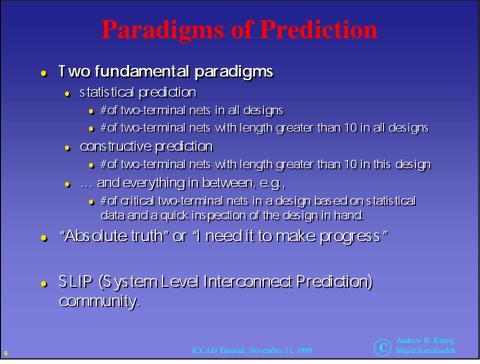

Modern Physical Design: Algorithm Technology Methodology (Part II) Andrew B. Kahng ucla Majid Sarrafzadeh Northwestern

PART II: Fundamental Physical Design Formulation and Algorithms

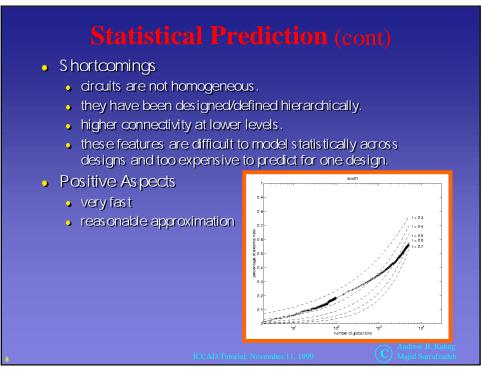
- Prediction
 - Paradigms
 - Cost Functions
 - An example: FP
- Placement
 - Motivation
 - Formulation
 - Algorithms
 - Complexity management
 - Challenges

Routing

- Motivation
- Formulation
- Algorithms
- Complexity management
- Challenges
- Placement / Synthesis
 - Part III



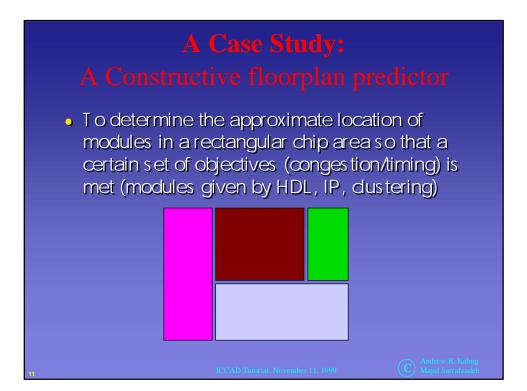
Prediction

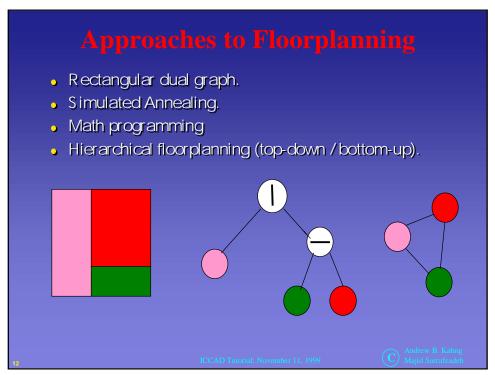

What is prediction ?

- every system has some critical cost functions: Area, wirelength, congestion, timing etc.
- Prediction aims at estimating values of these cost functions without having to go through the time-consuming process of full construction.
- Allows quick space exploration, localizes the search
- For example:
 - statistical wire-load models
 - Wirelength in placement

Statistical Prediction

- W. E. Donath , A. B. Kahng, J. Mehndl , et al.
- Developing theoretical/s tatis tical/observational models for interconnect estimation.
- Basic types
 - Estimation of Global Parameters. Assumes homogenous designs.
 - Rent's rule
 - Average multiplicity of a neilist is 2.2 2.6
 - Design Specific Assumes localized homogeneity
 - localized Rent's rule
 - A specific Verilog block has average multiplicity 3.2

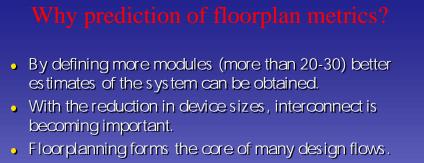


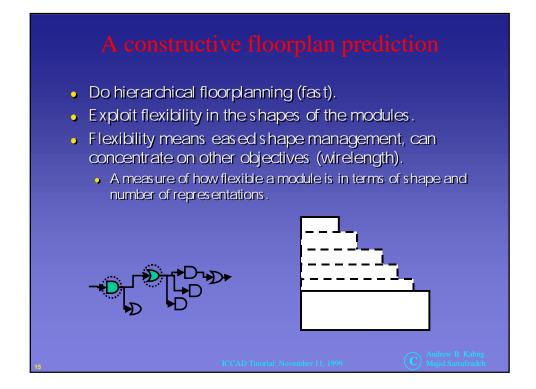

Constructive Prediction

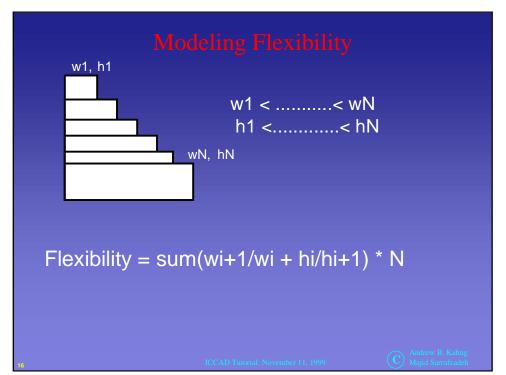
- Generally: the concept of fast algorithms
 - a quick/low-temperature annealing.
 - Final routability is correlated with first-level micut?
- SLIP position statement and some recent results (a few ideas will be discussed).
- E.g., Floorplan based on a given verilog hierarchy
- E.g., Construct fast layouts to predict final timing violations, routability information, etc.

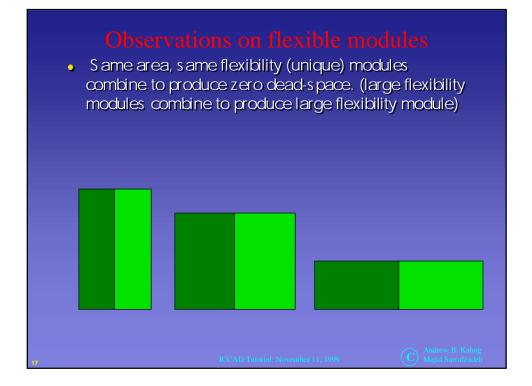
Constructive Prediction (cont)

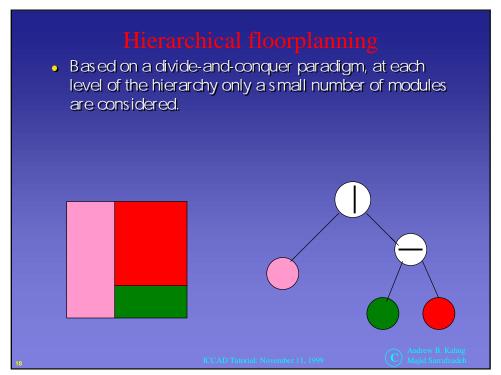
- Usefulness
 - xKy (K means knowledgeable) type of applications which may require some critical parameters from x to be fed back to y engine.
 - Allows quick exploration.
 - The predictor itself can act as the front-end for final Construction (time spent is not really wasted).
- Shortcomings
 - Slow
 - Can we trust it? (low-temperature annealing)
 - Would it localize the search too much?

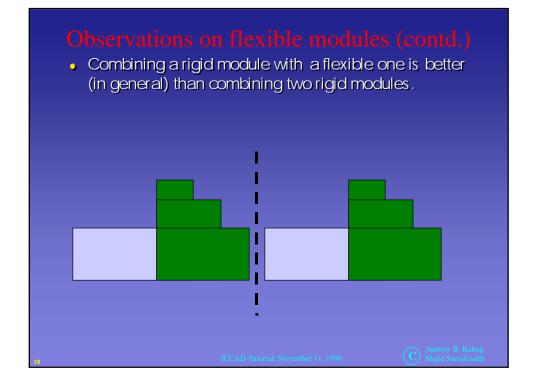


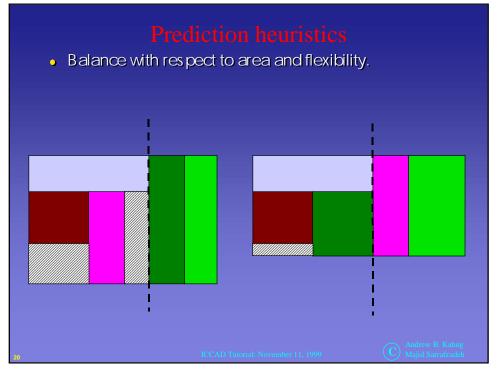

Simulated Annealing

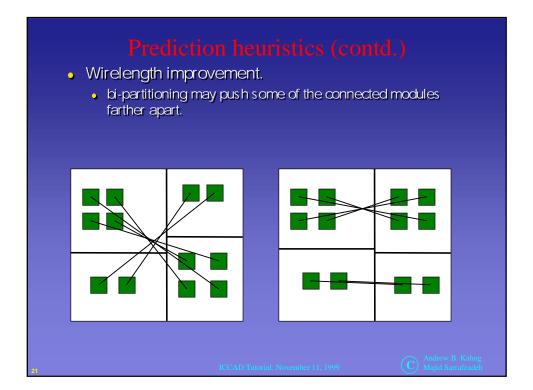

- A very-good floorplanner (for shape management).
- But has major limitation in terms of running time.

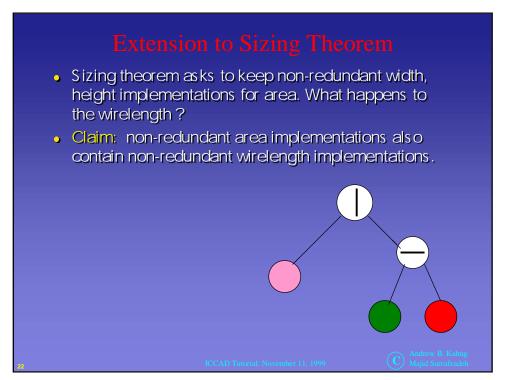

test ckt.	modules, edges	run time
prim2.s3	98, 1410	20 hrs
prim1	750, 830	31 hrs
prim2	2907, 2961	> 80 hrs




• System-on-a-chip type applications, assessing viability of a chip at the architectural level.



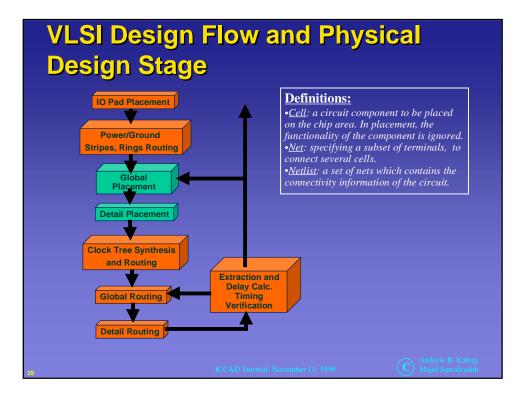




Prediction algorithm

- Similar to top-down hierarchical floorplanning but with added heuristics.
 - partition the circuit recursively (we use hMetis), balance on area and flexibility.
 - as pect-ratio heuristic decides the cut of internal nodes.
 - Wirelength improvement applied as post-processing.

ckt(%rigid)	Wong-Liu		Predictor				
	cost	time(sec)	cost	% diff	time(s)	speedup	
ind1(10)	12039	177	13256	10.11	0.3	590	
ind1(10)	12059	173	12871	5.78	0.3	577	
ind1(30)	14971	122	18535	23.8	0.3	407	
ind1(50)	16033	88	19935	24.34	0.3	293	
hway(10)	70571	3420	71981	2.00	1.7	2011	
hway(20)	71838	3515	73390	2.16	1.7	2068	
hway(30)	72274	3524	75530	4.5	1.6	2008	
hway(50)	77653	2564	80273	3.37	1.6	1602	
fract(10)	131431	15651	129187	-1.7	4.5	3478	
fract(20)	137044	12803	139125	1.52	4.6	2783	
fract(30)	137084	14694	140192	2.27	4.6	3194	
fract(50)	144072	9268	152436	5.81	4.7	1972	
prim1(10)	831329	110491	863012	3.81	40.0	2762	
prim1(20)	867690	100010	864245	-0.4	39.4	2538	
prim1(30)	870456	95299	881813	1.3	37.1	2569	
prim1(50)	897120	68303	957847	6.77	36.6	1866	
prim2 s1(10)	230703	11899	216478	-6.2	16.7	713	
prim2_s1(20)	235694	11141	227186	-3.6	16.9	659	
prim2_s1(30)	248317	9306	230093	-7.3	16.6	561	
prim2_s1(50)	249489	7445	254568	2.03	16.5	451	
prim2_s2(10)	323017	38416	299704	-7.21	29.8	1289	
prim2_s2(20)	319897	30062	318005	-0.59	30.4	989	
prim2_s2(30)	333313	29632	322356	-3.28	29.7	998	
prim2 $s2(50)$	354387	21045	344175	-2.88	29.5	713	


Extension of Predictor to Constructor

- Why is annealing good (and slow)?
 Focused shape management
- What is important in floorplanning with eased shape management ?
 - It is not important to properly fit all the modules from the very beginning like Annealing.
 - Important to avoid long wires, bad for congestion/timing etc.
 - However in a small subset of floorplanning areamanagement is important.
 - Use partitioning early on but switch to annealing at later stage.

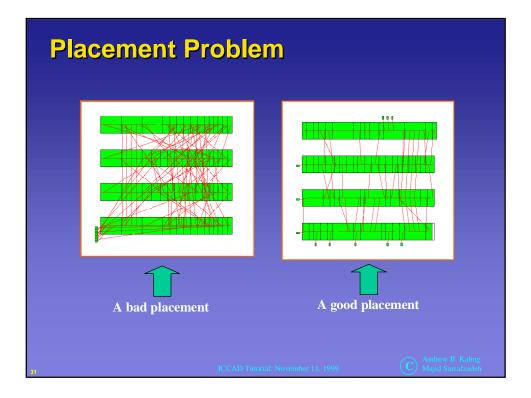
ckt(%rigid)	Wong-Liu		Constructor			
	cost	time(sec)	cost	% diff	time(s)	speedup
ind1(10)	12039	177	12182	1.18	8.6	21
ind1(20)	12168	173	12324	1.28	7.5	23
ind1(30)	14971	122	15400	2.86	5.9	21
ind1(50)	16033	88	17578	9.64	5.1	17
hway(10)	70571	3420	69611	-1.36	194	18
hway(20)	71838	3515	70448	-1.93	183	19
hway(30)	72274	3524	71900	-0.51	210	17
hway(50)	77653	2564	78696	1.34	105	24
fract(10)	131431	15651	128388	-2.32	897	18
fract(20)	137044	12803	130984	-4.42	704	18
fract(30)	137084	14694	135869	-0.88	723	20
fract(50)	144072	9268	145392	0.91	549	17
prim1(10)	831329	110491	832365	1.2	4629	24
prim1(20)	867690	100010	862657	-0.6	4911	20
prim1(30)	870456	95299	871623	0.13	4214	23
prim1(50)	897120	68303	931694	3.85	3617	19
prim2_s1(10)	230703	11899	215193	-6.72	455	26
prim2_s1(20)	235694	11141	217542	-7.70	439	25
prim2_s1(30)	248317	9306	229349	-7.46	411	23
prim2_s1(50)	249489	7445	248566	-0.37	328	23
prim2_s2(10)	323017	38416	283188	-12.33	1477	26
prim2_s2(20)	319897	30062	301768	-5.67	1389	22
prim2 $s2(30)$	333313	29632	308023	-7.59	1506	20
prim2_ $32(50)$	354387	21045	323188	-8.80	1138	18

Placement Problem

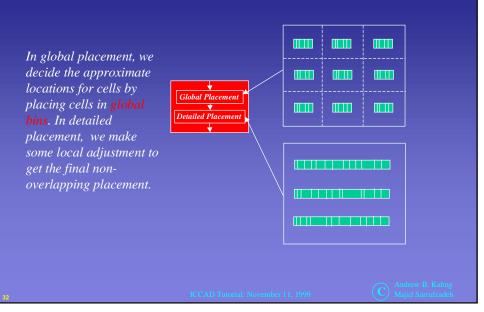
Input:

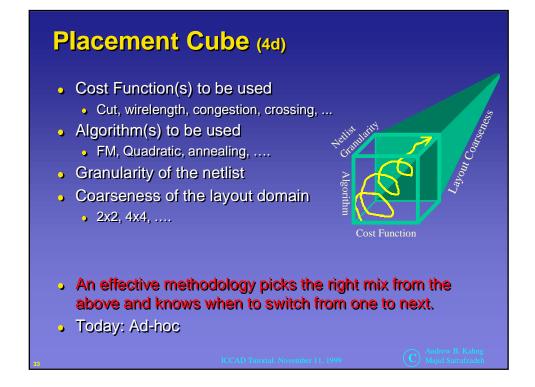
•A set of cells and their complete information (a cell library). •Connectivity information between cells (netlist information).

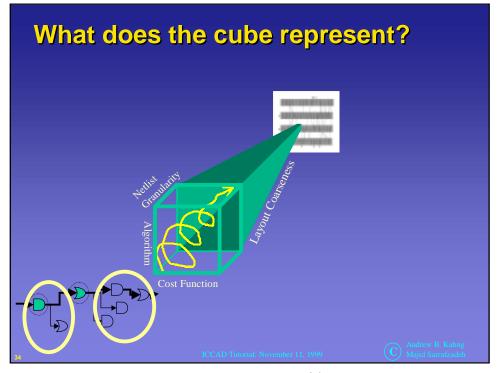
Output:


A set of locations on the chip: one location for each cell.

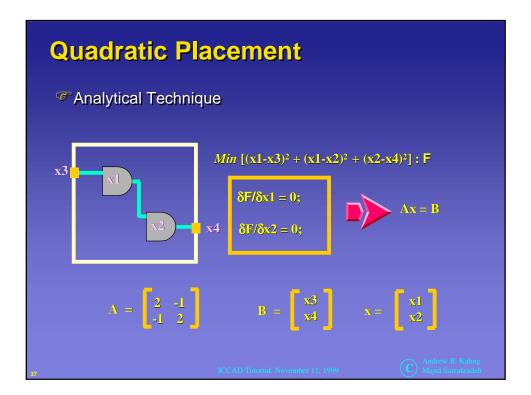
Goal:

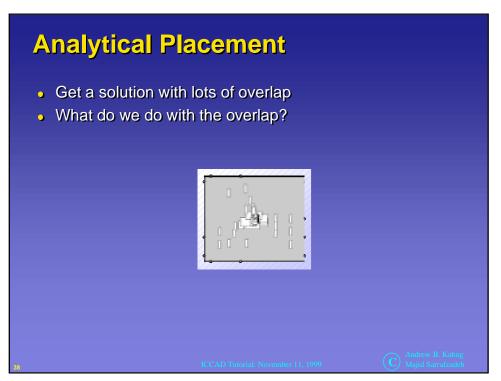

The cells are placed to produce a routable chip that meets timing (low-power, ...)

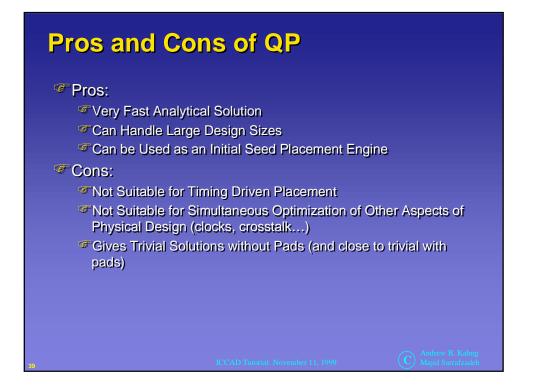

Challenge:

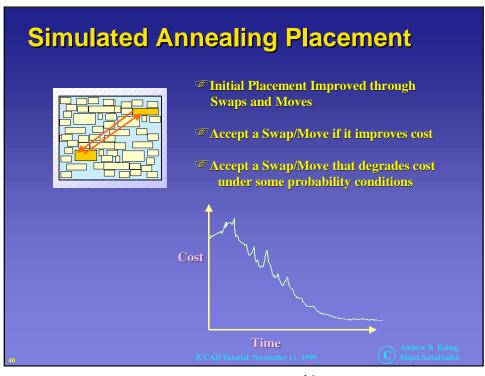

•The number of cells in a design is very large (> 1 million). •The timing constraints are very tight.

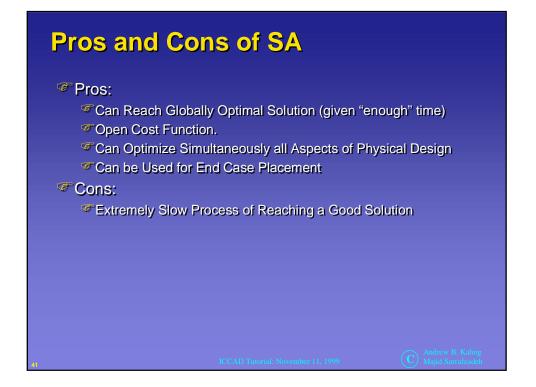
Global and Detailed Placement

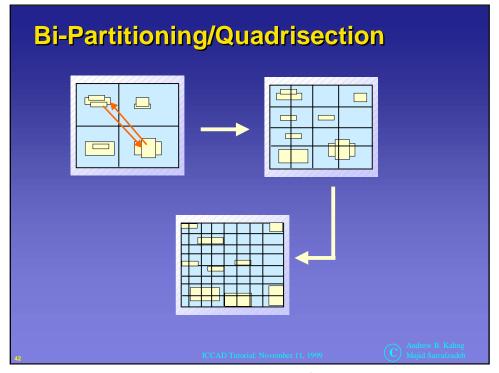


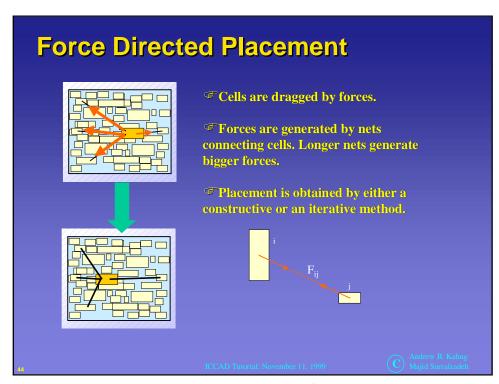




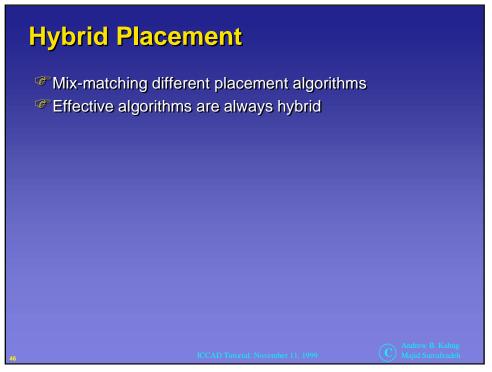


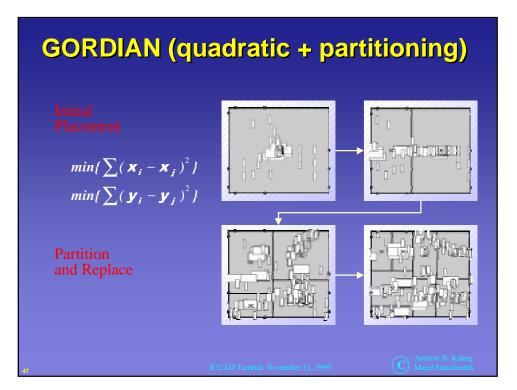

<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>



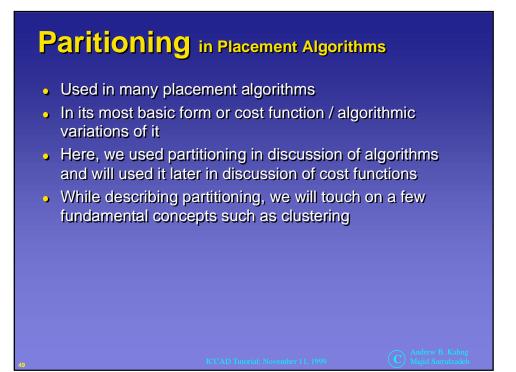

Pros and Cons of Partitioning Based Placement

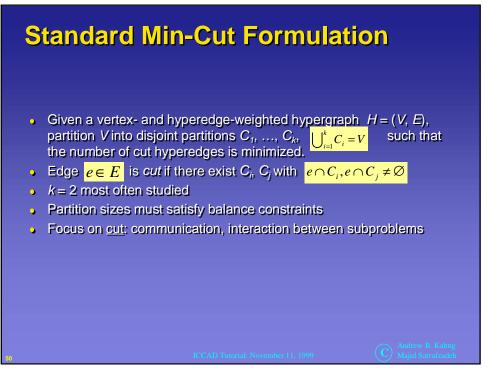
Pros:


- More Suitable to Timing Driven Placement since it is Move Based
- New Innovation (hMetis) in Partitioning Algorithms have made this Extremely Fast
- Open Cost Function
- Move Based means Simultaneous Optimization of all Design Aspects Possible

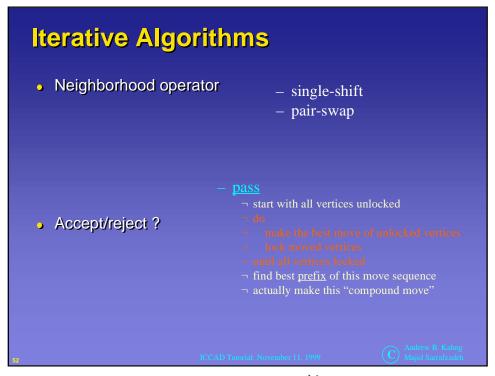

Cons:

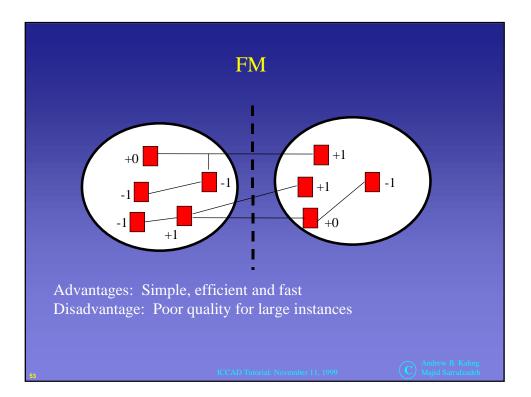
- Not Well Understood
- Lots of "indifferent" moves
- May not work well with some cost functions.

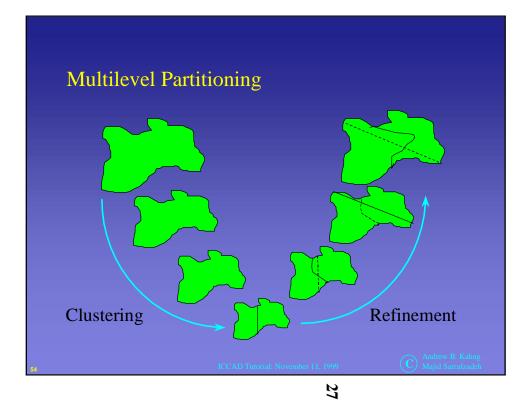




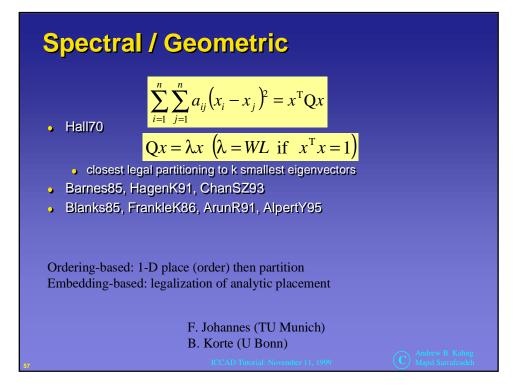
Hybrid Placement

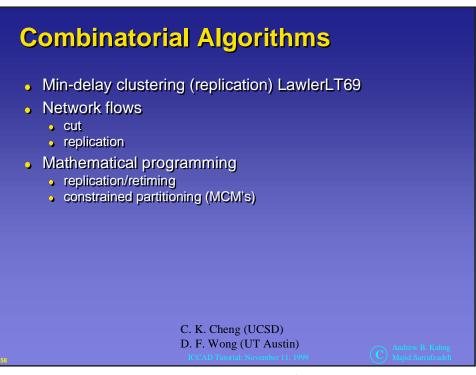

- It is not yet understood how to combine various algorithms to construct an effective flow: when to use which algorithm and for how long (and why)?
- Current methods are ad-hoc
- In fact, the flow should be instance based
 * in one circuit annealing is good enough
 - in another quadratic + partitioning

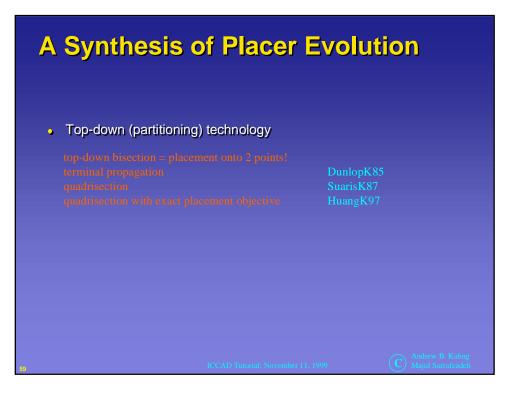




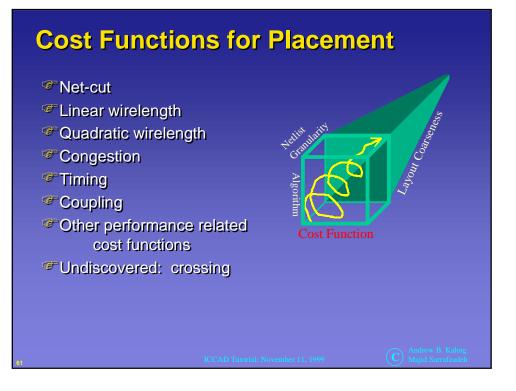
- Constraints
 - I/O, area
 - path delay
 - multi-balance (area, power)
 - multi-dimensional balance
 - hierarchy
- Degrees of freedom
 replication
- Objectives
 - min-cut ?

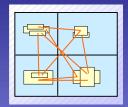

Iterative Algorithms

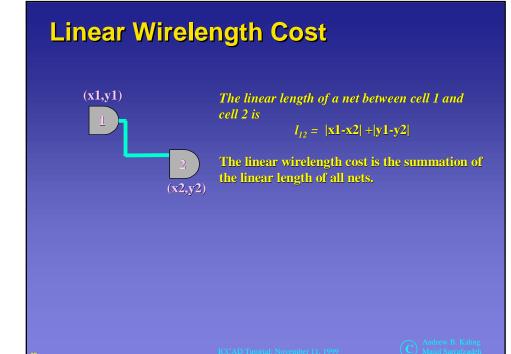

- Folklore greedy shift, swap
- 1970 Kernighan-Lin
- 1982 Fiduccia-Mattheyses
- 1983 Metaheuristics... GA, SA, LSMC
- 1984 Goldberg-Burstein, two-level
- 1989 Krishnamurthy, Sanchis,
- 1993 Quick Cut
- 1995 Metis, Chaco, ... Multilevel
- 1996 PROP, CLIP, CDIP
- 1997 MLc, HMetis
- 1998 Deep Prop, ISPD98 suite

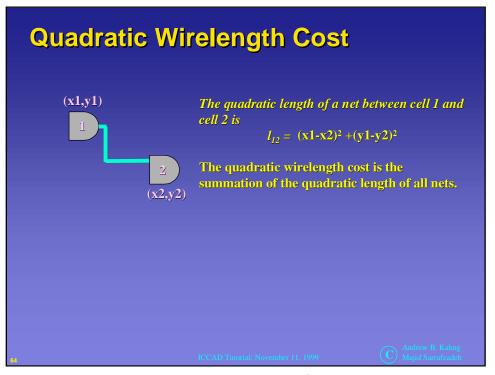

Iterative Algorithms

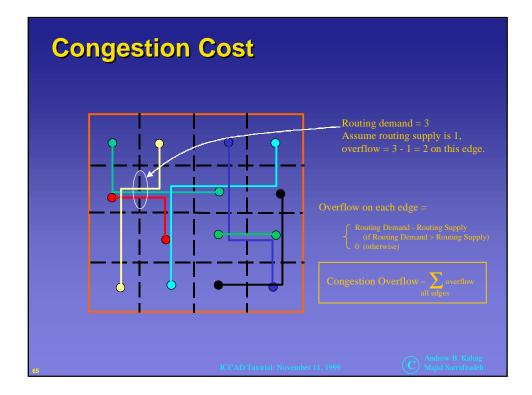
Practicality/creativity:


- relaxed balance constraints
- multiple unlocks
- early termination
- dual representation



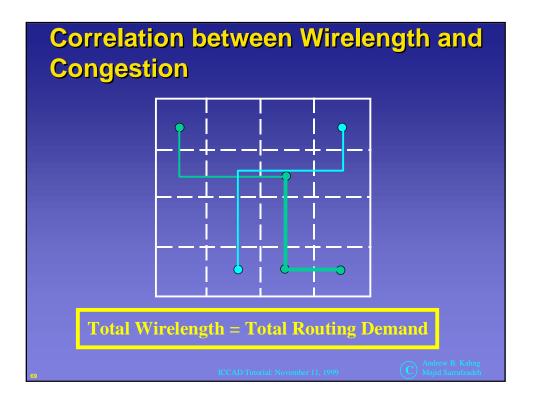


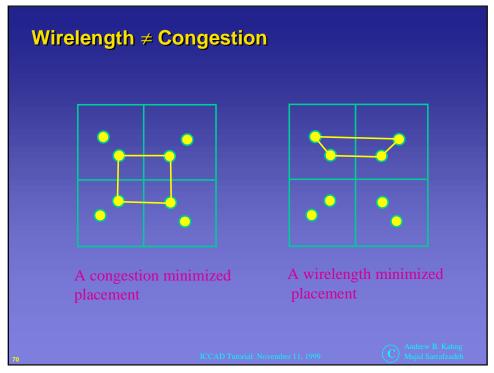

Net-cut Cost for Global Placement

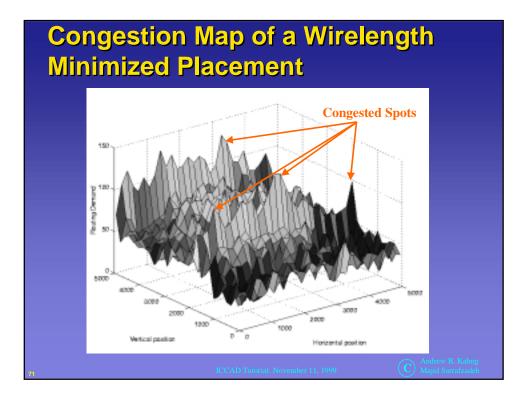


The net-cut cost is defined as the number of external nets between different global bins

[®] Minimizing net-cut in global placement tends to put highly connected cells close to each other.

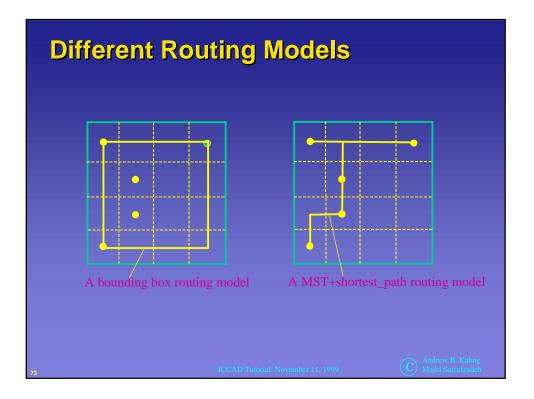

<section-header><list-item><list-item><list-item><list-item><list-item><list-item>


Cut vs. Wirelength


Globally: In a 2x1 bin, wirelength is the same as cut

Congestion Minimization and Congestion vs Wirelength

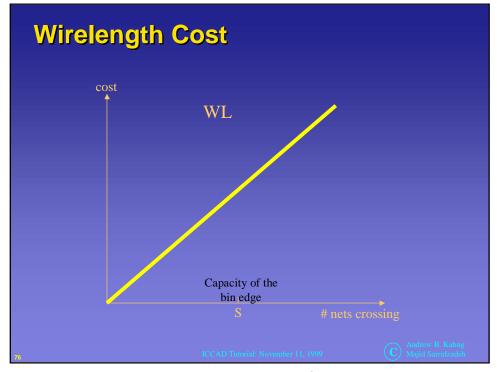
- Congestion is important because it closely represents routability (especially at lower-levels of granularity)
- Congestion is not well understood
- Ad-hoc techniques have been kind-of working since congestion has never been severe
- It has been observed that length minimization tends to reduce congestion.
- Goal: Reduce congestion in placement (willing to sacrifice wirelength a little bit).

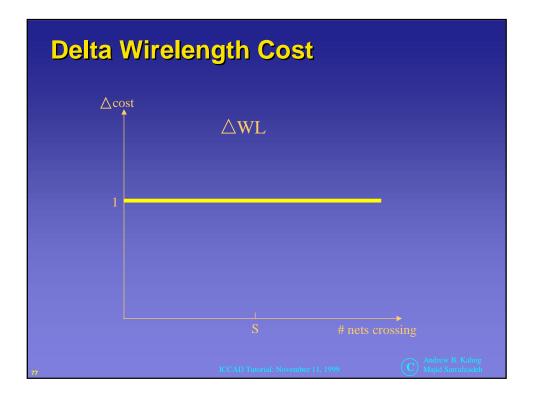


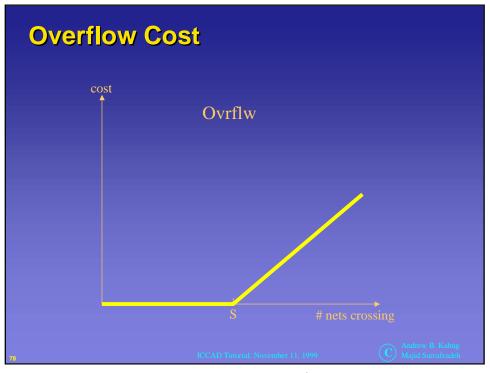
Different Routing Models for modeling congestion

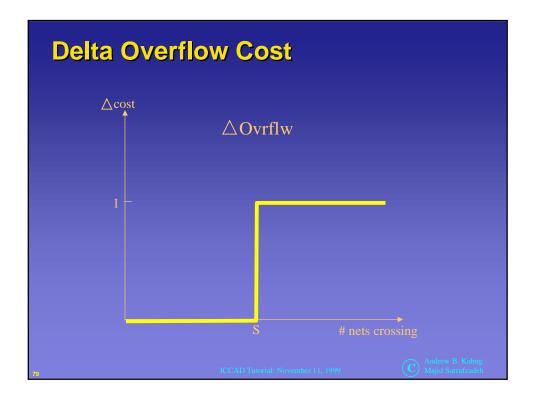
- Bounding box router: fast but inaccurate.
- Real router: accurate but slow.
- A bounding box router can be used in placement if it produces correlated routing results with the real router.
- Note: For different cost functions, answer might be different (e.g., for coupling, only a detailed router can answer).

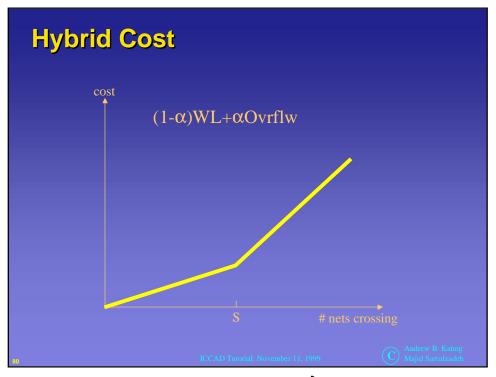
Correlation Test Between Different Routers

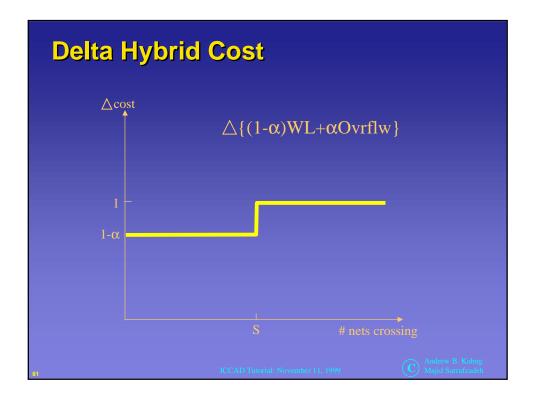

Circuit	RoutModel	A	В	C	D	E	F
Primary1	BBox	14	36	26	27	40	30
	Real	27	9	7	4	5	4
Primary2	BBox	562	163	594	680	147	631
	Real	331	63	378	407	73	378
struct	BBox	949	459	1086	1091	665	1119
	Real	92	294	121	142	414	154
biomed	BBox	4098	2522	7458	7335	3790	6711
	Real	188	48	706	760	180	474

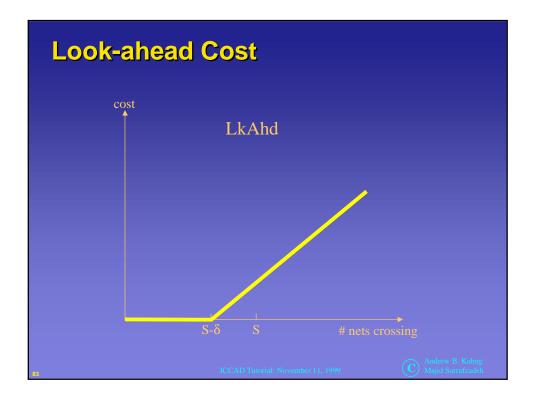

Evaluate overflow value using different routers. (A, B, C, D, E and F are six independent placements)

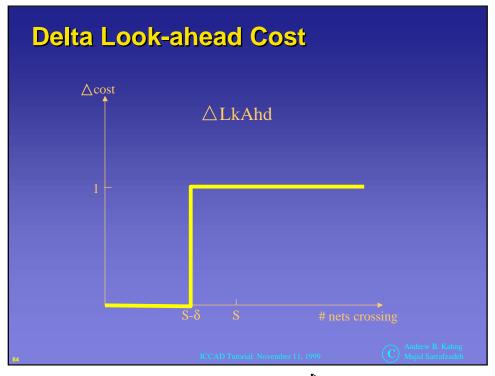

Conclusion: Bounding box router cannot be used in placement to evaluate congestion.

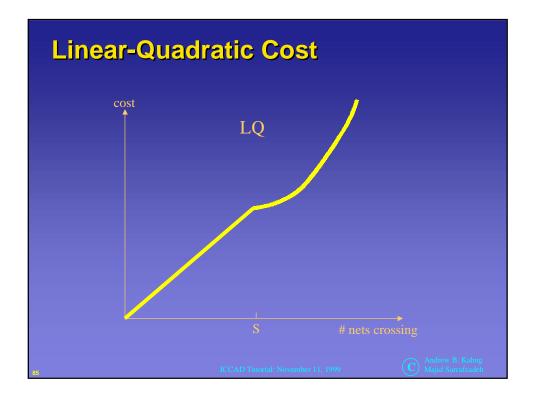

Objective Functions Used in Congestion Minimization

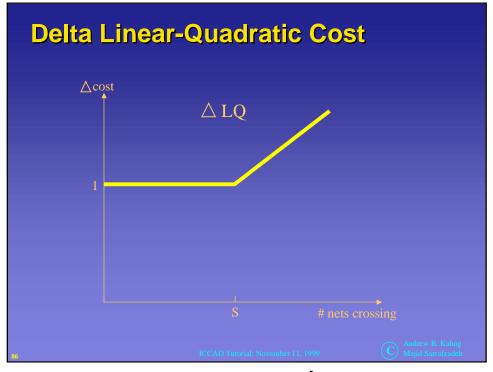

- WL: Standard total wirelength objective.
- Ovrilw: Total overflow in a placement (a direct congestion cost).
- Hybrid: $(1 \alpha)WL + \alpha$ Ovrflw
- QL: A quadratic plus linear objective.
- LQ: A linear plus quadratic objective.
- LkAhd: A modified overflow cost.
- (1- α_T)WL + α_T Ovrflw: A time changing hybrid objective which let the cost function gradually change from wirelength to overflow as optimization proceeds.

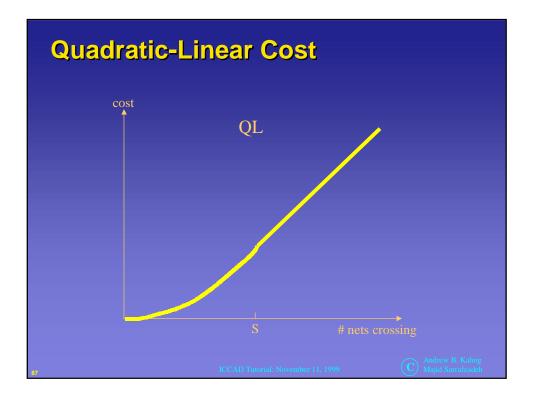


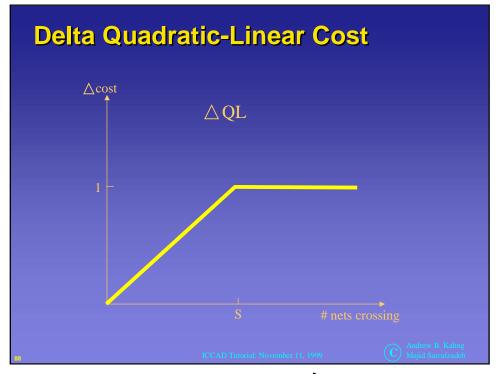









<section-header><section-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><text>



Comparison Between Different Objectives

	wirelength	overflow	runtime
WL	27885	3011	643
Ovrflw	57992	20400	116050
0.8WL + 0.2Ovrflw	53289	20982	51001
0.6WL + 0.4Ovrflw	56993	23399	53398
0.5WL + 0.5Ovrflw	58016	23768	50074
0.4WL + 0.6Ovrflw	59434	24954	49283
0.2WL + 0.8Ovrflw	62450	27063	49884
$(1 - \alpha_T)WL + \alpha_T Ovrflw$	65233	29486	47300
LkAhd	70346	32367	43523
QL	65532	27738	47426
LQ	67786	30846	48212

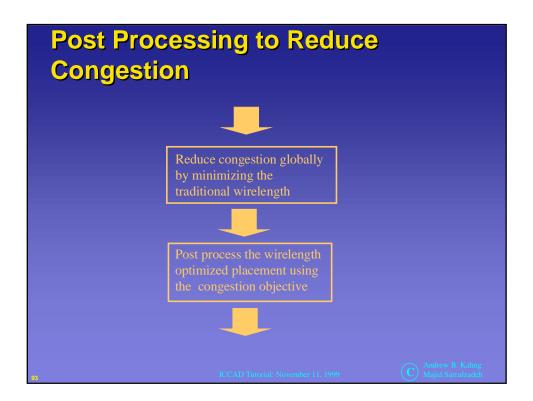
Comparison between different objectives for circuit biomed.

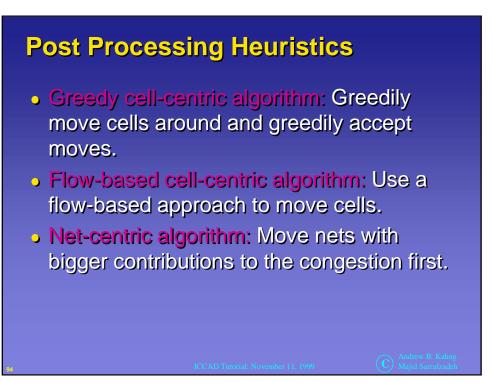
Comparison Between Different Objectives

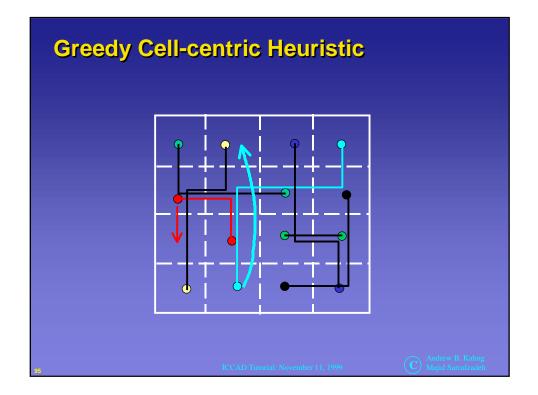
	wirelength	overflow	runtime
WL	26918	151	269
Ovrflw	80425	6391	9116
0.8WL + 0.2Ovrflw	79918	9406	17103
0.6WL + 0.4Ovrflw	81704	9149	17108
0.5WL + 0.5Ovrflw	84586	9660	17145
0.4WL + 0.6Ovrflw	89734	10883	17167
0.2WL + 0.8Ovrflw	96108	12052	17517
$(1 - \alpha_T)WL + \alpha_T Ovrflw$	100869	13055	17761
LkAhd	77823	5613	9267
QL	66086	4231	11600
LQ	75090	6298	10284

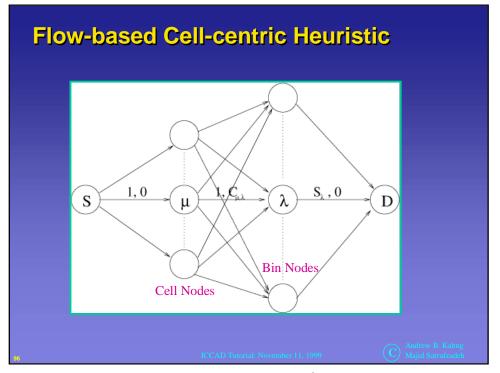
Comparison between different objectives for circuit Primary2.

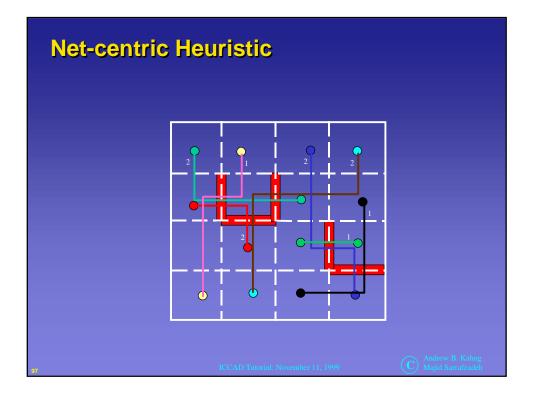
Comparison Between Different Objectives

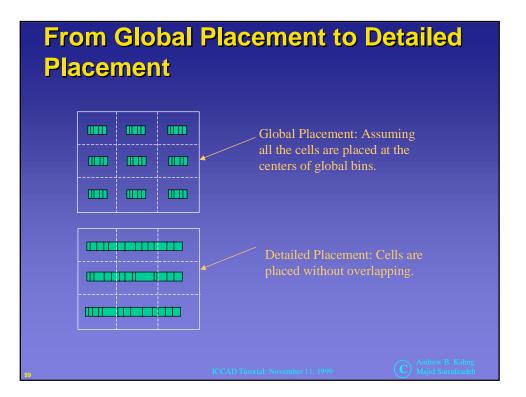

	wirelength	overflow	runtime
WL	9110	159	5839
Ovrflw	718451	130410	93381
0.8WL + 0.2Ovrflw	651406	117992	89283
0.6WL + 0.4Ovrflw	655704	118569	93330
0.5WL + 0.5Ovrflw	658943	118994	89081
0.4WL + 0.6Ovrflw	660134	119084	90385
0.2WL + 0.8Ovrflw	661199	119243	90469
$(1 - \alpha_T)WL + \alpha_T Ovrflw$	698035	126173	60884
LkAhd	711535	128970	61417
QL	669985	120612	59896
LQ	718701	130538	61840


Comparison between different objectives for circuit avqs.


Comparison Between Different Objectives


	wirelength	overflow	runtime
WL	107261	802	7934
Ovrflw	879751	160520	113085
0.8WL + 0.2Ovrflw	832858	153260	110778
0.6WL + 0.4Ovrflw	838492	159306	119350
0.5WL + 0.5Ovrflw	839052	159465	113754
0.4WL + 0.6Ovrflw	842840	153849	117805
0.2WL + 0.8Ovrflw	849358	159374	110485
$(1 - \alpha_T)WL + \alpha_T Ovrflw$	859994	156729	72723
LkAhd	881915	161172	71997
QL	840739	152345	72526
LQ	879860	160625	72593


Comparison between different objectives for circuit avql.



Post Processing Results

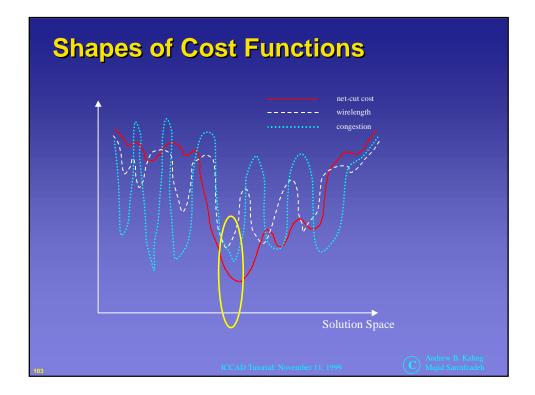
TestCase	before PP	cell-centric	flow-based	net-centric	% imp. net-centric
					vs. before PP
highway2	12	7	7	7	41.7%
fract	16	14	14	14	12.5%
Primary1	34	9	17	4	88.2%
Primary2	151	56	65	49	67.5%
struct	88	52	39	47	46.5%
biomed	3011	2646	*	2610	12.1%
avqs	159	124	*	116	27.0%
avql	802	753	*	747	6.9 %
ave.					36.9%
		(* o	ut of memory))	,

Correlation Between Global and Detailed Placement

TestCase	WL_{g}	CON_{g}	WL_d	CON_d	
highway2	12	8	18	13	
fract	16	14	24	23	
Primary1	140	125	151	141	•WL _g : Wirelength op
Primary2	710	586	917	867	placement.
struct	150	110	261	227	•CON _g : Wirelength oplacement.
biomed	667	1115	605	1084	•WL _d : Congestion of
avqs	180	149	258	214	placement. •CON _d : Congestion of
avql	898	791	1032	909	placement.
·					

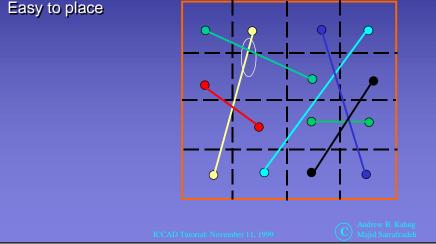
Conclusion: Congestion at detailed placement level is correlated with congestion at global placement level. Thus reducing congestion in global placement helps reduce congestion in final detailed placement.

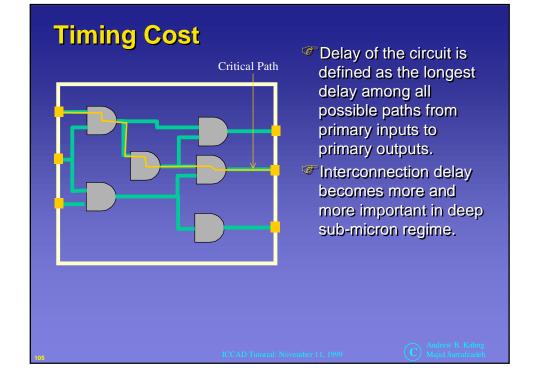
ptimized global optimized detailed

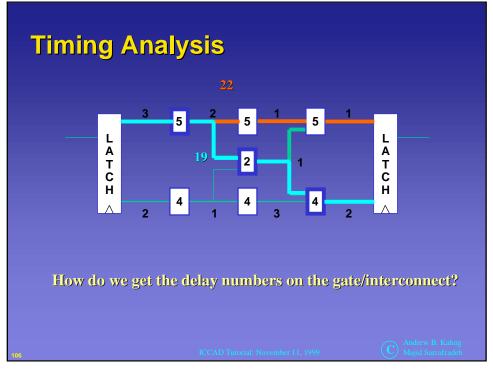

ptimized global optimized detailed

Conclusion

- Wirelength minimization can minimize congestion globally. A post processing congestion minimization following wirelength minimization works the best to reduce congestion in placement.
- We tested a number of congestion-related cost functions including a hybrid length plus congestion (commonly believed to be very effective). Experiments prove that they do not work very well.
- Net-centric post processing techniques are very effective to minimize congestion.
- Congestion at the global placement level, correlates well with congestion of detailed placement.

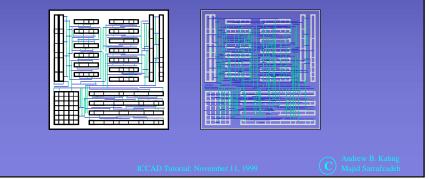



- The net-cut objective function is more smooth than the wirelength objective function
- The wirelength objective function is more smooth than the congestion objective function
- Local minimas of these three objectives are in the same neighborhood.



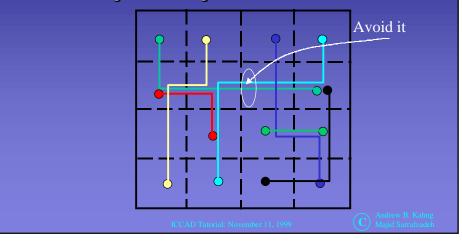
Crossing: A routability estimator?

- Replace each crossing with a "gate"
- A planar netlist
- Easy to place

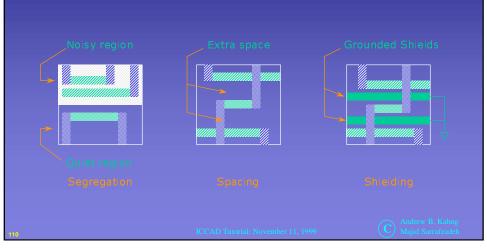


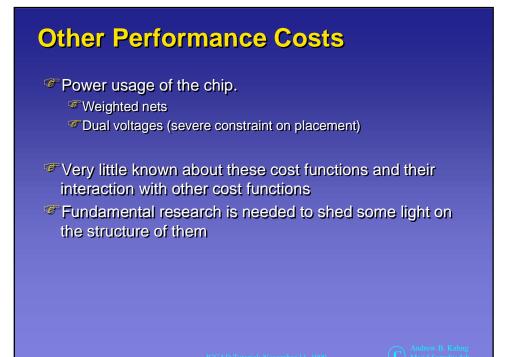
Approches

- Budgeting
 - In accurate information
 - Fast
- Path Analysis
 - Most accurate information
 - Very slow
- Path analysis with infrequent path substitution
 - Somewhere in between

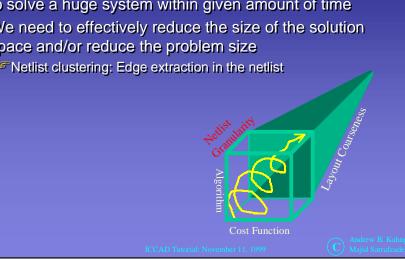

Timing Metrics

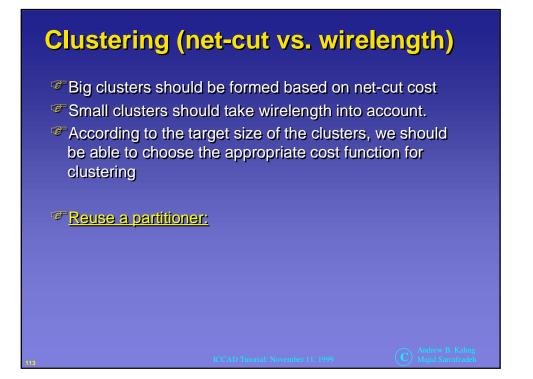
- How do we assess the change in a delay due to a potential move during physical design?
- Whether it is channel routing or area routing, the problem is the same
 - translate geometrical change into delay change

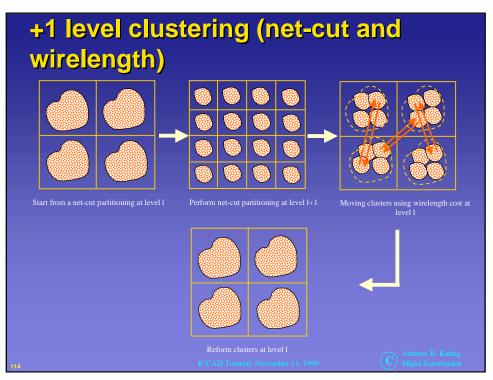

Others costs: Coupling Cost


- Flard to model during placement
- Can run a global router in the middle of placement
- Even at the global routing level it is hard to model it

Coupling Solutions


• Once we have some metrics for coupling, we can calculate sensitivities, and optimize the physical design...

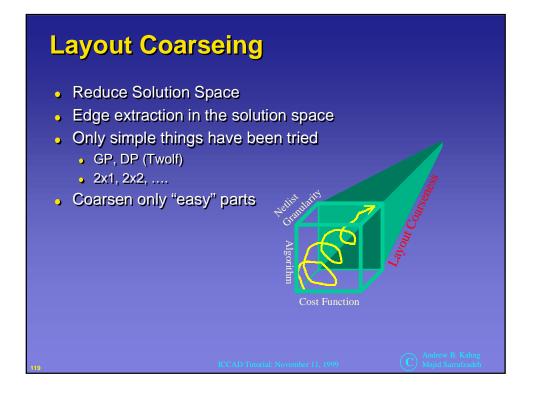




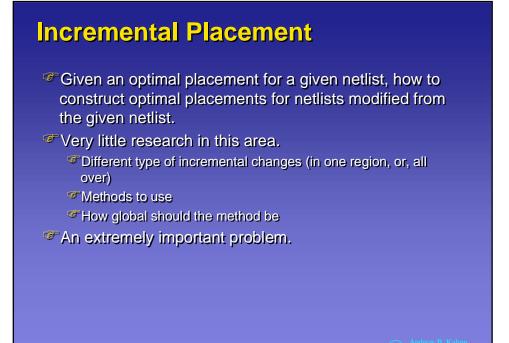
Netlist Granularity: Problem Size and Solution Space Size

The most challenging part of the placement problem is to solve a huge system within given amount of time "We need to effectively reduce the size of the solution space and/or reduce the problem size Netlist clustering: Edge extraction in the netlist

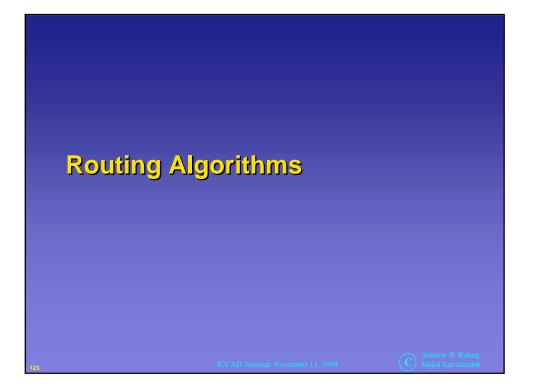



+1 Level Clustering Heuristics

- +1 level A: Use hMetis to get the net-cut optimized cell clusters at level h+1. Then perform the wirelength optimization at level h: Flat hMetis
- +1 level B: Use hMetis to get the net-cut optimized placement at level h. Then use hMetis to partition the subcircuit in each global bin into clusters. Then perform the wirelength optimization at level h: hierarchical (twolevel) hMetis
- +1 level C: Use hMetis to get the net-cut optimized placement at the first level h₁. Then use hMetis to keep partitioning until we reach level h+1. Then do clustering at level h+1 and perform the wirelength optimization back at level h. hierarchical (multi) hMetis


	2	× 2	4	×4	8	×8	16	6 × 16	32	× 32	
technique	WL	runtime	WL runtime		WL	runtime	WL	runtime	WL	runtime	
WL.fast	1472	501	1517	542	2125	511	3588	490	3505	542	
WL.slow	629	15709	703	16535	972	3834	879	14962	924	14846	
cut opt.	384	499	596	542	847	668	1082	961	1339	1453	
+1level A	409	262	737	244	1047	300	1313	384	1739	561	
+1level B	385	281	649	244	876	282	1051	326	1204	524	
+1level C	384	254	790	251	858	267	1028	323	1436	463	
Percentage of external nets vs. number of global bins: cut-only is good early-on, cut+WL later											

	2	× 2	4	×4	-	×8	-	6 × 16		× 32
technique	WL	runtime	WL	runtime	WL	runtime	WL	runtime	WL	runtime
WL.fast	1325	814	1472	716	1452	742	1472	724	1581	654
WL.slow	1077	1672	1173	1739	1064	1578	1350	1712	905	3241
cut opt.	225	355	319	363	409	411	496	424	656	533
+1level A	272	219	486	186	763	207	1017	260	1456	280
+1level B	310	217	406	179	516	196	656	215	765	262
+1level C	253	212	405	188	495	179	699	227	778	265
Wireleng	th and	runtime avqs	comp	arison be	etweer	differer	it appi	oaches fo	or avq	S
1 0.9- 0.8-	th and		comp		etweer	ı differer	ıt appı	oaches f	or avq	S



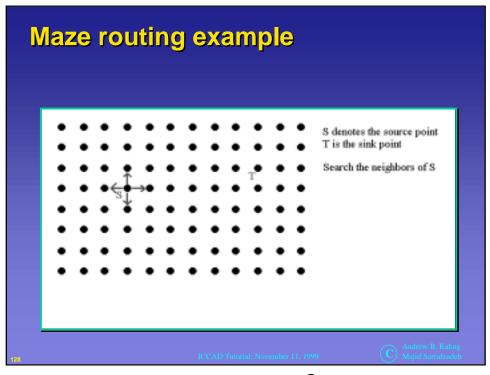
Incremental Placement

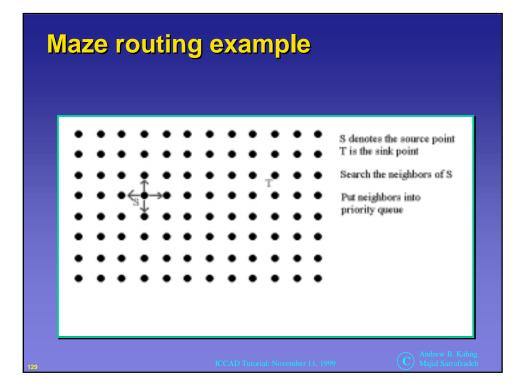
- A placement move changes the interconnect capacitance and resistance of the associated net
- A net topology approximation is required to estimate these changes

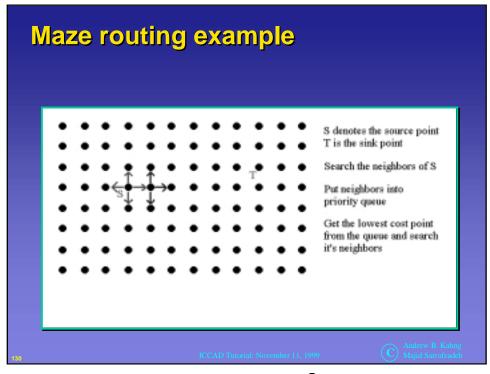
×	∔		\times		\times			Х
			¥	×		×		×
×			×	×	×		×	
		×			×	×	×	
×			×			×		×
		×		×	×		×	
×			×	×		×	×	
×	Γ		×		×		×	×

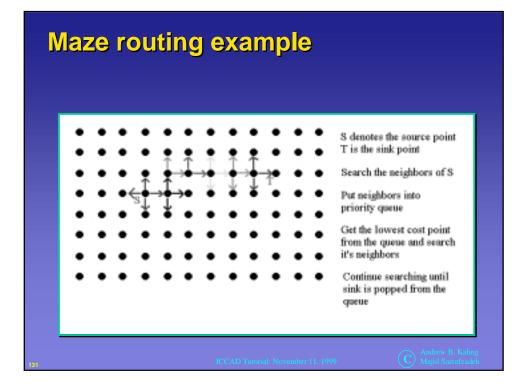
Maze Routing

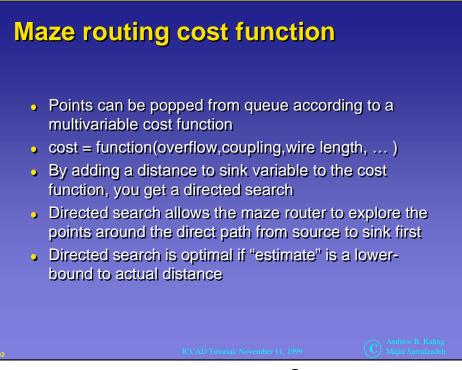

- Point by point routing of nets
- Route from source to sink
- Objective is to route all nets according to some cost function
- Most often, cost function tries to minimize congestion, route length, coupling, etc

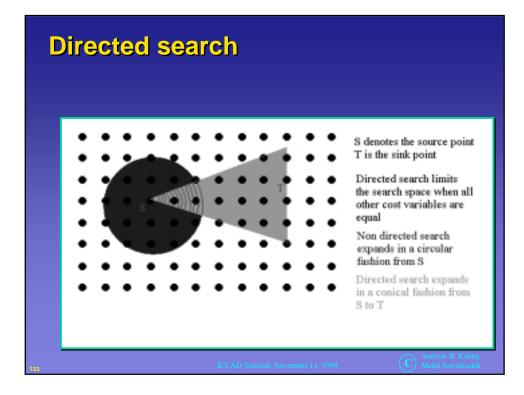

Maze routing algorithm

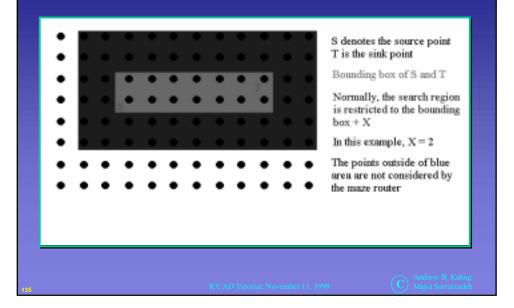

- Initialize priority queue Q, source S and sink T
- Place S in Q
- Get the lowest cost point X from Q, put neighbors of X in Q
- Repeat last step until lowest cost point X is equal to the sink T
- Rip and reroute nets


Rip and Reroute


- After all nets are routed, rip and reroute will select a number of nets based on a cost function to reroute
- Maze router focuses on minimizing congestion, therefore the rip and reroute finds nets that are routed through congested areas, removes net's routing and reroutes the net
- Rip and reroute is very important. It greatly improves the solution







Limiting the search region

- Since the majority of nets are routed within the bounding box defined by S and T, you can limit the number of points that the maze router will search to those within the bounding box
- This allows the maze router to finish sooner with little to no negative impact on the final routing cost
- Intuitively, you can see how this will decrease the runtime since the router will not consider points which are not likely to be on the route path. As stated before, any point outside the bounding box is unlikely to appear on the routing path

Restricting the search region

<section-header><section-header><section-header><list-item><list-item><list-item><complex-block><complex-block>

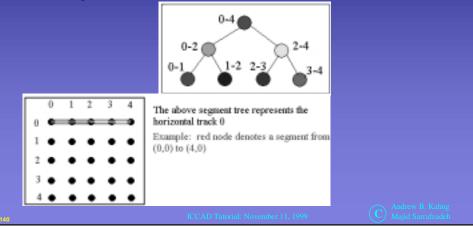
Experimental Results

- In our experiments, we tried using these templates for routing the n
- - Below, the overflow results when the x% largest nets are locked and l-shape route

				0 0			rminals by mst
filename	0%	5%	increase	5% ratio	10%	increase	10% ratio
p1.3	383	409	26	1.0678851	418	35	1.091383812
p2.3	675	874	199	1.2948148	947	272	1.402962963
avqs.2	3148	3870	722	1.229352	4150	1002	1.318297332
biomed.2	22	148	126	6.7272727	236	214	10.72727273
p1.2	70	104	34	1.4857143	105	35	1.5
p2.2	117	196	79	1.6752137	247	130	2.111111111
struct	233	280	47	1.2017167	331	98	1.420600858
biomed	3024	3307	283	1.0935847	3309	285	1.094246032
avqs	115	264	149	2.2956522	313	198	2.72173913
total	7787	9452	1665	n/a	10056	2269	n/a

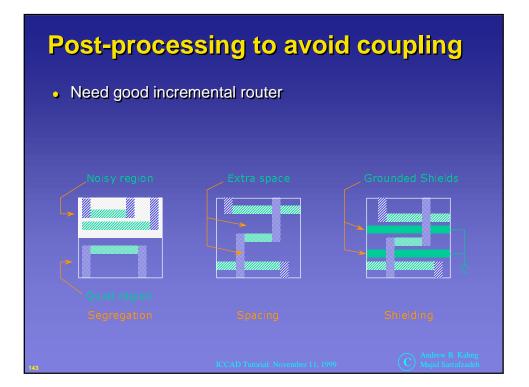
- The overflow results when the smallest x% (determined by bounding box) of the nets are l-shape routed. The remaining (1-x)% nets are maze routed. The smallest x% nets are locked i.e. they are not available for rip and reroute.
- The total time to route is reduced since 1-shaped routing completes faster than maze routing and the locked nets allow rip and reroute to finish quickly When x% = 0, this is pure maze routing. When x% = 100, every net is 1-shape routed An intuitive explanation: Since most of the routing of a net is done within it's bounding box, the nets with a small bounding box have little freedom with their routing. Thus, one of the 1 shaped routes will be a good explicition. On the other head, a large bounding

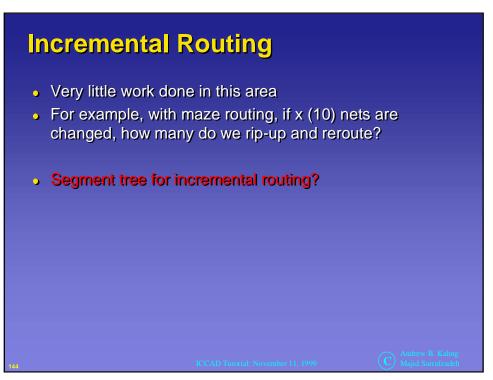
- box gives more freedom to find a low cost path and the restrictive l-shaped route only considers two paths. Therefore, the l-shaped route is likely a bad routing choice.


0	5	10	15	20	30	50	80	90	10
379	379	379	379	379	376	376	380	378	46
665	665	665	665	665	665	665	686	712	109
2960	2960	3033	3033	3012	3016	2926	3170	2907	522
15	15	15	15	15	15	15	15	16	64
71	71	71	71	71	71	74	74	71	15
109	109	109	109	109	109	109	115	108	31
210	210	210	212	212	213	227	309	408	61
2994	2994	2994	2994	2994	2994	2985	2965	2951	345
	379 665 2960 15 71 109 210	379 379 665 665 2960 2960 15 15 71 71 109 109 210 210	379 379 379 665 665 665 2960 2960 3033 15 15 15 71 71 71 109 109 109 210 210 210	379 379 379 379 665 665 665 665 2960 2960 3033 3033 15 15 15 15 71 71 71 71 109 109 109 109 210 210 210 212	379 379 379 379 665 665 665 665 2960 2960 3033 3033 3012 15 15 15 15 15 71 71 71 71 71 109 109 109 109 109 210 210 210 212 212	379 379 379 379 379 376 665 665 665 665 665 665 2960 2960 3033 3033 3012 3016 15 15 15 15 15 15 71 71 71 71 71 71 109 109 109 109 109 109 210 210 210 212 212 213	379 379 379 379 379 376 376 665 665 665 665 665 665 665 2960 2960 3033 3033 3012 3016 2926 15 15 15 15 15 15 15 71 71 71 71 71 74 74 109 109 109 109 109 109 109 109 210 210 212 212 213 227	379 379 379 379 379 376 376 380 665 665 665 666 666 666 666 666 666 666 666 667 668 630 303 3012 3016 2926 3170 15	379 379 379 379 379 376 376 380 378 665 665 665 665 665 665 666 712 2960 2960 3033 3033 3012 3016 2926 3170 2907 15 15 15 15 15 15 16 16 71 71 71 71 71 74 74 71 109 109 109 109 109 109 108 108 210 210 210 212 212 213 227 309 408

- If pattern route x% of the nets (where x is very small) same quality results is obtained
- Not much faster if the search graph is the same as maze routing graph (I.e. need to number grid points one-by-one)
- Need "super" data structures that allow quick jumps

- Store routing segments in binary trees for fast of segments and congestion
- Routing area is divided into m horizontal trees and n vertical segment trees where m and n are the width and height, respectively, of the routing area



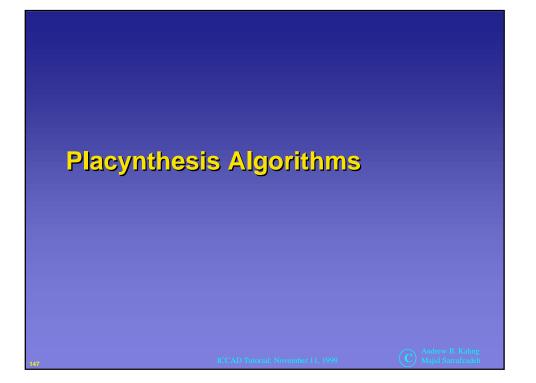

Segment Trees

- The number of segments of any node can be retrieved in log n time where n is the length of the routing track
- Segment trees give you a quick global view at the routing of the nets
- Allows you to route long z or L-shaped nets much faster than traditional grid approach
- On a 100x100 grid, segment trees will route an Lshaped net faster if the net has a bounding box perimeter greater than 40
- Therefore, we want to route long nets with segment trees if it yields a cost similar to that of traditional maze routing

Coupling

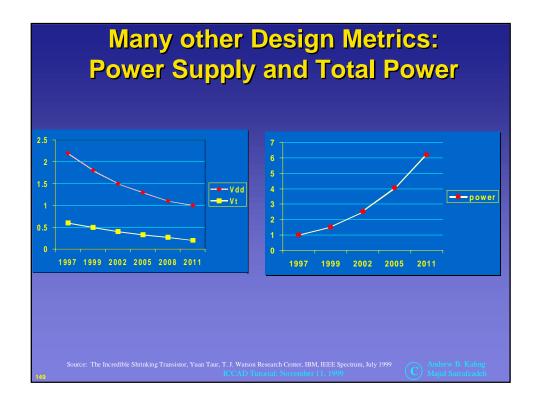
- As fabrication sizes get smaller, coupling plays a larger role in timing
- Therefore, we want to minimize the number of long nets that are close to each other (on same route track)
- Segment trees keep this information
- Ways of using segment trees to reduce coupling during global routing?

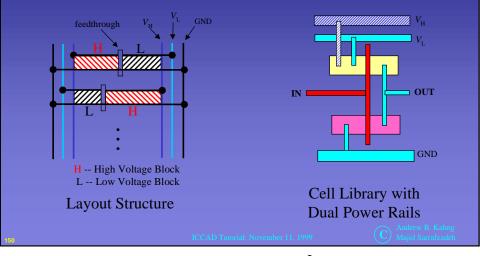
Routing


Requirements for the DSM Router:

- N-layer shape-based router
- Supports gridless and gridded routing
- Variable wire width for optimal delay constraints
- Cross-talk avoidance, antenna effects
- Clock tree sizing for tree balancing
- Power routing sizing for voltage drop and electromigration
- Power and clock routing resources reserved early
- Activity-based optimization

Conclusion


- Maze routing is very effective and used in industry
- Need to "pattern" route many nets
- Need the right data structure to support pattern routing


How to combine Placement & Synthesis

- Algorithmic challenges
- Does it make sense?
- Details in Part III
- There are "pure synthesis" operations
- And, there are placynthesis moves
- And there are "preliminary" placement moves (for cost function "smoothness").

Dual Voltages: A harder problem

 Layout synthesis with dual voltages: major geometric constraints

Conclusion

- There are so many problems that we do not understand.
- Innovation (in algorithms, methodology, tools, etc) needed in all facets.
- Modern physical design challenges are in fundamentals.