
Platform-Based System-on-Chip Design

Don Bouldin
Electrical & Computer Engineering

University of Tennessee
Knoxville, TN 37996-2100
dbouldin@tennessee.edu

Abstract

 Hence, not all of the transistors on these chips can be
customized but instead must be ported from previous
designs. These reusable cores or intellectual property (IP)
blocks include CPUs (like ARM, MIPS and SPARC),
MPEG decompression engines, PCI bus controllers,
specialized DSPs, etc. Combining several complex
cores using gates and standard cells is much more
manageable and quicker than designing millions of
transistors one at a time.

 Developing a complete System-on-Chip (SoC) with a
CPU core and perhaps a dozen virtual components
by a fixed deadline is no easy task. Designers may
encounter business and legal problems in obtaining
the virtual components and may find that information is
missing. By first developing a platform containing
these components, designers can overcome all of these
uncertainties without risking the delay of a product.
Once the platform is fully operational, derivative
designs in which only a few virtual components are
added or dropped can be accomplished rapidly. Xilinx,
Altera, Triscend and Atmel have integrated CPU cores
onto their chips and now offer platform SoCs that are
programmable. The issues involved in adopting this
approach are discussed.

2. Reusing Components

 The myth that characterizes today’s IP is that these
components are blocks that have well-defined contents
and interfaces. However, they are often fuzzy and hence
appear more like patches in a quilt, which must be
stitched together. The components cannot be assembled
blindly and rapidly, but rather must be carefully pieced
together to form a working system.

1. Introduction Therefore, design for reuse does not come free.

Rather it involves much more in-depth documentation
and characterization than for a design that is not intended
to be reused. Based on the experiences of software
engineers [3], it is estimated that preparing a component
for reuse will require about 50% additional effort.

 Multi-million transistor integrated circuits can now be
produced cost-effectively [1]. Thus, designers are faced
with the challenge of creating and verifying the content of
these chips as quickly as possible in order to reduce the
time-to-market. It has been estimated that a one-month
delay in bringing a product to market can result in a loss
of ten percent of the potential revenue [2].

1.5
Design # 1 For Reuse

Design #1 without
Planned Reuse 1.0

Design #2 without
Planned Reuse 2.0

Design #3 without
Planned Reuse 3.0

Designs #2, #3, #4, #5 and #6 3.0

Fig. 1. Timeline Comparison of Design Approaches.

 Once this has been done, the designer who is reusing
the component may naively think that his design time for
that component will be reduced to zero. But alas, he must
take care to understand fully how the component works
and how it should be integrated with other components.
Again from the experiences of software engineers [3], the
second design generally requires about 30% of that
required to produce the component originally. Thus, the
reuse is not for free but does make a significant (70%
reduction) impact on the next design. A comparison of
the traditional approach in which design reuse is not
planned versus this new approach is depicted in Figure 1.

 Designers are increasingly reusing significant
portions of previous designs to reduce the time to
market which generally results in greater revenue for
the product. Reuse of previous designs has been
occurring for decades. Initially, only simple library cells
were implemented with reuse in mind and this continues
today. In the past few years, major functions have been
implemented as virtual components. Since these may
have been developed by designers in other companies,
their reuse involves a combination of effort and risk in
a new design. To minimize these, some organizations are
internally standardizing on a set of virtual components
and any associated software to develop their own SoC
platforms.

 The information required to document soft IP consists
of far more than just the source code. Also needed are:
(1) functional description, (2) application intent, (3)
interface specifications, (4) authors and owners, (5)
packaging information, (6) input stimuli and output
responses (test bench), (7) tools and versions used, (8)
FPGA or ASIC foundry used for fabrication, (9) size,
delay and power measurements, and (10) testability
features including BIST, JTAG and SCAN.

 Platform-based design allows an organization to
develop a complete SoC that is central to its product line.
Once the SoC platform is fully operational, derivative
designs in which only a few virtual components are
added or dropped can be accomplished rapidly.
 Developing a complete SoC with ten or more virtual
components by a fixed deadline is no easy task.
Designers may encounter business and legal problems in
obtaining the virtual components and may find that
information is missing. Developing a platform permits
designers to overcome all of these uncertainties without
risking the delay of a product.

3. Design of Platform SoCs

 System-on-Chip (SoC) design may involve the mixing
on a single integrated circuit a microprocessor core (e.g.
ARM, MIPS, SPARC), PCI bus interface, analog
components and numerous digital processing functions.
Figure 2 depicts a typical SoC.

 Figure 3 depicts a comparison of using unproven
versus proven components. If the probability of being
correct is 0.9 for each component and their
interconnection, then the probability that the entire SoC
will be correct is only 0.5. Thus, a significant amount of
time must be taken for verification to achieve first-pass
success. On the other hand, if all of the components
except a new one and its interconnection are already
proven, then the probability of the entire SoC being
correct is improved to 0.8. Thus, far less time need be
allocated for verification. It is this contrast which
serves as the compelling motivation to adopt a
platform-based design approach.

Fig. 2. Typical SoC

 Moreover, a platform SoC also provides software
developers with working silicon they can use. The
organization can market the platform SoC to customers as
a demonstration of what can be done and even provide
the customers with the opportunity to commence their
own product development using the existing SoC.
Whenever the customer determines that it is
worthwhile to have a derivative design customized for
his product needs, the platform SoC designers add or
subtract a small number of virtual components and revise
the associated software. The derivative design can
likely be done in less than six months from concept
to production.

4. Existing Platform SoCs FPGA vendors have integrated CPU cores onto their

chips and now offer platform SoCs that are
programmable. Triscend offers both the 8032 8-bit
microcontroller and the 32- bit ARM7TDMI core with
its programmable logic family [7].

 Several organizations are using this platform-based
design approach. Philips Semiconductors has developed a
digital video platform SoC intended for set-top boxes. The
SoC includes a 32-bit MIPS microprocessor core plus
Philips' own Trimedia core and an MPEG-2 decoder.
Interface circuitry for PCI, UART and USB are also
included [4].

 Xilinx offers a choice of the IBM PowerPC, Intel's
StrongARM and Pentium class, and QED processors for
its Virtex and Spartan product line. The PowerPC 405 is
embedded as a hard-core in the Virtex-II architecture and
can operate at 300 MHz to produce 420 Dhrystone MIPs [8]. Tality, the design services spin-off of Cadence, has

developed two SoC platforms. One includes both an ARM
microprocessor core coupled with the popular OAK digital
signal processor. Another platform is targeted for the
bluetooth wireless market [5].

 Atmel offers the popular 8051, ARM and AVR 8-bit
microcontrollers embedded in its programmable
product line. A field-programmable system-level
integrated circuit starter kit is available at very low cost.
[9]. Infineon has developed a triple-mode SoC platform for

wireless applications. It includes a 32-bit microcontroller
and a digital signal processor [6].

 Altera offers a choice of CPU cores including the
ARM, MIPS Technologies and Altera's internally
developed Nios embedded processor [10].

5. Developing Open SoCs

 A database of commercial IP blocks is now on-line [11].
Thus, SoC developers can identify reusable components to
be integrated into their platforms. Business and legal issues
must be pursued individually for each component but the
development of a SoC is undoubtedly facilitated.
 Free IP blocks are also available on-line [12]. These
include USB 2.0 and Ethernet MAC interfaces as well as
DES/AES encryption blocks and microcontrollers. A 32-bit
SPARC-V8 that was developed by the European Space
Agency is also available on-line [13]. The source codes for
all of these can be downloaded by anyone at no charge.
 Thus, universities and individuals can and are developing
open SoCs to serve as education and research platforms. In
our advanced graduate electives at the University of
Tennessee [14], the initial course in a two-semester
sequence provides the students with the opportunity to learn
how to synthesize small pieces of HDL source code into
FPGAs. In the second semester, larger projects are assigned
that require a team of generally four students to implement.
The application requirements are first presented in narrative
form and the team members must partition the design into
manageable modules. Each module is the responsibility of
an individual to capture in VHDL, synthesize and simulate
as well as verify in an FPGA. Once each student believes
his design is “known good”, the team then integrates the
components into a single-chip ASIC. Obviously, any
deficiencies not already corrected by individual designers
must be dealt with during this integration or design with
reuse phase. It is not unusual for a student to recognize that
the quality of his component or his documentation is
substandard and hence some redesign or additional
documentation is performed until the full system works
properly.
 Projects following the model just described are intended
to provide individual students with the experience of
designing for reuse and the team of designers with the
experience of design with reuse. Example projects
completed or underway include: Wavelet Image
Compression, Huffman Encoding, LZ Data Compression,
Discrete Cosine Transform, Fast Fourier Transform,
CORDIC 2-D Vector Rotation, Automatic Target
Recognition, Constant False Alarm Rate, Data Encryption,
and Boolean Satisfiability.
 All of the examples given so far have been for
developing soft IP using a HDL for implementation using
FPGAs or single-chip ASICs. These are appropriate for
advanced graduate electives which are targeted at
developing system-on-a-chip designers. For senior capstone
courses, projects must generally involve integrating existing
hardware and software components with only a limited
amount of time available for creating new components.

6. Conclusions

 Developing a platform SoC with a CPU core and
perhaps a dozen virtual components removes the
uncertainties about the individual components and their
interconnection such that derivative designs can be
accomplished rapidly. Programmable SoCs and commercial
and open cores can be exploited in this endeavor.

ACKNOWLEDGMENTS

 The author gratefully acknowledges the support of
DARPA/AFRL grant F30602-01-2-0562. The views and
conclusions contained herein are those of the author and
should not be interpreted as necessarily representing the
official policies of the U.S.Government.

REFERENCES

[1] http://www.itrs.net.ntrs/publntrs.nsf
[2] http://www.aw.com/catalog/academic/product/

0,4096,0201500221-DES,00.html
[3] http://aemp.eeel.nist.gov/reuse/
[4] http://www.nexperia.com/
[5] http://www.cadence.com/company/pr/pr00-

bluetooth_soc.html
[6] http://www.infineon.com/
[7] http://www.triscend.com/
[8] http://www.xilinx.com/
[9] http://www.atmel.com/
[10] http://www.altera.com/
[11] http://www.design-reuse.com/
[12] http://www.opencores.org/
[13] http://www.gaisler.com/
[14] http://vlsi1.engr.utk.edu/ece/bouldin_courses

http://www.itrs.net.ntrs/publntrs.nsf
http://www.aw.com/catalog/academic/product/
http://aemp.eeel.nist.gov/reuse/
http://www.nexperia.com/
http://www.cadence.com/company/pr/pr00-bluetooth_soc.html
http://www.cadence.com/company/pr/pr00-bluetooth_soc.html
http://www.infineon.com/
http://www.triscend.com/
http://www.xilinx.com/
http://www.atmel.com/
http://www.altera.com/
http://www.design-reuse.com/
http://www.opencores.org/
http://www.gaisler.com/
http://vlsi1.engr.utk.edu/ece/bouldin_courses

	Abstract
	
	
	1. Introduction

	REFERENCES

