
Programmable Active Memories:
Recon�gurable Systems Come of Age

J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, P. Boucard

Abstract|Programmable Active Memories (PAM) are a novel
form of universal recon�gurable hardware co-processor.
Based on Field-Programmable Gate Array (FPGA) technology,
a PAM is a virtual machine, controlled by a standard micro-
processor, which can be dynamically and inde�nitely recon-
�gured into a large number of application-speci�c circuits.
PAMs o�er a new mixture of hardware performance and
software versatility.
We review the important architectural features of PAMs,

through the example of DECPeRLe-1, an experimental de-
vice built in 1992.
PAM programming is presented, in contrast to classical

gate-array and full custom circuit design. Our emphasis is
on large, code-generated synchronous systems descriptions;
no compromise is made with regard to the performance of
the target circuits.
We exhibit a dozen applications where PAM technology

proves superior, both in performance and cost, to every
other existing technology, including supercomputers, mas-
sively parallel machines, and conventional custom hardware.
The �elds covered include computer arithmetic, cryptog-

raphy, error correction, image analysis, stereo vision, video
compression, sound synthesis, neural networks, high-energy
physics, thermodynamics, biology and astronomy.
At comparable cost, the computing power virtually avail-

able in a PAM exceeds that of conventional processors by
a facteur 10 to 1000, depending on the speci�c application,
in 1992. A technology shrink increases the performance gap
between conventional processors and PAMs. By Noyce's
law, we predict by how much the performance gap will widen
with time.

Keywords|Programmable Active Memory, PAM, recon-
�gurable system, �eld-programmable gate array, FPGA.

I. Introduction

T
HERE are two ways to implement a speci�c high-
speed digital processing task.

� The simplest is to program some general-purpose com-
puter to perform the processing at hand. In this soft-
ware approach, one e�ectively maps the algorithm of
interest onto a �xed machine architecture. The struc-
ture of that machine has been highly optimized to pro-
cess arbitrary code. In many cases, it is poorly suited
to the speci�c algorithm; so, performance is short of
the required speed.

� The alternative is to design ad hoc circuitry for
the speci�c algorithm. In this hardware ap-
proach, the machine structure|processors, storage
and interconnect|is tailored to the application. The
result is more e�cient, with less actual circuitry than
what general purpose computers require.

This work was done at Digital Equipment Corporation's Paris Re-
search Laboratory (DEC-PRL, 92500 Rueil-Malmaison, France) from
1988 to 1994. J. Vuillemin, D. Roncin, M. Shand, H. Touati and
P. Boucard were members of PRL research sta�. P. Bertin was a vis-
iting scientist from Institut National de Recherche en Informatique
et en Automatique (INRIA, 78150 Rocquencourt, France).

The drawback of the hardware approach is that a spe-
ci�c architecture is usually limited to processing a small
number of algorithms, often a single one. Meanwhile, the
general-purpose computer can be programmed to process
every computable function, as we know since the days of
Church and Turing.
Adding special purpose hardware to a universal machine,

say for video compression, speeds up the processor|when
the system is actually compressing video. It contributes
nothing when the system is required to perform some dif-
ferent task, say cryptography or stereo vision.
We present an alternative machine architecture which

o�ers the best from both worlds: software versatility
and hardware performance. The proposal is a standard
high-performance microprocessor enhanced by a PAM co-
processor. The PAM can be con�gured as a wide class of
speci�c hardware systems, one for each interesting applica-
tion. PAMs merge together hardware and software.
This paper presents results from seven years of research,

at INRIA, DEC-PRL and other places. The aim is to an-
swer the following questions:

How to build PAMs?
How to program PAMs?
What are the applications?

Section II introduces the principles of the underlying
FPGA technology.

Section III highlights the interesting features of PAM
architecture.

We describe in section IV some of the methods used in
programming large PAM designs.
Section V presents a dozen applications, chosen from a

wide variety of scienti�c �elds. For each, PAM technol-
ogy outperforms all other existing implementation media.
A hypothetical machine equipped with a dozen di�erent
conventional co-processors would achieve the same level
of performance|at a higher price. Through recon�gura-
tion, a PAM is able to time-share its internal circuitry be-
tween our twelve (or more) applications; the hypothetical
machine would require di�erent custom circuits for each,
physically present at all times.
We assess, before the conclusion, the computing power

of PAM technology, for the present and the future times.

II. Virtual circuits

The �rst commercial FPGA was introduced in 1986 by
Xilinx [1]. This revolutionary component has a large in-
ternal con�guration memory, and two modes of operation:
in download mode, the con�guration memory can be writ-
ten, as a whole, through some external device; once con-

�gured, a FPGA behaves like a regular application-speci�c
integrated circuit (ASIC).
To realize a FPGA, one simply connects together in a

regular mesh, n � m identical programmmable active bits
(PABs). Surprisingly enough, there are many ways to im-
plement a PAB with the required universality. In partic-
ular, it can be built from either or both of the following
primitives:

� a con�gurable logic block implements a boolean func-
tion with k inputs (typically 2 � k � 6); its truth table
is de�ned by 2k (or less) con�guration bits, stored in
local registers;

� a con�gurable routing block implements a switchbox
whose connectivity table is set by local con�guration
bits.

Such a FPGA implements a Von Neumann cellular automa-
ton. What is more, the FPGA is a universal such structure:
any synchronous digital circuit can be emulated, through a
suitable con�guration, on a large enough FPGA, for a slow
enough clock.
Some vendors, such as Xilinx [2] or AT&T [3], form

their PABs from both con�gurable routing and logic blocks.
Other early ones, such as Algotronix [4] (now with Xilinx)
or Concurrent Logic [5] (now with Atmel), combine routing
and computing functions into a single primitive|this is the
�ne grain school. An idealized implementation of this �ne
grain concept is given in �gure 1. A third possibility is to
build the PAB from a con�gurable routing box connected
to a �xed (non con�gurable) universal gate such as a nor
or a multiplexor [6].

N
S
E
W

n
s
e
w

r R

clk

n N

S

E

W

w

e

s

This PAB has 4 inputs hn; s; e; wi, 4 outputs
hN;S;E;W i, one register (
ip-
op) with input R and out-
put r, and a combinational gate

g(n; s; e; w; r) = (N;S;E;W;R)

The truth table of g is speci�ed by 160 = 5� 32 bits.

Fig. 1. Field-programmable gate array

Each FPGA implementation can emulate each of the
others, granted enough PABs. In order to make quanti-
tative performance comparisons between the diverse sig-
ni�cant implementations, let us, from now on, choose as
our reference unit any active bit with one 4-input boolean
function|con�gurable or not|and one internal bit of state
(see section VI and Vuillemin [7]). With its �ve 5-input
functions, the PAB from �gure 1 counts for ten or so such
units.

The FPGA is a virtual circuit which can behave like a
number of di�erent ASICs: all it takes to emulate a par-
ticular one is to feed the proper con�guration bits. This
means that prototypes can be made quickly, tested and
corrected. The development cycle of circuits with FPGA
technology is typically measured in weeks, as opposed to
months for hardwired gate array techniques. But FPGAs
are used not just for prototypes; they also get incorporated
in many production units. In all branches of the electronics
industry other than the mass market, the use of FPGAs is
taking o�, despite the fact that they still cost ten times
as much as ASICs in volume production. In 1992, FPGAs
were the fastest growing part of the semi-conductor indus-
try, increasing output by 40 %, compared with 10 % for
chips overall.
As a consequence, FPGAs are on the leading edge of

silicon chips. They grow bigger and faster at the rate of
their enabling technology, namely that of the static RAM
used for storing the internal con�guration.
In the past 40 years, the feature size of silicon technology

has been shrinking by a factor 1=� � 1:25 each year. This
phenomenon is known as Noyce's thesis, who �rst observed
it in the early sixties. The implications of Noyce's thesis
for FPGA technology are analyzed by Vuillemin [7]. The
prediction is that the leading edge FPGA, which has 400
PABs operating at 25 MHz in 1992, will, by year 2001,
contain 25k PABs operating at 200 MHz.

III. PAMs as Virtual Machines

The purpose of a PAM is to implement a virtual machine
which can be dynamically con�gured as a large number of
speci�c hardware devices.

FPGA
array

Local RAM

H
os

t
co

m
pu

te
r

in

out in’

out’

External
devices

download

Fig. 2. Programmable Active Memory

The structure of a generic PAM is found in �gure 2. It
is connected|through the in and out links|to a host pro-
cessor. A function of the host is to download con�guration
bitstreams into the PAM. After con�guration, the PAM
behaves, electrically and logically, like the ASIC de�ned by
the speci�c bitstream. It may operate in stand-alone mode,
hooked to some external system|through the in0 and out0

links. It may operate as a co-processor under host control,
specialized to speed-up some crucial computation. It may
operate as both, and connect the host to some external
system, like an audio or video device, or some other PAM.
To justify our choice of name, observe that a PAM is

attached to some high-speed bus of the host computer,
like any RAM memory module. The processor can write

adrN

adrE

adrS

adrW

adrS

adrN

adrW

adrE

M M M M

M M M M

M M M M

M M M M

C

C

S

S

S

S

S

R

R

R

R

>>

<<

FIFOs

 Host
adapter

Fig. 3. DECPeRLe-1 architecture

into, and read from the PAM. Unlike RAM however, a
PAM processes data between write and read instructions|
which makes it an \active" memory. The speci�c process-
ing is determined by the contents of its con�guration bit-
stream, which can be updated by the host in a matter of
milliseconds|thus the \programmable" quali�er.
Let us detail the architecture of a speci�c PAM: it is

named DECPeRLe-1 and will be referred to as P1. It was
built at Digital's Paris Research Laboratory in 1992. A
dozen copies operate at various scienti�c centers in the
world; some are credited as we enumerate the operational
applications in section V.
The overall structure of P1 is shown in �gure 3. Each

of the 23 squares denotes one Xilinx XC3090 FPGA [2].
Each of the 4 rectangles represents 1 MB of static RAM
(letter R). Each line represents 32 wires, physically laid
out on the printed circuit board (PCB) of P1. A photo of
the system is shown in �gure 4.
The merit of this structure is to host, in a natural man-

ner, the diverse networks of processing units presented in
section V. Depending upon the application, individual
units are implemented within one to many FPGAs; they
may also be implemented as look-up tables (LUT) through
the local RAM; some slow processes are implemented by
software running on the host. Connections between pro-
cessing units are mapped, as part of the design con�gura-
tion, either on PCB wires or on internal FPGA wires.

A. FPGA matrix

The computational core of P1 is a 4 � 4 matrix of
XC3090|letter M in �gure 3. Each FPGA has 16 di-
rect connections to each of its four Manhattan neighbors.
The four FPGAs in each row and each column share two
common 16-bit buses. There are thus four 64-bit buses
traversing the array, one per geographical direction N, S,
E, W.
The purpose of this organization is to best extrapolate,

at the PCB level, the internal structure of the FPGA.What

we have is close to a large FPGA with 64�80 PABs|except
for a connection bottleneck every quarter of the array, as
there are fewer wires on the PCB than inside the FPGA.
By Noyce's thesis, P1 implements, with 1992 technology,
a leading edge FPGA which should become available on a
single chip by 1998.

B. Local RAM

Some applications, like RSA cryptography, are entirely
implemented with FPGA logic; most others require some
amount of RAM: to bu�er and re-order local data, or to
implement specialized LUTs.
The size of this cache RAM is 4 MB for P1, made of

four independent 32-bit-wide banks. The 18-bit addresses
and read/write signals for each RAM are generated within
one of two controller FPGAs|letter C in �gure 3. Data
to and from each RAM goes to the corresponding switch
FPGA|letter S.
All the presented applications which do use the RAM

operate around 25 MHz. Many utilize the full RAM band-
width available, namely 400 MB/s. Other applications, for
which RAM access is not critical, operate at higher clock
speeds, such as 40MHz for RSA, and higher.

C. External links

P1 has four 32-bit-wide external connectors.
Three of these (not represented on �gure 3) link edges of

the FPGA matrix to external connectors. They are used
for establishing real-time links, at up to 33 MHz, between
P1 and external devices: audio, video, physical detectors: : :
Their aggregated peak bandwidth exceeds 400 MB/s.
The fourth external connection links to the host interface

of P1: a 100 MB/s TURBOchannel adapter [8]. In order
to avoid having to synchronize the host and PAM clocks,
host data goes through two FIFOs, for input and output
respectively. To the PAM side of the FIFOs is another
switch FPGA, which shares two 32-bit buses with the other
switches and controllers|see �gure 3.

Fig. 4. DECPeRLe-1 and its TURBOchannel interface board

The host connection itself consists of a host-independent
part implemented on the P1 mother board and a host-
dependent part implemented on a small option board spe-
ci�c to the host bus. A short cable links the two parts|see
�gure 4.
In addition to the above, P1 features daughter-board

connectors which can provide more than 1.2 GB/s of band-
width to specialized hardware extensions.

D. Firmware

One extra FPGA on P1 is not con�gurable by the user;
call it POM, by analogy with ROM. Its function is to pro-
vide control over the state of the PAM, through software
from the host.
The logical protocol of the host bus itself is programmed

in POM con�guration. Adapting from TURBOchannel to
some other logical bus format, such as VME, HIPPI or
PCI is just a matter of re-programming the POM and re-
designing the small host-dependent interface board.
A function of the POM is to assist the host in download-

ing a PAM con�guration|1.5 Mb for P1. Thanks to this
hardware assist, we are able to recon�gure P1 up to �fty
times per second, a crucial feature in some applications.
One can regard P1 as a software silicon foundry, with a
20 ms turn-around time.
We take advantage of an extra feature of the XC3090

component: it is possible to dynamically read back the con-
tents of the internal state register of each PAB. Together
with a clock stepping facility|stop the main clock and trig-
ger clock cycles one at a time from the host|this provides
a powerful debugging tool, where one takes a snapshot of

the complete internal state of the system after each clock
cycle. This feature drastically reduces the need for software
simulation of our designs.

PAM designs are synchronous circuits: all registers are
updated on each cycle of the same global clock. The maxi-
mum speed of a design is directly determined by its critical
combinational path. This varies from one PAM design to
another. It has thus been necessary to design a clock dis-
tribution system whose speed can be programmed as part
of the design con�guration. On P1, the clock can be �nely
tuned, with increments on the order of 0.01%, for frequen-
cies up to 100 MHz.

A typical P1 design receives a logically uninterrupted

ow of data, through the input FIFO. It performs some
processing, and delivers its results, in the same manner,
through the output FIFO. The host is responsible for
�lling-in and emptying-out the other side of both FIFOs.
Our �rmware supports a mode in which the application
clock automatically stops when P1 attempts to read an
empty FIFO or write a full one, e�ectively providing fully
automatic and transparent
ow-control.

The full �rmware functionality may be controlled
through host software. Most of it is also available to the
hardware design: all relevant wires are brought to the two
controller FPGAs of P1. This allows a design to synchro-
nize itself, in the same manner, with some of the external
links. Another unique possibility is the dynamic tuning
of the clock. This feature is used in designs where a slow
and infrequent operation|say changing the value of some
global controls every 256 cycles|coexists with fast and fre-
quent operations. The strategy is then to slow the clock

down before the infrequent operation|every 256 cycles|
and speed it up afterwards|for 255 cycles. Tricky, but
doable.

E. Other Recon�gurable Systems

Besides our PAMs, which were built �rst at INRIA in
1987 up to Perle-0, whose architecture is described in some
detail in an earlier report [9], then at DEC-PRL, other
successful implementations of recon�gurable systems have
been reported, in particular at the universities of Edin-
burgh [10] and Zurich [11], and at the Supercomputer Re-
search Center in Maryland [12].

The ENABLE machine is a system, built from FPGAs
and SRAM, speci�cally constructed at the university of
Mannheim [13] for solving the TRT problem of section V-
G.2. Many similar application-speci�c have been built in
the recent years: the recon�gurable nature is only exploited
while developping and debugging the application. Once
done, �nal con�guration is done, once and for all|until
the next \hardware release".

Commercial products already exist: QuickTurn [14] sells
large con�gurable systems, dedicated to hardware emula-
tion. Compugen [15] sells a modular PAM-like hardware,
together with several con�gurations focusing on genetic
matching algorithms. More systems exist than just the
ones mentioned here.
A thorough presentation of the issues involved in PAM

design, with alternative implementation choices, is given
by Bertin [16].

IV. PAM programming

A PAM program consists of three parts:

1. The driving software, which runs on the host and con-
trols the PAM hardware.

2. The logic equations describing the synchronous hard-
ware implemented on the PAM board.

3. The placement and routing directives that guide the
implementation of the logic equations onto the PAM
board.

The driving software is written in C or C++ and is linked
to a runtime library encapsulating a device driver. The
logic equations and the placement and routing directives
are generated algorithmically by a C++ program. As a de-
liberate choice of methodology, all PAM design circuits are
digital and synchronous. Asynchronous features|such as
RAM write pulses, FIFO
ags decoding or clock tuning|
are pushed into the �rmware (POM) where they get imple-
mented once and for all.

A full P1 design is a large piece of hardware: excluding
the RAM, twenty-three XC3090 containing 15k PABs are
roughly the equivalent of 200k gates. This amount of logic
would barely �t in the largest gate arrays available in 1994.

The goal of a P1 designer is to encode, through a 1.5 Mb
bitstream, the logic equations, the placement and the rout-
ing of �fteen thousand PABs in order to meet the per-
formance requirements of a compute-intensive task. To
achieve this goal with a reasonable degree of e�ciency, a

designer needs full control over the �nal logic implementa-
tion and layout. In 1992, no existing computer-aided design
(CAD) tool was adapted to such needs.
Emerging synthesis tools were too wasteful in circuit area

and delay. One has to keep in mind that we already pay a
performance penalty by using SRAM-based FPGAs instead
of raw silicon. Complex designs can be synthesized, placed
and routed automatically only when they do not attempt
to reach high device utilization; even then, the resulting
circuitry is signi�cantly slower than what can be achieved
by careful hand placement.
Careful low-level circuit implementation has always been

possible through a painful and laborious process: schematic
capture. For PAM programming, schematic capture is not
a viable alternative: it can provide the best performance,
but it is too labor intensive for large designs.
Given these constraints, we have but one choice: a

middle-ground approach where designs are described al-
gorithmically, at the structural level, and the structure can
be annotated with geometry and routing information, to
help generate the �nal physical design.

A. Programming tools

We �rst had to choose a programming language to de-
scribe circuits. Three choices were possible: a general-
purpose programming language such as C++, a hardware
description language such as VHDL, or our own language.
We do not discuss the latter approach here; it is the subject
of current research.
We decided to use C++ for reasons of economy and sim-

plicity. VHDL is a complex, expensive language. C++
programming environments are considerably cheaper, and
we are tapping a much wider market in terms of training,
documentation and programming tools. Though we had to
develop a generic software library to handle netlist gener-
ation and simulation, the amount of work remains limited.
Moreover we keep full control over the generated netlist,
and we can include circuit geometry information as desired.

A.1 The netlist library

To describe synchronous circuits with our C++ library
is straightforward. We introduce a new type Net, overload
the boolean operators to describe combinational logic, and
add a primitive for the synchronous register. From these, a
C++ program can be written which generates a netlist rep-
resenting any synchronous circuit. This type of low-level
description is made convenient by the use of basic program-
ming techniques such as arrays, for loops, procedures and
data abstraction. Figure 5 shows for example a piece of
code representing a generic n-bit ripple-carry adder.
The execution of such a program builds a netlist in mem-

ory; this netlist can be analyzed and translated into an
appropriate format (XNF or EDIF), or used directly for
simulation. Linking a netlist description program with be-
havioral code yields mixed-mode simulationwith no special
e�ort.
Since we have direct access to the netlist at this level of

description, we can easily annotate logic operators with

template<int N>

struct RippleAdder: Block {

RippleAdder(): Block("RippleAdder"){}

void logic(Net<N>& a, Net<N>& b, Net<N>& c,

Net<N>& sum, Net& carry) {

input(a); input(b); input(c);

output(sum); output(carry);

for (int i = 0; i < N; i++){

sum[i] = a[i] ^ b[i] ^ c[i];

carry[i] = (a[i] & b[i])

| (b[i] & c[i])

| (c[i] & a[i]);

}

}

};

Fig. 5. Circuit description in C++

placement directives. For example to specify that our
ripple-carry adder should be aligned vertically, with the
paired carry and sum bits generated by the same logic
block, we simply add the lines shown in �gure 6 to the
description of the adder.

void placement(Net<N>& sum, Net<N>& carry) {

for (int i = 0; i < N; i++) {

carry[i] <<= sum[i];

sum[i+1] <<= sum[i] + OFFSET(0,1);

}

Fig. 6. Circuit layout in C++

Contrary to the silicon compilers from a decade ago
[17], these placement annotations do not a�ect the logic
behavior of the generated netlist. They do not specify
contacts; they only specify the partitioning of logic into
physical blocks and the absolute or relative placement of
these blocks in a two-dimensional grid. A back-end tool
analyzes these attributes and emulates the interface of a
schematic capture software in order to guarantee that the
placement and logic partitioning information is preserved
by the FPGA vendor software.

A.2 The runtime library

At the system level, the programming environment pro-
vides two main functions: a device driver interface, and full
simulation support of that interface. This simulation capa-
bility allows the designer to operate together the hardware
and software parts from a PAM program. The device driver
interface provides the mandatory controls to the applica-
tion program: the usual UNIX I/O interface with open,
close, synchronous and asynchronous read and write; down-
load of the con�guration bitstreams for the PAM FPGAs;
readback of their state (i.e. the values of all PAB registers);
read and write of the PAM static RAMs; software control
of the PAM board clock.

A.3 Lessons

The main lesson we draw from our experience with these
programming tools is that PAM programming is much eas-
ier than ASIC development. Students with no electrical
engineering background were able to use our tools after
a few weeks of training. In particular, users can easily
develop their own module generators in matters of days,
while only highly skilled engineers are able to write mod-
ule generators for custom VLSI. This capability is one of
the main reasons why we were able to develop such complex
applications spanning dozens of chips, with engineers and
students not previously exposed to PAM, each in a matter
of months.

B. Debugging and optimization tools

Debugging of a PAM design can be done entirely through
software. Mixed-mode simulation at the block level al-
lows designers to certify datapath components before using
them in complex designs. Full-system simulation elimi-
nate the need for generating special input patterns to test
the hardware part of the program. Full-system simula-
tion allows for hardware/software codebug: both applica-
tion driver and hardware, working together.
After simple bugs have been removed, it becomes nec-

essary to simulate the design on a large number of cycles.
To do so, the most e�ective technique is to compile the
design into a bitstream, download this bitstream into the
board, and run the board in trace mode (single-step the
clock, readback the board state at each cycle and collect
these states for analysis; it is possible to run this mode
at up to 100 Hz). In simple cases, this can be done with
no modi�cation to the runtime application source code.
In complex cases, all necessary primitives are available to
build application-speci�c code to generate and/or analyze
the readback traces.
P1's clock generator can also be operated in double-step

mode. In that mode, the clock runs at full speed ev-
ery second cycle. By comparing double-step traces taken
at increasing clock frequencies with a previously recorded
single-step trace, we can automatically locate the critical
path of a design for a given execution. This method alle-
viates the need to rely on delay simulation as provided by
the standard industrial simulation packages. It is only nec-
essary to perform that tedious task once, when certifying
the operating speed of the �nal design.

We developed a screen visualization tool called showRB

to help analyze readback traces. It can display the state
of every
ip-
op in every FPGA of a PAM board, at the
rate of tens of frames per second. In conjunction with the
double-step mode, it can be used to detect critical paths
along execution traces. Interestingly enough, such a tool
also proved invaluable in demonstrating the structure of
some hardware algorithms.

V. Applications

Our applications were chosen to span a wide range of cur-
rent leading-edge computational challenges. In each case,

we provide a brief description of the design, a performance
comparison with similar reported work, and pointers to
publications describing the work in more details.
One paradigm was systematically applied:

Cast the inner loop in PAM hardware; let software
handle the rest!

In what follows, a� b denotes the quotient and a �j�b the
remainder in the euclidean integer division of a by b.

A. Long integer arithmetic

A reg.

P s/p reg.Host
Data

32
512 / 2k
 x
 Mult.
 Slice

32

2

2

2

2

Host
Addr.

A p/s reg.

B p/s reg.

S p/s reg.

Cntr.

Fig. 7. Long multiplication

PAMs may be con�gured as long integer multipliers [18].
They compute the product

P = A �B + S

where A is an n-bit long multiplier, and B; S are arbitrary
size multiplicands and summands [19]; n may be up to 2k
for the P1 implementation.
Our multipliers are interfaced with the public domain

arbitrary-precision arithmetic package BigNum [20]: pro-
grams based on that software automatically bene�t from
the PAM, by simply linking with an appropriatedly modi-
�ed BigNum library.
P1 computes product bits at 66 Mb/s (using radix 4 op-

erations at 33 MHz), which is faster than all previously
published benchmarks. This is 16 times over the �gures
reported by Buell and Ward [21] for the Cray II and Cy-
ber 170/750. P1's multiplier can compute a 50-coe�cient
16-bit polynomial convolution (FIR �lter) at 16 times au-
dio real time (2� 24-bit samples at 48 kHz).
The �rst operational version of this multiplier was devel-

oped in less than a week. Two subsequent versions, which
re�ned the design on the basis of actual performance mea-
surements, were each developed in less than 5 man-days.
A more aggressive multiplier design is latter reported by

Louie and Ercegovac [22]: using radix 16 and deep pipeline,
this multiplier operates at 79 MHz, which is 2.5 faster than
ours within 3 times the area. At that speed, this design is
faster than conventional multipliers, even for short 32-bit
operands.

B. RSA cryptography

To further investigate the tradeo�s in our hybrid hard-
ware and software system, we have focused on the RSA
cryptosystem [23]. Both encryption and decryption involve

computing modular exponentials, which can be decom-
posed as sequences of long modular multiplications, with
operand sizes ranging from 256 bits to 1k bits.
Starting from the above general-purpose multiplier, we

have implemented a series of systems spanning two orders
of magnitude in performance, over three years.
Our �rst system [18] uses three di�erently programmed

Perle-0 boards, all operating in parallel with the host. At
200 kb/s decoding speed, this was faster than all existing
512-bit RSA implementations, regardless of technology, in
1990. A survey by E. Brickell [24] grants the previous speed
record for 512-bit keys RSA decryption to a VLSI from
AT&T, at 19 kb/s.

2

B1

B2

S

2

M

+

X

X

256

32

32

Data In

Data Out

Fig. 8. RSA cryptography

Table I recalls the various original hardware algorithms
used in our latest implementation of RSA, and quanti�es
each speedup achieved.

TABLE I

RSA speedup techniques

Algorithm Speedup
Chinese remainders 4
Precompute powers 1:25
Hensel's division 1:5
Carry completion � 2
Quotient pipelining 4

The resulting P1 design for RSA cryptography combines
all of the above techniques (see Shand and Vuillemin [25]
for details). It delivers an RSA secret decryption rate in
excess of 600 kb/s for 512-bit keys, and 165 kb/s for 1-
kbit keys. This is an order of magnitude faster than any
previously reported running implementation.
PAM implementations of RSA rely on recon�gurability

in many ways: we use a di�erent PAM design for RSA en-
cryption and decryption; we generate a di�erent hardware
modular multiplier for each di�erent prime modulus: the
coe�cients in the binary representation of each modulus
are hardwired into the logic equations of the design.

C. Molecular biology

Given an alphabet A = (a1; : : : ; an), a probability
(Sij)i;j=1:::n of substitution of ai by aj , and a probability
(Ii)i=1:::n (resp. (Di)i=1:::n) of insertion (resp. deletion)

of ai, one can use a classical dynamic programming algo-
rithm to compute the probability of transforming a word
w1 over A into another one w2; this de�nes a distance be-
tween words in A.

30k−word dictionary

Coefficients

P1 P2 P3 P4 P5 Distance
 out

Char.
 in

Fig. 9. String matching

Applications include automated mail sorting through
OCR scanners, on-the-
y keyboard spelling corrections,
and DNA sequencing in biology.
D. Lavenier from IRISA (Rennes, France) has imple-

mented this algorithm with a Perle-0 design which com-
putes the distance between an input word and all 30k words
in a dictionary; it reports the k words found in the dictio-
nary which are closest to the input. The system processes
200k words/s: this is faster than a solution previously im-
plemented at CNET using 12 Transputers; it has only half
of the performance obtained by a system previously devel-
oped at IRISA based on 28 custom VLSI chips and two
printed-circuit boards.
The DNA matching algorithm [26] is the driving appli-

cation for the PAM developed at the Supercomputing Re-
search Center in Maryland [12]: the reported performance
is, here again, in excess of that obtained with existing su-
percomputers.
The Compugen commercial company [15] sells the Bioc-

celerator, a PAM which can be con�gured as a number of
molecular biology search functions. This device is a co-
processor to a host server; it can be accessed through re-
mote procedure call from any workstation on the network.
It is interfaced with a widely used software package; its use
is transparent, except for the speed-up advantages.

D. Heat and Laplace equations

Solving the heat and Laplace equations has numerous ap-
plications in mechanics, integrated circuit technology,
uid
dynamics, electrostatics, optics and �nance [27].
The classical �nite di�erence method [28] provides com-

putational solutions to the heat and Laplace equations.
Vuillemin [29] shows how to speed-up this computation
with help from special purpose hardware. A �rst imple-
mentation of the method on P1, by Vuillemin and Ro-
cheteau [29], operates with a pipeline depth of 128 opera-

tors. Each operator computes T+T 0

2
, where T and T 0 are

24-bit temperatures.
At 20 MHz, this �rst design processes 5G operations|

add and shift|per second. For such a smooth problem, one
can easily show [29] that �xed-point yields the same results
as
oating-point operations. The performance achieved by
this �rst 24-bit P1 design thus exceeds those reported by

R
A

M

R
A

M...

Fig. 10. Heat and Laplace equations

McBryan et al. [30] [31], for solving the same problems
with the help of supercomputers. A sequential computer
must execute 20 billion instructions per second in order to
reproduce the same computation.
S. Hadinger and P. Raynaud-Richard further improved

the implementation [32]. Re�ning the statistical analysis,
they show that the datapath width can be reduced to 16
bits provided the rounding-o� of the low-order bit is done
randomly|with all deterministic round-o� schemes, para-
sitic stable solutions exist which signi�cantly perturb the
result. Their implementation therefore uses a 64-bit linear
feedback shift-register to randomly set the rounding direc-
tion for each processing stage.
This datapath width reduction allows to extend the

pipeline length to 256, pushing the equivalent processing
power up to 39 GIPS. Using P1's fast DMA-based I/O ca-
pabilities and a large bu�er of host memory, this design can
accurately simulate the evolution of temperature with time
in a 3-D volume, discretized on 5123 points, with arbitrary
power source distributions on the boundaries. It also sup-
ports the use of multigrid simulation, where one \zooms
out" to coarser discretization grids in order to rapidly ad-
vance in simulated time, then \zooms back in" to full reso-
lution, in order to accurately smooth out the desired �nal
result.

E. Neural networks

M. Skubiszewski [33] [34] has implemented a hardware
emulator for binary neural networks, based on the Boltz-
mann machine model.
The Boltzmann machine is a probabilistic algorithm

which minimizes quadratic forms over binary variables, i.e.
expressions of the form

E(~N) =
n�1X

i=0

iX

j=0

wi;jNiNj

where ~N = (N0; : : : ; Nn�1) is a vector of binary variables
and (wi;j)0�i;j<n is a �xed matrix of weights. It is typically
used to �nd approximate solutions to some NP-hard prob-
lems, such as graph partitioning and circuit placement.
The latest P1 realization solves problems with 1400 bi-

nary variables, using 16-bit weights, for a total computing
power of 500 megasynapses per second (the megasynapse
is the traditional unit used in this �eld; it amounts to one
million additions and multiplications by small coe�cients).

F. Multi-standard video compression

In view of the required input bandwidth (30 MB/s for
standard TV color images) and the amount of computation
required by current standards (resp. 3, 4 and 8 Gop/s1 for

1109 16-bit integer operations per second

...

..
.

Proc
1

Proc
2

Proc
32

Weight RAM

Data
RAM

Host I/O

Fig. 11. Boltzmann machine

JPEG, DCT3Dand MPEG), custom hardware is currently
necessary for compressing video in real time.
Matters get complicated, as several di�erent video com-

pression standards are emerging. The following shows
how a single con�gurable system such as P1 can perform,
through di�erent designs, three (and more) of the current
leading standards.
JPEG The computation speci�ed by the Joint Photo-
graphic Expert Group goes in three stages, according
to:

Source
Image

7! R 7! DCT 2 7! Q 7! A=HC 7!
Compressed

Image

The initial RAM R is used to store 8 consecutive lines
in the input image, with double bu�ering. It feeds the
DCT 2 module with 8� 8 square sub-images.
1. The two-dimensional DCT 2 (Discrete Cosine Trans-

form) maps 8� 8 squares from the space to the fre-
quency domain.

2. Each frequency coe�cient is divided by a number
Q = Qx;y. The choice of the quantization table Q
provides a way to control the compromise between
the compression factor and the quality of the de-
compressed image.

3. Run-length, and arithmetic or Hu�man encodings
A=HC are performed on the quantized values.

MPEG The Motion Picture Expert Group system does
motion compensation (MC) by computing a correla-
tion between blocks within two time-consecutive im-
ages. The result is di�erence-coded, then goes through
a processing similar to JPEG.

Digital
Video

7! R 7! MC 7! �Code 7!
Compressed

Video

MPEG-1 only requires storage for 4 images, after al-
lowing for double bu�ering. The decoder is much
simpler than the encoder; yet, the MPEG decoder
still requires about as much hardware as the follow-
ing DCT3D.
A detailed FPGA mapping of the motion estimation
algorithm|the core of the MPEG standard|is given
by Furtek [35]. Mapping this fully laid-out design onto
P1 would be a straightforward task.

DCT3D J. Vuillemin, D. Martineau, and J. Barraquand
from PRL have used P1 to experiment with DCT3D, a
3-D version of JPEG|the third dimension being time.
Except for RAM, this method only requires half as
much hardware as MPEG. It leads to an excellent
compression factor, with an appropriate choice of the
quantization table Q = Q(x; y; t), a 512-entry cube.
Early experiments indicate that, for a given compres-
sion rate, the quality of the restituted video is (sub-
jectively) better with DCT3Dthan with MPEG.
The method goes according to:

Digital
Video

30
7! R

30
7! DCT 3 60

7! A=HC
�2
7!

Compressed
Video

In this diagram, the numbers on the arrows indicate
the transfer bandwidth, in MB/s.

� The algorithm needs a video bu�er big enough to
store 8 consecutive images (twice for double bu�er-
ing). Thus, DCT3Drequires 4 times more RAM than
MPEG.

� Past the initial video bu�er, all the processing is
performed in a straight pipeline operating on video
cubes of size 83 � 16b, made of eight 8 � 8 squares
consecutive in time.

This P1 design computes 48 �xed-point operations
(32-bit outputs add, subtract, multiply and shift) at
25 MHz, for a total of 1.4G operations per second.
Based on our speci�cation software, we rate this al-
gorithm, which requires a lot of data movement, at
15 GIPS.

G. High-energy physics

G.1 Image classi�cation

The calorimeter is part of a series of benchmarks pro-
posed by CERN2 [36]. The goal is to measure the per-
formance of various computer architectures, in order to
build the electronics required for the Large Hadron Collider
(LHC), before the turn of the millennium. The calorime-
ter is challenging, and well documented: CERN bench-
marks seven di�erent electronic boxes, including some of
the fastest current computers, with architectures as dif-
ferent as DSP-based multiprocessors, systolic arrays and
massively parallel systems.
This problem is typical of high-energy physics data ac-

quisition and �ltering: 20�20�32b images are input every
10 �s from the particle detectors, and one must discrim-
inate within a few �s whether the image is interesting or
not; this is achieved by computing some simple statistics
on it (maximum value, second-order moment,: : :) and us-
ing them to decide whether or not a sharp peak is present
(�gure 12). What makes the problem di�cult here are
the high input bandwidth (160 MB/s) and the low latency
constraint.
Vuillemin [7] analyzes in detail the possible implemen-

tations of the calorimeter, on both general-purpose com-
puter architectures|single and multi processors, SIMD

2EuropeanOrganization for Nuclear Research, Geneva, Switzerland

+

x

x

40MHz

16b

8b

16b

Sto 40MHz

+

+

100KHz

1b

ij

1b

16b

16b

16b

16b

9b

2x32b
20MHz +

LU
T

Max

Max

Peak

Sum

Moment

Decision

x

1b

1b
−

16b

16b

16b

16bβ

−

x

x x

α

Fig. 13. Calorimeter datapath

Hadron jet Electron

Fig. 12. Calorimeter typical input images

and MIMD|and special-purpose electronics|full-custom,
gate-array, FPGAs. The conclusion provides an accurate
quantitative analysis of the computing power required for
this task: the PAM is the only structure found to meet this
bound.

This algorithm was implemented by P. Boucard and
J. Vuillemin on P1 [37] [38]. Using the external I/O capa-
bilities described in section III-C, data is input from the de-
tectors through two o�-the-shelf HIPPI-to-TURBOchannel
interface boards plugged directly onto P1. The datapath
itself uses about half of P1's logic and RAM resources, for
a virtual computing power of 39 GBOPS (�gure 13).

G.2 Image analysis

The Transition Radiation Tracker (TRT) is another
benchmark from CERN, analyzed in the same report [36].
The problem is to �nd straight lines (particule trajectories)
in a noisy digital black and white image.

The algorithmused is based on the classicalHough trans-
form: �rst compute the number of active (\on") pixels on
each possible line crossing the image (here the physics of
the problem limits the candidate lines to those having a
small positive or negative slope); then select the line which
has the maximum number of active pixels, or discard the
image if no line has a su�cient number of active pixels.
As above, the rate of the input data (160 MB/s) and the
low latency requirement (� 2 images) preclude any imple-
mentation solution but specialized hardware, as shown by
CERN [36].

R. M�anner and his team from University of Mannheim
[13] have successfully built the specialized FPGA-based
ENABLE machine for solving this problem, using the
straightforwardO(N3) implementationof the Hough trans-
form. It computes the score for all lines of 16 di�erent

slopes crossing a 128 � 96 grid at the required 100 kHz
rate, with a latency of 2 images (20 �s). It needs more
than twice the computing power of P1 to achieve this re-
sult.
J. Vuillemin [39] describes an O(N2 logN) algorithm to

compute the Hough transform, in a recursive way analo-
gous to the Fast Fourier Transform (�gure 14). The result-
ing gain in the processing power needed by the computation
makes it just possible to �t it in one P1 board.
This was implemented by L. Moll, P. Boucard and

J. Vuillemin [37] [38]. As above, data is directly input
from the detectors through two HIPPI-to-TURBOchannel
boards plugged in P1's extension slots. The design com-
putes 31 slopes at the required 100 kHz rate with a latency
of 1 image (10 �s). A 64-bit sequential processor would
need to run at 1.2 GHz to achieve the same computation.

G.3 Cluster detection

The NESTOR Neutrino Telescope under construction
in the Mediterranean near Pylos, Greece, is an three-
dimensional array of 168 photomultiplier tubes (PMTs)
designed to detect Cherenkov radiation from fast muons
created by neutrino interactions. Clustered detections from
actual Cherenkov-generated photons are expected to hap-
pen at a maximum rate of a few per second, while the
background noise originating from bioluminescence and ra-
dioactive potassium (40K) causes random PMT �rings at
a rate of 100 kHz per PMT.
A P1 board will be used to process the raw data and

detect muon trajectories3 , by looking for space- and time-
correlation among events. The peak and average data rates
are 500 MB/s and 100 MB/s respectively. Data enters
directly through P1's 256b-wide daughter-board connectors
(see section III-C). Provided the peak data rate can be
accommodated|which is the case with the P1 solution|
subsequent processing is straightforward (see Katsanevas
et al. [40] for details).

H. Image acquisition

P1's TURBOchannel adapter (see section III-C), being
built around a single XC3090, is a PAM in its own right|
albeit a small one. M. Shand [41] describes a number of
experiments based on this board, including an interface

3In high-energy physics terminology, this is the �rst level trigger.

Σ
32

Σ
32

1616

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

+

+
+

+

+
+

+
+

+
+

+
+

+
+

+
+

+

+
+

+
+

+
+

+
+

+
+

+

+
+

+

+
+

+

+
+

+

+

+

+
+

+

+

+

+
+

+

+
+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+
+

+

+

+
+

+

+
+

+

+

+

+
+

+

+

+

+
+

+

+
+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+
+

+

+

+

+
+

+

+
+

+
+

+
+

+
+

+
+

+
+

+

+
+

+
+

+
+

+
+

+
+

+

+
+

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

x
w

+

+
+

+

+
+

+

+

+

+
+

+

+

+

+
+

+

+
+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+
+

+

+

+
+

+

+
+

+

+

+

+
+

+

+

+

+
+

+

+
+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+
+

+

Fig. 14. Fast Hough transform

to a large frame CCD camera [42]. This camera deliv-
ers image data at 10 MB/s with no
ow control. Con-
ventionally an interface for such a camera would use a
dedicated frame bu�er. Our interface dispenses with this
bu�er by transfering the incoming image data directly into
system memory, using Direct Memory Access (DMA) over
the TURBOchannel. In addition to the obvious cost sav-
ings of eliminating the frame bu�er memory, use of system
memory makes the captured image immediately available
to software and allows the system to capture images con-
tinuously. These attributes prove essential to one use of
this interface|the principal image acquisition system at
the Swedish Vacuum Solar Telescope where the system has
been in use since May 1993 [43].
The success of this small PAM (or PAMette) has lead us

to develop a new PAM board, I/O-oriented and of small
size, to explore this new kind of applications. M. Shand,
in collaboration with G. Scharmer and Wang Wei of the
Swedish Royal Observatory, is investigating the use of this
board in an adaptive optics system combining image ac-
quisition, image processing, and on-the-
y retro control.

I. Stereo vision

Part of the research on stereo vision at INRIA4 is fo-
cused on computing dense, accurate and reliable range

4Institut de Recherche en Informatique et Automatique, Sophia-
Antipolis, France.

maps, from simultaneous images obtained by two cam-
eras. The selected stereo matching algorithm is presented
by Faugeras et al. [44]: a recursive implementation of the
score computation makes the method independent of the
size of the correlation window, and the calibration method
does not require to use a calibration pattern.
Stereo matching is integrated in the navigation system

of the INRIA cart, and used to correct for inertial and
odometric navigation errors. Another application, jointly
with CNES5, uses stereo to construct digital elevation maps
for a future planetary rover.
A software implementation of the selected method com-

putes the correlation between a pair of images in 59 s on
a SPARCStation II. A dedicated hardware implementa-
tion using four digital signal processors (DSP), developed
jointly by INRIA and Matra MSII, performs the same task
in 9.6 s. A P1 implementation of the very same algorithm
by L. Moll [45] runs over thirty times faster, in 0.28 s: a
key step towards real-time stereo matching.
This design uses the full 100 MB/s bandwidth available

between P1 and its host. It also relies on fast recon�g-
uration, as the processing is a straight pipeline between
three distinct PAM con�gurations, which are successively
swapped in time for each image pair processed.

J. Sound synthesis

5Centre National d'Etudes Spatiales, France

INC FM CUR

+

CURINC FIN

MMU

+/−/=

X X

LEV

+

#1

#3

#4

#2

Wave−table
 memory

256 times

32

20

162424

16

18

Frequency Level MixEnvelope

SPDIF
outputs

NLD

 to
FM/
NLD

Fig. 15. Sound synthesizer

In order to explore the digital signal processing domain,
D. Roncin and P. Boucard implemented a real-time digital
audio synthesizer on P1, capable of producing up to 256
independant voices at a sampling rate of 44.1 kHz. Pri-
marily designed for the use of lookup-table-based additive
synthesis techniques, this implementation includes features
which allows frequency-modulation synthesis and/or non-
linear distortion, as well as to use it as a samplingmachine.
This design contains 4 MB of wave-table memory, shared

by the 256 voice generators, which can be partitioned into
sub-tables of various sizes allowing the simultaneous use of
up to 1k di�erent sound patterns. It also includes an ouput
mixing section and global control.
Each of the 256 voices consists of:

� a phase computation section, which computes the in-
dex of a voice sample in the selected wave-table (using
24-bit arithmetic); using the output of another voice in
this computation leads to frequency modulation and
non-linear distortion;

� an envelope generator and static level section, which
computes the amplitude value for the current sample
(also using 24-bit arithmetic) and combines it with
the output of the wave-table to produce the amplitude
modulated sample; dynamic amplitude envelopes are
generated using linked linear segment techniques;

� a control section which de�nes the operating mode of
the voice: normal oscillator, carrier operator for fre-
quency modulation, non-linear transfer fonction oper-
ator, free-running or single shot, synchronous phase
operation, wave-table size and location selection, out-
put channel selection: : :

The output mixing section contains four 32-bit accumula-
tors, which connect to two SPDIF6 (stereo) digital audio
output ports. Synthesizing this standard consumer audio
format allows for the direct connection of P1 to an o�-
the-shelf tape recorder or audio ampli�er, through a mere
cable.
All parameters and controls can be updated by the host

at any time in parallel with the running synthesis. At
22 MHz, this design produces 11M samples per second,
which amounts to about 22M 16�16-bit multiplications,
100M ALU operations and 45M load/store operations. A

6Sony/Philips Digital Audio Interface

software implementation of this algorithm running on stan-
dard CPUs shows that the DECPeRLe-1 implementation is
equivalent to a computing power of about 2 GIPS. A sim-
pler version of this design has been ported on a standard
DSP processor (27-MHz Motorola 56001): it only computes
24 voices at the required sampling rate.

K. Long Viterbi Decoder

In many of today's digital communications systems the
signal-to-noise ratio (SNR) of the link has become the most
severe limitation. Convolutional encoding with maximum
likelihood (Viterbi) decoding provides a means to improve
the SNR of a link without increasing the power budget,
and has become an important technique in satellite and
deep-space communications systems.7

The coding gain of a Viterbi system is primarily deter-
mined by the constraint length K of the code, while the
complexity of the decoder increases exponentially with K.
Today's VLSI implementations typically o�er codes with
K = 7 andK = 8. NASA's Galileo space probe is equipped
with a constraint length 15 rate 1/4 encoder, for which a
Viterbi decoder based on an array of 256 custom VLSI
chips is being developed [46].
R. Keaney and D. Skellern from Macquarie Univer-

sity (Sydney, Australia), together with M. Shand and
J. Vuillemin from PRL, have implemented a Viterbi de-
coder for the Galileo code on P1 [47]. Using on-board RAM
to trace through the 214 possible states of the encoder, this
design computes 4 states in parallel at each 40 ns clock
cycle, for an overall decoding speed of 2 kb/s. The coding
gain has been measured to be within 0.5 dB of the optimal
gain for this particular code.
There is no analytical method to prove that a particular

code provides the optimal coding gain for a given constraint
length. Taking further advantage of PAM recon�gurability,
this system will be used to perform a code search among
constraint length 15 convolution codes, by recompiling a
new P1 con�guration on-the-
y for each code.

VI. The computing power of PAM

Let us now quantify the computing power of a PAM pro-
cessor. Following earlier reports [48] [7], we de�ne the vir-
tual computing power of a PAM with n PABs which operate
at f Hertz as the product P = n� f . The resulting power
P is expressed in boolean operations per second (BOPS).
For n = 800 and f = 25 MHz, we �nd P = 16 GBOPS
for a leading edge single FPGA in 1992, and 5000 GBOPS
= 5 TBOPS in 2001. At 25 MHz, the PAM P1 has a vir-
tual computing power of 368 GBOPS|roughly equivalent
to what we should get in a single FPGA near year 1996.
Our particular choice of unit for measuring computing

power is based on the 4-input combinational function8. A
bit-serial binary adder, which is composed of two functions
of three inputs, also counts for one unit. The accounting

7The same techniques apply to high-density magnetic storage de-
vices, for equivalent reasons.
8The particular choice of the unit function only a�ects our measure

by a constant factor, provided we keep bounded fan-in.

small medium large
I/O bandwidth 200 400 1k MB/s

Computing power 50 200 1k GBOPS
FPGA area 1 4 20 kPABs
RAM size 8 32 160 MB
Unit cost 800 3k 12k $

TABLE II

Vital figures of currently feasible PAMs

rules which follow, for arithmetic and logic operations over
n-bit wide inputs, are thus straightforward:

+ One (n+n 7! n+1)-bit addition each nanosecond is
worth n GBOPS. Subtraction, integer comparison and
logical operations are bit-wise equivalent to addition.
� One (n � m 7! n + m)-bit multiplication each
nanosecond is worth nm GBOPS. Division, integer
shifts and transitive (see Vuillemin [49]) bit permu-
tations are bit-wise equivalent to multiplication.

Due to the great variety of the operations required by
each application, quantitative performance comparison be-
tween di�erent computer architectures is a challenging art
[50]. The million of instructions per second (MIPS) and
million of
oating-point operations per second (MFLOPS)
are more traditional units for measuring computing power.
By our de�nition, a 32-bit standard microprocessor9 op-
erating at 100 MHz (100 MIPS) has a virtual computing
power of 3.2 GBOPS, and a 200 MHz, 64-bit processor fea-
tures 12.8 GBOPS. A 100-MHz, 64-bit
oating-point mul-
tiplier delivering one operation per cycle (100 MFLOPS)
would rate 281 GBOPS.
It follows from this accounting that P1 has a virtual com-

puting power which is higher than that of the fastest integer
microprocessor existing in 1994.

VII. Conclusion

We have shown that it is now possible to build high-
performance PAMs, with applications in a large num-
ber of domains. Table II updates what is feasible
within 1994 technology. The technology curves for PAM
cost/performance derive from those for FPGA and static
RAM [51]; we can use them as a basis for extrapolation,
from now into the future.
Let us compare the respective merits of three possi-

ble implementation technologies, for a given speci�c high-
performance system. High-performance means here that
the computational requirement far exceeds the possibilities
of the fastest micro-processor. That leaves three implemen-
tation possibilities: 1{ program a parallel machine; 2{ de-
sign a speci�c PAM con�guration; 3{ build a custom sys-
tem. The �rst two only involve software; the third involves
hardware as well. Let us review some of the comparative
merits, for each technology.
1. Each reported PAM design was implemented and
tested within one to three months, starting from the

9with no hardware multiplier

delivery of the speci�cation software. This is roughly
equivalent to the time it takes to implement a highly
optimized software version of the same system on a
supercomputer: both are technically challenging, yet
both are orders of magnitude faster than what it takes
to cast a system into custom ASICs and printed-circuit
boards.

2. For many speci�c high-speed computational prob-
lems, PAM technology has now proved superior, both
in performance and cost, to all current forms of
general-purpose processing systems: pipelined ma-
chines, massively parallel ones, networks of micro-
processors,: : :
The cost of P1 is comparable to that of a high-end
workstation. This is much lower than the cost of a
supercomputer. Based on �gures from McBryan [30],
the price (in $ per operation per second) for solving
the heat and Laplace equations is 100 times higher
with supercomputers than with P1.

3. PAM technology is currently best applied to low-level,
massively repetitive tasks such as image or signal pro-
cessing. Due to their software complexity, many cur-
rent supercomputer applications still remain outside
the possibilities of current PAM technology.

4. For many real-time problems, PAMs already have per-
formance and cost equal to those of speci�c, custom
systems: the lower the volume, the better for the PAM.
By tuning a speci�c application for a PAM, we have
shown that very high performance implementations are
possible. For at least six of the cases presented in
section V, the performance achieved by our P1 imple-
mentation exceeds, by at least one order of magnitude,
those of any other implementation, including custom
VLSI based ones.

5. An important �eld of applications is accessible only
through PAM technology: high-bandwidth interfaces
to the external world, with a fully programmable, real-
time capability. P1 has 256-bit wide connectors, ca-
pable to deliver up to 1.2 GB/s of external I/O band-
width. It is then a \simple matter of hardware pro-
gramming" to interface directly to any electrically-
compatible external device, by programming its com-
munication protocol into the PAM itself. Applications
include high-bandwidth networks, audio and video in-
put or output devices, and data acquisition.

References

[1] W. S. Carter, K. Duong, R. H. Freeman, H. C. Hsieh, J. Y. Ja,
J. E. Mahoney, L. T. Ngo and S. L. Sze, \A user programmable re-
con�gurable logic array", IEEE 1986 Custom Integrated Circuits
Conference, pp. 233{235, 1986.

[2] Xilinx, Inc., The Programmable Gate Array Data Book, Xilinx,
2100 Logic Drive, San Jose, CA 95124, USA, 1993.

[3] D. D. Hill, B. K. Britton, B. Oswald, N. S. Woo, S. Singh, T. Poon
and B. Krambeck, \A new architecture for high-performance FP-
GAs", Field Programmable Gate Arrays: Architecture and Tools
for Rapid Prototyping, H. Gruenbacher and R. W. Hartenstein,
editors, Lecture Notes in Computer Science Nr. 705, Springer-
Verlag, 1993.

[4] Algotronix Ltd., The Con�gurable Logic Data Book, Edinburgh,
UK, 1990.

[5] Concurrent Logic, Inc., Cli6000 Series Field-Programmable Gate
Arrays, Concurrent Logic Inc., 1270 Oakmead Parkway, Sunny-
vale, CA 94086, USA, 1992.

[6] GEC Plessey Semiconductors, ERA60100 Electrically Recon�g-
urable Array Data Sheet, GEC Plessey Semiconductors Ltd.,
Swindon, Wiltshire SN2 2QW, UK, 1991.

[7] J. E. Vuillemin, \On computing power", Programming Languages
and System Architectures, J. Gutknecht, editor, Lecture Notes in
Computer Science Nr. 782, Springer-Verlag, pp. 69{86, 1994.

[8] Digital Equipment Corp., TURBOchannel Hardware Speci�ca-
tion, DEC document EK-369AA-OD-007B, 1991.

[9] P. Bertin, D. Roncin and J. Vuillemin, \Introduction to Pro-
grammable Active Memories", Systolic Array Processors, J. Mc-
Canny, J. McWhirter and E. Swartzlander Jr., editors, Prentice-
Hall, pp. 301{309, 1989.

[10] T. Kean and I. Buchanan, \The use of FPGAs in a novel com-
puting subsystem", 1st International ACM Workshop on Field-
Programmable Gate Arrays, pp. 60{66, Berkeley, CA, USA, 1992.

[11] B. Heeb and C. P�ster, \Chameleon, a workstation of a di�erent
color", Field Programmable Gate Arrays: Architecture and Tools
for Rapid Prototyping, H. Gruenbacher and R. W. Hartenstein,
editors, Lecture Notes in Computer Science Nr. 705, Springer-
Verlag, 1993.

[12] J. Arnold, D. Buell and E. Davis, \Splash II", 4th ACM Sympo-
sium on Parallel Algorithms and Architectures, San Diego, CA,
USA, pp. 316{322, 1992.

[13] F. Klefenz, K. H. No�z, R. Zoz and R. Maenner, \ENABLE|
A systolic 2nd-level trigger processor for track �nding and e/pi
discrimination for ATLAS/LHC", Proc. IEEE Nucl. Sci. Symp.,
San Francisco, CA, USA, pp. 62{64, 1993.

[14] Quickturn Systems, Inc., RPM Emulation System Data Sheet,
Quickturn Systems, Inc., 325 East Middle�eld Road, Mountain
View, CA 94043, USA, 1991.

[15] Compugen, The Bioccelerator, product brief, Compugen Ltd.,
10 Hayetsira St., Rosh-Ha'ayin, 40800 Isra�el, 1993.

[16] P. Bertin, M�emoires actives programmables: conception,
r�ealisation et programmation, Th�ese de Doctorat, Universit�e
Paris 7, 75005 Paris, France, 1993.

[17] D. D. Gajski, editor, Silicon Compilation, Addison-Wesley, 1988.
[18] M. Shand, P. Bertin and J. Vuillemin, \Hardware speedups in

long integer multiplication", Computer Architecture News, vol.
19(1), pp. 106{114, 1991.

[19] R. F. Lyon, \Two's complement pipeline multipliers", IEEE
Trans. on Comm., vol. COM-24, pp. 418{425, 1976.

[20] B. Serpette, J. Vuillemin and J. C. Herv�e, BigNum: A Portable
E�cient Package for Arbitrary-Precision Arithmetic, PRL report
2, Digital Equipment Corp., Paris Research Laboratory, 85, Av.
Victor-Hugo, 92563 Rueil-Malmaison Cedex, France, 1989.

[21] D. A. Buell and R. L. Ward, \A multiprecise integer arithmetic
package", The Journal of Supercomputing, vol. 3, pp. 89{107,
Kluwer Academic Publishers, Boston, MA, USA, 1989.

[22] M. E. Louie and M. D. Ercegovac, \A variable precision mul-
tiplier for �eld-programmable gate arrays", 2nd International
ACM/SIGDA Workshop on Field-Programmable Gate Arrays,
Berkeley, CA, USA, February 1994.

[23] R. L. Rivest, A. Shamir and L. Adleman, \A method for obtain-
ing digital signatures and public-key cryptosystems",CACM, vol.
21(2), pp. 120{126, 1978.

[24] E. F. Brickell, \A survey of hardware implementations of RSA",
Crypto '89, Lecture Notes in Computer ScienceNr. 435, Springer-
Verlag, pp. 368{370, 1990.

[25] M. Shand and J. Vuillemin, \Fast implementation of RSA
cryptography", 11th IEEE Symposium on Computer Arithmetic,
Windsor, Ontario, Canada, pp. 252{259, 1993.

[26] D. P. Lopresti, \P-NAC: a systolic array for comparing nucleic
acid sequences", Computer, vol. 20(7), pp. 98{99, 1987.

[27] R. P. Feynman, R. B. Leighton and M. Sands, The Feynman
Lectures on Physics, 3 volumes, Addison-Wesley, 1963.

[28] R. Dautray and J. L. Lions, Mathematical Analysis and Numer-
ical Methods for Sciences and Technology, 9 volumes, Springer-
Verlag, 1990.

[29] J. E. Vuillemin, \Contribution �a la r�esolution num�erique des
�equations de Laplace et de la chaleur", Mathematical Modelling
and Numerical Analysis, edited by AFCET Gauthier-Villars,
RAIRO, vol. 27(5), pp. 591{611, 1993.

[30] O. A. McBryan, \Connection Machine application perfor-
mance", Scienti�c Applications of the Connection Machine,
World Scienti�c, pp. 94{114, 1989.

[31] O. A. McBryan, P. O. Frederickson, J. Linden, A. Sch�uller, K.
Solchenbach, K. St�uben, C-A. Thole and U. Trottenberg, \Multi-
grid methods on parallel computers|a survey of recent develop-
ments", Impact of Computing in Science and Engineering, vol.
3(1), pp. 1{75, Academic Press, 1991.

[32] S. Hadinger and P. Raynaud-Richard,R�esolution num�erique des
�equations de Laplace et de la chaleur, rapport d'option, Ecole
Polytechnique, 91128 Palaiseau Cedex, France, 1993.

[33] M. Skubiszewski, \A hardware emulator for binary neural net-
works", 1990 International Neural Network Conference, vol. 2,
pp. 555{558, Paris, 1990.

[34] M. Skubiszewski, \An exact hardware implementation of
the Boltzmann machine", 1992 International Conference on
Application-Speci�c Array Processors, Dallas, TX, USA, 1992.

[35] F. Furtek, \A �eld-programmable gate array for systolic com-
puting", 1993 Symposium on Integrated Systems, pp. 183{200,
The MIT press, Cambridge, MA, USA, 1993.

[36] J. Badier, R. K. Bock, Ph. Busson, S. Centro, C. Charlot,
E. W. Davis, E. Denes, A. Gheorghe, F. Klefenz, W. Krischer,
I. Legrand. W. Lourens, P. Malecki, R. M�anner, Z. Natkaniec, P.
Ni, K. H. No�z, G. Odor, D. Pascoli, R. Zoz. A. Sobala, A. Taal,
N. Tchamov, A. Thielmann, J. Vermeulen and G. Vesztergombi,
\Evaluating parallel architectures for two real-time applications
with 100 kHz repetition rate", IEEE Trans. Nucl. Sci., vol. 40(1),
pp. 45{55, 1993.

[37] D. Belosloudtsev, P. Bertin, R. K. Bock, P. Boucard, V. D�orsing,
P. Kammel, S. Khabarov, F. Klefenz, W. Krischer, A. Kugel,
L. Lundheim, R. M�anner, L. Moll, K. H. No�z, A. Reinsch, M.
Shand, J. Vuillemin and R. Zoz, \ProgrammableActiveMemories
in real-time tasks: implementing data-driven triggers for LHC ex-
periments", to appear in the Journal of Nuclear Instruments and
Methods for Physics Research, Elsevier Publishers, Amsterdam,
NL, 1995.

[38] L. Moll, J. Vuillemin and P. Boucard, \High-energy physics
on DECPeRLe-1 Programmable Active Memory", to appear in
ACM International Symposium on FPGAs, Monterey, CA, USA,
February 1995.

[39] J. E. Vuillemin, \Fast linear Hough transform", 1994 Interna-
tional Conference on Application-Speci�c Array Processors, pp.
1{9, IEEE Computer Society Press, 1994.

[40] S. Katsanevas, M. Shand and J. Vuillemin, \DECPeRLe-1 im-
plementation of NESTOR's �rst level trigger", 3rd NESTOR In-
ternational Workshop, Pylos, Greece, October 1993.

[41] M. Shand, Measuring System Performance with Repro-
grammable Hardware, PRL report 19, Digital Equipment Corp.,
Paris Research Laboratory, 85, Av. Victor-Hugo, 92563 Rueil-
Malmaison Cedex, France, August 1992.

[42] Kodak Motion Analysis Systems, Kodak Megaplus Camera,
Model 1.4, Eastman Kodak Company, March 1992.

[43] G. W. Simon, P. N. Brandt, L. J. November, G. B. Scharmer
and R. A. Shine, \Large-scale photospheric motions: �rst results
from an extraordinary eleven-hour granulation observation", So-
lar Surface Magnetism, R. J. Rutten and C. J. Schrijver, editors,
NATO ASI Series C433, Kluwer, 1994.

[44] O. Faugeras, T. Vi�eville, E. Th�eron, J. Vuillemin, B. Hotz, Z.
Zhang, L. Moll, P. Bertin, H. Mathieu, P. Fua, G. Berry and
C. Proy, Real Time Correlation-Based Stereo: Algorithm, Imple-
mentations and Applications, research report 2013, INRIA, 06902
Sophia-Antipolis, France, 1993.

[45] L. Moll, Implantation d'un algorithme de st�er�eovision par
corr�elation sur m�emoire active programmable PeRLe-1, rapport
de stage, Ecole des Mines de Paris, Centre de Math�ematiques
Appliqu�ees, 06904 Sophia-Antipolis, France, 1993.

[46] J. Statman, G. Zimmerman, F. Pollara and O. Collins, \A
long constraint length VLSI Viterbi decoder for the DSN", TDA
Progress Report 42-95, Jet PropulsionLaboratory, Pasadena, CA,
USA, July-Sept. 1988.

[47] R. A. Keaney, L. H. C. Lee, D. J. Skellern, J. E. Vuillemin
and M. Shand, \Implementation of long constraint length Viterbi
decoders using ProgrammableActive Memories", 11th Australian
Microelectronics, Surfers Paradise, QLD Australia, 1993.

[48] P. Bertin, D. Roncin and J. Vuillemin, \Programmable Active
Memories: a performance assessment", Symposium on Integrated
Systems, Seattle, WA, USA, MIT Press, 1993.

[49] J. E. Vuillemin, \A combinatorial limit to the computing power
of VLSI circuits", IEEE Transactions on Computers, April 1983.

[50] J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann, 1990.

[51] C. P. Thacker, Computing in 2001, Digital Equipment Corpora-
tion, Systems Research Center, 130 Lytton, Palo Alto CA94301,
USA, 1993.

Jean E. Vuillemin is a graduate from Ecole
Polytechnique. He received a Ph. D. from
Stanford University in 1972, and one from
Paris University in 1974.
He taught Computer Science at the University
of California, Berkeley in 1975, and Universit�e
d'Orsay from 1976 to 1980. He was at IN-
RIA from 1980 to 1987, and at DEC-PRL from
1988 to 1994. He is now professor at Facult�e
L�eonard de Vinci.
He has authored over 100 papers on program

semantics, algorithm design and analysis, combinatorics and hard-
ware structures.
His current research interests concern programmable hardware, the-
ory, implementations and applications.

Patrice Bertin received the Engineer degree
from Ecole Polytechnique (Palaiseau, France)
in 1984, and the Ph. D. in Computer Sci-
ence degree from Universit�e Paris 7 (Paris,
France) in 1993. From 1988 to 1994, he worked
on the PAM project at Digital Equipment
Corporation's Paris Research Laboratory, as
a visiting scientist from INRIA (Institut Na-
tional de Recherches en Informatique et en
Automatique, Rocquencourt, France). He is
currently with the new L�eonard-de-Vinci Uni-

versity in La D�efense near Paris, France. His E-Mail address is
<Patrice.Bertin@inria.fr>.

Didier Roncin received degrees in Electri-
cal Engineering, Computer Science, Musicol-
ogy and Computer Music from Paris Univer-
sity. He worked at IRCAM (Paris, France) on
research for acoustic and computer music from
1977 to 1984. He joined Jean Vuillemin's team
at INRIA from 1984 to 1987 where they started
the PAM project in 1987. He went to Digital
Equipment Corporation's Paris Research Lab-
oratory from 1977 to 1994, where he worked
principally on the PAM project's hardware ar-

chitectures. He is currently at the L�eonard-de-Vinci University in
Paris, France, where he is investigating designs of generic PCI-based
and low cost PAMs, as well as speci�c PAM architectures for dig-
ital audio and computer music applications. His E-Mail address is
<Didier.Roncin@inria.fr>.

Mark Shand was born in Sydney, Australia
in 1959. He attended the University of Syd-
ney where he received BS degree in 1981 and
PhD degree in 1987. His thesis was on VLSI
CAD. He spent 1987 and 1988 with the Aus-
tralian Government's CSIRO continuing his
VLSI CAD work. He was employed at Digital
Equipment Corporation's Paris Research Lab-
oratory from 1989 to 1994 where he worked
principally on the ProgrammableActive Mem-
ories project. He is currently on sabbatical

leave from Digital Equipment Corporation at the Swedish Royal Ob-
servatory, Stockholm, Sweden where he is investigating uses of PAM
technology in high performance image acquisition and processing.

Herv�e H. Touati received the Ph. D. de-
gree from U.C. Berkeley in 1990. From 1991
to 1994 he was a research scientist at Digital
Equipment Corporation's Paris Research Lab-
oratory. He co-founded Xorix SARL.

Philippe Boucard received the Engineer
degree from Ecole Nationale Sup�erieure des
T�el�ecommunications (Paris, France) in 1981.
From 1991 to 1994, he worked on the PAM
project at Digital Equipment Corporation's
Paris Research Laboratory. He is currently
with Matra MHS (France), in the microcon-
troller design department. His E-Mail address
is <Philippe.Boucard@matramhs.fr>.

