optcells

(optional) Makes Verilog optimized cell ports visible when using wildcards. By default
Verilog optimized cell ports are not selected even if they match the specified wildcard
pattern.

• -out

(optional) Specifies that the WLF file is to include data for ports of mode OUT whose
names match the specification.

• -ports

(optional) Specifies that the scope of the search is to include all ports, IN, INOUT, and
OUT.

• -recursive

(optional) Specifies that the scope of the search is to descend recursively into subregions. If
omitted, the search is limited to the selected region. You can use the -depth argument to
specify how far down the hierarchy to descend.

• <object_name>

(required) Specifies the object name that you want to log. Multiple object names are
specified as a space separated list. Wildcard characters are allowed. Note that the

ModelSim SE Reference Manual, v6.5b254

Commands
log

WildcardFilter Tcl preference variable identifies types to ignore when matching objects
with wildcard patterns.

By default, wildcard card logging does not log the internals of cells. Refer to the +libcell
argument of the vlog command for more information.

Examples

• Log all objects in the design.

log -r /*

• Log all output ports in the current design unit.

log -out *

Related Topics

• add list
• add wave
• dataset alias
• dataset clear
• dataset close
• dataset config
• dataset config
• dataset info
• dataset list
• dataset open
• dataset rename
• dataset restart
• dataset save
• dataset snapshot
• nolog
• Recording Simulation Results With

Datasets
• vlog +libcell
• What is an MVC?
• Wildcard Characters

Commands
lshift

ModelSim SE Reference Manual, v6.5b 255

lshift
This command takes a Tcl list as an argument and shifts it in-place, one place to the left,
eliminating the left-most element.

The number of shift places may also be specified. Returns nothing.

Syntax

lshift <list> [<amount>]

Arguments

• <list>

(required) Specifies the Tcl list to target with lshift.

• <amount>

(optional) Specifies the number of places to shift where the default is 1.

Examples

proc myfunc args {
throws away the first two arguments
lshift args 2
...
}

Related Topics

• See the Tcl man pages (Help > Tcl Man
Pages) for details.

ModelSim SE Reference Manual, v6.5b256

Commands
lsublist

lsublist
This command returns a sublist of the specified Tcl list that matches the specified Tcl glob
pattern.

Syntax

lsublist <list> <pattern>

Arguments

• <list>

(required) Specifies the Tcl list to target with lsublist.

• <pattern>

(required) Specifies the pattern to match within the <list> using Tcl glob-style matching.

Examples

• In the example below, variable ‘t’ returns "structure signals source".

set window_names "structure signals variables process source wave
list dataflow"
set t [lsublist $window_names s*]

Related Topics

• The set command is a Tcl command. See
the Tcl man pages (Help > Tcl Man Pages)
for details.

Commands
mem compare

ModelSim SE Reference Manual, v6.5b 257

mem compare
This command compares a selected memory to a reference memory or file. Must have the "diff"
utility installed and visible in your search path in order to run this command.

Syntax

mem compare {[-mem <ref_mem>] | [-file <ref_file>]} [actual_mem]

Arguments

• -mem <ref_mem>

(optional) Specifies a reference memory to be compared with actual_mem.

<ref_mem> — A memory record.

• -file <ref_file>

(optional) Specifies a reference file to be compared with actual_mem.

<ref_file> — A saved memory file.

• actual_mem

(required) Specifies the name of the memory to be compared against the reference data.

ModelSim SE Reference Manual, v6.5b258

Commands
mem display

mem display
This command prints to the Transcript window the memory contents of the specified instance. If
the given instance path contains only a single array signal or variable, the signal or variable
name need not be specified.

You can redirect the output of the mem display command into a file for later use with the mem
load command. The output file can also be read by the Verilog $readmem system tasks if the
memory module is a Verilog module and Verilog memory format (hex or binary) is specified.

Address radix, data radix, and address range for the output can also be specified, as well as
special output formats.

By default, identical data lines are printed. To replace identical lines with a single line
containing the asterisk character, you can enable compression with the -compress argument.

Note
The format settings are stored at the top of this file as a pseudo comment so that
subsequent mem load commands can correctly interpret the data. Do not edit this data
when manipulating a saved file.

Syntax

mem display [-addressradix [d | h]] [-compress] [-dataradix <radix_type>]
[-endaddress <end>][-format [bin | hex | mti]] [-noaddress] [-startaddress <st>]
[-wordsperline <n>] [<path>]

Arguments

• -addressradix [d | h]

(optional) Specifies the address radix for the default (MTI) formatted files.

d — Decimal radix. (default if -format is specified as mti.)

h — Hex radix.

• -compress

(optional) Specifies that identical lines not be printed. Reduces the file size by replacing
exact matches with a single line containing an asterisk. These compressed files are
automatically expanded during a mem load operation.

• -dataradix <radix_type>

(optional) Specifies the data radix for the default (MTI) formatted files. If unspecified, the
global default radix is used.

<radix_type> A specified radix type. Valid entries (or any unique abbreviations) are:
binary, decimal, unsigned, octal, hex, symbolic, and default. If no radix is specified
for an enumerated type, the symbolic representation is used.

Commands
mem display

ModelSim SE Reference Manual, v6.5b 259

You can change the default radix type for the current simulation using the radix command
or make the default radix permanent by editing the DefaultRadix variable in the
modelsim.ini file.

• -endaddress <end>

(optional) Specifies the end address for a range of addresses to be displayed.

<end> — Any valid address in the memory. If unspecified, the default is the end of the
memory.

• -format [bin | hex | mti]

(optional) Specifies the output format of the contents.

bin— Specifies a binary output.

hex— Specifies a hex output.

mti — MTI format. (default).

• -noaddress

(optional) Specifies that addresses not be printed.

• -startaddress <st>

(optional) Specifies the start address for a range of addresses to be displayed.

<st> — Any valid address in the memory. If unspecified, the default is the start of the
memory.

• -wordsperline <n>

(optional) Specifies how many words are to be printed on each line.

<n> — Any positive integer where the default is an 80 column display width.

• <path>

(required) Specifies the full path to the memory instance. The default is the current context,
as shown in the Structure window. Indexes can be specified.

Examples

• This command displays the memory contents of instance /top/m/mru_mem, addresses 5
to 10:

mem display -startaddress 5 -endaddress 10/top/c/mru_mem

returns:

5: 110 110 110 110 110 000

• Display the memory contents of the same instance to the screen in hex format, as
follows:

mem display -format hex -startaddress 5 -endaddress 10 /top/c/mru_mem

returns:

ModelSim SE Reference Manual, v6.5b260

Commands
mem display

5: 6 6 6 6 6 0

Related Topics

• For details on MTI format, see the
description contained in mem load.

Commands
mem list

ModelSim SE Reference Manual, v6.5b 261

mem list
This command displays a flattened list of all memory instances in the current or specified
context after a design has been elaborated.

Each instance line is prefixed by "VHDL:" or "Verilog:", depending on the type of model.

Returns the signal/variable name, address range, depth, and width of the memory.

Syntax

mem list [-r] [<path>]

Arguments

• -r

(optional) Recursively descends into sub-modules when listing memories.

• <path>

(optional) The hierarchical path to the location the search should start where the default is
the current context, as shown in the Structure window.

Examples

• Recursively list all memories at the top level of the design.

mem list -r /

Returns:

Verilog: /top/m/mem[0:255](256d x 16w)
#

• Recursively list all memories in /top2/uut.

mem list /top2/uut -r

Returns:

Verilog: /top2/uut/mem[0:255] x 16w

ModelSim SE Reference Manual, v6.5b262

Commands
mem load

mem load
This command updates the simulation memory contents of a specified instance. You can upload
contents either from a memory data file, a memory pattern, or both. If both are specified, the
pattern is applied only to memory locations not contained in the file.

A relocatable memory file is one that has been saved without address information. You can load
a relocatable memory file into the instance of a memory core by specifying an address range on
the mem load command line. If no address range (starting and ending address) is specified, the
memory is loaded starting at the first location.

The order in which the data is placed into the memory depends on the format specified by the
-format option. If you choose bin or hex format, the memory is filled low to high, to be
compatible with $readmem commands. This is in contrast to the default MTI format, which fills
the memory according to the memory declaration, from left index to right index.

For Verilog objects and VHDL integers and std_logic types: if the word width in a file is wider
than the word width of the memory, the leftmost bits (msb) in the data words are ignored. To
allow wide words use the -truncate option which will ignore the msb bits that exceed the
memory word size. If the word width in the file is less than the width of the memory, and the
leftmost digit of the file data is not ’X’, then the leftmost bits are zero filled. Otherwise, they are
X-filled.

The type of data required for the -filldata argument is dependent on the -filltype specified: a
fixed value, or one that governs an incrementing, decrementing, or random sequence.

• For fixed pattern values, the fill pattern is repeatedly tiled to initialize the memory block
specified. The pattern can contain multiple word values for this option.

• For incrementing or decrementing patterns, each memory word is treated as an unsigned
quantity, and each successive memory location is filled in with a value one higher or
lower than the previous value. The initial value must be specified.

• For a random pattern, a random data sequence will be generated to fill in the memory
values. The data type in the sequence will match the type stored in the memory. For
std_logic and associated types, unsigned integer sequences are generated. A seed value
may be specified on the command line. For any given seed, the generated sequence is
identical.

The interpretation of the pattern data is performed according to the default system radix setting.
However, this can be overridden with a standard Verilog-style ‘<radix_char><data>
specification.

Syntax

mem load -infile <infile> [-endaddress <end>]
[-filltype < dec | inc | rand | value> -filldata <data_word>] [-fillradix <radix_type>]
[-format [bin | hex | mti]] [<path>] [-skip <Nwords>] [-startaddress <st>] [-truncate]

Commands
mem load

ModelSim SE Reference Manual, v6.5b 263

Arguments

• -infile <infile>

(Required unless the -filltype argument is used.) Updates memory data from the specified
file.

<infile> — The name of a memory file.

• -endaddress <end>

(optional) Specifies the end address for a range of addresses to be loaded.

<end>— Specified as any valid address in the memory.

• -filltype < dec | inc | rand | value>

(Required unless the -infile argument is used, in which case it is optional.) Fills in memory
addresses in an algorithmic pattern starting with the data word specified in -filldata. If a fill
pattern is used without a file option, the entire memory or specified address range is filled
with the specified pattern.

dec — Decrement each succeeding memory word by one digit.

inc — Increment each succeeding memory word by one digit.

rand — Randomly generate each succeeding memory word starting with the word
specified by -filldata as the seed.

value — Value (default) Substitute each memory word in the range with the value
specified in -filldata.

• -filldata <data_word>

(required when -filltype is used) Specifies a data word used to fill memory addresses in the
pattern specified by -filltype.

<data_word> — Specifies a data word. Must be in the same format as specified by the
-fillradix switch.

• -fillradix <radix_type>

Specifies radix of the data specified by the -filldata switch.

<radix_type> — Valid entries (or any unique abbreviations) are: binary, decimal,
unsigned, octal, hex, symbolic, and default.

• -format [bin | hex | mti]

(optional) Specifies the format of the file to be loaded.

bin— Specifies binary data format.

hex— Specifies hex format.

mti — MTI format. (default).

Specifies the format of the file to be loaded. The bin and hex values are the standard Verilog
hex and binary memory pattern file formats. These can be used with Verilog memories, and
with VHDL memories composed of std_logic types.

ModelSim SE Reference Manual, v6.5b264

Commands
mem load

In the MTI memory data file format, internal file address and data radix settings are stored
within the file itself. Thus, there is no need to specify these settings on the mem load
command line. If a format specified on the command line and the format signature stored
internally within the file do not agree, the file cannot be loaded.

• <path>

(optional) The hierarchical path to the memory instance. If the memory instance name is
unique, shorthand instance names can be used. The default is the current context, as shown
in the Structure window.

Memory address indexes can be specified in the instance name also. If addresses are
specified both in the instance name and the file, only the intersection of the two address
ranges is populated with memory data.

• -skip <Nwords>

(optional) Specifies the number of words to be skipped between each fill pattern value. Used
with -filltype and -filldata.

<Nwords> — Specified as an unsigned integer.

• -startaddress <st>

(optional) Specifies the start address for a range of addresses to be loaded.

<st> — Any valid address in the memory.

• -truncate

(optional) Ignores any most significant bits (msb) in a memory word which exceed the
memory word size. By default, when memory word size is exceeded, an error results.

Examples

• Load the memory pattern from the file vals.mem to the memory instance /top/m/mem,
filling the rest of the memory with the fixed-value 1‘b0.

mem load -infile vals.mem -format bin -filltype value -filldata 1‘b0
/top/m/mem

When you enter the mem display command on memory addresses 0 through 12, you see
the following:

mem display -startaddress 0 -endaddress 12 /top/m/mem
0: 0000000000000000 0000000000000001 0000000000000010 0000000000000011
4: 0000000000000100 0000000000000101 0000000000000110 0000000000000111
8: 0000000000001000 0000000000001001 0000000000000000 0000000000000000
12: 0000000000000000

• Load the memory pattern from the file vals.mem to the memory instance
/top/m/mru_mem, filling the rest of the memory with the fixed-value 16’Hbeef.

mem load -infile vals.mem -format hex -st 0 -end 12 -filltype value -filldata 16’Hbeef
/top/m/mru_mem

Commands
mem load

ModelSim SE Reference Manual, v6.5b 265

• Load memory instance /top/mem2 with two words of memory data using the Verilog
Hex format, skipping 3 words after each fill pattern sequence.

mem load -filltype value -filldata "16’hab 16’hcd" /top/mem2 -skip 3

• Truncate the msb bits that exceed the maximum word size (specified in HDL code).

mem load -format h -truncate -infile data_files/data.out /top/m_reg_inc/mem

Related Topics

• mem save

ModelSim SE Reference Manual, v6.5b266

Commands
mem save

mem save
The mem save command saves the contents of a memory instance to a file in any of the
supported formats: Verilog binary, Verilog hex, and MTI memory pattern data.

This command works identically to the mem display command, except that its output is written
to a file rather than a display.

The order in which the data is placed into the saved file depends on the format specified by the -
format argument. If you choose bin or hex format, the file is populated from low to high, to be
compatible with $readmem commands. This is in contrast to the default mti format, which
populates the file according to the memory declaration, from left index to right index.

You can use the mem save command to generate relocatable memory data files. The
-noaddress option omits the address information from the memory data file. You can later load
the generated memory data file using the memory load command.

Syntax

mem save [-format bin | hex | mti] [-addressradix <radix_type>] [-dataradix <radix_type>]
[-wordsperline <Nwords>] [-startaddress <st> -endaddress <end>] [-noaddress]
[-compress] [<path>] -outfile <filename>

Arguments

• -format bin | hex | mti

Specifies the output format. The <format_spec> can be specified as bin, hex, or mti.
Optional. The default format is mti. The MTI memory pattern data format is described in
mem load.

• -addressradix <radix_type>

Specifies the address radix for the default mti formatted files. Optional. The <radix_type>
can be specified as: dec or hex. The default is the decimal representation.

• -dataradix <radix_type>

Specifies the data radix for the default mti formatted files. Optional. The <radix_type> can
be specified as symbolic, binary, octal, decimal, unsigned, or hex. You can change the
default radix for the current simulation using the radix command. You can change the
default radix permanently by editing the DefaultRadix variable in the modelsim.ini file.

• -wordsperline <Nwords>

Specifies how many memory values are to be printed on each line. Optional. The default
assumes an 80 character display width. The <Nwords> is specified as an unsigned integer.

• -startaddress <st>

Specifies the start address for a range of addresses to be saved. The <st> can be specified as
any valid address in the memory. Optional.

Commands
mem save

ModelSim SE Reference Manual, v6.5b 267

• -endaddress <end>

Specifies the end address for a range of addresses to be saved. The <end> can be specified
as any valid address in the memory. Optional.

• -noaddress

Prevents addresses from being printed. Optional. Mutually exclusive with the -compress
option.

• -compress

Specifies that only unique lines are printed, identical lines are not printed. Optional.
Mutually exclusive with the -noaddress option.

• -outfile <filename>

Specifies that the memory contents be stored in <filename>. Required.

• <path>

The hierarchical path to the location of the memory instance. Optional. The default is the
current context, as shown in the Structure window.

Examples

• Save the memory contents of the instance /top/m/mem(0:10) to memfile, written in the
mti radix.

mem save -format mti -outfile memfile -start 0 -end 10 /top/m/mem

The contents of memfile are as follows:

// memory data file (do not edit the following line - required for
mem load use)
// format=mti addressradix=d dataradix=s version = 1.0
0: 0000000000000000 0000000000000001 0000000000000010
0000000000000011
4: 0000000000000100 0000000000000101 0000000000000110
0000000000000111
8: 0000000000001000 0000000000001001 xxxxxxxxxxxxxxxx

See also

mem display, mem load

ModelSim SE Reference Manual, v6.5b268

Commands
mem search

mem search
The mem search command finds and prints to the screen the first occurring match of a
specified memory pattern in the specified memory instance. Shorthand instance names are
accepted.

Optionally, you can instruct the command to print all occurrences. The search pattern can be
one word or a sequence of words.

Syntax

mem search [-addressradix <radix_type>] [-dataradix <radix_type>] [-all] [-replace <word>[
<word>…]] [-startaddress <address>] [-endaddress <address>] [<path>]
[-glob <word>[<word>…]] | [-regexp <word>[<word>…]]

Arguments

• -addressradix <radix_type>

Specifies the radix for the address being displayed. The <radix_type> can be specified as
decimal or hexadecimal. Default is decimal. Optional.

• -dataradix <radix_type>

Specifies the radix for the memory data being displayed. The <radix_type> can be specified
as symbolic, binary, octal, decimal, unsigned, or hex. Optional. By default the radix
displayed is the system default.

• -all

Searches the specified memory range and prints out all matching occurrences to the screen.
Optional. By default only the first matching occurrence is printed.

• -replace <word>[<word>…]

Replaces the found patterns with a designated pattern. Optional. If this option is used, each
pattern specified by the -pattern argument must have a corresponding pattern specified by
the -replace argument. Multiple word patterns are accepted, separated by a single white
space. No wildcards are allowed in the replaced pattern.

• -startaddress <address>

Specifies the start address for a range of addresses to search. The <address> can be specified
as any valid address in the memory. Optional.

• -endaddress <address>

Specifies the end address for a range of addresses to search. The <address> can be specified
as any valid address in the memory. Optional.

• <path>

Specifies the hierarchical path to the location of the memory instance. Optional. The default
is the current context value, as shown in the Structure window.

Commands
mem search

ModelSim SE Reference Manual, v6.5b 269

• -glob <word>[<word>…]

Specifies the value of the pattern, accepting glob pattern syntax for the search. This
argument and -regexp and -pattern are mutually exclusive arguments. This argument is
functionally identical to the -pattern argument. Required: either -glob or -regexp.

Multiple word patterns are accepted, separated by a single white space. Wildcards are
accepted in the pattern.

• -regexp <word>[<word>…]

Specifies the value of the pattern, accepting regular expression syntax, for the search. This
argument and -glob and -pattern are mutually exclusive arguments. Required: either -glob
or -regexp.

Multiple word patterns are accepted, separated by a single white space. Wildcards are
accepted in the pattern.

Examples

• Search for and print to the screen all occurrences of the pattern 16‘Hbeef in
/uut/u0/mem3:

mem search -glob 16‘Hbeef -dataradix hex /uut/u0/mem3

Returns:

#7845: beef
#7846: beef
#100223: beef

• Search for and print only the first occurrence of 16‘Hbeef in the address range
7845:150000, replacing it with 16‘Hcafe in /uut/u1/mem3:

mem search -glob 16‘Hbeef -d hex -replace 16‘Hcafe -st 7846 -end
150000 /uut/u1/mem3

Returns:

#7846: cafe

• Replace all occurrences of 16‘Hbeef with 16‘Habe in /uut/u1/mem3:

mem search -glob 16‘Hbeef -r 16‘Habe -addressadix hex -all
/uut/u1/mem3

Returns:

#1ea5: 2750
#1ea6: 2750
#1877f: 2750

• Search for and print the first occurrence any pattern ending in f:

mem search -glob "*f"

ModelSim SE Reference Manual, v6.5b270

Commands
mem search

• Search for and print the first occurrence of this multiple word pattern:

mem search -glob "abe cafe" /uut/u1/mem3

• Search for patterns "0000 0000" or "0001 0000" in m/mem:

mem search -data hex -regexp {000[0|1] 0{4}} m/mem -all

• Search for a pattern that has any number of 0s followed by any number of 1s as a
memory location, and which has a memory location containing digits as the value:

mem search -regexp {^0+1+$ \d+} m/mem -all

• Search for any initialized location in a VHDL memory:

mem search -regexp {[^U]} -all <vhdl_memory>

Commands
messages clearfilter

ModelSim SE Reference Manual, v6.5b 271

messages clearfilter
This command removes any filter you have set in the Message Viewer. Refer to the section
“Message Viewer Filter Dialog Box” for additional information about filtering in the Message
Viewer.

Syntax

messages clearfilter

Arguments

• No arguments

ModelSim SE Reference Manual, v6.5b272

Commands
messages setfilter

messages setfilter
This command performs the same action as the Message Viewer Filter Dialog Box, which
controls which messages are shown in the Message Viewer.

The ideal workflow for using this command is through the GUI:

1. View > Message Viewer.

2. Right-click in the Message Viewer and select Filter.

The Message Viewer Filter dialog box is displayed

3. Create your filter.

4. OK or Apply.

The Message Viewer updates based on your filter and a messages setfilter command,
which is equivalent to your settings, is output to the transcript.

5. Retain the messages setfilter command from the transcript for future use.

Syntax

messages setfilter <tcl_list>

Arguments

• <tcl_list> — The tcl_list argument is a complex string of tcl code that controls the filter
settings.

Examples

• Severity is error and time is greater than or equal to 100 ns

messages setfilter {{} \
(Severity Contains {Case Insensitive} error)} \
{AND (Time >= 100 ns)}

• The objects field contains neither clock or reset

messages setfilter {{} \
(Object Contains {Case Sensitive} clock)} \
{NOR (Object Contains {Case Sensitive} data)}

• The message string either contains reg_str2 or reg_str1

messages setfilter {{} \
(Message Contains {Case Insensitive} reg_str2)} \
{OR (Message Contains {Case Insensitive} reg_str1)}

Commands
modelsim

ModelSim SE Reference Manual, v6.5b 273

modelsim
The modelsim command starts the ModelSim GUI without prompting you to load a design.

This command is valid only for Windows platforms and may be invoked in one of three ways:

• from the DOS prompt

• from a ModelSim shortcut

• from the Windows Start > Run menu

To use modelsim arguments with a shortcut, add them to the target line of the properties of that
shortcut. (As expected, arguments also work on the DOS command line.)

You can invoke the simulator from either the ModelSim> prompt after the GUI starts or from a
DO file called by modelsim.

Syntax

modelsim [-do <macrofile>] [<license_option>] [-nosplash]

Arguments

• -do <macrofile>

Specifies the DO file to execute when modelsim is invoked. Optional.

Note
In addition to the macro called by this argument, if a DO file is specified by the
STARTUP variable in modelsim.ini, it will be called when the vsim command is invoked.

• <license_option>

Restricts the search of the license manager. Optional.
Refer to the vsim [<license_option>] argument for more information on license options.

• -nosplash

Disables the splash screen. Optional.

See also

vsim, do, “Using a Startup File”

ModelSim SE Reference Manual, v6.5b274

Commands
next

next
The next command continues a search after you have invoked the search command.

See the search command for more information.

Syntax

next <window_name> [-window <wname>]

Arguments

• <window_name>

Specifies the window in which to continue searching. Can be one of Signals, Objects,
Variables, Locals, Source, List, Wave, Process, Structure, or a unique abbreviation thereof.
Required.

• -window <wname>

Specifies an instance of the window that is not the default. Optional. Otherwise, the default
window is used. Use the view command to change the default window.

Commands
noforce

ModelSim SE Reference Manual, v6.5b 275

noforce
The noforce command removes the effect of any active force commands on the selected HDL
objects.

The noforce command also causes the object’s value to be re-evaluated.

You can use noforce on signals within SystemC modules, with the following limitations:

• Only mixed language boundaries types are supported.

• Individual bits and slices may not be forced or unforced.

Syntax

noforce <object_name> …

Arguments

• <object_name>

Specifies the name of an object. Required. Must match an object name used in a previous
force command. Multiple object names may be specified. Wildcard characters are allowed.

See also

force and Wildcard Characters

ModelSim SE Reference Manual, v6.5b276

Commands
nolog

nolog
The nolog command suspends writing of data to the wave log format (WLF) file for the
specified signals.

A flag is written into the WLF file for each signal turned off, and the GUI displays "-No Data-"
for the signal(s) until logging (for the signal(s)) is turned back on. Logging can be turned back
on by issuing another log command or by doing a nolog -reset.

Because use of the nolog command adds new information to the WLF file, WLF files created
when using the nolog command cannot be read by older versions of the simulator. If you are
using dumplog64.c, you will need to get an updated version.

Transactions written in SCV or Verilog are logged automatically, and can be removed with the
nolog command. A transaction is logged into the .wlf file if logging is enabled (in other words,
if no nolog command has disabled it) for that stream at the time when the transaction was
begun. A entire span of a transaction is either logged or not logged, period, regardless of the
begin and end times specified for that transaction.

Syntax

nolog [-all] [-depth <level>] [-howmany] [-in] [-inout] [-internal] [-out] [-ports] [-recursive]
[-reset] [<object_name>…]

Arguments

• -all

Turns off logging for all signals currently logged. Optional.

• -depth <level>

Restricts a recursive search (specified with the -recursive argument) to a certain level of
hierarchy. <level> is an integer greater than or equal to zero. For example, if you specify -
depth 1, the command descends only one level in the hierarchy. Optional.

• -howmany

Returns an integer indicating the number of signals found. Optional.

• -in

Turns off logging only for ports of mode IN whose names match the specification. Optional.

• -inout

Turns off logging only for ports of mode INOUT whose names match the specification.
Optional.

• -internal

Turns off logging only for internal (non-port) objects whose names match the specification.
Optional.

Commands
nolog

ModelSim SE Reference Manual, v6.5b 277

• -out

Turns off logging only for ports of mode OUT whose names match the specification.
Optional.

• -ports

Specifies that the scope of the search is to include all ports. Optional.

• -recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional. If
omitted, the search is limited to the selected region. You can use the -depth argument to
specify how far down the hierarchy to descend.

• -reset

Turns logging back on for all unlogged signals. Optional.

• <object_name>…

Specifies the object name which you want to unlog. Optional. Multiple object names may be
specified. Wildcard characters are allowed.

Examples

• Unlog all objects in the design.

nolog -r /*

• Turn logging back on for all unlogged signals.

nolog -reset

See also

add list, add wave, log

ModelSim SE Reference Manual, v6.5b278

Commands
notepad

notepad
The notepad command opens a simple text editor. It may be used to view and edit ASCII files
or create new files.

This mode can be changed from the Notepad Edit menu.

Returns nothing.

Syntax

notepad [<filename>] [-r | -edit]

Arguments

• <filename>

Name of the file to be displayed. Optional.

• -r | -edit

Selects the notepad editing mode: -r for read-only, and -edit for edit mode. Optional. Edit
mode is the default.

Commands
noview

ModelSim SE Reference Manual, v6.5b 279

noview
The noview command closes a window in the ModelSim GUI. To open a window, use the view
command.

Syntax

noview [<window_name>…]

Arguments

• <window_name>…

Specifies the window to close. Required. Wildcards and multiple window types may be
used. At least one type (or wildcard) is required. Refer to the view command for a complete
list of possible arguments.

You can also close Source windows using the tab or file name.

Examples

• Close the Wave window named "wave1".

noview wave1

• Close all List windows.

noview List

See also

view

ModelSim SE Reference Manual, v6.5b280

Commands
nowhen

nowhen
The nowhen command deactivates selected when commands.

Syntax

nowhen [<label>]

Arguments

• <label>

Specifies an individual when command. Optional. Wildcards may be used to select more
than one when command.

Examples

• This nowhen command deactivates the when command labeled 99.

when -label 99 b {echo “b changed”}
…
nowhen 99

• This nowhen command deactivates all when commands.

nowhen *

Commands
onbreak

ModelSim SE Reference Manual, v6.5b 281

onbreak
The onbreak command is used within a macro, which must be followed by a run command to
take effect. It specifies one or more commands to be executed when running a macro that
encounters a breakpoint in the source code.

Using the onbreak command without arguments will return the current onbreak command
string. An onbreak command can contain macro calls.

The default behavior for the onbreak command is the resume command.

Use an empty string to change the onbreak command back to its default behavior:

onbreak ""

In this case, the macro will be interrupted after a breakpoint occurs (after any associated bp
command string is executed).

Syntax

onbreak {[<command> [; <command>] …]}

Arguments

• <command>

Any command can be used as an argument to onbreak. If you want to use more than one
command, use a semicolon to separate the commands, or place them on multiple lines. The
entire command string must be placed in curly braces. You must use the onbreak command
before a run, run -continue, or step command. It is an error to execute any commands
within an onbreak command string following any of the run commands. This restriction
applies to any macros or Tcl procedures used in the onbreak command string. Optional.

Examples

• Examine the value of the HDL object data when a breakpoint is encountered. Then
continue the run command.

onbreak {exa data ; cont}

• Resume execution of the macro file on encountering a breakpoint.

onbreak {resume}

• This set of commands test for assertions. Assertions are treated as breakpoints if the
severity level is greater than or equal to the current BreakOnAssertion variable setting
(refer to modelsim.ini Variables). By default a severity level of failure or above causes a
breakpoint; a severity level of error or below does not.

ModelSim SE Reference Manual, v6.5b282

Commands
onbreak

set broken 0
onbreak {
set broken 1
resume

}
run -all
if { $broken } {
puts "failure"

} else {

puts "success"
}

See also

abort, bd, bp, do, onerror, resume, status

Commands
onElabError

ModelSim SE Reference Manual, v6.5b 283

onElabError
The onElabError command specifies one or more commands to be executed when an error is
encountered during the elaboration portion of a vsim command. The command is used by
placing it within a macro.

Use the onElabError command without arguments to return to a prompt.

Syntax

onElabError {[<command> [; <command>] …]}

Arguments

• <command>

Any command can be used as an argument to onElabError. If you want to use more than
one command, use a semicolon to separate the commands, or place them on multiple lines.
The entire command string must be placed in curly braces. Optional.

See also

do

ModelSim SE Reference Manual, v6.5b284

Commands
onerror

onerror
The onerror command is used within a macro, placed before a run command; it specifies one
or more commands to be executed when a running macro encounters an error.

Using the onerror command without arguments will return the current onerror command
string. Use an empty string to change the onerror command back to its default behavior (i.e.,
onerror ""). Use onerror with a resume command to allow an error message to be printed
without halting the execution of the macro file.

You can also set the global OnErrorDefaultAction Tcl variable to dictate what action ModelSim
takes when an error occurs. To set the variable on a permanent basis, you must define the
variable in a modelsim.tcl file (Refer to “The modelsim.tcl File” for details).

When your onerror command is successful, the macro will continue normally, unless your
command instructs the tool to quit (onerror {quit -f}) or break (onerror {break}). However, if
your onerror command is not successful, the simulator will be halted, for example onerrror {add
wave b} when you don’t have a signal named b.

The onerror command is executed when a Tcl command encounters an error in the macro file
that contains the onerror command (note that a run command does not necessarily need to be
in process). Conversely, OnErrorDefaultAction will run even if the macro does not contain a
local onerror command. This can be useful when you run a series of macros from one script,
and you want the same behavior across all macros.

Syntax

onerror {[<command> [; <command>] …]}

Arguments

• <command>

Any command can be used as an argument to onerror. If you want to use more than one
command, use a semicolon to separate the commands, or place them on multiple lines. The
entire command string must be placed in curly braces. Optional.

Example

• Force the simulator to quit if an error is encountered while the macro is running.

onerror {quit -f}

See also

abort, do, onbreak, resume, status

Commands
onfinish

ModelSim SE Reference Manual, v6.5b 285

onfinish
The onfinish command controls simulator behavior when encountering $finish or sc_stop() in
the design code.

When you specify this command without an argument, it returns the current behavior.

Syntax

onfinish [ask | exit | final | stop | default]

Arguments

• ask — in batch mode, the simulation will exit; in GUI mode, the user is prompted for action.

• exit — the simulation exits without asking for any confirmation.

• final — the simulation executes all finish blocks before exiting.

• stop — the simulation ends but remains loaded in memory, allowing for easier post-
simulation tasks.

• default — uses the current OnFinish setting in the modelsim.ini file.

ModelSim SE Reference Manual, v6.5b286

Commands
pause

pause
The pause command placed within a macro interrupts the execution of that macro, allowing you
to perform interactive debugging of the macro file.

Syntax

pause

Arguments

• None.

Description

When you execute a macro and that macro gets interrupted, the prompt will change to:

VSIM(paused)>

This “pause” prompt reminds you that a macro has been interrupted.

When a macro is paused, you may invoke another macro, and if that one gets interrupted, you
may even invoke another — up to a nesting level of 50 macros.

If the status of nested macros gets confusing, use the status command. It will show you which
macros are interrupted, at what line number, and show you the interrupted command.

To resume the execution of the macro, use the resume command. To abort the execution of a
macro use the abort command.

See also

abort, do, resume, run, status

Commands
pop

ModelSim SE Reference Manual, v6.5b 287

pop
The pop command moves the specified number of call frames up the C callstack.

This command is used with C Debug. See “C Debug” for more information.

Syntax

pop <#_of_levels>

Arguments

• <#_of_levels>

Specifies the number of call frames to move up the C callstack. Optional. If unspecified, 1
level is assumed.

Examples

• Move up 1 call frame.

pop

• Move up 4 call frames.

pop 4

See also

push, “C Debug”

ModelSim SE Reference Manual, v6.5b288

Commands
power add

power add
The power add command specifies the signals or nets to monitor for power information. When
power add is called on a signal or net, vsim keeps account of any toggling activity of that signal.
The information is sent a file when you run the power report command. This data produced can
be translated and used by third-party power analysis tools.

The basic steps for using this command are:

1. Add the signals or nets of interest with the power add command.

2. Run the simulation with the run command.

3. Produce a report with the power report command.

Note
You can use the power off command to disable monitoring between runs and then use the
power on command to resume monitoring.

Syntax

power add [-in] [-inout] [-internal] [-nocellnet] [-out] [-ports] [-r] <signals_nets> ...

Arguments

• -in

Specifies only inputs. Optional.

• -inout

Specifies only inouts. Optional.

• -internal

Specifies only design internal signals or nets. Optional.

• -nocellnet

Prevents vsim command from monitoring cell-net for toggling or any power-related
activity. Optional.

• -out

Specifies only outputs. Optional.

• -ports

Specifies only design ports. Optional.

• -r

Searches recursively on a wildcard specified for the signal or net. Optional.

• <signals_nets> ...

Specifies the signal or net to monitor. Required.

Commands
power add

ModelSim SE Reference Manual, v6.5b 289

You can specify multiple names and also use wildcards. The signals and nets must refer to:

o VHDL — signals of type bit, std_logic, or std_logic_vector

o Verilog — nets

When using wildcards, the -in, -inout, -internal, -out, and -ports arguments filter the
qualifying signals.

If you specify more than one of the arguments (-in, -inout, -internal, -out, or -ports), the logical
OR of the arguments is performed.

ModelSim SE Reference Manual, v6.5b290

Commands
power off

power off
The power off command works in conjunction with the power add command to make vsim stop
updating toggle activity data for the specified signal or net.

After this command is executed, every subsequent run command ignores the power add
command.

Syntax

power off [-all] [-in] [-inout] [-internal] [-off] [-on] [-out] [-ports] [-r] <signals_nets> ...

Arguments

• -all

Specifies inputs, inouts, and outputs. Optional.

• -in

Specifies only inputs. Optional.

• -inout

Specifies only inouts. Optional.

• -internal

Specifies only design internal signals or nets. Optional.

• -out

Specifies only outputs. Optional.

• -ports

Specifies only design ports. Optional.

• -r

Searches recursively on a wildcard specified for the signal or net. Optional.

• <signals_nets> ...

Specifies the signal or net to monitor. Required.

You can specify multiple names and also use wildcards. The signals and nets must refer to:

o VHDL — signals of type bit, std_logic, or std_logic_vector

o Verilog — nets

When using wildcards, the -in, -inout, -internal, -out, and -ports arguments filter the
qualifying signals.

If you specify more than one of the arguments (-in, -inout, -internal, -out, or -ports), the logical
OR of the arguments is performed.

Commands
power off

ModelSim SE Reference Manual, v6.5b 291

Example

Assume that signal /top/a toggles every 5ns.

• Without running the power off command:

power add /top/a
run 400ns
power report

Node Tc Ti Time At 1 Time At 0 Time At X
--
/top/a 80 0 200 200 0
--

• Running the power off command (and resuming with power on):

power add /top/a
run 100ns
power off
run 100ns
power on
run 200ns
power report

Node Tc Ti Time At 1 Time At 0 Time At X
--
/top/a 60 0 150 150 0
--

ModelSim SE Reference Manual, v6.5b292

Commands
power on

power on
The power on command works in conjunction with the power add command to make vsim
begin or resume updating toggle activity data for the specified signal or net.

After this command is executed, every subsequent run command implements the power add
command.

Syntax

power on [-all] [-in] [-inout] [-internal] [-off] [-on] [-out] [-ports] [-r] <signals_nets> ...

Arguments

• -all

Specifies inputs, inouts, and outputs. Optional.

• -in

Specifies only inputs. Optional.

• -inout

Specifies only inouts. Optional.

• -internal

Specifies only design internal signals or nets. Optional.

• -out

Specifies only outputs. Optional.

• -ports

Specifies only design ports. Optional.

• -r

Searches recursively on a wildcard specified for the signal or net. Optional.

• <signals_nets> ...

Specifies the signal or net to monitor. Required.

You can specify multiple names and also use wildcards. The signals and nets must refer to:

o VHDL — signals of type bit, std_logic, or std_logic_vector

o Verilog — nets

When using wildcards, the -in, -inout, -internal, -out, and -ports arguments filter the
qualifying signals.

If you specify more than one of the arguments (-in, -inout, -internal, -out, or -ports), the logical
OR of the arguments is performed.

Commands
power on

ModelSim SE Reference Manual, v6.5b 293

Example

Assume that signal /top/a toggles every 5ns.

• Without running the power off command:

power add /top/a
run 400ns
power report

Node Tc Ti Time At 1 Time At 0 Time At X
--
/top/a 80 0 200 200 0
--

• Running the power off command (and resuming with power on):

power add /top/a
run 100ns
power off
run 100ns
power on
run 200ns
power report

Node Tc Ti Time At 1 Time At 0 Time At X
--
/top/a 60 0 150 150 0
--

ModelSim SE Reference Manual, v6.5b294

Commands
power report

power report
The power report command reports power information for the objects specified with power
add.

The report can be in either a tabular ASCII format (-file) or a Switching Activity Interchange
Format (SAIF) format (-bsaif).

Data produced by these commands can be translated and used by third-party tools used for
power analysis. The power report command is intended to be used as follows:

1. Add the objects of interest with the power add command.

2. Run the simulation with the run command.

3. Produce the report with the power report command.

Syntax

power report [-all] [-noheader] [-file <filename>] [-bsaif <filename>]

Arguments

• -all

Writes information on all objects logged with power add. Optional.

If you do not specify this argument, the report lists only those signals or nets that have a
toggle count that is non-zero.

• -noheader

Suppresses the header to aid in post processing. Optional.

This argument has no affect on the output from the -bsaif switch.

• -file <filename>

Specifies a filename for the ASCII-format power report. Optional.

If you do not specify this argument or the -bsaif argument, the tabular ASCII-format power
report is written to the transcript. You can specify both -file and -bsaif on the same
command line, resulting in both reports being generated.

• -bsaif <filename>

Specifies the filename for backward-SAIF format power report. Optional.

If you do not specify this argument or the -file argument, the tabular ASCII-format power
report is written to the transcript. You can specify both -file and -bsaif on the same
command line, resulting in both reports being generated.

Description

The report format for each line is:

Node, Tc, Ti, Time at 1, Time at 0, Time at X

Commands
power report

ModelSim SE Reference Manual, v6.5b 295

• Node — The hierarchical path of the signal, net or port

• Tc (toggle count) — the number of 0->1 and 1->0 transitions

• Ti (hazard count) — the number of 0/1->X, and X->0/1 transitions

Note that if a signal is initialized at X, and later transitions to 0 or 1, it is not counted as
a hazard.

• Time at ... — the length of time spent at each of the three respective states

Example Reports

The following example is from the -file output of the tabular ASCII-format power report.

#
Power Report Interval
1100000 ps
#
Power Report Node Tc Ti Time At 1 Time At 0 Time At X

/test_sm/out_wire(7) 1 0 669000 ps 420000 ps 11000 ps
/test_sm/out_wire(6) 2 0 520000 ps 569000 ps 11000 ps
/test_sm/out_wire(5) 3 0 149000 ps 940000 ps 11000 ps
/test_sm/out_wire(4) 2 0 60000 ps 1029000 ps 11000 ps
/test_sm/out_wire(3) 1 0 669000 ps 420000 ps 11000 ps
...

The following example is from the -bsaif output of the backward SAIF format power report.
This file contains Header information (between SAIFILE and DURATION entries) and specific
instance information (INSTANCE entries)

(SAIFILE
(SAIFVERSION "2.0")
(DIRECTION "backward")
(DESIGN)
(VENDOR "Mentor Graphics")
(PROGRAM_NAME "vsim")
(VERSION "2.3b")
(TIMESCALE 100ps)
(DIVIDER /)
(DURATION 1200000 ps)
(INSTANCE

(INSTANCE test_sm
(NET out_wire(7)

(T0 420000 ps) (T1 769000 ps) (TX 11000 ps)
(TC 1) (IG 0)

)
)

)
(INSTANCE

(INSTANCE test_sm
(NET out_wire(6)

(T0 660000 ps) (T1 529000 ps) (TX 11000 ps)
(TC 3) (IG 0)

)
)

)

ModelSim SE Reference Manual, v6.5b296

Commands
power report

...

Commands
power reset

ModelSim SE Reference Manual, v6.5b 297

power reset
The power reset command selectively resets power information to zero for the signals or nets
specified with the power add command.

Syntax

power reset [-all] [-in] [-inout] [-out] [-internal] [-ports] [-r] <signalsOrNets> ...

Arguments

• -all

Resets all signals/nets. Optional.

• -in

Resets only inputs. Optional.

• -inout

Resets only inouts. Optional.

• -out

Resets only outputs. Optional.

• -internal

Resets only design internal signals or nets. Optional.

• -ports

Resets only design ports. Optional.

• -r

Searches recursively on a wildcard specified for the signal or net. Optional.

• <signalsOrNets> ...

Specifies the signal or net to reset. Required.

You can specify multiple names and also may use wildcards. The signals and nets must refer
to:

o VHDL — signals of type bit, std_logic, or std_logic_vector

o Verilog — nets

When using wildcards, the -in, -inout, -internal, -out, and -ports arguments filter the
qualifying signals.

ModelSim SE Reference Manual, v6.5b298

Commands
precision

precision
The precision command determines how real numbers display in the graphic interface (e.g.,
Objects, Wave, Locals, and List windows). It does not affect the internal representation of a real
number and therefore precision values over 17 are not allowed.

Using the precision command without any arguments displays the current precision setting.

Syntax

precision [<digits>[#]]

Arguments

• <digits>[#]

Specifies the number of digits to display. Optional. Default is 6. Trailing zeros are not
displayed unless you append the ’#’ sign. See examples for more details.

Examples

• Results in 4 digits of precision.

precision 4

For example:

1.234 or 6543

• Results in 8 digits of precision including trailing zeros.

precision 8#

For example:

1.2345600 or 6543.2100

• Results in 8 digits of precision but doesn’t print trailing zeros.

precision 8

For example:

1.23456 or 6543.21

Commands
printenv

ModelSim SE Reference Manual, v6.5b 299

printenv
The printenv command prints to the Transcript window the current names and values of all
environment variables.

If variable names are given as arguments, prints only the names and values of the specified
variables.

Syntax

printenv [<var>…]

Arguments

• <var>…

Specifies the name(s) of the environment variable(s) to print. Optional.

Examples

• Print all environment variable names and their current values.

printenv

For example,

CC = gcc
DISPLAY = srl:0.0
…

• Print the specified environment variables:

printenv USER HOME

USER = vince
HOME = /scratch/srl/vince

ModelSim SE Reference Manual, v6.5b300

Commands
process report

process report
The process report command creates a textual report of all processes displayed in the Process

Window.

Syntax

process report [-file <filename>] [-append]

Arguments

• -file <filename>

Designates the name of the external file where raw process data will be saved. Optional. If
<filename> is not given, then the output is redirected to stdout.

• -append

Specifies that process data is to be appended to the current process report file. Optional. If
this option is not used, the process data will overwrite the existing process report file.

Commands
profile clear

ModelSim SE Reference Manual, v6.5b 301

profile clear
The profile clear command clears any performance data that has been gathered during previous
run commands.

After this command is executed, all profiling data will be reset.

This command has no effect on the current profiling session. The last profile on or profile off
command will still be in effect.

Syntax

profile clear

Arguments

• None

See also

“Profiling Performance and Memory Use”, profile interval, profile off, profile on, profile
option, profile reload, profile report

Note
Profiling must be active when this command is invoked. Use the profile on command to
begin profiling.

ModelSim SE Reference Manual, v6.5b302

Commands
profile interval

profile interval
The profile interval command selects the frequency with which the profiler collects samples
during a run command. To use this command, first enable profiling with the profile on
command.

Syntax

profile interval [<sample_frequency>]

Arguments

• <sample_frequency>

An integer value from 1 to 999 that represents how many milliseconds to wait between each
sample collected during a profiled simulation run. Default is 10 ms.

If the sample-frequency is not supplied, the profile interval command returns the current
sample frequency.

See also

“Profiling Performance and Memory Use”, profile clear, profile off, profile on, profile option,
profile reload, profile report

Commands
profile off

ModelSim SE Reference Manual, v6.5b 303

profile off
The profile off command disables runtime memory allocation and statistical performance
profiling.

Syntax

profile off [{-solver | -qdas | -classes | -cvg | -assertions}] [-m] [-p]

Arguments

• {-solver | -qdas | -classes | -cvg | -assertions}

Disables fine-grain analysis of memory capacity data being collected for the specified
SystemVerilog construct.

solver — calls to randomize ()
qdas — queues, dynamic arrays, associative arrays
classes — class objects
cvg — covergroups
assertions — assertions and cover directives

• -m

Disables memory allocation profiling only. Optional.

• -p

Disables statistical performance profiling only. Optional.

See also

“Profiling Performance and Memory Use”, profile clear, profile interval, profile on, profile
option, profile reload, profile report

ModelSim SE Reference Manual, v6.5b304

Commands
profile on

profile on
The profile on command enables runtime memory allocation and statistical performance
profiling.

After this command is executed, every subsequent run command will be profiled.

Syntax

profile on [{-solver | -qdas | -classes | -cvg | -assertions}] [-m] [-p] [-file <filename> | -fileonly
<filename>]]

Arguments

• {-solver | -qdas | -classes | -cvg | -assertions}

Enables fine-grain analysis of memory capacity data collected for the specified
SystemVerilog construct.

solver — calls to randomize ()
qdas — queues, dynamic arrays, associative arrays
classes — class objects
cvg — covergroups
assertions — assertions and cover directives

• -m

Enables memory allocation profiling only. Optional.

• -p

Enables statistical performance profiling only. Optional.

• -file <filename>

Allows creation of a raw profile data file that can be post-processed later. Saves memory
profile data into both an external file and internal data structures. Optional

• -fileonly <filename>

Allows creation of a raw profile data file that can be post-processed later. Saves memory
profile data into an external file only, not to internal data structures. Optional

See also

“Profiling Performance and Memory Use”, profile clear, profile interval, profile off, profile
option, profile reload, profile report

Example

• This set of commands enables the profiler, runs the simulation for 1000 nanoseconds,
and outputs the profiling data to perf.rpt.

profile on
run 1000 ns
profile report -file perf.rpt

Commands
profile option

ModelSim SE Reference Manual, v6.5b 305

profile option
The profile option command changes how profiling data are reported. The command acts like a
toggle: invoking it once turns on the option; invoking it a second time turns the option back off.

To use this command, first enable profiling with the profile on command.

Syntax

profile option collapse_sections [on | off | status] collect_calltrees [on | off]

Arguments

• collapse_sections

Groups profiling data by section. A section consists of regions of code such as VHDL
processes, functions, or Verilog always blocks. By default all profiling data are reported on
a per line basis.

• on | off | status

Specifies whether to enable, disable, or report the status of the profile options. Optional. If
omitted, the profile option command acts as a toggle.

• collect_calltrees [on | off]

Collects data for call trees, showing which functions or routines call which others. By
default this information is not collected. Simulation time and resource usage will increase if
you turn on the collection of this data.

See also

“Profiling Performance and Memory Use”, profile clear, profile interval, profile off, profile on,
profile reload, profile report

ModelSim SE Reference Manual, v6.5b306

Commands
profile reload

profile reload
The profile reload command reads in raw profile data from an external file created during
memory allocation profiling. The profile report command and the Profile and Profile Details
windows of the user interface can be used to view the data. The intent of the raw profile files is
to allow analysis of memory profile data in cases where the memory required for the design plus
the memory required for internal profiling data exceeds the memory capacity of the machine.

To use this command, you must first use the -m -file <filename> or the -m -fileonly
<filename> arguments with the profile on command.

The profile reload command will clear all performance and memory profiling data collected to
that point (implicit profile clear). Any currently loaded design will be unloaded (implicit
quit -sim), and run-time profiling will be turned off (implicit profile off -m -p). If a new design
is loaded after you have read the raw profile data, then all internal profile data is cleared
(implicit profile clear), but run-time profiling is not turned back on.

Syntax

profile reload <filename>

Arguments

• <filename>

Designates the name of the external file where raw profile data will be saved. Required.

See also

“Profiling Performance and Memory Use”, profile clear, profile interval, profile off, profile on,
profile option, profile report

Commands
profile report

ModelSim SE Reference Manual, v6.5b 307

profile report
The profile report command outputs profiling data that have been gathered up to the point that
you execute the command.

To use this command, you must first enable profiling using the profile on command or the
-memprof argument to the vsim command.

Syntax

profile report

 [-ranked |
-calltree |
-structural [-level <positive_integer>] [<rootname>] [-showcalls] |
-du [<du_name> | -showcalls]
-callercallee <func> |
-functoinst <func> |
-instofdef <inst> [-inclusiveDuMatch 0|1]]

[-cutoff <percentage>] [-file <filename>] [-m] [-p] [-onexit] [-assertions] [-classes] [-cvg]
[-qdas] [-solver]

Arguments

• -assertions

Reports memory usage data for SystemVerilog assertions and cover directives.

• -calltree

Reports a hierarchical callstack list of statistical performance and memory allocation data.
Optional. This is the default report type.

• -callercallee <func>

Creates a ranked report of all callers and callees of the specified function, where <func>
indicates a function name (for Systemc, PLI, FLI) or a <.v/.vhd-filename>:<line#>.
Optional.

• -classes

Reports memory usage data for the current number of objects allocated, the current memory
allocated for class object, the peak memory allocated and peak time.

• -cutoff <percentage>

Filters out entries in the report that had less than <percentage> of time spent in them.
Optional. Default is to report all entries (i.e., 0%).

• -cvg

Reports memory usage data for the number of covergroups, cross, bins and memory
allocated.

ModelSim SE Reference Manual, v6.5b308

Commands
profile report

• -du [<du_name> | -showcalls]

Reports a list of statistical performance and memory allocation data organized by design
unit. Optional.

<du_name> — reports information about a specific design unit only. If omitted, the
report includes all design units. Optional.

-showcalls — lists function callstacks beneath each design unit. If omitted, functional
callstacks are not shown in the report. Optional.

• -file <filename>

Specifies a file name for the report. Optional. Default is to write the report to the Transcript
window.

• -functoinst <func>

Creates a ranked profile report of all instances of the specified function, where <func>
indicates a function name (for Systemc, PLI, FLI) or a <.v/.vhd-filename>:<line#>.
Optional.

• -instofdef <inst> [-inclusiveDuMatch 0|1]

Creates a ranked report of all instances with the same definition as the specified instance,
showing profile results for each. <inst> is the hierarchical pathname of the specified
instance. Optional.

The optional argument -inclusiveDuMatch 0|1 determines how strict the instance definition
is. An inclusiveDuMatch of 1 (the default) includes in the report all instances that reference
design units with the same primary name. For example if your design has multiple
architectures for a VHDL entity, a value of 1 will cause matching for all instances that use
the same entity. An inclusiveDuMatch of 0 includes in the report only instances that
reference the exact design unit (e.g., a specific entity/architecture pair).

• -m

Displays memory allocation data in the report. Optional. If -m is not specified, the profile
report will include memory allocation data if the memory profiler was previously enabled
and memory information was collected during a run.

• -onexit

Causes the command to be executed when the simulator exits. Optional. Allows you to
queue multiple profile report commands.

• -p

Displays statistical performance samples in the report. Optional. If -p is not specified, the
profile report will include performance statistics if the performance profiler was previously
enabled and profile samples were collected during a run.

• -qdas

Reports memory usage data for queues, dynamic arrays, and associative arrays.

Commands
profile report

ModelSim SE Reference Manual, v6.5b 309

• -ranked

Reports a ranked list of statistical performance and memory allocation data. Optional.

• -solver

Reports memory usage data for calls to randomize() and memory usage.

• -structural [-level <positive_integer>] [<rootname>] [-showcalls]

Reports a structural list of statistical performance and memory allocation data. Optional.

-level <positive_integer> — determines how far to expand instance hierarchy. If
omitted, the report includes all levels. Optional.

<rootname> — causes the report to be rooted at the specified instance. If not specified,
the report contains all roots and any orphan samples. Optional.

-showcalls — lists function callstacks beneath each instance. If omitted, functional
callstacks are not shown in the report. Optional.

See also

“Profiling Performance and Memory Use”, profile clear, profile interval, profile off, profile on,
profile option, profile reload

Examples

• This set of commands enables the statistical sampling profiler, runs the simulation for
1000 nanoseconds, and outputs the calltree profiling data to a file named perf.rpt.

profile on
run 1000 ns
profile report -file perf.rpt

• Output ranked profile data for instances accounting for greater than 2% of the
simulation time.

profile report -ranked -cutoff 2

• Output to file perf.rpt ranked profile data for all instances that use the same entity as
does instance /top/c/s0.

profile report -file perf.rpt -instofdef /top/c/s0

ModelSim SE Reference Manual, v6.5b310

Commands
project

project
The project command is used to perform common operations on projects. Some of the project
commands must be used outside of a simulation session.

Syntax

project [addfile <filename> [<file_type>] [<folder_name>]] | [addfolder <foldername>
[<folder_parent>]] | [calculateorder] | [close] | [compileall [-n]] | [compileorder] |
[compileoutofdate [-n]] | [delete <filename>] | [env] | [history] | [new <home_dir>
<proj_name> [<defaultlibrary>] [<intialini>] [<reference>]] | [open <project>] |
[removefile <filename>]

Arguments

• addfile <filename> [<file_type>] [<folder_name>]

Adds the specified file to the current open project. Optional. You may also specify the HDL
file type and folder name in which the file will be placed. If no folder name is specified the
file will be placed in the top level folder.

• addfolder <foldername> [<folder_parent>]

Creates a folder to contain the project. Optional. You may also specify a parent folder for
the project folder. If unspecified, the project folder is placed at the top level.

• calculateorder

Determines the compile order for the project by compiling each file, then moving any
compiles that fail to the end of the list. This is repeated until there are no more compile
errors. Optional.

• close

Closes the current project. Optional.

• compileall [-n]

Compiles all files in the project using the defined compile order. Optional. The -n option
will return a list of the compile commands this command would execute, without actually
executing the compiles.

• compileorder

Returns the current compile order list. Optional.

• compileoutofdate [-n]

Compiles all files that have a newer date/time stamp than the last time the file was compiled.
Optional. The -n option will return a list of the compile commands this command would
execute, without actually executing the compiles.

• delete <filename>

Deletes the specified project (.mpf) file. Optional.

Commands
project

ModelSim SE Reference Manual, v6.5b 311

• env

Returns the current project file. Optional.

• history

Lists a history of manipulated projects. Optional. Must be used outside of a simulation
session.

• new <home_dir> <proj_name> [<defaultlibrary>] [<intialini>] [<reference>]

Creates a new project under a specified home directory with a specified name and optionally
a default library. Optional. The name of the work library will default to "work" unless
specified. An optional modelsim.ini file can be specified as a seed for the project file by
using the initialini option. If initialini is an empty string, then ModelSim uses the current
modelsim.ini file when creating the project. You must specify a default library if you want
to specify initialini. A new project cannot be created while a project is currently open or a
simulation is in progress. The boolean "reference" option indicates if library mappings will
include an "others" clause back to the initial .ini file (1) or copy all the mappings into the
new file (0).

• open <project>

Closes any currently opened project and opens a specified project file (must be a valid .mpf
file), making it the current project. Changes the current working directory to the project's
directory. Optional. Must be used outside of a simulation session.

• removefile <filename>

Removes the specified file from the current project. Optional.

Examples

• Make /user/george/design/test3/test3.mpf the current project and changes the current
working directory to /user/george/design/test3.

project open /user/george/design/test3/test3.mpf

• Execute current project library build scripts.

project compileall

ModelSim SE Reference Manual, v6.5b312

Commands
property list

property list
The property list command changes one or more properties of the specified signal, net, or
register in the List window.

The properties correspond to those you can set by selecting View > Signal Properties (List
window). At least one argument must be used.

Syntax

property list [-window <wname>] [-label <label>] [-radix <type>]
[-radixenumnumeric | -radixenumsymbolic] [-trigger <setting>] [-width <number>]
<pattern>

Arguments

• -window <wname>

(optional) Specifies a particular List window when multiple instances of the window exist
(e.g., list2). If no window is specified the default window is used; the default window is
determined by the most recent invocation of the view command.

• -label <label>

(optional) Specifies the label to appear at the top of the List window column.

• -radix <type>

(optional) Specifies the radix for List window objects.

Valid entries (or any unique abbreviations) are: binary, ascii, unsigned, decimal, octal, hex,
symbolic, time, and default. If no radix is specified for an enumerated type, the default
representation is used. You can change the default radix for the current simulation using the
radix command. You can change the default radix permanently by editing the DefaultRadix
variable in the modelsim.ini file.

If you specify a radix for an array of a VHDL enumerated type, ModelSim converts each
signal value to 1, 0, Z, or X.

• -radixenumnumeric

(optional) Displays SystemVerilog and SystemC enums as numbers rather than strings. The
current radix setting controls the actual enum value displayed, except when the radix setting
is ASCII. If the current radix setting is ASCII, the value of SystemVerilog and SystemC
enums are displayed as a string. This option overrides the global setting of the default radix
(the DefaultRadix variable in the modelsim.ini file).

• -radixenumsymbolic

(optional) Reverses the action of the -radixenumnumeric option and sets the global setting
of the default radix (the DefaultRadix variable in the modelsim.ini file) to symbolic.

• -trigger <setting>

(optional) Valid settings are 0 or 1. Setting trigger to 1 will enable the List window to be
triggered by changes in the objects matching the specified pattern.

Commands
property list

ModelSim SE Reference Manual, v6.5b 313

• -width <number>

(optional) Valid numbers are 1 through 256. Specifies the desired column width for the
objects matching the specified pattern.

• <pattern>

(required) Specifies a name or wildcard pattern to match the full pathnames of the signals,
nets, or registers for which you are defining the property change.

ModelSim SE Reference Manual, v6.5b314

Commands
property wave

property wave
The property wave command changes one or more properties of the specified signal, net, or
register in the Wave window.

The properties correspond to those you can set by selecting View > Signal Properties (Wave
window). At least one argument must be used.

Syntax

property wave [-window <wname>] [-color <color>] [-format <format>] [-height <number>]
[-offset <number>] [-radix <type>] [-radixenumnumeric | -radixenumsymbolic]
[-scale <float>] <pattern>

Arguments

• -window <wname>

Specifies a particular Wave window when multiple instances of the window exist (e.g.,
wave2). Optional. If no window is specified the default window is used; the default window
is determined by the most recent invocation of the view command.

• -color <color>

Specifies the color to be used for the waveform. Optional.

• -format <format>

The waveform <format> can be expressed as:

analog — Displays a waveform whose height and position is determined by the -scale
and -offset values (shown below). Optional.

literal — Displays the waveform as a box containing the object value (if the value fits
the space available). Optional.

logic — Displays values as 0, 1, X, or Z. Optional.

• -height <number>

Specifies the height (in pixels) of the waveform. Optional.

• -offset <number>

Specifies the waveform position offset in pixels. Valid only when -format is specified as
analog. Optional.

• -radix <type>

Specifies the radix for Wave window objects. Optional.

Valid entries (or any unique abbreviations) are: binary, ascii, unsigned, decimal, octal, hex,
symbolic, time, and default. If no radix is specified for an enumerated type, the default
representation is used. You can change the default radix for the current simulation using the
radix command. You can change the default radix permanently by editing the DefaultRadix
variable in the modelsim.ini file.

Commands
property wave

ModelSim SE Reference Manual, v6.5b 315

If you specify a radix for an array of a VHDL enumerated type, ModelSim converts each
signal value to 1, 0, Z, or X.

• -radixenumnumeric

(optional) Displays SystemVerilog and SystemC enums as numbers rather than strings. The
current radix setting controls the actual enum value displayed, except when the radix setting
is ASCII. If the current radix setting is ASCII, the value of SystemVerilog and SystemC
enums are displayed as a string. This option overrides the global setting of the default radix
(the DefaultRadix variable in the modelsim.ini file).

• -radixenumsymbolic

(optional) Reverses the action of the -radixenumnumeric option and sets the global setting
of the default radix (the DefaultRadix variable in the modelsim.ini file) to symbolic.

• -scale <float>

Specifies the waveform scale relative to the unscaled size value of 1. Valid only when
-format is specified as analog. Optional.

• <pattern>

Specifies a name or wildcard pattern to match the full path names of the signals, nets, or
registers for which you are defining the property change. Required.

ModelSim SE Reference Manual, v6.5b316

Commands
push

push
The push command moves the specified number of call frames down the C callstack.

This command is used with C Debug. Refer to “C Debug” for more information.

Syntax

push <#_of_levels>

Arguments

• <#_of_levels>

Specifies the number of call frames to move down the C callstack. Optional. If unspecified,
1 level is assumed.

Examples

• Move down 1 call frame.

push

• Move down 4 call frames.

push 4

See also

pop, “C Debug”

Commands
pwd

ModelSim SE Reference Manual, v6.5b 317

pwd
The Tcl pwd command displays the current directory path in the Transcript window.

Syntax

pwd

Arguments

• None

ModelSim SE Reference Manual, v6.5b318

Commands
quietly

quietly
The quietly command turns off transcript echoing for the specified command.

Syntax

quietly <command>

Arguments

• <command>

Specifies the command for which to disable transcript echoing. Required. Any results
normally echoed by the specified command will not be written to the Transcript window. To
disable echoing for all commands use the transcript command with the -quietly option.

See also

transcript

Commands
quit

ModelSim SE Reference Manual, v6.5b 319

quit
The quit command exits the simulator.

If you want to stop the simulation using a when command, you must use a stop command within
your when statement, you must not use an exit or a quit command. The stop command acts like
a breakpoint at the time it is evaluated.

Syntax

quit [-f | -force] [-sim] [-code <integer>]

Arguments

• -f | -force

Quits without asking for confirmation. Optional. If omitted, ModelSim asks you for
confirmation before exiting. (The -f and -force arguments are equivalent.)

• -sim

Unloads the current design in the simulator without exiting ModelSim. All files opened by
the simulation will be closed including the WLF file (vsim.wlf).

• -code <integer>

Quits the simulation and issues an exit code.

<integer> — This is the value of the exit code. You should not specify an exit code that
already exists in the tool. Refer to the section "Exit Codes" in the User’s Manual for a
list of existing exit codes. You can also specify a variable in place of the <integer>.

You should always print a message before executing the quit -code command to explicitly
state the reason for exiting.

Examples

Refer to the Examples section of the exit command for an example of using the -code argument.
The quit and exit commands behave similarly in this regard.

ModelSim SE Reference Manual, v6.5b320

Commands
qverilog

qverilog
The qverilog command compiles (vlog), optimizes (vopt), and simulates (vsim) Verilog and
SystemVerilog designs in a single step. It combines the compile, elaborate, and simulate phases
together, as some users may be accustomed to doing with NC-Sim. This command is provided
to ease these users’ transition to ModelSim.

The qverilog command invokes vlog, vopt, and then vsim. All standard vlog (and vopt)
arguments are supported and are applied directly to the qverilog command line. All vsim
options are supported and are applied through the qverilog -R argument.

You can directly enter either C or C++ file onto the qverilog command line. ModelSim
automatically processes them using the SystemVerilog Direct Programming Interface (DPI).
Refer to “DPI and the qverilog Command” for details. If your design contains DPI export tasks
or functions, it is recommended that you use the vlog/vsim flow.

You can invoke the GUI by specifying the -gui argument through the qverilog -R argument.

By default, qverilog runs the simulation and quits automatically by invoking an implicit "run -
all; quit -f". However, if you invoke qverilog with -do, -gui, or -i, qverilog invokes the
simulator and keeps it open until you explicitly quit ModelSim.

The qverilog command creates a work library named work in the current directory, if not
present already.

The command arguments listed below are only those unique to the qverilog command. This
command also supports all vlog command arguments.

Syntax

qverilog [[<vlog_and_vopt_options>]] [-ccflags "opts"] [-gui] [-l <logfile>] <filename>
[-ldflags "opts"] [-R <vsim_options>] [-work <library_name>]

Arguments

• [<vlog_and_vopt_options>]

All vlog and vopt options are supported. For example, if you are running qverilog on a
SystemVerilog design, you need to add the -sv argument to the command line.

• -ccflags "opts"

Specifies all C/C++ compiler options. Options are in quotes. Optional.

For -ccflags and -ldflags, qverilog does not check the validity of the option(s) you specify.
The options are directly passed on to the compiler and linker, and if they are not valid, an
error message is generated by the compiler/linker.

• -gui

Simulates the design using the ModelSim GUI.

• -l <logfile>

Creates a logfile/transcript compatible with vlog -l logfile. Optional. If omitted, a default
transcript called qverilog.log is created that collects the output from vlog, vopt, and vsim.

Commands
qverilog

ModelSim SE Reference Manual, v6.5b 321

• <filename>

Specifies the name of the Verilog or C/C++ source code file to compile. One filename is
required. Multiple filenames separated by spaces may be entered. Wildcards may be used.
In the case of C files, they are automatically processed as DPI code.

• -ldflags "opts"

Specifies all linker options in quotes. Optional.

For -ccflags and -ldflags, qverilog does not check the validity of the option(s) you specify.
The options are directly passed on to the compiler and linker, and if they are not valid, an
error message is generated by the compiler/linker.

• -R <vsim_options>

Specifies valid vsim arguments to be applied to the simulation. All vlog and vopt arguments
must come before -R is specified, as all arguments specified after -R are interpreted as vsim
arguments.

• -work <library_name>

Specifies a logical name or pathname of a library that is to be mapped to the logical library
work. Optional. By default, the compiled design units are added to the work library. The
specified pathname overrides the pathname specified for work in the project file.

Examples

• Compile, optimize, and simulate the specified files. The C/C++ code contained in the
d.c file is processed as DPI code, creating a shared object, and loading it into vsim at
runtime. Creates a logfile named "logfile" and opens the ModelSim GUI with the
simulation loaded and ready to run.

qverilog -l logfile a.v b.v c.v d.c -R -gui

ModelSim SE Reference Manual, v6.5b322

Commands
radix

radix
The radix command specifies the default radix to be used for the current simulation.

The command can be used at any time. The specified radix is used for all commands (force,
examine, change, etc.) as well as for displayed values in the Objects, Locals, Dataflow, List, and
Wave windows.

Alternate methods for changing the default radix:

• In the modelsim.ini file, edit the DefaultRadix variable.

• Choose Simulate > Runtime Options from the main menu, click the Defaults tab,
make your selection in the Default Radix box.

Syntax

radix [-symbolic | -binary | -octal | -decimal | -hexadecimal | -unsigned | -ascii | -time]
[-enumnumeric | -enumsymbolic]

Arguments

You can abbreviate the following arguments to any length. For example, -dec is equivalent to
-decimal.

• -symbolic

Displays values in a form closest to their natural form. Optional.

• -binary

Displays values in binary format. Optional.

• -octal

Displays values in octal format. Optional.

• -decimal

Displays values in decimal format. You can specify -signed as an alias for this argument.
Optional.

• -hexadecimal

Displays values in hexadecimal format. Optional.

• -unsigned

Displays values in unsigned decimal format. Optional.

• -ascii

Display a Verilog object as a string equivalent using 8-bit character encoding. Optional.

• -time

Displays values of time for register-based types in Verilog. Optional.

Commands
radix

ModelSim SE Reference Manual, v6.5b 323

• -enumnumeric

Displays SystemVerilog and SystemC enums as numbers rather than strings. Optional. The
current radix setting controls the actual enum value displayed, except when the radix setting
is ASCII. If the current radix setting is ASCII, the value of SystemVerilog and SystemC
enums are displayed as a string.

• -enumsymbolic

Displays SystemVerilog and SystemC enums as strings rather than numbers. Optional. This
option reverses the action of the -enumnumeric option.

• <no argument>

Returns the current radix setting.

See also

User-Defined Radices, radix define, radix names, radix list, radix delete

ModelSim SE Reference Manual, v6.5b324

Commands
radix define

radix define
The radix define command is used to create or modify a user-defined radix. A user definable
radix is used to map bit patterns to a set of enumeration labels. User-defined radices are
available for use in the Wave and List windows or with the examine command.

Syntax

radix define <name> <definition_body>

Arguments

• <name>

User-specified name for the radix. Required.

• <definition_body>

A list of number pattern, label pairs. Required. The definition body has the form:

{
 <numeric-value> <enum-label>,
 <numeric-value> <enum-label>
 -default <radix_type>
}

A <numeric-value> is any legitimate HDL integer numeric literal. To be more specific:

<base>#<base-integer># --- <base> is 2, 8, 10, or 16
<base>"bit-value" --- <base> is B, O, or X
<integer>
<size>'<base><number> --- <size> is an integer, <base> is b, d, o, or h.

Check the Verilog and VHDL LRM's for exact definitions of these numeric literals.

The comma (,) in the definition body is optional. The <enum-label> is any arbitrary string. It
should be quoted ("") especially if it contains spaces.

The -default entry is optional. If present, it defines the radix to use if a match is not found
for a given value. The -default entry can appear anywhere in the list, it does not have to be at
the end.

• -color <value>

Designates a color for the waveform and text in the Wave window. Optional. The color
value may be a color name or its hex value (see example below).

Example

• The radix define command used to create a radix called “States,” which will display
state values in the List, Watch, and Wave windows instead of numeric values.

radix define States {
 11'b00000000001 "IDLE",
 11'b00000000010 "CTRL",
 11'b00000000100 "WT_WD_1",
 11'b00000001000 "WT_WD_2",
 11'b00000010000 "WT_BLK_1",

Commands
radix define

ModelSim SE Reference Manual, v6.5b 325

 11'b00000100000 "WT_BLK_2",
 11'b00001000000 "WT_BLK_3",
 11'b00010000000 "WT_BLK_4",
 11'b00100000000 "WT_BLK_5",
 11'b01000000000 "RD_WD_1",
 11'b10000000000 "RD_WD_2",
 -default hex
}

• The following example illustrates how to specify the radix color:

radix define States {
11'b00000000001 "IDLE" -color yellow,
11'b00000000010 "CTRL" -color #ffee00,
11'b00000000100 "WT_WD_1" -color orange,
11'b00000001000 "WT_WD_2" -color orange,
11'b00000010000 "WT_BLK_1",
11'b00000100000 "WT_BLK_2",
11'b00001000000 "WT_BLK_3",
11'b00010000000 "WT_BLK_4",
11'b00100000000 "WT_BLK_5",
11'b01000000000 "RD_WD_1" -color green,
11'b10000000000 "RD_WD_2" -color green,
-default hex
-defaultcolor white

}

If a pattern/label pair does not specify a color, the normal wave window colors will be
used. If the value of the waveform does not match any pattern, then the -default radix
and -defaultcolor will be used.

To specify a range of values, wildcards may be specified for bits or characters of the
value. The wildcard character is '?', similar to the iteration character in a Verilog UDP,
for example:

radix define {
6'b01??00 "Write" -color orange,
6'b10??00 "Read" -color green

}

In this example, the first pattern will match "010000", "010100", "011000", and
"011100". In case of overlaps, the first matching pattern is used, going from top to
bottom.

See also

User-Defined Radices, radix, radix names, radix list, radix delete

ModelSim SE Reference Manual, v6.5b326

Commands
radix names

radix names
The radix names command returns a list of currently defined radix names.

Syntax

radix name

Arguments

None

See also

User-Defined Radices, radix, radix define, radix list, radix delete

Commands
radix list

ModelSim SE Reference Manual, v6.5b 327

radix list
The radix list command will return the complete definition of a radix, if a name is given. If no
name is given, it will list all the defined radices.

Syntax

radix list [<name>]

Arguments

• <name>

Returns the complete definition of the named radix. Optional.

See also

User-Defined Radices, radix, radix define, radix names, radix delete

ModelSim SE Reference Manual, v6.5b328

Commands
radix delete

radix delete
The radix delete command will remove the radix definition from the named radix.

Syntax

radix delete <name>

Arguments

• <name>

Removes the radix definition from the named radix. Required.

See also

User-Defined Radices, radix, radix define, radix names, radix list

Commands
readers

ModelSim SE Reference Manual, v6.5b 329

readers
The readers command displays the names of all readers of the specified object.

The reader list is expressed relative to the top-most design signal/net connected to the specified
object.

Syntax

readers <object_name>

Arguments

• <object_name>

Specifies the name of the signal or net whose readers are to be shown. Required. All signal
or net types are valid. Multiple names and wildcards are accepted.

See also

drivers

ModelSim SE Reference Manual, v6.5b330

Commands
report

report
The report command displays information relevant to the current simulation.

Syntax

report files

report where {ini | pwd | transcript | wlf | project}

report simulator control

report simulator state

Arguments

• files

Returns a list of all source files used in the loaded design. This information is also available
in the Specified Path column of the Files window.

• where [ini] [pwd] [transcript] [wlf] [project]

Returns a list of configuration files used for the current simulation, where the arguments
limit the list to those files specified.

ini — returns the location of the modesim.ini file

pwd — returns the current working directory

transcript — returns the location for saving the transcript file

wlf — returns the current location for saving the .wlf file

project — returns the current location of the project file.

• simulator control

Displays the current values for all simulator control variables.

• simulator state

Displays the simulator state variables relevant to the current simulation.

Examples

• Display configuration file information

report where

INI {modelsim.ini}
PWD ./Testcases/dataflow
Transcript transcript
WLF vsim.wlf
Project {}

• Display all simulator control variables.

report simulator control

UserTimeUnit = ns

Commands
report

ModelSim SE Reference Manual, v6.5b 331

RunLength =
IterationLimit = 5000
BreakOnAssertion = 3
DefaultForceKind = default
IgnoreNote = 0
IgnoreWarning = 0
IgnoreError = 0
IgnoreFailure = 0
IgnoreSVAInfo= 0
IgnoreSVAWarning = 0
IgnoreSVAError = 0
IgnoreSVAFatal = 0
CheckpointCompressMode = 1
NumericStdNoWarnings = 0
StdArithNoWarnings = 0
PathSeparator = /
DefaultRadix = symbolic
DelayFileOpen = 1
WLFFilename = vsim.wlf
WLFTimeLimit = 0
WLFSizeLimit = 0

You can set these simulator control variables to a new value by using the Tcl set
Command Syntax.

• Display all simulator state variables. Only the variables that relate to the design being
simulated are displayed:

report simulator state

now = 0.0
delta = 0
library = work
entity = type_clocks
architecture = full
resolution = 1ns

Viewing preference variables

Preference variables have more to do with the way things look (but not entirely) rather than
controlling the simulator. You can view preference variables from the Preferences dialog box.
Select Tools > Edit Preferences (Main window).

See also

modelsim.ini Variables, Simulator GUI Preferences

ModelSim SE Reference Manual, v6.5b332

Commands
restart

restart
The restart command reloads the design elements and resets the simulation time to zero. Only
design elements that have changed are reloaded. (Note that SDF files are always reread during a
restart.)

• If no design is loaded, the restart command produces a message to that effect and takes
no further action.

• If a simulation is loaded, the restart command restarts the simulation.

• If multiple datasets are open, including a simulation, the environment is changed to the
simulation context and the simulation is restarted.

Shared libraries are handled as follows during a restart:

• Shared libraries that implement VHDL foreign architectures only are reloaded at each
restart when the architecture is elaborated (unless the -keeploaded option to the vsim
command is used).

• Shared libraries loaded from the command line (-foreign and -pli options) and from the
Veriuser entry in the modelsim.ini file are reloaded (unless you specify the -keeploaded
argument to vsim).

• Shared libraries that implement VHDL foreign subprograms remain loaded (they are not
reloaded) even if they also contain code for a foreign architecture.

You can configure defaults for the restart command by setting the DefaultRestartOptions
variable in the modelsim.ini file. Refer to “Restart Command Defaults”.

To handle restarts with Verilog PLI applications, you need to define a Verilog user-defined task
or function, and register a misctf class of callback. To handle restarts with Verilog VPI
applications, you need to register reset callbacks. To handle restarts with VHDL FLI
applications, you need to register restart callbacks. Refer to “Verilog Interfaces to C” for more
information on the Verilog PLI/VPI/DPI and the ModelSim FLI Reference for more information
on the FLI.

Syntax

restart [-force] [-nobreakpoint] [-nolist] [-nolog] [-nowave]

Arguments

• -force

Specifies that the simulation will be restarted without requiring confirmation in a popup
window. Optional.

• -nobreakpoint

Specifies that all breakpoints will be removed when the simulation is restarted. Optional.
The default is for all breakpoints to be reinstalled after the simulation is restarted.

Commands
restart

ModelSim SE Reference Manual, v6.5b 333

• -nolist

Specifies that the current List window environment will not be maintained after the
simulation is restarted. Optional. The default is for all currently listed HDL objects and their
formats to be maintained.

• -nolog

Specifies that the current logging environment will not be maintained after the simulation is
restarted. Optional. The default is for all currently logged objects to continue to be logged.

• -nowave

Specifies that the current Wave window environment will not be maintained after the
simulation is restarted. Optional. The default is for all objects displayed in the Wave
window to remain in the window with the same format.

See also

checkpoint, restore, vsim, “Checkpointing and Restoring Simulations”

ModelSim SE Reference Manual, v6.5b334

Commands
restore

restore
The restore command restores the state of a simulation that was saved with a checkpoint
command during the current invocation of VSIM (called a "warm restore").

The items restored are: simulation kernel state, vsim.wlf file, HDL objects listed in the List and
Wave windows, file pointer positions for files opened under VHDL and under Verilog $fopen,
and the saved state of foreign architectures.

If you want to restore while running VSIM, use this command. If you want to start up VSIM
and restore a previously-saved checkpoint, use the -restore switch with the vsim (called a "cold
restore").

Checkpoint/restore allows a cold restore, followed by simulation activity, followed by a warm
restore back to the original cold-restore checkpoint file. Warm restores to checkpoint files that
were not created in the current run are not allowed except for this special case of an original
cold restore file.

Checkpoint files are platform dependent–you cannot checkpoint on one platform and restore on
another.

Syntax

restore <filename>

Arguments

• <filename>

Specifies the name of the checkpoint file. Required.

See also

checkpoint, vsim, “Checkpointing and Restoring Simulations”

Commands
resume

ModelSim SE Reference Manual, v6.5b 335

resume
The resume command is used to resume execution of a macro file after a pause command or a
breakpoint.

It may be input manually or placed in an onbreak command string. (Placing a resume command
in a bp command string does not have this effect.) The resume command can also be used in an
onerror command string to allow an error message to be printed without halting the execution of
the macro file.

Syntax

resume

Arguments

• None

See also

abort, do, onbreak, onerror, pause

ModelSim SE Reference Manual, v6.5b336

Commands
right

right
The right command searches right (next) for signal transitions or values in the specified Wave
window.

It executes the search on signals currently selected in the window, starting at the time of the
active cursor. The active cursor moves to the found location.

Use this command to move to consecutive transitions or to find the time at which a waveform
takes on a particular value, or an expression of multiple signals evaluates to true. See the left
command for related functionality.

The procedure for using right entails three steps: click on the desired waveform; click on the
desired starting location; issue the right command. (The seetime command can initially position
the cursor from the command line, if desired.)

Returns: <number_found> <new_time> <new_delta>

Syntax

right [-expr {<expression>}] [-falling] [-noglitch] [-rising] [-value <sig_value>]
[-window <wname>] [<n>]

Arguments

• -expr {<expression>}

The waveform display will be searched until the expression evaluates to a boolean true
condition. Optional. The expression may involve more than one signal, but is limited to
signals that have been logged in the referenced Wave window. A signal may be specified
either by its full path or by the shortcut label displayed in the Wave window.

See GUI_expression_format for the format of the expression. The expression must be
placed within curly braces.

• -falling

Searches for a falling edge on the specified signal if that signal is a scalar signal. If it is not a
scalar signal, the option will be ignored. Optional.

• -noglitch

Looks at signal values only on the last delta of a time step. For use with the -value option
only. Optional.

• -rising

Searches for a rising edge on the specified signal if that signal is a scalar signal. If it is not a
scalar signal, the option will be ignored. Optional.

• -value <sig_value>

Species a value of the signal to match. Must be specified in the same radix that the selected
waveform is displayed. Case is ignored, but otherwise the value must be an exact string
match -- don't-care bits are not yet implemented. Only one signal may be selected, but that
signal may be an array. Optional.

Commands
right

ModelSim SE Reference Manual, v6.5b 337

• -window <wname>

Specifies an instance of the Wave window that is not the default. Optional. Otherwise, the
default Wave window is used. Use the view command to change the default window.

• <n>

Specifies to find the nth match. If less than n are found, the number found is returned with a
warning message, and the cursor is positioned at the last match. Optional. The default is 1.

Examples

• Find the second time to the right at which the selected vector transitions to FF23,
ignoring glitches.

right -noglitch -value FF23 2

• Go to the next transition on the selected signal.

right

The following examples illustrate search expressions that use a variety of signal attributes,
paths, array constants, and time variables. Such expressions follow the GUI_expression_format.

• Search right for an expression that evaluates to a boolean 1 when signal clk just changed
from low to high and signal mystate is the enumeration reading and signal
/top/u3/addr is equal to the specified 32-bit hex constant; otherwise is 0.

right -expr {clk’rising && (mystate == reading) && (/top/u3/addr ==
32’habcd1234)}

• Search right for an expression that evaluates to a boolean 1 when the upper 8 bits of the
32-bit signal /top/u3/addr equals hex ac.

right -expr {(/top/u3/addr and 32’hff000000) == 32’hac000000}

• Search right for an expression that evaluates to a boolean 1 when logfile time is between
23 and 54 microseconds, and clock just changed from low to high and signal mode is
enumeration writing.

right -expr {((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode
== writing)}

Note
“Wave Window Mouse and Keyboard Shortcuts” are also available for next and previous
edge searches. Tab searches right (next) and shift-tab searches left (previous).

See also

GUI_expression_format, left, seetime, view

ModelSim SE Reference Manual, v6.5b338

Commands
run

run
The run command advances the simulation by the specified number of timesteps.

Syntax

run [<timesteps>[<time_units>] | -all | -continue | -finish | -init | -next | -step | -over [<n>]]

Arguments

• No arguments

Runs the simulation for the default time (100 ns).

You can change the default <timesteps> and <time_units> in the GUI with the Run Length
toolbar box in the Simulate toolbar or from the modelsim.ini file: RunLength and
UserTimeUnit variables.

• <timesteps>[<time_units>]

Specifies the number of timesteps for the simulation to run. The number may be fractional,
or may be specified absolute by preceding the value with the character @. Optional. In
addition, optional <time_units> may be specified as:

fs, ps, ns, us, ms, or sec

• -all

Causes the simulator to run the current simulation forever, or until it hits a breakpoint or
specified break event. Optional.

• -continue

Continues the last simulation run after a step command, step -over command or a
breakpoint. A run -continue command may be input manually or used as the last command
in a bp command string. Optional.

• -finish

In “C Debug” only, continues the simulation run and returns control to the calling function.
Optional.

• -init

Initializes non-trivial static SystemVerilog variables, for example expressions involving
other variables and function calls, before beginning the simulation. This could be useful for
when you want to initialize values before executing any force, examine, or bp commands.

You cannot use “run -init” after any other run commands or if you specified -runinit on the
vsim command line because all variables would have been initialized by that point.

• -next

Causes the simulator to run to the next event time. Optional.

• -step

Steps the simulator to the next HDL statement. Optional.

Commands
run

ModelSim SE Reference Manual, v6.5b 339

• -over [<n>]

Directs ModelSim to run VHDL procedures and functions, Verilog tasks and functions, and
C functions but to treat them as simple statements instead of entering and tracing them line
by line. If you are using C Debug, specifying a positive integer value for <n> moves the
debugger n lines ahead. Optional.

Examples

• Advance the simulator 1000 timesteps.

run 1000

• Advance the simulator the appropriate number of timesteps corresponding to 10.4
milliseconds.

run 10.4 ms

• Advance the simulator to timestep 8000.

run @8000

See also

step

ModelSim SE Reference Manual, v6.5b340

Commands
runStatus

runStatus
The runStatus command returns the current state of your simulation after issuing a run or step
command.

Syntax

runStatus [-full]

Arguments

• -full

appends additional information to the output of the runStatus command.

Results

The output of the runStatus command is described in Table 2-3 (runStatus results) and
Table 2-4 (runStatus -full results).

Table 2-3. runStatus Command States

State Description

ready The design is loaded and is ready to run.

break The simulation stopped before completing the requested run.

error The simulation stopped due to an error condition.

loading The simulation is currently elaborating.

nodesign There is no design loaded.

checkpoint A checkpoint is being created, do not interrupt this process.

cready The design is loaded and is ready to run in C debug mode.

initializing The user interface initialization is in progress.

Table 2-4. runStatus -full Command Information

-full Information Description

bkpt stopped at breakpoint

bkpt_builtin stopped at breakpoint on builtin process

end reached end of requested run

fatal_error encountered fatal error (such as, divide by 0)

iteration_limit iteration limit reached, possible feedback loop

silent_halt mti_BreakSilent() called,

step run -step completed

step_builtin run -step completed on builtin process

Commands
runStatus

ModelSim SE Reference Manual, v6.5b 341

step_wait_suspend run -step completed, time advanced.

user_break run interrupted do to break-key or ^C (SIGINT)

user_halt mti_Break() called.

user_stop stop or finish requested from vpi, stop command, etc.

gate_oscillation Verilog gate iteration limit reached.

simulation_stop pli stop_simulation() called.

Table 2-4. runStatus -full Command Information

-full Information Description

ModelSim SE Reference Manual, v6.5b342

Commands
sccom

sccom
The sccom command actually provides two different functions: sccom uses an external C/C++
compiler to compiles SystemC source code into the work library, while sccom -link takes
compiled source code and links the design.

Compile syntax

sccom [-93] [<CPP compiler options>] [<CPP linker options>] [-cpppath <filename>]
[-dumpscvext <filename>] [-dpilib <libname>]
[-error <msg_number> [,<msg_number>,...]] [-f <filename>]
[-fatal <msg_number>[,<msg_number>,…]] [-help] [-incr] [-lib <compiled library>] [-link]
[-log <logfile>] [-modelsimini <ini_filepath>] [-nodbgsym] [-nodebug] [-nologo]
[-note <msg_number> [,<msg_number>,...]] [-scms] [-scv] [-scversion]
[-suppress <msg_number> [,<msg_number>,...]] [-vv] [-verbose] [-version]
[-warning <msg_number> [,<msg_number>,...]] [-x c | c++] <filename>

Link syntax

sccom -link

[<CPP linker options>] [-dpilib <libname>] [-f <filename>] [-help] [-lib <compiled library>]
[-log <logfile>] [-nologo] [-scv] [-vv] [-verbose] [-version] [-work <library_name>]

Description

You can run this command from within ModelSim, from the operating system command
prompt, or during simulation.

To enable source debugging of SystemC code, you must compile for debugging by specifying
the -g argument of the CPP compiler.

Compiled libraries have the following dependencies:

• Platform — If you move between platforms, you need to run vdel -allsystemc on the
working library and then recompile your SystemC source.

• Version — If you install a new release, you need to re-compile your library with the current
version of sccom. For example, you cannot use a library compiled with v6.5 in a simulation
using v6.5a vsim. You would have to run sccom in v6.5a to re-compile your library (sccom
-version displays the version number of the compiler).

During the linking of the design (with sccom -link), the order in which you specify archives (.a)
and object files is very important. You must specify any dependent .a or .o before the .a or .o on
which it depends.

The sccom command can recognize the file type as either C or C++ by the filename extension
and will use the appropriate compiler, as follows:

• gcc compiler on source files with C source extensions: .c, .i

• g++ compiler on source files with C++ extensions: .CPP , .cpp , .C , .c++ , .cc , .cp , .cxx, .ii

For best performance, it is recommended to run sccom in multi-file compilation mode, which
requires that you can write to the current working directory. By default, sccom works in multi-

Commands
sccom

ModelSim SE Reference Manual, v6.5b 343

file compilation mode, passing all source files to the GNU compilers and debug generator in a
single step. If the working directory has read-only permissions, sccom automatically performs
single-file compilation, which decreases performance because only one source file is compiled
at a time.

Arguments

• -93

Makes the design unit strictly case-sensitive, enforcing case-sensitivity across the
SystemC-HDL mixed language boundary. Optional.

• <CPP compiler options>

Any normal C++ compiler option can be used, with the exception of the -o and -c options.
You must specify the -g argument to compile for debugging. By default, sccom compiles
without debugging information. You can specify arguments for all sccom compiles by
editing the CppOptions variable in the modelsim.ini file.

• -DSC_

Specifies SystemVerilog libraries for SystemC DPI (Direct Programming Interface).
Optional. Only one library can be specified per each -dpilib argument. See section
SystemC Procedural Interface to SystemVerilog.

• -DSC_INCLUDE_MTI_AC

Enable native debug support of Algorithmic-C datatypes. Optional.

• -DSC_INCLUDE_DYNAMIC_PROCESSES

Enable dynamic processes. Optional.

• -DSC_INCLUDE_FX

Enable fixed-point datatypes. Optional.

• -DSC_USE_STD_STRING

Replace sc_string with std::string. Optional.

• -DSC_USE_STD_STRING_OLD

Use deprecated sc_string. Optional.

• -DMTI_BIND_SC_MEMBER_FUNCTION

Enable registration of module member functions as DPI-SC imports. Optional.

• -DUSE_MTI_CIN

Enables support of C++ standard input cin. Optional.

ModelSim SE Reference Manual, v6.5b344

Commands
sccom

• <CPP linker options>

Any normal C++ compiler option can be used, with the exception of the -o option. You can
specify arguments for all sccom compiles by editing the CppOptions variable in the
modelsim.ini file.

• -cpppath <filename>

Specifies the location of a g++ executable other than the default g++ compiler installed with
ModelSim. Optional. Overrides the CppPath variable in the modelsim.ini file.

• -dumpscvext <filename>

Generates SystemC verification (SCV) extensions for any given object type. For this
argument, <filename> is a C++ (.cpp) file that contains global variable definition for each
type and includes the header file containing definitions for these types. Optional.

• -dpilib <libname>

Specifies SystemVerilog libraries for SystemC DPI (Direct Programming Interface).
Optional. Only one library can be specified per each -dpilib argument. See section SystemC
Procedural Interface to SystemVerilog.

• -error <msg_number> [,<msg_number>,...]

Changes the severity level of the specified message(s) to "error." Optional. Edit the error
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• -f <filename>

Specifies an argument file with more command-line arguments. Optional. Allows complex
argument strings to be reused without retyping. Nesting of -f options is allowed.

Refer to the section "Argument Files" for more information.

• -fatal <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "fatal." Optional. Edit the fatal
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• -help

Displays options and arguments for this command. Optional.

• -incr

Enables automatic incremental compilation so that only changed files are compiled.
Optional. A changed file is re-compiled in the following cases:

o Its pre-processor output is different from the last time it was successfully compiled.
This includes changes in included header files and to the source code itself.

Commands
sccom

ModelSim SE Reference Manual, v6.5b 345

Note
Pre-processor output is used because it prevents compilation on a file with the following
types of changes:

• Access or modification time (touch)
• Changes to comments—except changes to the source code that affect

line numbers (such as adding a comment line) will cause all affected files to be
recompiled. This occurs to keep debug information current so that ModelSim
can trace back to the correct areas of the source code.

o You invoke sccom with a different set of command-line options that have an impact
on the gcc command line. Preserving all settings for the gcc command ensures
that ModelSim re-compiles source files when a different version of gcc is
used or when a platform changes.

• -lib <compiled library>

Only used for sccom -link invocations. Specifies the default working library where the
SystemC linker can find the object files for compiled SystemC modules.

• -link

Performs the final link of all previously compiled SystemC source code. Required before
running simulation. You must specify any dependent .a or .o before the .a or .o on which it
depends. Two types of dependencies are possible, and where you place the -link argument
is different based on which type of dependency the files have.

If your archive or object is dependent on the .o files created by sccom (that is, your code
references symbols in the generated SystemC .o files), then you must specify the -link
argument after the list of files, as follows:

sccom a.o b.o libtemp.a -linkz

Functionally, the order of the C++ linker command and argument looks like this:

ld a.o b.o libtemp.a <internal list of SC .o files> libsystemc.a

However, if the .o files created by sccom are dependent on the object or archive you
provided, then you must place the -link argument before the object files or archive:

sccom -link a.o b.o libtemp.a

In this case, the "functional" command and argument order look like this:

ld <internal list of SC .o files> libsystemc.a a.o b.o libtemp.a

• -log <logfile>

Specifies the logfile in which to collect output. Optional. Related modelsim.ini variable is
SccomLogfile.

ModelSim SE Reference Manual, v6.5b346

Commands
sccom

• -modelsimini <ini_filepath>

Loads an alternate initialization file that replaces the current initialization file. Overrides the
file path specified in the MODELSIM environment variable. Specifies either an absolute or
relative path to the initialization file. On Windows systems the path separator should be a
forward slash (/).

• -nodbgsym

Disables the generation of symbols for the debugging database in the library, which allows
source annotation.

• -nodebug

Disables the creation of a debug database for modules defined in those source files.
Optional. Do not use this argument with any files containing the SC_MODULE_EXPORT()
macro. Using -nodebug can significantly reduce the compile time for a design, which is
useful when running designs in regression mode. Refer to "Custom Debugging of SystemC
Channels and Variables" for more information.

• -nologo

Disables the startup banner. Optional.

• -note <msg_number> [,<msg_number>,...]

Changes the severity level of the specified message(s) to "note." Optional. Edit the note
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• -scms

Includes the SystemC master slave library. Optional. If you specify this argument when
compiling your C code with sccom, you must also specify it when linking the object files
with sccom -link.

• -scv

Includes the SystemC verification library. Optional. If you specify this argument when
compiling your C code with sccom, you must also specify it when linking the object files
with sccom -link. Related modelsim.ini variable is UseScv.

• -scversion

Prints out the version of the SystemC verification library used. Optional.

• -suppress <msg_number> [,<msg_number>,...]

Prevents the specified message(s) from displaying. Optional. You cannot suppress Fatal or
Internal messages. Edit the suppress variable in the modelsim.ini file to set a permanent
default.

• -vv

Prints all subprocess invocation information. Optional. An example is the call to gcc along
with the command-line arguments.

Commands
sccom

ModelSim SE Reference Manual, v6.5b 347

• -verbose

Prints the name of each sc_module encountered during compilation. Optional. Related
modelsim.ini variable SccomVerbose.

• -version

Displays the version of sccom used to compile the design. Optional.

• -warning <msg_number> [,<msg_number>,...]

Changes the severity level of the specified message(s) to "warning." Optional. Edit the
warning variable in the modelsim.ini file to set a permanent default.

• -work <library_name>

For the compiler — Specifies a logical name or pathname of a library that is to be mapped to
the logical library work. Optional; by default, the compiled object files (.so) are added to
the work library. The specified pathname overrides the pathname specified for work in the
project file.

For the linker — Specifies a logical name or pathname of a library where the final linked
object file (.so) is to be stored. Optional; by default, the linked object files are added to the
work library.

• -x c | c++

Specifies the language (C or C++) of a source file being compiled when the filename
extension does not match that source. Optional. For example, if myfile.cpp contained C
source, you would enter sccom -x c myfile.cpp. If you use this argument, you cannot
combine C and C++ files with the same sccom command.

• <filename>

Specifies the name of a file containing the SystemC/C++ source to be compiled. Required.
You can enter multiple filenames separated by spaces; you can also use wildcards to specify
multiple filenames (such as *.cpp).

Examples

• Compile example.cpp with debugging information.

sccom -g example.cpp

• Link example.o.

sccom -link

• Use two sccom commands - the first to compile a.cpp into library LIB_A, and the
second to compile b.cpp into LIB_B. (a.cpp defines a module ,TOP_A, and b.cpp defines
a module, TOP_B.) Run sccom again to link and compile the compiled object files
created in those two libraries into a third shared library, LIB_C. Run vsim using -sclib,
which is required in order to point to the location of the shared library.

vlib /path/to/LIB_A
vmap LIB_A /path/to/LIB_A

ModelSim SE Reference Manual, v6.5b348

Commands
sccom

vlib /path/to/LIB_B
vmap LIB_B /path/to/LIB_B

sccom -work LIB_A a.cpp -> a.o created in /path/to/LIB_A
sccom -work LIB_B b.cpp -> b.o created in /path/to/LIB_B

At this point you have the option to create the SystemC library in LIB_A or LIB_B or in
a totally new library LIB_C.

Include all objects from LIB_B and LIB_A and create a .so (shared object) in LIB_A:

sccom -link -work LIB_A -lib LIB_B

Include all objects created in LIB_A and LIB_B and LIB_C and create a .so in LIB_C.

sccom -link -work LIB_C -lib LIB_A -lib LIB_B

If the shared object is not compiled in the same library as the top-level design unit, the
.so library has to be specified using the -sclib switch with the vsim command. The -lib
switch tells the simulator where the top-level module is compiled. The vsim command
also has a -L switch that allows you to specify the library where lower level modules can
be found. For example:

vsim -sclib LIB_C -lib LIB_A TOP_A

loads a SystemC shared library from LIB_C. The top module TOP_A, is compiled in
LIB_A.

vsim -lib LIB_A TOP_A

loads the SystemC shared library from LIB_A and the top module TOP_A from LIB_A.

vsim -lib LIB_A -sclib LIB_C -L LIB_B TOP_A

loads the SystemC shared library from LIB_C. The top level module, TOP_A, was
compiled in LIB_A. TOP_B, which is instantiated in some hierarchy, can be found in
LIB_B.

The vsim command can accept multiple -L switches, but it takes only one -lib switch.
The -lib switch is for top-level modules and -L is for lower modules.

The -sclib switch specifies where the SystemC shared library was created.

• Compile the SystemC code with an include directory and the compile time macro
(SC_INCLUDE_FX) to compile the source with support for fixed point types. For more
information, refer to “Fixed-Point Types”.

sccom -I/home/systemc/include -DSC_INCLUDE_FX -g a.cpp b.cpp

• Compile with the g++ -02 optimization argument.

sccom -02 a.cpp

Commands
sccom

ModelSim SE Reference Manual, v6.5b 349

• Link in the library libmylib.a when creating the .so file. The -L, a gcc argument,
specifies the search path for the libraries.

sccom -L home/libs/ -l mylib -link

See also

“SystemC Simulation”, scgenmod, vdel -allsystemc

ModelSim SE Reference Manual, v6.5b350

Commands
scgenmod

scgenmod
Once a Verilog or VHDL module is compiled into a library, you can use the scgenmod
command to write its equivalent SystemC foreign module declaration to standard output.

Optional -map argument allow you to appropriately generate sc_bit, sc_bv, or resolved port
types; sc_logic and sc_lv port types are generated by default.

Syntax

scgenmod [-help] [-lib <library_name>] [-map "<hdl_type>=<sc_type>"]
[-modelsimini <ini_filepath>] [-createtemplate] <module_name>

Arguments

• -createtemplate

Creates a class template declaration of a foreign module with integer template arguments
corresponding to the integer parameter/generic defined in the VHDL or Verilog module.
Ports in VHDL and Verilog modules instantiated from SystemC can now have their range
specified in terms of integer parameters/generics. Such port ranges will be specified in terms
of the template arguments of the foreign module.

• -help

Displays the command’s options and arguments. Optional.

• -lib <library_name>

Specifies the pathname of the working library. If not specified, the default library work is
used. Optional.

• -map "<hdl_type>=<sc_type>"

Specifies the user defined type mappings between either SystemVerilog or VHDL and
SystemC types. <hdl_type> is the supported SystemVerilog or VHDL types . <sc_type> is
the supported SystemC types. No spaces are allowed. Optional.

• SystemVerilog supported types:
scalar (Verilog scalar), vector (Verilog vector), bit, logic, reg, bitvector
(signed/unsigned, packed/unpacked bit vector), logicvector (signed/unsigned,
packed/unpacked logic vector), regvector (signed/unsigned, packed/unpacked logic
vector), integer, integer unsigned, int, int unsigned, shortint, shortint unsigned,
longint, longint unsigned, byte, byte unsigned, struct (including fields with multi-
dimensional arrays)

• VHDL supported types:
bit, bit_vector, enum, record (including nested records and fields with multi-
dimensional arrays), std_logic, std_logic_vector, vl_logic, vl_logic_vector

• SystemC supported types:
bool, sc_bit, sc_logic, sc_bv, sc_lv, short, unsigned short, int, unsigned int, long,
unsigned long, long long, unsigned long long, sc_int, sc_signed, sc_unsigned,
sc_bigint, sc_biguint, char, unsigned char

Commands
scgenmod

ModelSim SE Reference Manual, v6.5b 351

Note
VHDL/SystemVerilog ports of type multi-dimensional array get converted to SystemC
signal arrays in the generated foreign module declaration.

• -modelsimini <ini_filepath>

Loads an alternate initialization file that replaces the current initialization file. Overrides the
file path specified in the MODELSIM environment variable. Specifies either an absolute or
relative path to the initialization file. On Windows systems the path separator should be a
forward slash (/).

• <module_name>

Specifies the name of the Verilog/VHDL module to be accessed. Required.

Obsolete for the Current Release

The following options have become obsolete. As of the 6.3 release, the types are mapped
automatically according to the specifications given to the -map argument.

• -sc_bit

Causes scgenmod to generate sc_bit scalar port types. Obsolete. See the -map argument.

• -bool

Causes scgenmod to generate boolean scalar port types. Obsolete. See the -map argument.

• -sc_logic

Causes scgenmod to generate sc_logic scalar port types. Obsolete. See the -map argument.

• -sc_resolved

Causes scgenmod to generate resolved scalar port types. Obsolete. See the -map argument.

• -sc_bv

Causes scgenmod to generate sc_bv<N> vector port types. Obsolete. See the -map
argument.

• -sc_int

Causes scgenmod to generate sc_int<N> vector port types. Obsolete. See the -map
argument.

• -sc_lv

Causes scgenmod to generate sc_lv<N> vector port types. Obsolete. See the -map
argument.

• -sc_rv

Causes scgenmod to generate resolved vector port types. Obsolete. See the -map argument.

• -sc_uint

Causes scgenmod to generate sc_uint<N> port types. Obsolete. See the -map argument.

ModelSim SE Reference Manual, v6.5b352

Commands
scgenmod

Examples

• This example uses a Verilog module that is compiled into the work library. The module
begins as Verilog source code:

module vcounter (clock, topcount, count);
input clock;
input topcount;
output count;
reg count;
...

endmodule

• After compiling using vlog, you invoke scgenmod on the compiled module with the
following command:

scgenmod vcounter

The SystemC foreign module declaration for the above Verilog module is:

class vcounter : public sc_foreign_module
{

public:
sc_in<sc_logic> clock;
sc_in<sc_logic> topcount;
sc_out<sc_logic> count;

vcounter(sc_module_name nm),
: sc_foreign_module(nm, hdl_name),

clock("clock"),
topcount("topcount"),
count("count")
{elaborate_foreign_module(hdl_hame);}

~vcounter()
{}

};

See also

“SystemC Simulation”, sccom

Commands
sdfcom

ModelSim SE Reference Manual, v6.5b 353

sdfcom
The sdfcom command compiles the specified SDF file. Annotation of compiled SDF files can
dramatically improve performance (compared to annotating the ASCII version of the same) in
cases where the same SDF file is used for multiple simulation runs.

The compiled SDF file is annotated so that it is compatible with the vsim -v2k_int_delays
command (that is, the annotator operates as if the vsim -v2k_int_delays command has been
given).

Refer to “Compiling SDF Files” for more information.

Syntax

sdfcom [-delayscale <value>] [-maxdelays] [-mindelays] [-nocompress] [-typdelays]
<source_file> <output_file>

Arguments

• -delayscale <value>

Scales delays by the specified value. Optional.

If you use this argument during SDF compilation, do not use the scaling option when
reading in the SDF file with vsim. If you do so, the delays will be scaled twice.

• -maxdelays

Selects maximum delays from SDF delay values of the form (min:typ:max). Optional.

• -mindelays

Selects minimum delays from SDF delay values of the form (min:typ:max). Optional.

• -nocompress

Produces a compiled file that is not compressed with gzip. Optional. By default the
compiled file is compressed with gzip (even though the resulting file does not have the
usual ".gz" extension).

• -typdelays

Selects typical delays from SDF delay values of the form (min:typ:max). Optional. Default.

• <source_file>

Specifies the SDF file to compile. Required.

• <output_file>

Specifies the name for the compiled SDF file. Required.

See also

vsim -sdftyp

ModelSim SE Reference Manual, v6.5b354

Commands
search

search
The search command searches the specified window for one or more objects matching the
specified pattern(s). The search can be continued using the next command.

The search starts at the object currently selected, if any; otherwise it starts at the window top.
The default action is to search downward until the first match, then move the selection to the
object found, and return the index of the object found.

Returns the index of a single match, or a list of matching indices. Returns nothing if no matches
are found.

Syntax

search <window_name> [-window <wname>] [-all] [-field <n>] [-toggle]
[-forward | -backward] [-wrap | -nowrap] [-exact] [-regexp] [-nocase] [-count <n>]
<pattern>

Arguments for all windows

• <window_name>

Specifies the window in which to search. Can be one of:

signals, objects, variables, locals, source, list, wave, process, or structure

or a unique abbreviation thereof. Required.

• -window <wname>

Specifies an instance of the window that is not the default. Optional. Otherwise, the default
window is used. Use the view command to change the default window.

• -forward

Search in the forward direction. Optional. This is the default.

• -backward

Search in the reverse direction. Optional. Default is forward.

• <pattern>

String or glob-style wildcard pattern. Required. Must be the last argument specified.

Arguments, for all EXCEPT the Source window

• -all

Finds all matches and returns a list of the indices of all objects that match. Optional.

Commands
search

ModelSim SE Reference Manual, v6.5b 355

• -field <n>

Selects different fields to test, depending on the window type:

Default behavior for the List window is to attempt to match the label and if that fails, try to
match the full signal name.

• -toggle

Adds objects found to the selection. Does not do an initial clear selection. Optional.
Otherwise deselects all and selects only one object.

• -wrap

Specifies that the search continue from the top of the window after reaching the bottom.
Optional. This is the default.

• -nowrap

Specifies that the search stop at the bottom of the window and not continue searching at the
top. Optional. The default is to wrap.

Arguments, Source window only

• -exact

Search for an exact match. Optional.

• -regexp

Use the pattern as a Tcl regular expression. Optional.

• -nocase

Ignore case. Optional. Default is to use case.

• -count <n>

Search for the nth match. Optional. Default is to search for the first match.

Table 2-5. Field Arguments for Window Searches

Window n=1 n=2 n=3 default

structure instance entity/module architecture instance

signals name - cur. value name

process status process
label

fullpath fullpath

variables name - cur. value name

wave name - cur. value name

list label fullname - label

ModelSim SE Reference Manual, v6.5b356

Commands
search

Description

With the -all option, the entire window is searched, the last object matching the pattern is
selected, and a Tcl list of all corresponding indices is returned.

With the -toggle option, objects found are selected in addition to the current selection.

For the List window, the search is done on the names of the objects listed, that is, across the
header. To search for values of objects in the List window, use the down and up commands.
Likewise, in the Wave window, the search is done on object names and values in the values
column. To search for object values in the waveform pane of the Wave window, use the right
and the left commands. You can also select Edit > Search in both windows.

See also

find, next, view

Commands
searchlog

ModelSim SE Reference Manual, v6.5b 357

searchlog
The searchlog command searches one or more of the currently open logfiles for a specified
condition.

It can be used to search for rising or falling edges, for signals equal to a specified value, or for
when a generalized expression becomes true.

Syntax

searchlog [-count <n>] [-deltas] [-endtime <time>] [-env <path>] [-expr {<expr>}] [-reverse]
[-rising | -falling | -anyedge] [-startDelta <num>] [-value <string>] <startTime> <pattern>

Description

If at least one match is found, it returns the time (and optionally delta) at which the last match
occurred and the number of matches found, in a Tcl list:

{{<time>} <matchCount>}

where <time> is in the format <number> <unit>. If the -deltas option is specified, the delta of
the last match is also returned:

{{<time>} <delta> <matchCount>}

If no matches are found, a TCL_ERROR is returned. If one or more matches are found, but less
than the number requested, it is not considered an error condition, and the time of the farthest
match is returned, with the count of the matches found.

Arguments

• -count <n>

Specifies to search for the nth occurrence of the match condition, where <n> is a positive
integer. Optional.

• -deltas

Indicates to test for a match on simulation delta cycles. Otherwise, matches are only tested
for at the end of each simulation time step. Optional.

• -endtime <time>

Indicates an end time for the search. Optional. By default there is no end time specified.

• -env <path>

Provides a design region in which to look for the signal names. Optional.

• -expr {<expr>}

Specifies a general expression of signal values and simulation time. Optional. searchlog
will search until the expression evaluates to true. The expression must have a boolean result
type. See GUI_expression_format for the format of the expression.

• -reverse

Specifies to search backwards in time from <startTime>. Optional.

ModelSim SE Reference Manual, v6.5b358

Commands
searchlog

• -rising | -falling | -anyedge

Specifies an edge to look for on a scalar signal. Optional. This option is ignored for
compound signals. If no options are specified, the default is -anyedge.

• -startDelta <num>

Indicates a simulation delta cycle on which to start. Optional.

• -value <string>

Specifies to search until a single scalar or compound signal takes on this value. Optional.

• <startTime>

Specifies the simulation time at which to start the search. Required. The time may be
specified as an integer number of simulation units, or as {<num> <timeUnit>}, where
<num> can be integer or with a decimal point, and <timeUnit> is one of the standard VHDL
time units (fs, ps, ns, us, ms, sec).

• <pattern>

Specifies one or more signal names or wildcard patterns of signal names to search on.
Required unless the -expr argument is used.

See also

virtual signal, virtual log, virtual nolog

Commands
see

ModelSim SE Reference Manual, v6.5b 359

see
The see command displays the specified number of source file lines around the current
execution line. By default, five lines will be displayed before and four lines after.

Syntax

see [<n> | <pre> <post>]

Arguments

• <n>

Designates the number of lines to display before and after the current execution line.
Optional.

• <pre>

Designates the number of lines to display before the current execution line. Optional.

• <post>

Designates the number of lines to display after the current execution line. Optional.

Example

• Display 8 lines before and 6 lines after the current execution line.

see 8 6

ModelSim SE Reference Manual, v6.5b360

Commands
seetime

seetime
The seetime command scrolls the List or Wave window to make the specified time visible.

For the List window, a delta can be optionally specified as well.

Returns nothing

Syntax

seetime list | wave [-window <wname>] [-select] [-delta <num>] <time>

Arguments

• list | wave

Specifies the target window type. Required.

• -window <wname>

Specifies an instance of the Wave or List window that is not the default. Optional.
Otherwise, the default Wave or List window is used. Use the view command to change the
default window.

• -select

Also moves the active cursor or marker to the specified time (and optionally, delta).
Optional. Otherwise, the window is only scrolled.

• -delta <num>

For the List window when deltas are not collapsed, this option specifies a delta. Optional.
Otherwise, delta 0 is selected.

• <time>

Specifies the time to be made visible. Required.

Commands
setenv

ModelSim SE Reference Manual, v6.5b 361

setenv
The setenv command changes or reports the current value of an environment variable. The
setting is not persistent–it is valid only for the current ModelSim session.

Syntax

setenv <varname> [<value>]

Arguments

• <varname>

The name of the environment variable you wish to set or check. Required.

• <value>

The value for the environment variable. Optional. If you don’t specify a value, ModelSim
reports the variable’s current value.

See also

unsetenv, printenv

ModelSim SE Reference Manual, v6.5b362

Commands
shift

shift
The shift command shifts macro parameter values left one place, so that the value of parameter
\$2 is assigned to parameter \$1, the value of parameter \$3 is assigned to \$2, etc. The previous
value of \$1 is discarded.

The shift command and macro parameters are used in macro files. If a macro file requires more
than nine parameters, they can be accessed using the shift command.

To determine the current number of macro parameters, use the argc variable.

Syntax

shift

Arguments

• None

Description

For a macro file containing nine macro parameters defined as $1 to $9, one shift command
shifts all parameter values one place to the left. If more than nine parameters are named, the
value of the tenth parameter becomes the value of $9 and can be accessed from within the
macro file.

See also

do

Commands
show

ModelSim SE Reference Manual, v6.5b 363

show
 The show command lists HDL objects and subregions visible from the current environment.

The objects listed include:

• VHDL — signals, processes, constants, variables, and instances

• Verilog — nets, registers, tasks, functions, instances, variables, and memories

If using “C Debug”, show displays the names and types of the local variables and arguments of
the current C function.

The show command returns formatted results to stdout. To eliminate formatting (to use the
output in a Tcl script), use the Show command instead.

Syntax

show [-all] [<pathname>]

Arguments

• -all

Displays all names at and below the specified path recursively. Optional.

• <pathname>

Specifies the pathname of the environment for which you want the objects and subregions to
be listed. Optional; if omitted, the current environment is assumed.

Examples

• List the names of all the objects and subregion environments visible in the current
environment.

show

• List the names of all the objects and subregions visible in the environment named /uut.

show /uut

• List the names of all the objects and subregions visible in the environment named
sub_region which is directly visible in the current environment.

show sub_region

See also

environment, find

ModelSim SE Reference Manual, v6.5b364

Commands
simstats

simstats
The simstats command returns performance-related statistics about elaboration and simulation.
The statistics measure the simulation kernal process (vsimk) for a single invocation of vsim. If
you invoke vsim a second time, or restart the simulation, the current statistics are discarded and
new values are collected.

If executed without arguments, the command returns a list of pairs like the following:

{{elab memory} 0} {{elab working set} 7245824} {{elab time} 0.942645}
{{elab cpu time} 0.190274} {{elab context} 0} {{elab page faults} 1549}
{memory 0} {{working set} 0} {time 0} {{cpu time} 0} {context 0}
{{page faults} 0}

The elaboration statistics are measured one time at the end of elaboration. The simulation
memory statistics are measured at the time you invoke simstats. The simulation time statistics
are updated at the end of each run command. See the arguments below for descriptions of each
statistic.

Units for time values are in seconds. Units for memory values vary by platform:

• For SunOS and Linux, the memory size is reported in Kbytes

• For Windows, the memory size is reported in bytes.

Some of the values may not be available on all platforms and other values may be approximates.
Different operating systems report these numbers differently.

Syntax

simstats [memory | working | time | cpu | context | faults]

Arguments

• memory

Returns the amount of virtual memory that the OS has allocated for vsimk. Optional.

• working

Returns the portion of allocated virtual memory that is currently being used by vsimk.
Optional. If this number exceeds the actual memory size, you will encounter performance
degradation.

• time

Returns the cumulative "wall clock time" of all run commands. Optional.

• cpu

Returns the cumulative processor time of all run commands. Optional. Processor time
differs from wall clock time in that processor time is only counted when the cpu is actually
running vsimk. If vsimk is swapped out for another process, cpu time does not increase.

Commands
simstats

ModelSim SE Reference Manual, v6.5b 365

• context

Returns the number of context swaps (vsimk being swapped out for another process) that
occurred during all run commands. Optional.

• faults

Returns the number of page faults that occurred during all run commands. Optional.

ModelSim SE Reference Manual, v6.5b366

Commands
status

status
The status command lists summary information about currently interrupted macros.

If invoked without arguments, the command lists the filename of each interrupted macro, the
line number at which it was interrupted, and prints the command itself. It also displays any
onbreak or onerror commands that have been defined for each interrupted macro.

Syntax

status [file | line]

Arguments

• file

Reports the file pathname of the current macro.

• line

Reports the line number of the current macro.

Examples

The transcript below contains examples of resume, and status commands.

VSIM(paused)> status
Macro resume_test.do at line 3 (Current macro)
command executing: "pause"
is Interrupted
ONBREAK commands: "resume"
Macro startup.do at line 34
command executing: "run 1000"
processing BREAKPOINT
is Interrupted
ONBREAK commands: "resume"
VSIM(paused)> resume
Resuming execution of macro resume_test.do at line 4

See also

abort, do, pause, resume

Commands
step

ModelSim SE Reference Manual, v6.5b 367

step
The step command steps to the next HDL or C statement. Current values of local HDL variables
may be observed at this time using the Locals window.

You can use the -over argument to skip over a VHDL procedures or functions, Verilog task or
functions, or a C functions. When a wait statement or end of process is encountered, time
advances to the next scheduled activity. ModelSim then updates the Process and Source
windows to reflect the next activity.

Syntax

step [<n>] [-inst <full_path_name>] [-out] [-over [<n>] [<n>]] [-this "this==<class_handle>"]

Arguments

• <n>

(optional) Instructs the simulation to execute ‘n’ steps before returning, where <n> is any
positive integer.

• -inst <full_path_name>

(optional) Instructs the simulation to step into a specific instance, process, or thread, as
identified by <full_path_name>.

• -out

(optional) Instructs the simulation to step out of the current function or procedure and return
to the caller.

• -over [<n>]

(optional) Directs ModelSim to run VHDL procedures and functions, Verilog tasks and
functions, and C functions but to treat them as simple statements instead of entering and
tracing them line by line. If you are using C Debug, specifying a positive integer value for
<n> moves the debugger n lines ahead.

• -this "this==<class_handle>"

(optional) Instructs the simulation to step into a System Verilog class, as identified by
<class_handle>. To obtain the handle of the class, use the examine -handle command.

Note that you must use quotation marks (") with this argument.

See also

run

ModelSim SE Reference Manual, v6.5b368

Commands
stop

stop
The stop command is used with the when command to stop simulation in batch files.

The stop command has the same effect as hitting a breakpoint. The stop command may be
placed anywhere within the body of the when command.

Syntax

stop

Arguments

• None.

Description

Use the run command with the -continue option to continue the simulation run, or the resume
command to continue macro execution. If you want macro execution to resume automatically,
put the resume command at the top of your macro file:

onbreak {resume}

Note
If you want to stop the simulation using a when command, you must use a stop command
within your when statement. DO NOT use an exit command or a quit command. The stop
command acts like a breakpoint at the time it is evaluated.

See also

bp, resume, run, when

Commands
suppress

ModelSim SE Reference Manual, v6.5b 369

suppress
The suppress command prevents one or more specified messages from displaying. You cannot
suppress Fatal or Internal messages. The suppress command used without arguments returns
the message numbers of all suppressed messages.

Edit the suppress variable in the modelsim.ini file to set a permanent default. Refer to
“Changing Message Severity Level” for more information.

Syntax

suppress [-clear <msg_number>[,<msg_number>,...]] [<msg_number>[,<msg_number>,…]]
[<code_string>[, <code_string>,...]]

Arguments

• -clear <msg_number>[,<msg_number>,...]

Clears suppression of the message (or messages) identified by its message number,
<msg_number>. Optional.

• <msg_number>[,<msg_number>,...]

An integer identifier of the message to be suppressed (message number). Optional.

• <code_string>[, <code_string>,...]

A string identifier of the message to be suppressed. Disables warning messages in the
category specified by <CODE>. Optional. Warnings that can be disabled include the
<CODE> name in square brackets in the warning message.

Examples

• Return the message numbers of all suppressed messages:

suppress

• Suppress messages by message number:

suppress 8241,8242,8243,8446,8447

• Suppress messages by numbers and code categories:

suppress 8241,TFMPC,CNNODP,8446,8447

• Clear message suppression for the designated messages:

suppress -clear 8241,8242

• Return the message numbers of all suppressed messages and clear suppression for all:

suppress -clear [suppress]

ModelSim SE Reference Manual, v6.5b370

Commands
tb

tb
The tb (traceback) command displays a stack trace for the current process in the Transcript
window. This lists the sequence of HDL function calls that have been entered to arrive at the
current state for the active process.

If you are using “C Debug”, tb displays a stack trace of the C call stack.

Syntax

tb [<#_of_levels>]

Arguments

• <#_of_levels>

Specifies the number of call frames in the C stack to display. Optional. If you don’t specify
a level, the entire C stack is displayed. This argument is available only for C Debug.

Commands
tcheck_set

ModelSim SE Reference Manual, v6.5b 371

tcheck_set
The tcheck_set command works in tandem with tcheck_status to report on and enable/disable
individual timing checks. tcheck_set modifies either a check's reporting or X-generation status
and reports the new setting in the Transcript window.

Disabling a timing check's reporting prevents generation of associated violation messages. For
Verilog modules this means ModelSim disables message reporting. For VHDL design units this
means ModelSim sets the MsgOn parameter in a VITAL timing check procedure (TCP) to
FALSE. Disabling a timing check's X generation removes a timing check’s ability to affect the
outputs of the simulation. For Verilog modules, this means ModelSim toggles the timing
check's notifier. For VHDL design units this means ModelSim sets the Xon parameter in a
VITAL TCP to FALSE.

tcheck_set does not override the effects of invoking vlog or vsim with the +nospecify,
+notimingchecks, or +no_neg_tchk arguments. tcheck_set can override the effects of
invoking vsim with the +no_notifier, +no_tchk_msg, -g, or -G arguments. These latter
arguments establish initial values for the simulation, and those values can be modified by
tcheck_set.

If a design has been compiled by vlog with the -nodebug argument, no timing checks placed in
the design using tcheck_set are visible with the tcheck_status command.

Keep in mind the following if you are using VHDL VITAL:

• VITAL does not provide the granularity to set individual period or width checks. These
checks are part of a single VITAL TCP, and tcheck_set toggles MsgOn and Xon for all
checks in the TCP. See "Examples" below for further information.

• If an instance is not Level-1 optimized, you cannot set values for individual TCPs. You
can set values only for the entire instance. tcheck_status reports "ALL" for instances
that aren’t Level-1 optimized. See "Examples" below for further information.

Syntax

tcheck_set <instance> [-quiet] [-r | <tcheck> | ALL] [<Stat> | <MsgStat> <XStat>]

Arguments

• <instance>

Specifies the instance for which you want to change the reporting or X-generation status.
Required.

• -quiet

Suppresses printing the new setting to the Transcript window. Optional.

• -r | <tcheck> | ALL

Specifies which checks should be changed.

-r — Attempts to change all checks on <instance> and all instances below. Optional.

ModelSim SE Reference Manual, v6.5b372

Commands
tcheck_set

<tcheck> — Specifies a specific timing check to change. Optional. You can specify
either:

• the integer that is assigned to each timing check (and reported via
tcheck_status). Note that the integer number may change between library
compiles.

• the actual timing check name enclosed in double quotes (see "Examples" below).

ALL — Attempts to change all checks in <instance>. Default.

• <Stat>

Enables/disables both X generation and violation message reporting for the specified timing
check(s). Optional.

ON — enable

OFF — disable

• <MsgStat>

Enables/disables violation message reporting for the specified timing check(s). Optional.

ON — enable

OFF — disable

• <XStat>

Enables/disables X generation for the specified timing check(s). Optional.

ON — enable

OFF — disable

Examples

• Turn off message reporting and X generation for the "(WIDTH (negedge CLK))" check
in instance top.y1.u2. These examples assume that your PathSeparator variable is set to
"." rather than the default "/".

tcheck_set top.y1.u2 "(WIDTH (negedge CLK))" OFF

Create the following output in the Transcript window:

#0 (WIDTH (negedge CLK)) MsgOff XOff

• Turn off message reporting for timing check number 1 in instance top.y1.u2.

tcheck_set top.y1.u2 1 OFF ON

Create the following output in the Transcript window:

#1 (WIDTH (posedge CLK)) MsgOff XOn
VSIM 2> tcheck_status dff1
1 (PERIOD CLK) MsgOn, XOn
(WIDTH (posedge CLK)) MsgOn, XOn
(WIDTH (negedge CLK)) MsgOn, XOn

Commands
tcheck_set

ModelSim SE Reference Manual, v6.5b 373

VSIM 3> tcheck_set dff1 "(WIDTH (posedge CLK))" off on
1 (PERIOD CLK) MsgOff, XOn
(WIDTH (posedge CLK)) MsgOff, XOn
(WIDTH (negedge CLK)) MsgOff, XOn

Show how period and hold checks work with VHDL VITAL. In this case, specifying
"off on" for (WIDTH (posedge CLK)) also sets (PERIOD CLK) and (WIDTH (negedge
CLK)) to the same values.

VSIM 3> tcheck_status dff5
ALL MsgOn XOn
VSIM 4> tcheck_set dff5 on off
ALL MsgOn XOff

Instance dff5 is from an unaccelerated model so tcheck_set can only toggle message
reporting and X generation for all checks on the instance.

See also

tcheck_status, “Compiling and Simulating with Accelerated VITAL Packages”, “SDF Timing
Annotation”, “Disabling Timing Checks”, -g, -G, no_notifier, +no_tchk_msg, +nospecify,
+no_neg_tchk, and +notimingchecks arguments to the vsim

ModelSim SE Reference Manual, v6.5b374

Commands
tcheck_status

tcheck_status
The tcheck_status command works in tandem with tcheck_set to report on and enable/disable
individual timing checks. tcheck_status prints in the Transcript window the current status of all
timing checks in the instance or a specific timing check specified with the optional <tcheck>
argument.

Disabling a timing check's reporting prevents generation of associated violation messages. For
Verilog modules this means ModelSim disables message reporting. For VHDL design units this
means ModelSim sets the MsgOn parameter in a VITAL timing check procedure (TCP) to
FALSE. Disabling a timing check's X generation removes a timing check’s ability to affect the
outputs of the simulation. For Verilog modules this means ModelSim toggles the timing check's
notifier. For VHDL design units this means ModelSim sets the Xon parameter in a VITAL TCP
to FALSE.

Syntax

tcheck_status [-lines] <instance> [<tcheck>]

Arguments

• -lines

Specifies that the HDL source file and line numbers of the check(s) be displayed. Optional.
Has no effect on VHDL instances. Note that line information may not always be available.

• <instance>

Specifies the instance for which you want timing check status reported. Required.

• <tcheck>

Specifies a specific timing check within the instance on which to report status. Optional. By
default ModelSim reports all timing checks within the specified instance. You can specify
either the integer that is assigned to each timing check (and reported via tcheck_status) or
the actual timing check name enclosed in double quotes (see "Examples" below). Note that
the integer number may change between library compiles.

Output

The output of tcheck_status is displayed in the following form:

#<Number> <SDF_Description> [<src_line>] <MsgStat> <XStat>

Commands
tcheck_status

ModelSim SE Reference Manual, v6.5b 375

Table 2-6 contains a short description of each field in the output.

Examples

• Create the following output:

tcheck_status top.y1.u2

#0 (WIDTH (negedge CLK)) MsgOn XOn
#1 (WIDTH (posedge CLK)) MsgOn XOn
#2 (SETUP (negedge D) (posedge CLK)) MsgOFF XOFF
#3 (HOLD (posedge CLK) (negedge D)) MsgOn XOff

• Create the following output:

tcheck_status -lines top.y1.u2 1

#1 (WIDTH (posedge CLK)) 'cell.v:224' MsgOn XOn

See also

tcheck_set, “SDF Timing Annotation”

Table 2-6. Output Fields for tcheck_status Command

Field Description

<Number> an integer that can be used as shorthand to specify the
check in the tcheck_status or tcheck_set commands (as
the <tcheck> argument); this number can change with
compiler optimizations, and you can’t assume it will stay
the same between library compiles

<SDF_Description> an SDF specification of the timing check including
enclosing parentheses ’()'

<src_line> the source file and line number for the timing check
specification; output if you specify the -lines argument;
the format of the object is

<source_file_name>:<line_number>.

<MsgStat> violation message reporting status indicator
• MsgON/MsgOFF - violation reporting is

enabled/disabled and unchangeable
• MsgOn/MsgOff - violation reporting is

enabled/disabled and modifiable

<XStat> violation X generation status indicator
• XON/XOFF - X generation is enabled/disabled and

unchangeable
• XOn/XOff - X generation is enabled/disabled and

modifiable

ModelSim SE Reference Manual, v6.5b376

Commands
Time

Time
There are several Time commands that allow you to perform comparisons between, operations
on, and conversions of time values.

Syntax

eqTime <time1> <time2>

Returns a 1 (true) or 0 (false) if <time1> and <time2> are equal.

neqTime <time1> <time2>

Returns a 1 (true) or 0 (false) if <time1> and <time2> are not equal.

ltTime <time1> <time2>

Returns a 1 (true) or 0 (false) if <time1> is less than <time2>.

gtTime <time1> <time2>

Returns a 1 (true) or 0 (false) if <time1> is greater than <time2>.

lteTime <time1> <time2>

Returns a 1 (true) or 0 (false) if <time1> is less than or equal to <time2>.

gteTime <time1> <time2>

Returns a 1 (true) or 0 (false) if <time1> is greater than or equal to <time2>.

addTime <time1> <time2>

Returns the value of adding <time1> to <time2>

subTime <time1> <time2>

Returns the value of subtracting <time2> from <time1>

mulTime <time1> <integer>

Returns the value of multiplying <time1> by an <integer>

divTime <time1> <time2>

Returns an integer, which is the value of dividing <time1> by <time2>. Specifying 0 for
<time2> results in an error.

intToTime <high_32bit_int> <low_32bit_int>

Returns a 64-bit time value based on two 32-bit parts of a 64-bit integer. This command is
useful when you’ve performed an integer calculation that results in a 64-bit value and need
to convert it to a time unit.

scaleTime <time1> <scale_factor>

Returns a time value scaled by a real number and truncated to the current time resolution.

RealToTime <real>

Commands
Time

ModelSim SE Reference Manual, v6.5b 377

Returns a time value equivalent to the specified real number and truncated to the current
time resolution.

validTime <time>

Returns a 1 (true) or 0 (false) if the given string is a valid time for use with any of these
Time calculations.

formatTime {+ | -} commas | {+ | -}nodefunit | {+ | -}bestunits

Sets display properties for time values.

Arguments

• <time> —

<number> — the command assumes that the <time_unit> is the current simulation time
unit, as defined by the Resolution variable in the modelsim.ini file or the -t switch to
the vsim command.

<number><time_unit> — note that there is no space is between the values.

<number> <time_unit> — note that if you put a space between the values, you must
enclose the argument in braces ({ }) or double-quotes (" ").

• <time_unit> —

fs — femtosecond (10-15 seconds)

ps — picosecond (10-12 seconds)

ns — nanosecond (10-9 seconds)

us — microsecond (10-6 seconds)

ms — millisecond (10-3 seconds)

sec — second

min — minute (60 seconds)

hr — hour (3600 seconds)

• <high_32bit_int> | <low_32bit_int>

<high_32bit_int> — The "high" part of the 64-bit integer.

<low_32bit_int> — The "low" part of the 64-bit integer.

• <scale_factor> — a real number to be used as scaling factor. Common values can include:

0.25, 0.5, 1.5, 2, 10, 100
• {+ | -} commas — controls whether commas are displayed in time values.

+commas — time values include commas

-commas — time values do not include commas

• {+ | -}nodefunit — controls whether time values display time units

+nodefunit — time values do not include time units and will be in current time
resolution

ModelSim SE Reference Manual, v6.5b378

Commands
Time

-nodefunit — time values may include time units

• {+ | -}bestunits — controls whether time values display the largest possible time unit, for
example 8 us instead of 8,000 ns.

+bestunits — time values display the largest possible time unit

-bestunits — time values display the default time unit

Examples

• The following transcript shows examples of the Time commands and their output:

>ltTime 100ns 1ms
1

>addTime {1545 ns} {455 ns}
2 us

>gteTime "1000 ns" "1 us"
1

>divTime 1us 10ns
100

>formatTime +bestunit
>scaleTime 3ms 1000
3 sec

>RealToTime 1.345e04
13450 ns

Commands
toggle add

ModelSim SE Reference Manual, v6.5b 379

toggle add
The toggle add command enables collection of toggle statistics for the specified nodes.

The allowed nodes are Verilog nets and registers and VHDL signals of type bit, bit_vector,
std_ulogic, std_logic, and std_logic_vector. Also, VHDL Boolean and Integer types (including
subranges) and other user-defined Enum types, as well as SystemVerilog real types are
supported for use. All other types are silently ignored.

You can also collect and view toggle statistics in the ModelSim GUI. Refer to “Coverage” for
details.

Note
The toggle coverage feature is available as an add-on to ModelSim PE, LE, and Designer.

Syntax

toggle add [-exclude {<list>}] [-countlimit] [-full] [-in] [-inout] [-internal] [-out] [-ports] [-r]
[-unique] [-widthlimit] <node_name>

Returns

Arguments

• -exclude {<list>}

Excludes specified bits of a bus from toggle computations and reports. Can also be used to
exclude specific VHDL or SystemVerilog enums or ranges of enums from toggle coverage
and reporting. Optional.

<list> is a space-separated list of integers or ranges, where a range is two integers separated
by either ":" or "-". The range must be in the same ascending or descending order as the
signal declaration. If a second toggle add -exclude command is issued on the same signal,
the latest command will override the earlier one.

• -countlimit

Limits the toggle coverage count for a toggle node. Optional. Overrides the global default
value set by the ToggleCountLimit modelsim.ini variable.

Command result Return value

no signals are added and no signals are found to be
already in the toggle set

Nothing added.

no signals are added and some signals are found to
be already in the toggle set

0

some signals are added the number of bits added

ModelSim SE Reference Manual, v6.5b380

Commands
toggle add

• -full

Enables extended mode toggle coverage, which tracks the following six transitions:

o 1 or H --> 0 or L

o 0 or L --> 1 or H

o Z --> 1 or H

o Z --> 0 or L

o 1 or H --> Z

o 0 or L --> Z

Optional. By default only the first two transitions – to and from 0 and to and from1 are
counted. If you do a toggle add command on a group of signals and then try to convert to
extended toggle coverage mode (all six transitions) by doing toggle add
-full on the same signals, nothing will change. The only way to change the internal toggle
triggers from default to extended toggle coverage is to restart vsim and start with the correct
command.

• -in

Enables toggle statistics collection on nodes of mode IN. Optional.

• -inout

Enables toggle statistics collection on nodes of mode INOUT. Optional.

• -internal

Enables toggle statistics collection on internal (non-port) objects. Optional.

• -out

Enables toggle statistics collection on nodes of mode OUT. Optional.

• -ports

Enables toggle statistics collection on nodes of modes IN, OUT, or INOUT. Optional.

• -r

Specifies that toggle statistics collection is enabled recursively into subregions. Optional. If
omitted, toggle statistic collection is limited to the current region.

• -unique

Reports an attempt to add a signal that is an alias to a signal already added. The alias will not
be added. Optional.

• -widthlimit

Limits the maximum width of signals included in toggle coverage for the specified node.
Optional. Overrides the global default limit (128) set by the ToggleCountLimit modelsim.ini
variable.

Commands
toggle add

ModelSim SE Reference Manual, v6.5b 381

• <node_name>

Enables toggle statistics collection for the named node(s). Required. Multiple names and
wildcards are accepted.

Examples

• Enable toggle statistics collection for signal /dut/data/a.

toggle add /dut/data/a

• Enable toggle statistics collection for bit 6 of bus /dut/data_in. The curly braces must be
added in order to escape the square brackets (’[]’)

toggle add {/dut/data_in[5]}

See also

“Toggle Coverage”, "Toggle Exclusion Management", toggle disable, toggle enable, toggle
report, toggle reset

ModelSim SE Reference Manual, v6.5b382

Commands
toggle disable

toggle disable
The toggle disable command disables toggle coverage statistics collection on the specified
nodes. The command provides a method of implementing coverage exclusions for toggle
coverage. An equivalent command for excluding toggles from coverage is “coverage exclude -
togglenode”.

Syntax

toggle disable [-all] | [-in] [-out] [-inout] [-internal] [-ports] [-r] <node_name>

Arguments

• -all

Disables toggle statistics collection for all nodes that have toggle checking enabled.
Optional. Must be used alone without other arguments.

• -in

Disables toggle statistics collection on nodes of mode IN. Optional.

• -out

Disables toggle statistics collection on nodes of mode OUT. Optional.

• -inout

Disables toggle statistics collection on nodes of mode INOUT. Optional.

• -internal

Disables toggle statistics collection on internal (non-port) objects. Optional.

• -ports

Disables toggle statistics collection on nodes of modes IN, OUT, or INOUT. Optional.

• -r

Specifies that toggle statistics collection is disabled recursively into subregions. Optional. If
omitted, the disable is limited to the current region.

• <node_name>

Disables toggle statistics collection for the named node(s). Required. Multiple names and
wildcards are accepted.

See also

“Toggle Coverage”, toggle add, toggle enable, toggle report, toggle reset, coverage exclude

Commands
toggle enable

ModelSim SE Reference Manual, v6.5b 383

toggle enable
The toggle enable command re-enables toggle statistics collection on nodes whose toggle
coverage had previously been disabled.

Syntax

toggle enable [-all] | [-in] [-out] [-inout] [-internal] [-ports] [-r] <node_name>

Arguments

• -all

Enables toggle statistics collection for all nodes that have toggle checking disabled.
Optional. Must be used alone without other arguments.

• -in

Enables toggle statistics collection on disabled nodes of mode IN. Optional.

• -out

Enables toggle statistics collection on disabled nodes of mode OUT. Optional.

• -inout

Enables toggle statistics collection on disabled nodes of mode INOUT. Optional.

• -internal

Enables toggle statistics collection on disabled internal (non-port) objects. Optional.

• -ports

Enables toggle statistics collection on disabled nodes of modes IN, OUT, or INOUT.
Optional.

• -r

Specifies that toggle statistics collection is enabled recursively into subregions. Optional. If
omitted, the enable is limited to the current region.

• <node_name>

Enables toggle statistics collection for the named node(s). Required. Multiple names and
wildcards are accepted.

See also

“Toggle Coverage”, “Toggle Exclusion Management”, toggle add, toggle disable, toggle report,
toggle reset, coverage exclude

ModelSim SE Reference Manual, v6.5b384

Commands
toggle report

toggle report
The toggle report command displays a list of all unique nodes that have not transitioned to both
0 and 1 at least once, and the counts for how many times each node toggled for each state
transition type.

Also displayed is a summary of the number of nodes checked, the number that toggled, the
number that didn't toggle, and a percentage that toggled.

You can also collect and view toggle statistics in the ModelSim GUI. Refer to “Coverage” for
details.

The toggle report command is intended to be used as follows:

1. Enable statistics collection with the toggle add command.

2. Run the simulation with the run command.

3. Produce the report with the toggle report command.

Note
If you want to ensure that you are reporting all signals in the design, use the -nocollapse
argument to vsim when you load your design. Without this argument, the simulator
collapses certain ports that are connected to the same signal in order to improve
performance, and those collapsed signals will not appear in the report. The -nocollapse
argument degrades simulator performance, so it should be used only when it is absolutely
necessary to see all signals in a toggle report.

Ordering of toggle nodes

The ordering of nodes in the report may vary depending on how you specify the signal list. If
you use a wildcard in the signal argument (e.g., toggle report -all -r /*), the nodes are listed in
the order signals are found when searching down the context tree using the wildcard. Multiple
elements of the same net will be listed multiple times. If you do not use a wildcard (e.g., toggle
report -all -r /*), the nodes are listed in the order in which they were originally added to toggle
coverage, and elements are not duplicated.

Syntax

toggle report [-all] [-file <filename>] [-select { inputs | outputs | inout | ports | internals }]
[-instance <path> [-recursive]] [-onexit] [<signal>…] [-showambiguity] [-summary] [-top]
[-verbose]

Arguments

• -all

Lists all nodes, both toggled and untoggled. Optional.

• -file <filename>

Specifies a file to which to write the report. By default the report is displayed in the
Transcript window. Optional.

Commands
toggle report

ModelSim SE Reference Manual, v6.5b 385

• -select { inputs | outputs | inout | ports | internals }

Reports on input, output, inout, all ports, or internal signals. Optional.

• -instance <path> [-recursive]

Reports on toggles for a specified instance, and optionally on toggles under the specified
instance path. Optional.

The optional -recursive argument specifies that toggle statistics reporting is enabled
recursively into subregions. If omitted, toggle statistic reporting is limited to the current
region.

• -onexit

Causes ModelSim to report toggle data automatically when the simulator exits. Optional.

• <signal>…

Specifies the name of a signal whose toggle statistics are to be displayed. Multiple signal
names, separated by spaces, may be specified. Wildcards may be used.

• -showambiguity

When used, toggle report displays both minimum and maximum counts for any conflicting
toggle data in a UCDB that results from a combined merge (vcover merge command
performed with -combine).

• -summary

Selects only the summary portion of the report. Optional.

• -top

For signals that were added to toggle coverage using vcom or vlog -cover t, -top uses the
name of the top-most element of multiple-segment (collapsed) nets. Optional. By default the
name of the wildcard-matching segment will be used.

• -unique

This option is obsolete with version 6.3. By default, toggles are always unique.

• -verbose

Specifies that the toggle report includes all values taken on by integer variables. Optional.

See also

“Toggle Coverage”, toggle add, toggle disable, toggle enable, toggle reset

ModelSim SE Reference Manual, v6.5b386

Commands
toggle reset

toggle reset
The toggle reset command resets the toggle counts to zero for the specified nodes.

Syntax

toggle reset [-all] | [-in] [-out] [-inout] [-internal] [-ports] [-r] <node_name>

Arguments

• -all

Resets toggle statistics collection for all nodes that have toggle checking enabled. Optional.
Must be used alone without other arguments.

• -in

Resets toggle statistics collection on nodes of mode IN. Optional.

• -out

Resets toggle statistics collection on nodes of mode OUT. Optional.

• -inout

Resets toggle statistics collection on nodes of mode INOUT. Optional.

• -internal

Resets toggle statistics collection on internal (non-port) objects. Optional.

• -ports

Resets toggle statistics collection on nodes of modes IN, OUT, or INOUT. Optional.

• -r

Specifies that toggle statistics collection is reset recursively into subregions. Optional. If
omitted, the reset is limited to the current region.

• <node_name>

Resets toggle statistics collection for the named node(s). Required. Multiple names and
wildcards are accepted.

See also

“Toggle Coverage”, toggle add, toggle disable, toggle enable, toggle report

Commands
tr color

ModelSim SE Reference Manual, v6.5b 387

tr color
The tr color command changes the color scheme of individual transactions and entire streams,
either in a specific wave window or for all wave windows. It is the command equivalent of the
Colors tab in the Transaction-Stream Properties dialog.

<color> in the arguments specifies the color to use. Either a standard X Window color name or
an RGB value (e.g., #357f77) is accepted; multi-word names (“light blue”) in quotes.

If no arguments are specified, this command returns the value of each configuration item in a
Tcl list.

Unique abbreviations are accepted for all arguments.

Syntax

tr color -stream <stream> [<stream>] ... [-attrbg <color>] [-attrtext <color>] [-border <color>]
[-color <color>] [-default] [-get] [-inactive <color>] [-namebg <color>] [-nametext
<color>]
[-win <wave>]

tr color -transaction <uid> [<uid>] ... [-attrbg <color>] [-attrtext <color>] [-border <color>]
[-color <color>] [-default] [-get] [-inactive <color>] [-namebg <color>] [-nametext
<color>]
[-win <wave>]

Arguments

• -attrbg <color>

Select the color to use as the background for all attributes. Optional. See <color>.

• -attrtext <color>

Select the color to use for attribute text. Optional.

• -border <color>

Select the border color. Optional.

• -color <color>

Select the background color for the transaction. All other colors are chosen automatically.
Optional.

• <color>

Specifies the color to use. Either a standard X Window color name or an RGB value (e.g.,
#357f77) is accepted; multi-word names (“light blue”) in quotes.

• -default

Removes any color overrides on the specified streams or transactions. Optional. If present,
this option takes precedence over any other option that sets color.

ModelSim SE Reference Manual, v6.5b388

Commands
tr color

• -get

Indicates that the command should return a list of the color schemes for each transaction or
stream. Optional. If colors are changed by the command, this argument returns the resulting
color scheme. Each scheme is itself a Tcl list with the colors listed in the following order:
inactive line, border line, name background, name text, attribute background, attribute text.

• -inactive <color>

Select the inactive-line color. Optional.

• -namebg <color>

Select the color to use as the background for the transaction’s name. Optional.

• -nametext <color>

Select the color for the transaction name. Optional.

• -stream <stream> [<stream>] ...

If present, all objects specified in the tr color command are transaction streams. Either this
argument or -transaction is required. <stream> is the path to a transaction stream. Multiple
streams are allowed, and the <stream> need not immediately follow the -stream argument.
No wildcards are allowed.

• -transaction <uid> [<uid>] ...

Specifies the Unique IDs (UID) of the transactions to configure. The UID consists of dataset
name and the 64-bit serial number assigned during simulation, which can be determined
using the “tr uid” command.

<uid> can be specified either with full UID or just the serial number. If only the serial
number is present, the current dataset as returned by the “env” command is assumed. If the
full UID is used, it must be surrounded by curly braces ({}).

Multiple ID specifications are allowed, and the <uid> need not immediately follow the
-transaction argument. No wildcards are allowed.

Either -transaction or -stream is required.

• -win <wave>

If present, this option specifies the wave window for which the changes should apply.
<wave> is the Tk name (not the title) for the wave window. Any color changes to specific
transactions take precedence over color changes to the streams carrying those transactions.
You can change the scheme for the associated streams and not change those transactions. To
remove color changes on specific transactions, use the –default option. The selected
transactions would then reflect the color scheme of the stream.

Examples

• Set colors for the name and background for a specified transaction stream:

tr color -stream -namebg “light blue” -nametext black /path/tr03

• Set the color of the border for a specified transaction:

Commands
tr color

ModelSim SE Reference Manual, v6.5b 389

tr color -transaction -border #357f77 {sim 10023}

See also

“Recording and Viewing Transactions”, tr uid, tr order

ModelSim SE Reference Manual, v6.5b390

Commands
tr order

tr order
The tr order command controls which attributes are visible and the order in which they appear.
It applies to entire streams only, either in a specific wave window or for all wave windows. It is
the command equivalent of the Order tab in the Transaction-Stream Properties dialog.

This command functions to either:

• specify which attributes are visible and the order of those attributes (using -attributes
and -default)

• display the attribute order and visibility settings (using -hidden and -visible).

Because two streams may have different attributes or the same attributes in different order, this
command resolves the differences when setting the attribute order and visibility. When you set
the order with -attributes, only attributes applying to a specific stream are visible. All other
attributes for that stream are hidden. Names not matching actual attributes are ignored for that
stream.

When restoring the original order with -default, each stream returns to its original order and
visibility which may be different from that of another stream in the command line.

Unique abbreviations are accepted for all arguments.

Syntax

tr order [-attributes <attrs>] [-default] [-win <wave>] <stream> [<stream>] ...

tr order [-hidden] [-visible] [-win <wave>] {<stream> [<stream>] ...}

Arguments

• -attributes <attrs>

Specifies that the attributes for the specified stream(s) should be visible. All other attributes
are hidden. Optional. The order of the list determines the order of the attributes listed.
<attrs> is a Tcl list of attribute names. Use {} to specify that there should be no visible
attributes.

• -default

Removes any visibility and order overrides on the specified streams or transactions.
Optional. If present, this option takes precedence over the –attributes option.

• -hidden

Return a list of the hidden attributes for each stream or transaction specified. Optional. If
-visible is set, the hidden attributes are in a list following the visible attributes.

• -visible

Return a list of the visible attributes for each stream or transaction specified. Optional. If
-hidden is set, the visible attributes are in a list preceding the hidden attributes.

Commands
tr order

ModelSim SE Reference Manual, v6.5b 391

• -win <wave>

If present, this option specifies the wave window for which the changes should apply.
<wave> is the Tk name (not the title) for the wave window for which the changes apply.

• <stream> [<stream>] ...

The path to a transaction stream. Multiple streams are allowed. No wildcards are allowed.
The tr order command requires either a stream or unique ID.

Examples

• Set the order in which attributes appear in the wave window for a specified transaction
stream:

tr order -attr attr1 attr2 attr3 /path/tr03

• Returns the attribute order for the top/stream stream to the default order:

tr order -default /top/stream

• Sets the visibility for attributes of the transaction stream /top/stream2:

tr order -visible attr1 -hidden attr2 top/stream2

Displays a Tcl list of visible attributes, followed by the hidden attributes.

See also

“Recording and Viewing Transactions”, tr uid, tr color

ModelSim SE Reference Manual, v6.5b392

Commands
tr uid

tr uid
The tr uid command returns a list of unique transaction IDs for the specified time span on the
specified streams. A transaction UID is the logical name of its dataset and its a 64-bit serial
number created during simulation.

Usage: you can pass the returned UIDs to the tr color command to specify a particular
transaction.

The returned UIDs represent transactions that are ACTIVE during the time span. If a transaction
starts anywhere in the time span, at the start of the span or even at the end of the span, it is
considered active. A transaction that ends at the start time is not active.

The optional arguments in this command apply either to a:

• listing of transactions occurring over a large range of time (using -end and -start)

• listing of transactions that are active at one specific time (using -time)

Unique abbreviations are accepted for all arguments.

Syntax

tr uid -time <time> <stream> [<stream>] ...

tr uid -start <time> -end <time> <stream> [<stream>] ...

Arguments

• -end <time>

Specifies the start of the span of time from which UIDs should be obtained. Required in
conjunction with the -start option unless -time is specified.

• <time>

Indicates time, or time and delta.

• -start <time>

Specifies the start of the span of time from which UIDs should be obtained. Required in
conjunction with the -end option, unless -time is specified.

• -time <time>

Specifies both the start and end of the time range for the command. Required unless -end
and -start are specified.

• <stream> [<stream>] ...

The path to a transaction stream. Required. May specify more than one stream. No
wildcards are allowed.

Examples

• List all transaction UIDs for a specified transaction stream:

Commands
tr uid

ModelSim SE Reference Manual, v6.5b 393

tr uid /path/tr03

• List the transaction UID for a specified transaction stream at a particular time:

tr uid -time 20ns {sim 209456}

See also

“Recording and Viewing Transactions”, tr color, tr order

ModelSim SE Reference Manual, v6.5b394

Commands
transcribe

transcribe
The transcribe command displays a command in the Transcript window, and then executes the
command.

The transcribe command is normally used to direct commands to the Transcript window from
an external event such as a menu pick or button selection. The add button and add_menuitem
commands can utilize transcribe. Returns nothing.

Syntax

transcribe <command>

Arguments

• <command>

Specifies the command to execute. Required.

Examples

• Create a button labeled "pwd" that invokes transcribe with the pwd Tcl command, and
echoes the command and its results to the Transcript window. The button remains active
during a run.

add button pwd {transcribe pwd} NoDisable

See also

add button, add_menuitem

Commands
transcript

ModelSim SE Reference Manual, v6.5b 395

transcript
The transcript command controls echoing of commands executed in a macro file.

If no option is specified, the current setting is reported.

Syntax

transcript [on | off | -q | quietly]

Arguments

• on

Specifies that commands in a macro file will be echoed to the Transcript window as they are
executed. Optional.

• off

Specifies that commands in a macro file will not be echoed to the Transcript window as they
are executed. Optional. The transcribe command can be used to force a command to be
echoed.

• -q

Returns "0" if transcripting is turned off or "1" if transcripting is turned on. Useful in a Tcl
conditional expression. Optional.

• quietly

Turns off the transcript echo for all commands. To turn off echoing for individual
commands see the quietly command. Optional.

Examples

• Commands within a macro file will be echoed to the Transcript window as they are
executed.

transcript on

• If issued immediately after the previous example, the message:

transcript

Macro transcripting is turned ON.

appears in the Transcript window.

See also

Transcript Window, echo, transcribe, .main clear

ModelSim SE Reference Manual, v6.5b396

Commands
transcript file

transcript file
The transcript file command sets or queries the pathname for the transcript file. You can use
this command to clear a transcript in batch mode or to limit the size of a transcript file. It offers
an alternative to setting the PrefMain(file) Tcl preference variable.

Syntax

transcript file [<filename>]

Arguments

• <filename>

Specifies the full path and filename for the transcript file. Optional. If you specify a new
file, the existing transcript file is closed and a new transcript file opened. If you specify an
empty string (""), the existing file is closed and no new file is opened. If you don’t specify
this argument, the current setting is returned.

Examples

• Close the current transcript file and stops writing data to the file. This is a method for
reducing the size of your transcript.

transcript file ""

• This series of commands results in the transcript containing only data from the second
millisecond of the simulation. The first transcript file command closes the transcript so
no data is being written to it. The second transcript file command opens a new
transcript and records data from 1 ms to 2 ms.

transcript file ""
run 1 ms
transcript file transcript
run 1 ms

See also

Transcript Window, .main clear

Commands
tssi2mti

ModelSim SE Reference Manual, v6.5b 397

tssi2mti
The tssi2mti command is used to convert a vector file in TSSI Format into a sequence of force
and run commands.

The stimulus is written to the standard output.

The source code for tssi2mti is provided in the file tssi2mti.c in the examples directory.

Syntax

tssi2mti <signal_definition_file> [<sef_vector_file>]

Arguments

• <signal_definition_file>

Specifies the name of the TSSI signal definition file describing the format and content of the
vectors. Required.

• <sef_vector_file>

Specifies the name of the file containing vectors to be converted. If none is specified,
standard input is used. Optional.

Examples

• The command will produce a do file named trigger.do from the signal definition file
trigger.def and the vector file trigger.sef.

tssi2mti trigger.def trigger.sef > trigger.do

• This example is the same as the previous one, but uses the standard input instead.

tssi2mti trigger.def < trigger.sef > trigger.do

See also

force, run, write tssi

ModelSim SE Reference Manual, v6.5b398

Commands
typespec

typespec
The typespec command queries class names and class relationships of SystemVerilog classes.

Syntax

typespec [-isa <value>] [-class <value> | ancestry <value>] [-indent <value>] [-exact | -regexp]
<pattern>

Arguments

• -isa <value>

Returns classes derived from the given <value>.

• -class <value>

Returns specialized classes of the given <value>, where <value> represents a parameterized
class and the results are specific instances of the class with given parameter values.

• -ancestry <value>

Returns a list of base classes for the given <value>.

• -indent <value>

Prefixes each level of the class inheritance hierarchy with <value>.

• -exact

Returns results that match the given <pattern> exactly.

• -regexp

Specifies that all <pattern> arguments should be treated as regular expressions.

• <pattern>

The pattern you are querying for.

Commands
ui_VVMode

ModelSim SE Reference Manual, v6.5b 399

ui_VVMode
The ui_VVMode command specifies behavior when encountering UI registration calls used by
verification packages, such as AVM or OVM.

Syntax

ui_VVMode {off | nolog | full}

Arguments

• off

Disables context registration and automatic logging when encountering UI registration calls.

• nolog

Enables the context registration of the UI registration call, but does not automatically log the
registration to the WLF file.

• full

Enables the context registration of the UI registration call and automatically logs the
registration to the WLF file.

Description

UI registration calls, Verilog system tasks specific to this product, are typically included in
verification packages such as AVM and OVM so that key information about the packages is
available when debugging the simulation. The UI registration calls include:

• $ui_VVInstallInst() — Defines a region in the context tree, which will appear in the
Structure window.

• $ui_VVInstallObj() — Adds an object to the defined parent, which will appear in the
Objects window when the parent instance is selected in the Structure window.

• $ui_VVInstallPort() — Adds a port that is an object that connects to another component,
which will appear in the Objects window when the parent instance is selected in the
Structure window.

• $ui_VVSetFilter() — Specifies which class properties should not be shown in the GUI.

• $ui_VVSetAllow() — Specifies which class properties should be retained that were
filtered out with $ui_VVSetFilter.

ModelSim SE Reference Manual, v6.5b400

Commands
unsetenv

unsetenv
The unsetenv command deletes an environment variable. The deletion is not permanent–it is
valid only for the current ModelSim session.

Syntax

unsetenv <varname>

Arguments

• <varname>

The name of the environment variable you wish to delete. Required.

See also

setenv, printenv

Commands
up

ModelSim SE Reference Manual, v6.5b 401

up
The up command searches for object transitions or values in the specified List window.

It executes the search on objects currently selected in the window, starting at the time of the
active cursor. The active cursor moves to the found location.

Use this command to move to consecutive transitions or to find the time at which an object
takes on a particular value, or an expression of multiple objects evaluates to true. See the down
command for related functionality.

The procedure for using up includes three steps: click on the desired object; click on the desired
starting location; issue the up command. (The seetime command can initially position the
cursor from the command line, if desired.)

Returns: <number_found> <new_time> <new_delta>

Syntax

up [-expr {<expression>}] [-falling] [-noglitch] [-rising] [-value <sig_value>]
[-window <wname>] [<n>]

Arguments

• -expr {<expression>}

The List window will be searched until the expression evaluates to a boolean true condition.
Optional. The expression may involve more than one object, but is limited to objects that
have been logged in the referenced List window. An object may be specified either by its
full path or by the shortcut label displayed in the List window.

See GUI_expression_format for the format of the expression. The expression must be
placed within curly braces.

• -falling

Searches for a falling edge on the specified object if that object is a scalar. If it is not a
scalar, the option will be ignored. Optional.

• -noglitch

Specifies that delta-width glitches are to be ignored. Optional.

• -rising

Searches for a rising edge on the specified object if that object is a scalar. If it is not a scalar,
the option will be ignored. Optional.

• -value <sig_value>

Specifies a value of the object to match. Optional. Must be specified in the same radix in
which the selected object is displayed. Case is ignored, but otherwise must be an exact
string match — don't-care bits are not yet implemented.

ModelSim SE Reference Manual, v6.5b402

Commands
up

• -window <wname>

Specifies an instance of the List window that is not the default. Optional. Otherwise, the
default List window is used. Use the view command to change the default window.

• <n>

Specifies to find the nth match. Optional. If less than n are found, the number found is
returned with a warning message, and the marker is positioned at the last match.

Examples

• Find the last time at which the selected vector transitions to FF23, ignoring glitches.up

-noglitch -value FF23

• Go to the previous transition on the selected object.

up

The following examples illustrate search expressions that use a variety of signal attributes,
paths, array constants, and time variables. Such expressions follow the GUI_expression_format.

• Search up for an expression that evaluates to a boolean 1 when signal clk just changed
from low to high and signal mystate is the enumeration reading and signal /top/u3/addr
is equal to the specified 32-bit hex constant.

up -expr {clk’rising && (mystate == reading) && (/top/u3/addr ==
32’habcd1234)}

• Search up for an expression that evaluates to a boolean 1 when the upper 8 bits of the
32-bit signal /top/u3/addr equals hex ac.

up -expr {(/top/u3/addr and 32’hff000000) == 32’hac000000}

• Search up for an expression that evaluates to a boolean 1 when logfile time is between
23 and 54 microseconds, clock just changed from low to high, and signal mode is
enumeration writing.

up -expr {((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode ==
writing)}

See also

GUI_expression_format, view, seetime, down

Commands
vcd add

ModelSim SE Reference Manual, v6.5b 403

vcd add
 The vcd add command adds the specified objects to a VCD file.

The allowed objects are Verilog nets and variables and VHDL signals of type bit, bit_vector,
std_logic, and std_logic_vector (other types are silently ignored). The command works with
mixed HDL designs.

All vcd add commands must be executed at the same simulation time. The specified objects are
added to the VCD header and their subsequent value changes are recorded in the specified VCD
file. By default all port driver changes and internal variable changes are captured in the file.
You can filter the output using arguments detailed below.

Related Verilog tasks: $dumpvars, $fdumpvars

Syntax

vcd add [-r] [-in] [-out] [-inout] [-internal] [-ports] [-file <filename>] [-dumpports]
<object_name> ...

Arguments

• -r

Specifies that signal and port selection occurs recursively into subregions. Optional. If
omitted, included signals and ports are limited to the current region.

• -in

Includes only port driver changes from ports of mode IN. Optional.

• -out

Includes only port driver changes from ports of mode OUT. Optional.

• -inout

Includes only port driver changes from ports of mode INOUT. Optional.

• -internal

Includes only internal variable or signal changes. Excludes port driver changes. Optional.

• -ports

Includes only port driver changes. Excludes internal variable or signal changes. Optional.

• -file <filename>

Specifies the name of the VCD file. This option should be used only when you have created
multiple VCD files using the vcd files command.

• -dumpports

Specifies port driver changes to be added to an extended VCD file. Optional. When the vcd
dumpports command cannot specify all port driver changes that will appear within the
VCD file, multiple vcd add -dumpports commands can be used to specify additional port
driver changes.

ModelSim SE Reference Manual, v6.5b404

Commands
vcd add

• <object_name> ...

Specifies the Verilog or VHDL object or objects to add to the VCD file. Required. Multiple
objects may be specified by separating names with spaces. Wildcards are accepted.

See also

“Value Change Dump (VCD) Files”. Verilog tasks are documented in the IEEE 1364 standard.

Commands
vcd checkpoint

ModelSim SE Reference Manual, v6.5b 405

vcd checkpoint
The vcd checkpoint command dumps the current values of all VCD variables to the specified
VCD file. While simulating, only value changes are dumped.

Related Verilog tasks: $dumpall, $fdumpall

Syntax

vcd checkpoint [<filename>]

Arguments

• <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command or "dump.vcd" if vcd file was not invoked.

See also

“Value Change Dump (VCD) Files”, DumpportsCollapse

Verilog tasks are documented in the IEEE 1364 standard.

ModelSim SE Reference Manual, v6.5b406

Commands
vcd comment

vcd comment
The vcd comment command inserts the specified comment in the specified VCD file.

Syntax

vcd comment <comment string> [<filename>]

Arguments

• <comment string>

Comment to be included in the VCD file. Required. Must be quoted by double quotation
marks or curly braces.

• <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command or "dump.vcd" if vcd file was not invoked.

See also

“Value Change Dump (VCD) Files”, DumpportsCollapse

Verilog tasks are documented in the IEEE 1364 standard.

Commands
vcd dumpports

ModelSim SE Reference Manual, v6.5b 407

vcd dumpports
The vcd dumpports command creates a VCD file that includes port driver data.

By default all port driver changes are captured in the file. You can filter the output using
arguments detailed below. Related Verilog task: $dumpports

Syntax

vcd dumpports [-compress] [-direction] [-file <filename>] [-file <filename>] [-in] [-inout] [-
out] [-no_strength_range] [-unique] [-vcdstim] <object_name> ...

Arguments

• -compress

Produces a compressed VCD file. Optional. ModelSim uses the gzip compression
algorithm. If you specify a .gz extension on the -file <filename> argument, ModelSim
compresses the file even if you don’t use the -compress argument.

• -direction

Includes driver direction data in the VCD file. Optional.

• -file <filename>

Specifies the path and name of a VCD file to create. Optional. Defaults to the current
working directory and the filename dumpports.vcd. Multiple filenames can be opened
during a single simulation.

• -force_direction

Causes vcd dumpports to use the specified port direction (instead of driver location) to
determine whether the value being dumped is input or output. Optional. This argument
overrides the default use of the location of drivers on the net to determine port direction (this
is because Verilog port direction is not enforced by the language or by ModelSim).

• -in

Includes ports of mode IN. Optional.

• -inout

Includes ports of mode INOUT. Optional.

• -out

Includes ports of mode OUT. Optional.

• -no_strength_range

Ignores strength ranges when resolving driver values. Optional. This argument is an
extension to the IEEE 1364 specification. Refer to “Resolving Values” for additional
information.

ModelSim SE Reference Manual, v6.5b408

Commands
vcd dumpports

• -unique

Generates unique VCD variable names for ports even if those ports are connected to the
same collapsed net. Optional.

• -vcdstim

Ensures that port name order in the VCD file matches the declaration order in the instance
module or entity declaration. Optional. Refer to “Port Order Issues” for further information.

• <object_name> ...

Specifies one or more Verilog, VHDL, or SystemC objects to add to the VCD file.
Required. You can specify multiple objects by separating names with spaces. Wildcards are
accepted.

Examples

• Create a VCD file named counter.vcd of all IN ports in the region /test_design/dut/.

vcd dumpports -in -file counter.vcd /test_design/dut/*

• These two commands resimulate a design from a VCD file. Refer to “Simulating with
Input Values from a VCD File” for further details.

vcd dumpports -file addern.vcd /testbench/uut/*
vsim -vcdstim addern.vcd addern -gn=8 -do "add wave /*; run 1000"

• This series of commands creates VCD files for the instances proc and cache and then re-
simulates the design using the VCD files in place of the instance source files. Refer to
“Replacing Instances with Output Values from a VCD File” for more information.

vcd dumpports -vcdstim -file proc.vcd /top/p/*
vcd dumpports -vcdstim -file cache.vcd /top/c/*
run 1000

vsim top -vcdstim /top/p=proc.vcd -vcdstim /top/c=cache.vcd

See also

“Value Change Dump (VCD) Files”, DumpportsCollapse

Verilog tasks are documented in the IEEE 1364 standard.

Commands
vcd dumpportsall

ModelSim SE Reference Manual, v6.5b 409

vcd dumpportsall
The vcd dumpportsall command creates a checkpoint in the VCD file which shows the value
of all selected ports at that time in the simulation, regardless of whether the port values have
changed since the last timestep.

Related Verilog task: $dumpportsall

Syntax

vcd dumpportsall [<filename>]

Arguments

• <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

“Value Change Dump (VCD) Files”, DumpportsCollapse

Verilog tasks are documented in the IEEE 1364 standard.

ModelSim SE Reference Manual, v6.5b410

Commands
vcd dumpportsflush

vcd dumpportsflush
The vcd dumpportsflush command flushes the contents of the VCD file buffer to the specified
VCD file.

Related Verilog task: $dumpportsflush

Syntax

vcd dumpportsflush [<filename>]

Arguments

• <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

“Value Change Dump (VCD) Files”, DumpportsCollapse

Commands
vcd dumpportslimit

ModelSim SE Reference Manual, v6.5b 411

vcd dumpportslimit
The vcd dumpportslimit command specifies the maximum size of the VCD file (by default,
limited to available disk space). When the size of the file exceeds the limit, a comment is
appended to the file and VCD dumping is disabled.

Related Verilog task: $dumpportslimit

Syntax

vcd dumpportslimit <dumplimit> [<filename>]

Arguments

• <dumplimit>

Specifies the maximum VCD file size in bytes. Required.

• <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

“Value Change Dump (VCD) Files”, DumpportsCollapse

Verilog tasks are documented in the IEEE 1364 standard.

ModelSim SE Reference Manual, v6.5b412

Commands
vcd dumpportsoff

vcd dumpportsoff
The vcd dumpportsoff command turns off VCD dumping and records all dumped port values
as x.

Related Verilog task: $dumpportsoff

Syntax

vcd dumpportsoff [<filename>]

Arguments

• <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

“Value Change Dump (VCD) Files”, DumpportsCollapse

Verilog tasks are documented in the IEEE 1364 standard.

Commands
vcd dumpportson

ModelSim SE Reference Manual, v6.5b 413

vcd dumpportson
The vcd dumpportson command turns on VCD dumping and records the current values of all
selected ports. This command is typically used to resume dumping after invoking vcd
dumpportsoff.

Related Verilog task: $dumpportson

Syntax

vcd dumpportson [<filename>]

Arguments

• <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

“Value Change Dump (VCD) Files”, DumpportsCollapse

Verilog tasks are documented in the IEEE 1364 standard.

ModelSim SE Reference Manual, v6.5b414

Commands
vcd file

vcd file
The vcd file command specifies the filename and state mapping for the VCD file created by a
vcd add command. The vcd file command is optional. If used, it must be issued before any vcd
add commands.

Related Verilog task: $dumpfile

Syntax

vcd file [-dumpports] [-direction] [<filename>] [-map <mapping pairs>] [-no_strength_range]
[-nomap] [-unique]

Arguments

• -dumpports

Capture detailed port driver data for Verilog ports and VHDL std_logic ports. Optional.
This option works only on ports, and any subsequent vcd add command will accept only
qualifying ports (silently ignoring all other specified objects).

• -direction

Includes driver direction data in the VCD file. Optional.

• <filename>

Specifies the name of the VCD file that is created (the default is dump.vcd). Optional.

• -map <mapping pairs>

Affects only VHDL signals of type std_logic. Optional. It allows you to override the default
mappings. The mapping is specified as a list of character pairs. The first character in a pair
must be one of the std_logic characters UX01ZWLH- and the second character is the
character you wish to be recorded in the VCD file. For example, to map L and H to z:

vcd file -map "L z H z"

Note that the quotes in the example above are a Tcl convention for command strings that
include spaces.

• -no_strength_range

Ignores strength ranges when resolving driver values. Optional. This argument is an
extension to the IEEE 1364 specification. Refer to “Resolving Values” for additional
information.

• -nomap

Affects only VHDL signals of type std_logic. Optional. It specifies that the values recorded
in the VCD file shall use the std_logic enumeration characters of UX01ZWLH-. This option
results in a non-standard VCD file because VCD values are limited to the four state
character set of x01z. By default, the std_logic characters are mapped as follows.

Commands
vcd file

ModelSim SE Reference Manual, v6.5b 415

• -unique

Generates unique VCD variable names for ports even if those ports are connected to the
same collapsed net. Optional.

See also

“Value Change Dump (VCD) Files”, vcd files, DumpportsCollapse

Verilog tasks are documented in the IEEE 1364 standard.

VHDL VCD VHDL VCD

U x W x

X x L 0

0 0 H 1

1 1 - x

Z z

ModelSim SE Reference Manual, v6.5b416

Commands
vcd files

vcd files
The vcd files command specifies filenames and state mapping for VCD files created by the vcd
add command. The vcd files command is optional. If used, it must be issued before any vcd
add commands.

Related Verilog task: $fdumpfile

Syntax

vcd files [-compress] [-direction] <filename> [-map <mapping pairs>] [-no_strength_range]
[-nomap] [-unique]

Arguments

• -compress

Produces a compressed VCD file. Optional. ModelSim uses the gzip compression
algorithm. If you specify a .gz extension on the -file <filename> argument, ModelSim
compresses the file even if you don’t use the -compress argument.

• -direction

Includes driver direction data in the VCD file. Optional.

• <filename>

Specifies the name of a VCD file to create. Required. Multiple files can be opened during a
single simulation; however, you can create only one file at a time. If you want to create
multiple files, invoke vcd files multiple times.

• -map <mapping pairs>

Affects only VHDL signals of type std_logic. Optional. It allows you to override the default
mappings. The mapping is specified as a list of character pairs. The first character in a pair
must be one of the std_logic characters UX01ZWLH- and the second character is the
character you wish to be recorded in the VCD file. For example, to map L and H to z:

vcd files -map "L z H z"

Note that the quotes in the example above are a Tcl convention for command strings that
include spaces.

• -no_strength_range

Ignores strength ranges when resolving driver values. Optional. This argument is an
extension to the IEEE 1364 specification. Refer to “Resolving Values” for additional
information.

• -nomap

Affects only VHDL signals of type std_logic. Optional. It specifies that the values recorded
in the VCD file shall use the std_logic enumeration characters of UX01ZWLH-. This option

Commands
vcd files

ModelSim SE Reference Manual, v6.5b 417

results in a non-standard VCD file because VCD values are limited to the four state
character set of x01z. By default, the std_logic characters are mapped as follows.

• -unique

Generates unique VCD variable names for ports even if those ports are connected to the
same collapsed net. Optional.

Examples

The following example shows how to "mask" outputs from a VCD file until a certain time after
the start of the simulation. The example uses two vcd files commands and the vcd on and vcd
off commands to accomplish this task.

vcd files in_inout.vcd
vcd files output.vcd
vcd add -in -inout -file in_inout.vcd /*
vcd add -out -file output.vcd /*
vcd off output.vcd
run 1us
vcd on output.vcd
run -all

See also

“Value Change Dump (VCD) Files”, vcd file, DumpportsCollapse

Verilog tasks are documented in the IEEE 1364 standard.

VHDL VCD VHDL VCD

U x W x

X x L 0

0 0 H 1

1 1 - x

Z z

ModelSim SE Reference Manual, v6.5b418

Commands
vcd flush

vcd flush
The vcd flush command flushes the contents of the VCD file buffer to the specified VCD file.
This command is useful if you want to create a complete VCD file without ending your current
simulation.

Related Verilog tasks: $dumpflush, $fdumpflush

Syntax

vcd flush [<filename>]

Arguments

• <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command or dump.vcd if vcd file was not invoked.

See also

“Value Change Dump (VCD) Files”, DumpportsCollapse

Verilog tasks are documented in the IEEE 1364 standard.

Commands
vcd limit

ModelSim SE Reference Manual, v6.5b 419

vcd limit
The vcd limit command specifies the maximum size of a VCD file (by default, limited to
available disk space).

When the size of the file exceeds the limit, a comment is appended to the file and VCD dumping
is disabled.

Related Verilog tasks: $dumplimit, $fdumplimit

Syntax

vcd limit <filesize> [<filename>]

Arguments

• <filesize>

(Required) Specifies the maximum VCD file size, in bytes. The numerical value of
<filesize> can only be a whole number. You can use a unit multiplier of either Kb, Mb, or
Gb with the numerical value (multipliers are case insensitive). Do not insert a space between
the numerical value and the multiplier (for example, 400Mb, not 400 Mb).

• <filename>

(Optional) Specifies the name of the VCD file. If omitted, the command is executed on the
file designated by the vcd file command or dump.vcd if vcd file was not invoked.

Example

• Specify a maximum VCD file size of 6 gigabytes and a VCD file named
my_vcd_file.vcd.

vcd limit 6gb my_vcd_file.vcd

See also

“Value Change Dump (VCD) Files”, DumpportsCollapse

Verilog tasks are documented in the IEEE 1364 standard.

ModelSim SE Reference Manual, v6.5b420

Commands
vcd off

vcd off
The vcd off command turns off VCD dumping to the specified file and records all VCD
variable values as x.

Related Verilog tasks: $dumpoff, $fdumpoff

Syntax

vcd off [<filename>]

Arguments

• <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command or dump.vcd if vcd file was not invoked.

See also

“Value Change Dump (VCD) Files”., DumpportsCollapse

Verilog tasks are documented in the IEEE 1364 standard.

Commands
vcd on

ModelSim SE Reference Manual, v6.5b 421

vcd on
The vcd on command turns on VCD dumping to the specified file and records the current
values of all VCD variables.

By default, vcd on is automatically performed at the end of the simulation time that the vcd add
commands are performed.

Related Verilog tasks: $dumpon, $fdumpon

Syntax

vcd on [<filename>]

Arguments

• <filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command or dump.vcd if vcd file was not invoked.

See also

“Value Change Dump (VCD) Files”, DumpportsCollapse

Verilog system tasks are documented in the IEEE 1364 standard.

ModelSim SE Reference Manual, v6.5b422

Commands
vcd2wlf

vcd2wlf
vcd2wlf is a utility that translates a VCD (Value Change Dump) file into a WLF file that you
can display in ModelSim using the vsim -view argument. This command only works on VCD
files containing positive time values.

Description

The vcd2wlf command functions as simple one-pass converter. If you are defining a bus in a
VCD file, you must specify all bus bits before the next $scope or $upscope statement appears in
the file. The best way to ensure that bits get converted together as a bus is to declare them on
consecutive lines.

For example:

Line 21 : $var wire 1 $ in [2] $end
Line 22 : $var wire 1 $u in [1] $end
Line 23 : $var wire 1 # in [0] $end

Syntax

vcd2wlf [-splitio] [-splitio_in_ext <extension>] [-splitio_out_ext <extension>] [-nocase]
<vcd filename> <wlf filename>

Arguments

• -splitio

Specifies that extended VCD port values are to be split into their corresponding input and
output components by creating 2 signals instead of just 1 in the resulting .wlf file. Optional.
By default the new input-component signal keeps the same name as the original port name
while the output-component name is the original name with "__o" appended to it.

• -splitio_in_ext <extension>

Specifies an extension to add to input-component signal names created by using -splitio.
Optional.

• -splitio_out_ext <extension>

Specifies an extension to add to output-component signal names created by using -splitio.
Optional.

• -nocase

Converts all alphabetic identifiers to lowercase. Optional.

• <vcd filename>

Specifies the name of the VCD file you want to translate into a WLF file. Required.

• <wlf filename>

Specifies the name of the output WLF file. Required.

See also

“Value Change Dump (VCD) Files”

Commands
vcom

ModelSim SE Reference Manual, v6.5b 423

vcom
 The vcom command compiles VHDL source code into a specified working library (or to the
work library by default).

You can invoke vcom either from within ModelSim or from the command prompt of your
operating system. You can invoke this command during simulation.

Compiled libraries are dependent on the major version of ModelSim. When moving between
major versions, you must refresh compiled libraries using the -refresh argument to vcom. This
is not required for minor versions (letter releases).

All arguments to the vcom command are case-sensitive. For example, -WORK and -work are
not equivalent.

Syntax

vcom [options] <filename> [<filename> ...]

[options]:

 [-87] [-93] [-2002] [-2008]

[+acc[=<spec>][+<entity>[(architecture)]]] [-allowProtectedBeforeBody]
[-amsstd | -noamsstd]

[-bindAtCompile] [-bindAtLoad]

[-check_synthesis] [-constimmedassert | -noconstimmedassert] [+cover[=<spec>]]
[-cover <spec>] [-coveropt <opt_level>] [-coverexcludedefault]
[-coversub | -nocoversub]

[-debugVA] [-deferSubpgmCheck | -noDeferSubpgmCheck] [-dpiforceheader]

[-error <msg_number>[,<msg_number>,…]] [-explicit]

[-f <filename>] [-fatal <msg_number>[,<msg_number>,…]]
[-fsmimplicittrans] [-fsmmultitrans] [-fsmresettrans | -nofsmresettrans] [-fsmsingle |
-nofsmsingle] [-fsmverbose [b | t | w]] [-force_refresh <design_unit>]

[-gen_xml <design_unit> <filename>]

[-help]

[-ignoredefaultbinding] [-ignorevitalerrors]

[-just abcep]

[-line <number>] [-lint]

[-maxfecrows] [-maxudprows] [-mixedsvvh [b | l | r | i]] [-modelsimini <ini_filepath>]

[-no1164] [-noaccel <package_name>] [-nocasestaticerror] [-nocheck]
[-nocoverrespecthandl] [-nodbgsym] [-noindexcheck] [-nofsmxassign] [-nologo]
[-nonstddriverinit] [-noothersstaticerror]
[-note <msg_number> [,<msg_number>, …]] [-novital] [-novitalcheck] [-novopt]
[-nowarn <category_number>] [-nocovershort]
[-nodebug[=ports]] [-nocoverfec]

ModelSim SE Reference Manual, v6.5b424

Commands
vcom

[-O0 | -O1 | -O4 | -O5]

[-pedanticerrors] [-performdefaultbinding] [+protect [=<filename>]]

[-quiet]

[-rangecheck | -norangecheck] [-refresh]

[-s] [-skip abcep] [-source] [-suppress <msg_number>[,<msg_number>,…]]

[-time] [-togglecountlimit <int>] [-togglewidthlimit <int>]

[-version] [-vmake] [-vopt | -novopt]

[-warning <msg_number>[,<msg_number>,…]] [-work <library_name>]

Arguments

• -87

Disables support for VHDL-1993 and 2002. Optional. Default is -2002. See additional
discussion in the examples. You can modify the VHDL93 variable in the modelsim.ini file
to set this permanently (Refer to modelsim.ini Variables).

• -93

Disables support for VHDL-1987 and 2002. Optional. Default is -2002. See additional
discussion in the examples. You can modify the VHDL93 variable in the modelsim.ini file
to set this permanently.

• -2002

Specifies that the compiler is to support VHDL-2002. Optional. This is the default.

• -2008

Enables support for VHDL 1076-2008. Optional.

• +acc[=<spec>][+<entity>[(architecture)]]

Enable debug command access to objects indicated by <spec> when optimizing a design.
Optional.

Note
Using this option may reduce simulation speed.

<spec> can be:

f —
Enable access to finite state machines

q —
Enable access to VHDL variables and generics.

v —
Enable access to variables, constants, and aliases in processes that would otherwise

Commands
vcom

ModelSim SE Reference Manual, v6.5b 425

be merged due to optimizations. Disables an optimization that automatically converts
variables to constants.

If <spec> is omitted, access is enabled for all objects.

<entity> and (<architecture>) specify the VHDL design regions in which to allow the
access. If (<architecture>) is not specified, then all architectures of a given <entity> are
enabled for access. May be optionally followed by "." to indicate all children of the module.

• -allowProtectedBeforeBody

Allows a variable of a protected type to be created prior to declaring the body. Optional.

• -amsstd | -noamsstd

Specifies whether vcom adds the declaration of REAL_VECTOR to the STANDARD
package. This is useful for designers using VHDL-AMS to test digital parts of their model.

-amsstd — REAL_VECTOR is included in STANDARD.

-noamsstd — REAL_VECTOR is not included in STANDARD (default).

You can also control this with the AmsStandard variable or the MGC_AMS_HOME
environment variable.

• -bindAtCompile

Forces ModelSim to perform default binding at compile time rather than at load time.
Optional. Refer to “Default Binding” for more information. You can change the permanent
default by editing the BindAtCompile variable in the modelsim.ini.

• -bindAtLoad

Forces ModelSim to perform default binding at load time rather than at compile time.
Optional. Default.

• -check_synthesis

Turns on limited synthesis rule compliance checking. Specifically, it checks to see that
signals read by a process are in the sensitivity list. Optional. The checks understand only
combinational logic, not clocked logic. Edit the CheckSynthesis variable in the modelsim.ini
file to set a permanent default.

• -constimmedassert

Displays immediate assertions with constant expressions in the GUI, in reports, and in the
UCDB. Optional. By default, immediate assertions with constant expressions are displayed
in the GUI, in reports, and in the UCDB. Use this switch only if the -noconstimmedassert
switch has been used previously, or if the ShowConstantImmediateAsserts variable in the
vcom section of the modelsim.ini file is set to 0 (off).

• -noconstimmedassert

Turns off the display of immediate assertions with constant expressions in the GUI, in
reports, and in the UCDB. Optional. By default, immediate assertions with constant
expressions are displayed. You may also set the ShowConstantImmediateAsserts variable in
the vcom section of the modelsim.ini file to 0 (off).

ModelSim SE Reference Manual, v6.5b426

Commands
vcom

• +cover[=<spec>]

Enables various coverage statistics collection on all design units compiled in the current
compiler run. Optional. Consider using the +cover argument to vopt instead, which you can
use to specify the precise design units and regions to be instrumented for coverage. The
+cover argument with no "=<spec>" designation is equivalent to "+cover=bcesft".

<spec> — one or more of the following characters:

b — Collect branch statistics.

c — Collect condition statistics. Collects both FEC and UDP statistics, unless
-nocoverfec is specified.

e — Collect expression statistics, Collects both FEC and UDP statistics, unless
-nocoverfec is specified.

s — Collect statement statistics.

t — Collect toggle statistics. Overridden if ’x’ is specified elsewhere.

x — Collect extended toggle statistics (Refer to “Toggle Coverage” for details). This
takes precedence, if ’t’ is specified elsewhere.

f — Collect Finite State Machine statistics.

See -coveropt <opt_level> argument to override the default level of optimization for
coverage for a particular compilation run.

• -cover <spec>

Recommendation: Use "vopt +cover" rather than "vcom -cover", as it is more powerful and
flexible, and often yields better performance. See the vopt +cover argument for more
information.

Enables various coverage statistics collection. Optional.

<spec> — one or more of the following characters:

b — Collect branch statistics.

c — Collect condition statistics. Collects both FEC and UDP statistics, unless
-nocoverfec is specified.

e — Collect expression statistics, Collects both FEC and UDP statistics, unless
-nocoverfec is specified.

s — Collect statement statistics.

t — Collect toggle statistics. Cannot be used if ’x’ is specified.

x — Collect extended toggle statistics (Refer to “Toggle Coverage” for details).
Cannot be used if ’t’ is specified.

f — Collect Finite State Machine statistics.

<i> — Override the default level of optimization for current run only, where “i” is an
integer between 1 and 4. To change default level for all subsequent runs, change
value of CoverOpt variable in modelsim.ini file. See “CoverOpt” for a description
of optimization levels.

Commands
vcom

ModelSim SE Reference Manual, v6.5b 427

• -coverexcludedefault

Excludes code coverage data collection from the default branch of case statements.
Optional.

• -coveropt <opt_level>

Overrides the default level of optimization for the current run only. Optional. <opt_level>
designates the optimization level, as follows:

1 — Turns off all optimizations that affect coverage reports.

2 — Allows optimizations that provide large performance improvements by invoking
sequential processes only when the data changes. This setting may result in major
reductions in coverage counts.

3 — Allows all optimizations in 2, and allows optimizations that may change
expressions or remove some statements. Also allows constant propagation and VHDL
subprogram inlining.

4 — Allows all optimizations in 2 and 3, and allows optimizations that may remove
major regions of code by changing assignments to built-ins or removing unused
signals. It also changes Verilog gates to continuous assignments. Allows VHDL
subprogram inlining. Allows VHDL flip-flop recognition.

The default optimization level is 3. You can edit the CoverOpt variable in the modelsim.ini
file to change the default.

• -coversub

Re-enables code coverage data collection in VHDL subprograms previously disabled with
-nocoversub. Optional. By default code coverage data is collected for VHDL subprograms.
Edit the CoverageSub variable in the modelsim.ini file to set a permanent default.

• -nocoversub

Disables code coverage data collection in VHDL subprograms. Optional. By default code
coverage data is collected for VHDL subprograms. Edit the CoverageSub variable in the
modelsim.ini file to set a permanent default.

• -debugVA

Prints a confirmation if a VITAL cell was optimized, or an explanation of why it was not,
during VITAL level-1 acceleration. Optional.

• -deferSubpgmCheck

Forces the compiler to report array indexing and length errors as warnings (instead of as
errors) when encountered within subprograms. Subprograms with indexing and length
errors that are invoked during simulation cause the simulator to report errors, which can
potentially slow down simulation because of additional checking.

• -dpiforceheader

Forces the generation of a DPI header file even if it will be empty of function prototypes.

ModelSim SE Reference Manual, v6.5b428

Commands
vcom

• -error <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "error." Optional. Edit the error
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• -explicit

Directs the compiler to resolve ambiguous function overloading by favoring the explicit
function definition over the implicit function definition. Optional. Strictly speaking, this
behavior does not match the VHDL standard. However, the majority of EDA tools choose
explicit operators over implicit operators. Using this switch makes ModelSim compatible
with common industry practice.

• -f <filename>

Specifies a file with more command-line arguments. Optional. Allows complex argument
strings to be reused without retyping. Allows gzipped input files. Nesting of -f options is
allowed.

Refer to the section "Argument Files" for more information.

• -fatal <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "fatal." Optional. Edit the fatal
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• -fsmimplicittrans

Enables recognition of implied same state transitions. Optional.

• -fsmmultitrans

Enables detection and reporting of multi-state transitions when used with the +cover=f
argument for vcom or vopt. Optional. Another term for this is FSM sequence coverage.

• -fsmresettrans

Enables recognition of implicit asynchronous reset transitions. Optional. This includes
asynchronous reset transitions in coverage results.

• -fsmsingle

Enables recognition FSMs having single bit current state variable. Optional.

• -fsmverbose [b | t | w]

Provides information about FSMs detected, including state reachability analysis. Optional.

This switch only provides this data when you use the -novopt switch on the same command
line.

b — displays only basic information.

t — displays a transition table in addition to the basic information.

w — displays any warning messages in addition to the basic information.

Commands
vcom

ModelSim SE Reference Manual, v6.5b 429

When you do not specify an argument, this switch reports all information similar to:

** Note: (vcom-1947) FSM RECOGNITION INFO
Fsm detected in : ../fpu/rtl/vhdl/serial_mul.vhd
Current State Variable : s_state :
../fpu/rtl/vhdl/serial_mul.vhd(76)
Clock : clk_i
Reset States are: { waiting , busy }
State Set is : { busy , waiting }
Transition table is

busy => waiting Line : (114 => 114)
busy => busy Line : (111 => 111)
waiting => waiting Line : (120 => 120) (114 => 114)
waiting => busy Line : (111 => 111)

When you do not specify this switch, you will receive a message similar to:

** Note: (vcom-143) Detected '1' FSM/s in design unit 'serial_mul.rtl'.

• -force_refresh <design_unit>

Forces the refresh of all specified design units. Optional. By default, the work library is
updated; use -work <library_name>, in conjunction with -force_refresh, to update a
different library (for example, vcom -work <your_lib_name> -force_refresh).

When the compiler refreshes a design unit, it checks each dependency to ensure its source
has not been changed and recompiled. Sometimes the dependency checking algorithm
changes from release to release. This can lead to false errors during the integrity checks
performed by the -refresh argument. An example of such a message follows:

** Error: (vsim-13) Recompile /u/test/dware/dware_61e_beta.dwpackages
because /home/users/questasim/linux/../synopsys.attributes has changed.

The -force_refresh argument forces the refresh of the design unit, overriding any
dependency checking errors encountered by the -refresh argument.

A more conservative approach to working around -refresh dependency checks is to
recompile the source code, if it is available.

• -gen_xml <design_unit> <filename>

Produces an XML-tagged file containing the interface definition of the specified entity.
Optional. This option requires a two-step process where you must 1) compile <filename>
into a library with vcom (without -gen_xml) then 2) execute vcom with the -gen_xml
switch, for example:

vlib work
vcom counter.vhd
vcom -gen_xml counter counter.xml

• -help

Displays the command’s options and arguments. Optional.

• -ignoredefaultbinding

Instructs the compiler not to generate a default binding during compilation. Optional. You
must explicitly bind all components in the design to use this switch.

ModelSim SE Reference Manual, v6.5b430

Commands
vcom

• -ignorevitalerrors

Directs the compiler to ignore VITAL compliance errors. Optional. The compiler still
reports that VITAL errors exist, but it will not stop the compilation. You should exercise
caution in using this switch; as part of accelerating VITAL packages, we assume that
compliance checking has passed.

• -just abcep

Directs the compiler to include only the following:

a — architectures

b — bodies

c — configurations

e — entities

p — packages

Any combination in any order can be used, but you must specify at least one choice if you
use this optional switch.

• -line <number>

Starts the compiler on the specified line in the VHDL source file. Optional. By default, the
compiler starts at the beginning of the file.

• -lint

(optional) Performs additional static checks on case statement rules and enables warning
messages for the following situations:

o The result of the built-in concatenation operator ("&") is the actual for a subprogram
formal parameter of an unconstrained array type.

o If you specify the -BindAtCompile switch with vcom, the entity to which a
component instantiation is bound has a port that is not on the component, and for
which there is no error otherwise.

o A direct recursive subprogram call.

o In cases involving class SIGNAL formal parameters, as described in the IEEE
Standard VHDL Language Reference Manual entitled "Signal parameters". This
check only applies to designs compiled using -87. If you compile using -93, it would
be flagged as a warning or error, even without the -lint argument. Can also be
enabled using the Show_Lint variable in the modelsim.ini file.

• -maxfecrows

Sets the maximum number of rows allowed in an FEC truth table for a code coverage
condition or expression. The default maximum is 192 rows, which allows for 96 terms in the
expression. Increasing the number of rows includes more expressions for coverage, but also
increases the compile time, sometimes dramatically. You can also configure this option
using the CoverMaxFECRows variable in the modelsim.ini file.

Commands
vcom

ModelSim SE Reference Manual, v6.5b 431

• -maxudprows

Sets the maximum number of rows allowed in an UDP truth table for a code coverage
condition or expression. The default maximum is 192 rows. Increasing the number of rows
includes more expressions for coverage, but also increases the compile time, sometimes
dramatically. You can also configure this option using the CoverMaxUDPRows variable in
the modelsim.ini file.

• -mixedsvvh [b | l | r | i]

Facilitates using VHDL packages at the SystemVerilog-VHDL boundary of a mixed-
language design. When you compile a VHDL package with -mixedsvvh, the package can be
included in a SystemVerilog design as if it were defined in SystemVerilog itself. Optional.

b — treats all scalars and vectors in the package as SystemVerilog bit type

l — treats all scalars and vectors in the package as SystemVerilog logic type

r — treats all scalars and vectors in the package as SystemVerilog reg type

i — ignores the range specified with VHDL integer types

• -modelsimini <ini_filepath>

Loads an alternate initialization file that replaces the current initialization file. Overrides the
file path specified in the MODELSIM environment variable. Specifies either an absolute or
relative path to the initialization file. On Windows systems the path separator should be a
forward slash (/).

• -no1164

Causes the source files to be compiled without taking advantage of the built-in version of
the IEEE std_logic_1164 package. Optional. This will typically result in longer simulation
times for VHDL programs that use variables and signals of type std_logic.

• -noaccel <package_name>

Turns off acceleration of the specified package in the source code using that package.

• -nocasestaticerror

Suppresses case statement static warnings. Optional. VHDL standards require that case
statement alternative choices be static at compile time. However, some expressions which
are globally static are allowed. This switch prevents the compiler from warning on such
expressions. If the -pedanticerrors switch is specified, this switch is ignored.

• -nocheck

Disables index and range checks. Optional. You can disable these individually using the
-noindexcheck and -norangecheck arguments, respectively.

• -nocoverfec

Prevents focused expression coverage (FEC) from being enabled for coverage collection.
By default, both UDP and FEC coverage statistics are enabled for collection. You can
customize the default behavior with the CoverFEC variable in the modelsim.ini file.
Optional.

ModelSim SE Reference Manual, v6.5b432

Commands
vcom

• -nocoverrespecthandl

Specifies that you want the VHDL 'H' and 'L' input values on conditions and expressions to
be automatically converted to ‘1’ and ‘0’, respectively. By default in the current release,
they are not automatically converted.

As an alternative to using this argument — if you are not using 'H' and 'L' values and don’t
want the additional UDP rows that are difficult to cover — you can either:

• Change your VHDL expressions of the form (a = '1') to (to_x01(a) = '1') or to
std_match(a,'1'). These functions are recognized and serve to simplify the UDP tables

• Set the variable CoverRespectHandL in the modelsim.ini file to 0.

• -nocovershort

Disables short circuiting of expressions when coverage is enabled. Short circuiting is
enabled by default. You can customize the default behavior with the CoverShortCircuit
variable in the modelsim.ini file.

• -nodebug[=ports]

Hides, within the GUI and other parts of the tool, the internal data of all compiled design
units. Optional.

-nodebug — The switch, specified in this form, does not hide ports, due to the fact that
the port information may be required for instantiation in a parent scope.

The design units’ source code, internal structure, registers, nets, etc. will not display
in the GUI. In addition, none of the hidden objects may be accessed through the
Dataflow window or with commands. This also means that you cannot set
breakpoints or single step within this code. It is advised that you not compile with this
switch until you are done debugging.

Note that this is not a speed switch like the “nodebug” option on many other products.
Use the vopt command to increase simulation speed.

-nodebug=ports — additionally hides the ports for the lower levels of your design; it
should be used only to compile the lower levels of the design. If you hide the ports of
the top level you will not be able to simulate the design.

Do not use the switch in this form when the parent is part of a vopt -bbox flow or for
mixed language designs, especially for Verilog modules to be instantiated inside
VHDL.

This functionality encrypts entire files. The `protect compiler directive allows you to
encrypt regions within a file.

Design units or modules compiled with -nodebug can only instantiate design units or
modules that are also compiled -nodebug.

• -nodbgsym

Disables the generation of the symbols debugging database in the compiled library.

The symbols debugging database is the .dbs file in the compiled library that provides
information to the GUI allowing you to view detailed information about design objects at

Commands
vcom

ModelSim SE Reference Manual, v6.5b 433

the source level. Two major GUI features that use this database include source window
annotation and textual dataflow.

You should only specify this switch if you know that anyone using the library will not
require this information for design analysis purposes.

• -noDeferSubpgmCheck

Causes range and length violations detected within subprograms to be reported as errors
(instead of as warnings). As an alternative to using this argument, you can set the
NoDeferSubpgmCheck property in the modelsim.ini file to a value of 1.

• -noindexcheck

Disables checking on indexing expressions to determine whether indices are within declared
array bounds. Optional.

• -nofsmresettrans

Disables recognition of implicit asynchronous reset transitions. Optional. This has the effect
of excluding asynchronous reset transitions from any coverage results.

• -nofsmsingle

Disables recognition of FSMs having single bit current state variable. Optional.

• -nofsmxassign

Disable recognition of FSMs containing x assignment. Optional.

• -noFunctionInline

Turns off VHDL subprogram inlining for design units using a local copy of a VHDL
package. This may be needed in case the local package has the same name as an MTI
supplied package.

• -nologo

Disables display of the startup banner. Optional.

• -nonstddriverinit

Forces ModelSim to match pre-5.7c behavior in initializing drivers in a particular case.
Optional. Prior to 5.7c, VHDL ports of mode out or inout could have incorrectly initialized
drivers if the port did not have an explicit initialization value and the actual signal connected
to the port had explicit initial values. Depending on a number of factors, ModelSim could
incorrectly use the actual signal's initial value when initializing lower level drivers. Note
that the argument does not cause all lower-level drivers to use the actual signal's initial
value. It does this only in the specific cases where older versions used the actual signal's
initial value.

• -noothersstaticerror

Disables warnings that result from array aggregates with multiple choices having "others"
clauses that are not locally static. Optional. If the -pedanticerrors switch is specified, this
switch is ignored.

ModelSim SE Reference Manual, v6.5b434

Commands
vcom

• -norangecheck

Disables run time range checking. In some designs, this results in a 2X speed increase.
Range checking is enabled by default or, once disabled, can be enabled using -rangecheck.
Refer to “Range and Index Checking” for additional information.

• -note <msg_number> [,<msg_number>, …]

Changes the severity level of the specified message(s) to "note." Optional. Edit the note
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• -novital

Causes vcom to use VHDL code for VITAL procedures rather than the accelerated and
optimized timing and primitive packages built into the simulator kernel. Optional. Allows
breakpoints to be set in the VITAL behavior process and permits single stepping through the
VITAL procedures to debug your model. Also all of the VITAL data can be viewed in the
Locals or Objects windows.

• -novitalcheck

Disables Vital level 1 checks and also Vital level 0 checks defined in section 4 of the Vital-
95 Spec (IEEE Std 1076.4-1995). Optional.

• -novopt

Forces vcom to produce code if the VoptFlow variable is set to 1 (optimizations turned on)
in the modelsim.ini. (VoptFlow = 1 is the default behavior.) Optional. Use this argument
together with the vsim -novopt command to run the simulator without any optimizations.
One scenario in which you may want to use this switch is when coding an RTL block with a
small testcase.

• -nowarn <category_number>

Selectively disables a category of warning messages. Optional. Multiple -nowarn switches
are allowed. Warnings may be disabled for all compiles via the Main window Compile >
Compile Options menu command or the modelsim.ini file (Refer to modelsim.ini
Variables).

The warning message categories are described in Table 2-7:

Table 2-7. Warning Message Categories for vcom -nowarn

Category
number

Description

1 unbound component

2 process without a wait statement

3 null range

4 no space in time literal

5 multiple drivers on unresolved signal

Commands
vcom

ModelSim SE Reference Manual, v6.5b 435

• -O0 | -O1 | -O4 | -O5

Lower the optimization to a minimum with -O0 (capital oh zero). Optional. Use this to work
around bugs, increase your debugging visibility on a specific cell, or when you want to
place breakpoints on source lines that have been optimized out.

Please refer to the section "Optimizing Designs with vopt" in the User’s Manual for detailed
information on using vopt to perform optimization.

• Enable PE-level optimization with -O1. Optional. Note that changing from the default
-O4 to -O1 may cause event order differences in your simulation.

• Enable standard SE optimizations with -O4. Default. The main differences between -O4
and -O1 are that ModelSim attempts to improve memory management for vectors and
accelerate VITAL Level 1 modules with -O4.

• Enable maximum optimization with -O5. Optional. -O5 attempts to optimize loops and
prevents variable assignments in situations where a variable is assigned but is not
actually used. Using the +acc argument to vcom will cancel this latter optimization.

• -pedanticerrors

Forces display of an error message (rather than a warning) on a variety of conditions. Refer
to “Enforcing Strict 1076 Compliance” for a complete list of these conditions. Optional.
This argument overrides -nocasestaticerror and -noothersstaticerror (see above).

• -performdefaultbinding

Enables default binding when it has been disabled via the
RequireConfigForAllDefaultBinding option in the modelsim.ini file. Optional.

• +protect [=<filename>]

Enables `protect and `endprotect compiler directives for encrypting selected regions of your
design source code. Optional. Produces an encrypted output file with a .vhdp extension in
the default work directory. To create an encrypted output file to the current directory, add

6 VITAL compliance checks (“VitalChecks” also works)

7 VITAL optimization messages

8 lint checks

9 signal value dependency at elaboration

10 VHDL-1993 constructs in VHDL-1987 code

13 constructs that coverage can't handle

14 locally static error deferred until simulation run

Table 2-7. Warning Message Categories for vcom -nowarn

Category
number

Description

ModelSim SE Reference Manual, v6.5b436

Commands
vcom

=<filename> to this argument. If you specify a filename is specified, all source files on the
command line are concatenated together into a single output file.

Any include files will also be inserted into the output file when you add =<filename>. If you
do not use =<filename>, all include files will be encrypted into the work directory as
individual files, not merged together into one file.

• -quiet

Disables ’Loading’ messages. Optional.

• -rangecheck

Enables run time range checking. Default. Range checking can be disabled using the
-norangecheck argument. Refer to “Range and Index Checking” for additional information.

• -refresh

Regenerates a library image. Optional. By default, the work library is updated. To update a
different library, use -work <library_name> with -refresh (for example, vcom -work
<your_lib_name> -refresh). If a dependency checking error occurs which prevents the
refresh, use the vcom -force_refresh argument. See the vcom Examples for more
information. You may use a specific design name with -refresh to regenerate a library
image for that design, but you may not use a file name.

• -s

Instructs the compiler not to load the standard package. Optional. This argument should
only be used if you are compiling the standard package itself.

• -skip abcep

Directs the compiler to skip all:

a — architectures

b — bodies

c — configurations

e — entities

p — packages

Any combination in any order can be used, but one choice is required if you use this
optional switch.

• -source

Displays the associated line of source code before each error message that is generated
during compilation. Optional. By default, only the error message is displayed.

• -suppress <msg_number>[,<msg_number>,…]

Prevents the specified message(s) from displaying. The <msg_number> is the number
preceding the message you wish to suppress. Optional. You cannot suppress Fatal or
Internal messages. Edit the suppress variable in the modelsim.ini file to set a permanent
default. Refer to “Changing Message Severity Level” for more information.

Commands
vcom

ModelSim SE Reference Manual, v6.5b 437

• -time

Reports the "wall clock time" vcom takes to compile the design. Optional. Note that if many
processes are running on the same system, wall clock time may differ greatly from the
actual "cpu time" spent on vcom.

• -togglecountlimit <int>

Limits the toggle coverage count, <int>, for a toggle node. Optional. After the limit is
reached, further activity on the node is ignored for toggle coverage. All possible transition
edges must reach this count for the limit to take effect. For example, if you are collecting
toggle data on 0->1 and 1->0 transitions, both transition counts must reach the limit. If you
are collecting "full" data on 6 edge transitions, all 6 must reach the limit. Overrides the
global value set by the ToggleCountLimit modelsim.ini variable.

• -togglewidthlimit <int>

Sets the maximum width of signals, <int>, that are automatically added to toggle coverage
with the -cover t argument. Optional. Can be set on design unit basis. Overrides the global
value of the ToggleWidthLimit modelsim.ini variable.

• -version

Returns the version of the compiler as used by the licensing tools. Optional.

• -vmake

Generates a complete record of all command line data and files accessed during the compile
of a design. This data is then used by the vmake command to generate a comprenensive
makefile for recompiling the design library. By default, vcom stores compile data needed
for the -refresh switch and ignores compile data not needed for -refresh. The -vmake switch
forces inclusion of all file dependencies and command line data accessed during a compile,
whether they contiribute data to the initial compile or not. Executing this switch can
increase compile time in addition to increasing the accuracy of the compile. See the vmake
command for more information.

• -vopt

Notifies vcom that the vopt command will be run. As a result, vcom does not produce code.
This saves an unnecessary code generation step. Only needed if VoptFlow is set to 0 in the
modelsim.ini. If VoptFlow is set to 1, the vcom code generation step is skipped
automatically. Optional.

• -warning <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "warning." Optional. Edit the
warning variable in the modelsim.ini file to set a permanent default. Refer to “Changing
Message Severity Level” for more information.

• -work <library_name>

Specifies a logical name or pathname of a library that is to be mapped to the logical library
work. Optional; by default, the compiled design units are added to the work library. The
specified pathname overrides the pathname specified for work in the project file.

ModelSim SE Reference Manual, v6.5b438

Commands
vcom

• <filename>

Specifies the name of a file containing the VHDL source to be compiled. One filename is
required; multiple filenames can be entered separated by spaces or wildcards may be used
(e.g., *.vhd).

If you don’t specify a filename, and you are using the GUI, a dialog box pops up allowing
you to select the options and enter a filename.

Examples

• Compile the VHDL source code contained in the file example.vhd.

vcom example.vhd

• ModelSim supports designs that use elements conforming to the 1987, 1993, and 2002
standards. Compile the design units separately using the appropriate switches.

vcom -87 o_units1.vhd o_units2.vhd
vcom -93 n_unit91.vhd n_unit92.vhd

• Hide the internal data of example.vhd. Models compiled with -nodebug cannot use any
of the ModelSim debugging features; any subsequent user will not be able to see into the
model.

vcom -nodebug example.vhd

• The first line compiles and hides the internal data, plus the ports, of the lower-level
design units, level3.vhd and level2.vhd. The second line compiles the top-level unit,
top.vhd, without hiding the ports. It is important to compile the top level without =ports
because top-level ports must be visible for simulation.

vcom -nodebug=ports level3.vhd level2.vhd
vcom -nodebug top.vhd

• When compiling source that uses the numeric_std package, this command turns off
acceleration of the numeric_std package, located in the ieee library.

vcom -noaccel numeric_std example.vhd

• Although it is not obvious, the = operator is overloaded in the std_logic_1164 package.
All enumeration data types in VHDL get an “implicit” definition for the = operator. So
while there is no explicit = operator, there is an implicit one. This implicit declaration
can be hidden by an explicit declaration of = in the same package (LRM Section 10.3).
However, if another version of the = operator is declared in a different package than that
containing the enumeration declaration, and both operators become visible through use
clauses, neither can be used without explicit naming.

vcom -explicit example.vhd

To eliminate that inconvenience, the VCOM command has the -explicit option that
allows the explicit = operator to hide the implicit one. Allowing the explicit declaration
to hide the implicit declaration is what most VHDL users expect.

Commands
vcom

ModelSim SE Reference Manual, v6.5b 439

ARITHMETIC."="(left, right)

• The -work option specifies mylib as the library to regenerate. -refresh rebuilds the
library image without using source code, allowing models delivered as compiled
libraries without source code to be rebuilt for a specific release of ModelSim (4.6 and
later only).

vcom -work mylib -refresh

• The -fsmmultitrans option enables detection and reporting of multi-state transitions
when used with the +cover f argument.

vcom +cover=f -fsmmultitrans

ModelSim SE Reference Manual, v6.5b440

Commands
vcover attribute

vcover attribute
The vcover attribute command is used to display attributes in the currently loaded database,
during batch mode simulation, on the following types of attributes:

• Test Attributes — sets the value of attributes for testcase information. Refer to the
section "Predefined Attribute Data" for complete list of these attributes.

Syntax

For test attributes

vcover attribute <file> [-test <testname>] [-tcl] [-concise] [-modelsimini <ini_filepath>]
[-name <attribute> ...]

Arguments

• <file>

The database you want to analyze. Required.

• -concise

Print attribute values only, do not print other information. Optional.

• -modelsimini <ini_filepath>

Loads an alternate initialization file that replaces the current initialization file. Overrides the
file path specified in the MODELSIM environment variable. Specifies either an absolute or
relative path to the initialization file. On Windows systems the path separator should be a
forward slash (/).

• -name <attribute> ...

Reports data for the specified attribute. You can specify this option any number of times.
Optional.

• -tcl

Prints attribute information in a tcl format. Optional.

• -test <testname>

Reports attribute data for the specified testname. This is most useful when reporting on
merged UCDB files that contain many tests. Optional.

Examples

• Report all attribtues of the file test.ucdb

vcover attribute test.ucdb

• Report only the USERNAME and HOSTNAME attributes for the file test.ucdb

vcover attribute test.ucdb -name USERNAME -name HOSTNAME

Commands
vcover attribute

ModelSim SE Reference Manual, v6.5b 441

See also

Verification Management, “Verification Browser Window”, coverage attribute, coverage
exclude, coverage goal, coverage report, coverage save, coverage testnames, coverage weight,
vcover merge, vcover ranktest, vcover stats

ModelSim SE Reference Manual, v6.5b442

Commands
vcover merge

vcover merge
The vcover merge command merges multiple code coverage data files that were created with
the coverage save command. All files being merged must have been created from the same
design.

By default, vcover merge creates a test-associated merge, which associates coverage items with
the test(s) that covered them. To obtain a more basic level of information use the -totals
argument without -test.

There are cases in which it may be advisable not to merge, and instead preserve the individual
UCDBs for analysis and ranking. In the following cases, the tool issues a warning message
indicating that the resulting merged file cannot completely represent the merged information:

• if "at_least" is greater than 1

• weights are different for the same object in different files

• different objects in different files

For these, you can run with the -verbose argument set to obtain further details about potential
issues with the merge.

If a code coverage instance in the unified coverage database (UCDB) has been changed, a
warning will be generated. Warnings can be disabled with the -quiet option.

The command can be invoked within the ModelSim GUI or at the system prompt.

Syntax

vcover merge <merge_options> [-out <outfile>] <file1> [<file2> ...<filen>]

<merge_options> =
[-and] [-append] [-backup] [-inputs <file>] [-install <path>]
[[-instance <path> [-recursive]] | [-du <du_name> [-recursive]]
[-ignoredusig] [-log <filename>] [-modelsimini <ini_filepath>] [-notagging] [-strip <n>] [-
showambiguity] [-quiet] [-verbose] [-version] [-combine | -totals |-testassociated]
[-timeout <seconds>] <file1> [<file2> ...<filen>]

Arguments

• -and

Excludes statements in the output file only if they are excluded in all input files. Optional.
By default a statement is excluded in the output merge file if the statement is excluded in
any of the input files.

• -append

Specifies that progress messages are to be appended to the current log file. Optional. By
default a new log file is created each time you invoke the command.

Commands
vcover merge

ModelSim SE Reference Manual, v6.5b 443

• -backup

Creates a backup UCDB output file named "< ucdb filename >._backup" during the lock-
protected execution of vcover merge.

• -combine

Merges two or more different runs of a single test, or re-joining stripped versions of a
UCDB file. When using this argument, for nodes with conflicting toggle information, both a
minimum and maximum count is saved in UCDB. Only minimum counts are saved for
conflicting non-toggle data. Mutually exclusive with -totals and -testassociated.

• -du <du_name> [-recursive]

Instructs the tool to merge all instances of the specified design unit in all the input files. It
then creates an output file consisting of one instance of the design unit, containing all the
merged data. <du_name> is [<library name>.]<primary>[(<secondary>)], where the library
name is optional, and secondary name is required only for VHDL.

Instance names in the output file are generated in the following format, replacing any '/' with
'_' from the library names:

 <library>_<primary>[_<secondary>]

The -recursive argument instructs the tool to merge the complete design subtree, from the
designated design unit down. Optional. If not specified, just the level specified is merged.

• -ignoredusig

Instructs the tool to ignore design unit signature checking and continue merging. This
argument should not be used lightly, without first validating that the differences in code
between the merges of two versions of the same file are expected and approved. See
“Merging and Source Code Mismatches” for further details on the use of this argument.

• -inputs <file>

Specifies a text file containing input filenames that you want to merge. Optional.

• -instance <path> [-recursive]

Instructs the tool to merge all occurrences of the specified instances in all the input files. It
then creates an output file consisting of a single instance, containing all the merged data.

You can change the resulting path using the -install <path> option.

The -recursive argument instructs the tool to merge the complete design subtree, from the
designated instance down. Optional. If not specified, just the level specified is merged.

• -install <path>

Adds <path> as additional hierarchy on the front end of instance and object names in the
data files. Optional. This argument allows you to merge coverage results from simulations
that have different hierarchies. See "Merge Usage Scenarios" for more information.

ModelSim SE Reference Manual, v6.5b444

Commands
vcover merge

• -log <filename>

Specifies the file for outputting progress messages. Optional. By default these messages are
output to vcover.log.

• -modelsimini <ini_filepath>

Loads an alternate initialization file that replaces the current initialization file. Overrides the
file path specified in the MODELSIM environment variable. Specifies either an absolute or
relative path to the initialization file. On Windows systems the path separator should be a
forward slash (/).

• -notagging

Prevents the automatic implicit test plan tagging from being performed.

• -out <outfile>

Specifies the name of the file that will contain the merged output. Optional. When -out is
not specified, the filename used for the output is the base name of the first UCDB file listed
in the command, whereas when -out is specified, the output file can be specified anywhere
in the command.

• -quiet

Disable warnings when merging databases and a changed instance is encountered.

• -showambiguity

When used, vcover merge displays both minimum and maximum counts for any conflicting
toggle data in a UCDB that results from a combined merge.

• -strip <n>

Removes <n> levels of hierarchy from instance and object names in the data files. Optional.
This argument allows you to merge coverage results from simulations that have different
hierarchies. See "Merge Usage Scenarios" for more information.

• -testassociated

Merges the selected databases, including all the basic information (created with -totals) as
well as the associated tests and bins. This is the default merge. This argument is mutually
exclusive with -totals.

When tests and bins are associated, each coverage count is marked with the test that caused
it to be covered. For functional coverage, this means the bin count should be greater than or
equal to the at_least parameter. For code coverage and assertion data, any non-zero count
for a test causes the bin to be marked with the test. While it cannot be known which test
incremented a bin by exactly how much, it can be known which test caused a bin to be
covered.

• -totals

Merges the databases with a basic level of information, including: coverage scopes, design
scopes, and test plan scopes. The counts are incremented together. In the case of vector bin
counts, counts are ORed. The final output database is a union of objects from the input files.

Commands
vcover merge

ModelSim SE Reference Manual, v6.5b 445

Information about which test contributed what coverage into the merge is lost. Information
about tests themselves are not lost — test data records are added together from all merge
inputs. While the list of tests can be known, it cannot be known what tests might have
incremented particular bins.

• -timeout <seconds>

Sets the timeout period after which the lock can be removed. During the timeout period the
lock holder is protected. After the timeout expires, it is open hunting season. Supports
cumulative merges and multiple merge commands, issued one after another. Such merge
commands can be issued simultaneously from various platforms in a networking
environment. In order to avoid corrupting cumulative coverage results, merges of UCDB
files are serialized.

• -verbose

Enables summary code coverage statistics to be computed and directed to the log file each
time a file is merged into the base. The statistics are instance-based. Optional.

• -version

Returns the version number of each input UCDB file, and the version number of the output
UCDB file, which is always created with the most recent version of the UCDB creation
software. Optional.

• <file1> [<file2> ...<filen>]

Specifies the file(s) you want to merge, with <file1> required to contain the superset of the
objects to be merged. Subsequent files listed must be subsets of the first file listed.
Required. Multiple pathnames and wildcards are allowed. See Examples.

Examples

• Merge coverage statistics for myfile1 and myfile2 and writes them to myresult.

vcover merge myfile1 myfile2 -out myresult

• Use wildcards to merge all files with a .cov extension in a particular directory.

vcover merge myresult2 /dut/*.cov

• Change the default time-out for the lock file to 600 seconds.

vcover merge -timeout 600 out1.ucdb out2.ucdb in.ucdb

• Strip the top two levels of hierarchy from an instance or objects in myfile.ucdb and place
into another file myfile_stripped.ucdb.

vcover merge -strip 2 myfile_stripped.ucdb myfie.ucdb

ModelSim SE Reference Manual, v6.5b446

Commands
vcover merge

See also

“Code Coverage”, "Merge Usage Scenarios", "Verification Management", coverage attribute,
coverage save, coverage testnames, vcover attribute, vcover merge, vcover ranktest, vcover
stats

Commands
vcover ranktest

ModelSim SE Reference Manual, v6.5b 447

vcover ranktest
The vcover ranktest command ranks the specified input tests according to their contribution to
cumulative coverage. The output of this command is a list of ranked tests (saved by default to
ranktest.rank) consisting of the following types of tests. listed in the order presented:

Syntax

vcover ranktest <rankest_options> {<UCDB_inputfile1> [... <UCDB_inputfileN>]}

<ranktest_options> =
[-rankfile <filename>]
[-inputs <file_list>]
[-log <filename>]
[<coverage_type>]
[-maxcpu <real_num_in_seconds>] [-maxtests <int>] [-modelsimini <ini_filepath>]
[-fewest | -cputime | -simtime
[-path <path> | -du <du_name> | -plansection <path>]
[-keepmergefile <filepath>]
[-iterative | -testassociated]
[-precision] [-quiet | -concise | -verbose]

<coverage_type> =
[-code {b | c | e | f | s | t}...] [-codeAll]

Arguments

• -code {b | c | e | f | s | t}...

Specifies ranktest for corresponding code coverage type only: branch, condition,
expression, statement, toggle, FSM. More than one coverage type can be specified with
each -code argument (example: “-code bcesf”). Optional.

• -codeAll

Specifies ranktest for all coverage types. Equivalent to -code bcestf. Optional.

• -concise

Specifies the output files are created with minimum additional I/O. Optional. Default creates
ranktest with full I/O (-verbose). Mutually exclusive with -quiet and -verbose.

Table 2-8. Order and Type of Ranked Tests

Contributing, compulsory Mandatory tests, providing some coverage
not provided by any previous test.

Sorted by total
coverage %

Contributing, noncompulsory Tests providing coverage not provided by
any previous test.

Sorted by total
coverage %

Non-contributing Redundant tests, providing no incremental
coverage.

Not sorted

ModelSim SE Reference Manual, v6.5b448

Commands
vcover ranktest

• -cputime

Specifies that the files be ranked by minimum CPU time. Optional. Mutually exclusive to
the -fewest and -simtime arguments.

• -du <du_name>

Specifies the subtrees be rooted at the specified design unit. Optional. This argument applies
to a particular module type, by name, in all UCDB files. This option is mutually exclusive
with -path and -plansection.

• -fewest

Specifies that the files be ranked by fewest number of tests. Optional. Mutually exclusive to
the -cputime and -simtime arguments. Default.

• -inputs <file_list>

Specifies a file containing ranktest arguments. Optional.

• -iterative

Ranks the coverage items in the specified database(s) with a basic level of information,
including: coverage scopes, design scopes, and test plan scopes. Optional. Mutually
exclusive with -testassociated.

• -keepmergefile <filepath>

Specifies the merge file corresponding to the ranking be preserved. By default, the merge
file is deleted.

• -log <filename>

Specifies the file for outputting ranked results. Optional.

• -maxcpu <real_num_in_seconds>

Monitors the accumulated CPU time of the ranked tests. Specifies the maximum CPU time
to be allowed. If the specified number of seconds is exceeded, the ranking process is
stopped. The default value is -1.0 (no limit). Optional.

• -maxtests <int>

Specifies threshold for the maximum number of tests to be ranked. When this threshold is
exceeded, the ranking operation is terminated. Optional.

Important: When the -metric aggregate argument is used, the resulting metric number
will not “match” any other total coverage number produced by other verification tools
(i.e. coverage analyze). This is important because when you use any of the arguments
(-totals, -goal, -codeAll, or -code) with ranktest command, the aggregate metric is the
default.

• -modelsimini <ini_filepath>

Loads an alternate initialization file that replaces the current initialization file. Overrides the
file path specified in the MODELSIM environment variable. Specifies either an absolute or

Commands
vcover ranktest

ModelSim SE Reference Manual, v6.5b 449

relative path to the initialization file. On Windows systems the path separator should be a
forward slash (/).

• -path <path>

Specifies the subtrees be rooted at the specified design node. Optional. This argument
applies to a sub-hierarchy in all UCDB files. This option is mutually exclusive with -du and
-plansection.

• -plansection <path>

Specifies the subtrees be rooted at the testplan node. Optional. This argument applies to a
particular module type, by name, in all UCDB files. This argument can not be applied if the
-totals argument is in use. This option is mutually exclusive with -du and -path.

• -precision

Specifies the precision for output only: The contents of the rank file are NOT affected by
this argument. <int_num> is an integer value. The default value is
-4.

• -quiet

Creates the output ranktest file without any additional I/O. Optional. Default creates ranktest
with full I/O (-verbose). Mutually exclusive with -concise and -verbose.

• -rankfile <filename>

Specifies the name of the ranktest file being created. Optional. Default if not specified is
ranktest.rank. Can be specified with the vcover stats command to redisplay the results of
this ranking.

• -simtime

Specifies that the files be ranked by minimum simulation time. Optional. Mutually
exclusive to the -cputime and -fewest arguments.

• -testassociated

Ranks the coverage items in the selected database(s) including all the basic information (as
created with -iterative) as well as the associated tests and bins. Optional. This is the default
ranktest. This argument is mutually exclusive with -iterative.

• -verbose

Specifies the output files are created with full I/O. Optional. Mutually exclusive with -quiet
and -concise. This is the default.

• <UCDB_inputfile1> [... <UCDB_inputfileN>]

Specifies the name of two or more non-merged UCDB file(s) to rank. Required, unless
-input is specified one or more UCDB files to be ranked.

See also

ModelSim SE Reference Manual, v6.5b450

Commands
vcover merge, “Code Coverage”, coverage goal. coverage weightvcover report

vcover merge, “Code Coverage”, coverage goal. coverage weightvcover report
The vcover report command prints textual output of coverage statistics or exclusions — from a
previously saved code coverage run — to a specified file. This allows you to produce reports
"offline" (i.e., without having to load a simulation.)

You can choose from a number of report output options using the arguments listed below.

By default, the command prints out results from the current scope. To specify a certain path for
the report, you can use the -instance argument, such as:

• vcover report -instance <path>

The command orders the output on a by-file basis unless you specify the -byinstance or -bydu
argument.

The report displays code coverage data from generate blocks.

Syntax

vcover report [<coverage_arguments>] -file <filename>

vcover report [-version]

Global Arguments - Usable with any other arguments

vcover report [-append]
[-details [-dumptables] [-fecanalysis] [-metricanalysis]]
[-memory] [-modelsimini <ini_filepath>] [-zeros] [-precision <int>]
[-recursive [-depth <n>]] [-showambiguity]
[-testextract <test_name_or_pattern>] [-file <filename>] [-xml]

Create HTML output from a UCDB

vcover report [-html [-verbose] [-nosource] [-noframes] [-nodetails] [-summary] [-htmldir
<outdir>] [-threshL <val>] [-threshH <val>] <input_ucdb>]

Filtering Arguments - Used to filter one or more coverage types in the report

vcover report [-code {b | c | e | f | s | t}...]] [-testattr]

Code Coverage Arguments

vcover report [-bydu] [-byfile] [-byinstance] [-totals] [-noannotate]
[-library <libname>] [-du <du_name>] [-package <pkgname>]
[-source <filename>] [-instance <path> [-recursive [-depth <n>]]

Exclusion-specific Coverage Arguments

vcover report [-excluded [-pragma | -user]] [-noexcludedhits]

Toggle-specific Coverage Arguments

vcover report [-toggles] [-verbose] [-all] [-top]
[-select { inputs | outputs | inout | ports | internals }]

Toggle coverage statistics are relevant only when reporting on instances or design units and are
not produced on a per file basis. Toggle data is summed for all instances, and is reported by port

Commands
vcover merge, “Code Coverage”, coverage goal. coverage weightvcover report

ModelSim SE Reference Manual, v6.5b 451

or local name in the design unit, rather than by the connected signal. If you want toggle
coverage statistics, you must specify either the -byinstance, -bydu, -instance <path>, or -du
<du_name> arguments. If you do not use those arguments, or you use the -source <filename>
argument, toggle coverage statistics are excluded even if you specify -code t. To get an
itemized list of the signals, the -details argument is also required.

To report extended toggle coverage, ensure that you have compiled (vlog/vcom) with the -code
x argument, then use vcover report with -code t.

Arguments

• -all

When reporting toggles, creates a report that lists both toggled and untoggled signals.
Counts of all enumeration values are reported. Not a valid option when reporting on a
functional coverage database. Optional.

• -append

Appends the report data to the named output file. Optional.

• -bydu

Reports coverage statistics by design unit (du). Optional. The simulator will iterate through
all design units/modules in the design and report coverage data for each. Each design unit
report will be the sum of all instances of that module and will be sorted by design unit name.
Can be used with the -recursive [-depth <n>] argument to report on all design units
contained within the specified design unit. You can also report coverage data for a specific
design unit by using the -du <name> argument.

• -byfile

Writes out a coverage summary for each source file in the design. Optional. This is the
default report generated. A report generated with -byfile does not contain toggle
information.

• -byinstance

Writes out a coverage summary for all instances and packages. The default setting, if not
used, is -byfile. Optional.

• -code {b | c | e | f | s | t}...

Specifies which code coverage statistics to include in the report. Optional. If this argument
is not specified, the report includes statistics for all categories you enabled at compile time.

The characters are as follows:

b — Include branch statistics.

c — Include condition statistics.

e — Include expression statistics.

f — Include finite state machine statistics.

s — Include statement statistics.

ModelSim SE Reference Manual, v6.5b452

Commands
vcover merge, “Code Coverage”, coverage goal. coverage weightvcover report

t — Include toggle statistics.

For example, to includes statistics associated with each coverage item except toggles in the
report, you would enter “-code bcefs”.

• -details [-dumptables] [-fecanalysis] [-metricanalysis]

Includes details associated with each coverage item in the output (both UDP and FEC). By
default, details are not provided. Optional.

-dumptables — forces printing of condition and expression truth tables even though
fully covered. Optional.

-fecanalysis — reports which input patterns can be applied to the inputs to increment the
expression/condition hit counts. Optional.

-metricanalysis — prints sum-of-product and basic sub-condition heuristic metrics from
UDP expression/condition view. It reports hit counts for all rows in UPD table. To
improve coverage numbers, find rows with 0 hits and exercise the inputs accordingly.
See “Condition and Expression Coverage” for more information on metrics.
Optional.

• -du <du_name>

Reports coverage statistics for the specified design unit. Optional. <du_name> is <library
name>.<primary>(<secondary>), where the library name is optional, and secondary name is
required only for VHDL. If there are parameterized instances, all are considered to match
the specified design unit.

• -excluded [-pragma | -user]

Includes details on the exclusions in the specified coverage database input file. Optional. By
default, this option includes both user exclusions and source code pragma exclusions, unless
you specify -user or -pragma. The output is structured in DO file command format.

-pragma — When used with the -excluded argument, writes out only lines currently
being excluded by pragmas. Optional.

-user — When used with the -excluded argument, writes out files and lines currently
being excluded by the coverage exclude command. Optional.

• -file <filename>

Specifies a file name for the report. Optional. Default is to write the report to the Transcript
window. Environment variables may be used in the pathname.

• -html [-verbose] [-nosource] [-noframes] [-nodetails] [-summary] [-htmldir <outdir>]
[-threshL <val>] [-threshH <val>] <input_ucdb>

Generate an HTML coverage report on coverage data from a given UCDB file. Optional.
You can use the -verbose option with -html to enable logging output for each file
generated. The -html arguments listed below are not compatible with any other vcover
report arguments, with the exception of -binrhs.

<input_ucdb> — Specifies input UCDB file. Required, and only one is allowed.

-verbose — Prints out the files that are generated by the HTML report generator. Optional.

Commands
vcover merge, “Code Coverage”, coverage goal. coverage weightvcover report

ModelSim SE Reference Manual, v6.5b 453

-nosource — Used to avoid generation of the annotated source. Optional. This argument
used if you have no source code, or if you don’t want the annotated source to be generated.
Note that this prevents you from accessing source code related data from inside the
generated HTML report.

-noframes — Avoids generation of JavaScript-based tree for designs with a large number of
design scopes. The report comes up as a single frame containing the top-level summary
page and an HTML-only design scope index page is available as a link from the top-level
page.

-nodetails — Omits coverage detail pages, saving time and disk space during report
generation for very large designs.

-summary — Includes only the top summary page, the testplan summary page, and the list
of tests run in the generated report.

-htmldir <outdir> — Specifies the name of output directory for resulting UCDB (default:
"covhtmlreport"). Optional. Whether you specify an output directory or the default is used,
any file or directory of that name is completely removed prior to report generation to
prevent possible stale data.

-threshL <%> -threshH <val> — Specifies % of coverage at which colored cells change
from red to yellow. Optional.

-threshH <%> — Specifies % of coverage at which colored cells change from yellow to
green. Optional.

The default output filename is index.html in the default directory, covhtmlreport.

• -instance <path>

Writes out the source file summary coverage data for the selected instance. Optional.

• -library <libname>

Only needs to be used when you have packages of the same name in different libraries.
Optional.

• -memory

Reports a coarse-grain analysis of capacity data for the following SystemVerilog constructs:

o Classes

o Queues, dynamic arrays, and associative arrays (QDAS)

o Assertion and cover directives

o Covergroups

o Solver (calls to randomize())

Optional. When combined with -cvg and -details, this command reports the detailed
memory usage of covergroup. These include the current persistent memory, current
transient memory, peak transient memory, and peak time of the following:

ModelSim SE Reference Manual, v6.5b454

Commands
vcover merge, “Code Coverage”, coverage goal. coverage weightvcover report

o Per covergroup type

o Per coverpoint and cross in the type

o Per covergroup instance (if applicable)

o Per coverpoint and cross in the instance (if applicable).

• -modelsimini <ini_filepath>

Loads an alternate initialization file that replaces the current initialization file. Overrides the
file path specified in the MODELSIM environment variable. Specifies either an absolute or
relative path to the initialization file. On Windows systems the path separator should be a
forward slash (/).

• -noannotate

Removes source code from the output report. Valid for code coverage only. Not applicable
with -xml argument. Optional.

• -nodetails

Excludes details associated with each coverage item from the output. Details are included
by default. Optional.

• -noexcludedhits

Specifies that exclusions which received a hit are NOT included in the coverage calculations
shown in the report. By default, exclusions that have been hit are included in the
calculations. Optional.

• -package <pkgname>

Prints a report on the specified VHDL package body. Needs to be of the form <lib>.<pkg>.
Optional. This argument is equivalent to -du.

• -precision <int>

Sets the decimal precision for printing functional coverage information. Valid values for
<int> are from 0 to 6 and default value is 1 (one). Optional.

• -recursive [-depth <n>]

Reports on the instance specified with -instance and every included instance, recursively.
Can also be used with -details and -totals. Optional.

-depth <n>

Used with the -recursive argument, it specifies the maximum recursive depth. A depth
of 1 is the same as no recursion at all. Optional.

• -select { inputs | outputs | inout | ports | internals }

Reports on input, output, inout, all ports, or internal signals. Can be used with the -toggles
argument. Optional.

Commands
vcover merge, “Code Coverage”, coverage goal. coverage weightvcover report

ModelSim SE Reference Manual, v6.5b 455

• -showambiguity

When used, coverage report displays both minimum and maximum counts for any
conflicting toggle data in a UCDB that results from a combined merge (vcover merge
command performed with -combine).

• -source <filename>

Writes a summary of statement coverage data for a specific source file. Optional.
Environment variables may be used in the pathname.

• -testattr

Display test attributes in the report. Optional.

• -testextract <test_name_or_pattern>

Display test specific results in the report. Optional. Used to combine results from multiple
tests. The <test_name_or_pattern> is the test or pattern to extract. Multiple -testextract
arguments can be applied in same command. This argument is compatible with reports
generated in plain text and XML formats only, HTML reports are not supported. When
using this argument, a header line appears at the top of the report listing test name(s) used to
generate the report. Also, the word “hit” appears in place of the count number. UCDB files
store only the aggregated coverage counts from all tests, and test-specific numbers can’t be
reproduced.

• -totals

Writes out a total summary of the specified instance, recursively. Optional. Useful for
tracking changes. Without this argument, the report writes out an instance summary for each
of the instances. The report prints only one summary if -totals option is used. Also, when the
-totals argument is specified, the alias nodes are not counted.

• -toggles

Writes out all (and only) the toggles in the entire design (not including alias nodes), or under
the instance specified by -instance <path>. Optional. Valid during simulation, post-
processing, and in vcover. The toggle report generated with this argument is written in the
style of reports generated by toggle report.

• -top

For signals that were added to toggle coverage using vcom or vlog -cover t, -top uses the
name of the top-most element of multiple-segment (collapsed) nets. Optional. By default the
name of the wildcard-matching segment will be used.

• -verbose

Prints a report listing all the integer values and their counts an integer toggle encounters
during the run. Optional. List will include the number of active assertion threads (Active
Count) and number of active root threads (Peak Active Count) that have occurred up to the
current time.

ModelSim SE Reference Manual, v6.5b456

Commands
vcover merge, “Code Coverage”, coverage goal. coverage weightvcover report

• -version

Returns the version number of UCDB file used to create the report. This argument can not
be combined with any other arguments; when present, it invalidates all other arguments.
Optional.

• -xml

Outputs report in XML format. A report created with -xml does not contain source file lines
(calls -noannotate implicitly). Optional. This implicitly sets the -details argument. Refer to
“Coverage Reports” for more information.

• -zeros

Writes out a file-based summary of lines, including file names and line numbers, that have
not been executed (zero hits), annotates the source code, and supports the -source and
-instance options. Optional. Optional. Cannot be used in tandem with the -recursive
argument.

For a detailed report that includes line numbers, use: vcover report -zeros -details.

• <file>

Specifies the previously saved code coverage file on which you want to report. Required.

Examples

• Write a top-level summary of the number of instances, statements, branches, hits, and
signal toggles to myreport.txt.

vcover report -totals -file myreport.txt input.ucdb

• Write detailed branch, condition, and statement statistics from save.ucdb, without
associated source code, to stdout.

vcover report -details -code bcs save.ucdb

• Write a summary of code coverage for all instances in save.cov to stdout.

vcover report save.ucdb

• Write code coverage details of all instances in input.ucdb to save.cov. The -details
option reports coverage statistics for each statement and branch. Branch coverage
statistics will following statement statistics and will be presented in four columns: line,
column, true branch count, false branch count.

vcover report -details -file save.cov input.ucdb

• Write code coverage details of one specific instance to save.cov.

vcover report -details -instance /top/p -file save.cov input.ucdb

• Write a summary of coverage by source file for coverage less than or equal to 90%.

vcover report -details -below 90 -file myreport.txt input.ucdb

Commands
vcover merge, “Code Coverage”, coverage goal. coverage weightvcover report

ModelSim SE Reference Manual, v6.5b 457

• Write a list of statements with zero coverage to myzerocov.txt.

vcover report -zeros -file myzerocov.txt input.ucdb

See also

“Code Coverage”, coverage save, coverage report,

ModelSim SE Reference Manual, v6.5b458

Commands
vcover stats

vcover stats
The vcover stats command computes and prints to stdout summary statistics for previously
saved code coverage databases. It can be invoked within the ModelSim GUI or at the command
line.

vcover stats creates coverage statistics output that is equivalent to the output from this
command:

vcover report -totals -byinstance

Syntax

vcover stats [-assert] [-code {b | c | e | f | s | t}...] [-memory] [-modelsimini <ini_filepath>] [-
precision <int>][-precision <int>]
<file1> [<file2> <filen>…]

Arguments

• -assert

Reports only assertion coverage data. Optional.

• -code {b | c | e | f | s | t}...

Specifies which code coverage statistics to include in the report. Optional. By default the
report includes statistics for all categories you enabled at compile time.

The characters are as follows:

b — Include branch statistics.

c — Include condition statistics.

e — Include expression statistics.

f — Include finite state machine statistics.

s — Include statement statistics.

t — Include toggle statistics.

• -inputs <pathname>

Specifies a text file containing input filenames for which you want to produce statistics.
Optional.

• -memory

Reports a coarse-grain analysis of capacity data for the following SystemVerilog constructs
(Optional):

o Classes

o Queues, dynamic arrays, and associative arrays (QDAS)

o Assertion and cover directives

Commands
vcover stats

ModelSim SE Reference Manual, v6.5b 459

o Covergroups

o Solver (calls to randomize())

• -modelsimini <ini_filepath>

Loads an alternate initialization file that replaces the current initialization file. Overrides the
file path specified in the MODELSIM environment variable. Specifies either an absolute or
relative path to the initialization file. On Windows systems the path separator should be a
forward slash (/).

• -precision <int>

Sets the decimal precision for printing coverage information. Valid values for <int> are
from 0 to 6 and default value is 1 (one). Optional. The contents of the UCDB are NOT
affected by this argument. <int_num> is an integer value. The default value is
-4.

• <file1> [<file2> <filen>…]

Specifies the file(s) for which you want summary statistics, including .rank file created by
vcover ranktest. Required. Multiple pathnames and wildcards are allowed.

See also

coverage save, vcover merge, “Code Coverage”, coverage report, vcover ranktest

ModelSim SE Reference Manual, v6.5b460

Commands
vcover testnames

vcover testnames
The vcover testnames command displays the testnames in the currently loaded UCDB file. If a
merged file, it gives you a list of tests in the merged file.

By default, the testname is the name of the UCDB file, though you can set it to whatever you
want.

Syntax

coverage testnames [-tcl] [-modelsimini <ini_filepath>]

Arguments

• -tcl

Print attribute information in a tcl format. Optional.

• -modelsimini <ini_filepath>

Loads an alternate initialization file that replaces the current initialization file. Overrides the
file path specified in the MODELSIM environment variable. Specifies either an absolute or
relative path to the initialization file. On Windows systems the path separator should be a
forward slash (/).

See also

Code Coverage, “Verification Browser Window”, coverage attribute, coverage exclude,
coverage goal, coverage report, coverage save, coverage testnames, coverage weight, vcover
merge, vcover ranktest, vcover stats

Commands
vdel

ModelSim SE Reference Manual, v6.5b 461

vdel
 The vdel command deletes a design unit from a specified library.

Syntax

vdel [-help] [-lib <library_path>] [-modelsimini <ini_filepath>] [-verbose]
[-all | <primary> [<arch_name>] | -allsystemc]

Arguments

• -all

Deletes an entire library. Optional. BE CAREFUL! Libraries cannot be recovered once
deleted, and you are not prompted for confirmation.

• -allsystemc

Deletes all SystemC modules in a design from the working directory. Optional.

• <arch_name>

Specifies the name of an architecture to be deleted. Optional. If omitted, all of the
architectures for the specified entity are deleted. Invalid for a configuration or a package.

• <primary>

Specifies the entity, package, configuration, or module to be deleted. Required unless -all is
used.

This option is not supported for SystemC modules.

• -help

Displays the command’s options and arguments. Optional.

• -lib <library_path>

Specifies the logical name or pathname of the library that holds the design unit to be deleted.
Optional. By default, the design unit is deleted from the work library.

• -modelsimini <ini_filepath>

Loads an alternate initialization file that replaces the current initialization file. Overrides the
file path specified in the MODELSIM environment variable. Specifies either an absolute or
relative path to the initialization file. On Windows systems the path separator should be a
forward slash (/).

• -verbose

Displays progress messages. Optional.

Examples

• Delete the work library.

vdel -all

• Delete the synopsys library.

ModelSim SE Reference Manual, v6.5b462

Commands
vdel

vdel -lib synopsys -all

• Delete the entity named xor and all its architectures from the work library.

vdel xor

• Delete the architecture named behavior of the entity xor from the work library.

vdel xor behavior

• Delete the package named base from the work library.

vdel base

Commands
vdir

ModelSim SE Reference Manual, v6.5b 463

vdir
The vdir command lists the contents of a design library.

This command also checks the compatibility of a vendor library. If vdir cannot read a
vendor-supplied library, the library may not be compatible with ModelSim.

This command lists SystemC modules that are exported with the SC_MODULE_EXPORT()
macro.

Syntax

vdir [-help] [-l | [-prop <prop>]] [-r] [-all | [-lib <library_name>]]
[-modelsimini <ini_filepath>]] [<design_unit>]

Arguments

• -help

Displays options and arguments for this command. Optional.

• -l

Prints the version of vcom, vlog, or sccom with which each design unit was compiled, plus
any compilation options used. Also prints the object-code version number that indicates
which versions of vcom/vlog/sccom and ModelSim are compatible.

• -modelsimini <ini_filepath>

Loads an alternate initialization file that replaces the current initialization file. Overrides the
file path specified in the MODELSIM environment variable. Specifies either an absolute or
relative path to the initialization file. On Windows systems the path separator should be a
forward slash (/).

• -prop <prop>

Reports on the specified design unit property, as listed in Table 2-9. If you do not specify a
value for <prop>, an error message is displayed.

Table 2-9. Design Unit Properties

Value of <prop> Description

archcfg configuration for arch

bbox blackbox for optimized design

body needs a body

default default options

dir source directory

dpnd depends on

entcfg configuration for entity

extern package reference number

ModelSim SE Reference Manual, v6.5b464

Commands
vdir

• -r

Prints architecture information for each entity in the output.

• -all

Lists the contents of all libraries listed in the Library section of the active modelsim.ini file.
Optional. Refer to modelsim.ini Variables for more information.

• -lib <library_name>

Specifies the logical name or the pathname of a library to be listed. Optional. By default, the
contents of the work library are listed.

• <design_unit>

Indicates the design unit to search for within the specified library. If the design unit is a
VHDL entity, its architectures are listed. Optional. By default all entities, configurations,
modules, packages, and optimized design units in the specified library are listed.

Examples

• List the architectures associated with the entity named my_asic that reside in the HDL
design library called design.

vdir -lib design my_asic

• Show the output of vdir -l, including any compilation options used to compile the
library:

> # MODULE ram_tb
> # Verilog Version: RV9i]?9FGhibjG<jXXV_`1

inline module inlined

lrm language standard

mtime source modified time

name short name

opcode opcode format

options compile options

root optimized Verilog design root

src source file

top top level model

ver version string

vlogv Verilog version

voptv Verilog optimized version

Table 2-9. Design Unit Properties

Value of <prop> Description

Commands
vdir

ModelSim SE Reference Manual, v6.5b 465

> # Version number: CRW2<UhheaW;LIL2_B5o31
> # Source modified time: 1132284874
> # Source file: ram_tb.v
> # Start source location: ram_tb.v:47
> # Version number: CRW2<UhheaW;LIL2_B5o31
> # Opcode format: 6.1c; VLOG SE Object version 31
> # Optimized Verilog design root: 1
> # Language standard: 1
> # Compile options: -cover bcst
> # Compile defaults: GenerateLoopIterationMax=100000
> # Source directory: C:\Verif\QuestaSim_6.1c

\examples\tutorials\verilog\memory

ModelSim SE Reference Manual, v6.5b466

Commands
vencrypt

vencrypt
The vencrypt command encrypts Verilog and SystemVerilog code contained within encryption
envelopes. The code is not pre-processed before encryption, so macros and other `directives are
unchanged. This allows IP vendors to deliver encrypted IP with undefined macros and
`directives.

Upon execution of this command, the filename extension will be changed to .vp for Verilog
files (.v files) and .svp for SystemVerilog files (.sv files). As the vencrypt utility processes the
file (or files), if it does not find any encryption directives it reprocesses the file using the
following default encryption:

`pragma protect data_method = "aes128-cbc"
`pragma protect key_keyowner = "MTI"
‘pragma protect key_keyname = "MGC-DVT-MTI"
‘pragma protect key_method = "rsa"
`pragma protect key_block encoding = (enctype = "base64")
`pragma protect begin

The vencrypt command must be followed by a compile command – such as vlog – for the
design to be compiled.

Syntax

vencrypt <filename> [-d <dirname>] [-e <extension>] [-f <filename>] [-h <filename>] [-help]
[-l <filename>] [-o <filename>] [-p <prefix>] [-quiet]

• <filename>

Specifies the name of the Verilog source code file to encrypt. One filename is required.
Multiple filenames can be entered separated by spaces. Wildcards can be used. Default
encryption pragmas will be used, as described above, if no encryption directives are found
during processing.

• -d <dirname>

Specifies directory that will contain encrypted Verilog files. Optional. If no directory is
specified, current working directory will be used. The original file extension (.v for Verilog
and .sv for SystemVerilog) will be preserved.

• -e <extension>

Specifies a filename extension. Optional.

• -f <filename>

Specifies a file with more command line arguments. Optional. Allows complex arguments
to be reused without retyping. Nesting of -f options is allowed.

Refer to the section "Argument Files" for more information.

• -h <filename>

Concatenates header information, specified by <file>, into all design files listed with
<filename>. Optional. Allows the user to pass a large number of files to the vencrypt utility
that do not contain the `pragma protect or `protect information about how to encrypt the

Commands
vencrypt

ModelSim SE Reference Manual, v6.5b 467

file. Saves the user from editing hundreds of files to add in the same `pragma protect to
every file.

• -help

Displays vencrypt command arguments. Optional.

• -l <filename>

Redirects output to the file designated by <filename>. Optional.

• -o <filename>

Combines all encrypted output into a single file. Optional.

• -p <prefix>

Prepends file names with a prefix. Optional.

• -quiet

Disables encryption messages. Optional.

See also

"Protecting Your Source Code" in the User’s Manual

Example

• Insert header information into all design files listed.

vencrypt -h encrypt_head top.v cache.v gates.v memory.v

The encrypt_head file may look like the following:

`pragma protect data_method = "aes128-cbc"
`pragma protect author = "IP Provider"
`pragma protect key_keyowner = "MTI", key_method = "rsa"
`pragma protect key_keyname = "MGC-DVT-MTI"
`pragma protect begin

There is no `pragma protect end expression in the header file, just the header block that
starts the encryption. The `pragma protect end expression is implied by the end of the
file. For more detailed examples, see "Protecting Your Source Code" in the User’s
Manual.

ModelSim SE Reference Manual, v6.5b468

Commands
verror

verror
The verror command prints a detailed description about a message number. It may also point to
additional documentation related to the error.

Syntax

verror [-fmt | -tag | -fmt -tag | -full] <msgNum> ...

verror [-fmt | -tag | -fmt -tag | -full] [-tool <tool>] -all

verror -ranges

verror -help

Arguments

• -fmt | -tag | -full

Specifies the type and amount of information to return.

-fmt — returns the format string used in the error message.

-tag — returns a tag associated with the error message.

-full — returns the format string, tag, and complete text associated with the error
message.

• [-tool <tool>] -all

Allows you to return information about all error messages.

-all — returns all error messages.

-tool <tool> -all — returns all error messages associated with the specified tool, where
<tool> can be one of the following:

• <msgNum>

Specifies the message number(s) you would like more information about. You can find the
message number in messages of the format:

** <Level>: ([<Tool>-[<Group>-]]<MsgNum>) <FormattedMsg>

You can specify <msgNum> any number of times for one verror command. It is suggested
that you use a space-separated list.

• -ranges

Prints the numeric ranges of error message numbers, organized by tool.

common vcom vcom-vlog

vlog vsim vsim-vish

wlf vsim-sccom sccom

vsim-systemc ucdb vsim-vlog

 pseudo_synth

Commands
verror

ModelSim SE Reference Manual, v6.5b 469

Example

• If you receive the following message in the transcript:

** Error (vsim-3061) foo.v(22): Too many Verilog port connections.

and you would like more information about this message, you would type:

verror 3061

and receive the following output:

Message # 3061:
Too many Verilog ports were specified in a mixed VHDL/Verilog
instantiation. Verify that the correct VHDL/Verilog connection is
being made and that the number of ports matches.
[DOC: ModelSim User's Manual - Mixed VHDL and Verilog Designs
Chapter]

ModelSim SE Reference Manual, v6.5b470

Commands
vgencomp

vgencomp
Once a Verilog module is compiled into a library, you can use the vgencomp command to write
its equivalent VHDL component declaration to standard output.

Optional switches allow you to generate bit or vl_logic port types; std_logic port types are
generated by default.

Syntax

vgencomp [-help] [-lib <library_name>] [-b] [-modelsimini <ini_filepath>] [-s] [-v]
<module_name>

Arguments

• -help

Displays the command’s options and arguments. Optional.

• -lib <library_name>

Specifies the pathname of the working library. If not specified, the default library work is
used. Optional.

• -b

Causes vgencomp to generate bit port types. Optional.

• -modelsimini <ini_filepath>

Loads an alternate initialization file that replaces the current initialization file. Overrides the
file path specified in the MODELSIM environment variable. Specifies either an absolute or
relative path to the initialization file. On Windows systems the path separator should be a
forward slash (/).

• -s

Used for the explicit declaration of default std_logic port types. Optional.

• -v

Causes vgencomp to generate vl_logic port types. Optional.

• <module_name>

Specifies the name of the Verilog module to be accessed. Required.

Examples

• This example uses a Verilog module that is compiled into the work library. The module
begins as Verilog source code:

Commands
vgencomp

ModelSim SE Reference Manual, v6.5b 471

module top(i1, o1, o2, io1);
parameter width = 8;
parameter delay = 4.5;
parameter filename = "file.in";

input i1;
output [7:0] o1;
output [4:7] o2;
inout [width-1:0] io1;

endmodule

After compiling, vgencomp is invoked on the compiled module:

vgencomp top

and writes the following to stdout:

component top
generic(
width : integer := 8;
delay : real := 4.500000;
filename : string := "file.in"

);
port(

i1 : in std_logic;
o1 : out std_logic_vector(7 downto 0);
o2 : out std_logic_vector(4 to 7);
io1 : inout std_logic_vector

);
end component;

ModelSim SE Reference Manual, v6.5b472

Commands
view

view
The view command opens the specified window.The view command without arguments returns
a list of windows currently being viewed.

When you use the -new argument with the view command ModelSim will create an additional
instance of the specified window type and make it the active window for that type. If multiple
instances of a window exist, view will change the active window of that type to the specified
window.

Names for windows are generated as follows:

• The first window name (automatically generated without using -new) has the same
name as the specified window type. For example, the view wave command will create a
wave window named "wave."

• Additional window names, created by using the -new argument, appends an integer to
the window type, starting with 1. For example, the next time you use the view wave
command, the automatically generated window name will be "wave1." Use the
command again and the name will be "wave2," then "wave3," etc.

• You can rename existing windows with the -title argument or create a name for a new
window using -new and -title together.

To remove a window, use the noview command.

The view command with one or more options and no window names specified applies the
options to the currently open windows. See examples for additional details.

Syntax

view <window_type>…
[-new] [-title {New Window Title}]
[-undock {[-icon] [-height <n>] [-width <n>] [-x <n>] [-y <n>]} | -dock]

Arguments

• -aliases

Returns a list of <window_type> aliases.

• -height <n>

Specifies the window height in pixels. Can only be used with the -undock switch. Optional.

• -icon

Toggles the view between window and icon. Can only be used with the -undock switch.
Optional.

• -names

Returns a list of valid <window_type> arguments.

Commands
view

ModelSim SE Reference Manual, v6.5b 473

• -new

Creates a new instance of the window type specified with the <window_type> argument.
Optional. New window names are automatically generated by appending an integer to the
window type, starting with 1, then incrementing the integer when windows of the same type
are created.

• -title {New Window Title}

Specifies the window title of the designated window. Curly braces are only needed for titles
that include spaces. Double quotes can be used in place of braces, for example "New
Window Title". If the new window title does not include spaces, no braces or quotes are
needed. For example: -title new_wave wave assigns the title new_wave to the Wave
window.

• -undock

Opens the specified window as a standalone window, undocked from the Main window.
Optional.

• -dock

Docks the specified standalone window into the Main window.

• -width <n>

Specifies the window width in pixels. Can only be used with the -undock switch. Optional.

• <window_type>…

Specifies the window type to view. Required. You do not need to type the full type name
(see examples below); implicit wildcards are accepted; multiple window types are accepted.
Available window types are:

assertions atv branch browser

calltree capacity classgraph classtree

condition covergroups dataflow details

duranked exclusions expression fcovers

files fsmcoverage fsmlist fsmview

instance library list locals

memdata memory msgviewer objects

process profiledetails project ranked

schematic source stackview

statement structural structure toggle

tracker transaction transcript watch

wave

ModelSim SE Reference Manual, v6.5b474

Commands
view

Not all windows are available with all variants (ModelSim SE, ModelSim PE, Questa
SV/AFV, etc.)

When you specify a window type and also use the -new argument, you create a new instance
of that window type. You may also specify the window(s) to view when multiple instances
of that window type exist (such as wave2). This works only with window names
automatically generated by ModelSim, not with window titles specified with the -title
argument.

• -x <n>

Specifies the window upper-left-hand x-coordinate in pixels. Can only be used with the
-undock switch. Optional.

• -y <n>

Specifies the window upper-left-hand y-coordinate in pixels. Can only be used with the
-undock switch. Optional.

Examples

• Undock the Wave window from the Main window and makes it a standalone window.

view -undock wave

• Display an undocked Processes window in the uppler left-hand corner of the monitor
with a window size of 300 pixels, square.

view process -undock -x 0 -y 0 -width 300 -height 300

• Display the Watch and Wave windows.

view w

• Display the Objects and Processes windows.

view ob pr

• Open a new Wave window with My Wave Window as its title.

view -title {My Wave Window} wave

• The first command creates a window named ’wave’. The second command creates a
window named ‘wave1’. Its full Tk path is ‘.wave1’. Wave1 is now the active Wave
window. Any add wave command would add objects to wave1.

view wave
view wave -new

• Change the default Wave window back to ‘wave’.

view wave

• Will override the default Wave window and add mysig to wave1.

Commands
view

ModelSim SE Reference Manual, v6.5b 475

add wave -win .wave1 mysig

• Open a new Wave window with "SV_Signals" as its title, then add signals to it.

set SV_Signals [view wave -new -title SV_Signals]
add wave -window $SV_Signals /top/mysignals

The custom window title "SV_Signals" is saved as a TCL variable, then called using the
’$’ prefix.

See also

noview

ModelSim SE Reference Manual, v6.5b476

Commands
virtual count

virtual count
The virtual count command reports the number of currently defined virtuals that were not read
in using a macro file.

Syntax

virtual count [-kind {implicits | explicits}] [-unsaved]

Arguments

• -kind {implicits | explicits}

(optional) Reports only a subset of virtuals.

implicits — virtual signals created internally by the product.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.

• -unsaved

(optional) Reports the count of only those virtuals that have not been saved to a macro file.

See also

virtual define, virtual save, virtual show, “Virtual Objects”

Commands
virtual define

ModelSim SE Reference Manual, v6.5b 477

virtual define
The virtual define command prints to the transcript the definition of the virtual signals,
functions, or regions in the form of a command that can be used to re-create the object.

Syntax

virtual define [-kind <kind>] <pathname>

Arguments

• -kind {implicits | explicits}

(optional) Transcripts only a subset of virtuals.

implicits — virtual signals created internally by the tool.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.

• <pathname>

(required) Specifies the path to the virtual(s) for which you want definitions, where
wildcards are allowed.

Examples

• Show the definitions of all the virtuals you have explicitly created.

virtual define -kind explicits *

See also

virtual describe, virtual show, “Virtual Objects”

ModelSim SE Reference Manual, v6.5b478

Commands
virtual delete

virtual delete
The virtual delete command removes the matching virtuals.

Syntax

virtual delete [-kind <kind>] <pathname>

Arguments

• -kind {implicits | explicits}

(optional) Removes only a subset of virtuals.

implicits — virtual signals created internally by the product.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.

• <pathname>

(required) Specifies the path to the virtual(s) you want to delete, where wildcards are
allowed.

Examples

• Delete all of the virtuals you have explicitly created.

virtual delete -kind explicits *

See also

virtual signal, virtual function, “Virtual Objects”

Commands
virtual describe

ModelSim SE Reference Manual, v6.5b 479

virtual describe
The virtual describe command prints to the transcript a complete description of the data type of
one or more virtual signals.

Similar to the existing describe command.

Syntax

virtual describe [-kind <kind>] <pathname>

Arguments

• -kind {implicits | explicits}

(optional) Transcripts only a subset of virtuals.

implicits — virtual signals created internally by the product.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.

• <pathname>

(required) Specifies the path to the virtual(s) for which you want descriptions, where
wildcards are allowed.

Examples

• Describe the data type of all virtuals you have explicitly created.

virtual describe -kind explicits *

See also

virtual define, virtual show, “Virtual Objects”

ModelSim SE Reference Manual, v6.5b480

Commands
virtual expand

virtual expand
The virtual expand command prints to the transcript a list of all the non-virtual objects
contained in the specified virtual signal(s).

You can use this to create a list of arguments for a command that does not accept or understand
virtual signals.

Syntax

virtual expand [-base] <pathname> ...

Arguments

• -base

(optional) Outputs the root signal parent in place of a subelement. For example:

vcd add [virtual expand -base myVirtualSignal]

the resulting command after substitution would be:

vcd add signala signalb signalc

• <pathname>

(required) Specifies the path to the signals and virtual signals to expand, where wildcards
are allowed and you can specify any number of paths.

Examples

• Add the elements of a virtual signal to the VCD file.

In the Tcl language, the square brackets specify that the enclosed command should be
executed first ("virtual expand …"), then the result substituted into the surrounding
command.

vcd add [virtual expand myVirtualSignal]

Therefore, if myVirtualSignal is a concatenation of signala, signalb.rec1 and signalc(5
downto 3), the resulting command after substitution would be:

vcd add signala signalb.rec1 {signalc(5 downto 3)}

The slice of signalc is enclsoed in curly braces, because it contains spaces.

See also

virtual signal, “Virtual Objects”

Commands
virtual function

ModelSim SE Reference Manual, v6.5b 481

virtual function
The virtual function command creates a new signal, known only by the GUI (not the kernel),
that consists of logical operations on existing signals and simulation time, as described in
<expressionString>.

It cannot handle bit selects and slices of Verilog registers. Please see Syntax and Conventions
for more details on syntax.

If the virtual function references more than a single scalar signal, it will display as an
expandable object in the Wave and Objects windows. The children correspond to the inputs of
the virtual function. This allows the function to be "expanded" in the Wave window to see the
values of each of the input waveforms, which could be useful when using virtual functions to
compare two signal values.

Virtual functions can also be used to gate the List window display.

Note
The virtual function and virtual signal commands are interchangeable. The product will
keep track of whether you’ve created a signal or a function with the commands and
maintain them appropriately. We document both commands because the virtual save,
virtual describe, and virtual define commands will reference your virtual objects using
the corrrect command.

Syntax

virtual function [-env <path>] [-install <path>] [-delay <time>] {<expressionString>} <name>

Arguments

Arguments for virtual function are the same as those for virtual signal, except for the contents
of the expression string.

• -env <path>

(optional) Specifies a hierarchical context for the signal names in <expressionString> so
they don't all have to be full paths.

• -install <path>

(optional) Causes the newly-created signal to become a child of the specified region. If
-install is not specified, the newly-created signal becomes a child of the nearest common
ancestor of all objects appearing in <expressionString>. If the expression references more
than one WLF file (dataset), the virtual signal will automatically be placed in region
virtuals:/Functions.

• -delay <time>

(optional) Specifies a value by which the virtual function will be delayed. You can use
negative values to look forward in time. If units are specified, the <time> option must be
enclosed in curly braces. See the examples below for more details.

ModelSim SE Reference Manual, v6.5b482

Commands
virtual function

• {<expressionString>}

(required) A text string expression, enclosed in curly braces ({ }) using the
GUI_expression_format.

• <name>

(required) The name you define for the virtual signal.

Case is ignored unless installed in a Verilog region.

Use alpha, numeric, and underscore characters only, unless you are using VHDL extended
identifier notation.

If using VHDL extended identifier notation, <name> needs to be quoted with double quotes
or with curly braces.

Examples

• Create a signal /chip/section1/clk_n that is the inverse of /chip/section1/clk.

virtual function { not /chip/section1/clk } clk_n

• Create a std_logic_vector equivalent of a Verilog register rega and installs it as
/chip/rega_slv.

virtual function -install /chip { (std_logic_vector) chip.vlog.rega
} rega_slv

• Create a boolean signal /chip/addr_eq_fab that is true when /chip/addr[11:0] is equal to
hex "fab", and false otherwise. It is acceptable to mix VHDL signal path notation with
Verilog part-select notation.

virtual function { /chip/addr[11:0] == 0xfab } addr_eq_fab

• Create a signal that is high only during times when signal /chip/siga of the gate-level
version of the design does not match /chip/siga of the rtl version of the design. Because
there is no common design region for the inputs to the expression, siga_diff is installed
in region virtuals:/Functions. The virtual function siga_diff can be added to the Wave
window, and when expanded will show the two original signals that are being
compared.

virtual function { gate:/chip/siga XOR rtl:/chip/siga } siga_diff

• Create a virtual signal consisting of the logical "AND" function of /top/signalA with
/top/signalB, and delays it by 10 ns.

virtual function -delay {10 ns} {/top/signalA AND /top/signalB}
myDelayAandB

• Create a one-bit signal outbus_diff which is non-zero during times when any bit of
/chip/outbus in the gate-level version doesn’t match the corresponding bit in the rtl
version.

Commands
virtual function

ModelSim SE Reference Manual, v6.5b 483

This expression uses the "OR-reduction" operator, which takes the logical OR of all the
bits of the vector argument.

virtual function { | (gate:/chip/outbus XOR rtl:/chip/outbus) }
outbus_diff

Commands fully compatible with virtual functions

Commands not compatible with virtual functions

See also

add log and log delete describe

examine find restart

searchlog show

add list add wave checkpoint and restore

down and up left and right search

drivers force noforce

vcd add when

check contention add check contention config check contention off

check float add check float config check float off

check stable on check stable off power add

power report power reset toggle add

toggle reset toggle report

virtual count virtual define virtual delete

virtual describe virtual expand virtual hide

virtual log virtual nohide virtual nolog

virtual region virtual save virtual show

virtual signal virtual type “Virtual Objects

ModelSim SE Reference Manual, v6.5b484

Commands
virtual hide

virtual hide
The virtual hide command causes the specified real or virtual signals to not be displayed in the
Objects window. This is used when you want to replace an expanded bus with a user-defined
bus.

You make the signals reappear using the virtual nohide command.

Syntax

virtual hide { [-kind <kind>] | [-region <path>]} <pattern>

Arguments

• -kind {implicits | explicits}

(optional) Hides only a subset of virtuals.

implicits — virtual signals created internally by the tool.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.

• -region <path>

(optional) Specifies a region of design space in which to look for the signal names.

• <pattern>

(required) Indicates which signal names or wildcard patterns should be used in finding the
signals to hide, where wildcards are allowed and you can specify any number of names or
patterns.

See also

virtual nohide, “Virtual Objects”

Commands
virtual log

ModelSim SE Reference Manual, v6.5b 485

virtual log
The virtual log command causes the simulation-mode dependent signals of the specified virtual
signals to be logged by the kernel.

If wildcard patterns are used, it will also log any normal signals found, unless the -only option is
used. You unlog the signals using the virtual nolog command.

Syntax

virtual log [-kind <kind>] | [-region <path>] [-recursive] [-only] [-in] [-out] [-inout] [-internal]
[-ports] <pattern>

Arguments

• -kind {implicits | explicits}

(optional) Logs only a subset of virtuals.

implicits — virtual signals created internally by the tool.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.

• -region <path>

(optional) Specifies a region of design space in which to look for signals to log.

• -recursive

(optional) Specifies that the scope of the search is to descend recursively into subregions. If
omitted, the search is limited to the selected region.

• -only

(optional) Specify that only virtual signals (as opposed to all signals) found by a <pattern>
containing a wildcard should be logged.

• -in

Specifies that the kernel log data for ports of mode IN whose names match the specification.
Optional.

• -out

(optional) Specifies that the kernel log data for ports of mode OUT whose names match the
specification.

• -inout

(optional) Specifies that the kernel log data for ports of mode INOUT whose names match
the specification.

• -internal

(optional) Specifies that the kernel log data for internal (non-port) objects whose names
match the specification.

ModelSim SE Reference Manual, v6.5b486

Commands
virtual log

• -ports

(optional) Specifies that the kernel log data for all ports. Optional.

• <pattern>

(required) Indicates which signal names or wildcard patterns should be used in finding the
signals to log, where you can specify any number of names or wildcard patterns.

See also

virtual nolog, “Virtual Objects”

Commands
virtual nohide

ModelSim SE Reference Manual, v6.5b 487

virtual nohide
The virtual nohide command reverses the effect of a virtual hide command, causing the
specified real or virtual signals to reappear the Objects window.

Syntax

virtual nohide { [-kind <kind>] | [-region <path>] } <pattern>

Arguments

• -kind {implicits | explicits}

(optional) Unhides only a subset of virtuals.

implicits — virtual signals created internally by the tool.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.

• -region <path>

(optional) Specifies a region of design space in which to look for the signal names.

• <pattern>

(required) Indicates which signal names or wildcard patterns should be used in finding the
signals to hide, where wildcards are allowed and you can specify any number of names or
patterns.

See also

virtual hide, “Virtual Objects”

ModelSim SE Reference Manual, v6.5b488

Commands
virtual nolog

virtual nolog
The virtual nolog command reverses the effect of a virtual log command. It causes the
simulation-dependent signals of the specified virtual signals to be excluded ("unlogged") by the
kernel.

If wildcard patterns are used, it will also unlog any normal signals found, unless the -only
option is used.

Syntax

virtual nolog { [-kind <kind>] | [-region <path>]} [-recursive] [-only] [-in] [-out] [-inout]
[-internal] [-ports] <pattern>

Arguments

• -kind {implicits | explicits}

(optional) Excludes only a subset of virtuals.

implicits — virtual signals created internally by the tool.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.

• -region <path>

(optional) Specifies a region of design space in which to look for signals to unlog.

• -recursive

(optional) Specifies that the scope of the search is to descend recursively into subregions. If
omitted, the search is limited to the selected region.

• -only

(optional) Specify that only virtual signals (as opposed to all signals) found by a <pattern>
containing a wildcard should be unlogged.

• -in

(optional) Specifies that the kernel exclude data for ports of mode IN whose names match
the specification.

• -out

(optional) Specifies that the kernel exclude data for ports of mode OUT whose names match
the specification.

• -inout

(optional) Specifies that the kernel exclude data for ports of mode INOUT whose names
match the specification.

Commands
virtual nolog

ModelSim SE Reference Manual, v6.5b 489

• -internal

(optional) Specifies that the kernel exclude data for internal (non-port) objects whose names
match the specification.

• -ports

(optional) Specifies that the kernel exclude data for all ports.

• <pattern>

(required) Indicates which signal names or wildcard patterns should be used in finding the
signals to unlog, where wildcards are allowed and you can specify any number of names or
patterns.

See also

virtual log, “Virtual Objects”

ModelSim SE Reference Manual, v6.5b490

Commands
virtual region

virtual region
The virtual region command creates a new user-defined design hierarchy region.

Syntax

virtual region <parentPath> <regionName>

Arguments

• <parentPath>

(required) The full path to the region that will become the parent of the new region.

• <regionName>

(required) The name you want for the new region.

See also

virtual function, virtual signal, “Virtual Objects”

Note
Virtual regions cannot be used in the when command.

Commands
virtual save

ModelSim SE Reference Manual, v6.5b 491

virtual save
The virtual save command saves the definitions of virtuals to a file named virtual.do in the
current directory.

Syntax

virtual save [-kind <kind>] [-append] [<filename>]

Arguments

• -kind {implicits | explicits}

(optional) Saves only a subset of virtuals.

implicits — virtual signals created internally by the tool.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.

• -append

(optional) Specifies to save only virtuals that are not already saved or weren’t read in from a
macro file. These unsaved virtuals are then appended to the specified or default file.
Optional.

• <filename>

(optional) The name of the file containing the definitions. If you don’t specify <filename>,
the default virtual filename (virtuals.do) will be used. You can specify a different default in
the pref.tcl file.

See also

virtual count, “Virtual Objects”

ModelSim SE Reference Manual, v6.5b492

Commands
virtual show

virtual show
The virtual show command lists the full path names of all explicitly defined virtuals.

Syntax

virtual show [-kind <kind>]

Arguments

• -kind {implicits | explicits}

(optional) Lists only a subset of virtuals.

implicits — virtual signals created internally by the tool.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.

See also

virtual define, virtual describe, “Virtual Objects”

Commands
virtual signal

ModelSim SE Reference Manual, v6.5b 493

virtual signal
The virtual signal command creates a new signal, known only by the GUI (not the kernel), that
consists of concatenations of signals and subelements as specified in <expressionString>.

It cannot handle bit selects and slices of Verilog registers. Please see Concatenation of Signals
or Subelements for more details on syntax.

Note
The virtual function and virtual signal commands are interchangeable. The product will
keep track of whether you’ve created a signal or a function with the commands and
maintain them appropriately. We document both commands because the virtual save,
virtual describe, and virtual define commands will reference your virtual objects using
the corrrect command.

Syntax

virtual signal [-env <path>] [-install <path>] [-delay <time>] {<expressionString>} <name>

Arguments

• -env <path>

(optional) Specifies a hierarchical context for the signal names in <expressionString> so
they don't all have to be full paths.

• -install <path>

(optional) Causes the newly-created signal to become a child of the specified region. If
-install is not specified, the newly-created signal becomes a child of the nearest common
ancestor of all objects appearing in <expressionString>. If the expression references more
than one WLF file (dataset), the virtual signal will automatically be placed in region
virtuals:/Signals.

• -delay <time>

(optional) Specifies a value by which the virtual function will be delayed. You can use
negative values to look forward in time. If units are specified, the <time> option must be
enclosed in curly braces. See the examples below for more details.

• {<expressionString>}

(required) A text string expression, enclosed in curly braces ({ }) using the
GUI_expression_format.

• <name>

(required) The name you define for the virtual signal.

Case is ignored unless installed in a Verilog region.

Use alpha, numeric, and underscore characters only, unless you are using VHDL extended
identifier notation.

ModelSim SE Reference Manual, v6.5b494

Commands
virtual signal

If using VHDL extended identifier notation, <name> needs to be quoted with double quotes
or with curly braces.

Examples

• Reconstruct a bus sim:/chip/alu/a(4 downto 0), using VHDL notation, assuming that
a_ii are all scalars of the same type.

virtual signal -env sim:/chip/alu { (concat_range (4 downto 0))(a_04
& a_03 & a_02 & a_01 & a_00) } a

• Reconstruct a bus sim:chip.alu.a[4:0], using Verilog notation. Note that the
concatenation notation starts with "&{" rather than "{".

virtual signal -env sim:chip.alu
{ (concat_range [4:0])&{a_04, a_03, a_02, a_01, a_00} } a

• Create a signal sim:/testbench/stuff which is a record type with three fields
corresponding to the three specified signals. The example assumes /chipa/mode is of
type integer, /chipa/alu/a is of type std_logic_vector, and /chipa/decode/inst is a user-
defined enumeration.

virtual signal -install sim:/testbench
{ /chipa/alu/a(19 downto 13) & /chipa/decode/inst & /chipa/mode }
stuff

• Create a virtual signal that is the same as /top/signalA except it is delayed by 10 ps.

virtual signal -delay {10 ps} {/top/signalA} myDelayedSignalA

• Create a three-bit signal, chip.address_mode, as an alias to the specified bits.

virtual signal { chip.instruction[23:21] } address_mode

• Concatenate signals a, b, and c with the literal constant ’000’.

virtual signal {a & b & c & 3'b000} myextendedbus

• Add three missing bits to the bus num, creates a virtual signal fullbus, and then adds that
signal to the Wave window.

virtual signal {num & "000"} fullbus
add wave -unsigned fullbus

• Reconstruct a bus that was fragmented by synthesis and is missing the lower three bits.
Note that you would have to type in the actual bit names (i.e. num28, num27, etc.)
represented by the … in the syntax above.

virtual signal { num31 & num30 & num29 & ... & num4 & num3 & "000" }
fullbus
add wave -unsigned fullbus

• Create a two-bit signal (with an enumerated type) based on the results of the
subexpressions. For example, if aold equals anew, then the first bit is true (1).

Commands
virtual signal

ModelSim SE Reference Manual, v6.5b 495

Alternatively, if bold does not equal bnew, the second bit is false (0). Each
subexpression is evaluated independently.

virtual signal {(aold == anew) & (bold == bnew)} myequalityvector

• Create signal newbus that is a concatenation of bus1 (bit-reversed) and bus2[7:4] (bit-
reversed). Assuming bus1 has indices running 7 downto 0, the result will be
newbus[11:0] with the upper 8 bits being bus1[0:7] and the lower 4 bits being bus2[4:7].
See Concatenation Directives for further details.

virtual signal {(concat_reverse)(bus1 & bus2[7:4])} newbus

Commands fully compatible with virtual signals

Commands compatible with virtual signals using [virtual expand <signal>]

Commands not currently compatible with virtual signals

when

See also

add list add log or log add wave

delete describe examine

find force and noforce restart

searchlog show

checkpoint and restore down and up left and right

search

drivers vcd add

check contention add check contention config check contention off

check float add check float config check float off

check stable on check stable off

power add power report power reset

toggle add toggle reset toggle report

virtual count virtual define virtual delete

virtual describe virtual expand virtual hide

ModelSim SE Reference Manual, v6.5b496

Commands
virtual signal

virtual log virtual nohide virtual nolog

virtual region virtual save virtual show

virtual function virtual type “Virtual Objects

Commands
virtual type

ModelSim SE Reference Manual, v6.5b 497

virtual type
The virtual type command creates a new enumerated type, known only by the GUI, not the
kernel. Virtual types are used to convert signal values to character strings. The command works
with signed integer values up to 64 bits.

Virtual types cannot be used in the when command.

Syntax

virtual type -delete <name> | {<list_of_strings>} <name>

Arguments

• -delete <name>

Deletes a previously defined virtual type. <name> is the name you gave the virtual type
when you originally defined it. Required if not defining a type.

• {<list_of_strings>}

A list of values and their associated character strings. Required if -delete is not used. Values
can be expressed in decimal or based notation and can include "don’t-cares" (see examples
below). Three kinds of based notation are supported: Verilog, VHDL, and C-language
styles. The values are interpreted without regard to the size of the bus to be mapped. Bus
widths up to 64 bits are supported.

There is currently no restriction on the contents of each string, but if strings contain spaces
they would need to be quoted, and if they contain characters treated specially by Tcl (square
brackets, curly braces, backslashes…), they would need to be quoted with curly braces.

See the examples below for further syntax.

• <name>

The user-defined name of the virtual type. Required if -delete is not used. Case is not
ignored. Use alpha, numeric, and underscore characters only, unless you are using VHDL
extended identifier notation. If using VHDL extended identifier notation, <name> needs to
be quoted with double quotes or with curly braces.

Examples

• Using positional notation, associates each string with an enumeration index, starting at
zero and increasing by one in the positive direction.When myConvertedSignal is
displayed in the Wave, List, or Objects window, the string "state0" will appear when
mysignal == 0, "state1" when mysignal == 1, "state2" when mysignal == 2, etc.

virtual type {state0 state1 state2 state3} mystateType
virtual function {(mystateType)mysignal} myConvertedSignal
add wave myConvertedSignal

• Use sparse mapping of bus values to alphanumeric strings for an 8-bit, one-hot
encoding. It shows the variety of syntax that can be used for values. The value "default"
has special meaning and corresponds to any value not explicitly specified.

ModelSim SE Reference Manual, v6.5b498

Commands
virtual type

virtual type {{0 NULL_STATE} {1 st1} {2 st2} {0x04 st3} {16'h08 st4} \
{'h10 st5} {16#20 st6} {0b01000000 st7} {0x80 st8} \
{default BAD_STATE}} myMappedType

virtual function {(myMappedType)mybus} myConvertedBus
add wave myConvertedBus

• Delete the virtual type "mystateType".

virtual type -delete mystateType

• Create a virtual type that includes "don’t-cares" (the ’-’ character).

virtual type {{0x01-- add}{0x02-- sub}{default bad}} mydecodetype

• Create a virtual type using a mask for "don’t-cares." The middle field is the mask, and
the mask should have bits set to 1 for the bits that are don't care.

virtual type {{0x0100 0xff add}{0x0200 0xff sub}{default bad}}
mydecodetype

See also

virtual function, “Virtual Objects”

Commands
vlib

ModelSim SE Reference Manual, v6.5b 499

vlib
The vlib command creates a design library. You must use vlib rather than operating system
commands to create a library directory or index file.

If the specified library already exists as a valid ModelSim library, the vlib command will exit
with a warning message without touching the library.

Syntax

vlib [-archive [-compact <percent>]] [-format { 1 | 3 }] [-help] [-dos | -short | -unix | -long]
[-lock | -unlock] [-locklib | -unlocklib <] [-unnamed_designs <value>] <name>

Arguments

• -archive [-compact <percent>]

Causes design units that are compiled into the created library to be stored in archives rather
than in subdirectories. Optional. Refer to “Archives” for more details.

You may optionally specify a decimal number between 0 and 1 that denotes the allowed
percentage of wasted space before archives are compacted. By default archives are
compacted when 50% (.5) of their space is wasted. See an example below.

• -format { 1 | 3 }

Prepares a library for conversion to be compatible with a previous release, by altering the
_info file.

1 — allows you to convert a library to be compatible with the 6.2 series and earlier.

3 — allows you to convert a library to be compatible with the 6.3 series and newer.

The usage flow would be:

\\1) Using a current release of the simulator, run:
vlib -format 1 current_lib
vcom -refresh -work current_lib

\\ to prepare current_lib for conversion back to a 6.2 release
\\
\\2) Using a 6.2 release of the simulator, run:

vcom -refresh -work current_lib
\\ to refresh current_lib for use with the previous release

• -help

Displays the command’s options and arguments. Optional.

• -dos

Specifies that subdirectories in a library have names that are compatible with DOS. Not
recommended if you use the vmake utility. Optional.

• -short

Interchangeable with the -dos argument. Optional.

ModelSim SE Reference Manual, v6.5b500

Commands
vlib

• -unix

Specifies that subdirectories in a library may have long file names that are NOT compatible
with DOS. Optional.

On by default for ModelSim SE.

• -long

Interchangeable with the -unix argument. Optional.

• -lock | -unlock

Locks an existing design unit so it cannot be recompiled or refreshed. The -unlock switch
reverses this action. Optional. File permissions are not affected by these switches.

• -locklib | -unlocklib <

Locks a complete library so that compilation cannot target the library and the library cannot
be refreshed. The -unlocklib switch reverses this action. Optional. File permissions are not
affected by these switches.

• -unnamed_designs <value>

Specifies how many unnamed, optimized versions of a design the vopt command will save
within the library. Once <value> is reached, vopt deletes the oldest unnamed, optimized
version. By default, the maximum number of “unnamed” designs (“_opt[number]") is set to
3. Optional.

• <name>

Specifies the pathname or archive name of the library to be created. Required.

Examples

• Create the design library design. You can define a logical name for the library using the
vmap command or by adding a line to the library section of the modelsim.ini file that is
located in the same directory.

vlib design

• Create the design library uut and specifies that any design units compiled into the library
are created as archives. Also specifies that each archive be compacted when 30% of its
space is wasted.

vlib -archive -compact .3 uut

Commands
vlog

ModelSim SE Reference Manual, v6.5b 501

vlog
The vlog command compiles Verilog source code and SystemVerilog extensions into a
specified working library (or to the work library by default).

The vlog command may be invoked from within ModelSim or from the operating system
command prompt. It may also be invoked during simulation.

Compiled libraries are major-version dependent. When moving between major versions, you
have to refresh compiled libraries using the -refresh argument to vlog. This is not true for minor
versions (letter releases).

All arguments to the vlog command are case sensitive: -WORK and -work are not equivalent.

The IEEE P1800 Draft Standard for SystemVerilog requires that the default behavior of the
vlog command is to treat each Verilog design file listed on the command line as a separate
compilation unit. This behavior is a change in vlog from versions prior to 6.2, wherein all files
in a single command line were concatenated into a single compilation unit. To treat multiple
files listed within a single command line as a single compilation unit, use either the vlog -mfcu
argument or the MultiFileCompilationUnit modelsim.ini file variable.

Syntax

vlog [options] <filename> [<filename> ...]

[options]:

 [-93]

[+acc[=<spec>] [+<selection> [.]]

[-compat] [-compile_uselibs[=<directory_name>]]
[-constimmedassert | -noconstimmedassert] [-convertallparams] [+cover[=<spec>]]
[-coveropt <opt_level>] [-covercells | -nocovercells] [-coverExcludeDefault]
[-cuname]

[+define+<macro_name>[=<macro_text>]] [+delay_mode_distributed]
[+delay_mode_path] [+delay_mode_unit] [+delay_mode_zero]
[[-dpiforceheader]] [-dpiheader <filename>]

[-E <filename>] [-Epretty <filename>] [-error <msg_number>[,<msg_number>,…]]

[-f <filename>] [+floatparameters[+<selection>[.]]] [-force_refresh <design_unit>]
[-fsmimplicittrans] [-fsmmultitrans] [-fsmresettrans | -nofsmresettrans]
[-fsmsingle | -nofsmsingle] [-fsmverbose[b | t | w]] [-fsmxassign | -nofsmxassign]

[-gen_xml <design_unit> <filename>]

[-hazards] [-help]

[+incdir+<directory>] [-incr | -noincr] [+initmem[=<spec>][+{0 | 1 | X | Z}]]
[+initreg[=<spec>][+{0 | 1 | X | Z}]] [-isymfile]

[-L <libname>] [-Lf <libname>] [+libcell] [+libext+<suffix>] [-libmap <pathname>]
[-libmap_verbose] [+librescan] [-line <number>] [-lint]

ModelSim SE Reference Manual, v6.5b502

Commands
vlog

[+maxdelays] [+mindelays] [-maxfecrows] [-maxudprows] [-mixedansiports]
[-mixedsvvh [b | s | v]] [-mfcu | -sfcu] [-modelsimini <ini_filepath>]
[-mti_trace_vlog_calls]

[-nodbgsym] [-nocovershort] [-nocoverfec] [+nolibcell] [-nologo]
[+nospecify] [-note <msg_number>[,<msg_number>,…]] [-novopt]
[+notimingchecks] [-novtblfixup] [+nowarn<CODE>]
[-nowarn <category_number>] [-nodebug[=ports | =pli | =ports+pli]]
[+nosparse[+<selection> [.]]] [+num_opt_cell_conds+<value>]

[-O0 | -O1 | -O4 | -O5]

[-pedanticerrors] [+protect[=<filename>]]

[-quiet]

[-R [<simargs>]] [-refresh]

[-scdpiheader <filename>] [-source] [-s] [-sv]
[-suppress <msg_number>[,<msg_number>,…]]

[-time] [-timescale <time_units>/<time_precision>] [-togglecountlimit <int>]
[-togglewidthlimit <int>] [+typdelays]

[-u]

[-v <library_file>] [-version] [-vlog01compat] [-vlog95compat] [-vmake] [-vopt | -
novopt]

[-warning <msg_number>[,<msg_number>,…]] [-work <library_name>]

[-y <library_directory>]

Arguments

• -93

Specifies that the VHDL interface to Verilog modules use VHDL 1076-1993 extended
identifiers to preserve case in Verilog identifiers that contain uppercase letters. Optional.

• +acc[=<spec>] [+<selection> [.]

Enables PLI and debug command access to design objects that would otherwise become
unavailable due to optimizations. Optional.

Note
Using this option may reduce optimizations.

<spec> is one or more of the following characters. If <spec> is omitted, the entire set of
access specifiers is enabled.

b —
Enable access to bits of vector nets. This is necessary for PLI applications that require
handles to individual bits of vector nets. Also, some user interface commands require
this access if you need to operate on net bits.

Commands
vlog

ModelSim SE Reference Manual, v6.5b 503

c —
Enable access to library cells. By default any Verilog module containing a non-empty
specify block may be optimized, and debug and PLI access may be limited. This
option keeps module cell visibility.

f —
Enable access to finite state machines.

l —
Enable access to line number directives and process names.

m —
Preserve the visibility of primitive gates.

n —
Enable access to nets.

p —
Enable access to ports. This disables the module inlining optimization, and is
necessary only if you have PLI applications that require access to port handles.

r —
Enable access to registers (including memories, integer, time, and real types).

s —
Enable access to system tasks.

t —
Enable access to tasks and functions.

u —
Enable access to primitive instances.

The tool determines whether you have supplied a module name or a object pathname by the
existence of the “PathSeparator” character (set in the modelsim.ini file) in the path. By
default, the separator is a ‘/’. An example object pathname specification is:

+acc=n+/u1/u2/n2

• -compat

Disables optimizations that result in different event ordering than Verilog-XL. Optional.

ModelSim Verilog generally duplicates Verilog-XL event ordering, but there are cases
where it is inefficient to do so. Using this option does not help you find event order
dependencies, but it allows you to ignore them. Keep in mind that this option does not
account for all event order discrepancies, and that using this option may degrade
performance. Refer to “Event Ordering in Verilog Designs” for additional information.

• -compile_uselibs[=<directory_name>]

Locates source files specified in a `uselib directive (Refer to “Verilog-XL uselib Compiler
Directive”), compiles those files into automatically created libraries, and updates the
modelsim.ini file with the logical mappings to the new libraries. Optional. If a
directory_name is not specified, ModelSim uses the name specified in the

ModelSim SE Reference Manual, v6.5b504

Commands
vlog

MTI_USELIB_DIR environment variable. If that variable is not set, ModelSim creates the
directory mti_uselibs in the current working directory.

• -constimmedassert

Displays immediate assertions with constant expressions in the GUI, in reports, and in the
UCDB. Optional. By default, immediate assertions with constant expressions are displayed
in the GUI, in reports, and in the UCDB. Use this switch only if the -noconstimmedassert
switch has been used previously, or if the ShowConstantImmediateAsserts variable in the
vlog section of the modelsim.ini file is set to 0 (off).

• -noconstimmedassert

Turns off the display of immediate assertions with constant expressions in the GUI, in
reports, and in the UCDB. Optional. By default, immediate assertions with constant
expressions are displayed. You may also set the ShowConstantImmediateAsserts variable in
the vlog section of the modelsim.ini file to 0 (off).

• -convertallparams

Enables converting parameters not defined in ANSI style to VHDL generics of type
std_logic_vector, bit_vector, std_logic, vl_logic, vl_logic_vector, and bit. Optional.

• +cover[=<spec>]

Enables various coverage statistics collection on all design units compiled in the current
compiler run. Optional. Consider using the +cover argument to vopt instead, which you can
use to specify precise design units and regions to be instrumented for coverage. The +cover
argument with no "=<spec>" designation is equivalent to "+cover=bcesft".

<spec> — one or more of the following characters:

b — Collect branch statistics.

c — Collect condition statistics. Collects both FEC and UDP statistics, unless
-nocoverfec is specified.

e — Collect expression statistics, Collects both FEC and UDP statistics, unless
-nocoverfec is specified.

s — Collect statement statistics.

t — Collect toggle statistics. Overridden if ’x’ is specified elsewhere.

x — Collect extended toggle statistics (Refer to “Toggle Coverage” for details). This
takes precedence, if ’t’ is specified elsewhere.

f — Collect Finite State Machine statistics.

See -coveropt <opt_level> argument to override the default level of optimization for
coverage for a particular compilation run.

• -cover <spec>

Recommendation: Use "vopt +cover" rather than "vlog -cover", which you can use to
specify precise design units and regions to be instrumented for coverage. See vopt for more
information.

Commands
vlog

ModelSim SE Reference Manual, v6.5b 505

Specifies type(s) of coverage statistics to collect. Optional. <spec> is one or more of the
following characters:

b — Collect branch statistics.

c — Collect condition statistics. Collects both FEC and UDP statistics, unless
-nocoverfec is specified.

e — Collect expression statistics, Collects both FEC and UDP statistics, unless
-nocoverfec is specified.

s — Collect statement statistics.

t — Collect toggle statistics. Cannot be used if ’x’ is specified.

x — Collect extended toggle statistics (Refer to “Toggle Coverage” for details). Cannot
be used if ’t’ is specified.

f — Collect Finite State Machine statistics.

<i> — Override the default level of optimization for current run only, where “i” is an
integer between 1 and 4. To change default level for all subsequent runs, change
value of CoverOpt variable in modelsim.ini file. See “CoverOpt” for a description of
optimization levels.

• -covercells

Enables code coverage of modules defined by ‘celldefine and ’endcelldefine compiler
directives, or compiled with the -v or -y arguments. Optional. Can be used to override the
CoverCells compiler control variable in the modelsim.ini file.

• -coverExcludeDefault

Excludes code coverage data collection from the default branch of case statements.
Optional.

• -coveropt <opt_level>

Overrides the default level of optimization for the current run only. Optional. <opt_level>
designates the optimization level, as follows:

1 — Turns off all optimizations that affect coverage reports.

2 — Allows optimizations that provide large performance improvements by invoking
sequential processes only when the data changes. This setting may result in major
reductions in coverage counts.

3 — Allows all optimizations in 2, and allows optimizations that may change
expressions or remove some statements. Also allows constant propagation and VHDL
subprogram inlining.

4 — Allows all optimizations in 2 and 3, and allows optimizations that may remove
major regions of code by changing assignments to built-ins or removing unused
signals. It also changes Verilog gates to continuous assignments. Allows VHDL
subprogram inlining. Allows VHDL flip-flop recognition.

The default optimization level is 3. You can edit the CoverOpt variable in the modelsim.ini
file to change the default.

ModelSim SE Reference Manual, v6.5b506

Commands
vlog

• -cuname

Used only in conjunction with -mfcu. Optional. The -cuname names the compilation unit
being created by vlog. The named compilation unit can then be specified on the vsim
command line, along with the <top> design unit. The purpose of doing so is to force
elaboration of specified compilation unit package, thereby forcing elaboration of a
necessary ’bind’ statement within that compilation unit that would otherwise not be
elaborated. An example of the necessary commands is:

vlog -cuname pkg_name -mfcu file1.sv file2.sv
vsim top pkg_name

You need to do this only in cases where you have a ’bind’ statement in a module that might
otherwise not be elaborated, because no module in the design depends on that compilation
unit. In other words, if a module that depends on that compilation unit exists, you don’t need
to force the elaboration, for it occurs automatically. Also, if you are using qverilog to
compile and simulate the design, this binding issue is handled properly automatically.

• +define+<macro_name>[=<macro_text>]

Allows you to define a macro from the command line that is equivalent to the following
compiler directive:

`define <macro_name> <macro_text>

Optional. You can specify more than one macro with a single +define. For example:

vlog +define+one=r1+two=r2+three=r3 test.v

A command line macro overrides a macro of the same name defined with the `define
compiler directive.

• +delay_mode_distributed

Disables path delays in favor of distributed delays. Optional. Refer to “Delay Modes” for
details.

• +delay_mode_path

Sets distributed delays to zero in favor of using path delays. Optional.

• +delay_mode_unit

Sets path delays to zero and non-zero distributed delays to one time unit. Optional.

• +delay_mode_zero

Sets path delays and distributed delays to zero. Optional.

• -dpiforceheader

Forces the generation of a DPI header file even if it will be empty of function prototypes.

• -dpiheader <filename>

Generates a header file that may then be included in C source code for DPI import functions.
Optional. Refer to “DPI Use Flow” for additional information.

Commands
vlog

ModelSim SE Reference Manual, v6.5b 507

• -E <filename>

Captures text processed by the Verilog parser after preprocessing has occurred and copies
that text to an output file, <filename>. Optional. Generally, preprocessing consists of the
following compiler directives: `ifdef, `else, `elsif, `endif, `ifndef, `define, `undef, `include.

The `line directive attempts to preserve line numbers and file names in the output file. White
space is usually preserved, but sometimes it may be deleted or added to the output file.

• -Epretty <filename>

Captures text processed by the Verilog parser after preprocessing has occurred, performs
some formatting for better readability, and copies that text to an output file, <filename>.
Optional.

• -error <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "error." Optional. Edit the error
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• -f <filename>

Specifies a file with more command line arguments. Optional. Allows complex arguments
to be reused without retyping. Allows gzipped input files. Nesting of -f options is allowed.

Refer to the section "Argument Files" for more information.

• +floatparameters[+<selection>[.]]

Instructs the tool to not lock down parameter values during optimization, which enables
successful use of the vsim -g/G options.

+<selection> — localizes the effect of this option to specific parameters in the design
hierarchy. +<selection> can be a hierarchical path to a parameter or a design unit
instance. It can also be the name of a design unit declaration.

. — If a period (.) is present after an instance or design unit name, all parameters under
that scope are recursively selected.

• -force_refresh <design_unit>

Forces the refresh of all specified design units. Optional. By default, the work library is
updated; use -work <library_name>, in conjunction with -force_refresh, to update a
different library (for example, vlog -work <your_lib_name> -force_refresh).

When the compiler refreshes a design unit, it checks each dependency to ensure its source
has not been changed and recompiled. Sometimes the dependency checking algorithm
changes from release to release. This can lead to false errors during the integrity checks
performed by the -refresh argument. An example of such a message follows:

** Error: (vsim-13) Recompile /u/test/dware/dware_61e_beta.dwpackages
because /home/users/questasim/linux/../synopsys.attributes has changed.

The -force_refresh argument forces the refresh of the design unit, overriding any
dependency checking errors encountered by the -refresh argument.

ModelSim SE Reference Manual, v6.5b508

Commands
vlog

A more conservative approach to working around -refresh dependency checks is to
recompile the source code, if it is available.

• -fsmimplicittrans

Enables recognition of implied same state transitions. Optional.

• -fsmmultitrans

Enables detection and reporting of multi-state transitions when used with the +cover=f
argument for vlog or vopt. Optional. Another term for this is FSM sequence coverage.

• -fsmresettrans

Enables recognition of implicit asynchronous reset transitions. Optional. This includes
asynchronous reset transitions in coverage results.

• -fsmsingle

Enables recognition of FSMs having single bit current state variable. Optional.

• -fsmverbose[b | t | w]

Provides information about FSMs detected, including state reachability analysis. Optional.

This switch only provides this data when you use the -novopt switch on the same command
line.

b — displays only basic information.

t — displays a transition table in addition to the basic information.

w — displays any warning messages in addition to the basic information.

When you do not specify an argument, this switch reports all information similar to:

** Note: (vlog-1947) FSM RECOGNITION INFO
Fsm detected in : ../fpu/rtl/vhdl/serial_mul.vhd
Current State Variable : s_state :
../fpu/rtl/vhdl/serial_mul.vhd(76)
Clock : clk_i
Reset States are: { waiting , busy }
State Set is : { busy , waiting }
Transition table is

busy => waiting Line : (114 => 114)
busy => busy Line : (111 => 111)
waiting => waiting Line : (120 => 120) (114 => 114)
waiting => busy Line : (111 => 111)

When you do not specify this switch, you will receive a message similar to:

** Note: (vlog-143) Detected '1' FSM/s in design unit 'serial_mul.rtl'.

• -fsmxassign

Enables recognition of finite state machines (FSMs) containing X assignment. Optional.
This option is used to detect FSMs if current state variable or next state variable has been
assigned "X" value in a "case" statement. FSMs containing X-assign are otherwise not
detectable.

Commands
vlog

ModelSim SE Reference Manual, v6.5b 509

• -gen_xml <design_unit> <filename>

Produces an XML-tagged file containing the interface definition of the specified module.
Optional. This option requires a two-step process where you must 1) compile <filename>
into a library with vlog (without -gen_xml) then 2) execute vlog with the -gen_xml switch,
for example:

vlib work
vlog counter.v
vlog -gen_xml counter counter.xml

• -hazards

Detects event order hazards involving simultaneous reading and writing of the same register
in concurrently executing processes. Optional. You must also specify this argument when
you simulate the design with vsim. Refer to “Hazard Detection” for more details.

Note
Enabling -hazards implicitly enables the -compat argument. As a result, using this
argument may affect your simulation results.

• -help

Displays the command’s options and arguments. Optional.

• +incdir+<directory>

Specifies directories to search for files included with `include compiler directives. Optional.
By default, the current directory is searched first and then the directories specified by the
+incdir options in the order they appear on the command line. You may specify multiple
+incdir options as well as multiple directories separated by "+" in a single +incdir option.

• -incr

Performs an incremental compile. Optional. Default. Compiles only code that has changed.
For example, if you change only one module in a file containing several modules, only the
changed module will be recompiled. Note however that if the compile options change, all
modules are recompiled regardless if you use -incr or not.

• +initmem[=<spec>][+{0 | 1 | X | Z}]

Enables the initialization of memories. Optional.

<spec> — (optional) identifies the types to be initialized.

If you do not specify this option, vlog initializes fixed-size arrays of all these types,
where fixed-size arrays may have any number of packed or unpacked dimensions.

<spec> can be one or more of the following:

r — register/logic, integer, or time types (four-state integral types).

b — bit, int, shortint, longint, or byte types (two-state integral types).

e — enum types.

ModelSim SE Reference Manual, v6.5b510

Commands
vlog

You must also add the enum's base type to the initialization specification. If you
choose static initialization for an enum type variable with value 0, 1, X, or Z, the
simulator assigns that value to the variable, whether it is a valid value or not. If
you choose random initialization for an enum type variable, the simulator
generates a random number and uses the (random_number %
num_valid_enum_values)th entry of the enum literals to initialize it.

u — sequential UDPs.

+{0 | 1 | X | Z} — (optional) specifies the value to use in initialization for all bits of a
memory. For two-state datatypes, X and Z will map to 0.

If you do not specify this option you are preparing the design unit for randomization
with vsim +initmem +<seed>.

This argument initializes static variables in any scope (package, $unit, module, interface,
generate, program, task, function). However, it does not affect:

• automatic variables

• dynamic variables

• members of dynamic variables

• artificially generated variables, such as #randstate#

Because you can specify +initmem on the vlog and vopt command line, the priority of the
specifications are as follows:

1) vopt ... +initmem+1+top.foo
2) vlog ... +initmem+0
3) vopt ... +initmem+Z

This argument will not override any variable declaration assignment, such as:

reg r = 1’b0

• +initreg[=<spec>][+{0 | 1 | X | Z}]

Enables you to initialize registers. Optional.

<spec> — identifies the types to be initialized.

If you do not specify this option, vlog initializes variables of all these types.

<spec> can be one or more of the following:

r — register/logic, integer, or time types (four-state integral types).

Notifier registers are not initialized by the +initreg option. To detect that a register
is a notifier, timing checks must be present, which means you cannot compile
with the +nospecify or +notimingchecks arguments. However, if you want to
remove timing checks but still detect notifier registers, use vsim +notimingchecks
or vsim +nospecify. You can also do this is by using `ifdef to remove timing
checks.

b — bit, int, shortint, longint, or byte types (two-state integral types).

Commands
vlog

ModelSim SE Reference Manual, v6.5b 511

e — enum types.

You must also add the enum's base type to the initialization specification. If you
choose static initialization for an enum type variable with value 0, 1, X, or Z, the
simulator assigns that value to the variable, whether it is a valid value or not. If
you choose random initialization for an enum type variable, the simulator
generates a random number and uses the (random_number %
num_valid_enum_values)th entry of the enum literals to initialize it.

u — sequential UDPs.

If a sequential UDP contains an "initial" statement, that initial value overrides all
+initreg-related functionality. For other sequential UDPs, the +initreg option
takes effect as described for regular variables. In case a sequential UDP does not
contain an "initial" statement, and it wasn't compiled with +initreg in effect, the
UDPs initial value will be taken from its instantiating parent scope (provided that
scope has +initreg options in effect).

+{0 | 1 | X | Z} — (optional) specifies the value to use in initialization. For two-state
datatypes, X and Z will map to 0.

If you do not specify this option you are preparing the design unit for randomization
with vsim +initreg +<seed>

This argument initializes static variables in any scope (package, $unit, module, interface,
generate, program, task, function). However, it does not affect:

• automatic variables

• dynamic variables

• members of dynamic variables

• artificially generated variables, such as #randstate#

Because you can specify +initreg on the vlog and vopt command line, the priority of the
specifications are as follows:

1) vopt ... +initreg+1+top.foo
2) vlog ... +initreg+0
3) vopt ... +initreg+Z

This argument will not override any variable declaration assignment, such as:

reg r = 1’b0

• -isymfile

Generates a complete list of all imported tasks and functions (TFs). Used with DPI to
determine all imported TFs that are expected by ModelSim.

• -L <libname>

Searches the specified resource library for precompiled modules. The library search options
you specify here must also be specified when you run the vsim command. Optional. See

ModelSim SE Reference Manual, v6.5b512

Commands
vlog

also the LibrarySearchPath variable and Specifying the Resource Libraries in the User’s
Manual.

Note
The -L argument is required when you are importing a UPF package in a Power Aware
RTL (PA-RTL) flow. You must specify mtiUPF as the value of <libname>.

• -Lf <libname>

Same as -L, but the specified library is searched before any ’uselib directives. (Refer to
“Library Usage” and “Verilog-XL Compatible Compiler Arguments” for more
information.) Optional.

• +libcell

Treats all modules found and compiled by source library search as though they contained a
‘celldefine compiler directive, thus marking them as cells (refer to the -v and -y arguments
of vlog, which enable source library search). Using the +libcell argument matches historical
behavior of Verilog-XL with respect to source library search. Optional.

Note
By default, wildcard logging and code coverage exclude cells. For more information,
refer to the -nocovercells and -covercells arguments of vlog and to the description of
wildcard logging performed by the log command.

• +libext+<suffix>

Works in conjunction with the -y option. Specifies file extensions for the files in a source
library directory. Optional. By default, the compiler searches for files without extensions. If
you specify the +libext argument, then the compiler will search for a file with the suffix
appended to an unresolved name. You may specify only one +libext option, but it may
contain multiple suffixes separated by the plus character (+). The extensions are tried in the
order you specify them with the +libext argument.

• -libmap <pathname>

Specifies a Verilog 2001 library map file. Optional. You can omit this argument by placing
the library map file as the first option on the vlog invocation (e.g., vlog top.map top.v
top_cfg.v).

• -libmap_verbose

Displays library map pattern matching information during compilation. Optional. Use to
troubleshoot problems with matching filename patterns in a library file.

• +librescan

Scans libraries in command-line order for all unresolved modules. Optional.

Commands
vlog

ModelSim SE Reference Manual, v6.5b 513

• -line <number>

Starts the compiler on the specified line in the Verilog source file. Optional. By default, the
compiler starts at the beginning of the file.

• -lint

(optional) Issues warnings on the following lint-style static checks:

o when Module ports are NULL.

o when assigning to an input port.

o when referencing undeclared variables/nets in an instanstiation.

This switch generates additional array bounds-checking code, which can slow down
simulation, to check for the following:

o index warnings for dynamic arrays

o when an index for a Verilog unpacked variable array reference is out of bounds.

The warnings are reported as WARNING[8]. You can also enable this option using the
Show_Lint variable in the modelsim.ini file.

• +maxdelays

Selects maximum delays from the "min:typ:max" expressions. Optional. If preferred, you
can defer delay selection until simulation time by specifying the same option to the
simulator.

• +mindelays

Selects minimum delays from the "min:typ:max" expressions. Optional. If preferred, you
can defer delay selection until simulation time by specifying the same option to the
simulator.

• -maxfecrows

Sets the maximum number of rows allowed in an FEC truth table for a code coverage
condition or expression. The default maximum is 192 rows, which allows for 96 terms in the
expression. Increasing the number of rows includes more expressions for coverage, but also
increases the compile time, sometimes dramatically. You can also configure this option
using the CoverMaxFECRows variable in the modelsim.ini file.

• -maxudprows

Sets the maximum number of rows allowed in an UDP truth table for a code coverage
condition or expression. The default maximum is 192 rows. Increasing the number of rows
includes more expressions for coverage, but also increases the compile time, sometimes
dramatically. You can also configure this option using the CoverMaxUDPRows variable in
the modelsim.ini file.

• -mixedansiports

Permits partial port redeclarations.

ModelSim SE Reference Manual, v6.5b514

Commands
vlog

• -mixedsvvh [b | s | v]

Facilitates using SystemVerilog packages at the SystemVerilog-VHDL boundary of a
mixed-language design. When you compile a SystemVerilog package with -mixedsvvh, the
package can be included in a VHDL design as if it were defined in VHDL itself. Optional.

b — treats all scalars/vectors in the package as VHDL bit/bit_vector

s — treats all scalars/vectors in the package as VHDL std_logic/std_logic_vector

v — treats all scalars/vectors in the package as VHDL vl_logic/vl_logic_vector

• -mfcu

Instructs the compiler to treat all files within a compilation command line as a single
compilation unit. Optional. The default behavior is to treat each file listed in a command as
a separate compilation unit, per the SystemVerilog standard. Prior versions concatenated the
contents of the multiple files into a single compilation unit by default. You can also enable
this option using the MultiFileCompilationUnit variable in the modelsim.ini file.

• -modelsimini <ini_filepath>

Loads an alternate initialization file that replaces the current initialization file. Overrides the
file path specified in the MODELSIM environment variable. Specifies either an absolute or
relative path to the initialization file. On Windows systems the path separator should be a
forward slash (/).

• -mti_trace_vlog_calls

Enables viewing of SystemVerilog class contents in the Wave window. Optional.

• -nocovercells

Disables code coverage of modules defined by ‘celldefine and ’endcelldefine compiler
directives, or compiled with the -v or -y arguments. Optional. Can be used to override the
CoverCells compiler control variable in the modelsim.ini file.

• -nodebug[=ports | =pli | =ports+pli]

Hides, within the GUI and other parts of the tool, the internal data of all compiled design
units. Optional.

-nodebug — The switch, specified in this form, does not hide ports, due to the fact that
the port information may be required for instantiation in a parent scope.

The design units’ source code, internal structure, registers, nets, etc. will not display
in the GUI. In addition, none of the hidden objects may be accessed through the
Dataflow window or with commands. This also means that you cannot set
breakpoints or single step within this code. It is advised that you not compile with this
switch until you are done debugging.

Note that this is not a speed switch like the “nodebug” option on many other products.
Use the vopt command to increase simulation speed.

-nodebug=ports — additionally hides the ports for the lower levels of your design; it
should be used only to compile the lower levels of the design. If you hide the ports of
the top level you will not be able to simulate the design.

Commands
vlog

ModelSim SE Reference Manual, v6.5b 515

Do not use the switch in this form when the parent is part of a vopt -bbox flow or for
mixed language designs, especially for Verilog modules to be instantiated inside
VHDL.

-nodebug=pli — additionally prevents the use of pli functions to interrogate individual
modules for information.

You should be aware that this form will leave a "nodebug" module untraversable by
PLI.

-nodebug=ports+pli — you can combine the behavior of =ports and =pli in this manner.

This functionality encrypts entire files. The `protect compiler directive allows you to
encrypt regions within a file.

• -nodbgsym

Disables the generation of the symbols debugging database in the compiled library.

The symbols debugging database is the .dbs file in the compiled library that provides
information to the GUI allowing you to view detailed information about design objects at
the source level. Two major GUI features that use this database include source window
annotation and textual dataflow.

You should only specify this switch if you know that anyone using the library will not
require this information for design analysis purposes.

• -nocoverfec

Prevents focused expression coverage (FEC) from being enabled for coverage collection.
By default, both UDP and FEC coverage statistics are enabled for collection. You can
customize the default behavior with the CoverFEC variable in the modelsim.ini file.
Optional.

• -nocovershort

Disables short circuiting of expressions when coverage is enabled. Short circuiting is
enabled by default. You can customize the default behavior with the CoverShortCircuit
variable in the modelsim.ini file. Optional.

• -noincr

Disables incremental compile previously turned on with -incr. Optional.

• -nofsmresettrans

Disables recognition of implicit asynchronous reset transitions. Optional. This has the effect
of excluding asynchronous reset transitions from any coverage results.

• -nofsmsingle

Disables recognition of FSMs having single bit current state variable. Optional.

• -nofsmxassign

Disables recognition of FSMs containing x assignment. Optional.

ModelSim SE Reference Manual, v6.5b516

Commands
vlog

• +nolibcell

Disables treating all modules found and compiled by source library search as though they
contained a ‘celldefine compiler directive. That is, this argument restores the default library
search behavior if you have changed it using the +libcell argument. Optional.

• -nologo

Disables the startup banner. Optional.

• +nosparse[+<selection> [.]]

Identifies which memories are considered “not sparse,” which causes ModelSim to override
the rules for allocating storage for memory elements only when necessary. Optional.

If you use +nosparse on a given memory, the tool will simulate the memory normally. Refer
to Sparse Memory Modeling for more information.

+<selection> — enables access for specific Verilog design units, scopes, or design
objects (vars, mem). Multiple selections are allowed, with each separated by a "+"
(+nosparse=+top1+top2). If no selection is specified, then all modules are affected.
You can use a path delimiter to select unique instances or objects
(+nosparse=+/top/ul.). If you specify a module name (+nosparse=+Demux), pertinent
objects inside the module are selected.

. — indicates the selection occurs recursively downward from the specified module or
instance.

• +nospecify

Disables specify path delays and timing checks. Optional.

• -note <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "note." Optional. Edit the note
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• +notimingchecks

Removes all timing check entries from the design as it is parsed. Optional.

To disable checks on individual instances, use the tcheck_set command.

• -novopt

Forces vlog to produce code if the VoptFlow variable is set to 1 (optimizations turned on) in
the modelsim.ini. (VoptFlow = 1 is the default behavior.) Optional. Use this argument
together with the vsim -novopt command to run the simulator without any optimizations.
For example, you may want to use this argument when you are coding an RTL block with a
small testcase.

• -novtblfixup

Causes virtual method calls in SystemVerilog class constructors to behave as they would in
normal class methods, which prevents the type of a this reference from changing during
construction.

Commands
vlog

ModelSim SE Reference Manual, v6.5b 517

This overrides default behavior, where the type of a this reference is treated as if it is a
handle to the type of the active new() method while a constructor is executing (which
implies that virtual method calls resolve will not execute methods of an uninitialized class
type).

• +nowarn<CODE>

Disables warning messages in the category specified by <CODE>. Optional. Warnings that
can be disabled include the <CODE> name in square brackets in the warning message. For
example,

** Warning: test.v(15): [RDGN] - Redundant digits in numeric
literal.

This warning message can be disabled by specifying +nowarnRDGN.

• -nowarn <category_number>

Prevents the specified message(s) from displaying. The <msg_number> is the number
preceding the message you wish to suppress. Optional. Multiple -nowarn switches are
allowed. Warnings may be disabled for all compiles via the Main window Compile >
Compile Options menu command or the modelsim.ini file (refer to modelsim.ini
Variables).

The warning message categories are described in Table 2-10:

• +num_opt_cell_conds+<value>

Restricts gate level optimization capacity for accepting cells with I/O path and timing check
conditions. Optional.

value — integer between 32 and 1023, inclusive. where the default value is 1023.

• -O0 | -O1 | -O4 | -O5

Lower the optimization to a minimum with -O0 (capital oh zero). Optional. Use this to work
around bugs, increase your debugging visibility on a specific cell, or when you want to
place breakpoints on source lines that have been optimized out.

Please refer to the section "Optimizing Designs with vopt" in the User’s Manual for detailed
information on using vopt to perform optimization.

• Enable PE-level optimization with -O1. Optional.

• Enable standard SE optimizations with -O4. Default.

Table 2-10. Warning Message Categories for vlog -nowarn

Category
number

Description

12 non-LRM compliance in order to match Cadence behavior

13 constructs that code coverage can't handle

ModelSim SE Reference Manual, v6.5b518

Commands
vlog

• Enable maximum optimization with -O5. Optional. -O5 attempts to optimize loops and
prevents variable assignments in situations where a variable is assigned but is not
actually used. Using the +acc argument to vlog will cancel this latter optimization.

• -pedanticerrors

Enforces strict compliance of the IEEE Std 1800-2005 in the following cases:

• Using "new” for queues is not legal. When strict compliance is not enforced, use of
"new" creates a queue of the specified size where all elements are initialized to the
default value of the queue element type.

• Using underscore character (_) in sized, based literals is not legal. When you specify this
switch, vlog will error on literals such as 2’b_01.

• Using class extern method prototypes with lifetime (automatic/static) designations.
When you specify this switch, this scenario produces an LRM-compliance error,
otherwise you will receive a warning.

Enforces strict compliance of the IEEE Std 1800-2005 in the following case:

• Using “cover bool@clk” as a PSL statement.

This argument also produces a report of mismatched ‘else directives. Optional.

• +protect[=<filename>]

Enables `pragma protect, `protect, and `endprotect directives for encrypting selected regions
of your source code. Optional. Produces an encrypted output file with a .vp extension in the
default work directory. To create an encrypted output file to the current directory, add
=<filename> to this argument. If you specify a filename is specified, all source files on the
command line are concatenated together into a single output file.

Any `include files will also be inserted into the output file when you add =<filename>. If
you do not use =<filename>, all `include files will be encrypted into the work directory as
individual files, not merged together into one file.

• -quiet

Disables 'Loading' messages. Optional.

• -R [<simargs>]

Instructs the compiler to invoke vsim after compiling the design. The compiler
automatically determines which top-level modules are to be simulated. The command line
arguments following -R are passed to the simulator, not the compiler. Place the -R option at
the end of the command line or terminate the simulator command line arguments with a
single "-" character to differentiate them from compiler command line arguments.

The -R option is not a Verilog-XL option, but it is used by ModelSim to combine the
compile and simulate phases together as you may be used to doing with Verilog-XL. It is
not recommended that you regularly use this option because you will incur the unnecessary
overhead of compiling your design for each simulation run. Mainly, it is provided to ease
the transition to ModelSim.

Commands
vlog

ModelSim SE Reference Manual, v6.5b 519

• -refresh

Regenerates a library image. Optional. By default, the work library is updated. To update a
different library, use -work <library_name> with -refresh (for example, vlog -work
<your_lib_name> -refresh). If a dependency checking error occurs which prevents the
refresh, use the vlog -force_refresh argument. See vlog examples for more information.
You may use a specific design name with -refresh to regenerate a library image for that
design, but you may not use a file name.

• -scdpiheader <filename>

Specifies the name of SystemC DPI function prototype header file automatically generated
from the current compilation. Optional. The default filename is sc_dpiheader.h when no
such switch is provided. Refer to section SystemC Procedural Interface to SystemVerilog
for more detailed description.

• -sfcu

Instructs the compiler to treat all files within a compilation command line as a separate
compilation units. This is the default behavior and is the inverse of the behavior of -mfcu.

This switch will override the MultiFileCompilationUnit variable if it is set to "1" in the
modelsim.ini file.

• -source

Displays the associated line of source code before each error message that is generated
during compilation. Optional; by default, only the error message is displayed.

• -s

Instructs the compiler not to load the standard package. Optional. This argument should
only be used when you are compiling the sv_std package.

• -sv

Enables SystemVerilog features and keywords. Optional. By default ModelSim follows the
rules of IEEE Std 1364-2001 and ignores SystemVerilog keywords. If a source file has a
".sv" extension, ModelSim will automatically parse SystemVerilog keywords.

• -suppress <msg_number>[,<msg_number>,…]

Prevents the specified message(s) from displaying. The <msg_number> is the number
preceding the message you wish to suppress. Optional. You cannot suppress Fatal or
Internal messages. Edit the suppress variable in the modelsim.ini file to set a permanent
default. Refer to “Changing message Severity Level” for more information.

• -time

Reports the "wall clock time" vlog takes to compile the design. Optional. Note that if many
processes are running on the same system, wall clock time may differ greatly from the
actual "cpu time" spent on vlog.

ModelSim SE Reference Manual, v6.5b520

Commands
vlog

• -timescale <time_units>/<time_precision>

Specifies the default timescale for modules not having an explicit timescale directive in
effect during compilation. Optional. The format of the -timescale argument is the same as
that of the `timescale directive. The format for <time_units> and <time_precision> is
<n><units>. The value of <n> must be 1, 10, or 100. The value of <units> must be fs, ps,
ns, us, ms, or s. In addition, the <time_units> must be greater than or equal to the
<time_precision>.

• -togglecountlimit <int>

Limits the toggle coverage count, <int>, for a toggle node. Optional. After the limit is
reached, further activity on the node is ignored for toggle coverage. All possible transition
edges must reach this count for the limit to take effect. For example, if you are collecting
toggle data on 0->1 and 1->0 transitions, both transition counts must reach the limit. If you
are collecting "full" data on 6 edge transitions, all 6 must reach the limit. Overrides the
global value set by the ToggleCountLimit modelsim.ini variable.

• -togglewidthlimit <int>

Sets the maximum width of signals, <int>, that are automatically added to toggle coverage
with the -cover t argument. Optional. Can be set on design unit basis. Overrides the global
value of the ToggleWidthLimit modelsim.ini variable.

• +typdelays

Selects typical delays from the "min:typ:max" expressions. Default. If preferred, you can
defer delay selection until simulation time by specifying the same option to the simulator.

• -u

Converts regular Verilog identifiers to uppercase. Allows case insensitivity for module
names. Optional.

• -v <library_file>

Specifies a source library file containing module and UDP definitions. Optional. Refer to
“Verilog-XL Compatible Compiler Arguments” for more information.

After all explicit filenames on the vlog command line have been processed, the compiler
uses the -v option to find and compile any modules that were referenced but not yet defined.
Modules and UDPs within the file are compiled only if they match previously unresolved
references. Multiple -v options are allowed. See additional discussion in the examples.

• -version

Returns the version of the compiler as used by the licensing tools. Optional.

• -vlog01compat

Ensures compatibility with rules of IEEE Std 1364-2001. Default.

• -vlog95compat

Disables Verilog 2001 keywords, which ensures that code that was valid according to the
1364-1995 spec can still be compiled. By default ModelSim follows the rules of IEEE Std

Commands
vlog

ModelSim SE Reference Manual, v6.5b 521

1364-2001. Some requirements in 1364-2001 conflict with requirements in 1364-1995.
Optional. Edit the vlog95compat variable in the modelsim.ini file to set a permanent default.

• -vopt

Notifies vlog that the vopt command will be run. As a result, vlog does not produce code.
This saves an unnecessary code generation step. Optional.

This argument is needed only if you have set the VoptFlow variable to 0 in the modelsim.ini
file. If it is set to 1 (default operation) vlog skips the code generation step automatically.

• -vmake

Generates a complete record of all command line data and files accessed during the compile
of a design. This data is then used by the vmake command to generate a comprehensive
makefile for recompiling the design library. By default, vcom stores compile data needed
for the -refresh switch and ignores compile data not needed for -refresh. The -vmake switch
forces inclusion of all file dependencies and command line data accessed during a compile,
whether they contribute data to the initial compile or not. Executing this switch can increase
compile time in addition to increasing the accuracy of the compile. See the vmake command
for more information.

-warning <msg_number>[,<msg_number>,…]
Changes the severity level of the specified message(s) to "warning." Optional. Edit the
warning variable in the modelsim.ini file to set a permanent default. Refer to “Changing
Message Severity Level” for more information.

• -work <library_name>

Specifies a logical name or pathname of a library that is to be mapped to the logical library
work. Optional; by default, the compiled design units are added to the work library. The
specified pathname overrides the pathname specified for work in the project file.

• -y <library_directory>

Specifies a source library directory containing definitions for modules, packages, interfaces,
and user-defined primitives (UDPs). Usually, this is a directory of source files that you want
to scan if the compiled versions do not already exist in a library. Optional. Refer to
“Verilog-XL Compatible Compiler Arguments” for more information.

After all explicit filenames on the vlog command line have been processed, the compiler
uses the -y option to find and compile any modules that were referenced but not yet defined.
Files within this directory are compiled only if the file names match the names of previously
unresolved references. Multiple -y options are allowed. You will need to specify a file suffix
by using -y in conjunction with the +libext+<suffix> option if your filenames differ from
your module names. See additional discussion in the examples.

Note
Any -y arguments that follow a -refresh argument on a vlog command line are ignored.
Any -y arguments that come before the -refresh argument on a vlog command line are
processed.

ModelSim SE Reference Manual, v6.5b522

Commands
vlog

• <filename>

Specifies the name of the Verilog source code file to compile. One filename is required.
Multiple filenames can be entered separated by spaces. Wildcards can be used.

Examples

• Compile the Verilog source code contained in the file example.vlg.

vlog example.vlg

• Hide the internal data of example.v. Models compiled with -nodebug cannot use any of
the ModelSim debugging features; any subsequent user will not be able to see into the
model.

vlog -nodebug example.v

• The first line compiles and hides the internal data, plus the ports, of the lower-level
design units, level3.v and level2.v. The second line compiles the top-level unit, top.v,
without hiding the ports. It is important to compile the top level without =ports because
top-level ports must be visible for simulation.

vlog -nodebug=ports level3.v level2.v
vlog -nodebug top.v

The first command hides the internal data, and ports of the design units, level3.v and
level2.v. In addition it prevents the use of PLI functions to interrogate the compiled
modules for information (either =ports+pli or =pli+ports works fine for this
command). The second line compiles the top-level unit without hiding the ports but
restricts the use of PLI functions as well.

• Note that the =pli switch may be used at any level of the design but =ports should only
be used on lower levels since you can’t simulate without visible top-level ports.

vlog -nodebug=ports+pli level3.v level2.v
vlog -nodebug=pli top.v

• After compiling top.v, vlog will scan the file und1 for modules or primitives referenced
but undefined in top.v. Only referenced definitions will be compiled.

vlog top.v -v und1

• After compiling top.v, vlog will scan the vlog_lib library for files with modules with the
same name as primitives referenced, but undefined in top.v. The use of +libext+.v+.u
implies filenames with a .v or .u suffix (any combination of suffixes may be used). Only
referenced definitions will be compiled.

vlog top.v +libext+.v+.u -y vlog_lib

The -work option specifies mylib as the library to regenerate. -refresh rebuilds the
library image without using source code, allowing models delivered as compiled
libraries without source code to be rebuilt for a specific release of ModelSim.

Commands
vlog

ModelSim SE Reference Manual, v6.5b 523

• If your library contains VHDL design units, be sure to regenerate the library with the
vcom command using the -refresh option as well. Refer to “Regenerating Your Design
Libraries” for more information.

vlog -work mylib -refresh

• The -incr option determines whether or not the module source or compile options have
changed as module1.v is parsed. If no change is found, the code generation phase is
skipped. Differences in compile options are determined by comparing the compiler
options stored in the _info file with the compiler options given. They must match
exactly

.vlog module1.v -u -O0 -incr

• The -timescale option specifies the default timescale for module1.v, which did not have
an explicit timescale directive in effect during compilation. Quotes are necessary
because the argument contains white spaces.vlog module1.

v -timescale "1 ns / 1 ps"

• The -fsmmultitrans option enables detection and reporting of multi-state transitions
when used with the +cover f argument.

vlog +cover=f -fsmmultitrans

ModelSim SE Reference Manual, v6.5b524

Commands
vmake

vmake
The vmake utility allows you to use a UNIX or Windows MAKE program to maintain
individual libraries. You run vmake on a compiled design library. This utility operates on
multiple source files per design unit; it supports Verilog include files as well as Verilog and
VHDL PSL vunit files.

Note
If a design is spread across multiple libraries, then each library must have its own
makefile and you must build each one separately.

By default, the output of vmake is sent to stdout—however, you can send the output to a
makefile by using the shell redirect operator (>) along with the name of the file. You can then
run the makefile with a version of MAKE (not supplied with ModelSim) to reconstruct the
library. This command must be invoked from either the UNIX or the Windows/DOS prompt.

A MAKE program is included with Microsoft Visual C/C++, as well as many other program
development environments.

After running the vmake utility, MAKE recompiles only the design units (and their
dependencies) that have changed. You run vmake only once; then you can simply run MAKE
to rebuild your design. If you add new design units or delete old ones, you should re-run vmake
to generate a new makefile.

The vmake utility ignores library objects compiled with -nodebug.

Also, the vmake utility is not supported for use with SystemC.

Syntax

vmake [-du <design_unit_name>] [-f <filename>] [-fullsrcpath] [-help] [-ignore]
[<library_name>] [-modelsimini <ini_filepath>]

Arguments

• -du <design_unit_name>

Specifies that a vmake file will be generated only for the specified design unit. Optional.
You can specify this argument any number of times for a single vmake command.

• -f <filename>

Specifies a file to read command line arguments from. Optional.

• -fullsrcpath

Produces complete source file paths within generated makefiles. Optional. By default source
file paths are relative to the directory in which compiles originally occurred. This argument
makes it possible to copy and evaluate generated makefiles within directories that are
different from where compiles originally occurred.

• -help

Displays the command’s options and arguments. Optional.

Commands
vmake

ModelSim SE Reference Manual, v6.5b 525

• -ignore

Omits a make rule for the named primary design unit and its secondary design units.
Optional.

• <library_name>

Specifies the library name; if none is specified, then work is assumed. Optional.

• -modelsimini <ini_filepath>

Loads an alternate initialization file that replaces the current initialization file. Overrides the
file path specified in the MODELSIM environment variable. Specifies either an absolute or
relative path to the initialization file. On Windows systems the path separator should be a
forward slash (/).

Examples

• To produce a makefile for the work library:

vmake >mylib.mak

• To run vmake on libraries other than work:

vmake mylib >mylib.mak

• To rebuild mylib, specify its makefile when you run MAKE:

make -f mylib.mak

ModelSim SE Reference Manual, v6.5b526

Commands
vmap

vmap
The vmap command defines a mapping between a logical library name and a directory by
modifying the modelsim.ini file.

With no arguments, vmap reads the appropriate modelsim.ini file(s) and prints the current
logical library to physical directory mappings. Returns nothing.

Syntax

vmap [-help] [-c] [-del] [<logical_name>] [<path>]

Arguments

• -help

Displays options and arguments of vmap. Optional.

• -c

Copies the default modelsim.ini file from the ModelSim installation directory to the current
directory. Optional.

This argument is intended only for making a copy of the default modelsim.ini file to the
current directory. Do not use it while making your library mappings or the mappings may
end up in the incorrect copy of the modelsim.ini.

• -del

Deletes the mapping specified by <logical_name> from the current project file. Optional.
You can use this argument multiple times with a single vmap command to delete multiple
library mappings.

• <logical_name>

Specifies the logical name of the library to be mapped. Optional.

• <path>

Specifies the pathname of the directory to which the library is to be mapped. Optional. If
omitted, the command displays the mapping of the specified logical name.

Commands
vopt

ModelSim SE Reference Manual, v6.5b 527

vopt
The vopt command performs global optimizations on designs after they have been compiled
with vcom or vlog. For detailed usage information on optimization, refer to the chapter entitled
“Optimizing Designs with vopt” in the User’s Manual.

Note
The default optimization behavior of vopt may differ from what is documented in this
section if you are using any modelsim.ini file other than the one you installed with
ModelSim. See “Optimizing Designs with vopt” and "VoptFlow" in the User’s Manual
for information on possible optimization settings.

The vopt command produces an optimized version of your design in the working directory. You
provide a name for this optimized version using the -o argument. You can then invoke vsim
directly on that new design unit name.

The vopt command makes use of the PathSeparator variable from the modelsim.ini file, which
allows you to specify which character that ModelSim recognizes as a path separator. By default,
vopt expects you to use the forward-slash (/), but you could change this to a period (.) for ease
of use with Verilog designs. For example:

vopt top -o opttop +acc=rn+.top.middle.bottom -G.top.myparam=4

The default operation of vopt -o <name> is incremental compilation – that is, ModelSim reuses
elements of the design that have not changed. This improves performance when using vopt on a
design that has been minimally modified.

In the course of optimizing a design, vopt will remove objects that are deemed unnecessary for
simulation. For example, line numbers are removed, processes are merged, nets and registers
may be removed, etc. If you need visibility into your design for debugging purposes, use the
+acc argument to conditionally enable visibility for parts of your design. Note, however, that
using +acc may reduce simulation speed.

All arguments to the vopt command are case sensitive: -WORK and -work are not equivalent.

Note
Many of the arguments below may also be specified at compile time (e.g., -O5). These
"in-common" arguments are processed by vopt automatically (i.e., if you specify them at
compile time, vopt will use them automatically during optimization). The first instance of
an in-common argument takes priority. For example, if you specify -O5 to vlog or vcom,
and then specify -O1 to vopt, -O5 takes precedence.

There is one exception to this rule: vopt will "OR" any -cover arguments to vlog or vcom
(vlog -cover bc) with any -cover arguments to vopt (vopt -cover est)

Syntax

vopt [options] <design_unit> -o <name>

ModelSim SE Reference Manual, v6.5b528

Commands
vopt

[options]:

[+acc[=<spec>][+<selection>[.] | +<entity>[(<architecture>)] [.]]]

[-bbox]

[-compat] [-constimmedassert | -noconstimmedassert] [-cpppath <filename>]
[+cover[=<spec>] [+<selection> [.]]] [-cover <spec>] [-coveropt <opt_level>]
[-nocovershort] [-covercells]

[-enablescstdout]

[-debugCellOpt] [-deferSubpgmCheck] [+delay_mode_distributed]
[+delay_mode_path]
[+delay_mode_unit] [+delay_mode_zero] [-dpiforceheader] [-dpiheader <filename>]

[-error <msg_number>[,<msg_number>,...]]

[-f <filename>] [-fatal <msg_number>[,<msg_number>,…]]
[+floatgenerics[+<selection>[.]]] [+floatparameters[+<selection>[.]]]
[-fsmimplicittrans] [-fsmmultitrans] [-fsmresettrans] [-fsmsingle]
[-fsmverbose [b | t | w]]

[-g <Name>=<Value> …] [-G <Name>=<Value> …]

[-hazards] [-help]

[-incr | -noincr] [+initmem[=<spec>][+{0 | 1 | X | Z}][+<selection>[.]]]
[+initreg[=<spec>][+{0 | 1 | X | Z}][+<selection>[.]]]

[-ka] [-keep_delta]

[-L <libname>] [-Lf <libname>]

[+maxdelays] [+mindelays] [-mti_trace_vlog_calls]

[-mixedansiports] [-modelsimini <ini_filepath>]

[+nocheck<CODE>] [-nocover] [-nocovercells] [-nocoverfec]
[-nodebug[=ports | =pli | =ports+pli]] [-nofsmresettrans] [-nofsmsingle]
[-nofsmxassign] [+nolibcell] [-nologo] [+nosparse[+<selection> [.]]] [+nospecify]
[-note <msg_number>[,<msg_number>,...]] [+notimingchecks] [+nowarn<CODE>]
[-nowarn <category_number>]

[-O0 | -O1 | -O4 | -O5]

[-quiet]

[-sclib <library>]
[-sdfmin | -sdftyp | -sdfmax[@<delayScale>] [<instance>=]<sdf_filename>]
[-sdfmaxerrors <n>] [-source] [-suppress <msg_number>[,<msg_number>,...]]
[-staticchecks[=<args>]] [-staticchecksfile <filename>] [-staticchecksmdvhdl]

[-tab <tabfile>] [-time] [-timescale <time_units>/<time_precision>] [+typdelays]

[-version]

[-warning <msg_number>[,<msg_number>,...]] [-work <library_name>]

Commands
vopt

ModelSim SE Reference Manual, v6.5b 529

Arguments

• +acc[=<spec>][+<selection>[.] | +<entity>[(<architecture>)] [.]]

Enable PLI and debug command access to objects indicated by <spec> when optimizing a
design. Optional.

Note
Using this option may reduce simulation speed.

=<spec> — optionally, one or more of the following characters. If <spec> is omitted,
the entire set of access specifiers is enabled.

b — Enable access to bits of vector nets. This is necessary for PLI applications that
require handles to individual bits of vector nets. Also, some user interface
commands require this access if you need to operate on net bits.

c — Enable access to library cells. By default any Verilog module containing a
non-empty specify block may be optimized, and debug and PLI access may be
limited. This option keeps module cell visibility.

f —
Enable access to finite state machines.

l — Enable access to line number directives and process names.

m — Preserve the visibility of module, program, and interface instances.

n — Enable access to nets.

p — Enable access to ports. This disables the module inlining optimization, and is
necessary only if you have PLI applications that require access to port handles.

q — Enable access to VHDL variables and generics.

r — Enable access to registers (including memories, integer, time, and real types).

s — Enable access to system tasks.

t — Enable access to tasks and functions.

u — Enable access to primitive instances.

v — Enable access to variables, constants, and aliases in processes (VHDL design
units only) that would otherwise be merged due to optimizations. Disables an
optimization that automatically converts variables to constants.

+<selection> — enables access for specific Verilog design objects and/or regions,
optionally followed by ".", selection occurs recursively downward from the specified
module or instance. Multiple selections are allowed, with each separated by a "+"
(+acc=rn+top1+top2). If no selection is specified, then all modules are affected.
Ensure that you do not put a space between any <spec> arguments and the
+<selection> argument. You can use a path delimiter to select unique instances or
objects (+acc=mrp+/top/ul. or +acc=r+/top/myreg). If you specify a module name
(+acc=rn+Demux), pertinent objects in side the module are selected.

ModelSim SE Reference Manual, v6.5b530

Commands
vopt

+<entity>[(architecture)] — enables access for all instances of the specified VHDL
entity, optionally followed by "." to indicate all children of the module.

• -bbox

Instructs vopt to optimize a portion of the design, allowing you to reuse the optimized
portion and speed up future simulation and optimization runs. Refer to the section
"Optimizing Portions of your Design" for further information.

• -compat

Disables optimizations that result in different event ordering than Verilog-XL. Optional.

ModelSim Verilog generally duplicates Verilog-XL event ordering, but there are cases
where it is inefficient to do so. Using this option does not help you find event order
dependencies, but it allows you to ignore them. Keep in mind that this option does not
account for all event order discrepancies, and that using this option may degrade
performance. Refer to “Event Ordering in Verilog Designs” for additional information.

• -constimmedassert

Displays immediate assertions with constant expressions in the GUI, in reports, and in the
UCDB. Optional. By default, immediate assertions with constant expressions are displayed
in the GUI, in reports, and in the UCDB. Use this switch only if the -noconstimmedassert
switch has been used previously, or if the ShowConstantImmediateAsserts variable in the
vopt section of the modelsim.ini file is set to 0 (off).

• -cpppath <filename>

Specifies the location of a g++ executable other than the default g++ compiler installed with
ModelSim. Optional. Overrides the CppPath variable in the modelsim.ini file.

• -noconstimmedassert

Turns off the display of immediate assertions with constant expressions in the GUI, in
reports, and in the UCDB. Optional. By default, immediate assertions with constant
expressions are displayed. You may also set the ShowConstantImmediateAsserts variable in
the vopt section of the modelsim.ini file to 0 (off).

• +cover[=<spec>] [+<selection> [.]]

Enables various coverage statistics collection on specified areas of the design. Optional.

Use this argument to enable coverage for specific design units or instances of the design.
The vopt +cover argument accepts the same +<selection> syntax that +acc accepts, and can
be used to specify design units, instances, and recursive control with a trailing '.' character.

<spec> — one or more of the following characters:

b — Collect branch statistics.

c — Collect condition statistics. Collects both FEC and UDP statistics, unless
-nocoverfec is specified.

e — Collect expression statistics, Collects both FEC and UDP statistics, unless
-nocoverfec is specified.

Commands
vopt

ModelSim SE Reference Manual, v6.5b 531

s — Collect statement statistics.

t — Collect toggle statistics. Overridden if ’x’ is specified elsewhere.

x — Collect extended toggle statistics (Refer to “Toggle Coverage” for details). This
takes precedence, if ’t’ is specified elsewhere.

f — Collect Finite State Machine statistics.

<selection> [.] — path to the design unit or instance, with an optional "." to specify
recursive coverage down to the leaf level.

See the -coveropt <opt_level> argument to override the default level of optimization for
coverage for a particular compilation run.

Example:

vopt +cover=bcest+/top/dut1. +cover=f+/top/dut1/fsm1 +cover=x+pla

This command enables branch, condition, expression, statement and toggle coverage for
instance /top/dut1 and all its children, down to the leaf level. It also turns on FSM coverage
for only the /top/dut1/fsm1 instance. Finally, it enables extended toggle coverage for all
instances of design unit pla.

• -cover <spec>

Recommendation: Use the +cover argument, which you can use to specify precise design
units and regions to be instrumented for coverage.

Instructs ModelSim to recompile the design for specified types of coverage statistics
collection. Optional.

<spec> — one or more of the following characters:

b — Collect branch statistics.

c — Collect condition statistics.

e — Collect expression statistics.

s — Collect statement statistics.

t — Collect toggle statistics. Cannot be used if ’x’ is specified.

x — Collect extended toggle statistics (Refer to “Toggle Coverage” for details).
Cannot be used if ’t’ is specified.

f— Collect Finite State Machine statistics.

<i> — Override the default level of optimization for current run only, where “i” is an
integer between 1 and 4. To change default level for all subsequent runs, change
value of CoverOpt variable in modelsim.ini file. See “CoverOpt” for a description
of optimization levels.

When you specify -cover to vopt, it will logically OR the -cover arguments to vlog/vcom
with the -cover arguments to vopt.

You can force coverage to be off and the time of running vopt by specifying -nocover.

ModelSim SE Reference Manual, v6.5b532

Commands
vopt

• -nocovershort

Disables short circuiting of expressions when coverage is enabled. Short circuiting is
enabled by default.

• -covercells

Enables code coverage of modules defined by ‘celldefine and ’endcelldefine compiler
directives, or compiled with the -v or -y arguments. Optional. Can be used to override the
CoverCells compiler control variable in the modelsim.ini file.

• -coveropt <opt_level>

Overrides the default level of optimization for the current run only. Optional. <opt_level>
designates the optimization level, as follows:

1 — Turns off all optimizations that affect coverage reports.

2 — Allows optimizations that provide large performance improvements by invoking
sequential processes only when the data changes. This setting may result in major
reductions in coverage counts.

3 — Allows all optimizations in 2, and allows optimizations that may change
expressions or remove some statements. Also allows constant propagation and VHDL
subprogram inlining.

4 — Allows all optimizations in 2 and 3, and allows optimizations that may remove
major regions of code by changing assignments to built-ins or removing unused
signals. It also changes Verilog gates to continuous assignments. Allows VHDL
subprogram inlining. Allows VHDL flip-flop recognition.

The default optimization level is 3. You can edit the CoverOpt variable in the modelsim.ini
file to change the default.

• -debugCellOpt

Produces Transcript window output that identifies why certain cells within the design were
not optimized. Optional.

• -deferSubpgmCheck

Forces the compiler to report array indexing and length errors as warnings (instead of as
errors) when encountered within subprograms. Subprograms with indexing and length
errors that are invoked during simulation cause the simulator to report errors, which can
potentially slow down simulation because of additional checking.

• +delay_mode_distributed

Disables path delays in favor of distributed delays. Optional. Refer to “Delay Modes” for
details.

• +delay_mode_path

Sets distributed delays to zero in favor of using path delays. Optional.

• +delay_mode_unit

Sets path delays to zero and non-zero distributed delays to one time unit. Optional.

Commands
vopt

ModelSim SE Reference Manual, v6.5b 533

• +delay_mode_zero

Sets path delays and distributed delays to zero. Optional.

• -dpiforceheader

Forces the generation of a DPI header file even if it will be empty of function prototypes.

• -dpiheader <filename>

Generates a header file that may then be included in C source code for DPI import functions.
Optional. Refer to “DPI Use Flow” for additional information.

• -enablescstdout

Enables the reporting of messages from the SystemC tasks cout, printf and fprintf to stdout
during the execution of vopt. This behavior is suppressed by default. However, information
printed to stderr will always be displayed.

• -error <msg_number>[,<msg_number>,...]

Changes the severity level of the specified message(s) to "error." Optional. Edit the error
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• -f <filename>

Specifies a file with more command line arguments. Optional. Allows complex arguments
to be reused without retyping. Allows gzipped input files. Nesting of -f options is allowed.

Refer to the section "Argument Files" for more information.

• -fatal <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "fatal." Optional. Edit the fatal
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• +floatgenerics[+<selection>[.]]

Instructs the tool to not lock down generics values during optimization, which enables
successful use of the vsim -g/G options.

+<selection> — localizes the effect of this option to specific generics in the design
hierarchy. +<selection> can be a hierarchical path to a generic or a design unit
instance. It can also be the name of a design unit declaration.

. — If a period (.) is present after an instance or design unit name, all generics under that
scope are recursively selected.

Refer to the section "Optimizing Parameters and Generics" for more information.

This command is fully equivalent to +floatparameters, therefore you can use them
interchangeably.

• +floatparameters[+<selection>[.]]

Instructs the tool to not lock down parameter values during optimization, which enables
successful use of the vsim -g/G options.

ModelSim SE Reference Manual, v6.5b534

Commands
vopt

+<selection> — localizes the effect of this option to specific parameters in the design
hierarchy. +<selection> can be a hierarchical path to a parameter or a design unit
instance. It can also be the name of a design unit declaration.

. — If a period (.) is present after an instance or design unit name, all parameters under
that scope are recursively selected.

Refer to the section "Optimizing Parameters and Generics" for more information.

This command is fully equivalent to +floatgenerics, therefore you can use them
interchangeably.

• -fsmimplicittrans

Enables recognition of implied same state transitions. Optional.

• -fsmmultitrans

Enables detection and reporting of multi-state transitions when used with the +cover=f
argument for vcom/vlog or vopt. Optional. Another term for this is FSM sequence coverage.

• -fsmresettrans

Enables recognition of implicit asynchronous reset transitions. Optional. This includes
asynchronous reset transitions in coverage results.

• -fsmsingle

Enables recognition of FSMs having single bit current state variable. Optional.

• -fsmverbose [b | t | w]

Provides information about FSMs detected, including state reachability analysis. Optional.

b — displays only basic information.

t — displays a transition table in addition to the basic information.

w — displays any warning messages in addition to the basic information.

When you do not specify an argument, this switch reports all information to vopt message
1947.

** Note: (vopt-1947) FSM RECOGNITION INFO
Fsm detected in : ../fpu/rtl/vhdl/serial_mul.vhd
Current State Variable : s_state :
../fpu/rtl/vhdl/serial_mul.vhd(76)
Clock : clk_i
Reset States are: { waiting , busy }
State Set is : { busy , waiting }
Transition table is

busy => waiting Line : (114 => 114)
busy => busy Line : (111 => 111)
waiting => waiting Line : (120 => 120) (114 => 114)
waiting => busy Line : (111 => 111)

When you do not specify this switch, vopt reports only that an FSM was detected in vopt
message 143.

** Note: (vopt-143) Detected '1' FSM/s in design unit 'serial_mul.rtl'.

Commands
vopt

ModelSim SE Reference Manual, v6.5b 535

• -g <Name>=<Value> …

Assigns a value to all specified VHDL generics and Verilog parameters that have not
received explicit values in generic maps, instantiations, or via defparams (such as top-level
generics/parameters and generics/parameters that would otherwise receive their default
values). Optional.

Note there is a space between -g and <Name>=<Value>. For more information on this
switch, refer to the longer description under vsim -g<Name>=<Value> …

Refer to the section "Optimizing Parameters and Generics" for more information.

Limitation: In general, generics/parameters of composite type (arrays and records) cannot
be set from the command line. However, you can set string arrays, std_logic vectors, and bit
vectors if they can be set using a quoted string. For example,

-g strgen="This is a string"
-g slv="01001110"

The quotation marks must make it into vsim as part of the string because the type of the
value must be determinable outside of any context. Therefore, when entering this command
from a shell, put single quotes (') around the string. For example:

-g strgen='"This is a string"'

If working within the ModelSim GUI, you would enter the command as follows:

{-g strgen="This is a string"}

You can also enclose the value escaped quotes (\"), for example:

-g strgen=\"This is a string\"

• -G <Name>=<Value> …

Same as -g (see above) except that it will also override generics/parameters that received
explicit values in generic maps, instantiations, or from defparams. Optional. This argument
is the only way for you to alter the generic/parameter, such as its length, (other than its
value) after the design has been loaded.

Note there is a space between -G and <Name>=<Value>.

If <value> is a string, you must enclose it in escaped quotes (\"), for example:

-G filename=\"a.in\"

Refer to the section "Optimizing Parameters and Generics" for more information.

• -hazards

Detects event order hazards involving simultaneous reading and writing of the same register
in concurrently executing processes. Optional. You must also specify this argument when
you simulate the design with vsim. Refer to “Hazard Detection” for more details.

ModelSim SE Reference Manual, v6.5b536

Commands
vopt

Note
Enabling -hazards implicitly enables the -compat argument. As a result, using this
argument may affect your simulation results.

• -help

Displays the command’s options and arguments. Optional.

• -incr | -noincr

Defines whether vopt reuses design elements or not.

-incr — Instructs vopt to only optimize design elements that have changed since a
previous optimization. Default

-noincr — Instructs vopt to optimize all design elements, even if they have not changed
since a previous optimization.

• +initmem[=<spec>][+{0 | 1 | X | Z}][+<selection>[.]]

Enables the initialization of memories. Optional.

=<spec> — (optional) identifies the types to be initialized.

If you do not specify this option, vlog initializes fixed-size arrays of all these types,
where fixed-size arrays may have any number of packed or unpacked dimensions.

<spec> can be one or more of the following:

r — register/logic, integer, or time types (four-state integral types).

b — bit, int, shortint, longint, or byte types (two-state integral types).

e — enum types.

You must also add the enum's base type to the initialization specification. If you
choose static initialization for an enum type variable with value 0, 1, X, or Z, the
simulator assigns that value to the variable, whether it is a valid value or not. If
you choose random initialization for an enum type variable, the simulator
generates a random number and uses the (random_number %
num_valid_enum_values)th entry of the enum literals to initialize it.

u — sequential UDPs.

+{0 | 1 | X | Z} — (optional) specifies the value to use in initialization for all bits of a
memory. For two-state datatypes, X and Z will map to 0.

If you do not specify this option you are preparing the design unit for randomization
with vsim +initmem +<seed>.

+<selection>[.] — specifies a design unit name (module, package, interface, or
program), or an instance name. An optional trailing '.' after the "selection" means that
the initialization recursively descends into the hierarchy.

If you do not specify this argument, the initialization is provided to the entire design.

If initialization is recursively extended to descendants of a given design unit, and a
descendant has an explicit initialization specification applied to it, the child's

Commands
vopt

ModelSim SE Reference Manual, v6.5b 537

initialization specification overrides the parent's initialization specification. The
initialization specifications of the parent and child are not merged together (as is done
with +acc options). The default initialization state for top modules is "no_init",
provided a top module does not have an explicit initialization specification applied to
it.

This argument initializes static variables in any scope (package, $unit, module, interface,
generate, program, task, function). However, it does not affect:

• automatic variables

• dynamic variables

• members of dynamic variables

• artificially generated variables, such as #randstate#

Because you can specify +initmem on the vlog and vopt command line, the priority of the
specifications are as follows:

1) vopt ... +initmem+1+top.foo
2) vlog ... +initmem+0
3) vopt ... +initmem+Z

This argument will not override any variable declaration assignment, such as:

reg r = 1’b0

• +initreg[=<spec>][+{0 | 1 | X | Z}][+<selection>[.]]

Enables you to initialize registers. Optional.

=<spec> — (optional) identifies the types to be initialized.

If you do not specify this option, vlog initializes variables of all these types.

<spec> can be one or more of the following:

r — register/logic, integer, or time types (four-state integral types).

Notifier registers are not initialized by the +initreg option.

b — bit, int, shortint, longint, or byte types (two-state integral types).

e — enum types.

You must also add the enum's base type to the initialization specification. If you
choose static initialization for an enum type variable with value 0, 1, X, or Z, the
simulator assigns that value to the variable, whether it is a valid value or not. If
you choose random initialization for an enum type variable, the simulator
generates a random number and uses the (random_number %
num_valid_enum_values)th entry of the enum literals to initialize it.

u — sequential UDPs.

If a sequential UDP contains an "initial" statement, that initial value overrides all
+initreg-related functionality. For other sequential UDPs, the +initreg option
takes effect as described for regular variables. In case a sequential UDP does not

ModelSim SE Reference Manual, v6.5b538

Commands
vopt

contain an "initial" statement, and it wasn't compiled with +initreg in effect, the
UDPs initial value will be taken from its instantiating parent scope (provided that
scope has +initreg options in effect).

+{0 | 1 | X | Z} — (optional) specifies the value to use in initialization. For two-state
datatypes, X and Z will map to 0.

If you do not specify this option you are preparing the design unit for randomization
with vsim +initreg +<seed>

+<selection>[.] — specifies a design unit name (module, package, interface, or
program), or an instance name. An optional trailing '.' after the "selection" means that
the initialization recursively descends into the hierarchy.

If you do not specify this argument, the initialization is provided to the entire design.

If initialization is recursively extended to descendants of a given design unit, and a
descendant has an explicit initialization specification applied to it, the child's
initialization specification overrides the parent's initialization specification. The
initialization specifications of the parent and child are not merged together (as is done
with +acc options). The default initialization state for top modules is "no_init",
provided a top module does not have an explicit initialization specification applied to
it.

This argument initializes static variables in any scope (package, $unit, module, interface,
generate, program, task, function). However, it does not affect:

• automatic variables

• dynamic variables

• members of dynamic variables

• artificially generated variables, such as #randstate#

Because you can specify +initreg on the vlog and vopt command line, the priority of the
specifications are as follows:

1) vopt ... +initreg+1+top.foo
2) vlog ... +initreg+0
3) vopt ... +initreg+Z

This argument will not override any variable declaration assignment, such as:

reg r = 1’b0

• -ka

(optional) This switch, which is short for “keep alternate”, informs vopt that it should
attempt to preserve a 32-bit version of an optimized design, if it exists, if compiling with a
64-bit version of vopt (and vice versa).

When you specify -ka, vopt attempts to retain the 32- or 64-bit version of the design unit,
thus overlaying both into the same optimized design. This allows you to maintain a single

Commands
vopt

ModelSim SE Reference Manual, v6.5b 539

optimized design unit that can be simulated by both 32- and 64-bit versions of the simulator.
This switch requires you to follow these compatibility rules:

o All designs that go into the optimized design must be the same, specifically nothing
can be changed or recompiled.

o You must use the same version of the simulator for both compilations.

o All command line and modelsim.ini options that affect compilation must be the
same, including library mapping.

For example, if you are using a 32-bit version of vopt and enter:

vopt -o mydesign top1 top2 +acc

then at another point use a 64-bit version of vopt:

vopt -o mydesign top1 top2 +acc -ka

“mydesign” will result in having both 32- and 64-bit versions, assuming you did not change
any modelsim.ini settings or recompile any design units.

This command is most useful for users who distribute black-boxed design units, specifically
if the recipient switches between 32- and 64-bit execution.

• -keep_delta

Disables optimizations that remove delta delays. Optional.

Delta delays result from zero delay events. Those events are normally processed in the next
iteration or "delta" of the current timestep. Vopt implements optimizations that can remove
delta delays and process an event earlier.

• -L <libname>

Searches the specified resource library for precompiled modules. The library search options
you specify here must also be specified when you run the vsim command. Optional.

• -Lf <libname>

Same as -L, but the specified library is searched before any ’uselib directives. (Refer to
“Library Usage” and “Verilog-XL Compatible Compiler Arguments” for more
information.) Optional.

• +maxdelays

Selects maximum delays from the "min:typ:max" expressions. Optional. If preferred, you
can defer delay selection until simulation time by using vsim -sdfmax.

• +mindelays

Selects minimum delays from the "min:typ:max" expressions. Optional. If preferred, you
can defer delay selection until simulation time by using vsim -sdfmin.

ModelSim SE Reference Manual, v6.5b540

Commands
vopt

• -modelsimini <ini_filepath>

Loads an alternate initialization file that replaces the current initialization file. Overrides the
file path specified in the MODELSIM environment variable. Specifies either an absolute or
relative path to the initialization file. On Windows systems the path separator should be a
forward slash (/).

• -mti_trace_vlog_calls

Enables viewing of SystemVerilog class contents in the Wave window. Optional.

• +nocheck<CODE>

Disables the specified optimization check. Optional. <CODE> may be one of the following:

ALL — Enables all +nocheck arguments described below except INBUF.

CLUP — Allows connectivity loops in a cell to be optimized.

DELAY — When used in conjunction with +delay_mode_path (see above), allows
inlined Verilog modules with distributed delays and no path delays to be optimized.

DNET — Allows both the port and the delayed port (created for negative setup/hold) to
be used in the functional section of the cell.

INBUF — Enables optimizations where buffers are used between input ports and timing
checks. Disables optimized gate-level compiler checks for multiple drivers due to
input buffering. It should be used with old models that are coded with input buffers to
approximate the behavior that is now available in the Verilog 2000 standard (-
v2k_int_delay).

INTRI — Allows inputs of type tri1 or tri0 in cell optimizations.

OPRD — Allows an output port to be read internally by the cell. Note that if the value
read is the only value contributed to the output by the cell, and if there's a driver on
the net outside the cell, the value read will not reflect the resolved value.

SUDP — Allows a sequential UDP to drive another sequential UDP.

• -nocover

Disables code coverage on all source files, regardless of any -cover arguments specified to
vlog or vopt. Optional.

• -nocovercells

Disables code coverage of modules defined by ‘celldefine and ’endcelldefine compiler
directives, or compiled with the -v or -y arguments. Optional. Can be used to override the
CoverCells compiler control variable in the modelsim.ini file.

• -nocoverfec

Prevents focused expression coverage (FEC) from being enabled for coverage collection.
By default, both UDP and FEC coverage statistics are enabled for collection. You can
customize the default behavior with the CoverFEC variable in the modelsim.ini file.
Optional.

Commands
vopt

ModelSim SE Reference Manual, v6.5b 541

• -nodebug[=ports | =pli | =ports+pli]

Hides, within the GUI and other parts of the tool, the internal data of all compiled design
units. Optional.

-nodebug — The switch, specified in this form, does not hide ports, due to the fact that
the port information may be required for instantiation in a parent scope.

The design units’ source code, internal structure, registers, nets, etc. will not display
in the GUI. In addition, none of the hidden objects may be accessed through the
Dataflow window or with commands. This also means that you cannot set
breakpoints or single step within this code. It is advised that you not compile with this
switch until you are done debugging.

Note that this is not a speed switch like the “nodebug” option on many other products.
Use the vopt command to increase simulation speed.

-nodebug=ports — additionally hides the ports for the lower levels of your design; it
should be used only to compile the lower levels of the design. If you hide the ports of
the top level you will not be able to simulate the design.

Do not use the switch in this form when the parent is part of a vopt -bbox flow or for
mixed language designs, especially for Verilog modules to be instantiated inside
VHDL.

-nodebug=pli — additionally prevents the use of pli functions to interrogate individual
modules for information.

You should be aware that this form will leave a "nodebug" module untraversable by
PLI.

-nodebug=ports+pli — you can combine the behavior of =ports and =pli in this manner.

This functionality encrypts entire files. The `protect compiler directive allows you to
encrypt regions within a file.

• -nofsmresettrans

Disables recognition of implicit asynchronous reset transitions. Optional. This has the effect
of excluding asynchronous reset transitions from any coverage results.

• -nofsmsingle

Disables recognition of FSMs having single bit current state variable. Optional.

• -nofsmxassign

Disables recognition of FSMs containing x assignment. Optional.

• +nolibcell

By default all modules compiled from a source library are treated as though they contain a
`celldefine compiler directive. This option disables this default. The `celldefine directive
only affects the PLI access routines acc_next_cell and acc_next_cell_load. Optional.

• -nologo

Disables the startup banner. Optional.

ModelSim SE Reference Manual, v6.5b542

Commands
vopt

• +nosparse[+<selection> [.]]

Identifies which memories are considered "not sparse", which instructs the tool to override
the rules for allocating storage for memory elements only when necessary.

If you use +nosparse on a given memory, the tool will simulate the memory normally. Refer
to Sparse Memory Modeling for more information.

+<selection> — enables access for specific Verilog design units, scopes, or design
objects (vars, mem). Multiple selections are allowed, with each separated by a "+"
(+nosparse=+top1+top2). If no selection is specified, then all modules are affected.
You can use a path delimiter to select unique instances or objects
(+nosparse=+/top/ul.). If you specify a module name (+nosparse=+Demux), pertinent
objects inside the module are selected.

. — indicates the selection occurs recursively downward from the specified module or
instance

• +nospecify

Disables specify path delays and timing checks. Optional.

• -note <msg_number>[,<msg_number>,...]

Changes the severity level of the specified message(s) to "note." Optional. Edit the note
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• +notimingchecks

Removes all timing check entries from the design as it is parsed. Optional. To disable
checks on individual instances, use the tcheck_set command.

Specifying vopt +notimingchecks or -GTimingChecks=<FALSE/TRUE> will fix the
TimingChecksOn generic value in VITAL models to FALSE for simulation. As a
consequence, using vsim +notimingchecks at simulation may not have any effect on the
simulation depending on the optimization of the model.

• +nowarn<CODE>

Disables warning messages in the category specified by <CODE>. Optional. Warnings that
can be disabled include the <CODE> name in square brackets in the warning message. For
example,

** Warning: test.v(15): [RDGN] - Redundant digits in numeric
literal.

This warning message can be disabled by specifying +nowarnRDGN.

• -nowarn <category_number>

Selectively disables a category of warning message. Optional. Multiple -nowarn switches
are allowed. Warnings may be disabled for all compiles via the Main window Compile >
Compile Options menu command or the modelsim.ini file (refer to modelsim.ini
Variables).

Commands
vopt

ModelSim SE Reference Manual, v6.5b 543

The warning message categories are described in Table 2-11:

• -O0 | -O1 | -O4 | -O5

Lower the optimization to a minimum with -O0 (capital oh zero). Optional. Use this to work
around bugs, increase your debugging visibility on a specific cell, or when you want to
place breakpoints on source lines that have been optimized out.

Please refer to the section "Optimizing Designs with vopt" in the User’s Manual for detailed
information on using vopt to perform optimization.

• Enable some optimization with -O1. Optional.

• Enable most optimizations with -O4. Default.

• Enable maximum optimization with -O5. Optional. -O5 attempts to optimize loops and
prevents variable assignments in situations where a variable is assigned but is not
actually used.

• -quiet

Disables 'Loading' messages. Optional.

• -source

Displays the associated line of source code before each error message that is generated
during compilation. Optional; by default, only the error message is displayed.

Table 2-11. Warning Message Categories for vopt -nowarn

Category
number

Description

1 unbound component

2 process without a wait statement

3 null range

4 no space in time literal

5 multiple drivers on unresolved signal

6 VITAL compliance checks

7 VITAL optimization messages

8 lint checks

9 signal value dependency at elaboration

10 VHDL-1993 constructs in VHDL-1987 code

12 non-LRM compliance in order to match Cadence behavior

13 constructs that coverage can't handle

14 locally static error deferred until simulation run

ModelSim SE Reference Manual, v6.5b544

Commands
vopt

• -sc_arg <string> ...

Specifies a string representing a startup argument which is subsequently accessible from
within SystemC via the sc_argc() and sc_argv() functions (refer to “Accessing Command-
Line Arguments”.

If multiple SystemC startup arguments are specified, each must have a separate -sc_arg
argument. SystemC startup arguments returned via sc_argv() are in the order in which they
appear on the command line. White space within the <string> will not be treated specially,
and the string, white space and all, will be accessible as a single string among the strings
returned by sc_argv().

• -sclib <library>

Specifies the design library where the SystemC shared library is created. By default, the
SystemC shared library is created in the logical work library. This argument is only
necessary when the shared library is compiled in a design library other than the logical work
directory. See the sccom command for more information.

• -sdfmin | -sdftyp | -sdfmax[@<delayScale>] [<instance>=]<sdf_filename>

(optional) Annotates VITAL or Verilog cells in the specified SDF file (a Standard Delay
Format file) with minimum, typical, or maximum timing.

@<delayScale> — scales all values by the specified value. For example, if you specify
-sdfmax@1.5, all maximum values in the SDF file are scaled to 150% of their
original value.

Do not use this option if you scaled the SDF file while using the sdfcom command.

<instance>= — specifies a specific instance for the associated SDF file. Use this when
not performing backannotation at the top level.

<sdf_filename> — specifies the file containing the SDF information.

Note
The tool will issue an error if you specify this switch and your SDF is being annotated to
VHDL because the tool does not support compiled SDF for VHDL.

• -sdfmaxerrors <n>

Controls the number of Verilog SDF missing instance messages that will be emitted before
terminating vsim. Optional. <n> is the maximum number of missing instance error
messages to be emitted. The default number is 5.

Note
The tool will issue an error if you specify this switch and your SDF is being annotated to
VHDL because the tool does not support compiled SDF for VHDL.

Commands
vopt

ModelSim SE Reference Manual, v6.5b 545

• -staticchecks[=<args>]

Performs a series of static checks on VHDL and Verilog designs, where <args> is a list of
arguments. The command performs all checks if you do not specify any arguments to this
switch.

Produces a file (static_checks.txt) in the current run directory containing messages about
any static check violations. You can rename the file with the -staticchecksfile switch.

r — checks for race conditions, either write-write races (multiple drivers) or read-write
races. Resulting messages have the label: STATIC_RACE_CHECK.

These checks are only on a a per-module basis.

To enable multiple driver checks for VHDL you must also specify the -
staticchecksmdvhdl switch. This is because the multiple driver may result from a
resolution function.

c — checks for simulation-synthesis mismatches related to full/parallel case pragmas.
Resulting messages have the label: STATIC_CASE_CHECK.

s — checks for simulation-synthesis mismatches related to sensitivity lists; missing
objects, duplicate elements, and redundant elements. Resulting messages have the
label: STATIC_SENSLIST_CHECK.

f — checks for simulation-synthesis mismatches related to subprograms (functions).
Resulting messages have the label: STATIC_FUNCTION_CHECK.

x — checks for simulation-synthesis mismatches related to reading of four-state values
(X, Z, U, or W). Resulting messages have the label: STATIC_XZUW_CHECK.

This check does not issue any warnings for casex reading "x" or "z", or casez reading
"z".

d — checks for non-synthesizable constructs; untested edge triggers, implicit state
machine with different clocks or where the first statement is not within event control,
output driven by multiple clocks, improper mixing of control signals, blocking and
non-blocking assignments for the same signal, and asynchronous loading. Resulting
messages have the label: STATIC_SYNTH_CHECK.

Usage examples:

-staticchecks #Executes all checks
-staticchecks=r #Executes only the check for race conditions
-staticchecks=rcs #Executes three of the checks

• -staticchecksfile <filename>

Redirects the output of the -staticchecks switch to <filename>. By default, this file is named
static_checks.txt.

• -staticchecksmdvhdl

When used with -staticchecks=r, enables the check on multiple driver race conditions for
VHDL designs. By default, this check is deactivated because the multiple driver for VHDL
could be related to a resolution function.

ModelSim SE Reference Manual, v6.5b546

Commands
vopt

• -suppress <msg_number>[,<msg_number>,...]

Prevents the specified message(s) from displaying. Optional. You cannot suppress Fatal or
Internal messages. Edit the suppress variable in the modelsim.ini file to set a permanent
default. Refer to “Changing Message Severity Level” for more information.

• -tab <tabfile>

Specifies the location of a Synopsys VCS table file (.tab), which vopt uses to improve the
visibility of PLI functions in the design.

<tabfile> — The location of a .tab file containing information about PLI functions. The
tool expects the .tab file to be based on Synopsys VCS version 7.2 syntax. Because
the format for this file is non-standard, changes to the format are outside of the
control of Mentor Graphics.

When you use the Three-step optimization flow, you must specify this switch on both the
vopt and vsim command lines. This is because vopt uses this file to improve the visibility of
PLI functions and vsim uses it to register the PLI functions.

• -time

Reports the "wall clock time" vopt takes to optimize the design. Optional. Note that if many
processes are running on the same system, wall clock time may differ greatly from the
actual "cpu time" spent on vopt.

• -timescale <time_units>/<time_precision>

Specifies the default timescale for modules not having an explicit timescale directive in
effect during compilation. Optional. The format of the -timescale argument is the same as
that of the `timescale directive. The format for <time_units> and <time_precision> is
<n><units>. The value of <n> must be 1, 10, or 100. The value of <units> must be fs, ps,
ns, us, ms, or s. In addition, the <time_units> must be greater than or equal to the
<time_precision>.

• +typdelays

Selects typical delays from the "min:typ:max" expressions. Default. If preferred, you can
defer delay selection until simulation time by using vsim -sdfmin.

• -version

Returns the version of the optimizer as used by the licensing tools. Optional.

• -warning <msg_number>[,<msg_number>,...]

Changes the severity level of the specified message(s) to "warning." Optional. Edit the
warning variable in the modelsim.ini file to set a permanent default. Refer to “Changing
Message Severity Level” for more information.

• -work <library_name>

Specifies a logical name or pathname of a library that is to be mapped to the logical library
work. Optional. By default, the optimized output for the design is added to the work
library. The specified pathname overrides the pathname specified for work in the project
file.

Commands
vopt

ModelSim SE Reference Manual, v6.5b 547

• <design_unit>

One or more top-level design units that you want to optimize. Required.

• -o <name>

Specifies a name for the optimized version of the design. Required. The name can contain
only lower-case alpha and numeric characters and underscores.

Examples

• Run optimizations on top-level design unit top and produce an optimized design unit
named "mydesign". The simulator vsim is then invoked on design unit mydesign.

vopt top -o mydesign
vsim mydesign

• Run optimizations both top-level design units top and testtop and produce a global
optimized design unit named mydesign.

vopt top testtop -o mydesign

• Run optimizations on top-level design unit top but preserve all visibility. Names the
optimized design "mydesign."

vopt top +acc -o mydesign

• Run optimizations on top-level design unit top but preserve visibility on sub-module
foo. Names the optimized design "mydesign."

vopt top +acc+foo -o mydesign

• Run optimizations on top-level design unit top but preserve visibility on sub-module foo
and all its children.

vopt top +acc+foo. -o mydesign

• Run optimizations on top-level design unit top but enable net and register access in all
modules in the design. Names the optimized design "mydesign."

vopt top +acc=rn -o mydesign

• The -fsmmultitrans option enables detection and reporting of multi-state transitions
when used with the +cover f argument.

vopt -o t top +cover=f -fsmmultitrans

See also

“Optimizing Designs with vopt”

ModelSim SE Reference Manual, v6.5b548

Commands
vsim

vsim
The vsim command is used to invoke the VSIM simulator, to view the results of a previous
simulation run (when invoked with the -view switch), or to view coverage data stored in the
UCDB from a previous simulation run (when invoked with the -viewcov switch).

You can simulate a VHDL configuration or an entity/architecture pair; a Verilog module or
configuration; a SystemC module; or an optimized design. If you specify a VHDL
configuration, it is invalid to specify an architecture. During elaboration vsim determines if the
source has been modified since the last compile.

To manually interrupt design loading use the Break key or <Ctrl-c> from a shell.

You can invoke vsim from a command prompt or in the Transcript window of the Main
window. You can also invoke it from the GUI by selecting Simulate > Start Simulation.

All arguments to the vsim command are case sensitive; for example, -g and -G are not
equivalent.

Syntax

Note
This Syntax section presents all of the vsim switches in alphabetical order, while the
Arguments section groups the arguments into the following sections:

Arguments, all languages
Arguments, VHDL
Arguments, Verilog
Arguments, SystemC
Arguments, object

vsim [options]

[options]:

[-absentisempty] [+alt_path_delays] [-assertfile <filename>]
 [-autoexclusionsdisable=<exclusion_type>]

[-c] [-capacity] [-colormap new] [-compress_elab] [-coverage] [-covercountnone][-
cpppath <filename>]

[-debugDB=<db_pathname>] [+delayed_timing_checks] [-display <display_spec>]
[-displaymsgmode both | tran | wlf] [-do “<command_string>” | <macro_file_name>]
[-dpiexportobj <objfile>] [-dpioutoftheblue 0 | 1 | 2] [+dumpports+collapse |
+dumpports+nocollapse] [+dumpports+direction] [+dumpports+no_strength_range]
[+dumpports+unique]

[-error <msg_number>[,<msg_number>,…]] [-elab <filename>]
[-elab_cont <filename>] [-elab_defer_fli] [-errorfile <filename>]

[-f <filename>] [-fatal <msg_number>[,<msg_number>,…]]
[-filemap_elab <HDLfilename>=<NEWfilename>] [-foreign <attribute>]

Commands
vsim

ModelSim SE Reference Manual, v6.5b 549

[-g<Name>=<Value> …] [-G<Name>=<Value> …] [-gblso <filename>]
[-geometry <geometry_spec>] [-gui]

[-hazards] [-help]

[-i] [+initmem+<seed>] [+initreg+<seed>] [-installcolormap]

[-keeploaded] [-keeploadedrestart] [-keepstdout]

[-l <filename>] [-lib <libname>] [<license_option>] [-L <library_name> …]
[-learn <root_file_name>] [-Lf <library_name> …] [<library_name>.<design_unit>]
[-load_elab <filename>]

[+maxdelays] [+mindelays] [-memprof] [-memprof+call] [-memprof+file=<filename>]
[-memprof+fileonly=<filename>] [-modelsimini <ini_filepath>]
[-msgmode both | tran | wlf] [-multisource_delay min | max | latest]
[+multisource_int_delays]

[-name <name>] [+no_autdtc] [-noautoldlibpath] [-nodpiexports] [-no_autoacc]
[+no_cancelled_e_msg] [+no_glitch_msg] [+no_neg_tchk] [+no_notifier]
[+no_path_edge] [+no_pulse_msg] [-no_risefall_delaynets] [+no_show_cancelled_e]
[+no_tchk_msg] [-nocollapse] [-nocapacity] [-nocompress] [-noexcludehiz] [-
nofileshare] [-noimmedca] [-togglevlogints | -notogglevlogints] [-noglitch]
[+nosdferror] [+nosdfwarn] [+nospecify] [-notoggleints]
[-note <msg_number>[,<msg_number>,…]] [+notimingchecks] [+nowarnBSOB]
[+nowarn<CODE>] [+ntc_warn]

[-onfinish ask | stop | exit]

 [-pli "<object list>"] [-plicompatdefault [latest | 2005 | 2001]] [+<plusarg>] [-
printsimstats] [+pulse_e/<percent>] [+pulse_e_style_ondetect]
[+pulse_e_style_onevent] [+pulse_r/<percent>]

[-quiet]

[-restore <filename>] [-runinit]

[-sc_arg <string> ...] [-scdpidebug] [-sclib <library>] [+sdf_iopath_to_prim_ok]
[+sdf_nocheck_celltype]
[-sdfmin | -sdftyp | -sdfmax[@<delayScale>] [<instance>=]<sdf_filename>]
[-sdfmaxerrors <n>] [-sdfnoerror] [-sdfnowarn] [+sdf_verbose]
[-std_input <filename>] [-std_output <filename>] [+show_cancelled_e]
[-strictvital] [-suppress <msg_number>[,<msg_number>,…]] [-sv_lib <shared_obj>]
[-sv_liblist <filename>] [-sv_root <dirname>] [-sync]

[-t [<multiplier>]<time_unit>] [-tab <tabfile>] [-tag <string>] [-title <title>]
[-togglecountlimit <int>] [-togglefixedsizearray | -notogglefixedsizearray]
[-togglemaxfixedsizearray <int>] [-togglemaxintvalues <int>]
[-togglemaxrealvalues <int>] [-togglepackedasvec] [-togglevlogenumbits]
[-notoggleints] [-togglevlogints | -notogglevlogints]
[-togglevlogreal | -notogglevlogreal] [-togglewidthlimit <int>]
[-trace_foreign <int>] [+transport_int_delays]
[+transport_path_delays] [+typdelays]

[-v2k_int_delays] [-vcdread <filename>] [-vcdstim [<instance>=]<filename>]
[-version] [-view [<dataset_name>=]<WLF_filename>]

ModelSim SE Reference Manual, v6.5b550

Commands
vsim

[-viewcov [<dataset_name>=]<UCDB_filename>] [-visual <visual>] [-vital2.2b]
[+vlog_retain_on] [-vopt | -novopt] [-voptargs="<args>"] [-vopt_verbose]

[-warning <msg_number>[,<msg_number>,…]] [-wlf <filename>] [-wlfcachesize <n>]
[-wlfcollapsedelta] [-wlfcollapsetime] [-wlfcompress] [-wlfdeleteonquit] [-wlflock]
[-wlfnocollapse] [-wlfnocompress] [-wlfnodeleteonquit] [-wlfnolock] [-wlfnoopt]
[-wlfopt] [-wlfsimcachesize <n>] [-wlfslim <size>] [-wlftlim <duration>]
[-wlfthreads | -wlfnothreads]

Arguments, all languages

• -assertfile <filename>

Designates an alternative file for recording VHDL assertion messages. Optional. An
alternate file may also be specified by the AssertFile modelsim.ini variable. By default,
assertion messages are output to the file specified by the TranscriptFile variable in the
modelsim.ini file (refer to “Creating a Transcript File”).

• -autoexclusionsdisable=<exclusion_type>

(optional) Disables automatic code coverage exclusions for:

o FSMs and it’s transitions

o VHDL and SystemVerilog immediate and concurrent assertions and their action
blocks.

<exclusion_type> — A comma-separated list of values that specify the automatic
exclusions you wish to disable, where the values are:

fsm — disables automatic exclusion of FSMs

assertions — disables automatic exclusion of VHDL and SystemVerilog immediate
and concurrent assertions.

none — equivalent to “fsm,assertions”

To change this default behavior, use the AutoExclusionsDisable variable in the modelsim.ini
file. If an FSM state is excluded, then all transitions from and to this state are also excluded.

• -c

Specifies that the simulator is to be run in command-line mode. Optional. Refer to “Modes
of Operation” for more information.

• -capacity

Enables the fine-grain analysis display of memory capacity (coarse-grain analysis is enabled
by default). Optional.

• -colormap new

Specifies that the window should have a new private colormap instead of using the default
colormap for the screen. Optional.

Commands
vsim

ModelSim SE Reference Manual, v6.5b 551

• -compress_elab

Compresses an elaboration file when it is created. Optional. Refer to “Simulating with an
Elaboration File” for more information.

• -coverage

Enables code coverage statistics collection during simulation. Optional. Important: in order
for coverage to be collected and displayed, you must have used +cover options during
compilation or optimization.

• -covercountnone

Disables the default behavior of the simulator to increment the count of all matching rows in
condition and expression coverage UDP tables. Optional. Change the default behavior by
editing the CoverCountAll variable in the modelsim.ini file. Please refer to the Code
Coverage chapter in the User’s Manual for more information.

• -cpppath <filename>

Specifies the location of a g++ executable other than the default g++ compiler installed with
ModelSim. Optional. Overrides the CppPath variable in the modelsim.ini file.

• -display <display_spec>

Specifies the name of the display to use. Optional. Does not apply to Windows platforms.

For example:

-display :0

• -displaymsgmode both | tran | wlf

Controls the transcription of $display system task messages to the transcript and/or the
Message Viewer. Refer to the section "Message Viewer Window" in the User’s Manual for
more information and the displaymsgmode .ini file variable.

both — outputs messages to both the transcript and the WLF file.

tran — outputs messages only to the transcript, therefore they are not available in the
Message Viewer. Default behavior

wlf — outputs messages only to the WLF file/Message Viewer, therefore they are not
available in the transcript.

The display system tasks displayed with this functionality include: $display, $strobe,
$monitor, $write as well as the analogous file I/O tasks that write to STDOUT, such as
$fwrite or $fdisplay.

• -debugDB=<db_pathname>

Instructs ModelSim to generate database of dataflow connectivity information to be used for
post-sim debug in the Dataflow window. Optional. The database pathname should have a
.dbg extension. If a database pathname is not specified, ModelSim creates a database file
named vsim.dbg in the current directory. See Post-Simulation Debug Flow Details.

ModelSim SE Reference Manual, v6.5b552

Commands
vsim

• -do “<command_string>” | <macro_file_name>

Instructs vsim to use the command(s) specified by <command_string> or the macro file
named by <macro_file_name> rather than the startup file specified in the .ini file, if any.
Optional. Multiple commands should be separated by semi-colons (;).

• -dpioutoftheblue 0 | 1 | 2

Instructs vsim to allow DPI out-of-the-blue calls from C functions. The C functions must
not be declared as import tasks or functions.

0 — Support for DPI out-of-the-blue calls is disabled.

1 — Support for DPI out-of-the-blue calls is enabled, but debugging support is not
available.

2 — Support for DPI out-of-the-blue calls is enabled with debugging support for a
SystemC thread.

Debugging support for DPI out-of-the-blue calls from a SystemC method requires two vsim
arguments entered together at the command line: -dpioutoftheblue 2 and -scdpidebug. See
-scdpidebug for more information.

Related modelsim.ini file variable is DpiOutOfTheBlue.

• +dumpports+collapse | +dumpports+nocollapse

Determines whether vectors (VCD id entries) in dumpports output or collapsed or not.
Optional. The default behavior is collapsed, and can be changed by setting the
DumpportsCollapse variable in the modelsim.ini file.

• +dumpports+direction

Modifies the format of extended VCD files to contain direction information. Optional.

• +dumpports+no_strength_range

Ignores strength ranges when resolving driver values for an extended VCD file. Optional.
This argument is an extension to the IEEE 1364 specification. Refer to “Resolving Values”
for additional information.

• +dumpports+unique

Generates unique VCD variable names for ports in a VCD file even if those ports are
connected to the same collapsed net. Optional.

• -elab <filename>

Creates an elaboration file for use with -load_elab. Optional. Refer to “Simulating with an
Elaboration File” for more information.

• -elab_cont <filename>

Creates an elaboration file for use with -load_elab and then continues the simulation.
Optional.

Commands
vsim

ModelSim SE Reference Manual, v6.5b 553

• -elab_defer_fli

Defers the initialization of FLI models until the load of the elaboration file. Use this
argument along with -elab to create elaboration files for designs with FLI models that don't
support checkpoint/restore. Note that FLI models sensitive to design load ordering may still
not work correctly even if you use this argument.

• -error <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "error." Optional. Edit the error
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• -errorfile <filename>

Designates an alternative file for recording error messages. Optional. An alternate file may
also be specified by the ErrorFile modelsim.ini variable. By default, error messages are
output to the file specified by the TranscriptFile variable in the modelsim.ini file (refer to
“Creating a Transcript File”).

• -f <filename>

Specifies a file with more vsim command arguments. Optional. Allows complex argument
strings to be reused without retyping.

Refer to the section "Argument Files" for more information.

• -fatal <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "fatal." Optional. Edit the fatal
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• -filemap_elab <HDLfilename>=<NEWfilename>

Defines a file mapping during -load_elab that lets you change the stimulus. Optional. Refer
to “Simulating with an Elaboration File” for more information.

• -g<Name>=<Value> …

Assigns a value to all specified VHDL generics and Verilog parameters that have not
received explicit values in generic maps, instantiations, or via defparams (such as top-level
generics/parameters and generics/parameters that would otherwise receive their default
values). Optional. Note there is no space between -g and <Name>=<Value>.

"Name" is the name of the generic/parameter, exactly as it appears in the VHDL source
(case is ignored) or Verilog source. "Value" is an appropriate value for the declared data
type of a VHDL generic or any legal value for a Verilog parameter. Make sure the Value
you specify for a VHDL generic is appropriate for VHDL declared data types.

No spaces are allowed anywhere in the specification, except within quotes when specifying
a string value. Multiple -g options are allowed, one for each generic/parameter.

Name may be prefixed with a relative or absolute hierarchical path to select generics in an
instance-specific manner. For example, specifying -g/top/u1/tpd=20ns on the command line

ModelSim SE Reference Manual, v6.5b554

Commands
vsim

would affect only the tpd generic on the /top/u1 instance, assigning it a value of 20ns.
Specifying -gu1/tpd=20ns affects the tpd generic on all instances named u1. Specifying -
gtpd=20ns affects all generics named tpd.

If more than one -g option selects a given generic the most explicit specification takes
precedence. For example,

vsim -g/top/ram/u1/tpd_hl=10ns -gtpd_hl=15ns top

This command sets tpd_hl to 10ns for the /top/ram/u1 instance. However, all other tpd_hl
generics on other instances will be set to 15ns.

Limitation: In general, generics/parameters of composite type (arrays and records) cannot
be set from the command line. However, you can set string arrays, std_logic vectors, and bit
vectors if they can be set using a quoted string. For example,

-gstrgen="This is a string"
-gslv="01001110"

The quotation marks must make it into vsim as part of the string because the type of the
value must be determinable outside of any context. Therefore, when entering this command
from a shell, put single quotes (') around the string. For example:

-gstrgen='"This is a string"'

If working within the ModelSim GUI, you would enter the command as follows:

{-gstrgen="This is a string"}

You can also enclose the value escaped quotes (\"), for example:

-gstrgen=\"This is a string\"

• -G<Name>=<Value> …

Same as -g (see above) except that it will also override generics/parameters that received
explicit values in generic maps, instantiations, or from defparams. Optional. Note there is no
space between -G and <Name>=<Value>. This argument is the only way for you to alter the
generic/parameter, such as its length, (other than its value) after the design has been loaded.

• -gblso <filename>

On UNIX platforms, loads PLI/FLI shared objects with global symbol visibility. Essentially
all data and functions are exported from the specified shared object and are available to be
referenced and used by other shared objects. This option may also be specified with the
GlobalSharedObjectsList variable in the modelsim.ini file. Optional.

• -geometry <geometry_spec>

Specifies the size and location of the main window. Optional. Where <geometry_spec> is of
the form:

WxH+X+Y

Commands
vsim

ModelSim SE Reference Manual, v6.5b 555

• -gui

Starts the ModelSim GUI without loading a design and redirects the standard output (stdout)
to the GUI Transcript window. Optional.

• -help

Displays the command’s options and arguments. Optional.

• -i

Specifies that the simulator is to be run in interactive mode. Optional.

• -installcolormap

For UNIX only. Causes vsim to use its own colormap so as not to hog all the colors on the
display. This is similar to the -install switch on Netscape. Optional.

• -keeploaded

Prevents the simulator from unloading/reloading any FLI/PLI/VPI shared libraries when it
restarts or loads a new design. Optional. The shared libraries will remain loaded at their
current positions. User application code in the shared libraries must reset its internal state
during a restart in order for this to work effectively.

• -keeploadedrestart

Prevents the simulator from unloading/reloading any FLI/PLI/VPI shared libraries during a
restart. Optional. The shared libraries will remain loaded at their current positions. User
application code in the shared libraries must reset its internal state during a restart in order
for this to work effectively.

We recommend using this option if you’ll be doing warm restores after a restart and the user
application code has set callbacks in the simulator. Otherwise, the callback function pointers
might not be valid if the shared library is loaded into a new position.

• -keepstdout

For use with foreign programs. Instructs the simulator to not redirect the stdout stream to the
Main window. Optional.

• -l <filename>

Saves the contents of the Transcript window to <filename>. Optional. Default is taken from
the TranscriptFile variable (initially set to transcript) in the modelsim.ini.

• -L <library_name> …

Specifies the library to search for design units instantiated from Verilog and for VHDL
default component binding. Refer to “Library Usage” for more information. If multiple
libraries are specified, each must be preceded by the -L option. Libraries are searched in the
order in which they appear on the command line.

ModelSim SE Reference Manual, v6.5b556

Commands
vsim

• -learn <root_file_name>

(Must be specified with -novopt) Specifies that you want the simulator to generate control
files for retaining the proper level of visibility when performing an optimized simulation.
The files generated are:

top_pli_learn.acc
top_pli_learn.ocf
top_pli_learn.ocm

Refer to “Preserving Design Visibility with the Learn Flow” in the User’s Manual for more
information.

• -Lf <library_name> …

Same as -L but libraries are searched before ‘uselib directives. Refer to “Library Usage” for
more information. Optional.

• -lib <libname>

Specifies the default working library where vsim will look for the design unit(s). Optional.
Default is "work".

• <license_option>

Restricts the search of the license manager. Optional. Use one of the license options listed
below.

You can specify a license option only when invoking vsim from a UNIX/Linux shell
command line, DOS command shell command line, or a Target for a Windows desktop
shortcut. If you specify a license option from within the GUI, you will receive a message
informing you of the error.

You can also specify these options with the License variable in the modelsim.ini file. Note
that settings made from the command line are additive to options set in the License variable.

<license_option> Description

-lic_lnl_only check out msimhdlsim license only

-lic_mixed_only check out msimhdlsim/msimhdlmix licenses only

-lic_no_lnl exclude msimhdlsim license

-lic_no_mix exclude msimhdlmix license

-lic_no_slvhdl exclude qhsimvh license

-lic_no_slvlog exclude qhsimvl license

-lic_noqueue do not wait in queue when license is unavailable

-lic_plus check out PLUS (VHDL and Verilog) license
immediately after invocation

-lic_vhdl check out VHDL license immediately after invocation

Commands
vsim

ModelSim SE Reference Manual, v6.5b 557

For a complete list of license features and descriptions, see the Installation & Licensing
Guide.

• -load_elab <filename>

Loads an elaboration file that was created with -elab. Optional. Refer to “Simulating with
an Elaboration File” for more information.

You can not use this switch with any form of the -memprof switch. To analyze memory
usage when simulating an elaboration file, you will need to use the profile on command. For
example:

vsim -load_elab top.elab -do
"profile on -m -fileonly top_mem_run.rpt; run -all"

• -memprof

Causes memory allocation data to be collected during elaboration and simulation. Shows
what part of the design is using memory. Optional.

• -memprof+call

Unwinds the call stack and collects the call tree information. Optional. At the VSIM prompt,
call stack collection can also be turned on with profile option collect_calltrees on and off
with profile option collect_calltrees off.

• -memprof+file=<filename>

Saves memory profile data to the named file and makes the data available for viewing and
reporting during the current simulation. The file can be used for archival or comparison
purposes. Optional.

• -memprof+fileonly=<filename>

Saves memory profile data to the named file only. The file can be read in later with the
profile reload command for analysis. This mode is useful for large designs, when the design
plus internal profiling data would use up too much memory. Optional.

• -msgmode both | tran | wlf

Specifies the location(s) for the simulator to output elaboration and runtime messages. Refer
to the section "Message Viewer Window" in the User’s Manual for more information.

both — outputs messages to both the transcript and the WLF file. Default behavior

tran — outputs messages only to the transcript, therefore they are not available in the
Message Viewer.

wlf — outputs messages only to the WLF file/Message Viewer, therefore they are not
available in the transcript.

• -modelsimini <ini_filepath>

Loads an alternate initialization file that replaces the current initialization file. Overrides the
file path specified in the MODELSIM environment variable. Specifies either an absolute or
relative path to the initialization file. On Windows systems the path separator should be a
forward slash (/).

ModelSim SE Reference Manual, v6.5b558

Commands
vsim

• -multisource_delay min | max | latest

Controls the handling of multiple PORT or INTERCONNECT constructs that terminate at
the same port. Optional. By default, the Module Input Port Delay (MIPD) is set to the max
value encountered in the SDF file. Alternatively, you may choose the min or latest of the
values. If you have a Verilog design and want to model multiple interconnect paths
independently, use the +multisource_int_delays argument.

• +multisource_int_delays

Enables multisource interconnect delay with pulse handling and transport delay behavior.
Works for both Verilog and VITAL cells. Optional.

Use this argument when you have interconnect data in your SDF file and you want the delay
on each interconnect path modeled independently. Pulse handling is configured using the
+pulse_int_e and +pulse_int_r switches (described below).

The +multisource_int_delays argument cannot be used if you compiled using the -novital
argument to vcom. The -novital argument instructs vcom to implement VITAL
functionality using VHDL code instead of accelerated code, and multisource interconnect
delays cannot be implemented purely within VHDL.

• -name <name>

Specifies the application name used by the interpreter for send commands. This does not
affect the title of the window. Optional.

• -no_autoacc

Prevents vsim from automatically passing the +acc switch to vopt. Optional. By specifying
this argument you can prevent vopt from opening any Verilog PLI modules for
accessibility. You can pass specific +acc options to vopt by using the -voptargs argument.

• -noautoldlibpath

Disables the default internal setting of LD_LIBRARY_PATH, enabling you to set it
yourself. Optional. Use this argument to make sure that LD_LIBRARY_PATH is not set
automatically while you are using the GUI,

• -nocapacity

Disables the display of both coarse-grain and fine-grain analysis of memory capacity.
Optional.

• -nocompress

Causes VSIM to create uncompressed checkpoint files. Optional. This option may also be
specified with the CheckpointCompressMode variable in the modelsim.ini file.

• -noimmedca

Causes Verilog event ordering to occur without enforced prioritization—continuous
assignments and primitives are not run before other normal priority processes scheduled in
the same iteration. Use this argument to prevent the default event ordering where continuous
assignments and primitives are run with “immediate priority.” Optional.

Commands
vsim

ModelSim SE Reference Manual, v6.5b 559

• +no_notifier

Disables the toggling of the notifier register argument of all timing check system tasks.
Optional. By default, the notifier is toggled when there is a timing check violation, and the
notifier usually causes a UDP to propagate an X. This argument suppresses X propagation
in both Verilog and VITAL for the entire design.

You can suppress X propagation on individual instances using the tcheck_set command.

• +nospecify

Disables specify path delays and timing checks in Verilog. Optional.

• +no_tchk_msg

Disables error messages generated when timing checks are violated. Optional. For Verilog,
it disables messages issued by timing check system tasks. For VITAL, it overrides the
MsgOn arguments and generics.

Notifier registers are still toggled and may result in the propagation of Xs for timing check
violations.

You can disable individual messages using the tcheck_set command.

• -note <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "note." Optional. Edit the note
variable in the modelsim.ini file to set a permanent default. Refer to “Changing Message
Severity Level” for more information.

• +notimingchecks

Disables Verilog timing checks. (This option sets the generic TimingChecksOn to FALSE
for all VHDL Vital models with the Vital_level0 or Vital_level1 attribute. Generics with the
name TimingChecksOn on non-VITAL models are unaffected.) Optional. By default,
Verilog timing check system tasks ($setup, $hold,…) in specify blocks are enabled. For
VITAL, the timing check default is controlled by the ASIC or FPGA vendor, but most
default to enabled.

You can disable individual checks using the tcheck_set command.

• -novopt

Prevents ModelSim from running the vopt command automatically. If you have the
VoptFlow variable set to 1 (optimizations turned on) in the modelsim.ini file, vsim
automatically runs vopt if you didn’t invoke it manually. If you specify this argument, you
should be sure to specify it with your compilation command (vcom or vlog). One scenario in
which you may want to use this switch is when coding an RTL block with a small testcase.

• -plicompatdefault [latest | 2005 | 2001]

Specifies the VPI object model behavior within vsim. This switch applies globally, not to
individual libraries.

latest — This is equivalent to the "2009" argument. This is the default behavior if you do
not specify this switch or if you specify the switch without an argument.

ModelSim SE Reference Manual, v6.5b560

Commands
vsim

2009 — Instructs vsim to use the object models as defined in IEEE Std P1800-2009
(unapproved draft standard). You can also use "09" as an alias.

2005 — Instructs vsim to use the object models as defined in IEEE Std 1800-2005 and
IEEE Std 1364-2005. You can also use "05" as an alias.

2001 — Instructs vsim to use the object models as defined in IEEE Std 1364-2001.
When you specify this argument, SystemVerilog objects will not be accessible. You
can also use "01" as an alias.

You can also control this behavior with the PliCompatDefault variable in the modelsim.ini
file, where the -plicompatdefault argument will override the PliCompatDefault variable.

You should note that there are a few cases where the 2005 VPI object model is incompatible
with the 2001 model, which is inherent in the specifications.

Refer to the appendix "Verilog Interfaces to C" in the User’s Manual for more information.

• -printsimstats

Prints the output of the simstats command to the screen at the end of simulation before
exiting. Edit the PrintSimStats variable in the modelsim.ini file to set the simulation to print
the simstats data by default.

• +pulse_int_e/<percent>

Controls how pulses are propagated through interconnect delays, where <percent> is a
number between 0 and 100 that specifies the error limit as a percentage of the interconnect
delay. Optional. Used in conjunction with +multisource_int_delays (see above). This
option works for both Verilog and VITAL cells, though the destination of the interconnect
must be a Verilog cell. The source may be VITAL or Verilog.

A pulse greater than or equal to the error limit propagates to the output in transport mode
(transport mode allows multiple pending transitions on an output). A pulse less than the
error limit and greater than or equal to the rejection limit (see +pulse_int_r/<percent>
below) propagates to the output as an X. If the rejection limit is not specified, then it
defaults to the error limit. For example, consider an interconnect delay of 10 along with a
+pulse_int_e/80 option. The error limit is 80% of 10 and the rejection limit defaults to 80%
of 10. This results in the propagation of pulses greater than or equal to 8, while all other
pulses are filtered.

• +pulse_int_r/<percent>

Controls how pulses are propagated through interconnect delays, where <percent> is a
number between 0 and 100 that specifies the rejection limit as a percentage of the
interconnect delay. Optional. This option works for both Verilog and VITAL cells, though
the destination of the interconnect must be a Verilog cell. The source may be VITAL or
Verilog.

A pulse less than the rejection limit is filtered. If the error limit is not specified by
+pulse_int_e then it defaults to the rejection limit.

• -quiet

Disable 'Loading' messages during batch-mode simulation. Optional.

Commands
vsim

ModelSim SE Reference Manual, v6.5b 561

• -restore <filename>

Specifies that vsim is to restore a simulation saved with the checkpoint command. Optional.

You must restore vsim under the same environment in which you did the checkpoint. This
means not only the same type of machine and OS and at least the same memory size, but
also the same vsim environment such as GUI vs. command line mode.

• -runinit

Initializes non-trivial static SystemVerilog variables, for example expressions involving
other variables and function calls, before displaying the simulation prompt.

• +sdf_iopath_to_prim_ok

Prevents vsim from issuing an error when it cannot locate specify path delays to annotate. If
you specify this argument, IOPATH statements are annotated to the primitive driving the
destination port if a corresponding specify path is not found. Optional. Refer to “SDF to
Verilog Construct Matching” for additional information.

• -sdfmin | -sdftyp | -sdfmax[@<delayScale>] [<instance>=]<sdf_filename>

(optional) Annotates VITAL or Verilog cells in the specified SDF file (a Standard Delay
Format file) with minimum, typical, or maximum timing.

@<delayScale> — scales all values by the specified value. For example, if you specify
-sdfmax@1.5, all maximum values in the SDF file are scaled to 150% of their
original value.

Do not use this option if you scaled the SDF file while using the sdfcom command.

<instance>= — specifies a specific instance for the associated SDF file. Use this when
not performing backannotation at the top level.

<sdf_filename> — specifies the file containing the SDF information.

• -sdfminr | -sdftypr | -sdfmaxr[@<delayScale>] [<instance>=]<sdf_filename>

(optional) Specifies when an instance of a black-boxed (vopt -bbox) module, which has a
associated, default SDF file is to be re-annotated with minimum, typical, or maximum
timing from the specified SDF file.

@<delayScale> — scales all values by the specified value. For example, if you specify
-sdfmax@1.5, all maximum values in the SDF file are scaled to 150% of their
original value.

Do not use this option if you scaled the SDF file while using the sdfcom command.

<instance>= — specifies a specific instance for the associated SDF file. Use this when
not performing backannotation at the top level.

<sdf_filename> — specifies the file containing the SDF information.

Note
The simulator assumes that the instance/timing object hierarchy in the new SDF file is
compatible with the SDF file specified during blackboxing with the vopt command.

ModelSim SE Reference Manual, v6.5b562

Commands
vsim

The following is a simple usage flow:

Assume module top contains three instances (u1, u2, and u3)
of a black-boxed module bboxMod.
vlib work
vlog bboxMod.v

blackbox bboxMod and annotate with sdf1.
vopt -bbox bboxMod -o bboxMod_opt -sdfmin bboxMod=sdf1

vlog top.v

Use the default SDF file sdf1 for the blackbox instance of u1,
but override the SDF for u2 and u3.
vsim top +sdf_verbose -sdftypr /top/u2=sdf2 -sdfmaxr /top/u3=sdf3
run -all

• -sdfmaxerrors <n>

Controls the number of Verilog SDF missing instance messages to be generated before
terminating vsim. Optional. <n> is the maximum number of missing instance error
messages to be emitted. The default number is 5.

• -sdfnoerror

Errors issued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Changes SDF errors to warnings so that the
simulation can continue. Optional.

• -sdfnowarn

Disables warnings from the SDF reader. Optional. Refer to “VHDL Simulation” for an
additional discussion of SDF.

• +sdf_verbose

Turns on the verbose mode during SDF annotation. The Transcript window provides
detailed warnings and summaries of the current annotation as well as information including
the module name, source file name and line number. Optional.

• -suppress <msg_number>[,<msg_number>,…]

Prevents the specified message(s) from displaying. Optional. You cannot suppress Fatal or
Internal messages. Edit the suppress variable in the modelsim.ini file to set a permanent
default. Refer to “Changing Message Severity Level” for more information.

• -sync

Executes all X server commands synchronously, so that errors are reported immediately.
Does not apply to Windows platforms.

• -t [<multiplier>]<time_unit>

Specifies the simulator time resolution. Optional. <time_unit> must be one of the following:

fs, ps, ns, us, ms, sec

Commands
vsim

ModelSim SE Reference Manual, v6.5b 563

The default is 1ns; the optional <multiplier> may be 1, 10 or 100. Note that there is no space
between the multiplier and the unit (for example, 10fs, not 10 fs).

If you omit the -t argument, the default simulator time resolution depends on design type:

o In a VHDL design—the value specified for the Resolution variable in modelsim.ini
is used.

o In a Verilog design with ‘timescale directives—the minimum specified time
precision of all directives is used.

o In a Verilog design with no ‘timescale directives—the value specified for the
Resolution variable in the modelsim.ini file is used.

o In a mixed design with VHDL on top—the value specified for the Resolution
variable in the modelsim.ini file is used.

o In a mixed design with Verilog on top—

• for Verilog modules not under a VHDL instance: the minimum value specified
for their ‘timescale directives is used.

• for Verilog modules under a VHDL instance: all their ‘timescale directives are
ignored (the minimum value for ‘timescale directives in all modules not under a
VHDL instance is used).

If there are no ‘timescale directives in the design, the value specified for the
Resolution variable in modelsim.ini is used.

Tip: After you have started a simulation, you can view the current simulator resolution by
using the report command as follows:

report simulator state

• -tab <tabfile>

Specifies the location of a Synopsys VCS “tab” file (.tab), which the simulator uses to
automate the registration of PLI functions in the design.

<tabfile> — The location of a .tab file contains information about PLI functions. The
tool expects the .tab file to be based on Synopsys VCS version 7.2 syntax. Because
the format for this file is non-standard, changes to the format are outside of the
control of Mentor Graphics.

By specifying the location of a .tab file, you do not need to use the -no_autoacc switch,
which prevents vopt from opening PLI modules for accessibility.

If you are using the Two-step optimization flow, the tool passes this information
automatically to vopt, which uses the file to improve accessibility rules.

If you are using the Three-step optimization flow, you must specify this switch on both the
vopt and vsim command lines.

ModelSim SE Reference Manual, v6.5b564

Commands
vsim

You can use this switch when you disable optimization with the -novopt switch.

• -tag <string>

Specifies a string tag to append to foreign trace filenames. Optional. Used with the
-trace_foreign <int> option. Used when running multiple traces in the same directory.

See the ModelSim FLI Reference for more information.

• -title <title>

Specifies the title to appear for the ModelSim Main window. Optional. If omitted the
current ModelSim version is the window title. Useful when running multiple simultaneous
simulations. Text strings with spaces must be in quotes (e.g., "my title").

• -togglecountlimit <int>

Specifies the global toggle coverage count limit for toggle nodes in an entire simulation.
Optional. Overrides the global value set by the ToggleCountLimit modelsim.ini variable. If
used, it provides default limit values for any design units not compiled with the vlog/vcom
–togglecountlimit switches. If any design units were compiled with those switches, those
values apply during simulation unless the toggle add –countlimit command is used to
override the values. After the limit is reached, further activity on the node is ignored for
toggle coverage. All possible transition edges must reach this count for the limit to take
effect. For example, if you are collecting toggle data on 0->1 and 1->0 transitions, both
transition counts must reach the limit. If you are collecting "full" data on 6 edge transitions,
all 6 must reach the limit.

• -togglewidthlimit <int>

Sets the maximum width of signals, <int>, that are automatically added to toggle coverage
with the -cover t argument for vcom or vlog. Optional. Overrides the global value set by the
ToggleWidthLimit modelsim.ini variable. If used, it provides default limit values for any
design units not compiled with the vlog/vcom –togglewidthlimit switches.

• -trace_foreign <int>

Creates two kinds of foreign interface traces: a log of what functions were called, with the
value of the arguments, and the results returned; and a set of C-language files to replay what
the foreign interface side did.

The purpose of the logfile is to aid the debugging of your FLI/PLI/VPI code. The primary
purpose of the replay facility is to send the replay file to MTI support for debugging co-
simulation problems, or debugging problems for which it is impractical to send the
FLI/PLI/VPI code. See the ModelSim FLI Reference for more information.

• +transport_int_delays

Selects transport mode with pulse control for single-source nets (one interconnect path).
Optional. By default interconnect delays operate in inertial mode (pulses smaller than the
delay are filtered). In transport mode, narrow pulses are propagated through interconnect
delays.

Commands
vsim

ModelSim SE Reference Manual, v6.5b 565

This option works for both Verilog and VITAL cells, though the destination of the
interconnect must be a Verilog cell. The source may be VITAL or Verilog. This option
works independently from +multisource_int_delays.

• -vcdstim [<instance>=]<filename>

Specifies a VCD file from which to re-simulate the design. Optional. The VCD file must
have been created in a previous ModelSim simulation using the vcd dumpports command.
Refer to “Using Extended VCD as Stimulus” for more information.

• -version

Returns the version of the simulator as used by the licensing tools. Optional.

• -view [<dataset_name>=]<WLF_filename>

Specifies a wave log format (WLF) file for vsim to read. Allows you to use vsim to view the
results from an earlier simulation. The Structure, Objects, Wave, and List windows can be
opened to look at the results stored in the WLF file (other ModelSim windows will not show
any information when you are viewing a dataset). See additional discussion in the
Examples.

• -viewcov [<dataset_name>=]<UCDB_filename>

Invokes vsim in the coverage view mode to display UCDB data.

• -visual <visual>

Specifies the visual to use for the window. Optional. Does not apply to Windows platforms.

Where <visual> may be:

<class> <depth> — One of the following:

{directcolor | grayscale | greyscale | pseudocolor | staticcolor | staticgray | staticgrey |
truecolor}

followed by:

<depth> — Specifies how many bits per pixel are needed for the visual.

default — Instructs the tool to use the default visual for the screen

<number> — Specifies a visual X identifier.

best <depth> — Instructs the tool to choose the best possible visual for the specified
<depth>, where:

<depth> — Specifies how many bits per pixel are needed for the visual.

• +vlog_retain_on

Instructs vsim to process RETAIN delays. Optional.

• -vopt

Instructs vsim to run the vopt command automatically if vopt was not manually invoked.
Not needed unless the VoptFlow variable has been set to 0 in the modelsim.ini. Optional.
Refer to the chapter entitled “Optimizing Designs with vopt” for more information.

ModelSim SE Reference Manual, v6.5b566

Commands
vsim

• -voptargs="<args>"

Specifies arguments that vsim should pass to vopt when running vopt automatically. The
primary purpose of this argument is to pass +acc arguments. Optional.

• -vopt_verbose

Outputs vopt messages to the Transcript window. Optional. By default these messages are
not displayed or saved when vopt is run via vsim.

• -warning <msg_number>[,<msg_number>,…]

Changes the severity level of the specified message(s) to "warning." Optional. Edit the
warning variable in the modelsim.ini file to set a permanent default. Refer to “Changing
Message Severity Level” for more information.

• -wlf <filename>

Specifies the name of the wave log format (WLF) file to create. The default is vsim.wlf.
Optional. This option may also be specified with the WLFFilename variable in the
modelsim.ini file.

• -wlfcachesize <n>

Specifies the size in megabytes of the WLF reader cache. Optional. By default the cache
size is set to zero. WLF reader caching caches blocks of the WLF file to reduce redundant
file I/O. This should have significant benefit in slow network environments. This option
may also be specified with the WLFCacheSize variable in the modelsim.ini file.

• -wlfcollapsedelta

Instructs ModelSim to record values in the WLF file only at the end of each simulator delta
step. Any sub-delta values are ignored. May dramatically reduce WLF file size. This option
may also be specified with the WLFCollapseMode variable in the modelsim.ini file. Default.

• -wlfcollapsetime

Instructs ModelSim to record values in the WLF file only at the end of each simulator time
step. Any delta or sub-delta values are ignored. May dramatically reduce WLF file size.
This option may also be specified with the WLFCollapseMode variable in the modelsim.ini
file. Optional.

• -wlfcompress

Creates compressed WLF files. Default. Use -wlfnocompress to turn off compression. This
option may also be specified with the WLFCompress variable in the modelsim.ini file.

• -wlfdeleteonquit

Deletes the current simulation WLF file (vsim.wlf) automatically when the simulator exits.
Optional. This option may also be specified with the WLFDeleteOnQuit variable in the
modelsim.ini file.

• -wlflock

Locks a WLF file. Optional. An invocation of ModelSim will not overwrite a WLF file that
is being written by a different invocation.

Commands
vsim

ModelSim SE Reference Manual, v6.5b 567

• -wlfnocollapse

Instructs ModelSim to preserve all events for each logged signal and their event order to the
WLF file. May result in relatively larger WLF files. This option may also be specified with
the WLFCollapseMode variable in the modelsim.ini file. Optional.

• -wlfnocompress

Causes vsim to create uncompressed WLF files. Optional. WLF files are compressed by
default in order to reduce file size. This may slow simulation speed by one to two percent.
You may want to disable compression to speed up simulation or if you are experiencing
problems with faulty data in the resulting WLF file. This option may also be specified with
the WLFCompress variable in the modelsim.ini file.

• -wlfnodeleteonquit

Preserves the current simulation WLF file (vsim.wlf) when the simulator exits. Default.
This option may also be specified with the WLFDeleteOnQuit variable in the modelsim.ini
file.

• -wlfnolock

Disables WLF file locking. Optional. This will prevent vsim from checking whether a WLF
file is locked prior to opening it as well as preventing vsim from attempting to lock a WLF
once it has been opened.

• -wlfnoopt

Disables optimization of waveform display in the Wave window. Optional. This option may
also be specified with the WLFOptimize variable in the modelsim.ini file.

• -wlfopt

Optimizes the display of waveforms in the Wave window. Default. Optional. This option
may also be specified with the WLFOptimize variable in the modelsim.ini file.

• -wlfsimcachesize <n>

Specifies the size in megabytes of the WLF reader cache for the current simulation dataset
only. Optional. By default the cache size is set to zero. This makes it easier to set different
sizes for the WLF reader cache used during simulation and those used during post-
simulation debug. WLF reader caching caches blocks of the WLF file to reduce redundant
file I/O. If neither -wlfsimcachesize nor WLFSimCacheSize modelsim.ini variable are
specified, the -wlfcachesize or WLFCacheSize settings will be used.

• -wlfslim <size>

(optional) Specifies a size restriction for the event portion of the WLF file.

size — an integer, in megabytes, where the default is 0, which implies an unlimited size.

Note that a WLF file contains event, header, and symbol portions. The size restriction is
placed on the event portion only. When ModelSim exits, the entire header and symbol
portion of the WLF file is written. Consequently, the resulting file will be larger than the
specified size.

ModelSim SE Reference Manual, v6.5b568

Commands
vsim

QuestaSim uses 64-bit file I/O for maintaining the WLF file, which allows access to file
systems supporting up to 263-byte files. File size limitations are also governed by the OS file
system in use as well as per-process limits on file size. You can determine any per-process
limit by using the following shell commands:

o sh/bash/ksh: ulimit -a

o csh/tcsh: limit

If used in conjunction with -wlftlim, the more restrictive of the limits takes precedence.

This option may also be specified with the WLFSizeLimit variable in the modelsim.ini file.
(See Limiting the WLF File Size.)

• -wlfthreads | -wlfnothreads

Specifies whether the logging of information to the WLF file is performed using
multithreading.

This behavior is on (-wlfthreads) by default on Solaris and Linux platforms where there are
more than one processor on the system. If there is only one processor available, or you are
running on a Windows system, this behavior is off by default (-wlfnothreads).

When this behavior is enabled, the logging of information is performed on the secondary
processor while the simulation and other tasks are performed on the primary processor.

You can turn this option off with the -wlfnothreads option, which you may want to do if you
are performing several simulations with logging at the same time.

You can also control this behavior with the WLFUseThreads variable in the modelsim.ini
file.

• -wlftlim <duration>

Specifies the duration of simulation time for WLF file recording. Optional. The default is
infinite time (0). The <duration> is an integer of simulation time at the current resolution;
you can optionally specify the resolution if you place curly braces around the specification.
For example,

{5000 ns}

sets the duration at 5000 nanoseconds regardless of the current simulator resolution.

The time range begins at the current simulation time and moves back in simulation time for
the specified duration. For example,

vsim -wlftlim 5000

writes at most the last 5000ns of the current simulation to the WLF file (the current
simulation resolution in this case is ns).

If used in conjunction with -wlfslim, the more restrictive of the limits will take effect.

This option may also be specified with the WLFTimeLimit variable in the modelsim.ini file.

Commands
vsim

ModelSim SE Reference Manual, v6.5b 569

The -wlfslim and -wlftlim switches were designed to help users limit WLF file sizes for
long or heavily logged simulations. When small values are used for these switches, the
values may be overridden by the internal granularity limits of the WLF file format. (See
Limiting the WLF File Size.)

Arguments, VHDL

• -absentisempty

Causes VHDL files opened for read that target non-existent files to be treated as empty,
rather than ModelSim issuing fatal error messages. Optional.

• -foreign <attribute>

Specifies the foreign module to load. Optional. <attribute> is a quoted string consisting of
the name of a C function and a path to a shared library. For example,

vsim -foreign "c_init for.sl"

You can load up to ten foreign modules. Syntax for the attribute is further described in the
Introduction chapter of the ModelSim FLI Reference.

• -nocollapse

Disables the optimization of internal port map connections. Optional.

• -nofileshare

Turns off file descriptor sharing. Optional. By default ModelSim shares a file descriptor for
all VHDL files opened for write or append that have identical names.

• -notoggleints

Excludes VHDL integer values from toggle coverage. Overrides the ToggleNoIntegers
modelsim.ini variable default behavior of on(1). Optional.

• -noglitch

Disables VITAL glitch generation. Optional.

Refer to “VHDL Simulation” for additional discussion of VITAL.

• +no_glitch_msg

Disable VITAL glitch error messages. Optional.

• -std_input <filename>

Specifies the file to use for the VHDL TextIO STD_INPUT file. Optional.

• -std_output <filename>

Specifies the file to use for the VHDL TextIO STD_OUTPUT file. Optional.

• -strictvital

Specifies to exactly match the VITAL package ordering for messages and delta cycles.
Optional. Useful for eliminating delta cycle differences caused by optimizations not
addressed in the VITAL LRM. Using this argument negatively impacts simulator
performance.

ModelSim SE Reference Manual, v6.5b570

Commands
vsim

• -togglemaxintvalues <int>

Specifies the maximum number of VHDL integer values to record for toggle coverage.
Optional. This limit variable may be changed on a per-signal basis. The default value of
<int> is 100 values.

• -vcdread <filename>

Simulates the VHDL top-level design from the specified VCD file. Optional. This argument
is included for backwards compatibility. Consider using the -vcdstim argument instead.
Refer to “Simulating with Input Values from a VCD File” for more details.

• -vital2.2b

Selects SDF mapping for VITAL 2.2b (default is VITAL 2000). Optional.

Arguments, Verilog

• +alt_path_delays

Configures path delays to operate in inertial mode by default. Optional. In inertial mode, a
pending output transition is cancelled when a new output transition is scheduled. The result
is that an output may have no more than one pending transition at a time, and that pulses
narrower than the delay are filtered. The delay is selected based on the transition from the
cancelled pending value of the net to the new pending value. The +alt_path_delays option
modifies the inertial mode such that a delay is based on a transition from the current output
value rather than the cancelled pending value of the net. This option has no effect in
transport mode (see +pulse_e/<percent> and
+pulse_r/<percent>).

• +delayed_timing_checks

Causes timing checks to be performed on the delayed versions of input ports (used when
there are negative timing check limits). Optional. ModelSim automatically detects and
applies +delayed_timing_checks to optimized cells with negative timing checks. To turn off
this feature, specify +no_autodtc with vsim.

• -dpiexportobj <objfile>

Generates the C export wrappers and associated compiled object code for your design. The
C wrapper code is written to your <work>/_dpi/ directory, so it must have the proper
permissions. The object file(s) are written to whatever location you specify with the
<objfile> argument.

For Windows platforms, this is a required switch when using DPI that generates a .obj file
suitable for linking into a .dll. Refer to “DPI Use Flow” for additional information.

For Linux and UNIX platforms, this switch generates both a .o and a so file. The .o file is
suitable for linking into a larger .so file, which may contain import code. The .so file can be
used directly, for example as an argument to the vsim -gblso switch or as a dependent
library in the link command for an import shared object.

Once you compile the export wrapper code into a shared object or .dll, you can manually
load it into the simulation using -sv_lib, or perhaps -gblso. When you do manually load the

Commands
vsim

ModelSim SE Reference Manual, v6.5b 571

export wrapper code, you should use the -nodpiexports switch so that the simulation does
not automatically generate and load the <work>/_dpi/exportwrapper.so file, which would
cause symbol collisions.

• -hazards

Enables event order hazard checking in Verilog modules (Verilog only). Optional. You
must also specify this argument when you compile your design with vlog. Refer to “Hazard
Detection” for more details.

Note
Using -hazards implicitly enables the -compat argument. As a result, using this argument
may affect your simulation results.

• +initmem+<seed>

Specifies the seed value to be used by random initialization for Verilog designs. Random
initialization (of only 0 or 1) occurs at runtime for memories compiled by vlog with the
+initmem option without specifying a modifier (+{0 | 1 | X | Z}).

If no +initmem is present on the vsim command line, a random seed of 0 is used during
initialization.

+<seed> — any signed 32-bit integer (-2147483648 to +2147483647).

• +initreg+<seed>

Specifies the seed value to be used by random initialization for Verilog designs. Random
initialization (of only 0 or 1) occurs at runtime for registers compiled by vlog with the
+initreg option without specifying a modifier (+{0 | 1 | X | Z}).

If no +initreg is present on the vsim command line, a random seed of 0 is used during
initialization.

+<seed> — any signed 32-bit integer (-2147483648 to +2147483647).

• +maxdelays

Selects the maximum value in min:typ:max expressions. Optional. The default is the typical
value. Has no effect if you specified the min:typ:max selection at compile time.

• +mindelays

Selects the minimum value in min:typ:max expressions. Optional. The default is the typical
value. Has no effect if you specified the min:typ:max selection at compile time.

• +no_autdtc

Turns off auto-detection of optimized cells with negative timing checks and auto-
application of +delayed_timing_checks to those cells. Optional.

ModelSim SE Reference Manual, v6.5b572

Commands
vsim

• +no_cancelled_e_msg

Disables negative pulse warning messages. Optional. By default vsim issues a warning and
then filters negative pulses on specify path delays. You can drive an X for a negative pulse
using +show_cancelled_e.

• +no_neg_tchk

Disables negative timing check limits by setting them to zero. Optional. By default negative
timing check limits are enabled. This is just the opposite of Verilog-XL, where negative
timing check limits are disabled by default, and they are enabled with the +neg_tchk option.

• +no_notifier

Disables the toggling of the notifier register argument of all timing check system tasks.
Optional. By default, the notifier is toggled when there is a timing check violation, and the
notifier usually causes a UDP to propagate an X. This argument suppresses X propagation
on timing violations for the entire design. You can suppress X propagation on individual
instances using the tcheck_set command.

• +no_path_edge

Causes ModelSim to ignore the input edge specified in a path delay. Optional. The result of
this argument is that all edges on the input are considered when selecting the output delay.
Verilog-XL always ignores the input edges on path delays.

• +no_pulse_msg

Disables the warning message for specify path pulse errors. Optional. A path pulse error
occurs when a pulse propagated through a path delay falls between the pulse rejection limit
and pulse error limit set with the +pulse_r and +pulse_e options. A path pulse error results
in a warning message, and the pulse is propagated as an X. The +no_pulse_msg option
disables the warning message, but the X is still propagated.

• -no_risefall_delaynets

Disables the rise/fall delay net delay negative timing check algorithm. Optional. This
argument is provided to return ModelSim to its pre-6.0 behavior where violation regions
must overlap in order to find a delay net solution. In 6.0 versions and later, ModelSim uses
separate rise/fall delays, so violation regions need not overlap for a delay solution to be
found.

• +no_show_cancelled_e

Filters negative pulses on specify path delays so they don’t show on the output. Default. Use
+show_cancelled_e to drive a pulse error state.

• +no_tchk_msg

Disables error messages issued by timing check system tasks when timing check violations
occur. Optional. Notifier registers are still toggled and may result in the propagation of Xs
for timing check violations. You can disable individual messages using the tcheck_set
command.

Commands
vsim

ModelSim SE Reference Manual, v6.5b 573

• -nodpiexports

Instructs the command to not generate C wrapper code for DPI export task and function
routines found at elaboration time. More specifically, the command does not generate the
exportwrapper.so shared object file in <work>/_dpi/. For a description on when you should
use this switch, refer to the section “Integrating Export Wrappers into an Import Shared
Object” in the User’s Manual.

• -noexcludehiz

Instructs ModelSim to include truth table rows that contain Hi-Z states in the coverage
count. Without this argument, these rows are automatically excluded. Optional.

• +nosdferror

Errors issued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Changes SDF errors to warnings so that the
simulation can continue. Optional.

• +nosdfwarn

Disables warnings from the SDF annotator. Optional.

• +nospecify

Disables specify path delays and timing checks. Optional.

• +nowarnBSOB

Disables run-time warning messages for bit-selects in initial blocks that are out of bounds.

• +nowarn<CODE>

Disables warning messages in the category specified by <CODE>. Optional. Warnings that
can be disabled include the <CODE> name in square brackets in the warning message. For
example:

** Warning: (vsim-3017) test.v(2): [TFMPC] - Too few port
connections. Expected <m>, found <n>.

This warning message can be disabled with +nowarnTFMPC.

• +ntc_warn

Enables warning messages from the negative timing constraint algorithm. Optional. By
default, these warnings are disabled.

This algorithm attempts to find a set of delays for the timing check delayed net arguments
such that all negative limits can be converted to non-negative limits with respect to the
delayed nets. If there is no solution for this set of limits, then the algorithm sets one of the
negative limits to zero and recalculates the delays. This process is repeated until a solution is
found. A warning message is issued for each negative limit set to zero.

• -onfinish ask | stop | exit

Customizes the simulator shutdown behavior when it encounters $finish or sc_stop() in the
design:

ModelSim SE Reference Manual, v6.5b574

Commands
vsim

• ask —

o In batch mode, the simulation exits.

o In GUI mode, a dialog box pops up and asks for user confirmation on whether to
quit the simulation.

• stop — stops simulation and leave the simulation kernal running

• exit — exits out of the simulation without a prompt

By default, the simulator exits in batch mode; prompts you in GUI mode. Edit the OnFinish
variable in the modelsim.ini file to set the default operation of $finish.

• -pli "<object list>"

Loads a space-separated list of PLI shared objects. Optional. The list must be quoted if it
contains more than one object. This is an alternative to specifying PLI objects in the
Veriuser entry in the modelsim.ini file, refer to modelsim.ini Variables. You can use
environment variables as part of the path.

• +<plusarg>

Arguments preceded with "+" are accessible by the Verilog PLI routine
mc_scan_plusargs(). Optional.

• +pulse_e/<percent>

Controls how pulses are propagated through specify path delays, where <percent> is a
number between 0 and 100 that specifies the error limit as a percentage of the path delay.
Optional.

A pulse greater than or equal to the error limit propagates to the output in transport mode
(transport mode allows multiple pending transitions on an output). A pulse less than the
error limit and greater than or equal to the rejection limit (see +pulse_r/<percent>)
propagates to the output as an X. If the rejection limit is not specified, then it defaults to the
error limit. For example, consider a path delay of 10 along with a +pulse_e/80 option. The
error limit is 80% of 10 and the rejection limit defaults to 80% of 10. This results in the
propagation of pulses greater than or equal to 8, while all other pulses are filtered. Note that
you can force specify path delays to operate in transport mode by using the +pulse_e/0
option.

• +pulse_e_style_ondetect

Selects the "on detect" style of propagating pulse errors (see +pulse_e). Optional. A pulse
error propagates to the output as an X, and the "on detect" style is to schedule the X
immediately, as soon as it has been detected that a pulse error has occurred. "on event" style
is the default for propagating pulse errors (see +pulse_e_style_onevent).

• +pulse_e_style_onevent

Selects the "on event" style of propagating pulse errors (see +pulse_e). Default. A pulse
error propagates to the output as an X, and the "on event" style is to schedule the X to occur

Commands
vsim

ModelSim SE Reference Manual, v6.5b 575

at the same time and for the same duration that the pulse would have occurred if it had
propagated through normally.

• +pulse_r/<percent>

Controls how pulses are propagated through specify path delays, where <percent> is a
number between 0 and 100 that specifies the rejection limit as a percentage of the path
delay. Optional.

A pulse less than the rejection limit is suppressed from propagating to the output. If the error
limit is not specified by +pulse_e then it defaults to the rejection limit.

• +sdf_nocheck_celltype

Disables the error check a for mismatch between the CELLTYPE name in the SDF file and
the module or primitive name for the CELL instance. It is an error if the names do not
match. Optional.

• +show_cancelled_e

Drives a pulse error state (’X’) for the duration of a negative pulse on a specify path delay.
Optional. By default ModelSim filters negative pulses.

• -sv_lib <shared_obj>

Specifies the name of the DPI shared object with no extension. Required for use with DPI
import libraries. Refer to “DPI Use Flow” for additional information.

• -sv_liblist <filename>

Specifies the name of a bootstrap file containing names of DPI shared objects to load.
Optional.

• -sv_root <dirname>

Specifies the directory name to be used as the prefix for DPI shared object lookups.
Optional.

• -togglefixedsizearray | -notogglefixedsizearray

The -togglefixedsizearray argument includes SystemVerilog unpacked fixed-size arrays in
toggle coverage. By default, packed fixed-size arrays are excluded. The -
togglefixedsizearray argument overrides the ToggleFixedSizeArray modelsim.ini variable
default setting of off (0). Optional.

• -togglemaxfixedsizearray <int>

Specifies the maximum size for the SystemVerilog unpacked real type fixed-size arrays
collected for toggle coverage. By default, large fixed-sized arrays (>1024 elements) are not
included in toggle coverage, even when the -togglefixedsizearray option is used, as this can
have an adverse impact on simulation performance. Use the ToggleMaxFixedSizeArray
modelsim.ini variable to control this limit. Optional.

• -togglemaxrealvalues <int>

Specifies the maximum number of SystemVerilog real values to record for toggle coverage
of a given signal. Optional. This limit variable may be changed on a per-signal basis. The

ModelSim SE Reference Manual, v6.5b576

Commands
vsim

default value of 100 values can be modified by editing the ToggleMaxRealValues
modelsim.ini variable.

• -togglepackedasvec

Specifies that SystemVerilog packed structures and multi-d arrays are treated as flattened
vectors for toggle coverage. Overrides the TogglePackedAsVec modelsim.ini variable
default setting of off (0). Optional.

• -togglevlogenumbits

Specifies that SystemVerilog enum types are treated as reg-vectors for toggle coverage.
Overrides the default setting of the ToggleVlogEnumBits variable in modelsim.ini, which is
off(0). Optional.

• -togglevlogints | -notogglevlogints

By default, SystemVerilog integer types (shortint, int, longint, byte, integer and time) are
treated as reg-vectors, and counts are kept for each bit. The -notogglevlogints argument
excludes these type from coverage, overriding the default setting of the ToggleVlogIntegers
variable in modelsim.ini, which is on(1). The -togglevlogints argument is used to enable
coverage after it has been disabled. Optional.

• -togglevlogreal | -notogglevlogreal

The -togglevlogreal argument includes Verilog real value types in toggle coverage.
Overrides the default setting of the ToggleVlogReal variable in modelsim.ini, which is off
(0). Optional.

• +transport_path_delays

Selects transport mode for path delays. Optional. By default, path delays operate in inertial
mode (pulses smaller than the delay are filtered). In transport mode, narrow pulses are
propagated through path delays. Note that this option affects path delays only, and not
primitives. Primitives always operate in inertial delay mode.

• +typdelays

Selects the typical value in min:typ:max expressions. Default. Has no effect if you specified
the min:typ:max selection at compile time.

• -v2k_int_delays

Causes interconnect delays to be visible at the load module port per the IEEE 1364-2001
spec. Optional. By default ModelSim annotates INTERCONNECT delays in a manner
compatible with Verilog-XL. If you have $sdf_annotate() calls in your design that are not
getting executed, add the Verilog task $sdf_done() after your last $sdf_annotate() to remove
any zero-delay MIPDs that may have been created. May be used in tandem with the
+multisource_int_delays argument (see above). Refer to sdfcom for SDF compilation
information.

Commands
vsim

ModelSim SE Reference Manual, v6.5b 577

Arguments, SystemC

• -scdpidebug

Enables DPI debug single-stepping across SystemC-SystemVerilog call boundaries for
SystemVerilog breakpoints placed inside an export function call that was initiated from an
SC_METHOD. Refer to the sections "Setting Breakpoints" and "Stepping in C Debug" for
more information.

Turns on debugging support for DPI out-of-the-blue calls from a SystemC method when
combined with the vsim argument -dpioutoftheblue. Refer to -dpioutoftheblue for more
information.

• -sclib <library>

Specifies the design library where the SystemC shared library is created. By default, the
SystemC shared library is created in the logical work library. This option is only necessary
when the shared library is compiled in a design library other than the logical work directory
(via sccom -link -work <lib>). For more information on the sccom -link and -work
arguments, see sccom.

• -sc_arg <string> ...

Specifies a string representing a startup argument which is subsequently accessible from
within SystemC via the sc_argc() and sc_argv() functions (refer to “Accessing Command-
Line Arguments”.

If multiple SystemC startup arguments are specified, each must have a separate -sc_arg
argument. SystemC startup arguments returned via sc_argv() are in the order in which they
appear on the command line. White space within the <string> will not be treated specially,
and the string, white space and all, will be accessible as a single string among the strings
returned by sc_argv().

Arguments, object

The object arguments may be a [<library_name>].<design_unit>, a .mpf file, a .wlf file, or a
text file. Multiple design units may be specified for Verilog modules and mixed
VHDL/Verilog configurations.

• <library_name>.<design_unit>

Specifies a library and associated design unit; multiple library/design unit specifications can
be made. Optional. If no library is specified, the work library is used. You cannot use the
wildcard * for this argument. Environment variables can be used. <design_unit> may be one
of the following:

<configuration> Specifies the VHDL configuration to simulate.

<module> … Specifies the name of one or more top-level Verilog modules to
be simulated. Optional.

ModelSim SE Reference Manual, v6.5b578

Commands
vsim

• <MPF_file_name>

Opens the specified project. Optional.

• <WLF_file_name>

Opens the specified dataset. Optional.

• <text_file_name>

Opens the specified text file in a Source window. Optional.

Examples

• Invoke vsim on the entity cpu and assigns values to the generic parameters edge and
VCC.

vsim -gedge=’"low high"’ -gVCC=4.75 cpu

If working within the ModelSim GUI, you would enter the command as follows:

vsim {-gedge="low high"} -gVCC=4.75 cpu

Instruct ModelSim to view the results of a previous simulation run stored in the WLF
file sim2.wlf. The simulation is displayed as a dataset named test. Use the -wlf option to
specify the name of the WLF file to create if you plan to create many files for later
viewing.

vsim -view test=sim2.wlf

For example:

vsim -wlf my_design.i01 my_asic structure
vsim -wlf my_design.i02 my_asic structure

Annotate instance /top/u1 using the minimum timing from the SDF file myasic.sdf.

vsim -sdfmin /top/u1=myasic.sdf

Use multiple switches to annotate multiple instances:

vsim -sdfmin /top/u1=sdf1 -sdfmin /top/u2=sdf2 top

<entity> [(<architecture>)] Specifies the name of the top-level VHDL entity to be simulated.
Optional. The entity may have an architecture optionally
specified; if omitted the last architecture compiled for the
specified entity is simulated. An entity is not valid if a
configuration is specified.1

<optimized_design_name> Specifies the name of an optimized design. See the vopt
command. Optional.

1. Most UNIX shells require arguments containing () to be single-quoted to prevent special parsing by the
shell. See the examples below.

Commands
vsim

ModelSim SE Reference Manual, v6.5b 579

• This example searches the libraries mylib for top(only) and gatelib for cache_set. If the
design units are not found, the search continues to the work library. Specification of the
architecture (only) is optional.

vsim ’mylib.top(only)’ gatelib.cache_set

• Invoke vsim on test_counter and run the simulation until a break event, then quit when it
encounters a $finish task.

vsim -do "set PrefMain(forceQuit) 1; run -all" work.test_counter

ModelSim SE Reference Manual, v6.5b580

Commands
vsim<info>

vsim<info>
The vsim<info> commands return information about the current vsim executable.

• vsimAuth

Returns the authorization level (PE/SE, VHDL/Verilog/PLUS).

• vsimDate

Returns the date the executable was built, such as "Apr 10 2000".

• vsimId

Returns the identifying string, such as "ModelSim 6.1".

• vsimVersion

Returns the version as used by the licensing tools, such as "1999.04".

• vsimVersionString

Returns the full vsim version string.

This same information can be obtained using the -version argument of the vsim command.

Commands
vsim_break

ModelSim SE Reference Manual, v6.5b 581

vsim_break
Stop (interrupt) the current simulation before it runs to completion. To stop a simulation and
then resume it, use this command in conjunction with run -continue.

Syntax

vsim_break

Arguments

None.

Example

• Interrupt a simulation, then restart it from the point of interruption.

vsim_break
run -continue

ModelSim SE Reference Manual, v6.5b582

Commands
vsource

vsource
The vsource command specifies an alternative file to use for the current source file.

This command is used when the current source file has been moved. The alternative source
mapping exists for the current simulation only.

Syntax

vsource [<filename>]

Arguments

• <filename>

Specifies a relative or full pathname. Optional. If filename is omitted, the source file for the
current design context is displayed.

Examples

vsource design.vhd
vsource /old/design.vhd

Commands
wave

ModelSim SE Reference Manual, v6.5b 583

wave
A number of wave commands are available to manipulate the Wave window.

The following tables summarize the available options for manipulating cursors, for zooming,
and for adjusting the wave display view in the Wave window:

Table 2-12. Wave Window Commands for Cursor

Cursor Commands Description

wave cursor active Sets the active cursor to the specified cursor or, if no cursor is
specified, reports the active cursor

wave cursor add Adds a new cursor at specified time and returns the number of
the newly added cursor

wave cursor time Moves or reports the time of the specified cursor or, if no
cursor is specified, the time of the active cursor

wave cursor delete Deletes the specified cursor or, if no cursor is specified, the
active cursor

wave cursor see Positions the wave display such that the specified or active
cursor appears at the specified percent from the left edge of the
display – 0% is the left edge, 100% is the right edge.

Table 2-13. Wave Window Commands for Zooming

Zooming Commands Description

wave zoom in Zoom in the wave display by the specified factor. The default
factor is 2.0.

wave zoom out Zoom out the wave display by the specified factor. The default
factor is 2.0.

wave zoom full Zoom the wave display to show the full simulation time.

wave zoom last Return to last zoom range.

wave zoom range Sets left and right edge of wave display to the specified start
time and end time. If times are not specified, reports left and
right edge times.

Table 2-14. Wave Window Commands for Controlling Display

Display view Commands Description

wave interrupt Immediately stops wave window drawing

wave refresh Cleans wave display and redraws waves

ModelSim SE Reference Manual, v6.5b584

Commands
wave

Syntax

wave cursor active [-window <win>] [<cursor-num>]

wave cursor add [-window <win>] [-time <time>] [-name <name>] [-lock <0|1>]

wave collapse all [-window <win>]

wave collapse cursor [-window <win>] [<cursor-num>]

wave cursor see Positions the wave display such that the specified or active
cursor appears at the specified percent from the left edge of the
display – 0% is the left edge, 100% is the right edge.

wave seetime Positions the wave display such that the specified time appears
at the specified percent from the left edge of the display – 0%
is the left edge, 100% is the right edge.

Table 2-15. Wave Window Commands for Expanded Time Display

Display view Commands Description

wave expand mode Selects the expanded time display mode: Delta Time, Event
Time, or off.

wave expand all Expands simulation time into delta time steps if Delta Time
mode is currently selected (WLFCollapseMode = 1) or into
event time steps if Event Time mode is currently selected
(WLFCollapseMode = 0) over the full range of the simulation
from time 0 to the current time.

wave expand cursor Expands simulation time into delta time steps if Delta Time
mode is currently selected (WLFCollapseMode = 1) or into
event time steps if Event Time mode is currently selected
(WLFCollapseMode = 0) at the simulation time of the active
cursor.

wave expand range Expands simulation time into delta time steps if Delta Time
mode is currently selected (WLFCollapseMode = 1) or into
event time steps if Event Time mode is currently selected
(WLFCollapseMode = 0) over a time range specified by a start
time and an end time.

wave collapse all Collapses simulation time over the full range of the simulation
from time 0 to the current time.

wave collapse cursor Collapses simulation time at the time of the active cursor.

wave collapse range Collapses simulation time over a specific simulation time
range.

Table 2-14. Wave Window Commands for Controlling Display (cont.)

Display view Commands Description

Commands
wave

ModelSim SE Reference Manual, v6.5b 585

wave collapse range [-window <win>] <start-time> <end time>

wave cursor configure [<cursor-num>] [-window <win>] [<option> [<value>]]

wave cursor time [-window <win>] [-time <time>] [<cursor-num>]

wave cursor delete [-window <win>] [<cursor-num>]

wave expand all [-window <win>]

wave expand cursor [-window <win>] [<cursor-num>]

wave expand mode [-window <win>] [off | deltas | events]

wave expand range [-window <win>] <start-time> <end-time>

wave interrupt [-window <win>]

wave refresh [-window <win>]

wave cursor see [-window <win>] [-at <percent>] [<cursor-num>]

wave seetime [-window <win>] [-at <percent>] <time>

wave zoom in [-window <win>] [<factor>]

wave zoom out [-window <win>] [<factor>]

wave zoom full [-window <win>]

wave zoom last [-window <win>]

wave zoom range [-window <win>] [<start-time>] [<end-time>]

Arguments

• [-at <percent>]

Positions the display such that the time or cursor is the specified <percent> from the left
edge of the wave display. 0% is the left edge; 100% is the right edge. Optional. Default is
50%.

• [<cursor-num>]

Specifies a cursor number. Optional. If not specified, the active cursor is used.

• [<factor>]

A number that specifies how much you want to zoom into or out of the wave display.
Optional. Default value is 2.0.

• [-lock <0|1>]

Specify the lock state of the cursor. Optional. Default is ’0’, unlocked.

• [-name <name>]

Specify the name of the cursor. Optional. Default is "Cursor <n>" where <n> is the cursor
number.

ModelSim SE Reference Manual, v6.5b586

Commands
wave

• off | deltas | events

Specifies the expanded time display mode for the Wave window. Optional. Default is off.

• <option> [<value>]

Specify a value for the designated option. Currently supported options are -name, -time, and
-lock. Optional. If no option is specified, current value of all options are reported.

• [<start-time>]
[<end-time>]

start-time and end-time are times that specify a expand, collapse, or zoom range. If neither
number is specified, the command returns the current range. If only one time is specified,
then the range is set to start at 0 and end at specified time.

• [-time <time>]

Specifies a cursor time. Optional.

• [-window <win>]

All commands default to the active Wave window unless this argument is used to specify a
different Wave window. Optional.

Examples

• Either of these commands creates a zoom range with a start time of 20 ns and an end
time of 100 ns.

wave zoom range 20ns 100ns
wave zoom range 20 100

• Return the name of cursor 2:

wave cursor configure 2 -name

• Name cursor 2, "reference cursor" and return that name with:

wave cursor configure 2 -name {reference cursor}

• Return the values of all wave cursor configure options for cursor 2:

wave cursor configure 2

Commands
wave create

ModelSim SE Reference Manual, v6.5b 587

wave create
The wave create command generates a waveform known only to the GUI. You can then modify
the waveform interactively and use the results to drive simulation.

Refer to “Generating Stimulus with Waveform Editor” for more information.

Syntax

wave create [-driver freeze | deposit | driver | expectedoutput] [-endtime <time>]
[-initialvalue <value>] [-language VHDL | Verilog]
-pattern clock | constant | random | repeater | counter | none
[-portmode in | out | inout | input | output | internal] [-range <MSB LSB>]
[-starttime <time>] <object_name>

wave create -period <value> -dutycycle <value>

wave create -value <value>

wave create -period <value> -random_type <value> [-seed <value>]

wave create -sequence val1 val2 val3 …} -period <value>
-repeat forever | never | <#_of_times>

wave create -direction <value> -type Binary | Range | Johnson | OneHot | ZeroHot | Gray
-endvalue <value> -period <value> -repeat forever | never | <#_of_times>
-startvalue <value> -step <value>

The arguments below are grouped according to waveform pattern. The first set applies to all
waveforms regardless of pattern.

Arguments for all waveforms

• -driver freeze | deposit | driver | expectedoutput

Specifies that the signal is a driver of the specified type. Applies to signals of type inout or
internal. Optional.

• -endtime <time>

The simulation time that the waveform should stop. If omitted, the waveform stops at 1000
simulation time units. Optional.

• -initialvalue <value>

The initial value for the waveform. Value must be appropriate for the type of waveform you
are creating. Not applicable to counter patterns. Optional.

• -language VHDL | Verilog

The language for the created wave. By default ModelSim uses VHDL to create the
waveform. Optional.

• -pattern clock | constant | random | repeater | counter | none

The pattern for the created waveform. Refer to “Creating Waveforms from Patterns” for a
description of the pattern types. Required.

ModelSim SE Reference Manual, v6.5b588

Commands
wave create

• -portmode in | out | inout | input | output | internal

The port type for the created waveform. ModelSim uses internal by default. Useful for
creating signals prior to loading a design. Optional.

• -range <MSB LSB>

Specifies a vector of the designated bit width. Optional.

• -starttime <time>

The simulation time at which the waveform should start. If omitted, the waveform starts at 0
simulation time units. Optional.

• <object_name>

The name of the created waveform. Required.

Arguments, clock patterns only

• -dutycycle <value>

The duty cycle of the clock, which is the percentage of the period that the clock is high or
low. Acceptable values range from 0 to 100. Required.

• -period <value>

The period of the signal. Required.

Arguments, constant patterns only

• -value <value>

The value for the constant. Required.

Arguments, random patterns only

• -period <value>

The period after which the value should change. Required.

• -random_type <value>

The type of random pattern to generate. Required. Choices for <value> include Normal,
Uniform, Poisson, or Exponential. Default is Uniform.

• -seed <value>

A seed value for the random generator. If omitted, ModelSim uses the value 5. Optional.

Arguments, repeater patterns only

• -period <value>

The period after which the value should change. Required.

• -repeat forever | never | <#_of_times>

The number of times to repeat. Required.

Commands
wave create

ModelSim SE Reference Manual, v6.5b 589

• -sequence val1 val2 val3 …}

The set of values that you want repeated. Required.

Arguments, counter patterns only

• -direction <value>

The direction which the counter should increment or decrement. Optional. The default is
Up. Choices for <value> include Up, Down, UpThenDown, and DownThenUp.

• -type Binary | Range | Johnson | OneHot | ZeroHot | Gray

The type of counter to create. Default is Range. Optional.

• -endvalue <value>

The ending value of the counter. This option applies to Range counter patterns only. All
other counter patterns start from 0 and go to the max value for that particular signal (e.g., for
a 3-bit signal, the start value will be 000 and end value will be 111).

• -period <value>

The period after which the value should change. Required.

• -repeat forever | never | <#_of_times>

The number of times to repeat. Required.

• -startvalue <value>

The starting value of the counter. This option applies to Range counter patterns only. All
other counter patterns start from 0 and go to the max value for that particular signal (e.g., for
a 3-bit signal, the start value will be 000 and end value will be 111).

• -step <value>

The step by which the counter is incremented/decremented. Required.

Examples

• Create a clock signal with the following default values:

wave create -pattern /counter/clk
-period 100 -dutycycle 50
-starttime 0 -endtime 1000 -initialvalue 0

• Create a constant 8-bit signal vector from 0 to 1000 ns with a value of 1111 and a drive
type of freeze.

wave create -driver freeze -pattern constant -value 1111 -range 7 0
-starttime 0ns -endtime 1000ns sim:/andm/v_cont2

See also

wave edit, wave modify, “Generating Stimulus with Waveform Editor”

ModelSim SE Reference Manual, v6.5b590

Commands
wave edit

wave edit
The wave edit command modifies waveforms created with the wave create command.

The following table summarizes the available editing options:

Syntax

wave edit {cut | copy | paste | invert | mirror} [-end <time>] -start <time> <object_name>

wave edit insert_pulse [-duration <time>] -start <time> <object_name>

wave edit delete -time <time> <object_name>

wave edit stretch | move -backward <time> | -forward <time> -time <time> <object_name>

wave edit change_value -end <time> -start <time> <value> <object_name>

wave edit extend -extend to | by -time <time>

wave edit driveType -driver freeze | deposit | driver | expectedoutput -end <time> -start <time>

The arguments below are grouped by editing operation. Many operations share similar
arguments.

Arguments for cut, copy, paste, invert, and mirror

• -end <time>

The end of the section of waveform to perform the editing operation upon, denoted by a
simulation time. Optional for paste.

Command Description

wave edit cut Cut part of a waveform to the clipboard

wave edit copy Copy part of a waveform to the clipboard

wave edit paste Paste the waveform from the clipboard

wave edit invert Vertically flip part of a waveform

wave edit mirror Mirror part of a waveform

wave edit insert_pulse Insert a new edge on a waveform; doesn’t affect waveform duration

wave edit delete Delete an edge from a waveform; doesn’t affect waveform duration

wave edit stretch Move an edge by stretching the waveform

wave edit move Move an edge without moving other edges

wave edit change_value Change the value of part of a waveform

wave edit extend Extend all waves

wave edit driveType Change the driver type

wave edit undo Undo an edit

wave edit redo Redo a previously undone edit

Commands
wave edit

ModelSim SE Reference Manual, v6.5b 591

• -start <time>

The beginning of the section of waveform to perform the editing operation upon, denoted by
a simulation time. Required.

• <object_name>

The pathname of the waveform to edit. Required.

Arguments for insert_pulse

• -duration <time>

The length of the pulse. Default is 10 time units. Optional.

• -start <time>

The time at which the new pulse should be inserted. Required.

• <object_name>

The pathname of the waveform on which you are inserting a pulse. Required.

Arguments for delete

• -time <time>

The time at which the edge to delete occurs. Required.

• <object_name>

The pathname of the waveform for which you are deleting an edge. Required.

Arguments for stretch and move

• -backward <time>

The amount to stretch or move the edge backwards in simulation time. Required if -forward
<time> isn’t specified.

• -forward <time>

The amount to stretch or move the edge forwards in simulation time. Required if -backward
<time> isn’t specified.

• -time <time>

The time at which the edge to stretch or move occurs. Required.

• <object_name>

The pathname of the waveform on which you are stretching or moving an edge. Required.

Arguments for change_value

• -end <time>

The end of the section of waveform of which you are changing the value. Required.

• -start <time>

The beginning of the section of waveform of which you are changing the value. Required.

ModelSim SE Reference Manual, v6.5b592

Commands
wave edit

• <value>

The new value. Must match the type of the <object_name>. Required.

• <object_name>

The pathname of the waveform on which you are changing a value. Required.

Arguments for extend

• -extend to | by

Specify whether you are extending waves to a specific time or by a certain amount of time.
Required.

• -time <time>

The time to extend waves to or the amount by which to extend the waves. Required.

Arguments for driveType

• -driver freeze | deposit | driver | expectedoutput

The type of driver to which you want the specified section of the waveform changed.
Required.

• -end <time>

The end of the section of waveform of which you are changing the drive type. Required.

• -start <time>

The beginning of the section of waveform of which you are changing the drive type.
Required.

Arguments for undo and redo

• <number>

The number of editing operations to undo or redo. If omitted, only one editing operation is
undone or redone. Optional.

See also

wave create, “Generating Stimulus with Waveform Editor”

Commands
wave export

ModelSim SE Reference Manual, v6.5b 593

wave export
The wave export command creates a stimulus file from waveforms created with the wave
create command.

Syntax

wave export [-designunit <name>] [-endtime <time>] -file <name>
-format force | vcd | vhdl | verilog [-starttime <time>]

Arguments

• -designunit <name>

The name of the design unit for which you want to export created waves. If omitted, the
command exports waves from the active design unit. Optional.

• -endtime <time>

The simulation time at which you want to stop exporting. Required.

• -file <name>

The filename for the saved stimulus file. Required.

• -format force | vcd | vhdl | verilog

The format of the saved stimulus file. Required. The format options include:

force — A Tcl script that recreates the waveforms. The file should be sourced when
reloading the simulation.

vcd — An extended VCD file. Load using the -vcdstim argument to vsim.

vhdl — A VHDL test bench. Compile and load the file as your top-level design unit.

verilog — A Verilog test bench. Compile and load the file as your top-level design unit.

• -starttime <time>

The simulation time at which you want to start exporting. Required.

See also

wave create, wave import, “Generating Stimulus with Waveform Editor”

ModelSim SE Reference Manual, v6.5b594

Commands
wave import

wave import
The wave import command imports an extended VCD file that was created with the wave
export command. It cannot read extended VCD file created by software other than ModelSim.
Use this command to apply a VCD file as stimulus to the current simulation.

Syntax

wave import <VCD_file>

Arguments

• <VCD_file>

The name of the extended VCD file to import. Required.

See also

wave create, wave export, “Generating Stimulus with Waveform Editor”

Commands
wave modify

ModelSim SE Reference Manual, v6.5b 595

wave modify
The wave modify command modifies waveform parameters set by a previous wave create
command. See the ModelSim Command Reference for syntax.

Syntax

wave modify <wave_name> [-driver freeze | deposit | driver | expectedoutput]
[-endtime <time>] [-initialvalue <value>] -pattern clock | random | repeater | counter | none
[-range <MSB LSB>] [-starttime <time>]

wave modify -period <value> -dutycycle <value>

wave modify -period <value> -random_type Normal|Uniform [-seed <value>]

wave modify -period <value> -repeat forever | never | <#_of_times>
-sequence {val1 val2 val3 …}

wave modify -direction down | up -type Binary | Range | Johnson | OneHot | ZeroHot | Gray
-endvalue <value> -period <value> -repeat forever | never | <#_of_times>
-startvalue <value> -step <value>

Arguments for all waveforms

• <wave_name>

The name of an existing waveform created with the wave create command. Required.

• -driver freeze | deposit | driver | expectedoutput

Specifies that the signal is a driver of the specified type. Applies to signals of type inout or
internal. Optional.

• -endtime <time>

The simulation time that the waveform should stop. If omitted, the waveform stops at 1000
simulation time units. Optional.

• -initialvalue <value>

The initial value for the waveform. Value must be appropriate for the type of waveform you
are creating. Not applicable to counter patterns. Optional.

• -pattern clock | random | repeater | counter | none

The pattern for the created waveform. Refer to “Creating Waveforms from Patterns” for a
description of the pattern types. Required.

• -range <MSB LSB>

Specifies a vector of the designated bit width. Optional.

• -starttime <time>

The simulation time that the waveform should start. If omitted, the waveform starts at 0
simulation time units. Optional.

ModelSim SE Reference Manual, v6.5b596

Commands
wave modify

Arguments, clock patterns only

• -period <value>

The period of the signal. Required.

• -dutycycle <value>

The duty cycle of the clock, which is the percentage of the period that the clock is high or
low. Acceptable values range from 0 to 100. Required.

Arguments, random patterns only

• -period <value>

The period after which the value should change. Required.

• -random_type Normal|Uniform

The type of random pattern to generate. Required. Default is uniform.

• -seed <value>

A seed value for the random generator. If omitted, ModelSim uses the value 5. Optional.

Arguments, repeater patterns only

• -period <value>

The period after which the value should change. Required.

• -repeat forever | never | <#_of_times>

The number of times to repeat. Required.

• -sequence {val1 val2 val3 …}

The set of values that you want repeated. Required.

Arguments, counter patterns only

• -direction down | up

The direction which the counter should increment or decrement. Optional. The default is up.

• -type Binary | Range | Johnson | OneHot | ZeroHot | Gray

The type of counter to create. Default is Range. Optional.

• -endvalue <value>

The ending value of the counter. This option applies to Range counter patterns only. All
other counter patterns start from 0 and go to the max value for that particular signal (e.g., for
a 3-bit signal, the start value will be 000 and end value will be 111).

• -period <value>

The period after which the value should change. Required.

• -repeat forever | never | <#_of_times>

The number of times to repeat. Required.

Commands
wave modify

ModelSim SE Reference Manual, v6.5b 597

• -startvalue <value>

The starting value of the counter. This option applies to Range counter patterns only. All
other counter patterns start from 0 and go to the max value for that particular signal (e.g., for
a 3-bit signal, the start value will be 000 and end value will be 111).

• -step <value>

The step by which the counter is incremented/decremented. Required.

See also

wave create, “Generating Stimulus with Waveform Editor”

ModelSim SE Reference Manual, v6.5b598

Commands
when

when
The when command instructs ModelSim to perform actions when the specified conditions are
met.

For example, you can use the when command to break on a signal value or at a specific
simulator time. Use the nowhen command to deactivate when commands.

Note
When running in full optimization mode, breakpoints can not be set. Run the design in
non-optimized mode (or set +acc arguments) to enable you to set breakpoints in the
design. See Preserving Object Visibility for Debugging Purposes.

Syntax

when [[-fast] [-id <id#>] [-label <label>] {<when_condition_expression>} {<command>}]

Description

The when command uses a when_condition_expression to determine whether or not to
perform the action. Conditions can include VHDL signals and Verilog nets and registers. The
when_condition_expression uses a simple restricted language (that is not related to Tcl),
which permits only four operators and operands that may be either HDL object names,
signame’event, or constants. ModelSim evaluates the condition every time any object in the
condition changes, hence the restrictions.

Here are some additional points to keep in mind about the when command:

• The when command creates the equivalent of a VHDL process or a Verilog always
block. It does not work like a looping construct you might find in other languages such
as C.

• Virtual signals, functions, regions, types, etc. cannot be used in the when command.
Neither can simulator state variables other than $now.

• With no arguments, when will list the currently active when statements and their labels
(explicit or implicit).

Syntax

when [[-fast] [-id <id#>] [-label <label>] {<when_condition_expression>} {<command>}]

Embedded Commands Allowed with the -fast Argument

You can use any Tcl command as a <command>, along with any of the following vsim
commands:

• bp, bd

• change

• disablebp, enablebp

Commands
when

ModelSim SE Reference Manual, v6.5b 599

• echo

• examine

• force, noforce

• log, nolog

• stop

• when, nowhen

Embedded Commands Not Allowed with the -fast Argument

• Any do commands

• Any Tk commands or widgets

• References to U/I state variables or tcl variables

• Virtual signals, functions, or types

Using Global Tcl Variables with the -fast Argument

Embedded commands that use global Tcl variables for passing a state between the when
command and the user interface need to declare the state using the Tcl uivar command. For
example, the variable i below is visible in the GUI. From the command prompt, you can
display it (by entering echo $i) or modify it (for example, by entering set i 25).

set i 10
when -fast {clk == '0'} {

uivar i
set i [expr {$i - 1}]
if {$i <= 0} {

force reset 1 0, 0 250
}

}
when -fast {reset == '0'} {

uivar i
set i 10

}

Additional Restrictions on the -fast Argument

Accessing channels (such as files, pipes, sockets) that were opened outside of the embedded
command will not work. For example:

set fp [open mylog.txt w]
when -fast {bus} {

puts $fp "bus change: [examine bus]"
}

The channel that $fp refers to is not available in the simulator, only in the user interface.
Even using the uivar command does not work here because the value of $fp has no meaning
in the context of the -fast argument.

The following method of rewriting this example opens the channel, writes to it, then closes
it within the when command:

ModelSim SE Reference Manual, v6.5b600

Commands
when

when -fast {bus} {
set fp [open mylog.txt a]
puts $fp "bus change: [examine bus]"
close $fp

}

The following example is a little more sophisticated method of doing the same thing:

when -fast {$now == 0ns} {
set fp [open mylog.txt w]

}
when -fast {bus} {

puts $fp "bus change: [examine bus]"
}
when -fast {$now == 1000ns} {

close $fp
}

The general principle is that any embedded command done using the -fast argument is
global to all other commands used with the -fast argument. Here, {$now == 0ns} is a way to
define Tcl processes that the -fast commands can use. These processes have the same
restrictions that when bodies have, but the advantage is again speed as a proc will tend to
execute faster than code in the when body itself.

It is recommended not to use virtual signals and expressions.

Arguments

• -fast

Causes the embedded <command> to execute within the simulation kernel, which provides
faster execution and reduces impact on simulation runtime performance. Optional.
Limitations on using the -fast argument are described above (in “Embedded Commands Not
Allowed with the -fast Argument”). Disallowed commands still work, but they slow down
the simulation.

• -label <label>

Used to identify individual when commands. Optional.

• -id <id#>

Attempts to assign this id number to the when command. Optional. If the id number you
specify is already used, ModelSim will return an error.

Note
Id numbers for when commands are assigned from the same pool as those used for the bp
command. So even if you have not specified a given id number for a when command, that
number may still be used for a breakpoint.

• {<when_condition_expression>}

Specifies the conditions to be met for the specified <command> to be executed. Required if
a command is specified. The condition is evaluated in the simulator kernel and can be an

Commands
when

ModelSim SE Reference Manual, v6.5b 601

object name, in which case the curly braces can be omitted. The command will be executed
when the object changes value. The condition can be an expression with these operators:

The operands may be object names, signame’event, or constants. Subexpressions in
parentheses are permitted. The command will be executed when the expression is evaluated
as TRUE or 1.

The formal BNF syntax is:

condition ::= Name | { expression }

expression ::= expression AND relation
| expression OR relation
 | relation

relation ::= Name = Literal
| Name /= Literal
| Name ' EVENT
| (expression)

Literal ::= '<char>' | "<bitstring>" | <bitstring>

The "=" operator can occur only between a Name and a Literal. This means that you cannot
compare the value of two signals, i.e., Name = Name is not possible.

Tcl variables can be used in the condition expression but you must replace the curly braces
({}) with double quotes (""). This works like a macro substitution where the Tcl variables
are evaluated once and the result is then evaluated as the when condition. Condition
expressions are evaluated in the vsim kernel, which knows nothing about Tcl variables.
That's why the condition expression must be evaluated in the GUI before it is sent to the
vsim kernel. See below for an example of using a Tcl variable.

The ">", "<", ">=", and "<=" operators are the standard ones for vector types, not the
overloaded operators in the std_logic_1164 package. This may cause unexpected results
when comparing objects that contain values other than 1 and 0. ModelSim does a lexical
comparison (position number) for values other than 1 and 0. For example:

 Name Operator

equals ==, =

not equal !=, /=

greater than >

less than <

greater than or equal >=

less than or equal <=

AND &&, AND

OR ||, OR

ModelSim SE Reference Manual, v6.5b602

Commands
when

0000 < 1111 ## This evaluates to true
H000 < 1111 ## This evaluates to false
001X >= 0010 ## This also evaluates to false

• {<command>}

The command(s) for this argument are evaluated by the Tcl interpreter within the ModelSim
GUI. Any ModelSim or Tcl command or series of commands are valid with one
exception—the run command cannot be used with the when command. Required if a when
expression is specified. The command sequence usually contains a stop command that sets a
flag to break the simulation run after the command sequence is completed. Multiple-line
commands can be used.

Note
If you want to stop the simulation using a when command, you must use a stop command
within your when statement. DO NOT use an exit command or a quit command. The
stop command acts like a breakpoint at the time it is evaluated.

Examples

• The when command below instructs the simulator to display the value of object c in
binary format when there is a clock event, the clock is 1, and the value of b is 01100111.
Finally, the command tells ModelSim to stop.

when -label when1 {clk’event and clk=’1’ and b = "01100111"} {
echo "Signal c is [exa -bin c]"
stop

}

• The commands below show an example of using a Tcl variable within a when
command. Note that the curly braces ({}) have been replaced with double quotes ("").

set clkb_path /tb/ps/dprb_0/udprb/ucar_reg/uint_ram/clkb;
when -label when1 "$clkb_path'event and $clkb_path ='1'" {

echo "Detected Clk edge at path $clkb_path"
}

• The when command below is labeled a and will cause ModelSim to echo the message
“b changed” whenever the value of the object b changes.

when -label a b {echo "b changed"}

• The multi-line when command below does not use a label and has two conditions. When
the conditions are met, an echo and a stop command will be executed.

when {b = 1
 and c /= 0 } {
 echo "b is 1 and c is not 0"
 stop

}

• In the example below, for the declaration "wire [15:0] a;", the when command will
activate when the selected bits match a 7:

Commands
when

ModelSim SE Reference Manual, v6.5b 603

when {a(3:1) = 3'h7} {echo "matched at time " $now}

• If you encounter a vectored net caused by optimizing with vopt, use the ’event qualifier
to prevent the command from falsely evaluating when unrelated bits of ’a’ change:

when {a(3:1) = 3'h7 and a(3:1)'event} {echo "matched at time " $now}

• In the example below, we want to sample the values of the address and data bus on the
first falling edge of clk after sstrb has gone high.

::strobe is our state variable
set ::strobe Zero
This signal breakpoint only fires when sstrb changes to a '1'
when -label checkStrobe {/top/sstrb == '1'} {

Our state Zero condition has been met, move to state One
set ::strobe One
}

This signal breakpoint fires each time clk goes to '0'
when {/top/clk == '0'} {

if {$::strobe eq "One"} {
Our state One condition has been met
Sample the busses
echo Sample paddr=[examine -hex /top/paddr] :: sdata=[examine

-hex
/top/sdata]
reset our state variable until next rising edge of sstrb

(back to
state Zero)
set ::strobe Zero

}
}

Ending the simulation with the stop command

Batch mode simulations are often structured as "run until condition X is true," rather than "run
for X time" simulations. The multi-line when command below sets a done condition and
executes an echo and a stop command when the condition is reached.

The simulation will not stop (even if a quit -f command is used) unless a stop command is
executed. To exit the simulation and quit ModelSim, use an approach like the following:

onbreak {resume}
when {/done_condition == ’1’} {

echo "End condition reached"
if [batch_mode] {

set DoneConditionReached 1
stop

}
}
run 1000 us
if {$DoneConditionReached == 1} {

quit -f
}

ModelSim SE Reference Manual, v6.5b604

Commands
when

This example stops 100ns after a signal transition:

when {a = 1} {
If the 100ns delay is already set then let it go.
if {[when -label a_100] == ""} {
when -label a_100 { $now = 100 } {
delete this breakpoint then stop
nowhen a_100
stop

}
}

}

Time-based breakpoints

You can build time-based breakpoints into a when statement with the following syntax.

For absolute time (indicated by @) use:

when {$now = @1750 ns} {stop}

You can also use:

when {errorFlag = '1' OR $now = 2 ms} {stop}

This example adds 2 ms to the simulation time at which the when statement is first evaluated,
then stops. The white space between the value and time unit is required for the time unit to be
understood by the simulator.

You can also use variables, as shown in the following example:

set time 1000
when "\$now = $time" {stop}

The quotes instruct Tcl to expand the variables before calling the command. So, the when
command sees:

when "$now = 1000" stop

Note that "$now" has the ’$’ escaped. This prevents Tcl from expanding the variable, because if
it did, you would get:

when "0 = 1000" stop

See also

bp, disablebp, enablebp, nowhen

Commands
where

ModelSim SE Reference Manual, v6.5b 605

where
The where command displays information about the system environment. This command is
useful for debugging problems where ModelSim cannot find the required libraries or support
files.

The command displays two results on consecutive lines:

• current directory

This is the current directory that ModelSim was invoked from, or that was specified on
the ModelSim command line.

• current project file

This is the .mpf file ModelSim is using. All library mappings are taken from here when a
project is open. If the design is not loaded through a project, this line displays the
modelsim.ini file in the current directory.

Syntax

where

Arguments

• None.

Examples

• Design is loaded through a project:

VSIM> where
Current directory is: D:\Client
Project is: D:/Client/monproj.mpf

• Design is loaded with no project (indicates the modelsim.ini file is under the mydesign

directory):

VSIM> where
Current directory is: C:\Client\testcase\mydesign
Project is: modelsim.ini

ModelSim SE Reference Manual, v6.5b606

Commands
wlf2log

wlf2log
The wlf2log command translates a ModelSim WLF file (vsim.wlf) to a QuickSim II logfile.

The command reads the vsim.wlf WLF file generated by the add list, add wave, or log
commands in the simulator and converts it to the QuickSim II logfile format.

Note
This command should be invoked only after you have stopped the simulation using quit -
sim or dataset close sim.

Syntax

wlf2log [-bits] [-fullname] [-help] [-inout] [-input] [-internal] [-l <instance_path>] [-lower]
[-o <outfile>] [-output] [-quiet] <wlffile>

Arguments

• -bits

Forces vector nets to be split into 1-bit wide nets in the log file. Optional.

• -fullname

Shows the full hierarchical pathname when displaying signal names. Optional.

• -help

Displays a list of command options with a brief description for each. Optional.

• -inout

Lists only the inout ports. Optional. This may be combined with the -input, -output, or
-internal switches.

• -input

Lists only the input ports. Optional. This may be combined with the -output, -inout, or
-internal switches.

• -internal

Lists only the internal signals. Optional. This may be combined with the -input, -output, or -
inout switches.

• -l <instance_path>

Lists the signals at or below the specified HDL instance path within the design hierarchy.
Optional.

• -lower

Shows all logged signals in the hierarchy. Optional. When invoked without the -lower
switch, only the top-level signals are displayed.

Commands
wlf2log

ModelSim SE Reference Manual, v6.5b 607

• -o <outfile>

Directs the output to be written to the file specified by <outfile>. Optional. The default
destination for the logfile is standard out.

• -output

Lists only the output ports. Optional. This may be combined with the -input, -inout, or
-internal switches.

• -quiet

Disables error message reporting. Optional.

• <wlffile>

Specifies the ModelSim WLF file that you are converting. Required.

Additional information for QuickSim II users

In some cases your original QuickHDL/ModelSim simulation results (in your vsim.wlf file) may
contain signal values that do not directly correspond to qsim_12state values. The resulting
QuickSim II logfile generated by wlf2log may contain state values that are surrounded by single
quotes, e.g. '0' and '1'. To make this logfile compatible with QuickSim models (that expect
qsim_12state) you need to use a QuickSim II function named $convert_wdb().

This function was created to convert logfiles resulting from VHDL simulation that used
std_logic and std_ulogic since these data types do not correlate to QuickSim's 12 simulation
states. Other VHDL data types such as qsim_state or bit (2 state) do not require conversion as
they are directly compatible with qsim_12state QuickSim II Waveform Databases (WDB).

The following procedure can be used to convert a wlf2log-generated logfile into a compatible
QuickSim WDB. The procedure below shows how to convert the logfile while loaded into
memory in QuickSim II.

1. Load the logfile (the output from wlf2log) into a WDB other than "forces". "Forces" is
the default WDB, so you need to choose a unique name for the WDB when loading the
logfile (for example, "fred").

2. Enter the following at the command prompt from within QuickSim:

$convert_wdb("fred",0)

The first argument, which is "fred", is the name of the new WDB to be created. The
second argument, which is 0, specifies the type of conversion. At this time only one type
of conversion is supported. The value 0 specifies to convert std_logic or std_ulogic into
qsim_12state.

3. Do a connect_wdb (either through the pulldown menus, the "Connect WDB" palette
icon under "Stimulus", or a function invocation). You specify the name of the WDB
that you originally loaded the logfile into (in this case, "fred").

At this point you can issue the "run" command and the stimulus in the converted logfile will be
applied. Before exiting the simulation you should save the new WDB ("fred") as a WDB or

ModelSim SE Reference Manual, v6.5b608

Commands
wlf2log

logfile so that it can be loaded again in the future. The new WDB or logfile will contain the
correct qsim_12state values eliminating the need to re-use $convert_wdb().

Commands
wlf2vcd

ModelSim SE Reference Manual, v6.5b 609

wlf2vcd
The wlf2vcd command translates a ModelSim WLF file to a standard VCD file. Complex data
types that are unsupported in the VCD standard (records, memories, etc.) are not converted.

Note
This command should be invoked only after you have stopped the simulation using quit -
sim or dataset close sim.

Syntax

wlf2vcd [-help] [-o <outfile>] [-quiet] <wlffile>

Arguments

• -help

Displays a list of command options with a brief description for each. Optional.

• -o <outfile>

Specifies a filename for the output. By default, the VCD output goes to stdout. Optional.

• -quiet

Disables warning messages that are produced when an unsupported type (e.g., records) is
encountered in the WLF file. Optional.

• <wlffile>

Specifies the ModelSim WLF file that you are converting. Required.

ModelSim SE Reference Manual, v6.5b610

Commands
wlfman

wlfman
The wlfman command allows you to get information about and manipulate WLF files.

The command performs four functions depending on which mode you use:

• wlfman info generates file information, resolution, versions, etc.

• wlfman items generates a list of HDL objects (i.e., signals) from the source WLF file
and outputs it to stdout. When redirected to a file, the output is called an object_list_file,
and it can be read in by wlfman filter. The object_list_file is a list of objects, one per
line. Comments start with a '#' and continue to the end of the line. Wildcards are legal in
the leaf portion of the name. Here is an example:

/top/foo # signal foo
/top/u1/* # all signals under u1
/top/u1 # same as line above
-r /top/u2 # recursively, all signals under u2

Note that you can produce these files from scratch but be careful with syntax. wlfman
items always creates a legal object_list_file.

• wlfman filter reads in a WLF file and optionally an object_list_file and writes out
another WLF file containing filtered information from those sources. You determine the
filtered information with the arguments you specify.

• wlfman profile generates a report of the estimated percentage of file space that each
signal is taking in the specified WLF file. This command can identify signals that
account for a large percentage of the WLF file size (e.g., a logged memory that uses a
zero-delay integer loop to initialize the memory). You may be able to drastically reduce
WLF file size by not logging those signals.

• wlfman merge combines two WLF files with different signals into one WLF file. It
does not combine wlf files containing the same signals at different runtime ranges (i.e.,
mixedhdl_0ns_100ns.wlf & mixedhdl_100ns_200ns.wlf).

The different modes are intended to be used together. For example, you might run wlfman
profile and identify a signal that accounts for 50% of the WLF file size. If you don’t actually
need that signal, you can then run wlfman filter to remove it from the WLF file.

Syntax

wlfman info <wlffile>

wlfman items [-n] [-v] <wlffile>

wlfman filter [-begin <time>] [-end <time>] [-f <object_list_file>] [-r <object>]
[-s <symbol>] [-t <resolution>] -o <outwlffile> <sourcewlffile>

wlfman profile [-rank] [-top <number>] <wlffile>

wlfman merge [-noopt] [-opt] -o <outwlffile> [<wlffile1> <wlffile2>]

Commands
wlfman

ModelSim SE Reference Manual, v6.5b 611

Arguments for wlfman info

• <wlffile>

Specifies the WLF file from which you want information. Required.

Arguments for wlfman items

• -n

Lists regions only (no signals). Optional.

• -v

Produces verbose output that lists the object type next to each object. Optional.

• <wlffile>

Specifies the WLF file for which you want a profile report. Required.

Arguments for wlfman filter

• -begin <time>

Specifies the simulation time at which you want to begin reading information from the
source WLF file. Optional. By default the output includes the entire time that is recorded in
the source WLF file.

• -end <time>

Specifies the simulation time at which you want to end reading information from the source
WLF file. Optional.

• -f <object_list_file>

Specifies an object_list_file created by wlfman items to include in the output WLF file.
Optional.

• -r <object>

Specifies an object (region) to recursively include in the output. If <object> is a signal, the
output would be the same as using -s. Optional.

• -s <symbol>

Specifies an object to include in the output. Optional. By default all objects are output.

• -t <resolution>

Specifies the time resolution of the new WLF file. Optional. By default the resolution is the
same as the source WLF file.

• -o <outwlffile>

Specifies the name of the output WLF file. Required. The output WLF file will contain all
objects specified by -f <object_list_file>, -r <object>, and -s <symbol>. Output WLF files
are always written in the latest WLF version regardless of the source WLF file version.

• <sourcewlffile>

Specifies the source WLF file from which you want objects. Required.

ModelSim SE Reference Manual, v6.5b612

Commands
wlfman

Arguments for wlfman profile

• -rank

Sorts the report by percentage. Optional.

• -top <number>

Filters the report so that only the top <number> signals in terms of file space percentage are
displayed. Optional.

• <wlffile>

Specifies the WLF file from which you want object information. Required.

Arguments for wlfman merge

• -noopt

Disables WLF file optimizations when writing output WLF file. Optional.

• -opt

Forces WLF file optimizations when writing output WLF file. Optional. Default.

• -o <outwlffile>

Specifies the name of the output WLF file. Required. The output WLF file will contain all
objects from <wlffile1> and <wlffile2>. Output WLF files are always written in the latest
WLF version regardless of the source WLF file version.

• <wlffile1> <wlffile2>

Specifies the WLF files whose objects you want to copy into one WLF file. Optional.

Examples

• The output from this command would look something like this:

wlfman profile -rank top_vh.wlf

Commands
wlfman

ModelSim SE Reference Manual, v6.5b 613

#Repeated ID #'s mean those signals share the same
#space in the wlf file.
#
ID Transitions File % Name
#----- ----------- ------ ------------------------------------
 1 2192 33 % /top_vh/pdata
 1 /top_vh/processor/data
 1 /top_vh/cache/pdata
 1 /top_vh/cache/gen__0/s/data
 1 /top_vh/cache/gen__1/s/data
 1 /top_vh/cache/gen__2/s/data
 1 /top_vh/cache/gen__3/s/data
 2 1224 18 % /top_vh/ptrans
 3 1216 18 % /top_vh/sdata
 3 /top_vh/cache/sdata
 3 /top_vh/memory/data
 4 675 10 % /top_vh/strans
 5 423 6 % /top_vh/cache/gen__3/s/data_out
 6 135 3 % /top_vh/paddr.
.
.
.

• wlfman profile -top 3 top_vh.wlf

The output from this command would look something like this:

ID Transitions File % Name
#----- ----------- ------ ------------------------------------
 1 2192 33 % /top_vh/pdata
 1 /top_vh/processor/data
 1 /top_vh/cache/pdata
 1 /top_vh/cache/gen__0/s/data
 1 /top_vh/cache/gen__1/s/data
 1 /top_vh/cache/gen__2/s/data
 1 /top_vh/cache/gen__3/s/data
 2 1224 18 % /top_vh/ptrans
 3 1216 18 % /top_vh/sdata
 3 /top_vh/cache/sdata
 3 /top_vh/memory/data

See also

“Recording Simulation Results With Datasets”

ModelSim SE Reference Manual, v6.5b614

Commands
wlfrecover

wlfrecover
The wlfrecover tool attempts to "repair" WLF files that are incomplete due to a crash or the file
being copied prior to completion of the simulation. You can run the tool from the VSIM> or
ModelSim> prompt or from a shell.

Syntax

wlfrecover <filename> [-force] [-q]

Arguments

• <filename>

Specifies the WLF file to repair. Required.

• -force

Disregards file locking and attempts to repair the file. Optional.

• -q

Hides all messages unless there is an error while repairing the file. Optional.

Commands
write cell_report

ModelSim SE Reference Manual, v6.5b 615

write cell_report
The write cell_report command writes to the Transcript window or to a file a list of Verilog
modules which qualified for and received gate-level cell optimizations. Gate-level cell
optimizations are applied at the module level, in addition to normal Verilog optimizations, to
improve performance of gate-level simulations.

Syntax

write cell_report [-filter <number>] [-infile <filename>] [-nonopt] [[-outfile] <filename>]

Arguments

• -filter <number>

Excludes cells with instance counts fewer than <number>. Optional.

• -infile <filename>

Specifies a previously generated write report file to use as input. Optional. If not specified
then the write report command will be run.

• -nonopt

Reports only non-optimized instances. Optional.

• [-outfile] <filename>

Writes the report to the specified output file rather than the Transcript window. Optional.

ModelSim SE Reference Manual, v6.5b616

Commands
write format

write format
The write format command records the names and display options of the HDL objects
currently being displayed in the Analysis, List, Memory, Message Viewer, Test Browser, and
Wave windows.

The write format restart command creates a single .do file that will recreate all debug
windows, all file/line breakpoints, and all signal breakpoints created using the when command.
If the ShutdownFile modelsim.ini variable is set to this .do filename, it will call the write format
restart command upon exit.

The file created is primarily a list of add list, add wave, and configure commands, though a few
other commands are included (see "Output" below). This file may be invoked with the do
command to recreate the window format on a subsequent simulation run.

When you load a format file, ModelSim verifies the existence of the datasets required by that
file. ModelSim displays an error message if the requisite datasets do not all exist. To force the
execution of the format file even if all datasets are not present, use the -force switch with your
do command. For example:

VSIM> do format.do -force

Note that this will result in error messages for signals referencing nonexistent datasets. Also,
-force is recognized by the format file not the do command.

Syntax

write format analysis | list | memory | msgviewer | testbrowser | wave | restart [-window
<window_name>] <filename>

Arguments

• analysis | list | memory | msgviewer | testbrowser | wave | restart

Specifies that the contents of the designated window are recorded in a .do file, <filename>.
If restart is designated, all windows and breakpoints are recorded in the .do file. Required.

• -window <window_name>

Specifies the List or Wave window for which you want contents recorded. Optional. Use
when you have more than one instance of the List or Wave window.

• <filename>

Specifies the name of the output file where the data is to be written. Required.

Examples

• Save the current data in the List window in a file named alu_list.do.

write format list alu_list.do

• Save the current data in the Wave window in a file named alu_wave.do.

write format wave alu_wave.do

Commands
write format

ModelSim SE Reference Manual, v6.5b 617

Output

• Below is an example of a saved Wave window format file.

onerror {resume}
quietly WaveActivateNextPane {} 0
add wave -noupdate -format Logic /cntr_struct/ld
add wave -noupdate -format Logic /cntr_struct/rst
add wave -noupdate -format Logic /cntr_struct/clk
add wave -noupdate -format Literal /cntr_struct/d
add wave -noupdate -format Literal /cntr_struct/q
TreeUpdate [SetDefaultTree]
quietly WaveActivateNextPane
add wave -noupdate -format Logic /cntr_struct/p1
add wave -noupdate -format Logic /cntr_struct/p2
add wave -noupdate -format Logic /cntr_struct/p3
TreeUpdate [SetDefaultTree]
WaveRestoreCursors {0 ns}
WaveRestoreZoom {0 ns} {1 us}
configure wave -namecolwidth 150
configure wave -valuecolwidth 100
configure wave -signalnamewidth 0
configure wave -justifyvalue left

In the example above, five signals are added with the -noupdate argument to the default
window. The TreeUpdate command then refreshes all five waveforms. The second
WaveActivateNextPane command creates a second pane which contains three
signals.The WaveRestoreCursors command restores any cursors you set during the
original simulation, and the WaveRestoreZoom command restores the Zoom range you
set. These four commands are used only in saved Wave format files; therefore, they are
not documented elsewhere.

See also

add list, add wave, configure

ModelSim SE Reference Manual, v6.5b618

Commands
write list

write list
The write list command records the contents of the most recently opened or specified List
window in a list output file.

This file contains simulation data for all HDL objects displayed in the List window: VHDL
signals and variables and Verilog nets and registers.

Syntax

write list [-events] [-window <wname>] <filename>

Arguments

• -events

Specifies to write print-on-change format. Optional. Default is tabular format.

• -window <wname>

Specifies an instance of the List window that is not the default. Optional. Otherwise, the
default List window is used. Use the view command to change the default window.

• <filename>

Specifies the name of the output file where the data is to be written. Required.

Examples

• Save the current data in the default List window in a file named alu.lst.

write list alu.lst

• Save the current data in window ‘list1’ in a file named group1.list.

write list -win list1 group1.list

See also

write tssi

Commands
write preferences

ModelSim SE Reference Manual, v6.5b 619

write preferences
The write preferences command saves the current GUI preference settings to a Tcl preference
file. Settings saved include Wave, Objects, and Locals window column widths; Wave, Objects,
and Locals window value justification; and Wave window signal name width.

Syntax

write preferences <preference file name>

Arguments

• <preference file name>

Specifies the name for the preference file. Optional. If the file is named modelsim.tcl,
ModelSim will read the file each time vsim is invoked. To use a preference file other than
modelsim.tcl you must specify the alternative file name with the MODELSIM_TCL
environment variable.

See also

You can modify variables by editing the preference file with the ModelSim notepad:

notepad <preference file name>

ModelSim SE Reference Manual, v6.5b620

Commands
write report

write report
The write report command prints a summary of the design being simulated including a list of
all design units (VHDL configurations, entities, and packages, and Verilog modules) with the
names of their source files. The summary includes a list of all source files used to compile the
given design.

Syntax

write report [-capacity [-l | -s] [-assertions | -classes | -cvg | -qdas | -solver]] | [-l | -s] [-tcl]
[<filename>]

Arguments

• <filename>

Specifies the name of the output file where the data is to be written. Optional. If the
<filename> is omitted, the report is written to the Transcript window.

• -capacity

Reports data on memory usage of various types of SystemVerilog constructs in the design.
Optional. ModelSim collects memory usage data for assertions, classes, covergroups,
dynamic objects, and the solver. Each of these design object types has a switch that you can
specify along with -capacity in order to display its memory data. To display memory data
for all object types, specify -capacity -l.

• -assertions

Reports memory usage data for SystemVerilog assertions and cover directives.

• -classes

Reports memory usage data for the current number of objects allocated, the current memory
allocated for class object, the peak memory allocated and peak time.

• -cvg

Reports memory usage data for the number of covergroups, cross, bins and memory
allocated.

• -qdas

Reports memory usage data for queues, dynamic arrays, and associative arrays.

• -solver

Reports memory usage data for calls to randomize() and memory usage.

• -l

Generates more detailed information about the design, including a list of sparse memories or
the memory capacity for all object types. Default.

• -s

Generates a short list of design information. Optional.

Commands
write report

ModelSim SE Reference Manual, v6.5b 621

• -tcl

Generates a Tcl list of design unit information. Optional. This argument cannot be used with
a filename.

Examples

• Save information about the current design in a file named alu_rpt.txt.

write report alu_rpt.txt

• Display a short list of information regarding the memory capacity for covergroups in the
design during the simulation so far.

write report -capacity -s cvg

• Display information on all of the calls to randomize() made during simulation so far,
along with the memory usage of those calls, number of calls, and callsite information.

write report -capacity -solver

ModelSim SE Reference Manual, v6.5b622

Commands
write timing

write timing
The write timing command displays path delays and timing check limits, unadjusted for delay
net delays, for the specified instance.

Syntax

write timing [-recursive] [-file <filename>] [<instance_name1>…<instance_nameN>]
[-simvalues]

Arguments

• -recursive

Generates timing information for the specified instance and all instances underneath it in the
design hierarchy. Optional.

• -file <filename>

Specifies the name of the output file where the data is to be written. Optional. If the -file
argument is omitted, timing information is written to the Transcript window.

• <instance_name1>…<instance_nameN>

The name(s) of the instance(s) for which timing information will be written. Required.

• -simvalues

Displays optimization-adjusted values for delay net delays. Optional.

Examples

• Write timing about /top/u1 and all instances underneath it in the hierarchy to the file
timing.txt.

write timing -r -f timing.txt /top/u1

• Write timing information about the designated instances to the Transcript window.

write timing /top/u1 /top/u2 /top/u3 /top/u8

Commands
write transcript

ModelSim SE Reference Manual, v6.5b 623

write transcript
The write transcript command writes the contents of the Transcript window to the specified
file. The resulting file can be used to replay the transcribed commands as a DO file (macro).

The command cannot be used in batch mode. In batch mode use the standard Transcript file or
redirect stdout.

Syntax

write transcript [<filename>]

Arguments

• <filename>

Specifies the name of the output file where the data is to be written. Optional. If the
<filename> is omitted, the transcript is written to a file named transcript.

See also

do

ModelSim SE Reference Manual, v6.5b624

Commands
write tssi

write tssi
The write tssi command records the contents of the default or specified List window in a "TSSI
format" file.

The file contains simulation data for all HDL objects displayed in the List window that can be
converted to TSSI format (VHDL signals and Verilog nets). A signal definition file is also
generated.

The List window needs to be using symbolic radix in order for write tssi to produce useful
output.

Syntax

write tssi [-window <wname>] <filename>

Arguments

• -window <wname>

Specifies an instance of the List window that is not the default. Optional. Otherwise, the
default List window is used. Use the view command to change the default window.

• <filename>

Specifies the name of the output file where the data is to be written. Required.

Description

If the <filename> has a file extension (e.g., listfile.lst), then the definition file is given the same
file name with the extension .def (e.g., listfile.def). The values in the listfile are produced in the
same order that they appear in the List window. The directionality is determined from the port
type if the object is a port, otherwise it is assumed to be bidirectional (mode INOUT).

Objects that can be converted to SEF are VHDL enumerations with 255 or fewer elements and
Verilog nets. The enumeration values U, X, 0, 1, Z, W, L, H and - (the enumeration values
defined in the IEEE Standard 1164 std_ulogic enumeration) are converted to SEF values
according to the table below. Other values are converted to a question mark (?) and cause an
error message. Though the write tssi command was developed for use with std_ulogic, any
signal which uses only the values defined for std_ulogic (including the VHDL standard type
bit) will be converted.

std_ulogic State
Characters

SEF State Characters

Input Output Bidirectional

U N X ?

X N X ?

0 D L 0

1 U H 1

Z Z T F

Commands
write tssi

ModelSim SE Reference Manual, v6.5b 625

Bidirectional logic values are not converted because only the resolved value is available. The
TSSI TDS ASCII In Converter and ASCII Out Converter can be used to resolve the
directionality of the signal and to determine the proper forcing or expected value on the port.
Lowercase values x, z, w, l, and h are converted to the same values as the corresponding
capitalized values. Any other values will cause an error message to be generated the first time
an invalid value is detected on a signal, and the value will be converted to a question mark (?).

Note
The TDS ASCII In Converter and ASCII Out Converter are part of the TDS software.
ModelSim outputs a vector file, and TSSI tools determine whether the bidirectional
signals are driving or not.

See also

tssi2mti

W N X ?

L D L 0

H U H 1

- N X ?

std_ulogic State
Characters

SEF State Characters

Input Output Bidirectional

ModelSim SE Reference Manual, v6.5b626

Commands
write wave

write wave
The write wave command records the contents of the most currently opened or specified Wave
window in PostScript format.

The output file can then be printed on a PostScript printer.

Syntax

write wave [-window <wname>] [-width <real_num>] [-height <real_num>]
[-margin <real_num>] [-start <time>] [-end <time>] [-perpage <time>] [-landscape]
[-portrait] <filename>

Arguments

• -window <wname>

Specifies an instance of the Wave window that is not the default. Optional. Otherwise, the
default Wave window is used. Use the view command to change the default window.

• -width <real_num>

Specifies the paper width in inches. Optional. Default is 8.5.

• -height <real_num>

Specifies the paper height in inches. Optional. Default is 11.0.

• -margin <real_num>

Specifies the margin in inches. Optional. Default is 0.5.

• -start <time>

Specifies the start time (on the waveform timescale) to be written. Optional.

• -end <time>

Specifies the end time (on the waveform timescale) to be written. Optional.

• -perpage <time>

Specifies the time width per page of output. Optional.

• -landscape

Use landscape (horizontal) orientation. Optional. This is the default orientation.

• -portrait

Use portrait (vertical) orientation. Optional. The default is landscape (horizontal).

• <filename>

Specifies the name of the PostScript output file. Required.

Examples

• Save the current data in the Wave window in a file named alu.ps.

Commands
write wave

ModelSim SE Reference Manual, v6.5b 627

write wave alu.ps

• Save the current data in window ‘wave2’ in a file named group2.ps.

write wave -win wave2 group2.ps

• Write two separate pages to top.ps. The first page contains data from 600ns to 700ns,
and the second page contains data from 701ns to 800ns.

write wave -start 600ns -end 800ns -perpage 100ns top.ps

To make the job of creating a PostScript waveform output file easier, use the File >
Print Postscript menu selection in the Wave window.

ModelSim SE Reference Manual, v6.5b628

Commands
xml2ucdb

xml2ucdb
The xml2ucdb is a utility used to convert an XML test plan file to a .ucdb file. The
configuration settings for this utility are read automatically from the xml2ucdb.ini file, located
in <install_dir>/vm_src/ directory. The settings specified by this command override any
settings in the xml2ucdb.ini file.

For information about the XML language, see the “XML 1.0 Specification” available on the
web.

Syntax

xml2ucdb [<options>] <XML_filename> [<ucdb_filename>]

Where <options> are:
[-help]
[-debug] [-verbose] [-version]
[-viewtags] [-viewall] [-formatlist] [-format <format>]
[-excelsheet <sheet_name>] [-dofilename <file>] [-ucdbfilename <file>]
[-inherit]
[-searchpath <path/to/XML_input>]
[-stylesheet <file>]
[-tagseparators <str>] [-starttags <tags>] [-stoptags <tags>] [-excludetags <tags>]
[-sectiontags <tag>] [-datatags <tag>] [-titletag <tag>]
[-descriptiontag <tag>] [-goaltag <tags>] [-weighttag <tags>] [-linktag <tag>]
[-modelsimini <ini_filepath>]
[-typeattr <name>] [-linkattr <tag>] [-datafields <str>] [-datalabels <str>]
[-autonumber | -noautonumber]
[-startsection <num>] [-startstoring <num>]
[-root <str>] [-title <str>] [-tagprefix <str>] [-sectionprefix <str>]

Arguments

• -autonumber | -noautonumber

Enables (-autonumber) or disables (-noautonumber) the automatic generation of testitem
numbers from section tags. Optional. By default, the autonumbering is disabled. Use
-autonumber to enable it. If you override the default off setting by enabling autonumbering
in a custom configuration (xml2ucdb.ini) file, use -noautonumber to subsequently turn if
off.

• -datafields <str>

Specifies data fields, in the order that the columns appear in the testplan UCDB being
imported (such as, "Section:Title:Tags:Description"). Use to add data fields to the testplan.
Optional.

• -datalabels <str>

Specifies labels for datafields. Optional.

Commands
xml2ucdb

ModelSim SE Reference Manual, v6.5b 629

• -datatags <tag>

Specifies XML tag for item data fields. Optional.

• -debug

Prints out internal debug information. Optional.

• -descriptiontag <tag>

Specifies XML tag or tag list for description fields. Optional.

• -dofilename <file>

Specifies the name of test plan mapping file. The test plan mapping file contains the
coverage tag commands necessary to tag and link the coverage objects to the test plan items.
Optional. The default: no mapping file.

• -excludetags <tags>

Specifies XML tag or tag list for tags to exclude from the processing. Optional.

• -excelsheet <sheet_name>

Imports data from one specific sheet in an Excel spreadsheet. <sheet_name> is the exact
string as it appears in the tab (“Sheet1”, “Sheet2”, etc.) at the bottom of an Excel
spreadsheet. Optional.

• -format <format>

Specifies the format to be used for the command, from a list of formats (pre-defined XML
semantic definitions) listed in the xml2ucdb.ini file, located in the <install_dir>/vm_src
directory. Optional.

• -formatlist

Lists the currently defined formats (pre-defined XML semantic definitions in Tcl) listed in
the xml2ucdb.ini file located in the <install_dir>/vm_src directory. Optional.

• -goaltag <tags>

Specifies the XML tag or tag list for a goal field. Optional.

• -help

Prints Help Message. Optional.

• -inherit

Used with a nested testplan. Causes storing state (resulting from start/stop tags or
startstoring tag) to be inherited by the nested testplan.

• -linkattr <tag>

Specifies XML tag attribute for cover items. Optional.

• -linktag <tag>

Specifies XML tag or tag list for cover items. Optional.

ModelSim SE Reference Manual, v6.5b630

Commands
xml2ucdb

• -modelsimini <ini_filepath>

Loads an alternate initialization file that replaces the current initialization file. Overrides the
file path specified in the MODELSIM environment variable. Specifies either an absolute or
relative path to the initialization file. On Windows systems the path separator should be a
forward slash (/).

• -root <str>

Specifies the root name to be prepended to each section number (in non-autonumbered
testplans, i.e. spreadsheets) of the test plan. Allows you to specify a root test plan, in which
you wish to “nest” the current test plan, thereby creating a hierarchical test plan. Optional.

• -searchpath <path/to/XML_input>

Specifies the path where XML import file is to be found. If this switch is not specified for a
hierarchical (nested) test plan, any existing setting for parent test plan(s) is inherited. If none
in ancestor test plans, the setting in the xml2ucdb.ini file is used. Optional.

• -sectiontags <tag>

Specifies XML tag or tag list for a test item section number (such as "tag1:tag2:tag3").
Optional.

• -sectionprefix <str>

Specifies the prefix for section numbering (such as "tag1prefix:tag2prefix:tag3prefix").
Optional.

• -startsection <num>

Sets starting item number : defaults 0. Optional.

• -startstoring <num>

Specifies the Storing to begin at an item number: defaults 0. Optional.

• -starttags <tags>

Specifies XML tag or tag list for a tag to start the processing. Optional.

• -stoptags <tags>

Specifies XML tag or tag list for a tag to stop the processing. Optional.

• -stylesheet <file>

Specifies the name of XSL pre-processing stylesheet to be used. Optional.

• -tagprefix <str>

Specifies a string to be prefixed to UCDB tag names. For a top-level testplan, if the
tagprefix is not set, the value specified with -title is used. If any whitespace is contained in
the title, it is replaced with underscore characters for use as the tagprefix. For nested
testplans, there is no default tagprefix: if you do not specify a tagprefix, none is used for the
nested testplan. Optional.

Commands
xml2ucdb

ModelSim SE Reference Manual, v6.5b 631

• -tagseparators <str>

Specifies a list of characters used as tag separators for tag arguments accepting multiple
tags. Applies only to the taglist parameters (-starttags, -stoptags, excludetags, etc.) specified
on the command line. Optional.

• -title <str>

Specifies a string to be used as the title for the test plan. For a top-level testplan, if the title is
not set, the basename of the input XML file is used. For nested testplans, there is no default
title: if you do not specify a title, none is used for the nested testplan. Optional.

• -titletag <tag>

Specifies XML tag or tag list for a test item name, or start tag for Data fields. Optional.

• -typeattr <name>

Specifies an attribute containing the "type" of each coverage item. Optional.

• <ucdb_filename>

Specifies the name for the .ucdb output file. Required, unless -ucdbfilename is specified.

• -ucdbfilename <file>

Specifies the name for the .ucdb output file. Required, unless <ucdb_filename> is specified.

• -verbose

Prints the testplan hierarchy and design mapping. Optional.

• -version

Prints the version number of the utility. Optional.

• -viewall

Prints both tags and text contents of XML File. Optional.

• -viewtags

Prints tag contents of XML File. Optional.

• -weighttag <tags>

Specifies the XML tag or tag list for a weight field. Optional.

• <XML_filename>

Specifies the input XML file to be converted. Required. The path can be a full or relative
path to the file location. On Windows systems the path separator should be a slash (/), rather
than a backslash (\), for example:

C:/design/vplan/verification.xml

Examples

• Convert the an Excel formatted XML file called input.xml to a UCDB format file,
output.ucdb:

ModelSim SE Reference Manual, v6.5b632

Commands
xml2ucdb

xml2ucdb -format Excel input.xml output.ucdb

• Convert only a specified sheet, Sheet1, of an Excel formatted XML file called input.xml
to a UCDB format file, output.ucdb:

xml2ucdb -format Excel -excelsheet Sheet1 input.xml output.ucdb

See also

coverage goal, coverage weight, vcover attribute, vcover merge, vcover testnames

AVM Encyclopedia
Class Index

ModelSim SE Reference Manual, v6.5b 633

Chapter 3
AVM Encyclopedia

The AVM Encyclopedia documents all of the classes in the AVM library. The classes are
organized in related groups. For each class there is a description of the class and what it is used
for along with a listing of all the members and methods. The methods and members are
described as well.

To use the Encyclopedia, look up a class name in the class index to find the page that has the
complete description and the file name in the library where the class is defined. You can also
peruse the class groups to understand how the classes work together.

Class Index
Table 3-1 is a complete list of all the class definitions in alphabetic order, the file in which each
definition resides, and a reference to a page number for the complete description of the class.

Table 3-1. Class Index

Class Name Definition File Page

analysis_imp deprecated/tlm_imps.svh 686

analysis_port deprecated/analysis_port.svh 687

avm_algorithmic_comparator utils/avm_algorithmic_comparator.svh 653

avm_analysis_export tlm/avm_exports.svh 660

avm_analysis_imp tlm/avm_imps.svh 662

avm_analysis_port tlm/avm_ports.svh 666

avm_blocking_get_export tlm/avm_exports.svh 660

avm_blocking_get_imp tlm/avm_imps.svh 662

avm_blocking_get_peek_export tlm/avm_exports.svh 660

avm_blocking_get_peek_imp tlm/avm_imps.svh 662

avm_blocking_get_peek_port tlm/avm_ports.svh 664

avm_blocking_get_port tlm/avm_ports.svh 664

avm_blocking_master_export tlm/avm_exports.svh 660

avm_blocking_master_imp tlm/avm_imps.svh 667

ModelSim SE Reference Manual, v6.5b634

AVM Encyclopedia
Class Index

avm_blocking_master_port tlm/avm_ports.svh 664

avm_blocking_peek_export tlm/avm_exports.svh 660

avm_blocking_peek_imp tlm/avm_imps.svh 662

avm_blocking_peek_port tlm/avm_ports.svh 664

avm_blocking_put_export tlm/avm_exports.svh 660

avm_blocking_put_imp tlm/avm_imps.svh 662

avm_blocking_put_port tlm/avm_ports.svh 664

avm_blocking_slave_export tlm/avm_exports.svh 660

avm_blocking_slave_imp tlm/avm_imps.svh 669

avm_blocking_slave_port tlm/avm_ports.svh 664

avm_built_in_clone vbase/avm_policies.svh 724

avm_built_in_comp vbase/avm_policies.svh 725

avm_built_in_converter vbase/avm_policies.svh 726

avm_built_in_pair utils/avm_pair.svh 727

avm_class_clone vbase/avm_policies.svh 728

avm_class_comp vbase/avm_policies.svh 729

avm_class_converter vbase/avm_policies.svh 730

avm_class_pair utils/avm_pair.svh 731

avm_connector_base vbase/avm_connector_base.svh 671

avm_env utils/avm_env.svh 639

avm_get_export tlm/avm_exports.svh 660

avm_get_imp tlm/avm_imps.svh 662

avm_get_peek_export tlm/avm_exports.svh 660

avm_get_peek_imp tlm/avm_imps.svh 662

avm_get_peek_port tlm/avm_ports.svh 664

avm_get_port tlm/avm_ports.svh 664

avm_in_order_built_in_
comparator

utils/avm_in_order_comparator.svh 655

avm_in_order_class_comparator utils/avm_in_order_comparator.svh 656

avm_in_order_comparator utils/avm_in_order_comparator.svh 657

Table 3-1. Class Index

Class Name Definition File Page

AVM Encyclopedia
Class Index

ModelSim SE Reference Manual, v6.5b 635

avm_master_export tlm/avm_exports.svh 660

avm_master_imp tlm/avm_imps.svh 675

avm_master_port tlm/avm_ports.svh 664

avm_named_component vbase/avm_named_component.svh 641

avm_nonblocking_get_export tlm/avm_exports.svh 660

avm_nonblocking_get_imp tlm/avm_imps.svh 662

avm_nonblocking_get_peek_
export

tlm/avm_exports.svh 660

avm_nonblocking_get_peek_imp tlm/avm_imps.svh 662

avm_nonblocking_get_peek_port tlm/avm_ports.svh 664

avm_nonblocking_get_port tlm/avm_ports.svh 664

avm_nonblocking_master_export tlm/avm_exports.svh 660

avm_nonblocking_master_imp tlm/avm_imps.svh 677

avm_nonblocking_master_port tlm/avm_ports.svh 664

avm_nonblocking_peek_export tlm/avm_exports.svh 660

avm_nonblocking_peek_imp tlm/avm_imps.svh 662

avm_nonblocking_peek_port tlm/avm_ports.svh 664

avm_nonblocking_put_export tlm/avm_exports.svh 660

avm_nonblocking_put_imp tlm/avm_imps.svh 662

avm_nonblocking_put_port tlm/avm_ports.svh 664

avm_nonblocking_slave_export tlm/avm_exports.svh 660

avm_nonblocking_slave_imp tlm/avm_imps.svh 679

avm_nonblocking_slave_port tlm/avm_ports.svh 664

avm_peek_export tlm/avm_exports.svh 660

avm_peek_imp tlm/avm_imps.svh 662

avm_peek_port tlm/avm_ports.svh 664

avm_port_base vbase/avm_port_base.svh 681

avm_put_export tlm/avm_exports.svh 660

avm_put_imp tlm/avm_imps.svh 662

analysis_fifo tlm/tlm_fifos.svh 691

Table 3-1. Class Index

Class Name Definition File Page

ModelSim SE Reference Manual, v6.5b636

AVM Encyclopedia
Class Index

analysis_if tlm/tlm_ifs.svh 699

avm_put_port tlm/avm_ports.svh 664

avm_random_stimulus utils/avm_random_stimulus.svh 646

avm_report_client reporting/avm_report_client.svh 734

avm_report_handler reporting/avm_report_handler.svh 739

avm_report_server reporting/avm_report_server.svh 742

avm_reporter reporting/avm_report_client.svh 744

avm_slave_export tlm/avm_exports.svh 660

avm_slave_imp tlm/avm_imps.svh 683

avm_slave_port tlm/avm_ports.svh 664

avm_stimulus deprecated/avm_stimulus.svh 648

avm_subscriber utils/avm_subscriber.svh 649

avm_threaded_component utils/avm_threaded_component.svh 650

avm_transaction vbase/avm_transaction.svh 732

avm_transport_export tlm/avm_exports.svh 660

avm_transport_imp tlm/avm_imps.svh 685

avm_transport_port tlm/avm_ports.svh 664

avm_verification_component deprecated/avm_verification_component.svh 651

global_analysis_ports deprecated/avm_global_analysis_ports.svh 688

tlm_blocking_get_if tlm/tlm_ifs.svh 660

tlm_blocking_get_imp deprecated/tlm_imps.svh 689

tlm_blocking_get_peek_if tlm/tlm_ifs.svh 660

tlm_blocking_get_peek_imp deprecated/tlm_imps.svh 689

tlm_blocking_master_if tlm/tlm_ifs.svh 660

tlm_blocking_master_imp deprecated/tlm_imps.svh 689

tlm_blocking_peek_if tlm/tlm_ifs.svh 660

tlm_blocking_peek_imp deprecated/tlm_imps.svh 689

tlm_blocking_put_if tlm/tlm_ifs.svh 660

tlm_blocking_put_imp deprecated/tlm_imps.svh 689

tlm_blocking_slave_if tlm/tlm_ifs.svh 660

Table 3-1. Class Index

Class Name Definition File Page

AVM Encyclopedia
Class Index

ModelSim SE Reference Manual, v6.5b 637

tlm_blocking_slave_imp deprecated/tlm_imps.svh 689

tlm_fifo tlm/tlm_fifos.svh 692

tlm_get_if tlm/tlm_ifs.svh 706

tlm_get_imp deprecated/tlm_imps.svh 689

tlm_get_peek_if tlm/tlm_ifs.svh 707

tlm_get_peek_imp deprecated/tlm_imps.svh 689

tlm_master_if tlm/tlm_ifs.svh 709

tlm_master_imp deprecated/tlm_imps.svh 689

tlm_nonblocking_get_if tlm/tlm_ifs.svh 711

tlm_nonblocking_get_imp deprecated/tlm_imps.svh 689

tlm_nonblocking_get_peek_if tlm/tlm_ifs.svh 712

tlm_nonblocking_get_peek_imp deprecated/tlm_imps.svh 689

tlm_nonblocking_master_if tlm/tlm_ifs.svh 713

tlm_nonblocking_master_imp deprecated/tlm_imps.svh 689

tlm_nonblocking_peek_if tlm/tlm_ifs.svh 715

tlm_nonblocking_peek_imp deprecated/tlm_imps.svh 689

tlm_nonblocking_put_if tlm/tlm_ifs.svh 716

tlm_nonblocking_put_imp deprecated/tlm_imps.svh 689

tlm_nonblocking_slave_if tlm/tlm_ifs.svh 717

tlm_nonblocking_slave_imp deprecated/tlm_imps.svh 689

tlm_peek_if tlm/tlm_ifs.svh 719

tlm_peek_imp deprecated/tlm_imps.svh 689

tlm_put_if tlm/tlm_ifs.svh 720

tlm_put_imp deprecated/tlm_imps.svh 689

tlm_req_rsp_channel tlm/tlm_req_rsp.svh 695

tlm_slave_if tlm/tlm_ifs.svh 721

tlm_slave_imp deprecated/tlm_imps.svh 689

tlm_transport_channel tlm/tlm_req_rsp.svh 698

tlm_transport_if tlm/tlm_ifs.svh 723

tlm_transport_imp deprecated/tlm_imps.svh 689

Table 3-1. Class Index

Class Name Definition File Page

ModelSim SE Reference Manual, v6.5b638

AVM Encyclopedia
Classes for Components

Classes for Components
Components form the foundation of the AVM. Components encapsulate behavior of
transactors, scoreboards, and other objects in a test bench. avm_named_component is the base
class from which all component classes are derived.

Figure 3-1. UML Diagram for Components

AVM Encyclopedia
avm_env

ModelSim SE Reference Manual, v6.5b 639

avm_env
 extends avm_named_component

A subclass of avm_env is the top-level class in any class-based AVM verification environment.
All the components of the test bench are children of this top-level class. There are two key
methods in any such subclass: the constructor that specifies the connectivity between the
environment class and the rest of the test bench and do_test(), which is inherited from the
avm_env base class. avm_env::do_test() runs through the AVM phases. These are connect()
(further broken down into export_connections(), connect() and import_connections()),
configure(), run(), and report().

file

utils/avm_env.svh

virtual

yes

members

avm_connection_phase_e m_connection_phase =
 AVM_CONSTRUCTION_PHASE

Used to determine which phase of elaboration is currently being executed. This
enum is used by avm_connector_base (see page 671) to check that the correct
connections are being done in the correct subphase of the connect phase.

internal members

local process m_run_process
The run process is the process id of the run() task.

methods

function new(string name="env")
This is the constructor. name is the first argument of the normal
avm_named_component constructor. It is not necessary to specify the parent
argument, since avm_env does not have a parent.

virtual function void configure()
Allows configuration of verification components before the simulation starts,
although it may be that back door memory accesses are also done here. It is virtual
so that it can be overloaded in subclasses of avm_env. It is a function, so it cannot
consume time. If there is some time-consuming initialization that needed before the
test starts, then this needs to be done in the run phase. configure() is executed after
elaborate() and before run().

virtual function void connect()
A virtual method that gets overridden in the user-defined subclass to specify the
connections between top-level components in the environment.

ModelSim SE Reference Manual, v6.5b640

AVM Encyclopedia
avm_env

function void do_kill_all()
Kills all run() tasks, whether these were created by avm_env or
avm_threaded_component. It is called by do_test() between the run phase and
the report phase. It can also be called manually to stop all processes.

virtual task do_test()
The main user-visible method in avm_env. It runs through the AVM phases as
described above.

virtual task execute()
This method is deprecated. It exists to support backward compatibility with AVM
2.0.

virtual function void kill()
Kills the run() task and any of its children. It can be overloaded to do additional
work before or after killing these processes. However, it is necessary that the
overloaded method call super.kill().

virtual function void report()
Called when the run() task finishes. It provides a summary of all AVM message
reporting calls, so if it is overridden in a subclass, it is recommended that
super.report() be called as the last thing in the user-defined report() method. It
is a function and cannot consume time. If some time-consuming post processing is
needed, then it must be done at the end of the run() task.

virtual task resume()
Suspends the run() task and any of its children. It can be overloaded to do
additional work before or after resuming these processes. However, it is necessary
that the overloaded method call super.resume().

virtual task run()
The main process at the top level of the test bench. Typically, it is used to start
stimulus generation, examine the state of scoreboards and/or coverage objects, and
then stop stimulus generation.

virtual task suspend()
Suspends the run() task and any of its children. It can be overloaded to do
additional work before or after suspending these processes. However, it is necessary
that the overloaded method call super.suspend().

internal methods

task do_run_all()
A virtual method in avm_named_component. The implementation in avm_env adds a
delta delay to ensure that all subcomponents start before the run() task in the
avm_env.

local function void elaborate()
A local method that runs through the connect subphases. It is the first phase executed
after the environment constructor completes.

AVM Encyclopedia
avm_named_component

ModelSim SE Reference Manual, v6.5b 641

avm_named_component
 extends avm_report_client

This is the fundamental building block of the AVM. All structural classes (e.g., avm_env,
avm_threaded_component, avm_random_stimulus, etc.) inherit from avm_named_component.

Broadly speaking, the methods of this class are divided into three kinds: the basic hierarchy
handling methods, including the constructor and remove; the methods called by avm_env to do
configuration, connections, and reporting; and the hierarchical reporting methods.

file

vbase/avm_named_component.svh

virtual

Yes

members

protected avm_named_component m_children[string]
An associative array of those named components that are children of this
component. The children are indexed by their leaf name.

protected avm_named_component m_components[string]
An array used purely for debugging purposes. It is only valid after the end of
elaboration. It consists of those children of this component that are not ports,
exports, or implementations.

avm_env m_env
A handle to the avm_env within which this component is defined. It is null if the
component is defined outside of an avm_env.

protected avm_named_component m_exports[string]
An array used purely for debugging purposes. It is only valid after the end of
elaboration. It consists of those children of this component that are exports.

protected avm_named_component m_implementations[string]
An array used purely for debugging purposes, it is only valid after the end of
elaboration. It consists of those children of this component that are implementations.

string m_leaf_name
The local name of the component, e.g., data_phase_monitor.

string m_name
The full hierarchical name of the component, e.g.,
top.monitor.data_phase_monitor.

protected avm_named_component m_parent
A handle to the parent. For avm_envs and components defined outside of avm_envs
(e.g., in modules, interfaces, or program blocks) this will be null. For any
component defined within an avm_env, the parent will be the avm_env.

protected avm_named_component m_ports[string]

ModelSim SE Reference Manual, v6.5b642

AVM Encyclopedia
avm_named_component

An array used purely for debugging purposes. It is only valid after the end of
elaboration. It consists of those children of this component that are ports.

internal members

local bit m_is_removed
Set to true when a component is removed.

static protected avm_env s_current_env
Only used for printing AVM 2.0 backward compatibility messages. It should not
under any circumstances be relied on to contain a useful handle by subclasses of this
component.

methods

function new(string name, avm_named_component parent=null,
 bit check_parent=1)

We must always provide a local name. For most components, a parent is supplied
and checked. The only exceptions to this are avm_env, which must not have a
parent, and components such as tlm_fifo (see page 692), which might not have a
parent if they are being used outside of an avm_env, such as in a module. If a
component instantiation does not have a parent, then check_parent should be set to
0.

function avm_named_component absolute_lookup(string name)
Returns a handle to the component with the full hierarchical name specified by name,
if there is such a component, and will return null otherwise.

virtual function void configure()
An empty implementation in avm_named_component. It should be overloaded if
required in a subclass. It is called by the avm_env using do_configure().

protected virtual function void connect()
Called by avm_env after export_connections and before import_connections. It
should be overloaded in subclasses of avm_named_component so that a child port
that requires an interface can obtain it from an export of another sibling child.
Connections in connect() should be of the form child1.port.connect(

child2.export).

virtual function void do_display(int max_level=-1,
int level=0,
bit display_connectors=0)

A debugging method that is used to recursively display the hierarchical names of
this component and its children. max_level is used to control the depth of the
recursion—the default value of -1 means that the recursion will always carry on to
the lowest level in the hierarchy of the test bench. It is not expected that the normal
test bench code will supply a value other than zero to the second argument. The third
argument is used to control whether ports, exports, and implementations are
displayed. The default value of zero indicates that they are not displayed; a value of
1 ensures that connectors are displayed.

AVM Encyclopedia
avm_named_component

ModelSim SE Reference Manual, v6.5b 643

virtual function void do_kill_all()
Kills all the run() tasks in the current instance of avm_named_component and any
tasks spawned by this instance and any child component instances. It is called by
avm_env after its run() task has finished executing.

function void do_flush()
Calls the virtual flush() method for this component and all its children using a
bottom-up ordering. It is not called automatically by avm_env, so it needs to be
called explicitly when required.

virtual function void end_of_elaboration()
A virtual function whose default implementation is empty. It is called by avm_env at
the end of elaboration and before configure(). It can be overloaded in a subclass,
and is a useful place to put debugging code that can display interesting aspects of the
test bench hierarchy or connectivity.

protected virtual function void export_connections()
Called by avm_env at the beginning of the connect() phase. It should be overloaded
in subclasses of avm_named_component to make avm_*_exports and avm_*_imps

defined in children of this component externally visible. Connections in
export_connections should be of the form export.connect(child.export).

virtual function void flush()
An empty implementation in avm_named_component. It should be overloaded if
required in a subclass. It is called from normal test bench code by do_flush().

protected virtual function void import_connections()
Called by avm_env at the end of the connect() phase. It should be overloaded in
subclasses of avm_named_component so that a child port that requires an external
interface can obtain it from a port of this component. Connections in
import_connections should be of the form child.port.connect(port).

function bit is_removed()
Returns 1 if this component has been removed, otherwise returns 0.

function avm_named_component relative_lookup(string name)
Looks up the child of this component whose name relative to this component is
name. For example, if this component’s name is “i1.i2” and name is “i3.i4,” then this
method will return the handle to the component with name “i1.i2.i3.i4” if there is
such a component, and will return null otherwise.

virtual function void remove()
Removes all trace of a component from the various AVM data structures. It is virtual
to allow subclasses to delete this component from their data structures if that is
necessary. remove() can only be called during the avm_env construction phase.

virtual function void report()
An empty implementation in avm_named_component. It should be overloaded if
required in a subclass. It is called by the avm_env using do_report().

function void set_report_default_file_hier(FILE f)
Calls set_report_default_file() on this component and all its children.

ModelSim SE Reference Manual, v6.5b644

AVM Encyclopedia
avm_named_component

function void set_report_id_action_hier (string id,
 action a)

Calls set_report_id_action() on this component and all its children.

function void set_report_severity_action_hier(severity s,
 action a)

Calls set_report_severity_action() on this component and all its children.

function void set_report_id_file_hier (string id,
 FILE f)

Calls set_report_id_file() on this component and all its children.

function void set_report_severity_file_hier (severity s,
 FILE f)

Calls set_report_severity_file() on this component and all its children.

function void set_report_severity_id_action_hier(severity s,
string id,
action a)

Calls set_report_severity_id_action() on this component and all its children.

function void set_report_severity_id_file_hier (severity s,
 string id,
 FILE f)

Calls set_report_severity_id_file() on this component and all its children.

function void set_report_verbosity_level_hier(int v)
This method calls set_report_verbosity_level() on this component and all its
children.

internal methods

protected virtual function void add_to_debug_list()
Adds this component to the relevant debug list in its parent. By default, this is the
m_components array. This protected method is overridden in avm_connector_base.

local function void build_debug_lists()
Calls add_to_debug_list() for each child of this component.

virtual function void check_connection_size()
Called by amv_env at the end of elaboration to check that the minimum number of
interfaces have been supplied to each connector as defined by the min_size

argument in the constructor of avm_connector_base.

function void do_configure()
Called by avm_env after the elaboration phase but before the run() phase. It calls
configure() on this component and all its children using a top-down ordering.

function void do_connect()
Called by avm_env after do_export_connections() and before
do_import_connections(). Calls connect() in this component and all its children
using an undefined ordering.

function void do_end_of_elaboration()
Used by avm_env to ensure top-down ordering of end_of_elaboration() methods.

AVM Encyclopedia
avm_named_component

ModelSim SE Reference Manual, v6.5b 645

function void do_export_connections()
Called by avm_env at the beginning of the connect() phase. Calls
export_connections() in this component and all its children using a bottom-up
ordering.

function void do_import_connections()
Called by avm_env after do_connect(). Calls import_connections() in this
component and all its children using a top-down ordering.

function void do_report()
Called by avm_env after the run() method terminates. Calls report on this
component and its children using a bottom-up ordering.

virtual task do_run_all()
Spawns all the run() tasks in this component and all its children. Called by avm_env

after the configure() phase and immediately before it spawns its own run()

method.

function void do_set_env(avm_env e)
Called by avm_env after construction and before the connection phase. It sets m_env
in all the children of the avm_env.

local function void extract_name()
A utility used by the absolute and relative look-up methods.

local function void no_parent_message()
An internal method that prints out some AVM 2.0 to AVM 3.0 migration messages.

ModelSim SE Reference Manual, v6.5b646

AVM Encyclopedia
avm_random_stimulus

avm_random_stimulus
 #(type trans_type=avm_transaction)
extends avm_named_component

This is a general purpose unidirectional random stimulus generator. It is a very useful
component in its own right, but can also either be used as a template to define other stimulus
generators, or it can be extended to add additional stimulus generation methods to simplify test
writing.

The avm_random_stimulus class generates streams of trans_type transactions. These streams
may be generated by the randomize() method of trans_type, or the randomize() method of
one of its subclasses, depending on the type of the argument passed into the
generate_stimulus() method. The stream may go indefinitely, until terminated by a call to
stop_stimulus_generation(), or you may specify the maximum number of transactions to
be generated.

By using inheritance, we can add directed initialization or tidy up sequences to the random
stimulus generation.

file

utils/avm_random_stimulus.svh

virtual

no

parameters

type trans_type=avm_transaction
Specifies the type of transaction to be generated.

members

avm_blocking_put_port #(trans_type) blocking_put_port
The port through which transactions come out of the stimulus generator.

local bit m_stop=0
Indicates whether the stimulus generator should stop before issuing the next
transaction.

methods

function new(string name, avm_named_component parent)
This is the standard AVM 3.0 constructor.

The constructor displays the string obtained from get_randstate() during
construction. set_randstate() can then be used to regenerate precisely the same
sequence of transactions for debugging purposes.

virtual task generate_stimulus(trans_type t=null,
 int max_count=0)

AVM Encyclopedia
avm_random_stimulus

ModelSim SE Reference Manual, v6.5b 647

The main user-visible method. If t is not specified, we will generate random
transactions of type trans_type. If t is specified, we will use the randomize()

method in t to generate transactions—so t must be a subclass of trans_type.
max_count is the maximum number of transactions to be generated. A value of zero
indicates no maximum—in this case, generate_stimulus() will go on indefinitely
unless stopped by some other process. The transactions are cloned before they are
sent out over the blocking_put_port.

virtual function void stop_stimulus_generation()
Stops the generation of stimulus.

ModelSim SE Reference Manual, v6.5b648

AVM Encyclopedia
avm_stimulus

avm_stimulus
 #(type trans_type=avm_transaction)
extends avm_named_component

This is deprecated in AVM 3.0 in favor of avm_random_stimulus. It is in the library to ensure
backward compatibility with AVM 2.0.

file

deprecated/avm_stimulus.svh

virtual

no

parameters

type trans_type = avm_transaction

members

tlm_blocking_put_if #(trans_type) blocking_put_port
local bit m_stop=0

methods

function new(string name, avm_named_component parent=null)
virtual task generate_stimulus(trans_type t=null,

 int max_count=0)
virtual function void stop_stimulus_generation()

AVM Encyclopedia
avm_subscriber

ModelSim SE Reference Manual, v6.5b 649

avm_subscriber
 #(type T=int) extends avm_named_component

A subclass of avm_subscriber can be used to connect to an avm_analysis_port that writes
transactions of type T. It has a single pure virtual method, write(), which is made available to
the outside via an analysis_export. It is particularly useful when writing a coverage object
that needs to be attached to a monitor.

file

utils/avm_subscriber.svh

virtual

yes

parameters

type T = int
Specifies the type of transaction to be received.

members

typedef avm_subscriber #(T) this_type
avm_analysis_imp #(T, this_type) analysis_export

The export through which the write method is made available.

methods

function new(string name, avm_named_component p)
This is the standard AVM 3.0 constructor.

pure virtual function void write(T t)
A pure virtual method that needs to be defined in a subclass.

ModelSim SE Reference Manual, v6.5b650

AVM Encyclopedia
avm_threaded_component

avm_threaded_component
 extends avm_named_component

A threaded component inherits from avm_named_component and adds the ability to spawn a
run() task at the beginning of the simulation.

file

utils/avm_threaded_component.svh

virtual

yes

members

protected process m_main_process
The process id of the run() task.

methods

function new(string name, avm_named_component parent)
This is the standard AVM 3.0 constructor.

function void do_kill_all()
A virtual method in avm_named_component that is called by avm_env to kill all the
run() tasks and any other processes spawned by any run() task.

virtual function void kill()
A virtual in avm_named_component that is called by do_kill_all(). If additional
tidying up is required before or after killing the run() task and its children, then this
method can be overloaded. If this is done, super.kill() must be called.

virtual function void report()
Called by avm_env after the run phase.

virtual task resume()
Resumes the run() task and any other processes spawned by the run() task.

pure virtual task run()
A pure virtual method that must be defined in any subclass.

virtual task suspend()
Suspends the run() task and any other processes spawned by the run() task.

internal methods

task do_run_all()
Used by the avm_env to spawn the run() method.

AVM Encyclopedia
avm_verification_component

ModelSim SE Reference Manual, v6.5b 651

avm_verification_component
 extends avm_threaded_component

This is deprecated in AVM 3.0 in favor of avm_threaded_component. It is in the library to
ensure backward compatibility with AVM 2.0.

file

deprecated/avm_verification_component

virtual

yes

members

<none>

methods

function new(string name, avm_named_component parent)

Classes for Comparators
A common function of test benches is to compare streams of transactions for equivalence. For
example, a test bench may compare a stream of transactions from a DUT with expected results.
The AVM library provides a base class called avm_in_order_comparator and two derived
classes, which are avm_in_order_built_in_comparator for comparing streams of built-in
types and avm_in_order_class_comparator for comparing streams of class objects.
avm_algorithmic_comparator also compares two streams of transactions; however, the
transaction streams might be of different type objects. This device will use a user-written
transformation function to convert one type to another before performing a comparison.

ModelSim SE Reference Manual, v6.5b652

AVM Encyclopedia
Classes for Comparators

Figure 3-2. UML Diagram for Comparator Classes

AVM Encyclopedia
avm_algorithmic_comparator

ModelSim SE Reference Manual, v6.5b 653

avm_algorithmic_comparator
 #(type BEFORE=int,

 type AFTER=int,
 type TRANSFORMER=int_transform)

extends avm_named_component
The algorithmic comparator is a wrapper around avm_in_order_class_comparator. Like the
in-order comparator, the algorithmic comparator compares two streams of transactions, the
“before” stream and the “after” stream. It is often the case when two streams of transactions
need to be compared that the two streams are in different forms. That is, the type of the before
transaction stream is different than the type of the after transaction stream.

The avm_algorithmic_comparator provides a transformer that transforms before transactions
into after transactions. The transformer is supplied to the algorithmic comparator as a policy
class via the class parameter TRANSFORMER. The transformer policy must provide a
transform() method with the following prototype:

AFTER transform (BEFORE b);

file

utils/avm_algorithmic_comparator.svh

virtual

no

parameters

type AFTER = int
The type of the transaction against which the transformed BEFORE transactions will
be compared.

type BEFORE = int
The type of incoming transaction to be transformed prior to comparing against the
AFTER transactions.

type TRANSFORMER = int_transform
The type of the class that contains the transform() method.

members

typedef avm_algorithmic_comparator
#(BEFORE, AFTER, TRANSFORMER) this_type

avm_analysis_export #(AFTER) after_export
Provides a write(AFTER t) method so that publishers (e.g., monitors) can send in an ordered

stream of transactions against which the transformed BEFORE transactions will be compared.

avm_analysis_imp #(BEFORE, this_type) before_export
Provides a write(BEFORE t) method so that publishers (e.g., monitors) can send in
an ordered stream of transactions to be transformed and compared to the AFTER

transactions.

ModelSim SE Reference Manual, v6.5b654

AVM Encyclopedia
avm_algorithmic_comparator

internal members

local avm_in_order_class_comparator #(AFTER) comp
comp is the comparator used to compare the transformed BEFORE stream with the
AFTER stream.

local TRANSFORMER m_transformer
m_transformer encapsulates the algorithm that transforms BEFOREs into AFTERs.

methods

function new(TRANSFORMER transformer, string name,
 avm_named_component parent)

The constructor takes a handle to an externally constructed transformer, a name,
and a parent. The last two arguments are the normal arguments for an AVM 3.0
named component constructor.

We create an instance of the transformer (rather than making it a genuine policy
class with a static transform method) because we might need to do reset and
configuration on the transformer itself.

function void export_connections()
This is the standard AVM method for making exports and implementations of
subcomponents visible externally.

function void write(BEFORE b)
This method handles incoming BEFORE transactions. It is usually accessed via the
before_export, and it transforms the BEFORE transaction into an AFTER transaction
before passing it to the in_order_class_comparator.

AVM Encyclopedia
avm_in_order_built_in_comparator

ModelSim SE Reference Manual, v6.5b 655

avm_in_order_built_in_comparator
 #(type T=int)
extends avm_in_order_comparator #(T)

A subclass of avm_in_order_comparator that is used to compare two streams of built-in types.

file

utils/avm_in_order_comparator.svh

virtual

no

parameters

type T = int
Specifies the type of transactions to be compared.

members

<none>

methods

function new(string name,avm_named_component parent)
This is the normal AVM 3.0 constructor

ModelSim SE Reference Manual, v6.5b656

AVM Encyclopedia
avm_in_order_class_comparator

avm_in_order_class_comparator
 #(type T=int)
extends avm_in_order_comparator #(T,

 avm_class_comp #(T),
 avm_class_converter #(T),
 avm_class_pair #(T))

A subclass of avm_in_order_comparator that is used to compare two streams of classes. It is
assumed that the classes have comp() and convert2string() methods.

file

utils/avm_in_order_comparator.svh

virtual

no

parameters

type T = int
Specifies the type of transactions to be compared.

members

<none>

methods

function new(string name, avm_named_component parent)
This is the normal AMV 3.0 constructor

AVM Encyclopedia
avm_in_order_comparator

ModelSim SE Reference Manual, v6.5b 657

avm_in_order_comparator
 #(type T=int,

type comp=avm_built_in_comp #(T),
type convert=avm_built_in_converter #(T),
type pair_type=avm_built_in_pair #(T))

extends avm_threaded_component
Compares two streams of transactions. These transactions may either be classes or built-in
types. To be successfully compared, the two streams of data must be in the same order. Apart
from that, there are no assumptions made about the relative timing of the two streams of data.

file

utils/avm_in_order_comparator.svh

virtual

no

parameters

type T = int
Specifies the type of transactions to be compared.

type comp = avm_built_in_comp #(T)
The type of the comparator to be used to compare the two transaction streams.

type convert = avm_built_in_converter #(T)
A policy class to allow convert2string() to be called on the transactions being
compared. If T is an extension of avm_transaction, it uses T::convert2string().
If T is a built-in type, the policy provides a convert2string() method for the
comparator to call.

type pair_type = avm_built_in_pair #(T)
A policy class to allow pairs of transactions to be handled as a single
avm_transaction type.

members

avm_analysis_export #(T) before_export
The export to which one stream of data is written.

avm_analysis_export #(T) after_export
The export to which the other stream of data is written.

avm_analysis_port #(pair_type) pair_ap
The comparator sends out pairs of transactions across this analysis port. Both
matched and unmatched pairs are published.

int m_matches
The number of successfully paired transactions.

int m_mismatches
The number of unsuccessfully paired transactions.

ModelSim SE Reference Manual, v6.5b658

AVM Encyclopedia
avm_in_order_comparator

members

local analysis_fifo #(T) before_fifo
The local storage for the stream of data coming in through before_export.

local analysis_fifo #(T) after_fifo
The local storage for the stream of data coming in through after_export.

methods

function new(string name, avm_named_component parent)
The normal AVM 3.0 constructor.

function void export_connections()
Connects the before_export and after_export to their respective FIFOs.

function void flush()
This method sets m_matches and m_mismatches back to zero. tlm_fifo::flush
takes care of flushing the FIFOs.

task run()
Takes pairs of before and after transactions and compares them. Status
information is updated according to the results of the comparison and pairs are
published using the analysis port.

AVM Encyclopedia
Classes for Connectors

ModelSim SE Reference Manual, v6.5b 659

Classes for Connectors
Connectors are the ports and exports used to form transaction-level connections between
components or between components and channels.

Figure 3-3. UML Diagram for Connectors

ModelSim SE Reference Manual, v6.5b660

AVM Encyclopedia
avm_*_export

avm_*_export
 #(type T=int) extends avm_port_base #(tlm_*_if #(T))

An avm_*_export is a connector that provides interfaces to other components. It gets these
interfaces by connecting to an avm_*_export or avm_*_imp in a child component.

avm_*_export inherits all the connectivity methods (e.g., the connect() method) from its base
class avm_port_base.

It also implements all the methods of tlm_*_if, as described in the documentation of
avm_*_port (see page 664). However, this is mainly for backwards compatibility with AVM
2.0. These methods are not usually called directly from normal test bench code.

file

tlm/avm_exports.svh

parameters

type T = int
The type of transaction to be communicated across the export.

members

<none>

methods

function new(string name, avm_named_component parent,
 int min_size=1, int max_size=1)

name and parent are the standard AVM 3.0 constructor arguments. min_size and
max_size specify the minimum and maximum number of interfaces that must have
been supplied to this port by the end of elaboration.

The AVM library contains one export for each tlm_*_if interface class as shown in Table 3-2.

Table 3-2. Exports and Interfaces

Interface Export

analysis_if avm_analysis_export

tlm_blocking_get_if avm_blocking_get_export

tlm_blocking_get_peek_if avm_blocking_get_peek_export

tlm_blocking_master_if avm_blocking_master_export

tlm_blocking_peek_if avm_blocking_peek_export

tlm_blocking_put_if avm_blocking_put_export

tlm_blocking_slave_if avm_blocking_slave_export

AVM Encyclopedia
avm_*_export

ModelSim SE Reference Manual, v6.5b 661

tlm_get_if avm_get_export

tlm_get_peek_if avm_get_peek_export

tlm_master_if avm_master_export

tlm_nonblocking_get_if avm_nonblocking_get_export

tlm_nonblocking_get_peek_if avm_nonblocking_get_peek_export

tlm_nonblocking_master_if avm_nonblocking_master_export

tlm_nonblocking_peek_if avm_nonblocking_peek_export

tlm_nonblocking_put_if avm_nonblocking_put_export

tlm_nonblocking_slave_if avm_nonblocking_slave_export

tlm_peek_if avm_peek_export

tlm_put_if avm_put_export

tlm_slave_if avm_slave_export

tlm_transport_if avm_transport_export

Table 3-2. Exports and Interfaces

Interface Export

ModelSim SE Reference Manual, v6.5b662

AVM Encyclopedia
avm_*_imp

avm_*_imp
 #(type T=int, type IMP=int)
extends avm_port_base #(tlm_*_if #(T))

avm_*_imp provides a tlm_*_if to ports and exports that require it. The actual implementation
of the methods that comprise tlm_*_if are defined in an object of type IMP (e.g., tlm_fifo
#(T)) which is passed in to the constructor.

file

tlm/avm_imps.svh

virtual

no

parameters

type T = int
Type of transactions to be communicated across the underlying interface.

type IMP = int
Type of the parent of this implementation.

internal members

local tlm_*_if #(T) m_if
Handle back to avm_*_imp.

local IMP m_imp
Handle to the component that implements the methods conveyed in the tlm_*_if

description.

methods

function new(string name, IMP imp)
name is the normal first argument to an AVM 3.0 constructor. imp is a slightly
different form for the second argument to the AVM 3.0 constructor, which is of type
IMP and defines the type of the parent.

Since it is the purpose of an “imp” class to provide an implementation of a set of
interface tasks and functions, the particular set of tasks and functions available for
each avm_*_imp class is dependent on the type of the interface it implements, i.e.,
the particular TLM interface it extends.

Table 3-3 lists all the avm_*_imp classes and the interfaces each implements. The set
of tasks and functions implemented is listed in the description of the interface
classes.

AVM Encyclopedia
avm_*_imp

ModelSim SE Reference Manual, v6.5b 663

Table 3-3. Interface Implementations

Implementation Interface

avm_analysis_imp analysis_if

avm_blocking_get_imp tlm_blocking_get_if

avm_blocking_get_peek_imp tlm_blocking_get_peek_if

avm_blocking_master_imp tlm_blocking_master_if

avm_blocking_peek_imp tlm_blocking_peek_if

avm_blocking_put_imp tlm_blocking_put_if

avm_blocking_slave_imp tlm_blocking_slave_if

avm_get_imp tlm_get_if

avm_get_peek_imp tlm_get_peek_if

avm_master_imp tlm_master_if

avm_nonblocking_get_imp tlm_nonblocking_get_if

avm_nonblocking_get_peek_imp tlm_nonblocking_get_peek_if

avm_nonblocking_master_imp tlm_nonblocking_master_if

avm_nonblocking_peek_imp tlm_nonblocking_peek_if

avm_nonblocking_put_imp tlm_nonblocking_put_if

avm_nonblocking_slave_imp tlm_nonblocking_slave_if

avm_peek_imp tlm_peek_if

avm_put_imp tlm_put_if

avm_slave_imp tlm_slave_if

avm_transport_imp tlm_transport_if

ModelSim SE Reference Manual, v6.5b664

AVM Encyclopedia
avm_*_port

avm_*_port
 #(type T=int) extends avm_port_base #(tlm_*_if #(T))

An avm_*_port is a connector that requires interfaces to be supplied to it. It may get these
interfaces by connecting to a parent’s avm_*_port, or an avm_*_export, or avm_*_imp in a
sibling.

avm_*_port inherits all the connectivity methods (e.g., the connect() method) from its base
class, avm_port_base. It is effectively a proxy for the interface that originally supplied the
implementation of this interface (e.g., a tlm_fifo). avm_*_port implements all the methods in
tlm_*_if, and a call to any of these methods has the same effect as the equivalent call to the
resolved implementation.

file

tlm/avm_ports.svh

virtual

no

parameters

type T = int
The type of transaction to be communicated across the port.

members

<none>

methods

function new(string name, avm_named_component parent,
 int min_size=1, int max_size=1)

name and parent are the standard AVM 3.0 constructor arguments. min_size and
max_size specify the minimum and maximum number of interfaces that must have
been supplied to this port by the end of elaboration.

The set of functions and tasks available in each port object is dependent on the kind of port it is.
Table 3-4 lists, for each port type, the interface it implements. The tasks and functions for each
interface can be found in the descriptions for the interface classes as shown below.

Table 3-4. Ports and Interfaces

Port Interface

avm_analysis_port analysis_if

avm_blocking_get_port tlm_blocking_get_if

avm_blocking_get_peek_port tlm_blocking_get_peek_if

AVM Encyclopedia
avm_*_port

ModelSim SE Reference Manual, v6.5b 665

avm_blocking_master_port tlm_blocking_master_if

avm_blocking_peek_port tlm_blocking_peek_if

avm_blocking_put_port tlm_blocking_put_if

avm_blocking_slave_port tlm_blocking_slave_if

avm_get_port tlm_get_if

avm_get_peek_port tlm_get_peek_if

avm_master_port tlm_master_if

avm_nonblocking_get_port tlm_nonblocking_get_if

avm_nonblocking_get_peek_port tlm_nonblocking_get_peek_if

avm_nonblocking_master_port tlm_nonblocking_master_if

avm_nonblocking_peek_port tlm_nonblocking_peek_if

avm_nonblocking_put_port tlm_nonblocking_put_if

avm_nonblocking_slave_port tlm_nonblocking_slave_if

avm_peek_port tlm_peek_if

avm_put_port tlm_put_if

avm_slave_port tlm_slave_if

avm_transport_port tlm_transport_if

Table 3-4. Ports and Interfaces

Port Interface

ModelSim SE Reference Manual, v6.5b666

AVM Encyclopedia
avm_analysis_port

avm_analysis_port
 #(type T=int)
extends avm_port_base #(analysis_if #(T))

avm_analysis_port is used by a component such as a monitor to publish a transaction to zero,
one, or more subscribers. Typically, it will be used inside a monitor to publish a transaction
observed on a bus to scoreboards and coverage objects.

file

tlm/avm_ports.svh

parameters

type T = int
The type of transaction to be written by the analysis port.

members

typedef avm_port_base #(analysis_if #(T)) port_type

methods

function new(string name, avm_named_component parent)
This is the standard AVM 3.0 constructor. parent should be null for analysis ports
defined in a static scope, e.g., in a module-based monitor.

virtual function void connect(port_type provider)
Used to connect an analysis port to another analysis port, an analysis export, or an
analysis implementation; e.g., in a flat hierarchy, we will typically use
monitor.ap.connect(coverage_object.analysis_export) to connect a
monitor to a coverage object observing the transactions being emitted by the
monitor.

function void register(analysis_if #(T) _if)
Provides backwards compatibility with AVM 2.0.

function void write(T t)
Publishes transaction t to all subscribers.

AVM Encyclopedia
avm_blocking_master_imp

ModelSim SE Reference Manual, v6.5b 667

avm_blocking_master_imp
 #(type REQ=int, type RSP=int,
 type IMP=int,
 type REQ_IMP=IMP, type RSP_IMP=IMP)
 extends avm_port_base #(tlm_blocking_master_if #(REQ, RSP))

A blocking master implementation allows a single or a pair of components that implement
put(request), get(response), and peek(response) to export a single interface that allows a
master to put requests and get or peek responses.

file

tlm/avm_imps.svh

virtual

no

parameters

type REQ = int
Type of transactions to be sent out by this master.

type RSP = int
Type of transactions to be received by this master.

type IMP = int
Type of the parent of this implementation.

type REQ_IMP = IMP
Type of the object that implements the request side of the interface.

type RSP_IMP = IMP
Type of the object that implements the response side of the interface.

internal members

local tlm_blocking_master_if #(REQ, RSP) m_if
Handle back to the blocking master implementation itself.

local REQ_IMP m_req_imp
Handle to the object that implements put(request), try_put(request) and
can_put. By default, it is the parent of the nonblocking master implementation.

local RSP_IMP m_rsp_imp
Handle to the object that implements get(response), try_get(request),
can_get, peek(response), try_peek(response), and can_peek. By default, it is
the parent of the nonblocking master implementation.

methods

ModelSim SE Reference Manual, v6.5b668

AVM Encyclopedia
avm_blocking_master_imp

function new(string name, IMP imp,
 REQ_IMP req_imp=imp, RSP_IMP rsp_imp=imp)

name is the normal first argument to an AVM 3.0 constructor. imp is a slightly
different form for the second argument to the AVM 3.0 constructor, which is of type
IMP and defines the type of the parent. req_imp and rsp_imp are optional. If they
are specified, then they must point to the underlying implementation of the request
and response methods; e.g., in tlm_req_rsp_channel (see page 695), req_imp and
rsp_imp are the request and response FIFOs.

task put(input REQ req)
task get(output RSP rsp)
task peek(output RSP rsp)

See the documentation for tlm_blocking_master_if (see page 704) for a
description of these methods.

AVM Encyclopedia
avm_blocking_slave_imp

ModelSim SE Reference Manual, v6.5b 669

avm_blocking_slave_imp
 #(type REQ=int, type RSP=int, type IMP=int,

 type REQ_IMP=IMP, type RSP_IMP=IMP)
extends avm_port_base #(tlm_blocking_slave_if #(REQ, RSP))

A blocking slave implementation allows a single or a pair of components that implement
put(response), get(request), and peek(request) to export a single interface that allows a
slave to get or peek requests and put responses.

file

tlm/avm_imps.svh

virtual

no

parameters

type REQ = int
Type of transactions to be received by this slave.

type RSP = int
Type of transactions to be sent out by this master.

type IMP = int
Type of the parent of this implementation.

type REQ_IMP = IMP
Type of the object that implements the request side of the interface.

type RSP_IMP = IMP
Type of the object that implements the response side of the interface.

internal members

local tlm_blocking_slave_if #(REQ, RSP) m_if
Handle back to the nonblocking slave implementation itself.

local REQ_IMP m_req_imp
Handle to the object that implements get(request), can_get, peek(response),
and can_peek. By default, it is the parent of the blocking master implementation.

local RSP_IMP m_rsp_imp
Handle to the object that implements put(response) and can_put. By default, it is
the parent of the blocking master implementation.

methods

function new(string name, IMP imp,
 REQ_IMP req_imp=imp, RSP_IMP rsp_imp=imp)

ModelSim SE Reference Manual, v6.5b670

AVM Encyclopedia
avm_blocking_slave_imp

name is the normal first argument to an AVM 3.0 constructor. imp is a slightly
different form for the second argument to the AVM 3.0 constructor, which is of type
IMP and defines the type of the parent. req_imp and rsp_imp are optional. If they
are specified, then they must point to the underlying implementation of the request
and response methods; e.g., in tlm_req_rsp_channel (see page 695), req_imp and
rsp_imp are the request and response FIFOs.

task put(input RSP rsp)
task get(output REQ req)
task peek(output REQ req)

See the documentation for tlm_blocking_slave_if (see page 705) for a
description of these methods.

AVM Encyclopedia
avm_connector_base

ModelSim SE Reference Manual, v6.5b 671

avm_connector_base
 #(type IF=int)
extends avm_named_component

avm_connector_base does all the work for ports, exports and implementations. A port, export,
or implementation has a handle to a corresponding avm_connector_base and delegates most of
the hard work to it. avm_connector_base actually does the connection between one connector
and another (including all the checking), and it provides the implementation of the debugging
methods. Because it is an avm_named_component (unlike the port, export, and imp classes
that delegate to it) it appears in the AVM data structures and implements various utility methods
that are virtual in avm_named_component.

file

vbase/avm_connector_base.svh

enums

typedef enum {AVM_PORT, AVM_EXPORT, AVM_IMPLEMENTATION}
avm_port_type_e

Lists the types of connectors allowed in the AVM.

typedef enum {AVM_CONSTRUCTION_PHASE,
 AVM_EXPORT_CONNECTIONS_PHASE,
 AVM_CONNECT_PHASE,
 AVM_IMPORT_CONNECTIONS_PHASE,
 AVM_DONE_CONNECTIONS_PHASE}

avm_connection_phase_e
Lists the phases executed during the elaboration of an avm_env.

virtual

no

parameters

type IF = int
A placeholder for the type of interface being required or provided by this connector.

internal members

typedef avm_connector_base #(IF) connector_type

local IF m_if_list[$]
Holds the interfaces that (should) satisfy the connectivity requirements of this
connector. At the end of elaboration, an error will be reported if the size of this list is
not between m_min_size and m_max_size (inclusive).

local int m_max_size
The maximum number of interfaces that this connector can have at the end of
elaboration. This value is checked during elaboration.

local int m_min_size

ModelSim SE Reference Manual, v6.5b672

AVM Encyclopedia
avm_connector_base

The minimum number of interfaces that this connector can have at the end of
elaboration. This value is checked at the end of elaboration.

local avm_port_type_e m_port_type
Indicates whether this connector is a port, export, or implementation.

local avm_connector_base #(IF) m_provided_by[string]
An associative array of connector bases that have supplied their interfaces to satisfy
the connectivity requirements of this avm_connector_base. It is indexed by the
name of the connector to make debugging easier. All the interfaces of the
avm_connector_bases in this.m_provided_by are copied into this.m_if_list.

local avm_connector_base #(IF) m_provided_to[string]
An associative array of avm_connector_bases to which this connector base has
supplied its interfaces. It is indexed by the name of the connector to make debugging
easier. All the interfaces of the avm_connector_bases in this.m_if_list are
copied into this.m_provided_to.

methods

function new(string name, avm_named_component parent,
 avm_port_type_e port_type,
 int min_size, int max_size,
 bit check_parent)

This is the constructor. The first two arguments are the standard AVM 3.0
constructor arguments. The port_type tells us whether this connector_base is a
port, an export, or an implementation. min_size and max_size are the minimum
and maximum number of interfaces that must be present at the end of elaboration.
check_parent is also a standard AVM 3.0 constructor argument, which is used to
indicate whether hierarchy checking should happen. For connectors, it is typically
only used for analysis_ports in modules, which have no parent.

function bit add_if(IF _if)
Used to connect AVM 3.0 connectors to AVM 2.0 exports and implementations. It
simply copies in _if to this connector’s interface list without updating the
provided_by and provided_to lists.

function void check_connection_size()
Checks the minimum connection size. The maximum connection size is checked as
interfaces are added.

local virtual function void add_to_debug_list()
Puts this avm_connector_base’s handle into the relevant associative array in its
parent. This method is purely for debugging purposes.

function void check_min_connection_size()
Checks that the minimum size for this connector has not been violated. It is called
when an export or implementation supplies its interfaces to a port or export, and it is
also called on every connector at the end of elaboration.

function bit check_phase(connector_type provider)

AVM Encyclopedia
avm_connector_base

ModelSim SE Reference Manual, v6.5b 673

Checks that legal connections are being made in the correct phase. Port->port
connections must be done in import_connections(), port->export and port->imp
must be done in connect(), and export->export and export->imp must be done in
export_connections(). Anything else is an error.

function bit check_relationship(connector_type provider)
Checks that legal connections in the correct phase do not violate the required parent-
child relationships. Connections made in import_connections must be of the type
child.port.connect(port); those made in connect must be of the form
child.port.connect(child.export); and those done in export_connections

must be of the form export.connect(child.export);

function bit check_types(connector_type provider)
Checks that only legal types are being connected. These are port -> port,
port->export, export->export, and export->imp. Exports cannot connect to ports, and
imps cannot connect to anything.

function bit connect_to(input connector_type c)
Copies the interfaces provided by c into this connector base. It also checks the
minimum connection size of c and updates this connector’s provided_by list and
c’s provided_to list.

function void debug_connected_to(int level=0, int max_level=-1)
A debugging method that looks “forward” at the connections made that satisfy this
connector’s requirements. It is recursive to the depth specified by max_level. The
default value of -1 means that the recursion continues until it hits an implementation,
at which point it can follow the provided_by connections no further. It can be
useful to call this method in avm_named_component::end_of_elaboration.

function void debug_provided_to(int level=0, int max_level=-1)
A debugging method that looks “backwards” at the connectors whose requirements
are satisfied by this connector. It is recursive to the depth specified by max_level.
The default value of -1 means that the recursion continues until it hits a leaf level
port, at which point it can follow the provided_to connections no further. It can be
useful to call this method in avm_named_component::end_of_elaboration.

function void do_display(int max_level=-1, int level=0,
 bit display_connectors=0)

A recursive virtual method originally defined in avm_named_component. It prints a
high verbosity message if display_connectors is true. Otherwise, it does nothing.

function IF lookup_indexed_if(int i=0)
Looks up the ith interface supplied to this connector. It is typically used to access the
various interfaces bound to a multiport.

function int max_size()
Returns the maximum number of connected interfaces.

function int min_size()
Returns the minimum number of connected interfaces.

function int size()

ModelSim SE Reference Manual, v6.5b674

AVM Encyclopedia
avm_connector_base

Returns the number of connected interfaces (i.e., the number of elements in the
m_if_list).

function void update_connection_lists(input connector_type c)
Updates this connector’s provided_by list and c’s provided_to list.

internal methods

local function avm_connection_phase_e
get_required_phase(avm_port_type_e provider_port_type)

Gets the current phase of the elaborator in the avm_env within which this connector
is defined.

AVM Encyclopedia
avm_master_imp

ModelSim SE Reference Manual, v6.5b 675

avm_master_imp
 #(type REQ=int, type RSP=int, type IMP=int,

 type REQ_IMP=IMP, type RSP_IMP=IMP)
extends avm_port_base #(tlm_master_if #(REQ, RSP))

A master implementation allows a single or pair of components that implement put(request),
try_put(request), can_put, get(response), try_get(response), can_get,
peek(response), try_peek(request), and can_peek to export a single interface that allows
a master to put requests and get or peek responses in both blocking and nonblocking flavors.

file

tlm/avm_imps.svh

virtual

no

parameters

type REQ = int
Type of transactions to be sent out by this master.

type RSP = int
Type of transactions to be received by this master.

type IMP = int
Type of the parent of this implementation.

type REQ_IMP = IMP
Type of the object that implements the request side of the interface.

type RSP_IMP = IMP
Type of the object that implements the response side of the interface.

internal members

local tlm_master_if #(REQ, RSP) m_if
Handle back to the master implementation itself.

local REQ_IMP m_req_imp
Handle to the object that implements put(request), try_put(request), and
can_put. By default, it is the parent of the master implementation.

local RSP_IMP m_rsp_imp
Handle to the object that implements get(response), try_get(request),
can_get, peek(response), try_peek(response), and can_peek. By default, it is
the parent of the master implementation.

methods

function new(string name, IMP imp,
 REQ_IMP req_imp=imp, RSP_IMP rsp_imp=imp)

ModelSim SE Reference Manual, v6.5b676

AVM Encyclopedia
avm_master_imp

name is the normal first argument to an AVM 3.0 constructor. imp is a slightly
different form for a second argument to the AVM 3.0 constructor, which is of type
IMP and defines the type of the parent. req_imp and rsp_imp are optional. If they
are specified, then they must point to the underlying implementation of the request
and response methods; e.g., in tlm_req_rsp_channel (see page 695), req_imp and
rsp_imp are the request and response FIFOs.

task put(input REQ req)
function bit try_put(input REQ req)
function bit can_put()
task get(output RSP rsp)
function bit try_get(output RSP rsp)
function bit can_get()
task peek(output RSP rsp)
function bit try_peek(output RSP rsp)
function bit can_peek()

See the documentation of tlm_master_if (see page 709) for a description of these
methods.

AVM Encyclopedia
avm_nonblocking_master_imp

ModelSim SE Reference Manual, v6.5b 677

avm_nonblocking_master_imp
 #(type REQ=int, type RSP=int,

type IMP=int,
type REQ_IMP=IMP,
type RSP_IMP=IMP)

extends avm_port_base #(tlm_nonblocking_master_if #(REQ, RSP))
A nonblocking master implementation allows a single or pair of components that implement
try_put(request), can_put, try_get(response), can_get, try_peek(response), and
can_peek to export a single interface that allows a master to put requests and get or peek
responses.

file

tlm/avm_imps.svh

virtual

no

parameters

type REQ = int
Type of transactions to be sent out by this master.

type RSP = int
Type of transactions to be received by this master.

type IMP = int
Type of the parent of this implementation.

type REQ_IMP = IMP
Type of the object that implements the request side of the interface.

type RSP_IMP = IMP
Type of the object that implements the response side of the interface.

internal members

local tlm_nonblocking_master_if #(REQ, RSP) m_if
Handle back to the nonblocking master implementation itself.

local REQ_IMP m_req_imp
Handle to the object that implements try_put(request) and can_put. By default,
it is the parent of the nonblocking master implementation.

local RSP_IMP m_rsp_imp
Handle to the object that implements try_get(response), can_get,
try_peek(response), and can_peek. By default, it is the parent of the nonblocking
master implementation.

methods

function new(string name, IMP imp,

ModelSim SE Reference Manual, v6.5b678

AVM Encyclopedia
avm_nonblocking_master_imp

 REQ_IMP req_imp=imp, RSP_IMP rsp_imp=imp)
name is the normal first argument to an AVM 3.0 constructor. imp is a slightly
different form for the second argument to the AVM 3.0 constructor, which is of type
IMP and defines the type of the parent. req_imp and rsp_imp are optional. If they
are specified, then they must point to the underlying implementation of the request
and response methods; e.g., in tlm_req_rsp_channel (see page 695), req_imp and
rsp_imp are the request and response FIFOs.

function bit try_put(input REQ req)
function bit can_put()
function bit try_get(output RSP rsp)
function bit can_get()
function bit try_peek(output RSP rsp)
function bit can_peek()

See the documentation for tlm_nonblocking_master_if (see page 713) for a
description of these methods.

AVM Encyclopedia
avm_nonblocking_slave_imp

ModelSim SE Reference Manual, v6.5b 679

avm_nonblocking_slave_imp
 #(type REQ=int, type RSP=int,

 type IMP=int,
 type REQ_IMP=IMP,
 type RSP_IMP=IMP)

extends avm_port_base #(tlm_nonblocking_slave_if #(REQ, RSP))
A nonblocking slave implementation allows a single or pair of components that implement
try_put(response), can_put, try_get(request), can_get, try_peek(request), and
can_peek to export a single interface that allows a slave to get or peek requests and put
responses.

file

tlm/avm_imps.svh

virtual

no

parameters

type REQ = int
Type of transactions to be received by this slave.

type RSP = int
Type of transactions to be sent out by this master.

type IMP = int
Type of the parent of this implementation.

type REQ_IMP = IMP
Type of the object that implements the request side of the interface.

type RSP_IMP = IMP
Type of the object that implements the response side of the interface.

internal members

local tlm_nonblocking_slave_if #(REQ, RSP) m_if
Handle back to the nonblocking slave implementation itself.

local REQ_IMP m_req_imp
Handle to the object that implements try_get(request), can_get,
try_peek(request), and can_peek. By default, it is the parent of the nonblocking
slave implementation.

local RSP_IMP m_rsp_imp
Handle to the object that implements try_put(response) and can_put. By default,
it is the parent of the nonblocking slave implementation.

methods

function new(string name, IMP imp,

ModelSim SE Reference Manual, v6.5b680

AVM Encyclopedia
avm_nonblocking_slave_imp

 REQ_IMP req_imp=imp, RSP_IMP rsp_imp=imp)
name is the normal first argument to an AVM 3.0 constructor. imp is a slightly
different form for the second argument to the AVM 3.0 constructor, which is of type
IMP and defines the type of the parent. req_imp and rsp_imp are optional. If they
are specified, then they must point to the underlying implementation of the request
and response methods; e.g., in tlm_req_rsp_channel (see page 695), req_imp and
rsp_imp are the request and response FIFOs.

function bit try_put(input RSP rsp)
function bit can_put()
function bit try_get(output REQ req)
function bit can_get()
function bit try_peek(output REQ req)
function bit can_peek()

See the documentation for tlm_nonblocking_slave_if (see page 717) for a
description of these methods.

AVM Encyclopedia
avm_port_base

ModelSim SE Reference Manual, v6.5b 681

avm_port_base
#(type IF=avm_virtual_class) extends IF

avm_port_base is the base class for all ports, exports, and implementations (avm_*_port,
avm_*_export, and avm_*_imp). avm_port_base extends IF, which is the type of the interface
required and/or provided by the port, export, or implementation.

In many senses, avm_port_base is a facade class. It has a handle to an avm_connector_base

and delegates much of the functionality to it.

file

vbase/avm_port_base.svh

virtual

yes

parameters

type IF = avm_virtual_class
A placeholder for the type of interface supported by this connector. The default
value, avm_virtual_class, is a virtual class defined in vbase/avm_vbase.svh.
Because it is virtual, a specific interface class (see “TLM Interfaces” on page 698)
must be provided when extending the avm_port_base.

members

typedef avm_connector_base #(IF) connector_type
typedef avm_port_base #(IF) this_type

avm_connector_base #(IF) m_connector
The place where most of the hard work related to checking the validity of the
connection, making the connection, and providing debugging information is done.
Many of the methods below are delegated to m_connector.

protected IF m_if
A handle to the 0th interface that has been connected to this port, export, or
implementation.

methods

function new(string name, avm_named_component parent,
 avm_port_type_e port_type,
 int min_size=1, int max_size=1,
 bit check_parent=1)

The first two arguments are the normal AVM 3.0 constructor arguments. The
port_type is port, export, or implementation. min_size and max_size specify the
minimum and maximum number of interfaces that must be supplied to this port base
by the end of elaboration. parent is usually non null, in which case, check_parent
should take its default value of 1. The rare exception to this (usually, analysis ports

ModelSim SE Reference Manual, v6.5b682

AVM Encyclopedia
avm_port_base

defined outside of an avm_env) should set the value of parent to null and
check_parent to 0.

function void connect(this_type provider)
Connects a port or export that requires interfaces of type IF to a port, export, or
implementation that provides interfaces of type IF.

function void connect_to_if(IF _if)
Connects directly to an interface by delegating the call to m_connector. The main
use for this method is to enable backward compatibility with AVM 2.0.

function void debug_connected_to(int level=0, int max_level=-1)
Prints out information on the connectors that have supplied interfaces to this
connector, by delegating the call to m_connector.

function void debug_provided_to(int level=0, int max_level=-1)
Prints out information on the connectors that this connector has supplied interfaces
to, by delegating the call to m_connector.

function IF lookup_indexed_if(int i=0)
Gets the ith interface that has been provided to this port base, by delegating the call
to m_connector.

function void remove()
Delegates the method call to m_connector.

function int size()
Gets the number of interfaces that have been provided to this port base by delegating
the call to m_connector.

AVM Encyclopedia
avm_slave_imp

ModelSim SE Reference Manual, v6.5b 683

avm_slave_imp
 #(type REQ=int, type RSP=int, type IMP=int,

 type REQ_IMP=IMP, type RSP_IMP=IMP)
extends avm_port_base #(tlm_slave_if #(REQ, RSP))

A slave implementation allows a single or pair of components that implement put(response),
try_put(response), can_put, get(request), try_get(request), can_get,
peek(request), try_peek(request), and can_peek to export a single interface that allows a
slave to get or peek requests and put responses.

file

tlm/avm_imps.svh

virtual

no

parameters

type REQ = int
Type of transactions to be received by this slave.

type RSP = int
Type of transactions to be sent out by this master.

type IMP = int
Type of the parent of this implementation.

type REQ_IMP = IMP
Type of the object that implements the request side of the interface.

type RSP_IMP = IMP
Type of the object that implements the response side of the interface.

internal members

local tlm_slave_if #(REQ, RSP) m_if
Handle back to the slave implementation itself.

local REQ_IMP m_req_imp
Handle to the object that implements get(request), try_get(request), can_get,
peek(request), try_peek(request), and can_peek. By default, it is the parent of
the slave implementation.

local RSP_IMP m_rsp_imp
Handle to the object that implements put(response), try_put(response), and
can_put. By default, it is the parent of the slave implementation.

methods

function new(string name, IMP imp,
 REQ_IMP req_imp=imp, RSP_IMP rsp_imp=imp)

ModelSim SE Reference Manual, v6.5b684

AVM Encyclopedia
avm_slave_imp

name is the normal first argument to an AVM 3.0 constructor. imp is a slightly
different form for the second argument to the AVM 3.0 constructor, which is of type
IMP and defines the type of the parent. req_imp and rsp_imp are optional. If they
are specified, then they must point to the underlying implementation of the request
and response methods; e.g., in tlm_req_rsp_channel (see page 695). req_imp and
rsp_imp are the request and response FIFOs.

task put(input RSP rsp)
function bit try_put(input RSP rsp)
function bit can_put()
task get(output REQ req)
function bit try_get(output REQ req)
function bit can_get()
task peek(output REQ req)
function bit try_peek(output REQ req)
function bit can_peek()

See the documentation for tlm_slave_if (see page 721) for a description of these
methods.

AVM Encyclopedia
avm_transport_imp

ModelSim SE Reference Manual, v6.5b 685

avm_transport_imp
 #(type REQ=int, type RSP=int, type IMP=int)
 extends avm_port_base #(tlm_transport_if #(REQ, RSP))

A transport implementation allows a component that implements the transport task to export a
tlm_transport_if.

file

tlm/avm_imps.svh

virtual

no

parameters

type REQ = int
Type of transactions to be received by this slave.

type RSP = int
Type of transactions to be sent out by this master.

type IMP = int
Type of the parent of this implementation.

internal members

local tlm_transport_if #(REQ, RSP) m_if
Handle back to the avm_transport_imp itself.

local IMP m_imp
Handle to the component that implements the transport task.

methods

function new(string name, IMP imp)
name is the normal first argument to an AVM 3.0 constructor. imp is a slightly
different form for the second argument to the AVM 3.0 constructor, which is of type
IMP and defines the type of the parent.

task transport(input REQ request, output RSP response)
Delegates the call to m_imp.transport().

ModelSim SE Reference Manual, v6.5b686

AVM Encyclopedia
analysis_imp

analysis_imp
 #(type IMP=virtual_class, type T=int) extends analysis_if #(T)

[Deprecated in AVM-3.0. Use avm_analysis_imp instead.]

file

deprecated/tlm_imps.svh

virtual

no

members

local IMP m_imp
function new(IMP i)

methods

function void write(input T t)

AVM Encyclopedia
analysis_port

ModelSim SE Reference Manual, v6.5b 687

analysis_port
 #(type T=int) extends analysis_if #(T)

[Deprecated in AVM-3.0. Use avm_analysis_port instead.]

file

deprecated/analysis_port.svh

virtual

no

parameters

type T = int

members

local analysis_if #(T) if_list[$]
local avm_reporter r

methods

function new()
function void register(input analysis_if #(T) i)
function void write(input T t)

ModelSim SE Reference Manual, v6.5b688

AVM Encyclopedia
global_analysis_ports

global_analysis_ports
 #(type T=int)

This is deprecated in AVM 3.0. Instead, use a normal avm_analysis_port and the absolute and
relative look-up methods in avm_named_component.

file

deprecated/avm_global_analysis_ports.svh

virtual

no

members

static analysis_port #(T) s_analysis_ports[string]

methods

static function analysis_port #(T) get_analysis_port(string name)

AVM Encyclopedia
tlm_*_imp

ModelSim SE Reference Manual, v6.5b 689

tlm_*_imp

Table 3-5 lists the tlm_*_imp deprecated in AVM 3.0

Classes for Channels
The AVM supplies a FIFO channel and a variety of interfaces to access it. The interfaces have
both blocking and nonblocking forms. Because SystemVerilog does not support multiple
inheritance, the FIFO has a collection of “imps” implementations of abstract interfaces that are

Table 3-5. Deprecated Implementations

Implementation Interface

tlm_blocking_get_imp tlm_blocking_get_if

tlm_blocking_get_peek_imp tlm_blocking_get_peek_if

tlm_blocking_master_imp tlm_blocking_master_if

tlm_blocking_peek_imp tlm_blocking_peek_if

tlm_blocking_put_imp tlm_blocking_put_if

tlm_blocking_slave_imp tlm_blocking_slave_if

tlm_get_imp tlm_get_if

tlm_get_peek_imp tlm_get_peek_if

tlm_master_imp tlm_master_if

tlm_nonblocking_get_imp tlm_nonblocking_get_if

tlm_nonblocking_get_peek_imp tlm_nonblocking_get_peek_if

tlm_nonblocking_master_imp tlm_nonblocking_master_if

tlm_nonblocking_peek_imp tlm_nonblocking_peek_if

tlm_nonblocking_put_imp tlm_nonblocking_put_if

tlm_nonblocking_slave_imp tlm_nonblocking_slave_if

tlm_peek_imp tlm_peek_if

tlm_put_imp tlm_put_if

tlm_slave_imp tlm_slave_if

tlm_transport_imp tlm_transport_if

ModelSim SE Reference Manual, v6.5b690

AVM Encyclopedia
Classes for Channels

used to access the FIFO. The FIFO is a named component and thus has a name and a location in
the component hierarchy.

Figure 3-4. UML Diagram for Channels

AVM Encyclopedia
analysis_fifo

ModelSim SE Reference Manual, v6.5b 691

analysis_fifo
 #(type T=int) extends tlm_fifo #(T)

An analysis_fifo is a tlm_fifo with an unbounded size and a write() interface. It can be
used any place an avm_subscriber is used. Typical usage is as a buffer between an
analysis_port in a monitor and an analysis component (i.e., a component derived from
avm_subscriber).

file:

tlm/tlm_fifos.svh

virtual

no

parameters

type T = int
Type of transactions to be stored in the FIFO.

members

avm_analysis_imp #(T, analysis_fifo #(T)) analysis_export
analysis_export provides the write method to other components. Calling
ap.write(t) on a port bound to this export is the normal mechanism for writing to
an analysis FIFO.

methods

function new(string name, avm_named_component parent=null)
This is the standard AVM 3.0 avm_named_component constructor. name is the local
name of this component. parent should be left unspecified when this component is
instantiated in statically elaborated constructs and must be specified when this
component is a child of another AVM component.

function void write(input T t)
Transfers transaction t into the unbounded FIFO, which is guaranteed to succeed.

ModelSim SE Reference Manual, v6.5b692

AVM Encyclopedia
tlm_fifo

tlm_fifo
 #(type T=int) extends avm_named_component

tlm_fifo is a FIFO that implements all the unidirectional TLM interfaces.

file

tlm/tlm_fifos.svh

virtual

no

parameters

type T = int
Type of transactions to be stored in the FIFO.

members

typedef tlm_fifo #(T) this_type

avm_blocking_get_imp #(T, this_type) blocking_get_export
avm_blocking_get_peek_imp #(T, this_type)

blocking_get_peek_export
avm_blocking_peek_imp #(T, this_type) blocking_peek_export
avm_blocking_put_imp #(T, this_type) blocking_put_export
avm_get_imp #(T, this_type) get_export
avm_get_peek_imp #(T, this_type) get_peek_export
avm_nonblocking_get_imp #(T, this_type) nonblocking_get_export
avm_nonblocking_get_peek_imp #(T, this_type)

nonblocking_get_peek_export
avm_nonblocking_peek_imp #(T, this_type) nonblocking_peek_export
avm_nonblocking_put_imp #(T, this_type) nonblocking_put_export
avm_peek_imp #(T, this_type) peek_export
avm_put_imp #(T, this_type) put_export

The implementations above export the relevant TLM interface. Every unidirectional
TLM interface is implemented in tlm_fifo and exported using an appropriately
named export.

avm_analysis_port #(T) put_ap
Analysis port to which the transaction is published whenever put() or try_put()
succeeds.

analysis_port #(T) get_ap
Analysis port to which the transaction is published whenever get(), try_get(),
peek(), or try_peek() succeeds.

local mailbox #(T) m
The internal mailbox used to implement the basic FIFO functionality.

local int m_size
m_size is the maximum size of the FIFO. A value of zero indicates no upper bound.

AVM Encyclopedia
tlm_fifo

ModelSim SE Reference Manual, v6.5b 693

internal members

local int m_pending_blocked_gets
Used to calculate the result of can_get(). It should not be accessed by normal user
code.

methods

function new(string name, avm_named_component parent=null,
 int size=1)

name and parent are the normal AVM 3.0 constructor arguments. parent should be
null if the tlm_fifo is going to be used in a statically elaborated construct. If it is
defined within an avm_env, parent must be specified. size indicates the maximum
size of the FIFO; a value of zero indicates no upper bound.

function bit can_get()
can_get() returns 1 if try_get() will be successful, and it returns 0 otherwise.

function bit can_peek()
can_peek() returns 1 if try_peek() will be successful, and it returns 0 otherwise.

function bit can_put()
can_put() returns 1 if try_put() will be successful, and it returns 0 otherwise.

function void flush()
flush() flushes the FIFO.

task get(output T t)
Does a blocking get and then publishes the gotten transaction using get_ap.
Succeeds when there is something in the FIFO available to be gotten. get() is
consuming. When it succeeds, t is no longer in the FIFO.

task peek(output T t)
Does a blocking peek() and then publishes the peeked transaction using get_ap.
Succeeds when there is something in the FIFO available to be peeked. peek() is not
consuming. When it succeeds, t is still in the FIFO.

task put(input T t)
Inserts transaction t to the internal mailbox and publishes the transaction to the
put_ap when it is successful. Succeeds when there is room in the FIFO.

function int size()
This returns m_size.

function bit try_get(output T t)
Will get a transaction from the FIFO. If the FIFO contains a transaction, then it
publishes the transaction across get_ap and returns 1. Otherwise, it returns 0.
try_get() is consuming. When it succeeds, t is no longer in the FIFO.

function bit try_peek(output T t)

ModelSim SE Reference Manual, v6.5b694

AVM Encyclopedia
tlm_fifo

Will get a transaction from the FIFO if it contains a transaction, then it publishes the
transaction across get_ap and returns 1. Otherwise, it returns 0. peek() is not
consuming. When it succeeds, t is still in the FIFO.

function bit try_put(input T t)
Will put t into the FIFO if there is room, then publish the transaction across put_ap
and return 1. Otherwise, it returns 0.

AVM Encyclopedia
tlm_req_rsp_channel

ModelSim SE Reference Manual, v6.5b 695

tlm_req_rsp_channel
 #(type REQ=int, type RSP=int)
extends avm_named_component

tlm_req_rsp_channel contains a request FIFO of type REQ and a response FIFO of type RSP.
These FIFOs can be of any size. This channel is particularly useful for dealing with pipelined
protocols where the request and response are not tightly coupled.

file

tlm/tlm_req_rsp.svh

virtual

no

parameters

type REQ = int
Type of transactions to be passed to/from the request FIFO.

type RSP = int
Type of transactions to be passed to/from the response FIFO.

members

typedef tlm_req_rsp_channel #(REQ, RSP) this_type
protected tlm_fifo #(REQ) m_request_fifo

The internal FIFO that stores the REQs.

protected tlm_fifo #(RSP) m_response_fifo
The internal FIFO that stores the RSPs.

avm_blocking_put_export #(REQ) blocking_put_request_export
avm_nonblocking_put_export #(REQ)

nonblocking_put_request_export
avm_put_export #(REQ) put_request_export

The exports make the put, blocking put, and nonblocking put interfaces of the
request FIFO externally visible. Through these interfaces, a master can put requests
into the request FIFO.

avm_blocking_get_peek_export #(REQ)
blocking_get_peek_request_export

avm_blocking_get_export #(REQ) blocking_get_request_export
avm_blocking_peek_export #(REQ) blocking_peek_request_export
avm_get_peek_export #(REQ) get_peek_request_export
avm_get_export #(REQ) get_request_export
avm_nonblocking_get_peek_export #(REQ)

nonblocking_get_peek_request_export
avm_nonblocking_get_export #(REQ)

nonblocking_get_request_export
avm_nonblocking_peek_export #(REQ)

nonblocking_peek_request_export
avm_peek_export #(REQ) peek_request_export

ModelSim SE Reference Manual, v6.5b696

AVM Encyclopedia
tlm_req_rsp_channel

These nine request get exports export the blocking, nonblocking, and combined get,
peek, and get_peek interfaces of the request FIFO. These allow slaves to get or peek
requests from the request FIFO.

avm_blocking_put_export #(RSP) blocking_put_response_export
avm_nonblocking_put_export #(RSP)

nonblocking_put_response_export
avm_put_export #(RSP) put_response_export

These three response put exports export the put, blocking put, and nonblocking put
interfaces of the response FIFO. These allow a slave to put responses into the
response FIFO.

avm_blocking_get_peek_export #(RSP)
blocking_get_peek_response_export

avm_blocking_get_export #(RSP) blocking_get_response_export
avm_blocking_peek_export #(RSP) blocking_peek_response_export
avm_get_peek_export #(RSP) get_peek_response_export
avm_get_export #(RSP) get_response_export
avm_nonblocking_get_peek_export #(RSP)

nonblocking_get_peek_response_export
avm_nonblocking_get_export #(RSP)

nonblocking_get_response_export
avm_nonblocking_peek_export #(RSP)

nonblocking_peek_response_export
avm_peek_export #(RSP) peek_response_export

These nine response get exports export the blocking, nonblocking, and combined
get, peek and get_peek interfaces of the request FIFO. These allow masters to get
or peek responses from the response FIFO.

avm_analysis_port #(RSP) response_ap
response_ap publishes an RSP whenever a put() or try_put() to the response
FIFO succeeds.

avm_analysis_port #(REQ) request_ap
Publishes a REQ whenever a put() or try_put() to the request FIFO succeeds.

avm_master_imp #(REQ, RSP, this_type,
 tlm_fifo #(REQ), tlm_fifo #(RSP)) master_export

Exports a single interface that allows a master to put requests and get or peek
responses.

avm_slave_imp #(REQ, RSP, this_type
tlm_fifo #(REQ), tlm_fifo #(RSP)) slave_export

Exports a single interface that allows a slave to get or peek requests and put
responses.

avm_blocking_master_imp #(REQ, RSP, this_type,
tlm_fifo #(REQ), tlm_fifo #(RSP)) blocking_master_export
Exports a single blocking interface that allows a master to put requests and get or
peek responses.

avm_blocking_slave_imp #(REQ, RSP, this_type,
 tlm_fifo #(REQ), tlm_fifo #(RSP)) blocking_slave_export

AVM Encyclopedia
tlm_req_rsp_channel

ModelSim SE Reference Manual, v6.5b 697

Exports a single blocking interface that allows a slave to get or peek requests and put
responses.

avm_nonblocking_master_imp #(REQ, RSP, this_type,
 tlm_fifo #(REQ), tlm_fifo #(RSP)) nonblocking_master_export

Exports a single nonblocking interface that allows a master to put requests and get or
peek responses.

avm_nonblocking_slave_imp #(REQ, RSP, this_type,
tlm_fifo #(REQ), tlm_fifo #(RSP)) nonblocking_slave_export
Exports a single nonblocking interface that allows a slave to get or peek requests and
put responses.

methods

function new(string name, avm_named_component parent=null,
 int request_fifo_size=1,
 int response_fifo_size = 1)

name and parent are the standard AVM 3.0 constructor arguments. parent must be
null if this component is defined within a static component such as a module,
program block, or interface, and it must take a non value if it is defined inside an
avm_env. The last two arguments specify the request and response FIFO sizes,
which have default values of one.

internal methods:

function void create_master_slave_exports()
Creates the bidirectional exports for both master and slave.

function void create_response_exports()
Creates the unidirectional request exports for both master and slave.

function void export_response_connections()
Connects the response FIFO to the appropriate exports.

function void export_request_connections()
Connects the request FIFO to the appropriate exports.

ModelSim SE Reference Manual, v6.5b698

AVM Encyclopedia
tlm_transport_channel

tlm_transport_channel
 #(type REQ=int, type RSP=int)
extends tlm_req_rsp_channel #(REQ, RSP)

A tlm_transport_channel is a tlm_req_rsp_channel that implements the transport

interface. It is useful when modeling a nonpipelined bus at the transaction level. Because the
requests and responses have a tightly coupled one-to-one relationship, the request and response
FIFO sizes must be one.

file

tlm/tlm_req_rsp.svh

virtual

no

parameters

type REQ = int
Type of transactions to be passed to/from the request FIFO.

type RSP = int
Type of transactions to be passed to/from the response FIFO.

members

typedef tlm_transport_channel #(REQ, RSP) this_type
avm_transport_imp #(REQ, RSP, this_type) transport_export

The mechanism by which external components gain access to the transport() task.

methods

function new(string name, avm_named_component parent=null)
name and parent are the standard AVM 3.0 constructor arguments. parent must be
null if this component is defined within a statically elaborated construct such as a
module, program block, or interface, and it must take a non-null value if it is defined
inside an avm_env.

task transport(input REQ request, output RSP response)
Calls put(request) followed by get(response).

TLM Interfaces
The TLM interfaces are a collection of pure virtual classes that define the way transaction
objects move between components. Each interface class supplies a set of one or more tasks and
function prototypes. Interface implementations (imps), ports, exports, and channels use the
TLM interfaces to define the set of functions and tasks that each needs to implement.

AVM Encyclopedia
analysis_if #(type T=int)

ModelSim SE Reference Manual, v6.5b 699

analysis_if #(type T=int)

file

tlm/tlm_ifs.svh

The analysis interface is a nonblocking, non-negotiable, unidirectional interface. It is typically
used to transfer a transaction from a monitor, which cannot block, to a scoreboard or coverage
object.

virtual

yes

parameters

type T = int
Type of transactions to be handled by this interface.

members

<none>

methods

Pure virtual methods must have an implementation specified in a subclass.

pure virtual function void write(input T t)
Takes transaction t, operates on it (e.g., copies it, records values for functional
coverage, etc.) in some nonblocking way and returns immediately.

ModelSim SE Reference Manual, v6.5b700

AVM Encyclopedia
tlm_blocking_get_if

tlm_blocking_get_if
 #(type T=int)

The blocking get interface

file

tlm/tlm_ifs.svh

virtual

yes

parameters

type T = int
Type of transactions to be handled by this interface.

members

<none>

methods

Pure virtual methods must have an implementation specified in a subclass.

pure virtual task get(output T t)
Blocks until the callee is able to supply a transaction t. This is a consuming method,
so subsequent calls to get() return a different transaction (or a new copy of the
same transaction).

AVM Encyclopedia
tlm_blocking_get_peek_if

ModelSim SE Reference Manual, v6.5b 701

tlm_blocking_get_peek_if
 #(type T=int)

The blocking get interface

file

tlm/tlm_ifs.svh

virtual

yes

parameters

type T = int
Type of transactions to be handled by this interface.

members

<none>

methods

Pure virtual methods must have an implementation specified in a subclass.

pure virtual task get(output T t)
Blocks until the callee is able to supply a transaction t. This is a consuming method,
so subsequent calls to get() return a different transaction (or a new copy of the
same transaction).

pure virtual task peek(output T t)
Blocks until the callee is able to supply a transaction. This is a nonconsuming
method, so subsequent calls to peek() or the next call to get() return the same
transaction.

ModelSim SE Reference Manual, v6.5b702

AVM Encyclopedia
tlm_blocking_peek_if

tlm_blocking_peek_if
 #(type T=int)

The blocking peek interface

file

tlm/tlm_ifs.svh

virtual

yes

parameters

type T = int
Type of transactions to be handled by this interface.

members

<none>

methods

Pure virtual methods must have an implementation specified in a subclass.

pure virtual task peek(output T t)
Blocks until the callee is able to supply a transaction. This is a nonconsuming
method, so subsequent calls to peek() or the next call to get() return the same
transaction.

AVM Encyclopedia
tlm_blocking_put_if

ModelSim SE Reference Manual, v6.5b 703

tlm_blocking_put_if
 #(type T=int)

The blocking put interface

file

tlm/tlm_ifs.svh

virtual

yes

parameters

type T = int
Type of transactions to be handled by this interface.

members

<none>

methods

Pure virtual methods must have an implementation specified in a subclass.

pure virtual task put(input T t);
Blocks until the callee is able to accept a transaction.

ModelSim SE Reference Manual, v6.5b704

AVM Encyclopedia
tlm_blocking_master_if

tlm_blocking_master_if
 #(type REQ = int, type RSP = int)

The blocking master interface

file

tlm/tlm_ifs.svh

virtual

yes

parameters

type T = int
Type of transactions to be handled by this interface.

members

<none>

methods

Pure virtual methods must have an implementation specified in a subclass.

pure virtual task put(input REQ req)
Blocks until the callee is able to accept a request transaction.

pure virtual task get(output RSP rsp)
Blocks until the callee is able to supply a response transaction t. This is a consuming
method, so subsequent calls to get() return a different transaction (or a new copy of
the same transaction).

pure virtual task peek(output RSP rsp)
Blocks until the callee is able to supply a response transaction. This is a
nonconsuming method, so subsequent calls to peek() or the next call to get()

return the same transaction.

AVM Encyclopedia
tlm_blocking_slave_if

ModelSim SE Reference Manual, v6.5b 705

tlm_blocking_slave_if
 #(type T=int)

The blocking slave interface

file

tlm/tlm_ifs.svh

virtual

yes

parameters

type T = int
Type of transactions to be handled by this interface.

members

<none>

methods

Pure virtual methods must have an implementation specified in a subclass.

pure virtual task put(RSP rsp)
Blocks until the callee is able to accept a response transaction.

 pure virtual task get(output REQ req)
Blocks until the callee is able to supply a request transaction t. This is a consuming
method, so subsequent calls to get() return a different transaction (or a new copy of
the same transaction).

 pure virtual task peek(output REQ req);
Blocks until the callee is able to supply a request transaction. This is a
nonconsuming method, so subsequent calls to peek() or the next call to get()

return the same transaction.

ModelSim SE Reference Manual, v6.5b706

AVM Encyclopedia
tlm_get_if

tlm_get_if
 #(type T=int)

The get interface is a unidirectional consuming interface. It has both functions, which cannot
block, and tasks, which may block.

file

tlm/tlm_ifs.svh

virtual

yes

parameters

type T = int
Type of transactions to be handled by this interface.

members

<none>

methods

Pure virtual methods must have an implementation specified in a subclass.

pure virtual function bit can_get()
Returns 1 if a callee can supply a transaction and 0 otherwise. If no time elapses and
nothing else happens to modify the state of the underlying component, then a
subsequent call to get() or try_get() is guaranteed to succeed.

pure virtual task get(output T t)
Blocks until the callee is able to supply a transaction t. This is a consuming method,
so subsequent calls to get() return a different transaction (or a new copy of the
same transaction).

pure virtual function bit try_get(output T t)
Returns immediately and supplies a transaction t, if one is available. If successful,
will return 1, otherwise will return 0 (and t will be undefined).

AVM Encyclopedia
tlm_get_peek_if

ModelSim SE Reference Manual, v6.5b 707

tlm_get_peek_if
 #(type T=int)

The get peek interface is a unidirectional interface. It has both blocking tasks and nonblocking
functions, and it has both consuming and nonconsuming methods.

file

tlm/tlm_ifs.svh

virtual

yes

parameters

type T = int
Type of transactions to be handled by this interface.

members

<none>

methods

Pure virtual methods must have an implementation specified in a subclass.

pure virtual function bit can_get()
Returns 1 if a callee can supply a transaction and 0 otherwise. If no time elapses and
nothing else happens to modify the state of the underlying component, then a
subsequent call to get(), try_get(), peek(), or try_peek() is guaranteed to
succeed.

pure virtual function bit can_peek()
Returns 1 if a callee can supply a transaction and 0 otherwise. If no time elapses and
nothing else happens to modify the state of the underlying component, then a
subsequent call to get(), try_get(), peek(), or try_peek() is guaranteed to
succeed.

pure virtual task get(output T t)
Blocks until the callee is able to supply a transaction t. This is a consuming method,
so subsequent calls to get() return a different transaction (or a new copy of the
same transaction).

pure virtual task peek(output T t)
Blocks until the callee is able to supply a transaction. This is a nonconsuming
method, so subsequent calls to peek() or the next call to get() return the same
transaction.

pure virtual function bit try_get(output T t)

ModelSim SE Reference Manual, v6.5b708

AVM Encyclopedia
tlm_get_peek_if

Returns immediately and supplies a transaction t, if one is available. If successful, it
returns 1 (and t will no longer be available). Otherwise, it returns 0 (and t will be
undefined).

pure virtual function bit try_peek(output T t)
Returns immediately and supplies a transaction t, if one is available. If successful,
returns 1 (and t will still be available). Otherwise, it returns 0 (and t is undefined).

AVM Encyclopedia
tlm_master_if

ModelSim SE Reference Manual, v6.5b 709

tlm_master_if
#(type REQ=int, type RSP=int)

The master interface is a bidirectional interface. It enables a master to put requests and get or
peek responses. It contains both blocking and nonblocking methods.

file

tlm/tlm_ifs.svh

virtual

yes

parameters

type REQ = int
Type of transactions to be handled on the put side.

type RSP = int
Type of transactions to be handled on the get/peek side.

members

<none>

methods

Pure virtual methods must have an implementation specified in a subclass.

pure virtual function bit can_get()
Returns 1 if a callee can supply a response transaction and 0 otherwise. If no time
elapses and nothing else happens to modify the state of the underlying component,
then a subsequent call to get(), try_get(), peek(), or try_peek() is guaranteed
to succeed.

pure virtual function bit can_peek()
Returns 1 if a callee can supply a response transaction and 0 otherwise. If no time
elapses and nothing else happens to modify the state of the underlying component,
then a subsequent call to get(), try_get(), peek(), or try_peek() is guaranteed
to succeed.

pure virtual function bit can_put()
Returns 1 if the callee can accept a request and 0 otherwise. If no time elapses and
nothing else happens to modify the state of the underlying component, then a
subsequent call to put() is guaranteed to succeed.

pure virtual task get(output RSP rsp)
Blocks until the callee is able to supply a response transaction, rsp. This is a
consuming method, so subsequent calls to get() return a different transaction (or a
new copy of the same transaction).

ModelSim SE Reference Manual, v6.5b710

AVM Encyclopedia
tlm_master_if

pure virtual task peek(output RSP rsp)
Blocks until the callee is able to supply a response transaction. This is a
nonconsuming method, so subsequent calls to peek() or the next call to get()

returns the same transaction.

pure virtual task put(REQ req)
Blocks until the callee is able to accept a request transaction, req.

pure virtual function bit try_get(output RSP rsp)
Returns immediately and supplies a response transaction rsp, if one is available. If
successful, it returns 1 (and rsp will no longer be available). Otherwise, it returns 0
(and rsp will be undefined).

pure virtual function bit try_peek(output RSP rsp)
Returns immediately and supplies a response transaction rsp, if one is available. If
successful, it returns 1 (and rsp will still be available). Otherwise, it returns 0 (and
rsp will be undefined).

pure virtual function bit try_put(REQ req)
Returns immediately. If the callee can accept a request, it returns 1, otherwise, it
returns 0.

AVM Encyclopedia
tlm_nonblocking_get_if

ModelSim SE Reference Manual, v6.5b 711

tlm_nonblocking_get_if
 #(type T=int)

The nonblocking get interface is a nonblocking, unidirectional, consuming interface.

file

tlm/tlm_ifs.svh

virtual

yes

parameters

type T = int
Type of transactions to be handled by this interface.

members

<none>

methods

Pure virtual methods must have an implementation specified in a subclass.

pure virtual function bit can_get()
Returns 1 if a callee can supply a transaction and 0 otherwise. If no time elapses and
nothing else happens to modify the state of the underlying component, then a
subsequent call to get() or try_get() is guaranteed to succeed.

pure virtual function bit try_get(output T t)
Returns immediately and supplies a transaction t, if one is available. If successful, it
returns 1. Otherwise, it returns 0 (and t will be undefined).

ModelSim SE Reference Manual, v6.5b712

AVM Encyclopedia
tlm_nonblocking_get_peek_if

tlm_nonblocking_get_peek_if
 #(type T=int)

The nonblocking get peek interface is a nonblocking, unidirectional, interface.

file

tlm/tlm_ifs.svh

virtual

yes

parameters

type T = int
Type of transactions to be handled by this interface.

members

<none>

methods

Pure virtual methods must have an implementation specified in a subclass.

pure virtual function bit can_get()
Returns 1 if a callee can supply a transaction and 0 otherwise. If no time elapses and
nothing else happens to modify the state of the underlying component, then a
subsequent call to get() or try_get() is guaranteed to succeed.

pure virtual function bit can_peek()
Returns 1 if a callee can supply a transaction and 0 otherwise. If no time elapses and
nothing else happens to modify the state of the underlying component, then a
subsequent call to try_get() or try_peek() is guaranteed to succeed.

pure virtual function bit try_get(output T t)
Returns immediately and supplies a transaction t, if one is available. If successful, it
returns 1. Otherwise, it returns 0 (and t will be undefined).

pure virtual function bit try_peek(output T t)
Returns immediately and supplies a transaction t, if one is available. If successful, it
returns 1 (and t will still be available). Otherwise, it returns 0 (and t will be
undefined).

AVM Encyclopedia
tlm_nonblocking_master_if

ModelSim SE Reference Manual, v6.5b 713

tlm_nonblocking_master_if
#(type REQ=int, type RSP=int)

The nonblocking master interface is a bidirectional interface. It enables a master to put requests
and get or peek responses.

file

tlm/tlm_ifs.svh

virtual

yes

parameters

type REQ = int
Type of transactions to be handled on the put side.

type RSP = int
Type of transactions to be handled on the get/peek side.

members

<none>

methods

Pure virtual methods must have an implementation specified in a subclass.

pure virtual function bit can_get()
Returns 1 if a callee can supply a response transaction and 0 otherwise. If no time
elapses and nothing else happens to modify the state of the underlying component,
then a subsequent call to get(), try_get(), peek(), or try_peek() is guaranteed
to succeed.

pure virtual function bit can_peek()
Returns 1 if a callee can supply a response transaction and 0 otherwise. If no time
elapses and nothing else happens to modify the state of the underlying component,
then a subsequent call to get(), try_get(), peek(), or try_peek() is guaranteed
to succeed.

pure virtual function bit can_put()
Returns 1 if the callee can accept a request and 0 otherwise. If no time elapses and
nothing else happens to modify the state of the underlying component, then a
subsequent call to put() is guaranteed to succeed.

pure virtual function bit try_get(output RSP rsp)
Returns immediately and supplies a response transaction rsp, if one is available. If
successful, it returns 1 (and rsp will no longer be available). Otherwise, it returns 0
(and rsp will be undefined).

ModelSim SE Reference Manual, v6.5b714

AVM Encyclopedia
tlm_nonblocking_master_if

pure virtual function bit try_peek(output RSP rsp)
Returns immediately and supplies a response transaction rsp, if one is available. If
successful, it returns 1 (and rsp will still be available). Otherwise, it returns 0 (and
rsp will be undefined).

pure virtual function bit try_put(REQ req)
Returns immediately. If the callee can accept a request, it returns 1. Otherwise, it
returns 0.

AVM Encyclopedia
tlm_nonblocking_peek_if

ModelSim SE Reference Manual, v6.5b 715

tlm_nonblocking_peek_if
 #(type T=int)

The nonblocking peek interface is a unidirectional, nonblocking, nonconsuming interface.

file

tlm/tlm_ifs.svh

virtual

yes

parameters

type T = int
Type of transactions to be handled by this interface.

members

<none>

methods

Pure virtual methods must have an implementation specified in a subclass.

pure virtual function bit can_peek()
Returns 1 if a callee can supply a transaction and 0 otherwise. If no time elapses and
nothing else happens to modify the state of the underlying component, then a
subsequent call to try_get() or try_peek() is guaranteed to succeed.

pure virtual function bit try_peek(output T t)
Returns immediately and supplies a transaction t, if one is available. If successful, it
returns 1 (and t will still be available). Otherwise, it returns 0 (and t will be
undefined).

ModelSim SE Reference Manual, v6.5b716

AVM Encyclopedia
tlm_nonblocking_put_if

tlm_nonblocking_put_if
 #(type T=int)

The nonblocking put interface is a unidirectional, nonblocking interface.

file

tlm/tlm_ifs.svh

virtual

yes

parameters

type T = int
Type of transactions to be handled by this interface.

members

<none>

methods

Pure virtual methods must have an implementation specified in a subclass.

pure virtual function bit can_put()
Returns 1 if the callee can accept a transaction and 0 otherwise. If no time elapses
and nothing else happens to modify the state of the underlying component, then a
subsequent call to try_put() is guaranteed to succeed.

pure virtual function bit try_put(T t)
Returns immediately. If the callee can accept a transaction, it returns 1. Otherwise, it
returns 0.

AVM Encyclopedia
tlm_nonblocking_slave_if

ModelSim SE Reference Manual, v6.5b 717

tlm_nonblocking_slave_if
 #(type REQ=int, type RSP=int)

The nonblocking slave interface is a bidirectional nonblocking interface. It allows a slave to get
or peek requests and put responses.

file

tlm/tlm_ifs.svh

virtual

yes

parameters

type REQ = int
Type of transactions to be handled on the get/peek side.

type RSP = int
Type of transactions to be handled on the put side.

members

<none>

methods

Pure virtual methods must have an implementation specified in a subclass.

pure virtual function bit can_get()
Returns 1 if a callee can supply a request transaction and 0 otherwise. If no time
elapses and nothing else happens to modify the state of the underlying component,
then a subsequent call to get(), try_get(), peek(), or try_peek() is guaranteed
to succeed.

pure virtual function bit can_peek()
Returns 1 if a callee can supply a request transaction and 0 otherwise. If no time
elapses and nothing else happens to modify the state of the underlying component,
then a subsequent call to get(), try_get(), peek(), or try_peek() is guaranteed
to succeed.

pure virtual function bit can_put()
Returns 1 if the callee can accept a response and 0 otherwise. If no time elapses and
nothing else happens to modify the state of the underlying component, then a
subsequent call to put() is guaranteed to succeed.

pure virtual function bit try_get(output REQ req)
Returns immediately and supplies a request transaction req, if one is available. If
successful, it returns 1 (and req will no longer be available). Otherwise, it returns 0
(and req is undefined).

ModelSim SE Reference Manual, v6.5b718

AVM Encyclopedia
tlm_nonblocking_slave_if

pure virtual function bit try_peek(output REQ req)
Returns immediately and supplies a request transaction req, if one is available. If
successful, it returns 1 (and req will still be available). Otherwise, it returns 0 (and
req is undefined).

pure virtual function bit try_put(RSP rsp)
Returns immediately. If the callee can accept a response, it returns 1. Otherwise, it
returns 0.

AVM Encyclopedia
tlm_peek_if

ModelSim SE Reference Manual, v6.5b 719

tlm_peek_if
 #(type T=int)

The peek interface is a unidirectional, nonconsuming interface.

file

tlm/tlm_ifs.svh

virtual

yes

parameters

type T = int
Type of transactions to be handled by this interface.

members

<none>

methods

Pure virtual methods must have an implementation specified in a subclass.

pure virtual function bit can_peek()
Returns 1 if a callee can supply a transaction and 0 otherwise. If no time elapses and
nothing else happens to modify the state of the underlying component, then a
subsequent call to get(), try_get(), peek(), or try_peek() is guaranteed to
succeed.

pure virtual task peek(output T t)
Blocks until the callee is able to supply a transaction. This is a nonconsuming
method, so subsequent calls to peek() or the next call to get() return the same
transaction.

pure virtual function bit try_peek(output T t)
Returns immediately and supplies a transaction t, if one is available. If successful, it
returns 1 (and t will still be available). Otherwise, it returns 0 (and t is undefined).

ModelSim SE Reference Manual, v6.5b720

AVM Encyclopedia
tlm_put_if

tlm_put_if
 #(type T=int)

The put interface is a unidirectional interface. It contains both blocking tasks and nonblocking
functions.

file

tlm/tlm_ifs.svh

virtual

yes

parameters

type T = int
Type of transactions to be handled by this interface.

members

<none>

methods

Pure virtual methods must have an implementation specified in a subclass.

pure virtual task put(input T t)
The put() task blocks until the callee is able to accept a T.

pure virtual function bit can_put()
Returns 1 if the callee can accept a transaction and 0 otherwise. If no time elapses
and nothing else happens to modify the state of the underlying component, then a
subsequent call to try_put() is guaranteed to succeed.

pure virtual function bit try_put(T t)
Returns immediately. If the callee can accept a transaction, it returns 1, otherwise, it
returns 0.

pure virtual task put(T t)
Blocks until the callee is able to accept a transaction.

AVM Encyclopedia
tlm_slave_if

ModelSim SE Reference Manual, v6.5b 721

tlm_slave_if
#(type REQ=int, type RSP=int)

The slave interface is a bidirectional interface. It allows a slave to get or peek requests and put
responses in either blocking or nonblocking forms.

file

tlm/tlm_ifs.svh

virtual

yes

parameters

type REQ = int
Type of transactions to be handled on the get/peek side.

type RSP = int
Type of transactions to be handled on the put side.

members

<none>

methods

Pure virtual methods must have an implementation specified in a subclass.

pure virtual function bit can_get()
Returns 1 if a callee can supply a request transaction and 0 otherwise. If no time
elapses and nothing else happens to modify the state of the underlying component,
then a subsequent call to get(), try_get(), peek(), or try_peek() is guaranteed
to succeed.

pure virtual function bit can_peek()
Returns 1 if a callee can supply a request transaction and 0 otherwise. If no time
elapses and nothing else happens to modify the state of the underlying component,
then a subsequent call to get(), try_get(), peek(), or try_peek() is guaranteed
to succeed.

pure virtual function bit can_put()
Returns 1 if the callee can accept a response and 0 otherwise. If no time elapses and
nothing else happens to modify the state of the underlying component, then a
subsequent call to put() is guaranteed to succeed.

pure virtual task get(output REQ req)
Blocks until the callee is able to supply a request transaction, req. This is a
consuming method, so subsequent calls to get() return a different transaction (or a
new copy of the same transaction).

ModelSim SE Reference Manual, v6.5b722

AVM Encyclopedia
tlm_slave_if

pure virtual task peek(output REQ req)
Blocks until the callee is able to supply a request transaction. This is a
nonconsuming method, so subsequent calls to peek() or the next call to get()

return the same transaction.

pure virtual task put(RSP rsp)
Blocks until the callee is able to accept a response transaction, rsp.

pure virtual function bit try_get(output REQ req)
Returns immediately and supplies a request transaction req, if one is available. If
successful, it returns 1 (and req will no longer be available). Otherwise, it returns 0
(and req will be undefined).

pure virtual function bit try_peek(output REQ req)
Returns immediately and supplies a request transaction req, if one is available. If
successful, it returns 1 (and req will still be available). Otherwise, it returns 0 (and
req will be undefined).

pure virtual function bit try_put(RSP rsp)
Returns immediately. If the callee can accept a response, it returns 1. Otherwise, it
returns 0.

AVM Encyclopedia
tlm_transport_if

ModelSim SE Reference Manual, v6.5b 723

tlm_transport_if
 #(type REQ=int, type RSP=int)

The transport interface is a bidirectional blocking interface. It is used when there is a tight one-
to-one coupling between request and response, typically in the context of nonpipelined buses.

file

tlm/tlm_ifs.svh

virtual

yes

parameters

type REQ = int
Type of transactions to be sent.

type RSP = int
Type of transactions to be received.

members

<none>

methods

Pure virtual methods must have an implementation specified in a subclass.

pure virtual task transport(input REQ request,
 output RSP response)

Sends a request transaction to the callee and blocks until it obtains a response
transaction back from the callee.

Transactions

ModelSim SE Reference Manual, v6.5b724

AVM Encyclopedia
avm_built_in_clone

avm_built_in_clone
 #(type T=int)

This policy class is used to clone built-in types. It is used to build generic components that will
work with either classes or built-in types.

file

vbase/avm_policies.svh

virtual

no

parameters

type T = int
The return type of the clone() method.

members

<none>

methods

static function T clone(input T from)
Returns the value of from.

AVM Encyclopedia
avm_built_in_comp

ModelSim SE Reference Manual, v6.5b 725

avm_built_in_comp
 #(type T=int)

This policy class is used to compare built-in types. It is used to build generic components that
work with either classes or built-in types.

file

vbase/avm_policies.svh.

virtual

no

parameters

type T = int
The type of the items to be compared.

members

<none>

methods

static function bit comp(input T a, input T b)
Returns the value of a==b.

ModelSim SE Reference Manual, v6.5b726

AVM Encyclopedia
avm_built_in_converter

avm_built_in_converter
 #(type T=int)

This policy class is used to convert built-in types to strings. It is used to build generic
components that will work with either classes or built-in types.

file

vbase/avm_policies.svh

virtual

no

parameters

type T = int
The type of the item to be converted.

members

<none>

methods

static function string convert2string(input T t);
Returns the value of t as a string.

AVM Encyclopedia
avm_built_in_pair

ModelSim SE Reference Manual, v6.5b 727

avm_built_in_pair
 #(type T1=int, type T2=T1)
extends avm_transaction

This class represents a pair of built in types.

file

utils/avm_pair.svh

virtual

no

parameters

type T1 = int
The type of the first element of the pair.

type T2 = T1
The type of the second element of the pair. By default, the two types are the same.

members

typedef avm_built_in_pair #(T1, T2) this_type
T1 first

The first element of the pair.

T2 second
The second element of the pair.

methods

virtual function string convert2string()
function bit comp(this_type t)
function void copy(input this_type t)
function avm_transaction clone()

Since avm_built_in_pair is a transaction class, it provides the four compulsory
methods as defined by AVM 3.0.

ModelSim SE Reference Manual, v6.5b728

AVM Encyclopedia
avm_class_clone

avm_class_clone
 #(type T=int)

This policy class is used to clone classes. It is used to build generic components that work with
either classes or built-in types.

file

vbase/avm_policies.svh

virtual

no

members

<none>

methods

static function avm_transaction clone(input T from)
This method returns from.clone().

AVM Encyclopedia
avm_class_comp

ModelSim SE Reference Manual, v6.5b 729

avm_class_comp
 #(type T=int)

This policy class is used to compare classes. It is used to build generic components that work
with either built-in types or classes.

file

vbase/avm_policies.svh

virtual

no

members

<none>

methods

static function bit comp(input T a, input T b)
This method returns a.comp(b).

ModelSim SE Reference Manual, v6.5b730

AVM Encyclopedia
avm_class_converter

avm_class_converter
 #(type T=int)

This policy class is used to convert classes to strings. It is used to build generic components that
work with either built-in types or classes.

file

vbase/avm_policies.svh

virtual

no

members

<none>

methods

static function string convert2string(input T t)
This method returns t.convert2string().

AVM Encyclopedia
avm_class_pair

ModelSim SE Reference Manual, v6.5b 731

avm_class_pair
 #(type T1=int, type T2=T1)
extends avm_transaction

This class represents a pair of classes.

file

utils/avm_pairs.svh

virtual

no

members

typedef avm_class_pair #(T1, T2) this_type
T1 first

This is the first element in the pair.

T2 second
This is the second element in the pair.

methods

function new(input T1 f=null, input T2 s=null)
A constructor, with optional arguments for first and second. No cloning is performed
for nondefault values.

function string convert2string
function bit comp(this_type t)
function void copy(input this_type t)
function avm_transaction clone

Since avm_built_in_pair is a transaction class, it provides the four compulsory
methods as defined by AVM 3.0.

ModelSim SE Reference Manual, v6.5b732

AVM Encyclopedia
avm_transaction

avm_transaction

This is the base class for all AVM transactions.

file

vbase/avm_transaction.svh

virtual

yes

members

<none>

methods

pure virtual function avm_transaction clone
This virtual method returns a handle to a clone of this transaction. Since it is virtual,
the clone is deep in relation to the inheritance hierarchy, although it may be shallow
or deep in relation to members of subclasses that are themselves handles.

pure virtual function string convert2string
This method converts the transaction into a string. Since it is virtual, it is also deep,
in relation to the inheritance hierarchy.

In addition to the two methods described above, any transaction T that is a subtype of
avm_transaction must also define the following two methods.

function bit comp(input T t);
This function compares this transaction with t. It returns 1 if it is the same and 0 if
they are different.

function void copy(input T t);
This function copies the contents of t into this transaction. It may be shallow or deep
in relation to handles. It usually calls super.copy(t) if T is not a direct base class
of avm_transaction.

AVM Encyclopedia
Reporting

ModelSim SE Reference Manual, v6.5b 733

Reporting
The reporting classes provide a facility for issuing reports with different severities and ids, and
to different files. The primary interface to the reporting facility is avm_report_client.

Figure 3-5. UML Diagram for Reporting Classes

ModelSim SE Reference Manual, v6.5b734

AVM Encyclopedia
avm_report_client

avm_report_client

avm_report_client is a base class from which all components that want to use the AVM
reporting facility must inherit. It provides methods to issue messages, change the action
associated with these messages, associate files with messages, and execute hook methods as a
result of these messages.

All of the state information relating to actions and files associated with different types of
messages is held in an avm_report_handler. Most of the methods in this class are delegated to
a report handler, which in turn delegates the actual formatting and production of messages to a
central avm_report_server.

file

reporting/avm_report_client.svh

virtual

yes

members

protected avm_report_handler m_rh
Handle to a report handler, which stores all the state information about actions and
files. It may be unique to this report client or shared with other clients.

local string m_report_name
The name of the report handler. This name is printed out at the beginning of each
message.

methods

function new(string name="")
The constructor requires a name, and creates a new report handler that is unique to
this client.

function void avm_report_error(string id, string message,
 int verbosity_level=100,
 string filename=””, int line=0)

One of the four core reporting methods, it issues a report of severity ERROR. If the
verbosity level of this report is higher than the maximum verbosity level of the
report handler, this report is simply ignored. By default, a warning is displayed on
the command line, logged in a file if one has been set, and counted. If the error count
in any report handler exceeds its maximum quit count, then the die()method is
called. The default verbosity level for an error is 100.

function void avm_report_fatal(string id, string message,
 int verbosity_level=0,
 string filename=””, int line=0)

One of the four core reporting methods, it issues a report of severity FATAL. If the
verbosity level of this report is higher than the maximum verbosity level of the

AVM Encyclopedia
avm_report_client

ModelSim SE Reference Manual, v6.5b 735

report handler, this report is simply ignored. By default, a fatal error is displayed on
the command line, and then it calls the die() method. The default verbosity level
for a fatal report is 0.

function void avm_report_message(string id, string message,
int verbosity_level=300,

 string filename=””, int line=0)
One of the four core reporting methods, it issues a report of severity MESSAGE. If
the verbosity level of this report is higher than the maximum verbosity level of the
report handler, this report is simply ignored. By default, a message is displayed on
the command line and logged in a file, if one has been set. The default verbosity
level for a message is 300.

function void avm_report_warning(string id, string message,
int verbosity_level=200,

 string filenamee=””, int line=0)
One of the four core reporting methods, it issues a report of severity WARNING. If
the verbosity level of this report is higher than the maximum verbosity level of the
report handler, this report is simply ignored. By default a warning is displayed on the
command line and logged in a file, if one has been set. The default verbosity level
for a warning is 200.

function avm_report_handler get_report_handler()
Provides public access to the report handler, which stores all the state information.

function string get_report_name()
Provides public access to the report name.

virtual function void report_header(FILE f=0)
Prints version and copyright information. This information will be sent to the
command line if f is 0, or to the file descriptor f if it is not 0. This method is called
by avm_env immediately after the construction phase and before the connect phase.

virtual function bit report_hook(string id, string message,
int verbosity,
string filename, int line)

Called only if the CALL_HOOK bit is specified in the action associated with the report.
By default, it does nothing other than return 1, but it can be overloaded in a subclass.
If this method returns 0, the report will not be processed by the report server.

virtual function bit report_error_hook(string id,
 string message,
 int verbosity,
 string filename, int line)

Called only if the CALL_HOOK bit is specified in the action associated with an error
report. By default, it does nothing other than return 1, but it can be overloaded in a
subclass. If this method returns 0, the error will not be processed by the report
server.

virtual function bit report_fatal_hook(string id,
 string message,
 int verbosity,

ModelSim SE Reference Manual, v6.5b736

AVM Encyclopedia
avm_report_client

 string filename, int line)
Called only if the CALL_HOOK bit is specified in the action associated with a fatal
report. By default, it does nothing other than return 1, but it can be overloaded in a
subclass. If this method returns 0, the fatal will not be processed by the report server.

virtual function bit report_message_hook(string id,
 string message,
 int verbosity,

 string filename, int line)
Called only if the CALL_HOOK bit is specified in the action associated with a message.
By default, it does nothing other than return 1, but can be overloaded in a subclass. If
this method returns 0, the message will not be processed by the report server.

function void report_summarize(FILE f=0)
Produces statistical information on the reports issued by the central report server.
This information will be sent to the command line if f is 0, or to the file descriptor f
if it is not 0.

virtual function bit report_warning_hook(string id,
 string message,

 int verbosity,
 string filename, int line)

Called only if the CALL_HOOK bit is specified in the action associated with a warning.
By default, it does nothing other than return 1, but can be overloaded in a subclass. If
this method returns 0, the warning will not be processed by the report server.

function void reset_report_handler()
Reinitializes the client’s report handler to the default settings.

function void set_report_handler(avm_report_handler hndlr)
Sets the report handler, thus allowing more than one client to share the same report
handler.

function void set_report_max_quit_count(int m)
Sets the value of the max_quit_count in the report handler to m. When the number
of COUNT actions reaches m, the die() method is called. The default value of 0
indicates that there is no upper limit to the number of COUNTed reports.

function void set_report_name(string s)
Sets the report name.

function void set_report_severity_action (severity s,
 action a)

Sets the action associated with a severity. An action can take the value NO_ACTION (
5'b00000) or can be composed of the bitwise OR of any combination of DISPLAY,
LOG, COUNT, EXIT, or CALL_HOOK.

function void set_report_verbosity_level(int verbosity_level)
Sets the maximum verbosity level for the client’s report handler. If the verbosity of
any report exceeds this maximum value, then the report is ignored.

function void set_report_id_action (string id, action a)

AVM Encyclopedia
avm_report_client

ModelSim SE Reference Manual, v6.5b 737

This method sets the action associated with an id. An action associated with an id
takes priority over an action associated with a severity. An action can take the value
NO_ACTION (5'b00000) or can be composed of the bitwise OR of any
combination of DISPLAY, LOG, COUNT, EXIT, or CALL_HOOK.

function void set_report_severity_id_action (severity s,
 string id,
 action a)

This method sets the action associated with a (severity,id) pair. An action associated
with a (severity,id) pair takes priority over an action associated with either the
severity or the id alone. An action can take the value NO_ACTION
(5'b00000) or can be composed of the bitwise OR of any combination of DISPLAY,
LOG, COUNT, EXIT, or CALL_HOOK.

function void set_report_default_file (input FILE f)
This method sets the file descriptor associated by default with any report issued by
this client’s report handler. The default value is 0, which means that even if the
action includes a LOG attribute, the report is not sent to a file.

function void set_report_severity_file (severity s,
 FILE f)

This method sets the file descriptor associated with a severity. A file descriptor
associated with a severity takes priority over the default file descriptor.

function void set_report_id_file (input string id, input FILE f)
This method sets the file descriptor associated with an id. A file descriptor
associated with an id takes priority over the default file descriptor and a file
descriptor associated with a severity.

function void set_report_severity_id_file (severity s,
 string id,
 FILE f)

This method sets the file descriptor associated with a (severity,id) pair. A file
descriptor associated with a (severity,id) pair takes priority over the default file
descriptor, a file descriptor associated with a severity, or a file descriptor associated
with an id.

function void dump_report_state()
This method dumps the internal state of the report handler. This includes
information about the maximum quit count, the maximum verbosity, and the action
and files associated with severities, ids, and (severity,id) pairs.

virtual function void die()
This method is called by the report server if a report reaches the maximum quit
count or has an EXIT action associated with it (this is part of the default action for a
fatal error).

If this method is called in a client that is actually a named component defined in an
avm_env, then all the avm_env’s run() tasks are killed and the avm_env goes
through the report phase, which by default, calls report_summarize(). In this case,
any other avm_env’s in the simulation will not be affected.

ModelSim SE Reference Manual, v6.5b738

AVM Encyclopedia
avm_report_client

If die() is called in a report client that is not an avm_named_component, or in an
avm_named_component defined outside of an avm_env, then report_summarize()

is called and the simulation terminates with $finish.

AVM Encyclopedia
avm_report_handler

ModelSim SE Reference Manual, v6.5b 739

avm_report_handler

avm_report_handler is the class to which many of the methods in avm_report_client are
delegated. None of its methods are intended to be called directly from normal test bench code.

It stores the maximum verbosity, actions, and files that affect the way reports are handled. The
relationship between report clients and report handlers is usually one to one, but it can, in
theory, be many to one. If a report needs processing, it passes it on to the central report server.
The relationship between report handlers and report servers is many to one.

file

reporting/avm_report_handler.svh

virtual

no

members

avm_report_server m_srvr
This is the central report server that actually processes the reports.

int m_max_verbosity_level
This is the maximum verbosity of reports that this report handler forwards to the
report server. The default value is 10000.

action severity_actions[severity]
This is the array that contains the actions associated with each severity. The default
values are given by the table below.

id_actions_array id_actions
This is the array of actions associated with each string id. By default, there are no
entries in this array.

id_actions_array severity_id_actions[severity]
This is an associative array of associative arrays. If it exists, then
severity_id_actions[s][i] contains the actions associated with the (severity,id)
pair (s,i). By default, there are no entries in this array.

Severity Actions

MESSAGE DISPLAY

WARNING DISPLAY

ERROR DISPLAY | COUNT

FATAL DISPLAY | EXIT

ModelSim SE Reference Manual, v6.5b740

AVM Encyclopedia
avm_report_handler

FILE default_file_handle
This is the default file handle for this report handler. By default, it is set to 0, which
means that reports are not sent to a file even if a LOG attribute is set in the action
associated with the report.

FILE severity_file_handles[severity]
This array contains the file handle associated with each severity.

id_file_array id_file_handles
This array contains the file handle associated with each string id.

id_file_array severity_id_file_handles[severity]
This associative array of associative arrays contains the file descriptor associated
with each (severity,id) pair, if there are any.

methods

function new()
The constructor.

function void set_max_quit_count(int m)
See avm_report_client::set_report_max_quit_count (see page 736).

function void summarize(FILE f=0)
See avm_report_client::report_summarize (see page 736).

function void report_header(FILE f=0)
See avm_report_client::report_header (see page 735).

function void initialize()
This method is called by the constructor to initialize the arrays and other variables
described above to their default values.

virtual function bit run_hooks(avm_report_client client,
 severity s, string id,
 string message, int verbosity,
 string filename, int line)

run_hooks is called if the CALL_HOOK attribute is set for this report. It calls the
client’s report_hook and severity specific hook method. If either returns 0, then the
report is not processed.

local function FILE get_severity_id_file(severity s, string id)
This method looks up the file descriptor associated with reports with this severity
and id.

function void set_verbosity_level(int verbosity_level)
See avm_report_client::set_report_verbosity_level (see page 736).

function action get_action(severity s, string id)
This method looks up the action associated with this severity and id.

function FILE get_file_handle(severity s, string id)
This method looks up the file descriptor associated with reports with this severity
and id.

AVM Encyclopedia
avm_report_handler

ModelSim SE Reference Manual, v6.5b 741

function void report(severity s, string name, string id,
 string mess,
 int verbosity_level=0,
 avm_report_client client=null)

This is the basic reporting method, which is called by the four core reporting
methods avm_report_client::avm_report_message (see page 735),
avm_report_client::avm_report_warning (see page 735),
avm_report_client::avm_report_error (see page 734), and
avm_report_client::avm_report_fatal (see page 734). See the descriptions of
these methods for their detailed behavior.

function string format_action(action a)
This method returns a string that describes the action.

function void set_severity_action(severity s, action a)
See avm_report_client::set_report_severity_action (see page 736).

function void set_id_action(string id, action a)
See avm_report_client::set_report_id_action (see page 736).

function void set_severity_id_action(severity s, string id,
 action a)

See avm_report_client::set_report_severity_id_action (see page 737).

function void set_default_file(FILE f)
See avm_report_client::set_report_default_file (see page 737).

function void set_severity_file(severity s, FILE f)
See avm_report_client::set_report_severity_file (see 737).

function void set_id_file(string id, FILE f)
See avm_report_client::set_report_id_file (see page 737).

function void set_severity_id_file(severity s, string id,
 FILE f)

See avm_report_client::set_report_severity_id_file (see page 737).

function void dump_state()
See avm_report_client::dump_report_state (see page 737).

ModelSim SE Reference Manual, v6.5b742

AVM Encyclopedia
avm_report_server

avm_report_server

avm_report_server is a global server that processes all the reports generated by an
avm_report_handler. None of its methods are intended to be called by normal test bench
code, although in some circumstances the virtual methods process_report and/or
compose_message may be overloaded in a subclass.

file

reporting/avm_report_server.svh

virtual

no

members

static avm_report_server global_report_server=null
This is an internal avm_report_server singleton.

local int max_quit_count
This specifies the maximum number of COUNT actions that can be tolerated before
a COUNT action is treated as an EXIT action. The default value is 0, which is
treated as specifying no upper bound.

local int quit_count
This is the actual number of COUNT actions sent to the server.

local int severity_count[severity]
This counts the number of messages for each severity.

local int id_count[string]
This counts the number of messages for each string id.

methods

function new()
The constructor is protected to enforce a singleton.

static function avm_report_server get_server()
This method returns a handle to the singleton.

function int get_max_quit_count()
This method gets the value of max_quit_count().

function void set_max_quit_count(int m)
This method sets the value of max_quit_count().

function void reset_quit_count()
This method resets the value of quit_count to 0.

function void incr_quit_count()
This method increments the value of quit_count.

AVM Encyclopedia
avm_report_server

ModelSim SE Reference Manual, v6.5b 743

function int get_quit_count()
This method gets the value of quit_count.

function bit is_quit_count_reached()
This method returns 1 if the value of quit_count has reached its upper bound, if
there is one, and returns 0 otherwise.

function void reset_severity_counts()
This method resets the values in the severity_count array.

function int get_severity_count(severity s)
This method gets the number of reports with severity s since the last reset.

function void incr_severity_count(severity s)
This method increments the severity count for this severity.

function void set_id_count(string id, int n)
This method resets the value in the id_count array for an id to n.

function int get_id_count(string id)
This method gets the number of reports with this id.

function void incr_id_count(string id)
This method increments the number of reports with this id.

function void summarize(FILE f=0)
See avm_report_client::report_summarize (see 736).

function void f_display(FILE f, string s)
This method sends string s to the command line if f is 0 and to the file(s) specified
by f if it is not 0.

function void dump_server_state()
See avm_report_client::dump_report_state() (see page 737).

virtual function void process_report(severity s, string name ,
 string id, string message,

 action a,
 FILE f,
 string filename , int line,
 avm_report_client client)

This method calls compose_message to construct the actual message to be output. It
then takes the appropriate action according to the value of action a and file f. This
method can be overloaded by expert users so that the report system processes the
actions different from the way described in avm_report_client and
avm_report_handler.

virtual function string compose_message(severity s, string name,
 string id, string message)

This method constructs the actual string sent to the file or command line from the
severity, component name, report id, and the message itself. Expert users can
overload this method to change the formatting of the reports generated by
avm_report_client.

ModelSim SE Reference Manual, v6.5b744

AVM Encyclopedia
avm_reporter

avm_reporter
 extends avm_report_client

avm_reporter is a reporter that can be used by objects that are not avm_named_components to
issue reports.

file

reporting/avm_report_client.svh

virtual

no

members

<none>

methods

function new(string name="reporter")
The constructor has a default name of "reporter."

745

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

ModelSim SE Reference Manual, v6.5b

— Symbols —
, 252
$finish behavior, customizing, 573
+typdelays, 520, 546
{}, 21
’hasX, hasX, 35

— Numerics —
2001, keywords, disabling, 521

— A —
abort command, 57
absolute time, using @, 28
add button command, 58
add list command, 62
add log command, 252
add memory command, 67
add watch command, 70
add wave command, 72
add_cmdhelp command, 79
add_menu command, 80
add_menucb command, 82
add_menuitem simulator command, 84
add_separator command, 86
add_submenu command, 87
addTime command, 376
alias command, 88
analog

signal formatting, 73
analysis_fifo class, 691
analysis_if class, 699
analysis_imp class, 686
analysis_port class, 687
annotating interconnect delays,

v2k_int_delays, 576
archives, library, 499
argument, 514
arrays

indexes, 17
slices, 17, 21

arrays, VHDL, searching for, 31
assertions

testing for with onbreak command, 281
assume directives

-noassume argument, 558
attributes, of signals, using in expressions, 35
avm_*_export class

definition of, 660
avm_*_imp class, 662
avm_*_port class

definition of, 664
avm_algorithmic_comparator class, 653
avm_analysis_port class, 666
avm_blocking_master_imp class, 667
avm_blocking_slave_imp class, 669
avm_built_in_clone class, 724
avm_built_in_comp class, 725
avm_built_in_converter class, 726
avm_built_in_pair class, 727
avm_class_clone class, 728
avm_class_comp class, 729
avm_class_converter class, 730
avm_class_pair class, 731
avm_connector_base class, 671
avm_in_order_built_in_ comparator class, 655
avm_in_order_class_comparator class, 656
avm_in_order_comparator class, 657
avm_master_imp class, 675
avm_named_component class

definition of, 641
avm_nonblocking_master_imp class, 677
avm_nonblocking_slave_imp class, 679
avm_port_base class, 681
avm_random_stimulus class, 646
avm_report_client class

definition of, 734
avm_report_handler class

definition of, 739
avm_report_server class, 742
avm_reporter class, 744

Index

746 ModelSim SE Reference Manual, v6.5b

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

avm_slave_imp class, 683
avm_stimulus class, 648
avm_subscriber class, 649
avm_threaded_component class

definition of, 650
avm_transaction class, 732
avm_transport_imp class, 685
avm_verification_component class, 651

— B —
batch_mode command, 89
batch-mode simulations

halting, 603
bd (breakpoint delete) command, 90
binary radix, mapping to std_logic values, 40
blocking interfaces

tlm_transport_if, 723
bookmark add wave command, 91
bookmark delete wave command, 93
bookmark goto wave command, 94
bookmark list wave command, 95
bp (breakpoint) command, 96
brackets, escaping, 21
break

on signal value, 598
breakpoints

conditional, 598
continuing simulation after, 338
deleting, 90
listing, 96
setting, 96
signal breakpoints (when statements), 598
time-based

in when statements, 604
built-in types

cloning, 724
comparing, 725
converting to strings, 726

bus contention checking, 110
configuring, 112
disabling, 113

bus float checking
configuring, 115
disabling, 116
enabling, 114

busses

escape characters in, 21
user-defined, 75

buttons, adding to the Main window toolbar, 58

— C —
C callstack

moving down, 316
moving up, 287

C debugging, 103
case choice, must be locally static, 431
case sensitivity

VHDL vs. Verilog, 21
cd (change directory) command, 102
cdbg command, 103
change command, 106
change_menu_cmd command, 109
channel class, 691

definitions of, 689
tlm_fifo, 692
tlm_req_rsp_channel, 695
tlm_transport_channel, 698

check contention add command, 110
check contention config command, 112
check contention off command, 113
check float add command, 114
check float config command, 115
check float off command, 116
check stable off command, 117
check stable on command, 118
-check_synthesis argument, 425
checkpoint command, 119
class member selection, syntax, 17
classes

cloning, 728
comparing, 729
converting to strings, 730

Code Coverage
coverage clear command, 162
coverage exclude command, 164
coverage goal command, 171
coverage report command, 174
coverage save command, 182
coverage testnames command, 184
coverage weight command, 185
merging reports, 442
toggle coverage

747ModelSim SE Reference Manual, v6.5b

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

excluding signals, 382
vcover report command, 450

Color
radix, 324

example, 325
combining signals, busses, 75
command line args, accessing

vopt sc_arg command, 544
vsim sc_arg command, 577

commands
.main clear, 56
abort, 57
add button, 58
add list, 62
add memory, 67
add testbrowser, 69
add watch, 70
add wave, 72
add_menu, 80
add_menucb, 82
add_menuitem, 84
add_separator, 86
add_submenu, 87
alias, 88
batch_mode, 89
bd (breakpoint delete), 90
bookmark add wave, 91
bookmark delete wave, 93
bookmark goto wave, 94
bookmark list wave, 95
bp (breakpoint), 96
cd (change directory), 102
cdbg, 103
change, 106
change_menu_cmd, 109
check contention add, 110
check contention config, 112
check contention off, 113
check float add, 114
check float config, 115
check float off, 116
check stable off, 117
check stable on, 118
checkpoint, 119
compare add, 121

compare annotate, 126, 129
compare clock, 127
compare close, 133
compare delete, 132
compare info, 134
compare list, 136
compare open, 148
compare options, 137
compare reload, 141
compare savediffs, 144
compare saverules, 145
compare see, 146
compare start, 143
configure, 152
coverage attribute, 159
coverage clear, 162
coverage exclude, 164
coverage goal, 171
coverage open, 173
coverage report, 174
coverage save, 182
coverage testnames, 184
coverage weight, 185
dataset alias, 187
dataset clear, 188
dataset close, 189
dataset config, 190, 192
dataset info, 193
dataset list, 194
dataset open, 195
dataset rename, 196, 198
dataset restart, 197
dataset snapshot, 199
delete, 202
describe, 203
disable_menu, 205
disable_menuitem, 206
disablebp, 204
do, 207
down, 209
drivers, 212
dumplog64, 213
echo, 214
edit, 215
enable_menu, 217

748 ModelSim SE Reference Manual, v6.5b

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

enable_menuitem, 218
enablebp, 216
environment, 220
examine, 222
exit, 227
find, 228
force, 236
getactivecursortime, 241
getactivemarkertime, 242
layout, 246
lecho, 248
left, 249
log, 252
lshift, 255
lsublist, 256
mem compare, 257
mem display, 258
mem list, 261
mem load, 262
mem save, 266
mem search, 268
messages clearfilter, 271, 272
next, 274
noforce, 275
nolog, 276
notation conventions, 15
notepad, 278
noview, 279
nowhen, 280
onbreak, 281
onElabError, 283
onerror, 284
pause, 286
pop, 287
power add, 288
power report, 294
power reset, 297
printenv, 298, 299
profile clear, 301
profile interval, 302
profile off, 303
profile on, 304
profile option, 305
profile reload, 306
profile report, 307

property list, 312
property wave, 314
push, 316
pwd, 317
quietly, 318
quit, 319
qverilog, 320
radix, 322
radix define, 324
radix list, 327
radix name, 326
readers, 329
report, 330
restart, 332
restore, 334
resume, 335
right, 336
run, 338
sccom, 342
scgenmod, 350
sdfcom, 353
search, 354
searchlog, 357
seetime, 360
setenv, 361
shift, 362
show, 363
status, 366
step, 367
stop, 368
suppress, 369
tb (traceback), 370
tcheck_set, 371
tcheck_status, 374
toggle add, 379
toggle disable, 382
toggle enable, 383
toggle report, 384
toggle reset, 386
tr color, 387
tr id, 392
tr order, 390
transcribe, 394
transcript, 395
transcript file, 396

749ModelSim SE Reference Manual, v6.5b

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

TreeUpdate, 617
tssi2mti, 397
typespec, 398
unsetenv, 400
up, 401
variables referenced in, 28
vcd add, 403
vcd checkpoint, 405
vcd comment, 406
vcd dumpports, 407
vcd dumpportsall, 409
vcd dumpportsflush, 410
vcd dumpportslimit, 411
vcd dumpportsoff, 412
vcd dumpportson, 413
vcd file, 414
vcd files, 416
vcd flush, 418
vcd limit, 419
vcd off, 420
vcd on, 421
vcom, 423
vcover attribute, 440
vcover merge, 442
vcover ranktest, 447
vcover report, 450
vcover testnames, 460
vdel, 461
vdir, 463
vencrypt, 466
verror, 468
vgencomp, 470
view, 472
virtual count, 476
virtual define, 477
virtual delete, 478
virtual describe, 479
virtual expand, 480
virtual function, 481
virtual hide, 484
virtual log, 485
virtual nohide, 487
virtual nolog, 488
virtual region, 490
virtual save, 491

virtual show, 492
virtual signal, 493
virtual type, 497
vlib, 499
vlog, 501
vmake, 524
vmap, 526
vopt, 527
vsim, 548
vsimDate, 580
vsimId, 580
vsimVersion, 580
wave, 583
wave create, 587
wave edit, 590
wave export, 593
wave import, 594
wave modify, 595
WaveActivateNextPane, 617
WaveRestoreCursors, 617
WaveRestoreZoom, 617
when, 598
where, 605
wlf2log, 606
wlf2vcd, 609
wlfman, 610
wlfrecover, 614
write cell_report, 615
write format, 616
write list, 618
write preferences, 619
write report, 620
write timing, 622
write transcript, 623
write tssi, 624
write wave, 626
xml2ucdb, 628

comment characters in VSIM commands, 15
comparator class

avm_in_order_built_in_ comparator, 655
avm_in_order_class_ comparator, 656
avm_in_order_comparator, 657
definitions for, 651
tlm_algorithmic_comparator, 653

compare add command, 121

750 ModelSim SE Reference Manual, v6.5b

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

compare annotate command, 126, 129
compare clock command, 127
compare close command, 133
compare delete command, 132
compare info command, 134
compare list command, 136
compare open command, 148
compare options command, 137
compare reload command, 141
compare savediffs command, 144
compare saverules command, 145
compare see command, 146
compare start command, 143
compatibility, of vendor libraries, 463
compiling

range checking in VHDL, 436
SystemC, 342, 350
Verilog, 501
VHDL, 423

at a specified line number, 430
selected design units (-just eapbc), 430
standard package (-s), 436, 519

component classes
avm_named_component, 641
avm_random_stimulus, 646
avm_stimulus, 648
avm_subscriber, 649
avm_threaded_component, 650
avm_verification_component, 651
general description of, 638

compressing files
checkpoint files, 119
elaboration files, 551
VCD files, 407, 416

concatenation
directives, 39
of signals, 38

conditional breakpoints, 598
configurations, simulating, 548
configure command, 152
connector classes

analysis_imp, 686
analysis_port, 687
avm_*_export, 660
avm_*_imp, 662

avm_*_port, 664
avm_analysis_port, 666
avm_blocking_master_imp, 667
avm_blocking_slave_imp, 669
avm_connector_base, 671
avm_master_imp, 675
avm_nonblocking_master_imp, 677
avm_nonblocking_slave_imp, 679
avm_port_base, 681
avm_slave_imp, 683
avm_transport_imp, 685
deprecated implementations, list of, 689
general description of, 659
global_analysis_ports, 688

constants
in case statements, 431
values of, displaying, 203, 222

contention checking, 110
conversion

radix, 322
coverage

vcover testnames command, 460
coverage attribute command, 159
coverage clear command, 162
coverage exclude command, 164
coverage goal command, 171
coverage open command, 173
coverage report command, 174
coverage save command, 182
coverage testnames command, 184
Coverage View mode

coverage open command, 173
coverage weight command, 185
customizing

adding buttons, 58

— D —
dataset alias command, 187
dataset clear command, 188
dataset close command, 189
dataset config command, 190, 192
dataset info command, 193
dataset list command, 194
dataset open command, 195
dataset rename command, 196, 198
dataset restart command, 197

751ModelSim SE Reference Manual, v6.5b

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

dataset snapshot command, 199
datasets

environment command, specifying with,
220

declarations, hiding implicit with explicit, 438
default VOPT behavior, and .ini file, 527
+define+, 506
delay

interconnect, 558
+delay_mode_distributed, 506, 532
+delay_mode_path, 506, 532
+delay_mode_unit, 506, 532
+delay_mode_zero, 506, 533
’delayed, 35
delete command, 202
deltas

collapsing in WLF files, 566
hiding in the List window, 153

dependencies, checking, 463
dependency errors, 429, 507
describe command, 203
design loading, interrupting, 548
design units

report of units simulated, 620
Verilog

adding to a library, 501
directories

mapping libraries, 526
disable_menu command, 205
disable_menuitem command, 206
disablebp command, 204
dividers

adding from command line, 73
divTime ccommand, 376
do command, 207
DO files (macros), 207
down command, 209
-dpiheader, vlog, 506
-dpiheader, vopt, 533
drivers command, 212
dump files, viewing in the simulator, 422
dumplog64 command, 213

— E —
echo command, 214
edges, finding, 249, 336

edit command, 215
enable_menu command, 217
enable_menuitem command, 218
enablebp command, 216
encryption

+protect argument, 518
-nodebug argument (vcom), 432
-nodebug argument (vlog), 514

entities, specifying for simulation, 578
enumerated types

user defined, 497
environment command, 220
environment variables

reading into Verilog code, 506
specifying UNIX editor, 215
state of, 299
using in pathnames, 21

environment, displaying or changing
pathname, 220

eqTime command, 376
errors

getting details about messages, 468
onerror command, 284
SDF, disabling, 562

escape character, 21
event order

changing in Verilog, 503, 506, 530
examine command, 222
exit command, 227
exiting the simulator, customizing behavior,

573
extended identifier, 35
extended identifiers, 22
extended toggle coverage, reporting, 176, 451

— F —
-f, 507, 533
FIFO channel

AVM class for, 689
file compression

checkpoint files, 119
elaboration files, 551
VCD files, 407, 416

find command, 228
force command, 236
foreign module declaration

752 ModelSim SE Reference Manual, v6.5b

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

Verilog example, 352
format file

List window, 616
Wave window, 616

formatTime command, 377
Functional coverage

merging databases offline, 442

— G —
generics

assigning or overriding values with -g and -
G, 553

examining generic values, 222
limitation on assigning composite types,

535, 554
getactivecursortime command, 241
getactivemarkertime command, 242
glitches

disabling generation
from command line, 569

global visibility
PLI/FLI shared objects, 554

global_analysis_ports class, 688
gteTime command, 376
gtTime command, 376
GUI_expression_format, 32

syntax, 33

— H —
’hasX, 35
hazards

-hazards argument to vlog, 509, 535
-hazards argument to vsim, 571

history
of commands

shortcuts for reuse, 30
HTML report

generating from .ucdb, 177, 452

— I —
implementation class, related interfaces, 662
implicit operator, hiding with vcom -explicit,

438
+incdir+, 509
indexed arrays, escaping square brackets, 21
interconnect delays, 558

annotating per Verilog 2001, 576
interfaces

related implementation, 662
internal signals, adding to a VCD file, 403
interrupting design loading, 548
intToTime command, 376

— K —
keywords

disabling 2001 keywords, 521
enabling SystemVerilog keywords, 519

— L —
layout command, 246
LD_LIBRARY_PATH, disabling default

internal setting of, 558
lecho command, 248
left command, 249
+libcell, 512
libraries

archives, 499
dependencies, checking, 463
design libraries, creating, 499
listing contents, 463
refreshing library images, 436, 519
vendor supplied, compatibility of, 463
Verilog, 555

lint-style checks, 513
List window

adding items to, 62
lm, 712
loading designs, interrupting, 548
log command, 252
log file

log command, 252
nolog command, 276
QuickSim II format, 606
redirecting with -l, 555, 556
virtual log command, 485
virtual nolog command, 488

lshift command, 255
lsublist command, 256
lteTime command, 376
ltTime command, 376

753ModelSim SE Reference Manual, v6.5b

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

— M —
macros (DO files)

breakpoints, executing at, 99
executing, 207
forcing signals, nets, or registers, 236
parameters

passing, 207
relative directories, 207
shifting parameter values, 362

.main clear command, 56
master slave library (SystemC), including, 346
+maxdelays, 513, 539
mc_scan_plusargs, PLI routine, 574
mem compare command, 257
mem display command, 258
mem list command, 261
mem load command, 262
mem save command, 266
mem search command, 268
memory window

add memory command, 67
adding items to, 67

memory, comparing contents, 257
memory, displaying contents, 258
memory, listing, 261
memory, loading contents, 262
memory, saving contents, 266
memory, searching for patterns, 268
merging coverage reports, 442
messages

base class for, 734
echoing, 214
getting more information, 468
loading, disabling with -quiet, 518, 543
loading, disbling with -quiet, 436

messages clearfilter command, 271, 272
-mfcu, 514
+mindelays, 513, 539
mnemonics, assigning to signal values, 497
modelsim.ini

default VOPT behavior, 527
mulTime command, 376
multi-source interconnect delays, 558

— N —
name case sensitivity, VHDL vs. Verilog, 21
ncsim, one step simulation, 320
negative pulses

driving an error state, 575
neqTime command, 376
nets

drivers of, displaying, 212
readers of, displaying, 329
stimulus, 236
values of

examining, 222
next command, 274
-no_risefall_delaynets, 572
-nodebug argument (vcom), 432
-nodebug argument (vlog), 514
noforce command, 275
+nolibcell, 516, 541
nolog command, 276
nonblocking interfaces

tlm_nonblocking_put_if, 716
tlm_nonblocking_slave_if, 717

notepad command, 278
noview command, 279
+nowarn<CODE>, 517, 542
nowhen command, 280

— O —
object_list_file, WLF files, 610
onbreak command, 281
onElabError command, 283
onerror command, 284
optimizations

disabling for Verilog designs, 517, 543
disabling for VHDL designs, 435
vopt command, 527

optimizations (vlog)
disabling process merging, 502

order of events
changing in Verilog, 503, 506, 530

— P —
parameters

using with macros, 207
pathnames

in VSIM commands, 16

754 ModelSim SE Reference Manual, v6.5b

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

spaces in, 16
pause command, 286
performance

vopt command, 527
PLI

loading shared objects with global symbol
visibility, 554

policy class, transactions, 724
pop command, 287
power add command, 288
Power Aware verification, 512
power report command, 294
power reset command, 297
printenv command, 298, 299
processes (vlog)

optimizations, disabling the merging of,
502

profile clear command, 301
profile interval command, 302
profile off command, 303
profile on command, 304
profile option command, 305
profile reload command, 306
profile report command, 307
projects

override mapping for work directory with
vcom, 347, 437

override mapping for work directory with
vlog, 321, 521

propagation, preventing X propagation, 559
property list command, 312
property wave command, 314
pulse error state, 575
push command, 316
pwd command, 317

— Q —
QuickSim II logfile format, 606
quietly command, 318
quit command, 319
qverilog command, 320

— R —
Radix

color, 324
example, 325

user defined, 324
radix

character strings, displaying, 497
display values in debug windows, 322
of signals being examined, 224

radix command, 322
Radix define command, 324

setting radix color, 324, 325
radix list command, 327
radix name command, 326
range checking

disabling, 434
enabling, 436

readers command, 329
RealToTime command, 376
record field selection, syntax, 17
refresh, dependency check errors, 429, 507
refreshing library images, 436, 519
report command, 330
report handling, class for, 739
report processing, global server for, 742
reporting

issuing reports, class for, 744
variable settings, 28

reporting classes
avm_report_client, 734
avm_report_handler, 739
avm_report_server, 742
avm_reporter, 744
general description of, 733

resolution
specifying with -t argument, 562

restart command, 332
restore command, 334
resume command, 335
right command, 336
run command, 338

— S —
sc_stop()

customizing simulator behavior, 573
scaleTime command, 376
sccom command, 342
-scdpidebug command, 577
scgenmod command, 350
-sclib command, 544, 577

755ModelSim SE Reference Manual, v6.5b

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

scope resolution operator, 18
scope, setting region environment, 220
SCV library, including, 346
SDF

annotation verbose mode, 562
compiled SDF, 353
controlling missing instance messages,

544, 562
disabling individual checks, 371
errors on loading, disabling, 562
warning messages, disabling, 562

sdfcom command, 353
search command, 354
search libraries, 555
searching

binary signal values in the GUI, 40
List window

signal values, transitions, and names,
32, 209, 401

next and previous edge in Wave window,
249, 336

VHDL arrays, 31
Wave window

signal values, edges and names, 249,
336

searchlog command, 357
seetime command, 360
setenv command, 361
shared objects

loading with global symbol visibility, 554
shift command, 362
shortcuts

command history, 30
command line caveat, 29

show command, 363
signals

alternative names in the List window (-
label), 63

alternative names in the Wave window (-
label), 74

attributes of, using in expressions, 35
breakpoints, 598
combining into a user-defined bus, 75
drivers of, displaying, 212
environment of, displaying, 220

force time, specifying, 238
log file, creating, 252
pathnames in VSIM commands, 16
radix

specifying for examine, 224
specifying in List window, 64, 76

readers of, displaying, 329
states of, displaying as mnemonics, 497
stimulus, 236
values of

examining, 222
replacing with text, 497

simulating
delays, specifying time units for, 28
design unit, specifying, 548
ncsim style, 320
one step, 320
saving simulations, 252, 566
stepping through a simulation, 367
stopping simulation in batch mode, 603

simulations
saving results, 198, 199

Simulator commands, 57
simulator resolution

vsim -t argument, 562
simulator version, 565, 580
simultaneous events in Verilog

changing order, 503, 506, 530
sml2ucdb command, 628
source annotation, 346
spaces in pathnames, 16
sparse memories

listing with write report, 620
specify path delays, 575
square brackets, escaping, 21
stability checking

disabling, 117
enabling, 118

startup
alternate to startup.do (vsim -do), 552

status command, 366
Std_logic

mapping to binary radix, 40
step command, 367
stop command, 368

756 ModelSim SE Reference Manual, v6.5b

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

subTime command, 376
suppress command, 369
symbolic constants, displaying, 497
symbolic names, assigning to signal values,

497
synthesis

rule compliance checking, 425
SystemC

class and structure member naming syntax,
17

DPI, command for single-stepping across
call boundaries, 577

master slave library, including, 346
specifying shared library path, command,

544, 577
verification library, including, 346

SystemVerilog
enabling with -sv argument, 519
multiple files in a compilation unit, 514
scope resolution, 18

— T —
tb command, 370
tcheck_set command, 371
tcheck_status command, 374
Tcl

history shortcuts, 30
variable

in when commands, 601
test management window

adding UCDB files to, 69
TFMPC

disabling warning, 573
time

absolute, using @, 28
simulation time units, 28

time collapsing, 566
time resolution

setting
with vsim command, 562

time, time units, simulation time, 28
timescale directive warning

disabling, 573
timing

disabling checks, 516, 542
disabling checks for entire design, 559

disabling individual checks, 371
status of individual checks, 374

title, Main window, changing, 564
TLM interface classes

analysis_if, 699
general description of, 698
tlm_blocking_get_if, 700
tlm_blocking_get_peek_if, 701
tlm_blocking_master_if, 704
tlm_blocking_put_if, 703
tlm_blocking_slave_if, 705
tlm_get_if, 706
tlm_get_peek_if, 707
tlm_master_if, 709
tlm_nonblocking_get_ peek_if, 712
tlm_nonblocking_get_if, 711
tlm_nonblocking_master_if, 713
tlm_nonblocking_peek_if, 715
tlm_nonblocking_put_if, 716
tlm_nonblocking_slave_if, 717
tlm_peek_if, 719
tlm_put_if, 720
tlm_slave_if, 721
tlm_transport_if, 723

tlm_*_imp, deprecated implementations, 689
tlm_blocking_get_if class, 700
tlm_blocking_get_peek_if class, 701
tlm_blocking_master_if class, 704
tlm_blocking_put_if class, 703
tlm_blocking_slave_if class, 705
tlm_fifo class, 692
tlm_get_if class, 706, 707
tlm_master_if class, 709
tlm_nonblocking_get_if class, 711
tlm_nonblocking_get_peek_if class, 712
tlm_nonblocking_master_if class, 713
tlm_nonblocking_peek_if class, 715
tlm_nonblocking_put_if class, 716
tlm_nonblocking_slave_if class, 717
tlm_peek_if class, 719
tlm_put_if class, 720
tlm_req_rsp_channel class, 695
tlm_slave_if class, 721
tlm_transport_channel class, 698
tlm_transport_if class, 723

757ModelSim SE Reference Manual, v6.5b

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

toggle
reporting extended, 176, 451

toggle add command, 379
toggle coverage

excluding signals, 382
reporting, duplication of elements, 384
reporting, ordering of nodes, 384

toggle disable command, 382
toggle enable command, 383
toggle report command, 384
toggle reset command, 386
toggle statistics

enabling, 379
reporting, 384
resetting, 386

tr color command, 387
tr id command, 392
tr order command, 390
transactions policy classes

AVM transactions, base class for, 732
avm_built_in_clone, 724
avm_built_in_comp, 725
avm_built_in_converter, 726
avm_built_in_pair, 727
avm_class_clone, 728
avm_class_comp, 729
avm_class_converter, 730
avm_class_pair, 731
general description of, 723

transcribe command, 394
transcript

clearing, 56
redirecting with -l, 555, 556
reducing file size, 396

transcript command, 395
transcript file command, 396
transitions, signal, finding, 249, 336
TreeUpdate command, 617
TSCALE, disabling warning, 573
TSSI, 624
tssi2mti command, 397
typespec command, 398

— U —
-u, 520
UCDB coverage

coverage attribute command, 159
vcover attribute command, 440

undeclared nets, reporting an error, 513
unsetenv command, 400
up command, 401
UPF, 512
user-defined bus, 75
User-defined radix, 324

— V —
-v, 520
v2k_int_delays, 576
validTime command, 377
values

describe HDL items, 203
examine HDL item values, 222
replacing signal values with strings, 497

variable settings report, 28
variables

describing, 203
referencing in commands, 28
value of

changing from command line, 106
examining, 222

vcd add command, 403
vcd checkpoint command, 405
vcd comment command, 406
vcd dumpports command, 407
vcd dumpportsall command, 409
vcd dumpportsflush command, 410
vcd dumpportslimit command, 411
vcd dumpportsoff command, 412
vcd dumpportson command, 413
vcd file command, 414
VCD files

adding items to the file, 403
capturing port driver data, 407
converting to WLF files, 422
creating, 403
dumping variable values, 405
flushing the buffer contents, 418
generating from WLF files, 609
inserting comments, 406
internal signals, adding, 403
specifying maximum file size, 419
specifying name of, 416

758 ModelSim SE Reference Manual, v6.5b

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

specifying the file name, 414
state mapping, 414, 416
turn off VCD dumping, 420
turn on VCD dumping, 421
viewing files from another tool, 422

vcd files command, 416
vcd flush command, 418
vcd limit command, 419
vcd off command, 420
vcd on command, 421
vcd2wlf command, 422
vcom command, 423
vcom Examples, 438
vcover attribute command, 440
vcover merge command, 442
vcover ranktest command, 447
vcover report command, 450
vcover testnames command, 460
vdel command, 461
vdir command, 463
vector elements, initializing, 106
vencrypt command, 466
vendor libraries, compatibility of, 463
Verilog

$finish behavior, customizing, 573
capturing port driver data with -dumpports,

414
Verilog 2001

disabling support, 521
verror command, 468
version

obtaining with vsim command, 565
obtaining with vsim<info> commands, 580

vgencomp command, 470
VHDL

arrays
searching for, 31

compile
1076-2008, 424

conditions and expressions, automatic
conversion of H and L., 432

field naming syntax, 17
VHDL-1993, enabling support for, 424
VHDL-2002, enabling support for, 424
view command, 472

viewing
waveforms, 566

virtual count commands, 476
virtual define command, 477
virtual delete command, 478
virtual describe command, 479
virtual expand commands, 480
virtual function command, 481
virtual hide command, 484
virtual log command, 485
virtual nohide command, 487
virtual nolog command, 488
virtual region command, 490
virtual save command, 491
virtual show command, 492
virtual signal command, 493
virtual type command, 497
vlib command, 499
vlog

multiple file compilation, 514
vlog command, 501
vmake command, 524
vmap command, 526
vopt

path separator, 527
vopt command, 527
vsim

disabling internal setting of
LD_LIBRARY_PATH, 558

vsim build date and version, 580
vsim command, 548
vsim Examples, 578

— W —
WARNING[8], -lint argument to vlog, 513
warnings

SDF, disabling, 562
suppressing VCOM warning messages,

434, 517, 542
suppressing VLOG warning messages,

517, 542
suppressing VSIM warning messages, 573

watch window
add watch command, 70
adding items to, 70

watching signal values, 70

759ModelSim SE Reference Manual, v6.5b

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

wave commands, 583
wave create command, 587
wave edit command, 590
wave export command, 593
wave import command, 594
wave log format (WLF) file, 566
wave modify command, 595
Wave window

adding items to, 72
WaveActivateNextPane command, 617
Waveform Comparison, 121
waveform editor

creating waves, 587
editing commands, 590
importing vcd stimulus file, 594
modifying existing waves, 595
saving waves, 593

waveform logfile
log command, 252

waveforms
optimizing viewing of, 567
saving and viewing, 252

WaveRestoreCursors command, 617
WaveRestoreZoom command, 617
when command, 598
when statement

time-based breakpoints, 604
where command, 605
wildcard characters

for pattern matching in simulator
commands, 22

windows
List window

output file, 618
saving the format of, 616

Main window
adding user-defined buttons, 58

opening
from command line, 472

Wave window
path elements, changing, 155

WLF files
collapsing deltas, 566
collapsing time steps, 566
converting to VCD, 609

creating from VCD, 422
filtering, combining, 610
limiting size, 567
log command, 252
optimizing waveform viewing, 567
repairing, 614
saving, 198, 199
specifying name, 566

wlf2log command, 606
wlf2vcd command, 609
wlfman command, 610
wlfrecover command, 614
write cell_report command, 615
write format command, 616
write list command, 618
write preferences command, 619
write report command, 620
write timing command, 622
write transcript command, 623
write tssi command, 624
write wave command, 626

— X —
X propagation

disabling for entire design, 559
disabling X generation on specific

instances, 371

— Y —
-y, 521

— Z —
zoom

wave window
returning current range, 583

760 ModelSim SE Reference Manual, v6.5b

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

End-User License Agreement
The latest version of the End-User License Agreement is available on-line at:

www.mentor.com/terms_conditions/enduser

END-USER LICENSE AGREEMENT (“Agreement”)

This is a legal agreement concerning the use of Software (as defined in Section 2) between the company acquiring
the license (“Customer”), and the Mentor Graphics entity that issued the corresponding quotation or, if no
quotation was issued, the applicable local Mentor Graphics entity (“Mentor Graphics”). Except for license
agreements related to the subject matter of this license agreement which are physically signed by Customer and an
authorized representative of Mentor Graphics, this Agreement and the applicable quotation contain the parties'
entire understanding relating to the subject matter and supersede all prior or contemporaneous agreements. If
Customer does not agree to these terms and conditions, promptly return or, if received electronically, certify
destruction of Software and all accompanying items within five days after receipt of Software and receive a full
refund of any license fee paid.

1. ORDERS, FEES AND PAYMENT.

1.1. To the extent Customer (or if and as agreed by Mentor Graphics, Customer’s appointed third party buying agent) places and
Mentor Graphics accepts purchase orders pursuant to this Agreement (“Order(s)”), each Order will constitute a contract
between Customer and Mentor Graphics, which shall be governed solely and exclusively by the terms and conditions of this
Agreement, any applicable addenda and the applicable quotation, whether or not these documents are referenced on the
Order. Any additional or conflicting terms and conditions appearing on an Order will not be effective unless agreed in
writing by an authorized representative of Customer and Mentor Graphics.

1.2. Amounts invoiced will be paid, in the currency specified on the applicable invoice, within 30 days from the date of such
invoice. Any past due invoices will be subject to the imposition of interest charges in the amount of one and one-half
percent per month or the applicable legal rate currently in effect, whichever is lower. Prices do not include freight,
insurance, customs duties, taxes or other similar charges, which Mentor Graphics will invoice separately. Unless provided
with a certificate of exemption, Mentor Graphics will invoice Customer for all applicable taxes. Customer will make all
payments free and clear of, and without reduction for, any withholding or other taxes; any such taxes imposed on payments
by Customer hereunder will be Customer’s sole responsibility. Notwithstanding anything to the contrary, if Customer
appoints a third party to place purchase orders and/or make payments on Customer’s behalf, Customer shall be liable for
payment under such orders in the event of default by the third party.

1.3. All products are delivered FCA factory (Incoterms 2000) except Software delivered electronically, which shall be deemed
delivered when made available to Customer for download. Mentor Graphics retains a security interest in all products
delivered under this Agreement, to secure payment of the purchase price of such products, and Customer agrees to sign any
documents that Mentor Graphics determines to be necessary or convenient for use in filing or perfecting such security
interest. Mentor Graphics’ delivery of Software by electronic means is subject to Customer’s provision of both a primary
and an alternate e-mail address.

2. GRANT OF LICENSE. The software installed, downloaded, or otherwise acquired by Customer under this Agreement,
including any updates, modifications, revisions, copies, documentation and design data (“Software”) are copyrighted, trade
secret and confidential information of Mentor Graphics or its licensors, who maintain exclusive title to all Software and retain
all rights not expressly granted by this Agreement. Mentor Graphics grants to Customer, subject to payment of applicable
license fees, a nontransferable, nonexclusive license to use Software solely: (a) in machine-readable, object-code form; (b) for
Customer’s internal business purposes; (c) for the term; and (d) on the computer hardware and at the site authorized by Mentor
Graphics. A site is restricted to a one-half mile (800 meter) radius. Customer may have Software temporarily used by an
employee for telecommuting purposes from locations other than a Customer office, such as the employee's residence, an airport
or hotel, provided that such employee's primary place of employment is the site where the Software is authorized for use.
Mentor Graphics’ standard policies and programs, which vary depending on Software, license fees paid or services purchased,
apply to the following: (a) relocation of Software; (b) use of Software, which may be limited, for example, to execution of a
single session by a single user on the authorized hardware or for a restricted period of time (such limitations may be technically
implemented through the use of authorization codes or similar devices); and (c) support services provided, including eligibility
to receive telephone support, updates, modifications, and revisions. For the avoidance of doubt, if Customer requests any change
or enhancement to Software, whether in the course of receiving support or consulting services, evaluating Software or

 IMPORTANT INFORMATION

USE OF THIS SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS
LICENSE AGREEMENT BEFORE USING THE SOFTWARE. USE OF SOFTWARE INDICATES YOUR
COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH

IN THIS AGREEMENT. ANY ADDITIONAL OR DIFFERENT PURCHASE ORDER TERMS AND
CONDITIONS SHALL NOT APPLY.

http://www.mentor.com/terms_conditions/enduser

otherwise, any inventions, product improvements, modifications or developments made by Mentor Graphics (at Mentor
Graphics’ sole discretion) will be the exclusive property of Mentor Graphics.

3. ESC SOFTWARE. If Customer purchases a license to use development or prototyping tools of Mentor Graphics’ Embedded
Software Channel (“ESC”), Mentor Graphics grants to Customer a nontransferable, nonexclusive license to reproduce and
distribute executable files created using ESC compilers, including the ESC run-time libraries distributed with ESC C and C++
compiler Software that are linked into a composite program as an integral part of Customer’s compiled computer program,
provided that Customer distributes these files only in conjunction with Customer’s compiled computer program. Mentor
Graphics does NOT grant Customer any right to duplicate, incorporate or embed copies of Mentor Graphics’ real-time operating
systems or other embedded software products into Customer’s products or applications without first signing or otherwise
agreeing to a separate agreement with Mentor Graphics for such purpose.

4. BETA CODE.

4.1. Portions or all of certain Software may contain code for experimental testing and evaluation (“Beta Code”), which may not
be used without Mentor Graphics’ explicit authorization. Upon Mentor Graphics’ authorization, Mentor Graphics grants to
Customer a temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta Code
without charge for a limited period of time specified by Mentor Graphics. This grant and Customer’s use of the Beta Code
shall not be construed as marketing or offering to sell a license to the Beta Code, which Mentor Graphics may choose not to
release commercially in any form.

4.2. If Mentor Graphics authorizes Customer to use the Beta Code, Customer agrees to evaluate and test the Beta Code under
normal conditions as directed by Mentor Graphics. Customer will contact Mentor Graphics periodically during Customer’s
use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of Customer’s evaluation
and testing, Customer will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths,
weaknesses and recommended improvements.

4.3. Customer agrees that any written evaluations and all inventions, product improvements, modifications or developments that
Mentor Graphics conceived or made during or subsequent to this Agreement, including those based partly or wholly on
Customer’s feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have exclusive rights, title
and interest in all such property. The provisions of this Subsection 4.3 shall survive termination of this Agreement.

5. RESTRICTIONS ON USE.

5.1. Customer may copy Software only as reasonably necessary to support the authorized use. Each copy must include all
notices and legends embedded in Software and affixed to its medium and container as received from Mentor Graphics. All
copies shall remain the property of Mentor Graphics or its licensors. Customer shall maintain a record of the number and
primary location of all copies of Software, including copies merged with other software, and shall make those records
available to Mentor Graphics upon request. Customer shall not make Software available in any form to any person other
than Customer’s employees and on-site contractors, excluding Mentor Graphics competitors, whose job performance
requires access and who are under obligations of confidentiality. Customer shall take appropriate action to protect the
confidentiality of Software and ensure that any person permitted access does not disclose or use it except as permitted by
this Agreement. Log files, data files, rule files and script files generated by or for the Software (collectively “Files”)
constitute and/or include confidential information of Mentor Graphics. Customer may share Files with third parties
excluding Mentor Graphics competitors provided that the confidentiality of such Files is protected by written agreement at
least as well as Customer protects other information of a similar nature or importance, but in any case with at least
reasonable care. Standard Verification Rule Format (“SVRF”) and Tcl Verification Format (“TVF”) mean Mentor
Graphics’ proprietary syntaxes for expressing process rules. Customer may use Files containing SVRF or TVF only with
Mentor Graphics products. Under no circumstances shall Customer use Software or allow its use for the purpose of
developing, enhancing or marketing any product that is in any way competitive with Software, or disclose to any third party
the results of, or information pertaining to, any benchmark. Except as otherwise permitted for purposes of interoperability
as specified by applicable and mandatory local law, Customer shall not reverse-assemble, reverse-compile, reverse-
engineer or in any way derive from Software any source code.

5.2. Customer may not sublicense, assign or otherwise transfer Software, this Agreement or the rights under it, whether by
operation of law or otherwise (“attempted transfer”), without Mentor Graphics’ prior written consent and payment of
Mentor Graphics’ then-current applicable transfer charges. Any attempted transfer without Mentor Graphics’ prior written
consent shall be a material breach of this Agreement and may, at Mentor Graphics’ option, result in the immediate
termination of the Agreement and licenses granted under this Agreement. The terms of this Agreement, including without
limitation the licensing and assignment provisions, shall be binding upon Customer’s permitted successors in interest and
assigns.

5.3. The provisions of this Section 5 shall survive the termination of this Agreement.

6. SUPPORT SERVICES. To the extent Customer purchases support services for Software, Mentor Graphics will provide
Customer with available updates and technical support for the Software which are made generally available by Mentor Graphics
as part of such services in accordance with Mentor Graphics’ then current End-User Software Support Terms located at
http://supportnet.mentor.com/about/legal/.

http://supportnet.mentor.com/about/legal/

7. LIMITED WARRANTY.

7.1. Mentor Graphics warrants that during the warranty period its standard, generally supported Software, when properly
installed, will substantially conform to the functional specifications set forth in the applicable user manual. Mentor
Graphics does not warrant that Software will meet Customer’s requirements or that operation of Software will be
uninterrupted or error free. The warranty period is 90 days starting on the 15th day after delivery or upon installation,
whichever first occurs. Customer must notify Mentor Graphics in writing of any nonconformity within the warranty period.
For the avoidance of doubt, this warranty applies only to the initial shipment of Software under the applicable Order and
does not renew or reset, by way of example, with the delivery of (a) Software updates or (b) authorization codes or alternate
Software under a transaction involving Software re-mix. This warranty shall not be valid if Software has been subject to
misuse, unauthorized modification or improper installation. MENTOR GRAPHICS’ ENTIRE LIABILITY AND
CUSTOMER’S EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS’ OPTION, EITHER (A) REFUND OF
THE PRICE PAID UPON RETURN OF SOFTWARE TO MENTOR GRAPHICS OR (B) MODIFICATION OR
REPLACEMENT OF SOFTWARE THAT DOES NOT MEET THIS LIMITED WARRANTY, PROVIDED
CUSTOMER HAS OTHERWISE COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO
WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) SOFTWARE WHICH IS LICENSED AT NO COST; OR (C)
BETA CODE; ALL OF WHICH ARE PROVIDED “AS IS.”

7.2. THE WARRANTIES SET FORTH IN THIS SECTION 7 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS NOR
ITS LICENSORS MAKE ANY OTHER WARRANTIES EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
SOFTWARE OR OTHER MATERIAL PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS
LICENSORS SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY.

8. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY WOULD BE
VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS
LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY, EVEN
IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN
NO EVENT SHALL MENTOR GRAPHICS’ OR ITS LICENSORS’ LIABILITY UNDER THIS AGREEMENT EXCEED
THE AMOUNT PAID BY CUSTOMER FOR THE SOFTWARE OR SERVICE GIVING RISE TO THE CLAIM. IN THE
CASE WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS SHALL HAVE NO LIABILITY
FOR ANY DAMAGES WHATSOEVER. THE PROVISIONS OF THIS SECTION 8 SHALL SURVIVE THE
TERMINATION OF THIS AGREEMENT.

9. LIFE ENDANGERING APPLICATIONS. NEITHER MENTOR GRAPHICS NOR ITS LICENSORS SHALL BE LIABLE
FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH THE USE OF SOFTWARE IN ANY
APPLICATION WHERE THE FAILURE OR INACCURACY OF THE SOFTWARE MIGHT RESULT IN DEATH OR
PERSONAL INJURY. THE PROVISIONS OF THIS SECTION 9 SHALL SURVIVE THE TERMINATION OF THIS
AGREEMENT.

10. INDEMNIFICATION. CUSTOMER AGREES TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND
ITS LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE OR LIABILITY, INCLUDING
ATTORNEYS’ FEES, ARISING OUT OF OR IN CONNECTION WITH CUSTOMER’S USE OF SOFTWARE AS
DESCRIBED IN SECTION 9. THE PROVISIONS OF THIS SECTION 10 SHALL SURVIVE THE TERMINATION OF
THIS AGREEMENT.

11. INFRINGEMENT.

11.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against Customer in the United States,
Canada, Japan, or member state of the European Union which alleges that any standard, generally supported Software
product infringes a patent or copyright or misappropriates a trade secret in such jurisdiction. Mentor Graphics will pay any
costs and damages finally awarded against Customer that are attributable to the action. Customer understands and agrees
that as conditions to Mentor Graphics’ obligations under this section Customer must: (a) notify Mentor Graphics promptly
in writing of the action; (b) provide Mentor Graphics all reasonable information and assistance to settle or defend the
action; and (c) grant Mentor Graphics sole authority and control of the defense or settlement of the action.

11.2. If a claim is made under Subsection 11.1 Mentor Graphics may, at its option and expense, (a) replace or modify Software so
that it becomes noninfringing, or (b) procure for Customer the right to continue using Software, or (c) require the return of
Software and refund to Customer any license fee paid, less a reasonable allowance for use.

11.3. Mentor Graphics has no liability to Customer if the claim is based upon: (a) the combination of Software with any product
not furnished by Mentor Graphics; (b) the modification of Software other than by Mentor Graphics; (c) the use of other than
a current unaltered release of Software; (d) the use of Software as part of an infringing process; (e) a product that Customer
makes, uses, or sells; (f) any Beta Code; (g) any Software provided by Mentor Graphics’ licensors who do not provide such
indemnification to Mentor Graphics’ customers; or (h) infringement by Customer that is deemed willful. In the case of (h),
Customer shall reimburse Mentor Graphics for its reasonable attorney fees and other costs related to the action.

11.4. THIS SECTION IS SUBJECT TO SECTION 8 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS AND CUSTOMER’S SOLE AND EXCLUSIVE REMEDY WITH RESPECT TO
ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT OR TRADE SECRET MISAPPROPRIATION BY
ANY SOFTWARE LICENSED UNDER THIS AGREEMENT.

12. TERM.

12.1. This Agreement remains effective until expiration or termination. This Agreement will immediately terminate upon notice
if you exceed the scope of license granted or otherwise fail to comply with the provisions of Sections 2, 3, or 5. For any
other material breach under this Agreement, Mentor Graphics may terminate this Agreement upon 30 days written notice if
you are in material breach and fail to cure such breach within the 30 day notice period. If a Software license was provided
for limited term use, such license will automatically terminate at the end of the authorized term.

12.2. Mentor Graphics may terminate this Agreement immediately upon notice in the event Customer is insolvent or subject to a
petition for (a) the appointment of an administrator, receiver or similar appointee; or (b) winding up, dissolution or
bankruptcy.

12.3. Upon termination of this Agreement or any Software license under this Agreement, Customer shall ensure that all use of the
affected Software ceases, and shall return it to Mentor Graphics or certify its deletion and destruction, including all copies,
to Mentor Graphics’ reasonable satisfaction.

12.4. Termination of this Agreement or any Software license granted hereunder will not affect Customer’s obligation to pay for
products shipped or licenses granted prior to the termination, which amounts shall immediately be payable at the date of
termination.

13. EXPORT. Software is subject to regulation by local laws and United States government agencies, which prohibit export or
diversion of certain products, information about the products, and direct products of the products to certain countries and certain
persons. Customer agrees that it will not export Software or a direct product of Software in any manner without first obtaining
all necessary approval from appropriate local and United States government agencies.

14. U.S. GOVERNMENT LICENSE RIGHTS. Software was developed entirely at private expense. All Software is commercial
computer software within the meaning of the applicable acquisition regulations. Accordingly, pursuant to US FAR 48 CFR
12.212 and DFAR 48 CFR 227.7202, use, duplication and disclosure of the Software by or for the U.S. Government or a U.S.
Government subcontractor is subject solely to the terms and conditions set forth in this Agreement, except for provisions which
are contrary to applicable mandatory federal laws.

15. THIRD PARTY BENEFICIARY. Mentor Graphics Corporation, Mentor Graphics (Ireland) Limited, Microsoft Corporation
and other licensors may be third party beneficiaries of this Agreement with the right to enforce the obligations set forth herein.

16. REVIEW OF LICENSE USAGE. Customer will monitor the access to and use of Software. With prior written notice and
during Customer’s normal business hours, Mentor Graphics may engage an internationally recognized accounting firm to
review Customer’s software monitoring system and records deemed relevant by the internationally recognized accounting firm
to confirm Customer’s compliance with the terms of this Agreement or U.S. or other local export laws. Such review may include
FLEXlm or FLEXnet (or successor product) report log files that Customer shall capture and provide at Mentor Graphics’
request. Customer shall make records available in electronic format and shall fully cooperate with data gathering to support the
license review. Mentor Graphics shall bear the expense of any such review unless a material non-compliance is revealed. Mentor
Graphics shall treat as confidential information all information gained as a result of any request or review and shall only use or
disclose such information as required by law or to enforce its rights under this Agreement. The provisions of this section shall
survive the termination of this Agreement.

17. CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. The owners of the Mentor Graphics intellectual
property rights licensed under this Agreement are located in Ireland and the United States. To promote consistency around the
world, disputes shall be resolved as follows: This Agreement shall be governed by and construed under the laws of the State of
Oregon, USA, if Customer is located in North or South America, and the laws of Ireland if Customer is located outside of North
or South America. All disputes arising out of or in relation to this Agreement shall be submitted to the exclusive jurisdiction of
Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when the laws of Ireland apply. Notwithstanding the
foregoing, all disputes in Asia (except for Japan) arising out of or in relation to this Agreement shall be resolved by arbitration in
Singapore before a single arbitrator to be appointed by the Chairman of the Singapore International Arbitration Centre (“SIAC”)
to be conducted in the English language, in accordance with the Arbitration Rules of the SIAC in effect at the time of the
dispute, which rules are deemed to be incorporated by reference in this section. This section shall not restrict Mentor Graphics’
right to bring an action against Customer in the jurisdiction where Customer’s place of business is located. The United Nations
Convention on Contracts for the International Sale of Goods does not apply to this Agreement.

18. SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full
force and effect.

19. MISCELLANEOUS. This Agreement contains the parties’ entire understanding relating to its subject matter and supersedes all
prior or contemporaneous agreements, including but not limited to any purchase order terms and conditions. Some Software
may contain code distributed under a third party license agreement that may provide additional rights to Customer. Please see
the applicable Software documentation for details. This Agreement may only be modified in writing by authorized
representatives of the parties. All notices required or authorized under this Agreement must be in writing and shall be sent to the
person who signs this Agreement, at the address specified below. Waiver of terms or excuse of breach must be in writing and
shall not constitute subsequent consent, waiver or excuse.

Rev. 090402, Part No. 239301

	Bookcase
	Table of Contents
	List of Examples
	List of Figures
	List of Tables
	Chapter 1 Syntax and Conventions
	Documentation Conventions
	File and Directory Pathnames
	Design Object Names
	Object Name Syntax
	SystemC Class, Structure, and Union Member Specification
	SystemVerilog Scope Resolution Operator
	Specifying Names
	Escaping Brackets and Spaces in Array Slices
	Further Details

	Environment Variables and Pathnames
	Name Case Sensitivity
	Extended Identifiers

	Wildcard Characters
	Using the WildcardFilter Preference Variable

	Simulator Variables
	Simulation Time Units
	Argument Files
	Command Shortcuts
	Command History Shortcuts
	Numbering Conventions
	VHDL Numbering Conventions
	VHDL Style 1
	VHDL Style 2
	Searching for VHDL Arrays in the Wave and List Windows

	Verilog Numbering Conventions

	GUI_expression_format
	Expression Typing
	Scalar Types
	Array Types

	Expression Syntax
	Tcl Macros
	Constants
	Array Constants, Expressed in Any of the Following Formats
	Variables
	Array variables
	Signal attributes
	Operators
	Casting
	Examples of Expression Syntax

	Signal and Subelement Naming Conventions
	Grouping and Precedence
	Concatenation of Signals or Subelements
	Concatenation Syntax for VHDL
	Concatenation Syntax for Verilog
	Concatenation Directives
	Examples of Concatenation

	Record Field Members
	Searching for Binary Signal Values in the GUI

	Chapter 2 Commands
	.main clear
	abort
	add button
	add dataflow
	add list
	add memory
	add testbrowser
	add watch
	add wave
	add_cmdhelp
	add_menu
	add_menucb
	add_menuitem
	add_separator
	add_submenu
	alias
	batch_mode
	bd
	bookmark add wave
	bookmark delete wave
	bookmark goto wave
	bookmark list wave
	bp
	cd
	cdbg
	change
	change_menu_cmd
	check contention add
	check contention config
	check contention off
	check float add
	check float config
	check float off
	check stable off
	check stable on
	checkpoint
	compare add
	compare annotate
	compare clock
	compare configure
	compare continue
	compare delete
	compare end
	compare info
	compare list
	compare options
	compare reload
	compare reset
	compare run
	compare savediffs
	compare saverules
	compare see
	compare start
	compare stop
	compare update
	configure
	context
	coverage attribute
	coverage clear
	coverage exclude
	coverage goal
	coverage open
	coverage report
	coverage save
	coverage testnames
	coverage weight
	dataset alias
	dataset clear
	dataset close
	dataset config
	dataset current
	dataset info
	dataset list
	dataset open
	dataset rename
	dataset restart
	dataset save
	dataset snapshot
	delete
	describe
	disablebp
	disable_menu
	disable_menuitem
	do
	down
	drivers
	dumplog64
	echo
	edit
	enablebp
	enable_menu
	enable_menuitem
	encoding
	environment
	examine
	exit
	find
	find infiles
	find insource
	formatTime
	force
	gdb dir
	getactivecursortime
	getactivemarkertime
	help
	history
	jobspy
	layout
	lecho
	left
	log
	lshift
	lsublist
	mem compare
	mem display
	mem list
	mem load
	mem save
	mem search
	messages clearfilter
	messages setfilter
	modelsim
	next
	noforce
	nolog
	notepad
	noview
	nowhen
	onbreak
	onElabError
	onerror
	onfinish
	pause
	pop
	power add
	power off
	power on
	power report
	power reset
	precision
	printenv
	process report
	profile clear
	profile interval
	profile off
	profile on
	profile option
	profile reload
	profile report
	project
	property list
	property wave
	push
	pwd
	quietly
	quit
	qverilog
	radix
	radix define
	radix names
	radix list
	radix delete
	readers
	report
	restart
	restore
	resume
	right
	run
	runStatus
	sccom
	scgenmod
	sdfcom
	search
	searchlog
	see
	seetime
	setenv
	shift
	show
	simstats
	status
	step
	stop
	suppress
	tb
	tcheck_set
	tcheck_status
	Time
	toggle add
	toggle disable
	toggle enable
	toggle report
	toggle reset
	tr color
	tr order
	tr uid
	transcribe
	transcript
	transcript file
	tssi2mti
	typespec
	ui_VVMode
	unsetenv
	up
	vcd add
	vcd checkpoint
	vcd comment
	vcd dumpports
	vcd dumpportsall
	vcd dumpportsflush
	vcd dumpportslimit
	vcd dumpportsoff
	vcd dumpportson
	vcd file
	vcd files
	vcd flush
	vcd limit
	vcd off
	vcd on
	vcd2wlf
	vcom
	vcover attribute
	vcover merge
	vcover ranktest
	vcover merge, “Code Coverage”, coverage goal. coverage weightvcover report
	vcover stats
	vcover testnames
	vdel
	vdir
	vencrypt
	verror
	vgencomp
	view
	virtual count
	virtual define
	virtual delete
	virtual describe
	virtual expand
	virtual function
	virtual hide
	virtual log
	virtual nohide
	virtual nolog
	virtual region
	virtual save
	virtual show
	virtual signal
	virtual type
	vlib
	vlog
	vmake
	vmap
	vopt
	vsim
	vsim<info>
	vsim_break
	vsource
	wave
	wave create
	wave edit
	wave export
	wave import
	wave modify
	when
	where
	wlf2log
	wlf2vcd
	wlfman
	wlfrecover
	write cell_report
	write format
	write list
	write preferences
	write report
	write timing
	write transcript
	write tssi
	write wave
	xml2ucdb

	Chapter 3 AVM Encyclopedia
	Class Index
	Classes for Components
	avm_env
	avm_named_component
	avm_random_stimulus
	avm_stimulus
	avm_subscriber
	avm_threaded_component
	avm_verification_component

	Classes for Comparators
	avm_algorithmic_comparator
	avm_in_order_built_in_comparator
	avm_in_order_class_comparator
	avm_in_order_comparator

	Classes for Connectors
	avm_*_export
	avm_*_imp
	avm_*_port
	avm_analysis_port
	avm_blocking_master_imp
	avm_blocking_slave_imp
	avm_connector_base
	avm_master_imp
	avm_nonblocking_master_imp
	avm_nonblocking_slave_imp
	avm_port_base
	avm_slave_imp
	avm_transport_imp
	analysis_imp
	analysis_port
	global_analysis_ports
	tlm_*_imp

	Classes for Channels
	analysis_fifo
	tlm_fifo
	tlm_req_rsp_channel
	tlm_transport_channel

	TLM Interfaces
	analysis_if #(type T=int)
	tlm_blocking_get_if
	tlm_blocking_get_peek_if
	tlm_blocking_peek_if
	tlm_blocking_put_if
	tlm_blocking_master_if
	tlm_blocking_slave_if
	tlm_get_if
	tlm_get_peek_if
	tlm_master_if
	tlm_nonblocking_get_if
	tlm_nonblocking_get_peek_if
	tlm_nonblocking_master_if
	tlm_nonblocking_peek_if
	tlm_nonblocking_put_if
	tlm_nonblocking_slave_if
	tlm_peek_if
	tlm_put_if
	tlm_slave_if
	tlm_transport_if

	Transactions
	avm_built_in_clone
	avm_built_in_comp
	avm_built_in_converter
	avm_built_in_pair
	avm_class_clone
	avm_class_comp
	avm_class_converter
	avm_class_pair
	avm_transaction

	Reporting
	avm_report_client
	avm_report_handler
	avm_report_server
	avm_reporter

	Index
	End-User License Agreement
	Documentation Feedback

