
Synopsys FPGA Synthesis
Synplify Pro
Quick Start Guide
June 2009

http://solvnet.synopsys.com

LO

2 Synplify Pro Quick Start Guide, June 2009

Disclaimer of Warranty
Synopsys, Inc. makes no representations or warranties, either expressed or
implied, by or with respect to anything in this manual, and shall not be liable
for any implied warranties of merchantability or fitness for a particular
purpose of for any indirect, special or consequential damages.

Copyright Notice
Copyright © 2009 Synopsys, Inc. All Rights Reserved.

Synopsys software products contain certain confidential information of
Synopsys, Inc. Use of this copyright notice is precautionary and does not
imply publication or disclosure. No part of this publication may be repro-
duced, transmitted, transcribed, stored in a retrieval system, or translated
into any language in any form by any means without the prior written
permission of Synopsys, Inc. While every precaution has been taken in the
preparation of this book, Synopsys, Inc. assumes no responsibility for errors
or omissions. This publication and the features described herein are subject
to change without notice.

Trademarks

Registered Trademarks (®)
Synopsys, AMPS, Astro, Behavior Extracting Synthesis Technology, Cadabra,
CATS, Certify, Design Compiler, DesignWare, Formality, HDL Analyst,
HSPICE, Identify, iN-Phase, Leda, MAST, ModelTools, NanoSim, OpenVera,
PathMill, Physical Compiler, PrimeTime, SiVL, SCOPE, Simply Better Results,
SNUG, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify Pro,
Synthesis Constraints Optimization Environment, TetraMAX, VCS, Vera, and
YIELDirector are registered trademarks of Synopsys, Inc.

Trademarks (™)
AFGen, Apollo, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves, BEST, Columbia,
Columbia-CE, Confirma, Cosmos, CosmosLE, CosmosScope, CRITIC, DC
Expert, DC Professional, DC Ultra, Design Analyzer, Design Vision, Design-
erHDL, DesignPower, Direct Silicon Access, Discovery, Eclypse, Encore,
EPIC, Galaxy, HANEX, HAPS, HapsTrak, HDL Compiler, Hercules, Hierar-

Synplify Pro Quick Start Guide, June 2009 3

chical Optimization Technology, High-performance ASIC Prototyping System,
HSIM, HSIMplus, i-Virtual Stepper, IICE, in-Sync, iN-Tandem, Jupiter,
Jupiter-DP, JupiterXT, JupiterXT-ASIC, Liberty, Libra-Passport, Library
Compiler, Magellan, Mars, Mars-Rail, Mars-Xtalk, Milkyway, ModelSource,
Module Compiler, MultiPoint, Physical Analyst, Planet, Planet-PL, Polaris,
Power Compiler, Raphael, Saturn, Scirocco, Scirocco-i, Star-RCXT,
Star-SimXT, System Compiler, System Designer, Taurus, TotalRecall,
TSUPREM-4, VCS Express, VCSi, VHDL Compiler, VirSim, and VMC are
trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under
license. ARM and AMBA are registered trademarks of ARM Limited. Saber is a
registered trademark of SabreMark Limited Partnership and is used under
license. All other product or company names may be trademarks of their
respective owners.

Restricted Rights Legend
Government Users: Use, reproduction, release, modification, or disclosure of
this commercial computer software, or of any related documentation of any
kind, is restricted in accordance with FAR 12.212 and DFARS 227.7202, and
further restricted by the Synopsys Software License and Maintenance
Agreement. Synopsys, Inc., Synplicity Business Group, 600 West California
Avenue, Sunnyvale, CA 94086, U. S. A.

Printed in the U.S.A
June 2009

LO

4 Synplify Pro Quick Start Guide, June 2009

Synplify Pro Quick Start Guide, June 2009 5

Contents

Chapter 1: Quick Start Overview

Chapter 2: Process Flow
Top-Down and Compile Point Design Flows . 13

Chapter 3: Set up Design Information
Select a Target Device 16

Set Implementation Options . 17
State Machine Implementation . 17
Resource Sharing . 18
Pipelining . 18
Retiming . 19
Formal Verification . 20

Chapter 4: Set up Timing Information
Set Timing Constraints . 24

Define Compile Points . 25

Set Constraints (Compile Point Synthesis) . 26
Set Top-level Constraints . 26
Set Compile Point Constraints . 26

Run . 28

Chapter 5: Analyze Results
View the Log File . 31

RTL View . 32
Technology View . 33
Design Hierarchy Exploration Tools . 33
Advanced Find Capabilities . 36
Filtered and Flattened Views . 37
Crossprobing Across Views . 41

LO

: Contents

6 Synplify Pro Quick Start Guide, June 2009

Cross-tool Crossprobing . 42
Other Options . 43
Mouse Strokes . 44

Use FSM Viewer . 45

Other Tools to Validate Synthesis Results . 48
Use Formal Verification . 48
Use syn_probe Attribute . 49
Identify RTL debugger . 49

Chapter 6: Specify Directives and Attributes
syn_maxfan . 52
syn_keep . 52
syn_ramstyle . 53

Chapter 7: Basics of Timing Constraints
Example . 57
Input Ports . 62
Output Ports . 64
Setting Multicycle Path Constraints . 66

Chapter 8: Analyze Timing Results
Timing Information Display . 71

Critical Path Views . 71
Generate a Technology View for the Most Critical Path 72
Generate Critical Path View in the Timing Analyzer . 73
Generate Critical Path View from the Log File . 76

Chapter 9: Refine Options to Improve Timing
Compare Synthesis Results with Place-and Route Results 80
Add Route Delay Constraints . 81

Forward Annotate Incremental Results . 82

Chapter 10: Additional Features and Topics
Output Netlist . 87

Synplify Pro Quick Start Guide, June 2009 7

C H A P T E R 1

Quick Start Overview

What does the Synplify Pro software Offer? — The Synplify Pro software
consists of a fast, high-performance, sophisticated logic synthesis engine that
utilizes proprietary technology called Behavior Extracting Synthesis
Technology® (BESTTM) to deliver highly efficient FPGA and CPLD designs.
Starting with Verilog and VHDL hardware description language input files,
the software generates an optimized netlist in the most popular CPLD and
FPGA vendor formats.

Who Will Find This Guide Useful? — This guide provides the steps and
options of a design flow and can be used by:

• Engineers who want to evaluate the software without actually running
it. The guide includes many graphic examples that show the capabilities
of the software.

• Engineers who want to get a quick start to run synthesis.

• Managers who want to understand the capabilities and features of the
software before purchasing.

How is the information organized? — The document is organized as
described below. You can click on the links in the columns to take you to the
sections:

LO

Chapter 1: Quick Start Overview

8 Synplify Pro Quick Start Guide, June 2009

Describes... Page

Process Flow The top-down and Compile Point
Synthesis flows.

11

Set up Design Information The steps used to set up your project
for Synplify Pro synthesis.

15

Add Source Files 15

Select a Target Device 16

Set Implementation Options 17

Set up Timing Information How to set general timing
constraints and define compile
points for the Compile Point
Synthesis flow.

23

Set Timing Constraints 24

Define Compile Points 25

Set Constraints (Compile Point
Synthesis)

26

Run How to synthesize the design. 28

Analyze Results How to view the synthesis results
using the log file and some built-in
tools like the HDL Analyst tool for
graphic analysis and the FSM viewer
for state machine implementations.
Also describes how to formally verify
your results with LEC.

29

View the Log File 31

Use the HDL Analyst® Tool 31

Use FSM Viewer 45

Other Tools to Validate Synthesis
Results

48

Use Formal Verification 48

Use syn_probe Attribute 49

Identify RTL debugger 49

Specify Directives and Attributes How to use attributes and directives
to fine-tune the way the design is
synthesized.

51

syn_maxfan 52

syn_keep 52

syn_ramstyle 53

Chapter 1: Quick Start Overview

Synplify Pro Quick Start Guide, June 2009 9

Basics of Timing Constraints Basic timing concepts used in the
Synplify Pro tool.

55

Specifying Timing Information 55

Clock Descriptions 56

Clock Groups 59

Rise and Fall Constraints 60

Input and Output Delays 61

Multicycle Paths 65

I/O Standard 67

Analyze Timing Results How to analyze timing results and
use options to improve timing.

69

Critical Path Report 69

Timing Information Display 71

Critical Path Analysis in a Technology
View

71

Refine Options to Improve Timing 79

Refine Timing Results 79

Compare Synthesis Results with
Place-and Route Results

80

Forward Annotate Incremental
Results

How to forward annotate
incremental results (updates) in a
Compile Point Synthesis flow so that
your complete design project is
up-to-date.

82

Describes... Page

LO

Chapter 1: Quick Start Overview

10 Synplify Pro Quick Start Guide, June 2009

Additional Features and Topics: Additional features and options for
synthesis.

85

Synplify Premier Physical Synthesis

Synthesis Output Files

Using Multiple Clock Domains

Using Scripts and Batch Mode

Using the Tcl Find Command for
Setting Constraints

Running Place and Route

Using Identify with Synplify Pro

Describes... Page

Synplify Pro Quick Start Guide, June 2009 11

C H A P T E R 2

Process Flow

The Synplify Pro software is designed to give you the best overall circuit
performance with a minimal amount of effort.

Topics include the following process flows:

• Process Flow Diagram, on page 11

• Top-Down and Compile Point Design Flows, on page 13

Process Flow Diagram
The following figure shows you two Synplify Pro flows with simple steps to
trade off between timing and area to help you reach your goals quickly.

The top-down flow is the traditional synthesis flow with a global approach to
synthesis. With the Compile Point Synthesis flow, you can design incremen-
tally and synthesize only what is necessary.

LO

Chapter 2: Process Flow Process Flow Diagram

12 Synplify Pro Quick Start Guide, June 2009

Compile Point Synthesis FlowTop-Down Flow

Run

Set Timing Constraints

Add Source Files

Run

Add Source Files

Select a Target Device
Set Implementation Options

Define Compile Points
Set Constraints (Compile

View the Log File
Use the HDL Analyst® Tool

Use FSM Viewer
Other Tools to Validate

Synthesis Results

Forward Annotate
Incremental Results

Meets requirements?
No

Yes

Analyze
Timing
Results

Analyze implementation results
View the Log File

Use the HDL Analyst® Tool
Use FSM Viewer

Other Tools to Validate
Synthesis Results

Meets requirements?
No

Yes

Specify Directives
and Attributes

Refine Options to
Improve Timing

Select a Target Device
Set Implementation Options

Set up design information Set up design information

Set up timing information

Analyze implementation results

Analyze
Timing
Results

Specify Directives
and Attributes

Refine Options to
Improve Timing

Top-Down and Compile Point Design Flows Chapter 2: Process Flow

Synplify Pro Quick Start Guide, June 2009 13

Top-Down and Compile Point Design Flows
A Compile Point Synthesis flow differs from a traditional top-down flow in that
it divides the design into parts that can be processed independently or
synthesized incrementally, using a team design approach. Unlike other
bottom-up solutions, it is highly automated and eliminates the need for time
consuming and error prone scripts. Compile point synthesis is based on
compile points, which are smaller synthesis units of the main design that are
treated as individual blocks.

The Compile Point Synthesis flow is available for certain design families.
Check the Device tab of the Implementation Options dialog box for applicable
technology families. For Altera designs, you can use this flow with the Altera
Quartus II Incremental Compilation methodology to preserve design imple-
mentation data so as to make incremental place and route updates. Similarly,
you can use the Xilinx Incremental flows with the place-and-route tool for
team-based design. See the Synplify Pro software documentation and the
appropriate application notes for details.

LO

Chapter 2: Process Flow Top-Down and Compile Point Design Flows

14 Synplify Pro Quick Start Guide, June 2009

Synplify Pro Quick Start Guide, June 2009 15

C H A P T E R 3

Set up Design Information

There are three basic tasks involved in setting up a design. Both the top-down
and Compile Point Synthesis flows use the same design setup. Topics
include:

• Add Source Files, on page 15

• Select a Target Device, on page 16

• Set Implementation Options, on page 17

Add Source Files
After you have installed the software, set up the design project. Then, add
source files.

Source files need to be ordered such that the top-level file is last in the source
file list. If you have mixed language source files (a combination of Verilog and
VHDL files), specify the top-level file using Implementation Options ->Verilog or
VHDL tab, as shown below.

Project file

Source files, with
top-level file last

LO

Chapter 3: Set up Design Information Add Source Files

16 Synplify Pro Quick Start Guide, June 2009

Select a Target Device

Choose the technology family using the Device panel of the Implementation
Options dialog box. Select the part, package, and speed grade, as applicable.
Remember that the speed grade you choose has a direct impact on timing
estimates. For the Compile Point Synthesis flow, you must select an appro-
priate technology family.

Set Implementation Options

Set Implementation Options Chapter 3: Set up Design Information

Synplify Pro Quick Start Guide, June 2009 17

Set Implementation Options
Set options for the synthesis run from the Options tab of the Implementation
Options dialog box. Some of the global options that influence the tradeoff
between speed and area include:

• State Machine Implementation

• Resource Sharing

• Pipelining

• Retiming

Some of these options can also be set on a per instance basis.

Formal Verification is a global option that provides a netlist compatible with
the Cadence ConformalTM Equivalence Checker tool for design verification.

State Machine Implementation
Use the FSM Compiler and the FSM Explorer to automatically select encoding
styles that determine how the state machines are implemented. The encoding
style affects timing estimates. You also can define state machine implementa-
tions for individual instances using attributes such as syn_encoding. You
enable these options by selecting the FSM Compiler and FSM Explorer check
boxes on the left side of the Project view.

Do you want to automatically
optimize state machines, based
on the number of states? Yes

No

Do you want the software to pick
the best encoding style, based on
surrounding logic and timing?

YesNo

Set other options

LO

Chapter 3: Set up Design Information Set Implementation Options

18 Synplify Pro Quick Start Guide, June 2009

Resource Sharing
Resource sharing is another option that influences the tradeoff between
speed and area. Turn on this option when you want to optimize area. You
enable this option by selecting the Resource Sharing check box on the left side
of the Project view.

Pipelining
Pipelining is available for certain device families only. Check the Device or
Options tab of the Implementation Options dialog box for applicable
technology families. You can either set the options globally or on individual
registers.

Pipelining is the process of moving adjacent registers into multipliers or
ROMs so as to increase throughput and ensure faster circuit performance. It
does not add new register stages. The following figure shows you how to set it
globally.

Are you trying to optimize
area over timing?

Yes
Area

Speed
No

Set other options

Set Implementation Options Chapter 3: Set up Design Information

Synplify Pro Quick Start Guide, June 2009 19

Retiming
Retiming is available for certain device families only and is a technique
related to pipelining. Retiming improves the timing performance of sequential
circuits by automatically moving registers (register balancing) across combi-
natorial gates or LUTs. This process improves timing while ensuring identical
behavior as seen from the primary inputs and outputs of the design. Retiming
moves registers across gates or LUTs, but does not change the number of
registers in a cycle or path from a primary input to a primary output.
However, it can change the total number of registers in a design. The
algorithm retimes only edge-triggered registers. It does not retime level-sensi-
tive latches.

MULT./
ROM

Reg Reg

Reg Reg

Reg

Reg

Reg

RegMULT./
ROM

LO

Chapter 3: Set up Design Information Set Implementation Options

20 Synplify Pro Quick Start Guide, June 2009

When you turn on the retiming option, pipelining is turned on automatically.

Formal Verification
This option is available for certain device technologies, and lets you use the
Cadence Conformal Equivalence Checker tool for formal design verification.
In verification mode, the software generates files that are used by Conformal
Equivalence Checker to verify equivalence between the RTL code and the
post-synthesis netlist.

Set Implementation Options Chapter 3: Set up Design Information

Synplify Pro Quick Start Guide, June 2009 21

LO

Chapter 3: Set up Design Information Set Implementation Options

22 Synplify Pro Quick Start Guide, June 2009

Synplify Pro Quick Start Guide, June 2009 23

C H A P T E R 4

Set up Timing Information

Synplify Pro synthesis is timing-driven. Consequently, the more precise and
complete the information you supply, the more accurate the timing estimates,
and the closer the synthesized implementation is to your design goals. The
Synplify Pro tool begins optimizing for area once your timing performance
constraints are set.

Define timing goals through constraints. Constraint setup steps differ for the
two flows:

Refer to the following topics:

• Set Timing Constraints, on page 24

• Set Constraints (Compile Point Synthesis), on page 26

• Run, on page 28

Compile Point Synthesis FlowTop-Down (Standard) Flow

Run

Set Timing Constraints Define Compile Points

Set Constraints (Compile Point Synthesis)

LO

Chapter 4: Set up Timing Information Set Timing Constraints

24 Synplify Pro Quick Start Guide, June 2009

Set Timing Constraints
As a minimum, you must set a global clock frequency, which can be done in
the Project view or through the Constraints tab of the Implementation Options
dialog box. However, using a global frequency alone is not recommended
because this option sets all clocks to the same value and assigns them to the
same clock group. Synthesis assumes that all clocks are related and calcu-
lates timing for every path between the clocks.

When using multiple-clock designs, you should specify clock frequencies for
each clock. Also, define timing exceptions like false path and multi-cycle path
constraints. For defining timing constraints, use the SCOPE® interface which
makes it easy to enter constraint definitions.

Does your design have more than one clock
(including gated and derived clocks)?

Yes

Press F7 to compile the
designNo

Run

Click to open the SCOPE

Set global frequency

Initialize. When you first compile the
design, the SCOPE fields
automatically read design

Set clock
frequencies and

Set constraints for
timing exceptions.

Define Compile Points Chapter 4: Set up Timing Information

Synplify Pro Quick Start Guide, June 2009 25

Define Compile Points
Compile points are design modules that act as relatively independent
synthesis units: they have their own constraint files and are optimized
individually. They are resynthesized only as needed, based on an analysis of
design dependencies and the nature of design changes. The synthesis process
for compile points is called the Compile Point Synthesis flow. In this incre-
mental flow, compile points are defined through the SCOPE interface.

Press F7 to compile the design.
With the compiled design, the
design information is automatically
filled in the SCOPE fields

Set Constraints (Compile Point Synthesis)

Click to open the
SCOPE interface

Click the Select File Type tab, select
Top Level, and click OK to initialize.

Click on the Compile Points tab, and
select the compile point modules. Save
the constraint file, and add the file to the
project.

LO

Chapter 4: Set up Timing Information Set Constraints (Compile Point Synthesis)

26 Synplify Pro Quick Start Guide, June 2009

Set Constraints (Compile Point Synthesis)
Set constraints at the top level and for each compile point.

Set Top-level Constraints
In a Compile Point Synthesis flow, set top-level constraints as you do in a
normal synthesis flow. See the following figure.

Set Compile Point Constraints
Compile points can be nested. Parent compile points contain compile points
within. Child compile points are nested within compile points. Parent
constraints do not propagate to the child compile point, so you must set
constraints for each compile point. However, compile point constraints are
considered during synthesis of the parent.

Open the top-level
constraint file.

Add top-level constraints Does your design have more than one clock
(including gated and derived clocks)?

No

Set global frequency

Set clock frequencies
and clock groups

Set constraints for
timing exceptions.

Yes

Set Compile Point Constraints

Set Constraints (Compile Point Synthesis) Chapter 4: Set up Timing Information

Synplify Pro Quick Start Guide, June 2009 27

Add file to project

Run

Open the SCOPE
interface

Define clocks, specify I/O delays, and set
port constraints for the compile point

Go to the Select File Type tab, click Compile Point, select
a compile point module, and then click OK to initialize.

Save compile point constraint file.

LO

Chapter 4: Set up Timing Information Run

28 Synplify Pro Quick Start Guide, June 2009

Run
After you have set all the options and constraints, click Run. View the results
of synthesis in the log file, or analyze them graphically using various built-in
tools.

Analyze Results
Analyze Timing Results

Synplify Pro Quick Start Guide, June 2009 29

C H A P T E R 5

Analyze Results

There are many ways in which you can check the implementation results.
Use any of the following tools:

• View the Log File, on page 31

• Use the HDL Analyst® Tool, on page 31

• Use FSM Viewer, on page 45

• Other Tools to Validate Synthesis Results, on page 48

A summary is shown in the figure below.

LO

Chapter 5: Analyze Results

30 Synplify Pro Quick Start Guide, June 2009

DETAILED INFORMATIONSELECTED INFORMATION

Set to view messages

Set to view critical
path essentials

Specify Directives and Attributes
Refine Options to Improve Timing

NoDo the results
meet your design
goals?

Yes

Synthesis is
complete!

Check
detailed
information

Use the HDL
Analyst®

Critical Path

RTL View
Technology View

Messages Views

View the Log File Chapter 5: Analyze Results

Synplify Pro Quick Start Guide, June 2009 31

View the Log File
The log file contains detailed information about the synthesis results, including
details of the most critical paths, the number of primitives in the netlist, and the
FSM encoding style. It is a good idea to run place and route even if the log file
reports a timing goal failure. This is due to the fact the Synplify Pro tool is not
knowledgeable about the final placement and routing of your design. The timing
data given in the log file is an estimate.

Use the HDL Analyst® Tool
The HDL Analyst environment provides graphical means to debug and analyze
your design at two different stages of the design process: compilation (RTL View)
and mapping (Technology View). The software maintains the names extracted from
your code, so you can more easily follow the mapping of the logic from RTL to
Technology view.

RTL VIEW

TECHNOLOGY VIEW

‘F7’

‘RUN’

Compile

Synthesize

RTL
View

Technology
View

LO

Chapter 5: Analyze Results Use the HDL Analyst® Tool

32 Synplify Pro Quick Start Guide, June 2009

In addition to the RTL and Technology views and the timing analysis features
(described separately in Analyze Timing Results, on page 69), the HDL
Analyst tool has the following features that help you debug your implementa-
tion.

• Design Hierarchy Exploration Tools

• Advanced Find Capabilities

• Filtered and Flattened Views

• Crossprobing Across Views

• Cross-tool Crossprobing

• Other Options

• Mouse Strokes

RTL View
This view shows the design after it is compiled. The software extracts the
structure implied by the HDL language. The RTL view does not display target-
specific components, so components are represented in a generic style.

To open the RTL view you must have a compiled design (use F7 to compile or
click Run to synthesize). Then click on the icon, as shown in this figure:

RTL Views

Use the HDL Analyst® Tool Chapter 5: Analyze Results

Synplify Pro Quick Start Guide, June 2009 33

Technology View
This view shows the design after synthesis is complete. The design is
optimized and mapped to components that are specific to the target architec-
ture. If the technology has the structure, a DFF with synchronous reset is
mapped to a synchronous reset DFF.

The technology view shows you how the generic RTL structure is implemented
for your technology. You also can view the critical path.

To open the Technology view, you must have a synthesized design (click Run
to synthesize). Then click on the icon shown in the following figure:

Design Hierarchy Exploration Tools
Since most large designs are hierarchical, the Synplify Pro HDL Analyst tool
helps you view hierarchy details and put the details in context. You can
browse and navigate hierarchy with Push/Pop mode and the Hierarchy
Browser.

Push/Pop Mode
You can navigate design hierarchy by pushing down into a high-level
schematic object and popping back up. Pushing down into an object takes
you to a lower-level schematic that shows the internal logic of the object.
Popping up from a lower level brings you back to the parent higher-level
object. You cannot pop up from the top level.

You can push down into the following kinds of schematic objects:

Technology View

LO

Chapter 5: Analyze Results Use the HDL Analyst® Tool

34 Synplify Pro Quick Start Guide, June 2009

• Non-hidden hierarchical instances. To push into a hidden instance,
unhide it first.

• Technology-specific primitives (not logic primitives)

• Inferred ROMs1 and state machines in RTL views. Inferred ROMs,
RAMs, and state machines do not appear in Technology views, because
they are resolved into technology-specific primitives.

Click on the Push/Pop icon to traverse the design hierarchy. These cursors
appear () and () when the design hierarchy can be traversed. This cursor
appears () when the design hierarchy has reached its lowest or highest
level.

Push or pop as follows:

• To pop, place the pointer in an empty area of the schematic background,
then click or use the appropriate mouse stroke. See Mouse Strokes, on
page 44.

1. An inferred ROM is one that is created during synthesis; the ROM is not in-
stantiated in your RTL code.

Push/Pop

Pop

Push

Use the HDL Analyst® Tool Chapter 5: Analyze Results

Synplify Pro Quick Start Guide, June 2009 35

• To push into an object, place the mouse pointer over the object and click
or use the appropriate mouse stroke. See Mouse Strokes, on page 44.

The following figure shows an additional use for the Push/Pop icon. You can
push into a lookup table in a Technology view and check the mapped
functions.

Hierarchy Browser Navigation
When you open an RTL view or a Technology view, the Hierarchy Browser
appears in the left pane of the view. The browser in the RTL view displays the
hierarchy specified in the RTL design description; in the Technology view it
displays the hierarchy after mapping.

A schematic and its associated Hierarchy Browser are linked so that you can
crossprobe objects between them. Selecting an object in one displays it in the
other.

Push/Pop

LO

Chapter 5: Analyze Results Use the HDL Analyst® Tool

36 Synplify Pro Quick Start Guide, June 2009

Advanced Find Capabilities
You can locate objects using the command Edit -> Find. In an HDL Analyst
view, this displays the Object Query dialog box, which lists candidate
schematic objects by type (Instances, Symbols, Nets, or Ports) and lets you use
wildcards to find objects by name.

You can find objects at any level of your design:

• Entire Design (all levels at once)

• Current Level & Below

• Current Level Only

All found objects are selected, whether or not they are displayed in the
current schematic, so that you then can perform other operations on them.

Status bar
shows where
you are in the
schematic
and at what
level.

Selecting an object in the browser causes
the schematic to display it also.

Hierarchy Browser

Use the HDL Analyst® Tool Chapter 5: Analyze Results

Synplify Pro Quick Start Guide, June 2009 37

Filtered and Flattened Views
Filtering is a useful first step in analysis, because it focuses analysis on the
relevant parts of the design. Flattening eliminates the hierarchy of the design.
Default flattening operations are global: the entire design is flattened from the
current level down.

Filtering
A filtered schematic shows a subset of your design.

1. Select the type of
object (inst, symb,
net, port).

2. Select area to
search.

3. Type all or part of
the object name to
filter the objects to
highlight.

4. Select the object
in the UnHighlighted
column and move to
Highlighted column.

Object(s) are highlighted
in the HDL Analyst. views.

LO

Chapter 5: Analyze Results Use the HDL Analyst® Tool

38 Synplify Pro Quick Start Guide, June 2009

Any command that results in a filtered schematic is a filtering command.
Some commands, like the Expand commands, increase the amount of logic
displayed, but they are still considered filtering commands because the
resulting view is still a subset. Other commands like Filter Schematic remove
objects from the current display.

You can use filtering commands to trace signals at a single level of hierarchy
or across the entire design. If you select a net, then right-click in the view and
select Go to Net Driver, the view highlights the element driving the selected net.
If the driver is on another schematic sheet, the software automatically moves
to the correct sheet.

Use the HDL Analyst® Tool Chapter 5: Analyze Results

Synplify Pro Quick Start Guide, June 2009 39

Similarly, you can start with the output of an AND gate, and use the Expand
command to see what this gate drives:

Right-click in the HDL Analyst views to access the pop-up menu. The
following table lists the most common filtering commands:

Filtering Command Description

Filter Schematic, Isolate Paths Reduces the displayed logic.

Dissolve Instances (filtered view) Makes selected instances transparent, exposing
their lower-level details.

Sheet 2

Sheet 5

Go to Net Driver

Expand the
output pin
of the AND
gate

LO

Chapter 5: Analyze Results Use the HDL Analyst® Tool

40 Synplify Pro Quick Start Guide, June 2009

Flattening
A flattened schematic contains no hierarchical objects. The flattening
commands shown below are from the HDL Analyst menu. The most versatile
commands are Dissolve Instances and Flatten Current Schematic, which you can
also use for selective flattening.

Expand
Expand to Register/Port
Expand Paths
Expand Inwards
Select Net Driver
Select Net Instances

Displays logic connected to the current selection.

Show Critical Path
Flattened Critical Path
Hierarchical Critical Path

Shows critical paths.

Command Unfiltered Schematic Filtered Schematic

Dissolve Instances Flattens selected instances --

Flatten Current
Schematic (Flatten
Schematic)

Flattens at the current level
and all lower levels. RTL view:
flattens to generic logic level
Technology view: flattens to
technology-cell level

Flattens only non-hidden
transparent hierarchical
instances; opaque and
hidden hierarchical
instances are not
flattened.

RTL -> Flattened View Creates a new, unfiltered RTL
schematic of the entire
design, flattened to the level
of generic logic cells.

Technology ->
Flattened View

Creates a new, unfiltered
Technology schematic of the
entire design, flattened to the
level of technology cells.

Filtering Command Description

Use the HDL Analyst® Tool Chapter 5: Analyze Results

Synplify Pro Quick Start Guide, June 2009 41

Crossprobing Across Views
You can crossprobe between HDL Analyst views, the Text Editor, the Tcl
window, and the FSM viewer, because the views are tightly linked to your
code. Double-clicking on a component in a HDL Analyst view takes you to the
section of code from which it was generated. If you double click a mux, you
open the section of code from which it was generated. In this example, the
mux is generated from the VHDL case statement shown.

Technology ->
Flattened to Gates
View

Creates a new, unfiltered
Technology schematic of the
entire design, flattened to the
level of Boolean logic gates.
Creates a filtered, flattened
Technology view schematic
that shows only the instances
with the worst slack times
and their path.

Technology ->
Flattened Critical Path

Creates a new, unfiltered
Technology schematic of the
entire design, flattened to the
level of Boolean logic gates.
Creates a filtered, flattened
Technology view schematic
that shows only the instances
with the worst slack times
and their path.

Unflatten Schematic Undoes any flattening done
by Dissolve Instances and
Flatten Current Schematic at
the current schematic level.
Returns to the original
schematic, as it was before
flattening (and any filtering).

Command Unfiltered Schematic Filtered Schematic

LO

Chapter 5: Analyze Results Use the HDL Analyst® Tool

42 Synplify Pro Quick Start Guide, June 2009

Conversely, you can select a section of code from the Text Editor and the
corresponding RTL gates for that code are highlighted in the RTL view. You
must first have an RTL view open. Then, select the code in the source file. You
can crossprobe from any text file, for instance, place-and-route files.

To see just the structures that correspond to the selected code on one sheet,
click Filter icon. This isolates the selected structures on one schematic sheet.
Click the Back icon to return to the previous view.

Cross-tool Crossprobing
The Synplify Pro software allows easy crossprobing between Synplify Pro
processes and several other third-party tools:

• Altera Quartus Place & Route software allows bidirectional crossprobing
between Quartus II Floorplanner and the Synplify Pro synthesis tool’s
HDL Analyst tool.

Double click on a mux in an HDL
Analyst view to open the section of
code from which it was generated.

Use the HDL Analyst® Tool Chapter 5: Analyze Results

Synplify Pro Quick Start Guide, June 2009 43

• Xilinx Place & Route software allows crossprobing from the Xilinx timing
file (.twr) to the HDL Analyst tool.

The Synplify Pro software also crossprobes between Synplify Pro processes.
When two copies of the Synplify Pro tool are running simultaneously on one
machine, enabling crossprobing allows both HDL Analyst tools to communi-
cate with each other. For example, if external crossprobing is engaged and the
same design is open in two copies of the software, selecting an instance in the
HDL Analyst tool in one copy of the Synplify Pro tool results in the same
instance being highlighted in the HDL Analyst tool of the second Synplify Pro
tool.

Other Options
There are a number of useful options you can set using the Options -> HDL
Analyst Options command. For example, you can view cell interiors in the
Technology view, like the LUTs in this figure:

You can copy images from any schematic view to the clipboard. To do so,
open a schematic view, and select Edit -> Copy Image. The cursor changes to a
camera. Hold down the left button and drag the cursor to define the rectan-
gular area you want to capture, and then release the button. The image is
copied to the clipboard.

Show Cell
Interior On

Show Cell
Interior Off

LO

Chapter 5: Analyze Results Use the HDL Analyst® Tool

44 Synplify Pro Quick Start Guide, June 2009

Mouse Strokes
To access several frequently used menu commands, you can use the mouse
while holding down the right mouse button as you draw the pattern. The
mouse strokes you draw are interpreted on an invisible grid of one or three
rows, depending on the stroke.

For information about all the mouse strokes, select Help -> Mouse Stroke Tutor.

Redo stroke Back stroke Push stroke

Use FSM Viewer Chapter 5: Analyze Results

Synplify Pro Quick Start Guide, June 2009 45

Use FSM Viewer
The FSM (finite state machine) viewer is a graphic analysis tool that displays
state transition bubble diagrams and implementation information for FSMs in
the design. You can use this viewer to view state machines implemented by
either the FSM Compiler or the FSM Explorer.

1. To start the FSM viewer, open the RTL view and either

– Select the FSM instance, click the right mouse button and select View
FSM from the popup menu.

– Push down into the FSM instance using the Push/Pop icon or the
command from the popup menu.

The FSM viewer opens. The viewer consists of a transition bubble
diagram and a table for the encoding and transitions.

2. The following table summarizes basic analysis operations.

This figure shows you the mapping information for a state machine. The
Transitions tab shows you simple equations for conditions for each state. The
RTL Encodings tab has a State column that shows the state names in the source
code, and a Registers column for the corresponding RTL encoding. The Mapped
Encoding tab shows the state names in the code mapped to actual values.

To View... Do this...

From and to states, and conditions for
each transition

Click the Transitions tab at the bottom of
the table.

The correspondence between the states
and the FSM registers in the RTL view

Click the RTL Encoding tab.

The correspondence between the states
and the registers in the Technology
View

Click the Mapped Encodings tab
(available after synthesis).

Only the transition diagram without the
table

Select View -> FSM table or click the FSM
Table icon. You might have to scroll to
the right to see it.

LO

Chapter 5: Analyze Results Use FSM Viewer

46 Synplify Pro Quick Start Guide, June 2009

3. To view just one state, click the bubble for the state to select it. Then
click the right mouse button and select the filtering criteria from the
popup menu: output, input, or any transition.

The transition diagram now shows only the filtered states you set. The
following figure shows filtered views for output and input transitions for
one state.

Bubble Diagram

Use FSM Viewer Chapter 5: Analyze Results

Synplify Pro Quick Start Guide, June 2009 47

Similarly, you can check the relationship between two or more states by
selecting the states, filtering them, and checking their properties.

4. To view properties for a state, select the state, click the right mouse
button, and select Properties from the popup menu. A form shows you the
properties for that state.

To view properties for the entire state machine like encoding style,
number of states, and total number of transitions between states,
deselect any selected states, click the right mouse button outside the
diagram area, and select Properties from the popup menu.

5. To crossprobe from the FSM viewer, open the view to which you want to
crossprobe (source code file for example) and click the state bubble in
the FSM viewer.

The software highlights the corresponding object or code in the open
view. You can also crossprobe from the transition table if you use a
onehot encoding style. With all other styles, you cannot crossprobe from
the transition table because the number of registers in the table may not
match the number of registers in the RTL or Technology views. A one-to-
one correspondence might not exist because of optimizations during
synthesis.

CountCont state filtered by output transitions

CountCont state filtered by input transitions

LO

Chapter 5: Analyze Results Other Tools to Validate Synthesis Results

48 Synplify Pro Quick Start Guide, June 2009

Other Tools to Validate Synthesis Results
Validate Synplify Pro synthesis results with the following tools:

• Use Formal Verification

• Use syn_probe Attribute, on page 49

• Identify RTL debugger, on page 49

Use Formal Verification
For certain Xilinx technologies, you can validate your results using the
Cadence Conformal Equivalence Checker tool. See the application note for
more information. The following figure is an overview of the flow.

Run Cadence Conformal
Equivalence Checker

Install Conformal
Equivalence Checker
libraries in Xilinx
installation hierarchy

Set technology

Files generated for
Conformal
Equivalence Checker

Set verification option

Other Tools to Validate Synthesis Results Chapter 5: Analyze Results

Synplify Pro Quick Start Guide, June 2009 49

6. Validate Synthesis Results with Simulation

You can optionally generate a post-synthesis netlist file in Verilog (.vm) or
VHDL (.vhm) format. This is a structural netlist of the synthesized design,
and differs from the original RTL you used as input for synthesis.

Typically, you use this netlist for gate-level simulation, to verify your
synthesis results. Some designers prefer to simulate before and after
synthesis, and also after place and route. This approach helps to isolate the
stage of the design process where a problem occurred.

Use syn_probe Attribute
The syn_probe attribute works as a debugging aid, inserting probe points for
testing and debugging the internal signals of a design without HDL source
modification.

Identify RTL debugger
The Identify product is the first and only software tool that allows FPGA
designers and ASIC prototyping designers to functionally debug their
hardware directly in their RTL source code. This allows functional verification
with RTL designs 10,000 times faster than RTL simulators, and enables the
use of in-system stimulus for applications like networking, audio and video,
and hardware/software designs. Identify software allows designers to directly
select signals and conditions in their RTL source code for debugging and the
results are viewed directly in the RTL source code. The Identify tool can also
save results in standard VCD format that can be used with most waveform
viewers. See Using Identify with Synplify Pro, on page 89 for more informa-
tion.

LO

Chapter 5: Analyze Results Other Tools to Validate Synthesis Results

50 Synplify Pro Quick Start Guide, June 2009

Synplify Pro Quick Start Guide, June 2009 51

C H A P T E R 6

Specify Directives and Attributes

Directives and attributes influence the way your design is synthesized
(compile stage) and optimized (map stage), respectively, and can be used to
improve design quality of results (QoR). Refer to the following topics:

• Using Directives and Attributes

– syn_maxfan

– syn_keep

– syn_ramstyle

Using Directives and Attributes
Directives must be specified in the HDL source code because they affect the
compile stage and the inference of high-level structures. Attributes can be
specified using any of the following methods:

• source code

• the SCOPE interface

• Tcl constraint file (.sdc)

• RTL or Technology views (right-click for pop-up menu)

There are two classes of attributes: target-specific attributes and general
attributes. For details about directives and attributes, select Help -> Help, and
then scroll down to the section shown below. It is strongly advised that you
review this section of help. For discussions of target-specific attributes, check
the help section on your target technology.

LO

Chapter 6: Specify Directives and Attributes Using Directives and Attributes

52 Synplify Pro Quick Start Guide, June 2009

A few commonly used attributes and directives are described below.

syn_maxfan
Sets a guide for maximum fanout. You can set this globally from the Implemen-
tation Options dialog box, or set it on individual modules. The following figure
shows the syn_maxfan attribute entered in the SCOPE Attributes pane for an
individual module:

syn_keep
Preserves the specified net from being optimized away during synthesis. The
software places a temporary buffer on the net as a placeholder so that it is
not optimized. You can view this buffer in the HDL Analyst views, but it is not
in the final netlist.

Using Directives and Attributes Chapter 6: Specify Directives and Attributes

Synplify Pro Quick Start Guide, June 2009 53

syn_ramstyle
Determines how inferred RAMs are implemented. The valid values vary
depending on the target technology family. You can turn off RAM inference by
setting the value of this attribute to registers.

With syn_keep

Without syn_keep

LO

Chapter 6: Specify Directives and Attributes Using Directives and Attributes

54 Synplify Pro Quick Start Guide, June 2009

Synplify Pro Quick Start Guide, June 2009 55

C H A P T E R 7

Basics of Timing Constraints

Synplify Pro synthesis is timing-based. Its algorithms are governed by the
timing requirements of your design as set by the constraints, attributes and
directives you specify. The more precise the timing information you provide,
the better the results produced.

Refer to the following topics:

• Specifying Timing Information

• Clock Descriptions

• Clock Groups

• Rise and Fall Constraints

• Input and Output Delays

• Multicycle Paths

• I/O Standard

Specifying Timing Information
The following are some of the ways in which you provide timing information to
the Synplify Pro tools (use the tabs in the SCOPE UI):

• Clock definitions
For designs with multiple clocks, use a combination of individual clock
constraints and a default global frequency to define all the clocks in your
design accurately. See Clock Descriptions, on page 56 for an explana-
tion.

LO

Chapter 7: Basics of Timing Constraints Clock Descriptions

56 Synplify Pro Quick Start Guide, June 2009

• Clock domains
Assign unrelated clocks to separate clock groups. Clocks that are in the
same clock group are considered to be related and affect timing calcula-
tions. See Clock Groups, on page 59 for more information. Use Rise and
Fall values to define relationships between source and destination
clocks. See Rise and Fall Constraints, on page 60 for details.

• Multicycle paths and false paths
If your design has multicycle paths or false paths that you do not want
the Synplify Pro tool to consider during timing based synthesis, you may
identify these in the constraints file. The software considers paths to
asynchronous sets and resets as false paths, so you do not have to
constrain these paths explicitly.

• Resource sharing
Turn this OFF to get better circuit performance. When OFF, the tool does
not share the arithmetic modules in your design across multiple
functions.

• Symbolic FSM (finite state machine) compiler
Turn this ON to get better circuit performance. When on, the synthesis
software looks for state machines in your design, analyzes and optimizes
them, and encodes them based on size.

• FSM Explorer
Turn this ON to get better circuit performance. When on, the FSM
Explorer tries different encoding styles and picks the best style for the
state machine based on overall design constraints.

Clock Descriptions
You must accurately describe timing in your design, because it can signifi-
cantly impact what the software considers the most critical path. The most
important information you can provide is the performance of each clock in
your design, including the top-level clocks, derived clocks, gated clocks, or
other signals in your design acting as clocks.

Set a global frequency. The software applies this default frequency to all
clocking signals that you have not specifically identified with individual clock
constraints.

Clock Descriptions Chapter 7: Basics of Timing Constraints

Synplify Pro Quick Start Guide, June 2009 57

Note: Do not over-constrain your clocks. Keep the value within 5%-10%
of the actual target.

Here is an example of some clocking situations.

Example
This design has two top-level clocks, clk and ins_clk. When the constraint file is
initialized, the SCOPE interface shows both clocks assigned the default
frequency of 8MHz. Setting the default to a small value allows parts of the
design that are not timing-critical to be optimized for area.

Now set clk and ins_clk to the frequencies you want and enable the constraints.

The design includes three other clocking situations: a divided clock off a
register, a gated clock, and some unregistered clock logic. The default
frequency of 8MHz is applied to the unregistered logic, and the log file reports
it as a system clock (System).

LO

Chapter 7: Basics of Timing Constraints Clock Descriptions

58 Synplify Pro Quick Start Guide, June 2009

To identify the divided clock for the software, locate the register in the RTL
view (see RTL View, on page 32 for a description). Drag and drop or type the
name of the register into the SCOPE Clocks pane and specify a frequency that
is half (37.5Mhz) of clk (75.0Mhz). When you type a name in the SCOPE inter-
face, be sure to type the name accurately because the constraint file is
written out in Tcl format, which is case-sensitive.

The gated clock is the most interesting clocking situation. To attach a clock to
the signal coming off an inferred AND gate, attach a syn_keep synthesis direc-
tive to the signal or wire. This directive does two things: it creates a virtual
buffer (shown in the following figure) and it does not optimize the net. The
virtual buffer provides a “synthesis handle” to which you can attach
attributes like clock definitions or multicycle paths. You can view this buffer
in the RTL view (the schematic view generated after the compile stage) and
drag-and-drop it into the SCOPE spreadsheet if you need to attach a
constraint to it.

Clock Groups Chapter 7: Basics of Timing Constraints

Synplify Pro Quick Start Guide, June 2009 59

By preventing an internal net from being optimized away, the syn_keep direc-
tive guarantees that the net name is maintained. This can be helpful for
probing internal nets or to prevent nets from being optimized.

Clock Groups
The timing engine uses clock groups to define clocking schemes. It assumes
that clocks in the same clock group are synchronized with each other and
treats them as related clocks. Typically, clocks in a clock group are derived
from the same base clock. The timing analyzer automatically calculates the
relationships between clocks in a clock group and analyzes all paths between
them. It calculates the time available based on the periods of two related
clocks.

The waveforms in the following figure show how the software determines the
worst posedge-to-posedge timing between clocks CLK1 and CLK2. All paths
that begin at CLK1 rising and end at CLK2 rising are constrained at 10ns.

Conversely, clocks in different clock groups are considered unrelated or
asynchronous. Paths between clocks from different groups are automatically
marked as false paths and ignored during timing analysis and optimization.

CLK1

CLK2

0 15 30 45 60 75 90 105 120 135

 0 20 40 60 80 100 120 140

10ns 20ns 30ns

LO

Chapter 7: Basics of Timing Constraints Rise and Fall Constraints

60 Synplify Pro Quick Start Guide, June 2009

By default, all clocks in a design are assigned to separate clock groups and
named default_clkgroup<n>. If clocks are related, you must re-assign them to
the same clock group using the Clock Group field in the SCOPE interface. See
Using Multiple Clock Domains, on page 87 for more information.

Rise and Fall Constraints
By default, the Synplify Pro tool assumes an ideal clock network; the clock
arrives at all clocked registers at the time specified in the Rise and Fall fields.
By default, the constraints assume a 50% duty cycle clock with the rising
edge at 0 and the falling edge at period/2.

The synthesis tool computes relationships between the source clock and
destination clock on a path by using the Rise and Fall numbers. To under-
stand how the relationships between source and destination clocks are
computed using the Rise and Fall numbers, consider the following example.

• Clk1 is a clock with a period of 10 ns in clock group default_clkgroup. Since
none of the other fields are specified, this is a 50% duty cycle clock
rising at 0 and falling at 5. There is no propagation delay between the
clock source and the clock ports on the registers clocked by Clk1.

• Clk2 is a 200 MHz (5ns) clock, also in the default_clkgroup. This means that
the timing analyzer considers all paths from Clk1 to Clk2 and from Clk2 to
Clk1.

• Clk3 is a clock with a period of 20 ns in clkgrp2. This means all paths
between Clk3 and either Clk1 or Clk2 are automatically treated as false
paths. In addition, Clk3 has a Rise of 0 and a Fall of 12, which means it
has a 60% duty cycle.

T= 5 10 150

Input and Output Delays Chapter 7: Basics of Timing Constraints

Synplify Pro Quick Start Guide, June 2009 61

• Clk4 is a virtual clock. This means that there can be no port or instance
named Clk4 in this design. However, there may be top-level ports on the
chip which are clocked by Clk5 outside the chip. Input arrival times and
output required times for such ports can be specified relative to Clk5.

Input and Output Delays
It is important to understand the role of input and output delays as they
apply to Synplify Pro synthesis. You need to recognize which constraint is
most effective in a given situation: a synthesis or place-and-route constraint.

The Synplify Pro engine can minimize logic between an input and a register or
between a register and an output. If there is no logic between these points,
the synthesis engine cannot affect the constraint. In this case, it would be
better to use a place-and-route constraint to minimize the routing between
the two points.

The log file contains a section for the interface. It reports required times,
arrival times, slack, and user constraint information for inputs and outputs
according to the register that they are driving or driven by, and the clock
which controls that register.

T= 12 200

LO

Chapter 7: Basics of Timing Constraints Input and Output Delays

62 Synplify Pro Quick Start Guide, June 2009

Input Ports
A typical log file report for input ports looks like the one below. Let's take a
closer look at how the numbers are calculated and see how you can influence
them with an input_delay constraint.

In the following example, data1[0] feeds a register that is controlled by clk (the
reference clock). The period for clk is set at 10ns, so data1[0] is required to
arrive at the input a certain time after the controlling edge of clock so that it
can propagate to the register in time for the next controlling edge. The
required time is determined as follows:

Required Time = Clock Period - (intrinsic + setup time)

SlackArrival Time

CLK

Data [0] DEF

Total Delay

Required Time

User Delay Intrinsic
Delay

Setup
Time

Input and Output Delays Chapter 7: Basics of Timing Constraints

Synplify Pro Quick Start Guide, June 2009 63

Add an input delay of 3ns to data1[0]. Do this in the SCOPE Inputs/Outputs pane:

This constraint indicates that data1[0] arrives 3ns later than the default 0ns.
This reduces the slack margin available. When you resynthesize, the log file
reflects these changes.

Delay
4ns

Required Time
5ns

10ns
Clocks Period

Slack
3ns

Arrival Time
3ns

Intrinsic Delay
4ns

Required Time 6ns

LO

Chapter 7: Basics of Timing Constraints Input and Output Delays

64 Synplify Pro Quick Start Guide, June 2009

Output Ports
A typical log file report for output ports looks like the one below. Look at how
the numbers are calculated and see how you can influence them with an
output_delay constraint. The required time is derived from the period of the
reference clock for the register minus any user delay. The arrival time is the
clock to output time plus intrinsic delay. The slack then is the required time
minus the arrival time.

In the following example, initially the required time is equal to the clock
period, because no user constraint is set. The arrival time of 3.7ns is the sum
of the clock-to-output delay and the intrinsic delay, leaving a slack margin of
6.3ns.

Add a 3 ns output delay constraint using the SCOPE Inputs/Outputs pane:

CLK

Clock to
Output

Intrinsic
Delay User Delay Outp[0]

DEF

D Q

Arrival Time Slack

Required Time

CLK

Arrival Time 3.7ns Slack 6.3ns

Required Time 10ns

Multicycle Paths Chapter 7: Basics of Timing Constraints

Synplify Pro Quick Start Guide, June 2009 65

The result of the output_delay constraint is to reduce the required time, thus
reducing the available slack. The resulting log file change is shown below:

Multicycle Paths
The multicycle path constraint identifies certain paths that take multiple
clock cycles to complete and which you should exclude from single-clock-
cycle based synthesis. You can specify a multicycle path from an origination
register (from), to a destination register (to), or as passing through a net
(through). By setting the cycle multiplier to a high value (e.g. 100), you identify
the false paths to be ignored.

You set a multicycle path constraint from the SCOPE Path Delays tab, by
selecting a Delay Type of Multicycle. You can use one of the following methods to
specify the register or net: drag-and-drop it from an RTL view, select from the
cell pulldown menu, or manually type in the full hierarchical name. Regard-

CLK

Arrival Time 3.7ns Slack 3.3ns

Required Time 7ns User Constraint 3ns

LO

Chapter 7: Basics of Timing Constraints Multicycle Paths

66 Synplify Pro Quick Start Guide, June 2009

less of whether you are coding VHDL or Verilog, all SCOPE names are case-
sensitive because the constraints are recorded in Tcl, which is case-sensitive.
The following figure shows a from-to multicycle constraint.

You can also edit constraints (*.sdc file) with a text editor. To do so, select the
file in the Project window, right-click, and select Edit as Text from the popup
menu.

Setting Multicycle Path Constraints
To and from constraints are the simplest to set because they start or end at a
register. The following example shows how to set a multicycle path through
constraint. The filtered RTL view generated after the compilation stage shows
a partial circuit where the signals all propagate to the register Dmux.ALUB in
one clock cycle. However, reg_fout is allowed two clock cycles. If this causes
the Synplify Pro tool to identify the path from reg_fout to ALUB as a critical
path, you must define the two-cycle propagation correctly for the tool. You
cannot define the multicycle path with a to constraint on Dmux.ALUB, because
this would cause the other signals to be allowed two clock cycles, which is not
correct.

I/O Standard Chapter 7: Basics of Timing Constraints

Synplify Pro Quick Start Guide, June 2009 67

Instead, to single out the specific two-cycle path, use a through constraint on
the reg_fout net highlighted above in addition to the from and to points. Make
sure you precede the net name with an n: (to identify the object as a net) if you
type it manually in the SCOPE interface.

I/O Standard
Available for certain technology families, you can use the I/O Standards panel of
the SCOPE interface to specify a standard I/O pad type to use in the design.
See help in the tool for information.

LO

Chapter 7: Basics of Timing Constraints I/O Standard

68 Synplify Pro Quick Start Guide, June 2009

Synplify Pro Quick Start Guide, June 2009 69

C H A P T E R 8

Analyze Timing Results

There are many tools to analyze the timing of your design:

• Critical Path Report

• Timing Information Display

• Critical Path Analysis in a Technology View

Critical Path Report
You can check details of the critical path in the log file.

• Note the start and end points of the critical path. For multi-clock
designs, look for the clock with the worst slack.

• Check fanout. To limit fanout on a given net, use the syn_maxfan
attribute. When enabled, the synthesis software replicates logic to
reduce the fanout. For an example of adding an attribute, see Specify
Directives and Attributes.

The following figure shows a critical path in the log file.

LO

Chapter 8: Analyze Timing Results Critical Path Report

70 Synplify Pro Quick Start Guide, June 2009

You can also use the Log Watch window to quickly check parameters like
Worst Slack, Requested Frequency, Estimated Frequency, and so on. To view the
critical path graphically, use the procedure described in Generate a
Technology View for the Most Critical Path.

Timing Information Display Chapter 8: Analyze Timing Results

Synplify Pro Quick Start Guide, June 2009 71

Timing Information Display
To help you analyze timing, enable HDL Analyst -> Show Timing Information in a
Technology view. This annotates all instances, showing their timing numbers.
Two timing numbers are displayed above each instance:

Critical Path Analysis in a Technology View
This section describes the critical path views and how to analyze critical
paths:

• Critical Path Views

• Generate a Technology View for the Most Critical Path

• Generate Critical Path View in the Timing Analyzer

• Generate Critical Path View from the Log File

• Critical Path Report

Critical Path Views
The HDL Analyst tool makes it simple to find and examine critical paths and
the relevant source code. Display the most critical path in the Technology
view, using one of the following methods. The Technology view displays a
hierarchical view that highlights the instances and nets in the most critical
path of your design.

Delay
(first
number)

For combinational logic, delay is the cumulative path delay to the
output of the instance, which includes the net delay of the output.
For flip-flops, delay is the portion of the path delay attributed to the flip-
flop. The delay can be associated with either the input path or the
output path, whichever is worse, because the flip-flop is the end of one
path and the start of another.

Slack
Time
(second
number)

This is the slack time of the worst path that goes through the instance.
A negative value indicates that timing constraints could not be met. The
command Show Critical Path uses the slack time, together with the slack
margin, to determine which instances to display.

LO

Chapter 8: Analyze Timing Results Critical Path Analysis in a Technology View

72 Synplify Pro Quick Start Guide, June 2009

• To generate a hierarchical view of the critical path, click the Show Critical
Path icon (stopwatch icon), select HDL Analyst -> Technology -> Hierarchical
Critical Path or select the command from the popup menu. The view
displayed is a filtered view in the same window, with hierarchical logic
shown in transparent instances.

• To flatten the hierarchical critical path described above, right-click and
select Flatten Schematic. The software generates a new view in the current
window, and flattens only the transparent instances needed to show the
critical path; the rest of the design remains hierarchical. Click Back to go
the top-level design.

• To generate a flattened critical path in a new window, select HDL Analyst
-> Technology -> Flattened Critical Path. This uses more memory because it
flattens the entire design and generates a new view for the flattened
critical path in a new window. Click Back in this window to go to the
flattened top-level design, or return to the previous window.

Generate a Technology View for the Most Critical Path
This is the easiest way to generate a technology view for the most critical
path:

1. Generate a Technology view.

2. Select the Show Critical Path icon from the toolbar.

This filters the critical path and displays timing numbers above each
element. The critical path is the path with the worst (most negative, or
smallest positive) slack of all your clock domains. If you have three clock
domains and the worst clock domain has a slack of -2.4ns, this is the
path that is displayed in the Technology view. The timing numbers
above each element are the cumulative delay through that point,
including estimated routing delay based on fanout.

Critical Path Analysis in a Technology View Chapter 8: Analyze Timing Results

Synplify Pro Quick Start Guide, June 2009 73

3. Analyze the critical path.

Generate Critical Path View in the Timing Analyzer
Use the Timing Analyzer to generate views for any critical path or for point-to-
point analysis between registers without re-running synthesis.

Select the instances in a Technology view, then right-click and select Timing
Analyst from the pop-up menu.

LO

Chapter 8: Analyze Timing Results Critical Path Analysis in a Technology View

74 Synplify Pro Quick Start Guide, June 2009

Set the appropriate information in the Timing Report Generation dialog box.
Buses are grouped to reduce the number of signals shown. Buses cannot
be split into their individual elements.

Critical Path Analysis in a Technology View Chapter 8: Analyze Timing Results

Synplify Pro Quick Start Guide, June 2009 75

The software generates a critical path view and a timing report like the one
below:

Select the From and To points,
if you did not preselect them1

2

3

Set these
options

Click

LO

Chapter 8: Analyze Timing Results Critical Path Analysis in a Technology View

76 Synplify Pro Quick Start Guide, June 2009

Generate Critical Path View from the Log File
You can generate a view for any critical path listed in the log file with this
method:

1. Open the RTL and Technology views. If you want to see details of the
path, select HDL Analyst -> Technology -> Flattened View to open a flattened
Technology view.

2. Select View Log and open the log file.

3. Scroll down to the critical path you want to view.

4. Hold down the Alt key and select the columns with the objects in the
critical path.

5. Hold down the right mouse button and select Filter in Analyst. The objects
in the critical path are highlighted in the log file and the critical path is
selected in the open views.

Critical Path Analysis in a Technology View Chapter 8: Analyze Timing Results

Synplify Pro Quick Start Guide, June 2009 77

Path in Technology
Path in
RTL View

LO

Chapter 8: Analyze Timing Results Critical Path Analysis in a Technology View

78 Synplify Pro Quick Start Guide, June 2009

Synplify Pro Quick Start Guide, June 2009 79

C H A P T E R 9

Refine Options to Improve Timing

The vast majority of the time, you only need to identify the clocks and multi-
cycle/false paths to get the best results.

• Occasionally, you might have to fine-tune the synthesis process (see
Refine Timing Results, on page 79).

• You can also check your synthesis results against the place-and-route
results and refine your synthesis constraints (see Compare Synthesis
Results with Place-and Route Results, on page 80).

• In the Compile Point Synthesis flow, you can annotate incremental
results after you resynthesize a compile point (see Forward Annotate
Incremental Results, on page 82).

Refine Timing Results
You can refine timing results in a few ways:

• Adjust the SCOPE timing constraints.

• Add attributes or directives, in the source code, in the SCOPE interface,
or in a constraint file.

• Rework the RTL source code.

LO

Chapter 9: Refine Options to Improve Timing Refine Timing Results

80 Synplify Pro Quick Start Guide, June 2009

Compare Synthesis Results with Place-and Route Results
Synplify Pro synthesis is timing-driven, so it is important to ensure that the
place-and-route and Synplify Pro tools are both working on the same critical
path. You only need to follow the tips here if the design does not meet timing.
The flowchart shows that your goal is a critical path correlation between the
place-and-route (P&R) and Synplify Pro results. Follow these steps to check
results.

1. Place and route the design and run timing analysis.

2. Check the critical path and note its start and end points.

3. Compare the P&R start and end points to the start and end points of the
path generated after synthesis.

If P&R identifies a critical path from alu.dffa to decode.dffb while the
Synplify Pro critical path goes from spec_reg.dffr to dtc.dffc, you need to
make sure that Synplify Pro optimization routines are concentrated on
the same path as the P&R tool. You can do this by adding a route delay
constraint.

Synthesize with
timing constraints

Yes

No

Done, no need to
backannotate

Add Route Delay
Constraints

Analyze Timing Results

Compare Synthesis
Results with Place-and

Route Results

Are the critical paths
the same?

Refine Timing Results Chapter 9: Refine Options to Improve Timing

Synplify Pro Quick Start Guide, June 2009 81

Add Route Delay Constraints
The following example shows you how to add a route delay constraint.

1. Double-click the constraints file to open the SCOPE interface.

2. Go to the Registers pane, and add a small amount of incremental route
delay to one of the registers on the critical path identified during P&R.
The following figure shows the constraint applied to the end point in the
previous example, decode.dffb.

Do not overload the path. Keep the value of this constraint low, just
enough to raise the criticality of this path so that Synplify Pro optimiza-
tion focuses on this path. You can then place and route the design again
and check results. Typically this process is only necessary once,
occasionally twice.

LO

Chapter 9: Refine Options to Improve Timing Forward Annotate Incremental Results

82 Synplify Pro Quick Start Guide, June 2009

Forward Annotate Incremental Results
In the Compile Point Synthesis flow, you can annotate incremental results
after you resynthesize a compile point.

1. Resynthesize the design:

– Make the changes you need to fix errors or improve your design.
Define any required constraints and set the proper implementation
options.

– Click Run to resynthesize the design.

When a design is resynthesized, compile points are not resynthesized
unless source code logic, implementation options, or constraints have
been modified. If there are no compile point interface changes, the
software synthesizes the immediate parent using the previously gener-
ated model file for the compile point. The following figure illustrates this.

2. To force the software to generate a new model file for the compile point,
select click Implementation Options and enable Update Compile Point Timing
Data. Click Run.

The software regenerates the model file for each compile point when it
synthesizes the compile points. The new model file is used to synthesize
the parent. The option remains in effect until you disable it.

Incremental Run Log Summary

First Run Log Summary

Syntax changes only;
not resynthesized

Logic changes; compile
point resynthesized

Forward Annotate Incremental Results Chapter 9: Refine Options to Improve Timing

Synplify Pro Quick Start Guide, June 2009 83

3. To override incremental synthesis and force the software to resynthesize
all compile points whether or not there have been changes made, use the
Run -> Resynthesize All command.

4. Use the output files generated after synthesis to forward annotate
incremental synthesis information to your place-and-route tool.

LO

Chapter 9: Refine Options to Improve Timing Forward Annotate Incremental Results

84 Synplify Pro Quick Start Guide, June 2009

Synplify Pro Quick Start Guide, June 2009 85

C H A P T E R 1 0

Additional Features and Topics

This section includes additional information to accompany your design flows.
Topics include:

• Synplify Premier Physical Synthesis

• Synthesis Output Files

• Using Multiple Clock Domains

• Using Scripts and Batch Mode

• Using the Tcl Find Command for Setting Constraints

• Running Place and Route

• Using Identify with Synplify Pro

• For More Information

Synplify Premier Physical Synthesis
The Synplify Premier tool, as with all Synplicity synthesis products, provides
the capability to compile, synthesize and optimize a design. However, physical
synthesis also provides the benefit of physical placement that is recognized by
the tool during optimization. With access to physical information, the tool can
correlate between front- and back-end environments and provide more
accurate estimates than can be achieved through using standard wire load
model synthesis. With the Synplify Premier tool, you can floorplan, place, and
optimize a design based on physical constraints as well as timing constraints,
and physical and technology libraries. The output is a fully-optimized netlist
with an architecture and locations best suited for the design based on the

LO

Chapter 10: Additional Features and Topics Synthesis Output Files

86 Synplify Pro Quick Start Guide, June 2009

floorplan, technology, and constraints. Analysis reports include a design
summary, physical-based timing information, and congestion analysis. See
Help in the tool or the section: Synplify Premier Synthesis Design Flows, on
page 2-35 of the User Guide.

Synthesis Output Files
This section lists the output files that are written to the results specified
directory for the implementation (Implementation Options->Implementation Results
tab).

• .areasrr—Reports area-specific information on each module in the
design, such as sequential and combinational ATOMS, RAMs, DSPs,
and black boxes.

• .edf—Output EDIF netlist. See Output Netlist, below, for more informa-
tion.

• .fse —contains information about FSMs in the design.

• .htm—display report files in an HTML viewer that provides links for
easier navigation to the various sections of the file.

• .info—design component files contain detailed information about
components such as state machines or ROMs.

• .ncf—place-and-route constraints file.

• pfl—output file created when filtering messages in the Messages
window.

• .sap—generated when you use the Annotated Properties for Analyst option
and used by the Find command when searching for design properties.

• .srd—saves mapping information between synthesis runs; file is used
internally by the tool.

• .srm—output by the mapper stage of the process, contains the actual
technology-specific mapped design. This is the representation of the
design displayed through the Technology view.

• .srr—synthesis log file that provides messages and information on the
synthesis run as well as timing and area reports.

Using Multiple Clock Domains Chapter 10: Additional Features and Topics

Synplify Pro Quick Start Guide, June 2009 87

• .srs—output by the compiler stage of the process, contains the RTL-
level (schematic) view of the design. This is the representation displayed
in the RTL view.

• .ta—stand-alone timing report that contains the timing parameters
specified when using the Analysis->Timing Analyst command. You can also
graphically display the results of this report using the ta.srm file.

• .tap— this file is generated when the Annotated Properties for Analyst switch
is enabled (Implementation Options->Options tab) and is used to annotate
timing properties for the RTL view, Design Planner and the Find
command.

• ta.srm—contains the graphical representation of the stand-alone timing
report (.ta) that you can display in the Technology view.

• .tasrr—timing analysis log file, output only when you run the stand-
alone timing report program.

• .vif— verification interface format file that contains Tcl commands to
forward annotate sequential optimizations for formal verification.

Output Netlist
The output netlist is usually written out as an EDIF file. However, the netlist
can be written out in other formats appropriate to the technology and place-
and-route tool that you are using, such as .acf or .vqm for Altera or the .edf
format for Xilinx. Choose the format from the Implementation Options->Implemen-
tation Results tab (Result Format field).

To find information on the features specified in the sections below, you can
use the online help system in the tool (Help-> Help, or F1), or the User Guide
and Reference Manual (Help->Online Documents).

Using Multiple Clock Domains
When using multiple clock domains in a design, you can define the relation-
ship between clocks using the Clock Group parameter. By default, each clock is
automatically assigned to a separate clock group (called default_clkgroup<n>).
Clocks in different clock groups are treated by the timing analyzer as
unrelated, meaning any paths between them are treated as false paths and

LO

Chapter 10: Additional Features and Topics Using Scripts and Batch Mode

88 Synplify Pro Quick Start Guide, June 2009

ignored during timing analysis. Clocks defined in the same clock group are
assumed to be related and all timing paths between them are calculated
during timing analysis. Also, by default, all inferred and other clocks that use
the global frequency are assigned the same clock group. To group related
clocks and separate unrelated clocks, use the SCOPE editor ->Clocks tab->
Clock Group parameter.

See Help in the tool or the section: Defining Other Clock Requirements, on
page 5-225 of the User Guide.

Using Scripts and Batch Mode
You can create scripts for running synthesis projects to run in batch mode.
See Help in the tool or the sections: Using Batch Mode, on page 21-876 and
Working with Tcl Scripts and Commands, on page 21-878 of the User Guide.

Using the Tcl Find Command for Setting
Constraints

Use the Tcl find command to search for design objects and properties, such as
registers, clocks parameters, ports, and so on. You can group the search
results into collections, and use these collections to apply constraints to the
different design objects. See Help in the tool or the sections:

• Tcl find Command, on page 14-1260 of the Reference Manual

• Using Collections, on page 5-237 of the User Guide

Running Place and Route Chapter 10: Additional Features and Topics

Synplify Pro Quick Start Guide, June 2009 89

Running Place and Route
You can create a place-and-route implementation that will launch from
within the tool or from batch mode following the synthesis run. See Help in
the tool or the section: Running Place-and-Route after Synthesis, on
page 20-849 of the User Guide.

Using Identify with Synplify Pro
The Identify RTL Debugger is a dual-component system that consists of an
Identify Instrumentor that allows you to select a design instrumentation at
the HDL level, then create an on-chip hardware probe, and the Identify
Debugger tool that interacts with the on-chip hardware probe and from which
you can interactively debug the design. The combination of these tools allows
you to probe the HDL design in the target environment and debug the design
faster, and more efficiently.

See Help in the tool or the section: Working with the Identify RTL Debugger, on
page 20-868 of the User Guide.

For More Information
• The Synopsys FPGA synthesis documentation set is available in the tool

through the integrated help system (Help->Help) and PDF documents
accessible through Help->Online Documents.

• Synopsys Technical Support:

http://solvnet.synopsys.com

http://www.solvnet.com

LO

Chapter 10: Additional Features and Topics For More Information

90 Synplify Pro Quick Start Guide, June 2009

	Synplify Pro Quick Start Guide
	Disclaimer of Warranty
	Copyright Notice
	Trademarks
	Restricted Rights Legend

	Quick Start Overview
	Process Flow
	Process Flow Diagram
	Top-Down and Compile Point Design Flows

	Set up Design Information
	Add Source Files
	Set Implementation Options
	State Machine Implementation
	Resource Sharing
	Pipelining
	Retiming
	Formal Verification

	Set up Timing Information
	Set Timing Constraints
	Define Compile Points
	Set Constraints (Compile Point Synthesis)
	Set Top-level Constraints
	Set Compile Point Constraints

	Run

	Analyze Results
	View the Log File
	Use the HDL Analyst® Tool
	RTL View
	Technology View
	Design Hierarchy Exploration Tools
	Advanced Find Capabilities
	Filtered and Flattened Views
	Crossprobing Across Views
	Cross-tool Crossprobing
	Other Options
	Mouse Strokes

	Use FSM Viewer
	Other Tools to Validate Synthesis Results
	Use Formal Verification
	Use syn_probe Attribute
	Identify RTL debugger

	Specify Directives and Attributes
	Using Directives and Attributes
	syn_maxfan
	syn_keep
	syn_ramstyle

	Basics of Timing Constraints
	Specifying Timing Information
	Clock Descriptions
	Example

	Clock Groups
	Rise and Fall Constraints
	Input and Output Delays
	Input Ports
	Output Ports

	Multicycle Paths
	Setting Multicycle Path Constraints

	I/O Standard

	Analyze Timing Results
	Critical Path Report
	Timing Information Display
	Critical Path Analysis in a Technology View
	Critical Path Views
	Generate a Technology View for the Most Critical Path
	Generate Critical Path View in the Timing Analyzer
	Generate Critical Path View from the Log File

	Refine Options to Improve Timing
	Refine Timing Results
	Compare Synthesis Results with Place-and Route Results
	Add Route Delay Constraints

	Forward Annotate Incremental Results

	Additional Features and Topics
	Synplify Premier Physical Synthesis
	Synthesis Output Files
	Output Netlist

	Using Multiple Clock Domains
	Using Scripts and Batch Mode
	Using the Tcl Find Command for Setting Constraints
	Running Place and Route
	Using Identify with Synplify Pro
	For More Information

