
September 03

Cadence Design Systems, Inc. © 2002 1

CADENCE CONFIDENTIAL

Design Flows for IP Integration:
A Tutorial

Grant Martin
Fellow, Cadence Berkeley Labs

Medea+ Design Automation Conference and European EDA Week:
5 November 2003, 10:15

2

Abstract

• The last few years have seen a considerable evolution in the use and reuse of
IP in system and SOC design. We have seen the emergence of a number of
different design flows and methodologies, depending on the characteristics
both of the IP and the end product. IP may be integrated at many different
levels ranging from hard layouts of digital and analogue/mixed-signal cores,
through re-synthesis of RTL designs, generation of parameterised
implementations or just the reuse of algorithmic IP at the system level. How
the IP gets integrated depends on the nature of the overall SoC design process
- a single pass ASIC design, block-based integration of IP into an ad-hoc or
fixed integration architecture, or perhaps application-oriented platform-based
design. This tutorial will give an overview of various approaches for IP
integration, and the issues associated with them, not neglecting the importance
of the verification flows which are the necessary adjunct to design integration.

September 03

Cadence Design Systems, Inc. © 2002 2

3

Outline

• The IP Integration Problem

• Integration Architectures

• Platform-Based Design IP Integration Design Flows

• Verification Integration Design Flows

• Physical Integration Design Flows

• The Business of IP Integration

4

IP Integration is a Question of Style(s)

Digital Dominant:
D/a

AMS Dominant:
A/dNoneAMS

EconomicsTime and SpaceControlIssues

HardFirmSoftLevel

Platform Based
Design

Block Based
Design

Single-pass
ASIC, ASSP or

Custom
Design Style

SoC PlatformPlanned Block
by Block

Ad-hoc Block by
BlockReuse Style

IP IntegratorSocketIP CreatorIP Duality

September 03

Cadence Design Systems, Inc. © 2002 3

5

SoC Requirements
Analysis

SoC
architecture

Communications
architecture

Choose
Processor(s)

System-Level Design:
•HW-SW partitioning
•System Modelling
•Performance Analysis

Acquisition of HW and SW IP

Build Transaction-Level
Golden Testbench

Configure and Floorplan
SoC HW microarchitecture

Define SW architecture

SW Assembly and
Implementation

HW and HW-SW
VerificationDFT Architecture

and Implementation HW IP Assembly and
Implementation

AMS HW
Implementation

Final SoC HW Assembly and Verification

Fabrication, Testing, Packaging, Lab Verification with SW

Algorithm design and
analysis

SoC Design Flow
IP

IP

IP

IP

VSI Design Methodology: IP Creation and
Integration

VSI VC IntegratorVC Provider

Verifica-
tion Flow

Bus
Functional
Verification

RTL
Functional
Verification

Gate
Functional
Verification

Performance
Verification

Final
Verification

System
Design

RTL
Design

Floorplanning
Synthesis
Placement

Routing

Verification
Flow

Creation
Flow

Data Sheet
ISA Model

Bus Functional
Models

RTL
SW Drivers

Functional Test
Test Bench

Synthesis Script
Timing Models
Floorplan Shell

Gate Netlist

Timing Shell
Clock
Power Shell

Test Vectors
Fault Coverage
Polygon Data

System
Modeling /
Analysis

System
Requirement
Generation

System
Integration

System
Characterizat.

Behavioral Models
Emulation Model
Eval. Test Bench

Interconnect Models
P&R Shell

Performance
Verification

Final
Verification

Bus
Functional
Verification

System
Design

RTL
Design

RTL
Functional
Verification

Floorplanning
Synthesis
Placement

Routing

Gate
Functional
Verification

Soft
VC

Hard
VC

V
S
I

Firm
VC

September 03

Cadence Design Systems, Inc. © 2002 4

7

Integration Architectures
• You’ll need

– an SoC Infrastructure

– Functional IP

– Verification IP

– Interconnect (Bus
System) IP

– …...

– Global concepts

– Interrupt System

– Clocking System

– Design For Test

– On Chip Debug
System

– ……

– Helpful:

– One company-wide
design system that allows
reuse of

– EDA scripts
(synthesis,….)

– Tool specific view
libraries

– Management Tools

– Bug Tracking System

– Clear Versioning Process

– …..

Acknowledgements to Michael Payer, Infineon Technologies AG

8

Integration Architectures: Levels and
Approaches

• By System Model

• By Verification Model

• By Physical Architecture Planning

• By Hard Block

• By Configuration

September 03

Cadence Design Systems, Inc. © 2002 5

9

By System Modelling (SystemC)

Source: Jon Connell, ARM: DAC 2002 Open System C Meeting: “Platform Modelling for System Design Using SystemC”

10

By Verification Modelling
(The Functional Virtual Prototype (FVP))

• Executable specification
– Transaction-level: 100x RTL speed

– Architectural performance analysis

• Golden verification environment
– Transaction coverage

– Block-level reference models

– Integration vehicle

• Early handoff vehicle
– Embedded sw development

– System design-in

S
tim

ul
us

ge
ne

ra
to

r

µP DSP IP

digital digital analog

RAM digital RF

Application checkers

Functional Virtual Prototype

FVP becomes the SVP

Silicon Virtual Prototype

R
es

po
ns

e
ge

ne
ra

to
r

September 03

Cadence Design Systems, Inc. © 2002 6

11

By Physical Architecture Planning
(Block-Based Design)

Tasks designed and sequenced to minimize interaction/iteration

• Focus on integration
of “hard” VCs

• Standardize delivery
mechanism

• Enables mixed-signal
virtual components

Hard Virtual
Components

By Hard Block
(VSI “Hard” VC Methodology)

Bus Functional
Verification

Final
Verification

System Design

Verification
Flow

Creation
Flow

VC IntegratorVC Provider

System
Modeling/
Analysis

System
Requirement
Generation

System
Integration

System
Character-

ization

No flow for Analog
Blocks

Black Box
(Hard blocks only)

2.3 System
Design

Information

2.1 User Guide
2.A1 Process

Definition

2.2 System
Architecture
Information

2.5 Test
Information

2.6 Physical
Block Information

Analog/MxSg
VSI Extension

Black Box

Black Box

V
S
I

Acknowledgements to Henry Chang, Cadence

September 03

Cadence Design Systems, Inc. © 2002 7

13

By Configuration: (Altera SOPC Builder)

Source: Altera web site www.altera.com

14

Platform-Based Design Integration Design Flows

• Platform Based Design is an organized method to reduce the time required and
risk involved in designing and verifying a complex SoC, by heavy reuse of
combinations of hardware and software IP. Rather than looking at IP reuse in a
block by block manner, platform-based design aggregates groups of components
into a reusable platform architecture.

Application
Space

MEM

CPU

Scalable On-Chip Architectures

Reconfigurable

Software IP

Semiconductor IP

HW-SW relatively fixed Kernel

HW-SW Customizable Region

FPGA regions

Semiconductor IP can be hard, soft, or firm; analog or digital
Software IP can be source or object

Embedded SW Architecture

September 03

Cadence Design Systems, Inc. © 2002 8

15

Platform Alternatives
Texas Instruments

OMAP

Full Application

DSP MPEGCPUDMA

C MEM I O

SONICs

RAM ROM

AHB

ARM Wrapper
(API Support)

Memory
Controller DMA

B
R
I

D
G
E

ARM940T CPU
(ISS Integration)Cache

APB

Interrupt
Controller

ASIC
(CUSTOM IP)

Counter 1TImer
Counter 1

RAM ROM

AHB

ARM Wrapper
(API Support)

Memory
Controller DMA

B
R
I

D
G
E

ARM940T CPU
(ISS Integration)Cache
ARM940T CPU

(ISS Integration)Cache

APB

Interrupt
Controller

ASIC
(CUSTOM IP)

Counter 1TImer
Counter 1

Processor-Centric

ARM Micropack

Communications-Centric

Xilinx Vertex II
Platform FPGA

Highly-Programmable

16

Where Did Platform-Based Design
Come From?

• For SoC’s, Platform-Based Design is the next logical evolution in Design Reuse.

• In TDD, Reuse in ASIC design is of Cell-level Libraries

• In BBD, Reuse in hierarchical design is of major IP Blocks (e.g., digital blocks built out of
standard cells)

• In SOC, Reuse is of Collections of IP blocks organised into HW-SW architectures: also
known as Integration Platforms

September 03

Cadence Design Systems, Inc. © 2002 9

17

integration platform

CORE

software

Future Derivative
Requirements

on chip bus arch.
test arch.
power arch.
clock arch.

new functions

Rapid Derivative
Development

Product Generations

Motivation: Rapid, Low-Risk,
High-Quality Derivative Design

18

THE PLATFORM DESIGN CHAIN

unknownXilinx Vertex II

Philips Electronics, Viewsonic
Corporation, Microsoft PocketPC

Intel Xscale (general
purpose)

RTX Telecom, Solomon Group,
Giga Telecom, Benq, Eastcom,
Compal Communication

Motorola Wireless i.250

eAnywhereInfineon Wireless

Philips Electronics, AcerPhilips Nexperia
(multimedia)

Acer, Ericsson, Nokia, Sony, TI,
Handspring

TI OMAP (portable
multimedia)

Sanyo, STMicroelectronics,ARM PrimeXsys (general
purpose)

Platform UserPlatform Creator IP Creator owns platform
Platform User is IDM & System

IDM owns platform
Platform User is
themselves & System

IDM owns platform
Platform User is System

• The platform creator and user can be different depending on the
composition of the platform

IDM owns platform,
Platform user is anyoneThere could also be a software-level platform, e.g. Palm

September 03

Cadence Design Systems, Inc. © 2002 10

19

DESIGN CHAIN AND PLATFORM
EXAMPLE

IP block
providers (ICs
and operating

systems)

Semiconductor
houses (with
fabrication
facilities)

Semiconductor
houses (without

fabrication
facilities)

Pure-play
foundries

System
houses

IP Block
providers

(applications and
middleware)

Source: Martin, G.; Schirrmeister, F., “A design chain for embedded systems,”
IEEE Computer magazine, Volume: 35 Issue: 3, 3/2002

Platform
Creator

Builders of Derivative Designs
(“Platform User”)Example: OMAP

(Open Multimedia Applications Platform)

SW IP: DSP BIOS, Linux
MS WinCE & Pocket PC, Palm OS, etc.

SemiIP: ARM

AM Road Electronics, General Packet Radio Service,
Microsoft, PacketVideo, Real Networks, etc.

Acer, Ericsson, Nokia, Sony,
TI, Handspring

TI

20

Platform User Types – Impact on IP-Based
Design Flows
“Power User”

– differentiates at all levels – software and hardware

– Develops additional custom hardware and software components

“Platform Differentiator”
– differentiates at the application level

– develops processor Application Software

– Uses existing libraries as hardware accelerators

“Complete Package User”
– expects complete solution (hardware and software)

– limited additional development and differentiations

September 03

Cadence Design Systems, Inc. © 2002 11

21

Platform Design Methodologies:
Platform Stacks Application

Architecture

System Platform

Silicon Implementation

Silicon Implementation Platform

Architecture Platform
Instance

Silicom Implementation
Platform Instance

22

Front-End Acceptance

System Co-Design (Function-Arch Partitioning & Mapping)

Hardware Design
Clock, Bus, Test,

Power, Timing Arch
Block Authoring,
Collaring

Chip Integration

Software
Design
Arch

Code
Author

IP
Data-
base Veri-

fication
HW/SW
Formal
Cycle
Event

Mixed-Signal

Rapid
Proto-
type

Process
Monitor-

ing &
Regulating

Con-
straint
Mgmt

Exper-
ience
base

DFT

Inte-
gration

Platform

Check-0ut Process

AMS
Blocks

Develop
Metrics/
Models

Platform-Based Design Extends an SOC
Design Methodology

• Additional, incremental IP Design and
Integration Issues

September 03

Cadence Design Systems, Inc. © 2002 12

23

Platform-based Methodology for
SoC Design

Define the Platform
Design Methodology
(PDM)

Define the Derivative
Design Methodology
(DDM)

Design the Integration
Platform using the
PDM

Use the Integration
Platform and the DDM
to Design Derivative
SOC Device

24

Platform-Based SOC Methodology
Derivative Product

Requirements

Block Authoring

H/WESW AMS

Block Authoring

Platform
System Design

H/W Design ESW Design Functional
Verification

Field of
Experience

Product Family Requirements
Industry Standards

PDM: Platform Design
Methodology

H/W Design ESW Design Functional
Verification

Product
System Design

Select Platform

Device
Fabrication

Test &
Debug

Product
Manufacture

DDM: Derivative
Design

Methodology
VCL

Infrastructure

3rd Party IP

IPMS

September 03

Cadence Design Systems, Inc. © 2002 13

25

Implement
Platform
Architectures &
IP Portfolio

TestbenchHW Inter-
face SW

Generate Platform Models, and Deliverables:
Install in Applications-Oriented Platform Libraries

Rapid
Prototype

Co-verification

Communications Detail, Generate Architectures

Design Platform at Systems Level

Product Family Requirements Standards Evolution

Identify Platform Architecture and Contents

Platform Design Methodology (PDM)

Platform
Co-design

26

Post-design
Fab SW Assemble

Lab Integration

Debug

(rom)

System
Co-design

Derivative
Product
Implementation

Derivative Design Methodology (DDM)

TestbenchHW Inter-
face SW Rapid

Prototype
Co-verification

Front-End Design: Modify platform and system design and analysis

Front-End Acceptance: Select platform as base

Refine, Links to Implementation

Product Requirements
Platform
Libraries

September 03

Cadence Design Systems, Inc. © 2002 14

27

What is Needed to Support
Platform-Based Design?

To be usable, a platform at any level exists as a black box, with:

– a real implementation;

– a definable, complete architectural description (AD) (at least derivable
from the implementation);

– a complete and accurate set of models describing its actual behavior
(this may be redundant with the AD, or the AD may call for more
models than yet exist);

– a set of tools to permit integration of the platform model into the model
of a higher level system;

– a set of tools to permit integration of the real platform implementation
into the implementation of a higher level system.

Source: VSIA Platform-Based Design Study Group, January 2002

28

CoWare N2C: Commercial PBD design tool

September 03

Cadence Design Systems, Inc. © 2002 15

29

Mentor Platform Express: Commercial PBD tool

30

Verification IP Integration Based Design

Verification
Based
Design

Unified Verification
Environment

Architectural

Simulation

Emulation

Prototype

Software
Development

Processor
IP

User
Input

Rules
Project
Data

Bus Fabric
IP

User IP

September 03

Cadence Design Systems, Inc. © 2002 16

31

FVP Features: Design Space Exploration

Programmable Sweep of Parameters
Cache Memory Size
Number of DMA Channels
FIFO/Buffer depths for custom blocks
Power Estimation
Die size
Etc.

Parameter Sweep Results
Increase Memory Size – See Results

32

Functional Verification

• A verification methodology
optimised for verification-based
that:

– Increases reuse of functional
testbench components

– From block through sub-system to chip
and full system

– From one design to derivative designs

– Establishes functional coverage criteria

– using transaction level coverage metrics

– Improves debug time

– through transaction level debug

System Testbench

IP2

IP2 Testbench

10%?

IP1

IP1 Testbench

5%?

TB Reuse

IP1

IP3

IP2

UB1

UB
2

IP3

IP3 Testbench 15%?

September 03

Cadence Design Systems, Inc. © 2002 17

33

Derivative Design Verification
• An interface change

– No functional change

DUV1Master
TVM

Response Checker1

Stimulus
Generator

Monitor
TVM

Monitor
TVM

DUV2

Response Checker2

PCI
Monitor

TVM

PCI
Slave
TVMPCI

Original Design

Derivative Design

Master
TVM

Response Checker1

Stimulus
Generator

Monitor
TVM

Monitor
TVM

Response Checker2

AGP
Monitor

TVM

AGP
Slave
TVM

DUV1 DUV2
AGP

34

Physical Integration Design Flows: a
harmonious variety of implementation
architectures

September 03

Cadence Design Systems, Inc. © 2002 18

35

Bus (On-Chip Communications Network) Planning
• Possible Hierarchy of On-Chip Buses:

– System
– Processor Sub-system
– Peripheral

• Use of standardised bus architectures
– Interface Wrappers: e.g. VSIA Virtual

Component Interface (VCI)
– Physical implementation of bus

architecture has performance impacts
– e.g. invariant timing using fixed
buffer interfaces

• Separation of Kernel (FB) from buses with
bridges and interfaces reduces
implementation and verification effort

• Bus hierarchy matches bandwidths and
latency requirements to IP block needs

36

Timing and Clocking Architecture
• Three types of clock domains are typical

– System clock domain - fastest requirements

– Processor clock domains for each processor subsystem

– Peripheral clock domain (standard bus)

– Others might include asynchronous clock domain for peripherals and
additional bus domains

• Clock Gating
– Power reduction – either by slow-down of processing where possible or

power-down of whole sub-systems when idle (dynamic or statically
scheduled)

– Under system or software control

• Compatibility of clock domains
– A variety of methods to ensure synchronisation of clock domains

– For example, “13” is a magic number in GSM systems

September 03

Cadence Design Systems, Inc. © 2002 19

37

One SoC Clocking architecture concept
• Allow all components of an SoC to run with an individual speed in a

purely synchronous design
• Implementation via a decentralized clock gating concept and a single

central clock source
– Decentralized concept offers greater flexibility than a purely central

approach
• Basic to this concept

– 1 unique clock running with the highest frequency (system clock) used
inside the SoC

– Routed as a balanced clock tree all over the chip
– System clock is assumed to be used for synthesis of all blocks

• Every component of the SoC (CPU, bus, peripherals) derives its clocks from
this system clock

– by pulse swallowing
– using clock gating cells

38

Physical Layout Architecture Using a
“Foundation Block Structure”

• Bus interface buffers in hard portion of foundation blocks (fixed IP
kernel)

• Foundation block collar contains assigned Virtual Component
interface logic

• VC Interface pins must be relocate in collar

September 03

Cadence Design Systems, Inc. © 2002 20

39

Hybrid DFT Architecture

• Scan

• BIST

• ATPG

• Functional

• Legacy

• Interconnected Using JTAG 1149.1 interfaces into a
Hybrid Test Architecture

• IP Blocks may use individual test methodologies but
they are all interconnected into the standard SoC test
architecture using the common interface

40

• New kinds of SoCs
– AMS blocks cannot be treated as

black boxes

– Large AMS content

– Constraints imposed from AMS
design are strong

– IC Design controlled by the analog
designer, who “owns” the chip and
its integration

• Requires digital (SP&R)
technologies- treated as a black
box

• Can call this “A/d” SoC as
opposed to “D” or “D/a”

10/100
base-TRF Transceiver

Custom
DSP

RAM

ROM

µP
Application

Specific
Logic

Test

USB
PLLComplex

AMS

The AMS SoC Architecture

September 03

Cadence Design Systems, Inc. © 2002 21

41

Infineon E-Gold PMB7860 AMS Derivative

42

Chip Planning: Basic Guidelines for
incorporating AMS IP

• Controlling substrate noise
• Controlling noise around the periphery of an analog block
• Avoid routing over the analog block
• Controlling noise in the power rails
• Placing analog block far away from the noisy digital block
• Placing metal shielding completely around and over analog block
• Controlling cross talk noise within analog buses
• Limiting the length of the wire can deter the signal buses from

attracting noise
• Controlling cross talk noise in the I/O rings
• Use of standards in AMS IP Creation and Integration

September 03

Cadence Design Systems, Inc. © 2002 22

VSI Alliance: I/V and Mixed-Signal
Standards

• Implementation / Verification

– Phase 1: Hard VCs

– Phase 2: Soft VCs

– Phase 3: Firm VCs

• “Hard is easy, soft is hard”

Portability

Aristo Technology

• Mixed-Signal
– Extend work of other

DWGs for AMS VCs
– Phase 1: Hard AMS VCs
– Phase 2: System-Level

Design w/AMS VCs

VSIA AMS Extensions

VSI Arch
&

I/V

Extend
for AMS

Section Deliverable Commonly
Used Formats

VSI Format(s) Hard Comments

2.6.A22 Interconnect Specifications

2.6.A22.1 Special Hookup Guidelines document document M

2.6.A22.2 Routing Constraints document document M

2.6.A22.3 Special Pin Requirements document document M

2.6.A22.4 Additional Power, Ground, and
Substrate Interconnect Constraints

document document M

Section Deliverable
Currently Used

Formats
VSI Format(s)

Hard Comments

 2.6 Physical Block Implementation

 2.6.1* Block description GDSII, LEF GDSII M

 2.6.2* Pin list/placement LEF VC LEF M Required if Hard
is netlist based

 2.6.3* Porosity/blockage file LEF VC LEF M

 2.6.4* Footprint LEF VC LEF M

 2.6.5* Power/ground LEF/document VC LEF M

 2.6.7* Physical Netlist Spice3 netlist
format, Verilog-A

Emerging: VHDL-
AMS

VC Hspice CM

September 03

Cadence Design Systems, Inc. © 2002 23

45

The Business of IP Integration

46

IP Qualification
• Some industry standards – MORE, OpenMORE, VSIA Quality DWG

(Quality IP Metric)

• Self-applied: publicity

• Lack of 3rd party certification

• Many organisations certify incoming IP quality themselves

• 3rd party providers rely more on reputation than facts – their customers
must provide the facts:

– “Measuring IP quality costs time and effort. Many of the large system and
semiconductor companies have spent the last seven years creating in-house
IP quality procedures, and a number of them claim it costs as much as 3 man-
months to verify the quality of one single piece of IP.”

– Larry Cooke, “Why we don’t have IP quality yet”, EEDesign (online), July 24, 2003

• Conclusion – there is no current substitute for inspecting, QA’ing and
certifying incoming 3rd party IP yourself

September 03

Cadence Design Systems, Inc. © 2002 24

47

Conclusion
• IP reuse remains one of the big design challenges

• Design Flows for IP Integration depend on:

– Reuse style

– Design style

– Level of Integration

• Platform-based design is one approach to integration that
promotes high levels of reuse

– Software as well as hardware architectures

• The business and standards aspects of IP Integration have a
big impact on the design flows

