
ENHANCING RELIABILITY AND FLEXIBILITY
OF A SYSTEM-ON-CHIP

USING RECONFIGURABLE LOGIC

Wei Jiang, Tushti Marwah, Don Bouldin
Electrical and Computer Engineering

University of Tennessee
Knoxville, TN, USA

Abstract

In this paper we present the design of a SoC baseline platform
with a Leon2 CPU. An Advanced Encryption Standard (AES)
module and a reconfigurable core form the IP blocks that are
attached to the SoC through AMBA bus. The reconfigurable
core is inserted into the design using tools developed by
DAFCA, Inc. (Design Automation for Flexible Chip
Architectures) for post-silicon debugging and verification.
Hence, a re-spin may be avoided and the time-to-market will
be reduced.

I. Introduction:
SoC is a major revolution in IC design where the whole
functionality of a system is placed on a single chip. Its
advantages include high performance, shorter design cycle
time and space efficiency, whereas the challenges include
deep sub micron design complexities, verification and
integration. Presently, SoC’s can have as many as several
tens of million gates, multiple IP cores, and complex on-
chip buses and protocols. The integration of all the
components into a system and the verification of such a big
design have become a very challenging job.

Most of today’s virtual components (i.e. IP cores) don’t
have well-defined contents and interfaces; they are often
fuzzy and more like “patches in a quilt, which have to be
carefully stitched together” [1], hence, integrating existing
IP blocks to form a larger system is not a simple task.
Moreover, with the rapid shrinking of the feature size, more
physical errors are bound to occur due to timing, crosstalk,
noise, temperature, and process variation. At the same time,
the designers are losing visibility into the design as the size
of the design increases [2]. The internal pins are buried
inside the chip and this makes it even harder to find errors in
the design after the chip is fabricated. The whole debugging
process requires multiple re-spins and delays the product’s
time-to-market by several months.

In this paper we present the design of a platform-based SoC
with added reconfigurable logic blocks as IP blocks and in-
silicon debugging logic to enhance the reliability and the

flexibility of the design. With the help of the debugging
logic IP blocks, the designer can regain the visibility and the
controllability of the complex SoC design. Thus, the number
of re-spins and the product’s time-to-market will be
reduced.

II. Background
Platform-based design is becoming the method of choice for
designing SoCs for embedded systems [3]. It has extensive
planned design reuse, which enables designers to create a
succession of derivative designs. In this approach, the main
focus areas for the designer are interface standardization,
virtual system design, and designing the system architecture
and interface between the blocks. The basic idea behind this
is to re-use significant portions of previous designs to
reduce the time-to-market, which generally results in greater
revenue for the product. Under this concept, the first goal is
to develop a complete SoC that is central to its product line.
Usually there is a processor, a real-time operating system,
peripheral IP blocks, some memory and a bus structure.
Once the baseline platform is fully functional, a derivative
design in which only a few virtual components are added or
dropped can be accomplished easily [4].

In this paper, we will discuss the verification and debugging
of an SoC using reconfigurable logic blocks. Adding
reconfigurable logic to the SoC also provides flexibility for
changing functional parameters or protocols after
fabrication. Thus, functions not envisioned in the original
design can be implemented. The merits of adding
reconfigurability to an ASIC chip are evident: traditional
ASICs achieve their performance advantages with direct
hardware implementation, however this advantage is
sometime overshadowed by the fact that the silicon design is
most often fixed. Traditional ASIC design is rapidly
changing as increasing ASIC/SoC development costs are
forcing designers to make silicon more flexible.[5]
Designers have long used FPGAs to implement software
algorithms in hardware to increase performance, as we can
see so many systems have some kind of FPGA or
programmable devices at the board-level of the design.

8790-7803-9197-7/05/$20.00 © 2005 IEEE.

Although the concept of adding reconfigurable logic into
traditional ASIC/SoC has been around for a while,
reconfigurable systems have had only a minor impact to
date. One of the reasons is that it needs software support and
clear investment return to make it attractive. In our design
we have explored a new trend in the SoC debugging and
verification: using reconfigurable logic for in-silicon
debugging and design verification. In our design,
reconfigurable logic was inserted into the baseline design
using tools recently developed by DAFCA, Inc. (Design
Automation for Flexible Chip Architectures) for post-silicon
debugging and verification. This logic enables the SoC to be
verified after fabrication, and in some cases, errors can be
fixed using the reconfigurable structures. Hence, a re-spin
may be avoided and the time-to-market will be reduced.

III. Technical Approach
Our baseline platform design consists of a Leon2
processor[6] as the CPU, AMBA on-chip bus, an Advanced
Encryption Standard (AES) module and a Reconfigurable
module attached to the bus Leon2 as user IP blocks. The
block diagram of our design is shown in Figure 1.

Since the main key components (e.g. CPU, Bus, AES) are
open source and can be obtained at no charge and databases
of commercial and non-commercial IP blocks are now on-
line,[7][8] SoC developers can identify reusable virtual
components to be integrated into their platforms. Although
business and legal issues must be pursued individually for
each component, the development of a derivative SoC
design is certainly facilitated

Figure 1. SoC Platform Block Diagram

A. SoC Design Components
1) Leon2 CPU

The Leon2 CPU is a 32-bit SPARC-V8 CPU that was
developed by the European Space Agency. The source code
of the CPU is written in VHDL and can be obtained on-line
at no charge. The processor is highly configurable and
particularly suitable for SoC Designs [6]. It is designed for
embedded applications with the following features on-chip:
separate instruction and data caches, hardware multiplier
and divider, interrupt controller, debug support unit with

trace buffer, two 24-bit timers, two UARTs, power-down
function, watchdog, 16-bit I/O port and a flexible memory
controller.

2) AMBA bus
The Advanced Microprocessor Bus Architecture (AMBA)
on-chip bus is used in our design. AMBA AHB (Advanced
High-performance Bus) and APB (Advanced Peripheral
Bus) are used for communication between the processor,
memory and IP Blocks, which are attached to both buses. In
our design they are implemented as masters on the AHB bus
but slaves on the APB bus. The AHB arbiter decides which
master will get control of the bus. The only master on the
APB bus is the APB Bridge that converts the system bus
transfers into APB transfers. It latches the address, decodes
it and generates the peripheral select signal. We have used
the APB bus for control signals of the IP blocks and the
AHB bus for data transfer. The test bench that is used in our
design performs a boot of the CPU and transfers data and
instructions to and from the user IP blocks via the AMBA
bus.

3) AES module
A 128-bit AES decryption module is used in our design as a
user IP block attached to AMBA bus. The module was
developed at the University of Tennessee as part of our
cryptographic key protection research project. The design
reads in 128 bits of encrypted or cipher text as well as the
encryption key, performs decryption and writes out 128 bits
of plain text. The module has been verified with simulation
and tested on a Virtex II Pro FPGA.

4) Reconfigurable Block
In our design, a small reconfigurable block is also attached
to the AMBA bus serving as a second IP block. Since one
goal of our project is to debug the design and the AES
module has been thoroughly verified, it is less likely that
there will be a design error in our AES IP block once the
chip is fabricated. We inserted a small embedded-FPGA
using the DAFCA pre-silicon tools in order to give us the
flexibility to load different designs into our platform. Given
that the block is reconfigurable, we can load a design with
intentional errors to test the debugging method.

5) Debugging Logic
Reconfigurable instrumentation is inserted into our design
using the pre-silicon DAFCA tools; this will enable users to
isolate and repair bugs, as well as accelerate verification. It
provides at-speed access to internal signals on the chip,
delivers instrumentation for trigger and capture events, and
also aids in in-situ repairs and signal generation. The
DAFCA solution has both software and in-silicon
components. In silicon, DAFCA provides a set of
instrumentation capabilities that users tailor to their specific
debug requirements. The software environment enables the
user to specify where the instrumentation is placed on the
chip (pre-silicon) and provides the debug, configuration and
analysis capabilities (post-silicon). DAFCA on-chip
instruments use JTAG to connect to the debug software to
eliminate the need for additional pin support. DAFCA

880

Reconfigurable Debug Infrastructure (ReDI) comes in two
forms: customizable logic generated by the user with
DAFCA tools and hardware library elements.

The customizable logic provides both wrapping and tapping
capabilities. A wrapped port/signal can be observed or
controlled by the debug instrument. The debug instrument
introduces a mux delay in the signal path, while a tapped
port/signal can only be observed with the debug instrument.
The customizable logic consists of:

• rWRAP: A one-dimensional reconfigurable logic
block array used for wrapping ports/signals.

• rMATRIX: A two-dimensional reconfigurable
logic block array used for wrapping ports/signals.

• r1500: Reconfigurable wrapper cells compliant
with IEEE Standard 1500.

• CMUX: A highly configurable MUX used for
tapping ports/signals.

• CMUXB: A configurable single stage 2:1 MUX
array.

The hardware library elements are comprised of:

• Primary Controller (PCON): It provides the
interface between the JTAG TAP and the rest of
the debug infrastructure.

• Serial Access Node (SAN): It provides an interface
between the end-point and the instrumentation
access channel.

• Monitor: It is a programmable “controller” and is
used to manage assertions, triggers and tracer
activity within the Debug module.

• Tracer: It also forms a part of the Debug module
and is used for storage of state information during
logic analysis.

B. SoC Design with DAFCA Design Flow
The design flow of our SoC is shown in Figure 2. The
reconfigurable IP blocks are inserted at the Register
Transfer Level (RTL), followed by logic synthesis and
physical place and route.

Figure 2. DAFCA Design Flow

1) RTL coding

Our SoC is designed at the Register Transfer Level. Most
of the design is coded in VHDL. The Leon2 CPU is
configured and slightly modified to suit our purpose. The
instruction and data cache sizes in the system are minimized
to save space in the chip. In order to integrate different IP
blocks into the design, an AMBA bus interface is developed
for each IP block such that it enables the cores to act as
AHB bus masters and APB bus slaves. We have predefined
the style of communication among the cores so that same
interface can be used for other cores with minor
modification. At this point, pre-layout simulation is done in
ModelSim to verify the logic functionality of the design.

2) ReDI instrumentation
As described above, the ReDI instrumentation is inserted
with DAFCA pre-silicon tools. We have wrapped most of
the critical control circuits such as the control signals on the
AMBA bus, as well as signals of the AMBA interface for
the IP blocks because of the lack of test coverage. The user
IP blocks are untouched since they are usually thoroughly
verified, so there is less probability of error there. Besides
the control signals, the data buses are tapped to give the
designer the ability to observe internal data transfer after the
design is fabricated.

A Monitor and a Tracer memory block are also inserted to
perform more complex debugging tasks and to store the
state information that can be viewed in the post-silicon
debugging environment. All of the tapped/wrapped signals
are connected to the Monitor/Tracer module through a daisy
chain of configurable multiplexers (CMUX). A PCON and
several SANs are used to form the interface to JTAG TAP
and form the serial access channel, which is used to access
and configure the rest of the debug infrastructure.

After the RTL instrumentation is done, simulation is also
performed to make sure that the functionality of the design
is not affected.

3) Logic Synthesis and Place and Route.
The design is then synthesized with the Synopsis Design
Compiler targeting a TSMC 180-nm process. Artisan RAMs
are used to implement the cache and register file in the
Leon2. The synthesized net-list is placed and routed with
the Cadence SoC Encounter tool. Post-layout simulation is
done after the layout is generated using ModelSim.

4) Post-silicon Debugging
With the DAFCA instrumentation in place, we can perform
at-speed in-system debug. The user can configure the
instrumentation by identifying the signals to be monitored,
and set internal traps or triggers. The ‘Personality Editor’
package of the tool enables us to program the reconfigurable
wrappers to realize assertions, logic modifications and fixes.
We can then run at-speed patterns through the system by
executing system software. The internal state recorded by
the Tracer in the debug module is then available for
examination through the debug environment provided by
NOVAS Debussy [9].

RTL

DAFCA
Insertion

VERIFICATION
TESTBENCH

EQUIVALENCY
CHECKING

TIMING
ANALYSIS

LOGIC
SYNTHESIS

PHYSICAL
DESIGN

881

The user selects a net or set of nets to be to be observed, and
the DAFCA tools automate routing the nets through an
interstitial PAN network, programming triggers, and starting
the tracer block. The result is that the SoC is no longer a
black box. The user has the ability to debug the silicon at
speed, in the system, using the real logic and regains
visibility to the signals that had become inaccessible.

C. Area and Performance Overhead
One of the most important considerations in using
reconfigurable logic is the overhead. The flexibility of the
design does not come for free. Instead, it imposes overhead
in the SoC design in terms of area and delay. The amount of
reconfigurable logic introduced in a SoC design is always
about the tradeoff between the flexibility and the area/delay
of the design. The impacts in delay and area for adding
different DAFCA IP blocks are shown in Table 1. The area
overhead for each ReDI IP core depends on the complexity
and functionality of the block. As in timing, during normal
operation, the additional delay for a wrapper is the delay of
the MUX and the extra wiring delay caused by the increase
of the circuit size. It should be noted that tapping a signal
does not introduce any MUX delay.

Table 1. Area and Performance Overhead
ReDI Block rMUX r1500 rWRAP rMATRIX rMonitor
Capability Observe Observe,

Control
Observe,
Control,
Modify

Observe,
Control,
Modify

Observe,
Control,
Analyze

Mux Delay No Yes Yes Yes No
Size (gates) 10-100 /

signal
20-100 /
signal

100-500 /
Signal

500-2000 /
signal

2K/chip

IV. Experiments and Results:
The RTL design has been successfully instrumented and
synthesized targeting a TSMC 180-nm process. The SoC
platform, which has several components and reconfigurable
blocks, has about 1.3M transistors.

We have reduced the size of the original design to the
minimum to save design space. In the meanwhile, we have
been very generous adding in ReDI instrumentation to
explore the strength of the reconfigurable logic in silicon
debugging. The transistor count for the original design was
850K, which is about 2/3 of the final design size.

The physical layout was obtained with Cadence place and
route tools. Several floorplans were tried in order to
minimize the area and meet the timing constraints. The final
floorplan is shown in Figure 3.

Simulations are done after each stage: RTL development,
DAFCA instrumentation insertion, synthesis, and physical

place and route. DAFCA post-silicon tools are used to
generate the ReDI block configurations and to simulate the
functionality of the reconfigurable logic. The configuration
bits are generated and loaded into the design through a
JTAG interface. Then the instrumented design is simulated
in NCSIM by Cadence. We plan to send the design for
fabrication on a TSMC 180-nm process available via
MOSIS. A testing board is being designed in order to test
the chip after the design is fabricated.

V. Conclusion
In this paper, we discussed a new approach for modern SoC
development. Compared to the traditional SoC design, we
have proposed to use platform-based SoC with
reconfigurable debugging logic. The DAFCA design flow
was discussed to increase the flexibility of the chip and to
achieve in-silicon, at-speed debugging. We believe that this
approach will greatly help the SoC designers debug their
designs and hence improve design reliability by reducing
the number of re-spins and the product’s time-to-market.

REFERENCES
[1] Don Bouldin, “Platform-Based System-on-Chip Design”,

Proceedings of 2003 Microelectronic Systems Education Conference
(MSE), Anaheim, CA, pp. 48-49, June 1-2, 2003.

[2] DAFCA Inc., “In-Silicon Solutions for Silicon Debug”, DAFCA
whitepaper.

[3] David Fritz, “Why platform-based design works better than a discrete
IP approach”, http://www.us.design-reuse.com/

[4] Srivastava, R., “Development of An Open Core System-on-Chip
Platform”', M.S. Thesis, University of Tennessee, August 2004.

[5] Cary Synder, Steve Leibson, “Point/Counterpoint: Configurable Vs.
Reconfigurable”, http://www.semiview.com/

[6] http://www.gaisler.com/
[7] http://www.opencores.org/
[8] http://www.design-reuse.com/
[9] http://www.novas.com/

Figure 3. SoC Design Floorplan

882

