
Synopsys FPGA Synthesis
User Guide
June 2009

http://solvnet.synopsys.com

LO

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
2 June 2009

Disclaimer of Warranty
Synopsys, Inc. makes no representations or warranties, either expressed or
implied, by or with respect to anything in this manual, and shall not be liable
for any implied warranties of merchantability or fitness for a particular
purpose of for any indirect, special or consequential damages.

Copyright Notice
Copyright © 2009 Synopsys, Inc. All Rights Reserved.

Synopsys software products contain certain confidential information of
Synopsys, Inc. Use of this copyright notice is precautionary and does not
imply publication or disclosure. No part of this publication may be repro-
duced, transmitted, transcribed, stored in a retrieval system, or translated
into any language in any form by any means without the prior written
permission of Synopsys, Inc. While every precaution has been taken in the
preparation of this book, Synopsys, Inc. assumes no responsibility for errors
or omissions. This publication and the features described herein are subject
to change without notice.

Trademarks

Registered Trademarks (®)
Synopsys, AMPS, Astro, Behavior Extracting Synthesis Technology, Cadabra,
CATS, Certify, Design Compiler, DesignWare, Formality, HDL Analyst,
HSPICE, Identify, iN-Phase, Leda, MAST, ModelTools, NanoSim, OpenVera,
PathMill, Physical Compiler, PrimeTime, SiVL, SCOPE, Simply Better Results,
SNUG, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify Pro,
Synthesis Constraints Optimization Environment, TetraMAX, VCS, Vera, and
YIELDirector are registered trademarks of Synopsys, Inc.

Trademarks (™)
AFGen, Apollo, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves, BEST, Columbia,
Columbia-CE, Confirma, Cosmos, CosmosLE, CosmosScope, CRITIC, DC
Expert, DC Professional, DC Ultra, Design Analyzer, Design Vision, Design-
erHDL, DesignPower, Direct Silicon Access, Discovery, Eclypse, Encore,
EPIC, Galaxy, HANEX, HAPS, HapsTrak, HDL Compiler, Hercules, Hierar-

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 3

chical Optimization Technology, High-performance ASIC Prototyping System,
HSIM, HSIMplus, i-Virtual Stepper, IICE, in-Sync, iN-Tandem, Jupiter,
Jupiter-DP, JupiterXT, JupiterXT-ASIC, Liberty, Libra-Passport, Library
Compiler, Magellan, Mars, Mars-Rail, Mars-Xtalk, Milkyway, ModelSource,
Module Compiler, MultiPoint, Physical Analyst, Planet, Planet-PL, Polaris,
Power Compiler, Raphael, Saturn, Scirocco, Scirocco-i, Star-RCXT,
Star-SimXT, System Compiler, System Designer, Taurus, TotalRecall,
TSUPREM-4, VCS Express, VCSi, VHDL Compiler, VirSim, and VMC are
trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under
license. ARM and AMBA are registered trademarks of ARM Limited. Saber is a
registered trademark of SabreMark Limited Partnership and is used under
license. All other product or company names may be trademarks of their
respective owners.

Restricted Rights Legend
Government Users: Use, reproduction, release, modification, or disclosure of
this commercial computer software, or of any related documentation of any
kind, is restricted in accordance with FAR 12.212 and DFARS 227.7202, and
further restricted by the Synopsys Software License and Maintenance
Agreement. Synopsys, Inc., Synplicity Business Group, 600 West California
Avenue, Sunnyvale, CA 94086, U. S. A.

Printed in the U.S.A
June 2009

LO

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
4 June 2009

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 5

Contents

Chapter 1: Introduction
The Synopsys FPGA Product Family . 22

The FPGA Synthesis Tools . 22
Synopsys FPGA Tool Features . 23

Scope of the Document . 26
The Document Set . 26
Audience . 26

Getting Started . 27
Starting the Software . 27
Getting Help . 27
Requesting Technical Support . 28

User Interface Overview . 29

Chapter 2: FPGA Logic and Physical Synthesis Flows
Logic Synthesis Design Flow . 32

Synplify Premier Synthesis Design Flows . 35
Logic Synthesis with Enhanced Optimization . 36
Design Plan-Based Logic Synthesis . 38
Graph-Based Physical Synthesis . 42
Graph-Based Physical Synthesis with Design Planner 46
Design Plan-based Physical Synthesis . 48

Actel Physical Synthesis . 52
Set up the Actel Physical Synthesis Project . 52
Run Logic Synthesis for the Actel Physical Synthesis Flow 56
Validate Logic Synthesis Results for Actel Physical Synthesis 56
Set up Actel Physical Constraints . 57
Run Actel Physical Synthesis . 57
Analyze Results of Actel Physical Synthesis . 57

LO

Preface

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
6 June 2009

Altera Physical Synthesis . 60
Guidelines for Physical Synthesis in Altera Designs . 60
Set up the Altera Physical Synthesis Project . 61
Run Logic Synthesis for the Altera Physical Synthesis Flow 65
Validate Logic Synthesis Results for Altera Physical Synthesis 66
Run Altera Physical Synthesis . 66
Analyze Results of Altera Physical Synthesis . 66

Xilinx Physical Synthesis . 69
Set up the Xilinx Physical Synthesis Project . 70
Run Logic Synthesis for the Xilinx Physical Synthesis Flow 74
Validate Logic Synthesis Results for Xilinx Physical Synthesis 75
Run Xilinx Physical Synthesis . 75
Analyze Results of Xilinx Physical Synthesis . 75
Guidelines for Xilinx Timing Constraints for Physical Synthesis 77
Using IP Cores in Xilinx Physical Synthesis Flows . 78
Placement and Routing Phases in Xilinx Physical Synthesis 78

Prototyping Design Flow . 80

Chapter 3: Preparing the Input
Setting Up HDL Source Files . 82

Creating HDL Source Files . 82
Checking HDL Source Files . 83
Editing HDL Source Files with the Built-in Text Editor . 85
Setting Editing Window Preferences . 88
Using an External Text Editor . 90
Using Hyper Source . 91

Using Mixed Language Source Files . 95

Working with Constraint Files . 98
When to Use Constraint Files over Source Code . 98
Tcl Syntax Guidelines for Constraint Files . 99
Using a Text Editor for Constraint Files . 100
Using Synopsys Design Compiler Constraints . 102
Checking Constraint Files . 104
Generating Constraint Files for Forward Annotation . 105

Using Input from Related Tools . 106

Converting Synopsys DesignWare Components . 107
Converting Verilog Library Components . 107
Converting VHDL Library Components . 109

Preface

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 7

Chapter 4: Working with IP Input
Generating IP with SYNCore . 114

Specifying FIFOs with SYNCore . 114
Specifying RAMs with SYNCore . 119
Specifying ROMs with SYNCore . 125
Specifying Adder/Subtractors with SYNCore . 130
Specifying Counters with SYNCore . 137

The ReadyIP Encryption Flow . 143
Overview of the Synopsys ReadyIP Flow . 143
Encryption and Decryption . 144

Working with Encrypted IP . 148
Encrypting Your IP . 148
Preparing the IP Package . 153
Evaluating Vendor IP . 158

Working with Altera IP . 161
Using Altera LPMs or Megafunctions in Synthesis . 161
Implementing Megafunctions with Clearbox Models . 165
Implementing Megafunctions with Grey Box Models . 175
Including Altera MegaCore IP Using an IP Package . 181
Including Altera Processor Cores Generated in SOPC Builder 186
Working with SOPC Builder Components . 191

Working with Lattice IP . 194

Working with Xilinx IP . 195
Xilinx IP Cores . 195
Including Xilinx Cores for Logic and Physical Synthesis 196

Including Xilinx EDK Cores . 199
The Synplify-EDK Design Flow . 199
Working with EDK Cores . 204
Xilinx Hardware Development Flows . 207

Chapter 5: Specifying Constraints
Using the SCOPE UI . 212

Creating a Constraint File Using the SCOPE Window 212
Entering and Editing Constraints in the SCOPE Window 214
Setting SCOPE Display Preferences . 217

Specifying Timing Constraints . 219
Entering Default Constraints . 219
Setting Clock and Path Constraints . 220

LO

Preface

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
8 June 2009

Defining Clocks . 222
Defining Input and Output Constraints . 226
Specifying Standard I/O Pad Types . 228
Specifying Xilinx Timing Constraints . 228
Using -route for Physical Synthesis in Xilinx Designs 230

Specifying Timing Exceptions . 230
Defining From/To/Through Points for Timing Exceptions 231
Defining Multi-cycle Paths . 234
Defining False Paths . 235

Using Collections . 237
Comparing Methods for Defining Collections . 237
Creating and Using Collections (SCOPE Window) . 238
Creating Collections (Tcl Commands) . 241
Using the Tcl Find Command to Define Collections . 244
Using the Expand Tcl Command to Define Collections 246
Viewing and Manipulating Collections (Tcl Commands) 247

Using Auto Constraints . 251

Translating Altera QSF Constraints . 253

Converting and Using Xilinx UCF Constraints . 255
Using Xilinx UCF Constraints in a Logic Synthesis Design 255
Using Xilinx UCF Constraints in a Physical Synthesis Design 258
Support for UCF Conversion . 260
Using the Legacy UCF2SDC Utility . 264

Chapter 6: Setting up a Logic Synthesis Project
Setting Up Project Files . 270

Creating a Project File . 270
Opening an Existing Project File . 273
Making Changes to a Project . 274
Setting Project View Display Preferences . 275
Updating Verilog Include Paths in Older Project Files 277

Project File Hierarchy Management . 279
Creating Custom Folders . 279
Other Custom Folder Operations . 282
Other Custom File Operations . 283

Setting Up Implementations and Workspaces . 285
Working with Multiple Implementations . 285
Creating Workspaces . 287
Using Workspaces . 288

Preface

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 9

Setting Logic Synthesis Implementation Options . 289
Setting Device Options . 289
Setting Optimization Options . 292
Specifying Global Frequency and Constraint Files . 294
Specifying Result Options . 296
Specifying Timing Report Output . 297
Setting Verilog and VHDL Options . 298

Entering Attributes and Directives . 304
Specifying Attributes and Directives . 304
Specifying Attributes and Directives in VHDL . 305
Specifying Attributes and Directives in Verilog . 307
Specifying Attributes Using the SCOPE Editor . 308
Specifying Attributes in the Constraints File (.sdc) . 310

Searching Files . 312
Identifying the Files to Search . 313
Filtering the Files to Search . 313
Initiating the Search . 314
Search Results . 314

Archiving Files and Projects . 315
Archive a Project . 315
Un-Archive a Project . 320
Copy a Project . 323

Chapter 7: Setting up a Physical Synthesis Project
Setting up for Physical Synthesis . 328

Setting Options for Physical Synthesis . 330
Setting Synplify Premier Netlist Restructuring Optimizations 330
Creating a Place and Route Implementation . 332
Specifying Altera Place-and-Route Options . 337
Specifying Xilinx Place-and-Route Options in a Tcl File 340
Specifying Xilinx Place-and-Route Options in an .opt File 341
Specifying Xilinx Global Placement Options . 346

Setting Constraints for Physical Synthesis . 347
Using Design Planner Floorplan Constraints . 347
Translating Pin Location Files . 348
Translating Actel I/O Constraints . 348
Setting Physical Synthesis Constraints for Altera . 349

Forward-Annotating Physical Synthesis Constraints . 351
Forward Annotating Altera Physical Constraints . 351

LO

Preface

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
10 June 2009

Backannotating Physical Synthesis Constraints . 353
Backannotating Place-and-Route Data . 353
Generating a Xilinx Coreloc Placement File . 354

Chapter 8: Inferring High-Level Objects
Defining Black Boxes for Synthesis . 358

Instantiating Black Boxes and I/Os in Verilog . 358
Instantiating Black Boxes and I/Os in VHDL . 360
Adding Black Box Timing Constraints . 362
Adding Other Black Box Attributes . 366

Defining State Machines for Synthesis . 367
Defining State Machines in Verilog . 368
Defining State Machines in VHDL . 369
Specifying FSMs with Attributes and Directives . 369

Inferring RAMs . 372
Inference Versus Instantiation . 372
Basic Guidelines for Coding RAMs . 373
Specifying RAM Implementation Styles . 378
Implementing Altera RAMs Automatically . 379
Implementing Xilinx RAMs Automatically . 383
Implementing Altera FLEX and APEX RAMs . 385
Implementing Altera Stratix Multi-Port RAMs . 388
Inferring Altera Stratix III LUTRAMs . 389
Inferring Xilinx Block RAMs Using Registered Addresses 391
Inferring Xilinx Block RAMs Using Registered Output 393
Mapping Xilinx ROM to Block RAM . 398

Initializing RAMs . 400
Initializing RAMs in Verilog . 400
Initializing RAMs in VHDL . 401
Initializing Xilinx RAM . 404

Inferring Shift Registers . 410

Working with LPMs . 416
Instantiating Altera LPMs as Black Boxes . 417
Instantiating Altera LPMs Using VHDL Prepared Components 421
Instantiating Altera LPMs Using a Verilog Library . 423

Preface

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 11

Chapter 9: Specifying Design-Level Optimizations
Tips for Optimization . 426

General Optimization Tips . 426
Optimizing for Area . 427
Optimizing for Timing . 428

Pipelining . 429
Prerequisites for Pipelining . 429
Pipelining the Design . 430

Retiming . 433
Controlling Retiming . 433
Retiming Example . 435
Retiming Report . 436
How Retiming Works . 437
How Retiming Works With Synplify Premier Regions 439

Preserving Objects from Optimization . 440
Using syn_keep for Preservation or Replication . 441
Controlling Hierarchy Flattening . 444
Preserving Hierarchy . 444

Optimizing Fanout . 446
Setting Fanout Limits . 446
Controlling Buffering and Replication . 448

Sharing Resources . 450

Inserting I/Os . 452

Optimizing State Machines . 453
Deciding when to Optimize State Machines . 453
Running the FSM Compiler . 455
Running the FSM Explorer . 458

Inserting Probes . 461
Specifying Probes in the Source Code . 461
Adding Probe Attributes Interactively . 462

Working with Gated Clocks . 464
Gated Clocks in Synopsys FPGA Designs . 464
Prerequisites for Gated Clock Conversion . 467
Synthesizing a Gated Clock Design . 469
Using Gated Clocks for Black Boxes . 471
Analyzing Gated Clock Conversion Reports . 472
Working with Gated Clock Error Messages . 473
Restrictions on Using Gated Clocks . 475

LO

Preface

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
12 June 2009

Optimizing Generated Clocks . 477
Generated-Clock Optimization Example . 477
Enabling Generated-Clock Optimization . 478
Conditions for Generated-Clock Optimization . 479

Chapter 10: Fast Synthesis
About Fast Synthesis . 482

Using Fast Synthesis . 483

Fast Synthesis and Other Synthesis Options . 485

Chapter 11: Floorplanning with Design Planner
Using Design Planner . 488

Starting Design Planner . 488
Copying Objects in the Design Planner Tool . 490
Controlling Pin Display in the Design Plan Editor . 491
Creating and Using a Design Plan File for Physical Synthesis 494

Assigning Pins and Clocks . 495
Assigning Pins Interactively . 495
Importing Pin Assignments from Pin Assignment Files 498
Assigning Clock Pins . 498
Modifying Pin Assignments . 500
Using Temporary Pin Assignments . 501
Viewing Assigned Pins in Different Views . 502
Viewing Pin Assignment Information . 503

Working with Regions . 505
Creating Regions . 505
Using Region Tunneling . 507
Moving and Sizing Regions . 509
Viewing Intellectual Property (IP) Core Areas . 510
Assigning Logic to Top-level Chip Regions . 510
Assigning Logic to Regions . 514
Replicating Logic Manually . 515
Assigning Critical Paths from Island Timing to a Region 516
Checking Utilization . 517

Working with Altera Regions . 519
Creating Design Planner Regions for Altera Designs 520
Assigning Logic to Altera Design Planner Regions . 521

Working with Xilinx Regions . 523
Creating Regions for Xilinx Designs . 525

Preface

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 13

Assigning Objects to Xilinx Regions . 527
Assigning Xilinx Critical Paths to Design Planner Regions 527
Assigning Xilinx Block RAMs to Regions . 534
Assigning Xilinx Block Multipliers to Regions . 539
Assigning Xilinx DSP Blocks to Regions . 540

Using Process-Level Hierarchy . 542

Bit Slicing . 543
Using Bit Slicing . 543
Bit Slice Examples . 547

Zippering . 550
Zippering Guidelines . 551
Using Zippering . 551
Zippering Example . 555

Chapter 12: Running Logical Compile Points
Logical Compile-Point Synthesis . 560

Overview . 560
Traditional Bottom-up Design and Compile Points . 561

About Compile Points . 562
Nesting: Child and Parent Compile Points . 562
Advantages of Using Compile Points . 563
Compile Point Types . 564
Compile Point Feature Summary . 567
Using syn_hier with Compile Points . 568
Using syn_allowed_resources with Compile Points . 568
define_compile_point and define_current_design . 569
About Interface Logic Models (ILMs) . 570

Compile Point Synthesis . 571
Compile Point Optimization . 571
Forward-annotation of Compile-point Timing Constraints 572

Using Compile-point Synthesis . 573
Synplify Pro and Synplify Premier Compile-point Flow 573

Xilinx Compile-point Synthesis Flow . 583
Using Xilinx Compile-point Synthesis . 583

Chapter 13: Using Multiprocessing
Multiprocessing With Compile Points . 588

Setting Maximum Parallel Jobs . 588
License Utilization . 589

LO

Preface

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
14 June 2009

Chapter 14: Synthesizing and Analyzing the Log File
Synthesizing Your Design . 592

Running Logic Synthesis . 592
Running Physical Synthesis . 592

Checking Log Results . 596
Viewing the Log File . 596
Analyzing Results Using the Log File Reports . 599
Using the Log Watch Window . 600

Handling Messages . 602
Checking Results in the Message Viewer . 602
Filtering Messages in the Message Viewer . 604
Filtering Messages from the Command Line . 606
Automating Message Filtering with a Tcl Script . 607
Handling Warnings . 609

Validating Logic Synthesis for Physical Synthesis . 609

Chapter 15: Analyzing with HDL Analyst and FSM Viewer
Working in the Schematic Views . 614

Differentiating Between the Views . 615
Opening the Views . 615
Viewing Object Properties . 617
Selecting Objects in the RTL/Technology Views . 620
Working with Multisheet Schematics . 621
Moving Between Views in a Schematic Window . 623
Setting Schematic View Preferences . 623
Managing Windows . 625

Exploring Design Hierarchy . 627
Traversing Design Hierarchy with the Hierarchy Browser 627
Exploring Object Hierarchy by Pushing/Popping . 628
Exploring Object Hierarchy of Transparent Instances 634

Finding Objects . 635
Browsing to Find Objects . 635
Using Find for Hierarchical and Restricted Searches . 637
Using Wildcards with the Find Command . 640
Using Find to Search the Output Netlist . 643

Crossprobing . 645
Crossprobing within an RTL/Technology View . 646
Crossprobing from the RTL/Technology View . 647
Crossprobing from the Text Editor Window . 649

Preface

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 15

Crossprobing from the Tcl Script Window . 652
Crossprobing from the FSM Viewer . 652

Analyzing With the HDL Analyst Tool . 654
Viewing Design Hierarchy and Context . 655
Filtering Schematics . 658
Expanding Pin and Net Logic . 660
Expanding and Viewing Connections . 664
Flattening Schematic Hierarchy . 665
Minimizing Memory Usage While Analyzing Designs 670

Using the FSM Viewer . 670

Chapter 16: Analyzing Designs in Physical Analyst
Analyzing Physical Synthesis Results . 678

Analyzing Physical Synthesis Results Using Various Tools 678
Comparing Performance Results . 680
Running Multiple Implementations . 681
Checking Altera Pre-Placement Physical Synthesis Results 681

Using Physical Analyst . 683
Opening the Physical Analyst Interface . 683
Zooming in the Physical Analyst . 685
Moving Between Views in the Physical Analyst . 686
Using the Physical Analyst Context Window . 687

Displaying and Selecting Objects . 689
Setting Visibility for Physical Analyst Objects . 689
Displaying Instances and Sites in Physical Analyst . 690
Displaying Nets in Physical Analyst . 694
Selecting Objects in Physical Analyst . 696

Querying Physical Analyst Objects . 699
Viewing Properties in Physical Analyst . 699
Using Tool Tips to View Properties in Physical Analyst 702

Finding Objects . 704
Using Find to Locate Physical Analyst Objects) . 704
Finding Physical Analyst Objects by Their Locations . 708
Using Markers to Find Physical Analyst Objects . 709
Identifying Encrypted IP Objects in Physical Analyst . 711

Crossprobing in Physical Analyst . 713
Crossprobing from the Physical Analyst View . 713
Crossprobing from a Text File to Physical Analyst . 716

LO

Preface

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
16 June 2009

Crossprobing from the RTL View to Physical Analyst 717
Crossprobing from the Technology View to Physical Analyst 719

Analyzing Netlists in Physical Analyst . 721
Filtering the Physical Analyst View . 721
Expanding Pin and Net Logic in Physical Analyst . 722
Expanding and Viewing Connections in Physical Analyst 727

Chapter 17: Analyzing Timing
Analyzing Timing in Schematic Views . 730

Viewing Timing Information . 730
Annotating Timing Information in the Schematic Views 731
Analyzing Clock Trees in the RTL View . 733
Viewing Critical Paths . 733

Using the Stand-alone Timing Analyst . 736
Entering Constraints into the .adc File . 741

Using the Island Timing Analyst . 743
Working in the Island Timing Analyst Interface . 743
Generating the Island Timing Report Automatically . 745
Generating the Island Timing Report Interactively . 747
Defining Group Range and Global Range for Island Timing 748
Viewing the Island Timing Report . 749

Analyzing Timing with Physical Analyst . 750
Viewing Critical Paths in Physical Analyst . 750
Tracing Critical Paths Forward in Physical Analyst . 753
Tracing Critical Paths Backward in Physical Analyst . 755

Handling Negative Slack . 756

Chapter 18: Optimizing for Specific Targets
Optimizing Actel Designs . 760

Using Predefined Actel Black Boxes . 760
Using ACTGen Macros . 761
Working with Radhard Designs . 762
Improving Performance in Actel Physical Synthesis Designs 763

Optimizing Altera Designs . 764
Design Tips for APEX and FLEX Designs . 765
Determining ROM Implementation . 765
Working with Altera EABs and ESBs . 767
Working with Altera PLLs . 769
Instantiating Special Buffers as Black Boxes in Altera Designs 770

Preface

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 17

Specifying Altera I/O Locations . 772
Packing I/O Cell Registers in Altera Designs . 774
Specifying HardCopy and Stratix Companion Parts . 775
Specifying Core Voltage in Stratix III Designs . 776
Using LPMs in Simulation Flows . 777
Improving Altera Physical Synthesis Performance . 779
Working with Quartus II . 779
Configuring Max+Plus II for FLEX and ACEX1K . 781
Configuring Max+Plus II for MAX Designs . 784

Optimizing Lattice Designs . 785
Instantiating Lattice Macros . 785
Using Lattice GSR Resources . 787
Inferring Carry Chains in Lattice XPLD Devices . 788
Inferring Lattice PIC Latches . 788
Controlling I/O Insertion in Lattice Designs . 794
Forward-Annotating Lattice Constraints . 795

Optimizing Xilinx Designs . 797
Designing for Xilinx Architectures . 797
Specifying Xilinx Macros . 798
Specifying Global Sets/Resets and Startup Blocks . 800
Inferring Wide Adders . 801
Instantiating CoreGen Cores . 804
Instantiating Virtex PCI Cores . 805
Packing Registers for Xilinx I/Os . 807
Specifying Xilinx Register INIT Values . 810
Inserting Xilinx I/Os and Specifying Pin Locations . 812
Working with Xilinx Buffers . 818
Specifying RLOCs . 819
Specifying RLOCs and RLOC_ORIGINs with the synthesis Attribute 821
Using Clock Buffers in Virtex Designs . 822
Working with Clock Skews in Xilinx Virtex-5 Physical Designs 824
Instantiating Special I/O Standard Buffers for Virtex . 825
Reoptimizing With EDIF Files . 826
Improving Xilinx Physical Synthesis Performance . 827
Running Post-Synthesis Simulation . 828
Working with Xilinx Place-and-Route Software . 829

Chapter 19: Working with Synthesis Output
Passing Information to the P&R Tools . 832

Specifying Pin Locations . 832
Specifying Locations for Actel Bus Ports . 833

LO

Preface

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
18 June 2009

Specifying Macro and Register Placement . 833
Passing Technology Properties . 834
Specifying Padtype and Port Information . 834

Generating Vendor-Specific Output . 836
Targeting Output to Your Vendor . 836
Customizing Netlist Formats . 837

Invoking Third-Party Vendor Tools . 838
Configuring Tool Tags . 838
Invoking a Third-Party Tool . 839

Chapter 20: Running Post-Synthesis Operations
VIF Formal Verification Flow . 844

Overview of the VIF Flow . 844
Generating a VIF File . 845
Using a Tcl Script for VIF Conversion . 847
Handling Equivalency Check Failures . 848

Running Place-and-Route after Synthesis . 849

Simulating with the VCS Tool . 851

Resynthesizing with QuickLogic Information . 856

Quartus II Incremental Compilation . 857
Quartus II Incremental Compilation Flow . 857

Working with Xilinx Incremental Flows . 862
Incremental Flow for Xilinx Designs . 862
SmartGuide Global Placement Flow . 863
Partition Flow . 863

Working with the Identify RTL Debugger . 868
Launching from the Synplify Pro or Synplify Premier Tool 868
Launching from the Synplify Tool . 870
Handling Problems with Launching Identify . 872
Using the Identify Tool . 873

Chapter 21: Process Optimization and Automation
Using Batch Mode . 876

Running Batch Mode on a Project File . 876
Running Batch Mode with a Tcl Script . 877

Working with Tcl Scripts and Commands . 878
Using Tcl Commands and Scripts . 878

Preface

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 19

Generating a Job Script . 879
Creating a Tcl Synthesis Script . 879
Using Tcl Variables to Try Different Clock Frequencies 881
Using Tcl Variables to Try Several Target Technologies 882
Running Bottom-up Synthesis with a Script . 883

Automating Flows with synhooks.tcl . 884

LO

Preface

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
20 June 2009

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 21

C H A P T E R 1

Introduction

This introduction to the Synplify®, Synplify Pro®, and Synplify® Premier
software describes the following:

• The Synopsys FPGA Product Family, on page 22

• Scope of the Document, on page 26

• Getting Started, on page 27

• User Interface Overview, on page 29

Throughout the documentation, features and procedures described apply to
all tools, unless specifically stated otherwise.

LO

Chapter 1: Introduction The Synopsys FPGA Product Family

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
22 June 2009

The Synopsys FPGA Product Family
The Synopsys® family of synthesis tools is based on core logic synthesis
technology, and share a common look and feel. The following figure shows the
Synopsys® Synplicity® line of products.

The FPGA Synthesis Tools
This section briefly describes the FPGA syntheis tools Synplify, Synplify Pro,
and Synplify Premier synthesis tools.

Certify®

FPGA Implementation ESL Synthesis

Synplify®

Premier

Confirma™ Verification

RTL Debugger

Synplify® DSP

DSP SynthesisFPGA Logic Synthesis

Physical Synthesis
for FPGAs

ASIC RTL Prototyping

Design Planner

Identify®

Synplify®

Premier

Identify® Pro

HAPS™

Synplify®

Synplify Pro®

RTL Debugger

ASIC/ASSP Prototyping

Physical Synthesis

The Synopsys FPGA Product Family Chapter 1: Introduction

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 23

Synplify and Synplify Pro Software
Synplify® and Synplify Pro® are logic synthesis tools for FPGAs (Field
Programmable Gate Arrays) and Complex PLDs (Programmable Logic
Devices). For input, the software uses high-level designs written in Verilog
and VHDL hardware description languages (HDLs). Using proprietary
Behavior Extracting Synthesis Technology® (B.E.S.T.)® the tool converts the
HDL into small, high-performance, design netlists that are optimized for
popular technology vendors. Optionally, the software can write post-
synthesis VHDL and Verilog netlists that you can use to verify functionality
through simulation.

 The Synplify Pro software offers a superset of the Synplify features.

Synplify Premier Software
The Synplify Premier tool offers a push-button, graph-based physical
synthesis approach improving overall device performance while simulta-
neously delivering tight correlation between pre-route timing estimates and
final post place-and-route results.

The Synplify Premier product supports three physical design flows. See
Synplify Premier Synthesis Design Flows, on page 35 for descriptions. You
can also use it in the prototyping flow, described in Prototyping Design Flow,
on page 80.

Synopsys FPGA Tool Features
This table distinguishes between the Synplify Pro, Synplify, Synplify Premier,
and Synplify Premier with Design Planner products.

Synplify Synplify
Pro

Synplify
Premier

Synplify
Premier DP

Performance

Behavior Extracting Synthesis
Technology® (BEST™)

x x x x

Vendor-Generated Core/IP
Support (certain technologies)

x x x

FSM Compiler x x x x

LO

Chapter 1: Introduction The Synopsys FPGA Product Family

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
24 June 2009

FSM Explorer x x x

Gated Clock Conversion x x x

Register Pipelining x x x

Register Retiming x x x

Code Analysis

SCOPE® Spreadsheet x x x x

HDL Analyst® Option x x x

Timing Analyzer – Point-to-point x x x

FSM Viewer x x x

Crossprobing x x x

Probe Point Creation x x x

Physical Design

Design Plan File x

Logic Assignment to Regions x

Area Estimation and Region
Capacity

x

Pin Assignment x

Physical Synthesis
Optimizations

x

Graph-based Physical Synthesis x x

Island Timing Analyst x x

Physical Analyst x x

Prototyping x x

Automatic translation of
Synopsys® DesignWare®
components

x x

Synplify Synplify
Pro

Synplify
Premier

Synplify
Premier DP

The Synopsys FPGA Product Family Chapter 1: Introduction

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 25

Team Design

Mixed Language Design x x x

Modular Flow (certain
technologies)

x x x

Compile Points x x x

True Batch Mode (Floating
licenses only)

x x x

GUI Batch Mode (Floating
licenses)

x x x x

Batch Mode Post-synthesis P&R
Run

- x x x

Back-annotation of P&R Data - - - x

Formal Verification Flow x x
(Physical
synthesis
disabled)

x
(Physical
synthesis
disabled)

Identify Integration Limited x x x

Back-annotation of P&R Data x

Design Environment

Technical Resource Center x x x x

Text Editor View x x x x

Log Watch Window x x x

Message Window x x x

Tcl Window x x x

Workspaces x x x

Multiple Implementations x x x

Vendor Technology/Family
Support

x x Limited Limited

Synplify Synplify
Pro

Synplify
Premier

Synplify
Premier DP

LO

Chapter 1: Introduction Scope of the Document

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
26 June 2009

Scope of the Document
The following explain the scope of this document and the intended audience.

The Document Set
This user guide is part of a document set that includes a reference manual
and a tutorial. It is intended for use with the other documents in the set. It
concentrates on describing how to use the Synplify software to accomplish
typical tasks. This implies the following:

• The user guide only explains the options needed to do the typical tasks
described in the manual. It does not describe every available command
and option. For complete descriptions of all the command options and
syntax, refer to the User Interface Overview chapter in the Synopsys
FPGA Synthesis Reference Manual.

• The user guide contains task-based information. For a breakdown of
how information is organized, see Getting Help, on page 27.

Audience
The Synplify, Synplify Pro, and Synplify Premier software tools are targeted
towards the FPGA system developer. It is assumed that you are knowledge-
able about the following:

• Design synthesis

• RTL

• FPGAs

• Verilog/VHDL

• Physical Synthesis

Getting Started Chapter 1: Introduction

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 27

Getting Started
This section shows you how to get started with the Synplify software. It
describes the following topics, but does not supersede the information in the
installation instructions about licensing and installation:

• Starting the Software, on page 27

• Getting Help, on page 27

• Requesting Technical Support, on page 28

Starting the Software
1. If you have not already done so, install the Synplify software according

to the installation instructions.

2. Start the software.

– If you are working on a Windows platform, select
Programs->Synplicity->product version from the Start button.

– If you are working on a UNIX platform, type the appropriate
command at the command line:

synplify

synplify_pro

synplify_premier

synplify_premier_dp

The command starts the synthesis tool, and opens the Project window. If
you have run the software before, the window displays the previous
project. For more information about the interface, see the User Interface
Overview chapter of the Reference Manual.

Getting Help
Before you call Synopsys Support, look through the documented information.
You can access the information online from the Help menu, or refer to the PDF
version. The following table shows you how the information is organized.

LO

Chapter 1: Introduction Getting Started

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
28 June 2009

Requesting Technical Support
To request assistance from Technical Support for the Synopsys FPGA
synthesis products, use the SolvNet Online Support utility – an online web-
based interface from which you can submit your request form and attach
project files. This is the preferred mechanism for contacting Technical
Support and may facilitate a faster response than requesting support
through email.

You can access SolvNet Online Support in one of these ways:

• From the tool: Tech-Support->Submit Support Request. This opens a wizard
that walks you through the process of making a request and attaching
related files from your project.

• From the tool: Tech-Support->Web Support.

• Through the link on the web page:
http://solvnet.synopsys.com.

For help with... Refer to the...

Using software features Synopsys FPGA Synthesis User Guide

How to... Synopsys FPGA Synthesis User Guide,
application notes on the support web site

Flow information Synopsys FPGA Synthesis User Guide,
application notes on the support web site

Error messages Online help (select Help->Error Messages)

Licensing Synopsys FPGA Licensing Document (PDF)

Attributes and directives Synopsys FPGA Synthesis Reference Manual

Synthesis features Synopsys FPGA Synthesis Reference Manual

Language and syntax Synopsys FPGA Synthesis Reference Manual

Tcl syntax Online help (select Help->Tcl Help)

Tcl synthesis commands Synopsys FPGA Synthesis Reference Manual

Product updates Synopsys FPGA Synthesis Reference Manual
(Web menu commands)

http://solvnet.synopsys.com
http://solvnet.synopsys.com

User Interface Overview Chapter 1: Introduction

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 29

User Interface Overview
The user interface (UI) consists of a main window, called the Project view, and
specialized windows or views for different tasks. For details about each of the
features, see Chapter 2, User Interface Overview of the Synopsys FPGA
Synthesis Reference Manual. The Synplify Pro and Synplify Premier tools have
the same standard interface, while Synplify uses a different interface.

Synplify Pro and Synplify Premier Standard Interface

Tabs to access
views Log Watch Window

Status

Tcl Window

Button Panel Toolbars Project view Implementation Results view

LO

Chapter 1: Introduction User Interface Overview

Synopsys FPGA Synthesis User Guide
30 June 2009

Synopsys, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: +1 408 215-6000, Fax: +1 408 222-068
www.solvnet.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology,
Certify, DesignWare, HDL Analyst, Identify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro,
Synthesis Constraints Optimization Environment, and VCS are registered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-perfor-
mance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and TotalRecall are trademarks of Synopsys, Inc. All other
names mentioned herein are trademarks or registered trademarks of their respective companies.

Synplify Interface
The following figure shows you the Synplify interface.

Implementation

Menus

Toolbars

Tab to access

Other options

 Project view
Buttons Status

Results viewProject view

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 31

C H A P T E R 2

FPGA Logic and Physical Synthesis Flows

This describes the following tool flows:

• Logic Synthesis Design Flow, on page 32

• Synplify Premier Synthesis Design Flows, on page 35

• Actel Physical Synthesis, on page 52

• Altera Physical Synthesis, on page 60

• Xilinx Physical Synthesis, on page 69

• Prototyping Design Flow, on page 80

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Logic Synthesis Design Flow

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
32 June 2009

Logic Synthesis Design Flow
The Synopsys FPGA tools synthesize logic by first compiling the RTL source,
and then doing logical mapping and optimizations. After logic synthesis, you
get a vendor-specific netlist and constraint file that you use as inputs to the
place-and-route (P&R) tool.

The following figure shows the phases and the tools used for logic synthesis
and some of the major inputs and outputs. You can use the Synplify, Synplify
Pro, or Synplify Premier synthesis software for this flow. The interactive
timing analysis, physical analysis, and backannotation steps that are shown
in gray are optional. Although the flow shows the vendor constraint files as
direct inputs to the P&R tool, you should add these files to the synthesis
project for timing black boxes.

Logic Synthesis Procedure
For a design flow with step-by-step instructions based on specific design
data, download the tutorial from the website. The following steps summarize
the process, which is also illustrated in the figure that follows.

1. Create a project.

Place & Route

Post P&R Back-annotation

Vendor Tool

RTL Compilation

Logic Synthesis

RTL

SDC

Synthesis constraints

ITA

PA

TCL

TAH

SRM

LEF

DEF

Synopsys FPGA Tool

Vendor constraints

Synthesized netlist

Logic Synthesis Design Flow Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 33

2. Add the source files to the project.

3. Set attributes and constraints for the design.

4. Set options for the implementation in the Implementation Options dialog
box.

5. If you are running Synplify Premier in logic synthesis mode, disable the
Physical Synthesis option in the Project view.

This setting directs the software to only run logic synthesis, without any
physical optimizations. For other logic synthesis modes in the Synplify
Premier tool, see Fast Synthesis, on page 481 and Logic Synthesis with
Enhanced Optimization, on page 36.

6. Click Run to run logic synthesis.

7. Analyze the results, using the log file, the HDL Analyst schematic views,
the Message window and the Log Watch window.

After you have completed the design, you can use the output files to run
place-and-route with the vendor tool and implement the FPGA. If you
are using the Synplify Premier software, you can choose to run physical
synthesis before place-and-route.

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Logic Synthesis Design Flow

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
34 June 2009

The following figure lists the main steps in the flow:

 Add Source Files

Set Constraints

Run the Software

Create Project

Analyze Results

Place and Route

Set Options

Fails
requirements

SYNPLIFY & SYNPLIFY PRO

 Add Source Files

Set Constraints

Set Logic Mode

Create Project

Run physical synthesis
Place and route

Set Options

Fails
requirements

SYNPLIFY PREMIER

Analyze Results

Run the Software

Synplify Premier Synthesis Design Flows Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 35

Synplify Premier Synthesis Design Flows
You use the Synplify Premier tool to perform logic synthesis as well as
physical synthesis. The logic synthesis flows let you run logic synthesis as a
separate step. The physical synthesis flows include logic synthesis.

The following table lists the Synplify Premier logical and physical synthesis
flows. Some of these flows are only available in certain technologies.

Logic Synthesis Flows

Logic Synthesis Design Flow, on
page 32

Same as Synplify Pro logic synthesis

Logic Synthesis with Fast Synthesis Synplify Premier logic synthesis with fast
synthesis runtimes. For details about this
flow, see Fast Synthesis, on page 481.

Logic Synthesis with Enhanced
Optimization, on page 36

Synplify Premier logic synthesis includes
additional optimizations during logic
synthesis and provides an output netlist
with better QoR than when running basic
logic synthesis. Enhanced Optimization is
turned on by default.

Design Plan-Based Logic Synthesis,
on page 38

Synplify Premier logic synthesis with
placement constraints from a floorplan file
(needs Design Planner option)

Physical Synthesis Flows

Graph-Based Physical Synthesis, on
page 42

Automated physical synthesis. This
includes the enhanced logic synthesis
optimizations.

Graph-Based Physical Synthesis
with Design Planner, on page 46

Automated physical synthesis that uses
floorplan file constraints (needs Design
Planner option)

Design Plan-based Physical
Synthesis, on page 48

Physical synthesis with placement
constraints from a floorplan file (needs
Design Planner option)

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Synplify Premier Synthesis Design Flows

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
36 June 2009

Logic Synthesis with Enhanced Optimization
Enhanced Optimization is a standard feature in the Synplify Premier tool. It
includes additional optimizations during logic synthesis and provides an
output netlist with better QoR (quality of results)than when running basic
logic synthesis. One reason for improved QoR is that the Synplify Premier tool
can take advantage of placement-aware data during logic synthesis.This flow
is only available for some Altera and Xilinx technologies.

This switch is enabled by default. If your goal is to get the same results that
you get from synthesis in the Synplify Pro tool, turn this switch off.

Enhanced Optimization has no effect if Physical Synthesis is enabled. When you
use this option, ensure that the Auto Constrain option is disabled (Off).

The following figure summarizes the steps in the flow. The steps are briefly
described after the figure.

 Add Source Files

Set Constraints

Set Logic Mode

Create Project

Run Physical Synthesis
Place and route

Set Options

Fails
requirements

Analyze Results

Run the Software

Synplify Premier Synthesis Design Flows Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 37

Running Logic Synthesis with Enhanced Optimization
Physical synthesis automatically runs various logic optimizations as part of
the process. These optimizations do not run in the basic logic synthesis
process. If you want to run logic synthesis only, but want to include these
enhanced optimizations, use the following procedure.

1. Create a Synplify Premier project.

2. Add the source files to the project.

3. Set attributes and constraints for the design.

4. Set options for the implementation in the Implementation Options dialog
box.

5. Specify logic synthesis with enhanced optimizations.

– Disable the Physical Synthesis option, either in the Project window or in
the Implementation Options dialog box. This directs the software to run
logic synthesis only.

– Make sure that Fast Synthesis is disabled, either in the Project view or
on the Options tab of the Implementation Options dialog box. The two
options are contradictory and if both options are enabled, Fast
Synthesis takes priority.

– Enable Enhanced Optimization in the Device tab of the Implementation
Options dialog box. When you enable the Physical Synthesis option, the

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Synplify Premier Synthesis Design Flows

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
38 June 2009

software automatically uses enhanced optimizations as part of that
flow, so you do not have to specifically enable it.

6. Click Run to run logic synthesis.

7. Analyze the results, using the log file, the HDL Analyst schematic views,
the Message window and the Log Watch window.

After you have completed the design, you can use the output files to run
place-and-route with the vendor tool. You could also run physical
synthesis before placement and routing.

Design Plan-Based Logic Synthesis
This flow lets you use a floorplan to guide logic synthesis; you do not have to
run physical synthesis. To do this, you require the Synplify Premier software
with the Design Planner option (see Chapter 11, Floorplanning with Design
Planner for information about using this tool). This flow supports more recent
Altera and Xilinx technologies.

The following figure shows the phases and tools used in the flow, and some of
the major inputs and outputs. The interactive timing analysis, physical
synthesis and analysis, and backannotation steps that are shown in gray are
optional.

Synplify Premier Synthesis Design Flows Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 39

Running Logic Synthesis with a Design Plan
With this methodology, you use the Design Planner tool to manually create
physical constraints that assign critical path logic to specific locations on the
die to improve performance. You then use this design plan file to constrain
logic synthesis.

You can only use this methodology if you have the Design Planner option and
if you are targeting certain Altera and Xilinx technologies.

Route

Post P&R Back-annotation

Vendor Tool

Compile RTL

Run Design Planner

Synthesize Logic

RTL

SDC

SFP

TCL

TAH

SRM

LEF

DEF

SYNPLIFY PREMIER

Vendor

Vendor
netlist

constraints

Synthesis constraints
Synthesized netlist

Interactive

Physical

Timing
Analysis

Analysis

Run Physical Synthesis

Optional

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Synplify Premier Synthesis Design Flows

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
40 June 2009

The figure below shows the logic synthesis flow based on a design plan.

1. Set up the project and compile the design in logic synthesis mode.

– Set up the design as described in Set up the Altera Physical Synthesis
Project, on page 61, and Set up the Xilinx Physical Synthesis Project,
on page 70. Set up a P&R implementation.

– Disable the Physical Synthesis option to run the tool in logic synthesis
mode.

– Compile the design.

2. Analyze timing results.

– Analyze timing.

– Determine which components you want to assign to regions.

Design
(Verilog or VHDL)

Compile Design

Yes

Target
Met? Yes

Analyze Timing

Implement FPGA

Run Logic Synthesis
w/ DP file

Create Design Plan
(constrain critical path)

Design-Plan Based
Logic Synthesis Flow

No

(Includes P&R

following synthesis)

Optional:
Run Physical Synthesis

Analyze Timing Target
Met?

No

Synplify Premier Synthesis Design Flows Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 41

3. Launch the Design Planner tool () and do the following:

– Create regions for the critical paths and interactively assign the
critical paths to regions of the chip. See Working with Regions, on
page 505, Working with Altera Regions, on page 519,Working with
Xilinx Regions, on page 523 and Assigning Objects to Xilinx Regions,
on page 527 for details.

– Obtain a size estimation for each RTL block in the design. See
Checking Utilization, on page 517 for details.

– For multiple clocks, assign critical logic associated with each clock
domain (that does not meet design requirements) to a unique region
to avoid resource contention.

– If you have any black boxes in your design, assign them to a region.
Designate this region as an IP block, so that the Synplify Premier
software can instantiate the black box in the .vqm file. However, you
must provide the content for the black box so that the place-and-
route tool can run successfully.

For details about using Design Planner, see Floorplanning with Design
Planner, on page 487. Consult the following for more information on
how to complete the Design Plan file (.sfp): Creating and Using a
Design Plan File for Physical Synthesis, on page 494, Working with
Regions, on page 505, and Assigning Pins and Clocks, on page 495.

– Save the design plan file (.sfp) and add it to your project.

4. Run logic synthesis.

– Make sure the Physical Synthesis switch is disabled, but that the project
includes the physical constraints file (.sfp).

– Set up the project to automatically run place-and-route after
synthesis completes. Alternatively, you can run the P&R tool in
standalone mode.

The synthesis tool honors the region placement constraints in the floor-
plan file. It treats each region you defined in the floorplan as a hard
hierarchy, and does not optimize across this boundary. When synthesis
is complete, the tool generates a structural netlist for the target
technology and a Tcl script that contains the information for forward-
annotation, like the region assignments.

The tool then launches the P&R tool, and uses the forward-annotated
constraints to direct the P&R run.

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Synplify Premier Synthesis Design Flows

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
42 June 2009

5. Analyze the timing in the Synplify Premier tool, using the log file and
analysis tools. See Checking Log Results, on page 596, Analyzing
Timing in Schematic Views, on page 730, and Using the Stand-alone
Timing Analyst, on page 736 for details.

If the target is met, you can continue to P&R. If not, you should re-
evaluate timing and placement. Or, you can run physical synthesis.

Graph-Based Physical Synthesis
Synplify Premier graph-based physical synthesis is an automated, single-
pass flow that allows you to constrain assigned logic to specific locations, and
which optimizes the design based on this placement information. The essence
of the graph-based approach is that preexisting wires, switches and place-
ment sites used for routing an FPGA are represented as a detailed routing
resource graph. The Synplify Premier tool can then allow for delay and wire
availability, which produces more accurate results and improves timing
closure. During physical synthesis, the tool performs concurrent placement
and synthesis optimizations to ensure fast routes for critical paths. It gener-
ates a fully-placed and physically-optimized netlist ready for the vendor
place-and-route tool.

Physical synthesis does not require a design plan or place-and-route imple-
mentation. If you want to use a design plan file with this flow, see Graph-
Based Physical Synthesis with Design Planner, on page 46. For graph-based
physical synthesis, the tool automatically performs placement with backan-
notation during the physical synthesis run. It absorbs the core files into the
Synplify Premier database for timing, placement and optimizations. See the
following for further details:

• Design Phases in Graph-based Physical Synthesis, on page 42

• Graph-based Physical Synthesis Flows for Different Vendors, on page 44

Design Phases in Graph-based Physical Synthesis
The physical synthesis design flow consists of two phases: logic synthesis
validation, and physical synthesis.

Synplify Premier Synthesis Design Flows Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 43

Logic Synthesis Validation
You first run logic synthesis to ensure that the design can successfully
complete logic synthesis and place-and-route, and that it has been assigned
accurate, realistic constraints. Doing an initial logic synthesis run can save
valuable time by identifying obvious problems early in the process.

The figure below shows the flow for logic synthesis validation phase.

For vendor-specific explanations of the steps shown here, see Actel Physical
Synthesis, on page 52, Altera Physical Synthesis, on page 60, and Xilinx
Physical Synthesis, on page 69.

Physical Synthesis
After successfully running through logic synthesis, you set up the design for
physical synthesis. Physical synthesis merges design optimization and place-
ment to generate a fully-placed, physically-optimized netlist, providing rapid
timing closure and increased timing improvement. The tool performs concur-

Source Files
(.v /. vhd)

No Yes
Physical Synthesis

Logic Synthesis
Validation Phase

Set up Project

Timing Constraints
Physical Constraints

(.sdc)
Timing Report (.ta)

Log File (.srr)Run Logic Synthesis

Validate Results

Compile

Flow

IP Cores

(Includes P&R
following synthesis)

Ready for
physical

synthesis?

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Synplify Premier Synthesis Design Flows

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
44 June 2009

rent placement and optimizations based on timing constraints and the device
technology. The output netlist contains placement information. The figure
below shows the flow for the physical synthesis phase:

For vendor-specific explanations of the steps shown here, see Actel Physical
Synthesis, on page 52, Altera Physical Synthesis, on page 60, and Xilinx
Physical Synthesis, on page 69.

Graph-based Physical Synthesis Flows for Different Vendors
The following figure shows how you implement the graph-based physical flow
described previously. It shows the phases and tools used in the flow, and
some of the major inputs and outputs. The interactive timing analysis,
physical analysis, and backannotation steps that are shown in gray are
optional.

Goals

No

Yes
Implement

Physical Synthesis
Complete Logic

Timing Report (.ta)
Log File (.srr)

Analyze Results

Improve Performance

Run Physical Synthesis

Met? FPGA

Synthesis Validation

(Includes P&R
following synthesis)

Phase

Synplify Premier Synthesis Design Flows Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 45

This flow is currently available only for some Actel, Altera, and Xilinx families.
For vendor-specific details on this flow for your technology, see the following:

• Actel Physical Synthesis, on page 52

• Altera Physical Synthesis, on page 60

• Xilinx Physical Synthesis, on page 69

Compile RTL

Synthesize Logic

Run Initial Placement

Run Physical Synthesis

Route

RTL

SDC
Interactive

Physical

TCL

TAH

SRM

LEF

DEF

Post P&R Back-annotation

SYNPLIFY PREMIER

Vendor Tool

Synthesis constraints

Vendor

Synthesized netlist

Vendor
netlist

constraintsVendor
constraints

Timing
Analysis

Analysis

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Synplify Premier Synthesis Design Flows

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
46 June 2009

Graph-Based Physical Synthesis with Design Planner
Like the graph-based flow (Graph-Based Physical Synthesis, on page 42) this
is a push-button, fully automated flow that produces a synthesized design
with detailed placement, but it uses a design plan file to specify physical
constraints for guiding global placement. Use this flow to improve perfor-
mance.

The design plan usually includes I/O settings and placement information for
large blocks. The tool generates placement constraints when you assign RTL
logic to ports or regions in the Design Plan view (Design Planner). These
regions constrain logic to the areas you specify on the device. During optimi-
zations, these constraints direct global placement and subsequently influ-
ence physical optimizations.

You can use this flow with supported Altera and Xilinx families. You must
have the Synplify Premier product with the Design Planner option. For
vendor-specific details on this flow for your technology, see the following:

• Altera Physical Synthesis, on page 60

• Xilinx Physical Synthesis, on page 69

The following figure shows the phases and tools used in the flow, and some of
the major inputs and outputs. The interactive timing analysis, physical
analysis, and backannotation steps that are shown in gray are optional.

Synplify Premier Synthesis Design Flows Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 47

Compile RTL

Run Design Planner

Synthesize Logic

Run Initial Placement

Run Physical Synthesis

Route

RTL

SDC

TCL

TAH

SRM

LEF

DEF

Post P&R Back-annotation

SYNPLIFY PREMIER

Vendor Tool

Vendor
constraints

Vendor

Vendor
netlist

constraints

SFP

Synthesis constraints
Synthesized netlist

Interactive

Physical

Timing
Analysis

Analysis

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Synplify Premier Synthesis Design Flows

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
48 June 2009

Design Plan-based Physical Synthesis
This is an interactive flow that where you can specify physical constraints
before running physical synthesis. It requires the Design Planner option, a
tool that improves performance through physical constraints. This flow
supports certain Altera and Xilinx technologies. See Running Physical
Synthesis with a Design Plan, on page 49 for a procedure using this flow. For
information about using Design Planner, see Chapter 11, Floorplanning with
Design Planner.

The following figure shows the phases and tools used in the flow, and some of
the major inputs and outputs. The interactive timing analysis, physical
analysis, and backannotation steps that are shown in gray are optional.

Route

Post P&R Back-annotation

Vendor Tool

Compile RTL

Run Design Planner

Synthesize Logic

Run Physical Synthesis

RTL

SDC

SFP

TCL

TAH

SRM

LEF

DEF

SYNPLIFY PREMIER

Vendor

Vendor
netlist

constraints

Synthesis constraints
Synthesized netlist

Interactive

Physical

Timing
Analysis

Analysis

Synplify Premier Synthesis Design Flows Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 49

Running Physical Synthesis with a Design Plan
In this flow, you use the Design Planner tool to manually create physical
constraints that assign critical path logic to specific locations on the die to
improve performance. You then use these constraints to drive physical
synthesis for the design.

The figure below shows the physical synthesis design-plan flow.

1. Run logic synthesis.

– Set up the project for your target technology. See Set up the Altera
Physical Synthesis Project, on page 61 and Set up the Xilinx Physical
Synthesis Project, on page 70 for details.

– Synthesize the design in logic synthesis mode, using timing
constraints and no physical constraints.

Analyze Timing

Design
(Verilog or VHDL)

Complete

Target
Met?

No

Yes

Target
Met?

Yes
Analyze Timing

Implement FPGA

Logic Synthesis
Validation Phase

Run Physical Synthesis
w/ DP file

Create Design Plan
(constrain critical path)

Design-Plan Based
Physical Synthesis Flow

No

(Includes P&R

following synthesis)

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Synplify Premier Synthesis Design Flows

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
50 June 2009

This phase is to determine if the design can successfully complete
synthesis and if timing performance enhancements are needed. The
logic synthesis validation phase includes running the netlist through
place-and-route after synthesis completes.

2. Analyze timing results. See Validating Logic Synthesis for Physical
Synthesis, on page 609 for details.

If timing goals are met, you are done. Otherwise, go to the next step.

3. Determine the critical paths from the P&R results; these are the
candidates for logic assignments to regions.

4. Bring up the Design Planner () and do the following:

– Create regions for the critical paths and interactively assign the
critical paths to regions of the chip. See Working with Regions, on
page 505, Working with Altera Regions, on page 519,Working with
Xilinx Regions, on page 523 and Assigning Objects to Xilinx Regions,
on page 527 for details.

– Obtain a size estimation for each RTL block in the design. See
Checking Utilization, on page 517 for details.

– For multiple clocks, assign critical logic associated with each clock
domain (that does not meet design requirements) to a unique region
to avoid resource contention.

– If you have any black boxes in your design, assign them to a region.
Designate this region as an IP block, so that the Synplify Premier
software can instantiate the black box in the .vqm file. However, you
must provide the content for the black box so that the place-and-
route tool can run successfully.

For details about using Design Planner, see Floorplanning with Design
Planner, on page 487.

You can also open Physical Analyst to view the design and check critical
path placement. Consult the following sections for more information on
how to complete the Design Plan file (.sfp): Creating and Using a Design
Plan File for Physical Synthesis, on page 494, Working with Regions, on
page 505, and Assigning Pins and Clocks, on page 495.

5. Save the design plan file (.sfp) and add it to your project.

6. Run physical synthesis. Use the same project file that you created in
step 1 above. This time enable the Physical Synthesis switch and include

Synplify Premier Synthesis Design Flows Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 51

the physical constraints file (.sfp). This phase also includes running the
netlist through place-and-route after synthesis completes.

7. Analyze the timing in the Synplify Premier tool. Use the log file and
graphical analysis tools. See Analyzing Physical Synthesis Results, on
page 678 for details.

If the target is met, you can continue to the next design phase. If not,
you should re-evaluate timing and placement. You might find there is a
new critical path or the one that is already assigned to a region that
needs tweaking. See Improving Altera Physical Synthesis Performance,
on page 779 and Improving Xilinx Physical Synthesis Performance, on
page 827 for more suggestions.

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Actel Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
52 June 2009

Actel Physical Synthesis
For Actel designs, you can run the following flows with the Synplify Premier
tool:

The following topics describe the graph-based physical synthesis flow for
Actel technologies, and broadly outline the steps to be followed:

• Set up the Actel Physical Synthesis Project, on page 52

• Run Logic Synthesis for the Actel Physical Synthesis Flow, on page 56

• Validate Logic Synthesis Results for Actel Physical Synthesis, on
page 56

• Set up Actel Physical Constraints, on page 57

• Run Actel Physical Synthesis, on page 57

• Analyze Results of Actel Physical Synthesis, on page 57

Set up the Actel Physical Synthesis Project
Project setup is the first phase of the physical synthesis design process. The
project file (.prj) is a collection of input files and optimization switches
required to synthesize your design. You must create a synthesis project,
define constraints, set options for the implementation, and set up a P&R
project.

The following procedure outlines the procedure you must follow to set up the
physical synthesis project. Follow the links if you need further details about
any of the steps.

1. Make sure you follow these requirements for this flow:

– Include the entire design; you cannot have black boxes.

For details, see...

Basic logic synthesis Logic Synthesis Design Flow, on page 32

Graph-based physical synthesis Graph-Based Physical Synthesis, on page 42 for
a description of the flow
The Actel-specific steps listed below

Actel Physical Synthesis Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 53

– Assign realistic, accurate timing constraints. Do not over-constrain
the tool. See Improving Performance in Actel Physical Synthesis
Designs, on page 763 for tips.

– Use the top-down design methodology. A bottom-up flow is not
supported.

– Install the recommended version of the Actel Designer place-and-
route tool before you run physical synthesis. Consult the release
notes for the most current information on supported Designer
versions. (From the Synplify Premier tool: Help->Online Documents-
>release_notes.pdf->Third Party Tool Versions).

2. Create the project. See Setting Up HDL Source Files, on page 82 and
Setting Up Project Files, on page 270 for details.

3. Set timing constraints.

– Compile the design.

– Open the SCOPE interface and set constraints. Timing constraints
specify performance goals and describe the design environment. See
Using the SCOPE UI, on page 212 and Specifying Timing Constraints,
on page 219for details.

– Save the constraints file and save the project file.

4. Specify the implementation options for synthesis.

– Click the Implementation Options button.

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Actel Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
54 June 2009

– Set implementation options on the various tabs of the dialog box as
shown in the following table. For details about setting
implementation options, refer to Setting Logic Synthesis
Implementation Options, on page 289.

Device Set technology and device mapping options.
Make sure the Disable I/O Insertion option is disabled, because
Synplify Premier physical synthesis requires this setting.
See Setting Device Options, on page 289.

Options Set optimization switches for synthesis. See Setting
Optimization Options, on page 292.

Constraints Set an overall target frequency for the design.
Select the constraint file you want to use.
See Specifying Global Frequency and Constraint Files, on
page 294.

Implementation
Results

Specify the output results directory and output file options.
See Specifying Result Options, on page 296 for details.

Actel Physical Synthesis Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 55

– Click OK to apply the implementation options.

– Save the project file.

5. Create a place-and-route implementation to automatically run the Actel
place and route tool from the synthesis interface after synthesis is
complete. See Creating a Place and Route Implementation, on page 332
for details.

– Make sure you have the correct version of the P&R tool installed.

– Create a P&R implementation.

– Specify the Place & Route Job Name. Make sure the Run Place and Route
following synthesis switch is enabled and click OK.

Timing Report Specify the number of critical paths and start/end points to
display in the timing report. See Specifying Timing Report
Output, on page 297.

Verilog/VHDL Specify the HDL options. See Setting Verilog and VHDL
Options, on page 298.

Netlist
Restructure

Specify options for any necessary netlist optimizations, and
the netlist restructure file (.nrf) for which bit slicing or
zippering might have been performed.
See Setting Synplify Premier Netlist Restructuring
Optimizations, on page 330 for descriptions.

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Actel Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
56 June 2009

– Specify the place-and-route options file. The tool automatically uses
default options located in <install_dir>\lib\Actel\Actel_par.opt.

– Go to Implementation Options->Place and Route and enable the place-and-
route implementation that you want to use for your project.

– Save the project file.

Run Logic Synthesis for the Actel Physical Synthesis Flow
If this is the first time you are running synthesis on the design, run it in logic
synthesis mode (with the Physical Synthesis option disabled, as described in
Logic Synthesis Design Flow, on page 32). This initial synthesis run lets you
determine if there are any problems that need to be addressed before going
on to the physical synthesis stage. See the first step of Running Physical
Synthesis, on page 592 for details.

Validate Logic Synthesis Results for Actel Physical Synthesis
After doing an initial run of logic synthesis, check the results and fix any
errors you find. See Validating Logic Synthesis for Physical Synthesis, on
page 609 for details.

Actel Physical Synthesis Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 57

Set up Actel Physical Constraints
You can translate I/O placement information from the designname_ba.pdc
place-and-route file to lock down the I/Os during physical synthesis. You can
either do this manually by attaching the syn_loc attribute to the I/Os, or use
the pdc2sdc utility to automatically translate the constraints. For details, see
Translating Actel I/O Constraints, on page 348.

Run Actel Physical Synthesis
Once you have validated the logic synthesis run and set up the physical
constraints, you can run physical synthesis. Make sure to enable the Physical
Synthesis switch and to enable the place-and-route implementation before
clicking Run. For a detailed procedure, see Running Physical Synthesis, on
page 592.

Analyze Results of Actel Physical Synthesis
To determine if your design has met performance goals, use the following
Synplify Premier analysis tools to analyze the critical path(s) with negative
slack and identify potential solutions to improve performance:

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Actel Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
58 June 2009

Use these guidelines to analyze the results:

Log file that includes the default
timing report (.srr or .htm)

See Checking Log Results, on page 596.

HDL Analyst Consists of schematic views that help you
analyze the design. See Chapter 5, Specifying
Constraints.

RTL View () Select HDL Analyst->RTL->Hierarchical View or
Flattened View to display the compiled view of the
design. See Chapter 15, Analyzing with HDL
Analyst and FSM Viewer.

Technology View () Select HDL Analyst ->Technology->Hierarchical
View, or ->Flattened View to display the mapped
view of the design. See Chapter 15, Analyzing
with HDL Analyst and FSM Viewer.

Physical Analyst () The Physical Analyst provides a visual display of
the device, and design placement of instances
and nets. Select HDL Analyst->Physical Analyst.
See Chapter 16, Analyzing Designs in Physical
Analyst.

Timing Analyst () The stand-alone timing analyzer produces
timing reports (.ta) for specific reporting
requirements. See Using the Stand-alone Timing
Analyst, on page 736.

Check this... Tool

Are start and end points being
constrained by the proper
clocks?

Timing report
You can also trace the clock network using HDL
Analyst Technology view.

Actel Physical Synthesis Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 59

For more details and guidelines on improving design performance, see
Improving Performance in Actel Physical Synthesis Designs, on page 763.

Is the critical path a multi-cycle
path or false path?

Timing report
HDL Analyst

If the path is inside a state
machine, is the FSM being fully
optimized?

HDL Analyst. Open the RTL view and push down
into the state machine module to display the
FSM viewer.

Are the net delays contributing
to the highest percentage on the
critical path?

Timing report
Check the % breakdown of delay for each path.
Search for Total path delay.
Physical Analyst
Use it to analyze the instance placement of the
critical path.

Check this... Tool

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Altera Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
60 June 2009

Altera Physical Synthesis
In addition to the graph-based physical design flow, you can use the following
Synplify Premier flows in Altera designs.

Altera Graph-based Physical Synthesis
The following topics provide an overview of what you need to do to run graph-
based physical synthesis in your Altera designs.

• Guidelines for Physical Synthesis in Altera Designs, on page 60

• Set up the Altera Physical Synthesis Project, on page 61

• Run Logic Synthesis for the Altera Physical Synthesis Flow, on page 65

• Validate Logic Synthesis Results for Altera Physical Synthesis, on
page 66

• Run Altera Physical Synthesis, on page 66

• Analyze Results of Altera Physical Synthesis, on page 66

Guidelines for Physical Synthesis in Altera Designs
Follow these guidelines for physical synthesis:

• Include the entire design – black boxes cannot be present. However,
Altera LPMs (Library of Parameterized Modules) or Megafunctions are

For details, see...

Basic logic synthesis Logic Synthesis Design Flow, on page 32

Logic synthesis with enhanced
optimization

Logic Synthesis with Enhanced Optimization,
on page 36

Logic synthesis with fast
synthesis

Fast Synthesis, on page 481

Logic synthesis with design plan Design Plan-Based Logic Synthesis, on page 38

Physical synthesis with design
plan

Design Plan-based Physical Synthesis, on
page 48

Graph-based synthesis with a
design plan

Graph-Based Physical Synthesis with Design
Planner, on page 46

Altera Physical Synthesis Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 61

supported. See Using Altera LPMs or Megafunctions in Synthesis, on
page 161 if more information is needed.

• Use the appropriate methodology defined for Altera IPs or Nios II cores in
the design. For more information, see the following:

– Including Altera MegaCore IP Using an IP Package, on page 181

– Implementing Megafunctions with Grey Box Models, on page 175

– Including Altera Processor Cores Generated in SOPC Builder, on
page 186.

• Assign realistic, accurate timing constraints. Do not over-constrain the
tool. (See Improving Altera Physical Synthesis Performance, on page 779
for tips.)

• Use the top-down design methodology. (A bottom-up flow is not
supported.)

• Do not use compile points with graph-based physical synthesis.

• Install the recommended version of the Altera Quartus II place-and-
route tool.

Set up the Altera Physical Synthesis Project
Project setup is the first phase of the physical synthesis design process. The
project file (.prj) is a collection of input files and optimization switches
required to synthesize your design. This section contains details on how to
set up the file.

1. Make sure you follow these requirements for this flow:

– Make sure the design is properly constrained. (See Improving Altera
Physical Synthesis Performance, on page 779 for tips.)

– Make sure to specify I/O pin location constraints for all pins in the
design for physical synthesis.

– Make sure to include any I/O constraints from the Quartus settings
file (.qsf) as necessary. You can translate the I/O constraints and
I/O standards to .sdc format with a utility. See Translating Altera
QSF Constraints, on page 253.)

– If you have the Design Planner option, you can use a design plan file
(.sfp) for physical synthesis.

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Altera Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
62 June 2009

– If you are using one of the graph-based physical synthesis flows,
make sure you select a target technology that is supported. See Altera
Graph-based Physical Synthesis, on page 60 or Xilinx Graph-based
Physical Synthesis, on page 69.

– Keep the guidelines described in Guidelines for Physical Synthesis in
Altera Designs, on page 60 in mind.

2. Create the project. If you are using a design plan file, make sure to add it
to the project.

See Setting Up HDL Source Files, on page 82 and Setting Up Project Files,
on page 270 for details.

3. Set constraints.

– Compile the design. Open the SCOPE interface and set constraints.
Timing constraints specify performance goals and describe the design
environment. See Using the SCOPE UI, on page 212 and Specifying
Timing Constraints, on page 219 for details.

– Add physical constraints.

– Translate constraints from the Quartus settings file (QSF) and
combine them with the timing constraints into a single .sdc
constraint file. See Translating Altera QSF Constraints, on page 253
for details.

– Check your constraints with Run->Constraint Check.

– Save the constraints file and save the project file.

4. Specify the implementation options for synthesis.

– Click the Implementation Options button.

Altera Physical Synthesis Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 63

– Set implementation options on the various tabs of the dialog box as
shown in the following table. For details about setting
implementation options, refer to Setting Logic Synthesis
Implementation Options, on page 289.

Device Set technology and device mapping options.
Make sure the Disable I/O Insertion option is disabled, because
Synplify Premier physical synthesis requires this setting.
See Setting Device Options, on page 289.

Options Set optimization switches for synthesis. See Setting
Optimization Options, on page 292.

Constraints Set an overall target frequency for the design.
Select the constraint files you want to use.
See Specifying Global Frequency and Constraint Files, on
page 294.

Implementation
Results

Specify the output results directory and output file options.
See Specifying Result Options, on page 296 for details.

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Altera Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
64 June 2009

– Click OK to apply the implementation options. Save the project file.

5. Create a place-and-route implementation to automatically run the
Altera Quartus II place and route tool from the synthesis UI after
synthesis.

– Make sure you have the correct version of the P&R tool and that you
have set the environment variables for the tool.

– Create a P&R implementation. See Creating a Place and Route
Implementation, on page 332 for details.

Timing Report Specify the number of critical paths and start/end points to
display in the timing report.
If you want an island timing report, enable the option.
See Specifying Timing Report Output, on page 297.

Verilog/VHDL Specify the HDL options. See Setting Verilog and VHDL
Options, on page 298.

Netlist
Restructure

Specify options for any necessary netlist optimizations, and
the netlist restructure file (.nrf) for which bit slicing or
zippering might have been performed.
See Setting Synplify Premier Netlist Restructuring
Optimizations, on page 330 for descriptions.

Altera Physical Synthesis Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 65

– Specify the Place & Route Job Name. Make sure the Run Place and Route
following synthesis switch is enabled and click OK.

– Specify the place-and-route options file. The tool automatically uses
default options located in <install_dir>\lib\altera\altera_par.tcl.
For more information, see Specifying Altera Place-and-Route Options,
on page 337.Select other options for backannotation and for forward-
annotation of constraints and click OK.

– Go to Implementation Options->Place and Route and enable the place-and-
route implementation that you want to use for your project.

– Save the project file.

Run Logic Synthesis for the Altera Physical Synthesis Flow
If this is the first time you are running synthesis on the design, you must run
logic synthesis mode. This means that you run synthesis with the Physical
Synthesis switch disabled. You can choose to run logic synthesis in the
Synplify Premier tool with the Enhanced Optimization mode or the standard logic
synthesis mode for certain Altera devices. When the Enhanced Optimization
mode is:

• Enabled (box is checked in the Project view or on the Implementation
Options - Device tab) — Additional placement aware optimizations are

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Altera Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
66 June 2009

used to achieve QoR results that exceed the standard logic synthesis
QoR. This is the default.

• Disabled (box is unchecked in the Project view or on the Implementation
Options - Device tab) — The standard logic synthesis QoR can be
achieved.

This initial synthesis run is to determine if there are any problems that need
to be addressed before going on to the physical synthesis stage. See the first
step of Running Physical Synthesis, on page 592 for details of running logic
synthesis as part of a physical synthesis flow.

Validate Logic Synthesis Results for Altera Physical Synthesis
After doing an initial run of logic synthesis, check the results and fix any
errors you find. See Validating Logic Synthesis for Physical Synthesis, on
page 609 for details.

Run Altera Physical Synthesis
Once you have validated the logic synthesis run and set up the physical
constraints, you can run physical synthesis. Make sure to enable the Physical
Synthesis switch and to enable the place-and-route implementation before
clicking Run. If you are using a design plan file, you must also enable this file.
For a detailed procedure, see Running Physical Synthesis, on page 592.

Analyze Results of Altera Physical Synthesis
To determine if your design has met performance goals, use the following
Synplify Premier analysis tools to analyze the critical path(s) with negative
slack and identify potential solutions to improve performance:

Altera Physical Synthesis Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 67

Use these guidelines to analyze the results:

Log file that includes the default
timing report (.srr or .htm)

See Checking Log Results, on page 596.

HDL Analyst Consists of schematic views that help you
analyze the design. See Chapter 5, Specifying
Constraints.

RTL View () Select HDL Analyst->RTL->Hierarchical View or
Flattened View to display the compiled view of the
design. See Chapter 15, Analyzing with HDL
Analyst and FSM Viewer.

Technology View () Select HDL Analyst ->Technology->Hierarchical
View, or ->Flattened View to display the mapped
view of the design. See Chapter 15, Analyzing
with HDL Analyst and FSM Viewer.

Physical Analyst () The Physical Analyst provides a visual display of
the device, and design placement of instances
and nets. Select HDL Analyst->Physical Analyst.
See Chapter 16, Analyzing Designs in Physical
Analyst.

Timing Analyst () The stand-alone timing analyzer produces
timing reports (.ta) for specific reporting
requirements. See Using the Stand-alone Timing
Analyst, on page 736.

Check this... Tool

Are start and end points being
constrained by the proper
clocks?

Timing report
You can also trace the clock network using HDL
Analyst Technology view.

Is the critical path a multi-cycle
path or false path?

Timing report
HDL Analyst

Will pipelining improve results? HDL Analyst

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Altera Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
68 June 2009

If the path is inside a state
machine, is the FSM being fully
optimized?

HDL Analyst. Open the RTL view and push down
into the state machine module to display the
FSM viewer.

Are the net delays contributing
to the highest percentage on the
critical path?

Timing report
Check the % breakdown of delay for each path.
Search for Total path delay.
Physical Analyst
Use it to analyze the instance placement of the
critical path.

Will physical constraints
improve results?

Physical Analyst
Use it to analyze the design.
Design Planner
Use it to assign logic to regions and generate a
design plan file.

Check this... Tool

Xilinx Physical Synthesis Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 69

Xilinx Physical Synthesis
In addition to the graph-based physical design flow, you can use the following
Synplify Premier flows in Xilinx designs.

Xilinx Graph-based Physical Synthesis
The following provide an overview of what you need to do to run graph-based
physical synthesis in your Xilinx designs, and other related information.

• Set up the Xilinx Physical Synthesis Project, on page 70

• Run Logic Synthesis for the Xilinx Physical Synthesis Flow, on page 74

• Validate Logic Synthesis Results for Xilinx Physical Synthesis, on
page 75

• Run Xilinx Physical Synthesis, on page 75

• Analyze Results of Xilinx Physical Synthesis, on page 75

• Guidelines for Xilinx Timing Constraints for Physical Synthesis, on
page 77

• Using IP Cores in Xilinx Physical Synthesis Flows, on page 78

• Placement and Routing Phases in Xilinx Physical Synthesis, on page 78

For details, see...

Basic logic synthesis Logic Synthesis Design Flow, on page 32

Logic synthesis with enhanced
optimization

Logic Synthesis with Enhanced Optimization,
on page 36

Logic synthesis with fast
synthesis

Fast Synthesis, on page 481

Logic synthesis with design plan Design Plan-Based Logic Synthesis, on page 38

Physical synthesis with design
plan

Design Plan-based Physical Synthesis, on
page 48

Graph-based synthesis with a
design plan

Graph-Based Physical Synthesis with Design
Planner, on page 46

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Xilinx Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
70 June 2009

Set up the Xilinx Physical Synthesis Project
Project setup is the first phase of the physical synthesis design process. The
project file (.prj) is a collection of input files and optimization switches
required to synthesize your design. This section contains details on how to
set up the file.

1. Make sure you follow these requirements for this flow:

– Make sure the design is complete including all IPs (no black boxes).
See Working with Xilinx IP, on page 195 for more information.

– Make sure the design is properly constrained. Do not over-constrain,
but use realistic constraints. See Improving Xilinx Physical Synthesis
Performance, on page 827 for tips.

– Use the top-down design methodology. A bottom-up flow is not
supported.)

– Do not use compile points with graph-based physical synthesis.

– Install the recommended version of the Xilinx ISE place-and-route
tool. Check the release notes.

– Depending on your target Xilinx technology, you can optionally
specify a design plan file (.sfp) for physical synthesis. Using the sfp
file requires that you have the separately-licensed Synplify Premier
Design Planner option.

– If you are using one of the graph-based physical synthesis flows,
make sure you select a target technology that is supported.

2. Create the project.

– Add the source files and core IP files (.edn/.ngc) to the project.

– If you are using the optional .sfp design plan file, make sure to add it
to the project.

See Setting Up HDL Source Files, on page 82 and Setting Up Project Files,
on page 270 for details.

3. Set constraints.

– Compile the design. Open the SCOPE interface and set constraints.
Timing constraints specify performance goals and describe the design
environment. See Using the SCOPE UI, on page 212 and Specifying
Timing Constraints, on page 219 for details, and Guidelines for Xilinx
Timing Constraints for Physical Synthesis, on page 77 for guidelines.

Xilinx Physical Synthesis Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 71

– If you are iterating through the flow, make sure that any -route
constraints are turned off for logic synthesis and turned on for
physical synthesis. See Using -route for Physical Synthesis in Xilinx
Designs, on page 230.

– Add physical constraints.Use the xc_use_rpms attribute to manage
relationally placed macros (RPMs) during physical synthesis. For
details, refer to xc_use_rpms Attribute, on page 1188 in the Reference
Manual.

– If you have Xilinx UCF constraints, translate them as described in
Converting and Using Xilinx UCF Constraints, on page 255.

– Check your constraints with Run->Constraint Check.

– Save the constraints file and save the project file.

4. Specify the implementation options for synthesis.

– Click the Implementation Options button.

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Xilinx Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
72 June 2009

– Set implementation options on the various tabs of the dialog box as
shown in the following table. For details about setting
implementation options, refer to Setting Logic Synthesis
Implementation Options, on page 289.

Device Set technology and device mapping options.
Make sure the Disable I/O Insertion option is disabled, because
Synplify Premier physical synthesis requires this setting.
See Setting Device Options, on page 289.

Options Set optimization switches for synthesis. See Setting
Optimization Options, on page 292.

Constraints Set an overall target frequency for the design.
Select the constraint file you want to use.
See Specifying Global Frequency and Constraint Files, on
page 294.

Implementation
Results

Specify the output results directory and output file options.
See Specifying Result Options, on page 296 for details.

Xilinx Physical Synthesis Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 73

– Click OK to apply the implementation options. Save the project file.

5. Create a place-and-route implementation to automatically run the Xilinx
ISE place and route tool from the synthesis UI after synthesis.

– Make sure you have the correct version of the P&R tool and that you
have set the environment variables for the tool. Check the release
notes. Select Help->Online Documents->release_notes.pdf->Third Party Tool
Versions.

– Create a P&R implementation. See Creating a Place and Route
Implementation, on page 332 for details.

Timing Report Specify the number of critical paths and start/end points to
display in the timing report.
If you want an automatic island timing report, enable the
option.
See Specifying Timing Report Output, on page 297.

Verilog/VHDL Specify the HDL options. See Setting Verilog and VHDL
Options, on page 298.

Netlist
Restructure

Specify options for any necessary netlist optimizations, and
the netlist restructure file (.nrf) for which bit slicing or
zippering might have been performed.
See Setting Synplify Premier Netlist Restructuring
Optimizations, on page 330 for descriptions.

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Xilinx Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
74 June 2009

– Specify the Place & Route Job Name. Make sure the Run Place and Route
following synthesis switch is enabled and click OK.

– Specify the place-and-route options file. The tool automatically uses
default options in the .tcl file from <install_dir>\lib\Xilinx.This
file is used by the Xilinx xtclsh executable to run the P&R tool. For
more information, see Specifying Xilinx Place-and-Route Options in a
Tcl File, on page 340.Select other options for backannotation and for
forward-annotation of constraints and click OK.

– Go to Implementation Options->Place and Route and enable the place-and-
route implementation that you want to use for your project.

– Save the project file.

6. If you want to override the global placement options, use the
SYN_XILINX_GLOBAL_PLACE_OPT environment variable. See Specifying
Xilinx Global Placement Options, on page 346.

Run Logic Synthesis for the Xilinx Physical Synthesis Flow
If this is the first time you are running synthesis on the design, you must run
logic synthesis mode. This means that you run synthesis with the Physical
Synthesis switch disabled. This initial synthesis run is to determine if there are

Xilinx Physical Synthesis Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 75

any problems that need to be addressed before going on to the physical
synthesis stage. See the first step of Running Physical Synthesis, on page 592
for details of running logic synthesis as part of a physical synthesis flow.

Validate Logic Synthesis Results for Xilinx Physical Synthesis
After doing an initial run of logic synthesis, check the results and fix any
errors you find. See Validating Logic Synthesis for Physical Synthesis, on
page 609 for details.

Run Xilinx Physical Synthesis
Once you have validated the logic synthesis run and set up the physical
constraints, you can run physical synthesis. Make sure to enable the Physical
Synthesis switch and to enable the place-and-route implementation before
clicking Run. If you are using a design plan file, you must also enable this file.
For a detailed procedure, see Running Physical Synthesis, on page 592. The
tool runs physical synthesis, automatically including enhanced optimizations
as part of the run.

Analyze Results of Xilinx Physical Synthesis
To determine if your design has met performance goals, use the following
Synplify Premier analysis tools to analyze the critical path(s) with negative
slack and identify potential solutions to improve performance:

Log file that includes the default
timing report (.srr or .htm)

See Checking Log Results, on page 596.

HDL Analyst Consists of schematic views that help you
analyze the design. See Chapter 5, Specifying
Constraints.

RTL View () Select HDL Analyst->RTL->Hierarchical View or
Flattened View to display the compiled view of the
design. See Chapter 15, Analyzing with HDL
Analyst and FSM Viewer.

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Xilinx Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
76 June 2009

Use these guidelines to analyze the results:

Technology View () Select HDL Analyst ->Technology->Hierarchical
View, or ->Flattened View to display the mapped
view of the design. See Chapter 15, Analyzing
with HDL Analyst and FSM Viewer.

Physical Analyst () The Physical Analyst provides a visual display of
the device, and design placement of instances
and nets. Select HDL Analyst->Physical Analyst.
See Chapter 16, Analyzing Designs in Physical
Analyst.

Timing Analyst () The stand-alone timing analyzer produces
timing reports (.ta) for specific reporting
requirements. See Using the Stand-alone Timing
Analyst, on page 736.

Check this... Tool

Are start and end points being
constrained by the proper
clocks?

Timing report
You can also trace the clock network using HDL
Analyst Technology view.

Is the critical path a multi-cycle
path or false path?

Timing report
HDL Analyst

Will pipelining improve results? HDL Analyst

If the path is inside a state
machine, is the FSM being fully
optimized?

HDL Analyst. Open the RTL view and push down
into the state machine module to display the
FSM viewer.

Are the net delays contributing
to the highest percentage on the
critical path?

Timing report
Check the % breakdown of delay for each path.
Search for Total path delay.
Physical Analyst
Use it to analyze the instance placement of the
critical path.

Will physical constraints
improve results?

Physical Analyst
Use it to analyze the design.
Design Planner
Use it to assign logic to regions and generate a
design plan file.

Xilinx Physical Synthesis Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 77

Guidelines for Xilinx Timing Constraints for Physical Synthesis
The Synplify Premier tool requires that you provide accurate and complete
timing constraints to run physical synthesis effectively. The Synplify Premier
software outputs a placed design, for which the place-and-route tool cannot
correct constraints used inaccurately during physical synthesis. For
example, a false path constraint provided only to the place-and-route tool
allows the Synplify Premier software to move components affected by the false
path far apart to resolve critical path issues.

It is extremely important that you verify timing constraints. Use the following
guidelines:

• Define all clocks.

• Assign realistic, accurate timing constraints. Do not over-constrain the
tool.

• Assign clocks to the correct clock group. Clocks assigned to separate
groups are cross-clock paths, which are treated as false paths.

• Specify all multicycle paths.

• Specify all false paths.

• Specify all input and output delays.

• Ensure that all I/Os have I/O standards and drive strengths specified.

• Top-level clocks that do not use DCM/PLL should have the constraint
specified on the port to ensure insertion delay is modeled correctly.

• Clocks derived through the DCM/PLL should have the constraint speci-
fied on the port driving the DCM/PLL, if possible.

• Make sure constraints are valid. Check for the following types of
messages in the log file:

– Cannot find object <clock> to apply define_clock.

– Timing constraint <x> <y> never applies in design and was not
found.

You can translate UCF constraints as described in Converting and Using
Xilinx UCF Constraints, on page 255, but you might need to manually review
it and make sure this information is complete.

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Xilinx Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
78 June 2009

Using IP Cores in Xilinx Physical Synthesis Flows
The following is a summary of the information on using IP cores in a physical
synthesis flow:

• You cannot have black box IP, as the flows do not support this.

• You can use secure and non-secure IP edn, ngc, and ngo cores. See
Including Xilinx Cores for Logic and Physical Synthesis, on page 196 and
Working with EDK Cores, on page 204.

Placement and Routing Phases in Xilinx Physical Synthesis
The following Synplify Premier processes are described here:

• Global Placement

• Detail Placement

• Routing

Global Placement
The 9.0.1 and later versions of the Synplify Premier tool use the Xilinx placer
to generate locations for I/Os and block components. Global placement
spreads out the design evenly on the chip. This is especially important for
large block RAM and DSP48 components because physical synthesis does
not move them. To avoid block component placement problems, you need to
lock placement with a coreloc file. See Generating a Xilinx Coreloc Placement
File, on page 354.

Detail Placement
The detail placer performs complete legality checks for placed components to
ensure critical paths are routed optimally. It also performs some local routing
and optimizations.

The Xilinx Virtex-5 CLB placement and packing rules are complex. Despite
extensive testing, the Synplify Premier flow might still encounter placement
violation rules for this device. If you encounter a problem, report it to
technical support and:

• Include the Xilinx map log file, Synplify Premier *.aux files, and .srm
netlist file to view the problem slice.

Xilinx Physical Synthesis Chapter 2: FPGA Logic and Physical Synthesis Flows

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 79

• You can also report the problem from the Technology view using HDL-
Analyst->Technology->Flattened View. For example, specify the following
commands to select components placed in the problem slice:

set x [find -hier -inst * -filter @location==SLICE_X23_Y54
select $x
filter

Or you can use the Filter Schematic icon to create a schematic with just
the instances for this slice. Send this schematic.

Routing
In the Synplify Premier flow final routing is implemented by the Xilinx place-
and-route tool. The Synplify Premier tool only performs local routing during
detail placement and optimization. In Synplify Premier 9.0.1 and later
versions, local routing is forward-annotated as initial pin assignments on
LUTs. Placement and routing can change pin assignments to accommodate
longer distance routing, but generally result in equivalent path delays.

The default routing effort level is recommended for most designs to route
successfully with good timing closure. However, if high density routing
causes routing detours, increase the effort level to enable extra effort using
the -sc c switch. You can detect routing detours in the following ways:

• Look for messages in the log file about congested designs and switching
to a non-timing-driven mode.

• Open the Xilinx FPGA Editor and select the long delay nets. When wires
show an indirect path to the load, then the design probably has detours.

If detours happen on high fanout nets, set the MAXSKEW option on the net to
a fairly loose value, such as 1.0 ns. This setting uses a different router
algorithm with higher priority on the applied net. If the design is still
congested, then contact technical support.

LO

Chapter 2: FPGA Logic and Physical Synthesis Flows Prototyping Design Flow

Synopsys FPGA Synthesis User Guide
80 June 2009

Synopsys, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: +1 408 215-6000, Fax: +1 408 222-068
www.solvnet.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology,
Certify, DesignWare, HDL Analyst, Identify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro,
Synthesis Constraints Optimization Environment, and VCS are registered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-perfor-
mance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and TotalRecall are trademarks of Synopsys, Inc. All other
names mentioned herein are trademarks or registered trademarks of their respective companies.

Prototyping Design Flow
The Synplify Pro and Synplify Premier tools support a complete design and
verification environment that features the Identify RTL Debugger product and
automated HDL code translation. You can run the Identify tool from the
synthesis interface.

You can use the flow shown in the following figure for single FPGA prototypes.
For partitioning and timing optimizations in multi-FPGA designs, use the
Certify product.

Identify Instrumentor

Synplify Pro

Single FPGA Prototype
Board

FPGA Place-and-Route

ASIC HDL

Design RTL
Instrumentation

Optimized and
Mapped Netlist

Placed and
Routed Netlist

Synplify Premier

Physically
Optimized and
Mapped Netlist

Placement

Identify RTL Debugger

JTAG

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 81

C H A P T E R 3

Preparing the Input

When you synthesize a design, you need to set up two kinds of files: HDL files
that describe your design, and project files to manage the design. This
chapter describes the procedures to set up these files and the project. It
covers the following:

• Setting Up HDL Source Files, on page 82

• Using Mixed Language Source Files, on page 95

• Working with Constraint Files, on page 98

• Using Input from Related Tools, on page 106

• Converting Synopsys DesignWare Components, on page 107

LO

Chapter 3: Preparing the Input Setting Up HDL Source Files

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
82 June 2009

Setting Up HDL Source Files
This section describes how to set up your source files; project file setup is
described in Setting Up Project Files, on page 270. Source files can be in
Verilog or VHDL. For information about structuring the files for synthesis,
refer to the Reference Manual. This section discusses the following topics:

• Creating HDL Source Files, on page 82

• Checking HDL Source Files, on page 83

• Editing HDL Source Files with the Built-in Text Editor, on page 85

• Using an External Text Editor, on page 90

• Setting Editing Window Preferences, on page 88

• Using Hyper Source, on page 91

Creating HDL Source Files
This section describes how to use the built-in text editor to create source
files, but does not go into details of what the files contain. For details of what
you can and cannot include, as well as vendor-specific information, see the
Reference Manual. If you already have source files, you can use the text editor
to check the syntax or edit the file (see Checking HDL Source Files, on page 83
and Editing HDL Source Files with the Built-in Text Editor, on page 85).

You can use Verilog or VHDL for your source files. The files have .v (Verilog)
or .vhd (VHDL) file extensions, respectively. With the Synplify Premier and
Synplify Pro products, you can use Verilog and VHDL files in the same
design. For information about using a mixture of Verilog and VHDL input
files, see Using Mixed Language Source Files, on page 95.

1. To create a new source file either click the HDL file icon () or do the
following:

– Select File->New or press Ctrl-n.

– In the New dialog box, select the kind of source file you want to create,
Verilog or VHDL. If you are using Verilog 2001 format or
SystemVerilog, make sure to enable the Verilog 2001 or System Verilog
option before you run synthesis (Project->Implementation Options->Verilog
tab).

Setting Up HDL Source Files Chapter 3: Preparing the Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 83

– Type a name and location for the file and Click OK. A blank editing
window opens with line numbers on the left.

2. Type the source information in the window, or cut and paste it. See
Editing HDL Source Files with the Built-in Text Editor, on page 85 for
more information on working in the Editing window.

For the best synthesis results, check the Reference Manual and ensure
that you are using the available constructs and vendor-specific
attributes and directives effectively.

3. Save the file by selecting File->Save or the Save icon ().

Once you have created a source file, you can check that you have the right
syntax, as described in Checking HDL Source Files, on page 83.

Checking HDL Source Files
The software automatically checks your HDL source files when it compiles
them, but if you want to check your source code before synthesis, use the
following procedure. There are two kinds of checks you do in the synthesis
software: syntax and synthesis.

LO

Chapter 3: Preparing the Input Setting Up HDL Source Files

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
84 June 2009

1. Select the source files you want to check.

– To check all the source files in a project, deselect all files in the
project list, and make sure that none of the files are open in an active
window. If you have an active source file, the software only checks the
active file.

– To check a single file, open the file with File->Open or double-click the
file in the Project window. If you have more than one file open and
want to check only one of them, put your cursor in the appropriate
file window to make sure that it is the active window.

2. To check the syntax, select Run->Syntax Check or press Shift+F7.

The software detects syntax errors such as incorrect keywords and
punctuation. An exclamation mark next to a file in the project list
indicates that it has errors or warnings. The number of warnings is
listed after the file name. If there are no errors, the following message is
displayed at the bottom of the log file:

Syntax check successful!

3. To run a synthesis check, select Run->Synthesis Check or press Shift+F8.

The software detects hardware-related errors such as incorrectly coded
flip-flops. It puts an exclamation mark next to files in the project list that
have errors or warnings, and lists the number of errors, warnings or
notes found in each file. If there are no errors, the following message is
displayed at the bottom of the log file:

Synthesis check successful!

4. Review the errors by opening the syntax.log file when prompted and use
Find to locate the error message (search for @E). Double-click on the 5-
character error code or click on the message text and push F1 to display
online error message help.

5. Locate the portion of code responsible for the error by double-clicking on
the message text in the syntax.log file. The Text Editor window opens the
appropriate source file and highlights the code that caused the error.

6. Repeat steps 4 and 5 until all syntax and synthesis errors are corrected.

Setting Up HDL Source Files Chapter 3: Preparing the Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 85

Messages can be categorized as errors, warnings, or notes. Review all
messages and resolve any errors. Warnings are less serious than errors, but
you must read through and understand them even if you do not resolve all of
them. Notes are informative and do not need to be resolved.

Editing HDL Source Files with the Built-in Text Editor
The built-in text editor makes it easy to create your HDL source code, view it,
or edit it when you need to fix errors. If you want to use an external text
editor, see Using an External Text Editor, on page 90.

1. Do one of the following to open a source file for viewing or editing:

– To automatically open the first file in the list with errors, press F5.

– To open a specific file, double-click the file in the Project window or
use File->Open (Ctrl-o) and specify the source file.

The Text Editor window opens and displays the source file. Lines are
numbered. Keywords are in blue, and comments in green. String values
are in red. If you want to change these colors, see Setting Editing
Window Preferences, on page 88.

2. To edit a file, type directly in the window.

This table summarizes common editing operations you might use. You
can also use the keyboard shortcuts instead of the commands.

LO

Chapter 3: Preparing the Input Setting Up HDL Source Files

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
86 June 2009

3. To cut and paste a section of a PDF document, select the T-shaped Text
Select icon, highlight the text you need and copy and paste it into your
file. The Text Select icon lets you select parts of the document.

4. To create and work with bookmarks in your file, see the following table.

Bookmarks are a convenient way to navigate long files or to jump to
points in the code that you refer to often. You can use the icons in the
Edit toolbar for these operations. If you cannot see the Edit toolbar on the
far right of your window, resize some of the other toolbars.

To... Do...

Cut, copy, and paste;
undo, or redo an action

Select the command from the popup (hold down
the right mouse button) or Edit menu.

Go to a specific line Press Ctrl-g or select Edit->Go To, type the line
number, and click OK.

Find text Press Ctrl-f or select Edit ->Find. Type the text you
want to find, and click OK.

Replace text Press Ctrl-h or select Edit->Replace. Type the text
you want to find, and the text you want to replace
it with. Click OK.

Complete a keyword Type enough characters to uniquely identify the
keyword, and press Esc.

Indent text to the right Select the block, and press Tab.

Indent text to the left Select the block, and press Shift-Tab.

Change to upper case Select the text, and then select Edit->Advanced
->Uppercase or press Ctrl-Shift-u.

Change to lower case Select the text, and then select Edit->Advanced
->Lowercase or press Ctrl-u.

Add block comments Put the cursor at the beginning of the comment
text, and select Edit->Advanced->Comment Code or
press Alt-c.

Edit columns Press Alt, and use the left mouse button to select
the column. On some platforms, you have to use
the key to which the Alt functionality is mapped,
like the Meta or diamond key.

Setting Up HDL Source Files Chapter 3: Preparing the Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 87

5. To fix errors or review warnings in the source code, do the following:

– Open the HDL file with the error or warning by double-clicking the file
in the project list.

– Press F5 to go to the first error, warning, or note in the file. At the
bottom of the Editing window, you see the message text.

– To go to the next error, warning, or note, select Run->Next Error/Warning
or press F5. If there are no more messages in the file, you see the
message “No More Errors/Warnings/Notes” at the bottom of the
Editing window. Select Run->Next Error/Warning or press F5 to go to the
the error, warning, or note in the next file.

– To navigate back to a previous error, warning, or note, select Run-
>Previous Error/Warning or press Shift-F5.

6. To bring up error message help for a full description of the error,
warning, or note:

To... Do...

Insert a
bookmark

Click anywhere in the line you want to bookmark.
Select Edit->Toggle Bookmarks, press Ctrl-F2, or select the
first icon in the Edit toolbar.
The line number is highlighted to indicate that there is a
bookmark at the beginning of that line.

Delete a
bookmark

Click anywhere in the line with the bookmark.
Select Edit->Toggle Bookmarks, press Ctrl-F2, or select the
first icon in the Edit toolbar.
The line number is no longer highlighted after the
bookmark is deleted.

Delete all
bookmarks

Select Edit->Delete all Bookmarks, press Ctrl-Shift-F2, or
select the last icon in the Edit toolbar.
The line numbers are no longer highlighted after the
bookmarks are deleted.

Navigate a file
using
bookmarks

Use the Next Bookmark (F2) and Previous Bookmark (Shift-
F2) commands from the Edit menu or the corresponding
icons from the Edit toolbar to navigate to the bookmark
you want.

LO

Chapter 3: Preparing the Input Setting Up HDL Source Files

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
88 June 2009

– Open the text-format log file (click View Log) and either double click on
the 5-character error code or click on the message text and press F1.

– Open the HTML log file (not available with the Synplify product) and
click on the 5-character error code.

– In the Tcl window (not available with the Synplify product), click the
Messages tab and click on the 5-character error code in the ID column.

7. To crossprobe from the source code window to other views, open the
view and select the piece of code. See Crossprobing from the Text Editor
Window, on page 649 for details.

8. When you have fixed all the errors, select File->Save or click the Save icon
to save the file.

Setting Editing Window Preferences
You can customize the fonts and colors used in a Text Editing window.

1. Select Options->Editor Options and either Synplicity Editor or External Editor. For
more information about the external editor, see Using an External Text
Editor, on page 90.

2. Then depending on the type of file you open, you can to set the
background, syntax coloring, and font preferences to use with the text
editor.

Note: Thereafter, text editing preferences you set for this file will apply
to all files of this file type.

The Text Editing window can be used to set preferences for project files,
source files (Verilog/VHDL), log files, Tcl files, constraint files, or other
default files from the Editor Options dialog box.

3. You can set syntax colors for some common syntax options, such as
keywords, strings, and comments. For example in the log file, warnings
and errors can be color-coded for easy recognition.

Click in the Foreground or Background field for the corresponding object in
the Syntax Coloring field to display the color palette.

Setting Up HDL Source Files Chapter 3: Preparing the Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 89

You can select basic colors or define custom colors and add them to
your custom color palette. To select your desired color click OK.

4. To set font and font size for the text editor, use the pull-down menus.

5. Check Keep Tabs to enable tab settings, then set the tab spacing using
the up or down arrow for Tab Size.

6. Click OK on the Editor Options form.

LO

Chapter 3: Preparing the Input Setting Up HDL Source Files

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
90 June 2009

Using an External Text Editor
You can use an external text editor like vi or emacs instead of the built-in text
editor. Do the following to enable an external text editor. For information
about using the built-in text editor, see Editing HDL Source Files with the
Built-in Text Editor, on page 85.

1. Select Options->Editor Options and turn on the External Editor option.

2. Select the external editor, using the method appropriate to your
operating system.

– If you are working on a Windows platform, click the ...(Browse)
button and select the external text editor executable.

– From a UNIX or Linux platform for a text editor that creates its own
window, click the ... Browse button and select the external text editor
executable.

– From a UNIX platform for a text editor that does not create its own
window, do not use the ... Browse button. Instead type xterm -e
<editor>. The following figure shows VI specified as the external
editor.

– From a Linux platform, for a text editor that does not create its own
window, do not use the ... Browse button. Instead, type gnome-
terminal -x <editor>. To use emacs for example, type gnome-
terminal -x emacs.

The software has been tested with the emacs and vi text editors.

3. Click OK.

Setting Up HDL Source Files Chapter 3: Preparing the Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 91

Using Hyper Source
Use this mechanism to thread a signal through the design hierarchy of a user
IP. This signal can be threaded to a top-level port or signal. This works even if
the Verilog or VHDL is compiled separately. Ports and signals will automati-
cally be added between the source and the connection. Otherwise, these
connections must be manually added to the RTL code.

Refer to the HDL Hyper Source Example, on page 92 below. The following
procedure describes a method for using hyper source.

1. Define how to connect to the signal source. In this case, the:

– Signal syn_hyper_source (in1) module is defined for the source with
a width of 1.

– Label name of "tag_name" is the global name for the hyper source.

2. Define how to access the hyper source which drives the local signal or
port. In this case, the:

– Signal syn_hyper_connect (out1) module is defined for the
connection. The signal width of 1 must match the source.

– Label name can be the global name or the instance path to the hyper
source.

3. In this hierarchical design, the hyper source:

– Applies to the module lower_module.

– Signal syn_hyper_source my_source(din) module is defined for the
source with a width of 8.

– Label name of "probe_sig" must match the name used in the hyper
connect block to thread the signal properly.

4. In this hierarchical design, the hyper connect:

– Applies to the top-level module top, but can be any level of hierarchy.

– Signal syn_hyper_connect connect_block(probe) module is defined
for the connection with a width of 8.

– Label name of "probe_sig" must match the name used in the hyper
source block to thread the signal properly.

LO

Chapter 3: Preparing the Input Setting Up HDL Source Files

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
92 June 2009

5. After you run synthesis, the following message appears in the log file:

Hyper Source Example
/* connect to a signal you want to export example : in1*/
module syn_hyper_source(in1) /*synthesis syn_black_box=1 syn_noprune=1 */;
parameter w = 1;
parameter label = "tag_name"; /* global name of hyper_source */
input [w-1:0] in1;
endmodule

/* use to access hyper_source and drive a local signal or port example
:out1 */
module syn_hyper_connect(out1) /* synthesis syn_black_box=1 syn_noprune=1
*/;
parameter w = 1; /* width must match source */
parameter label = "tag_name"; /* global name or instance path to
hyper_source */
parameter dflt = 0;
parameter mustconnect = 1'b1;
output [w-1:0] out1;
endmodule

/* Example hierarchical design which uses hyper_source */
module lower_module (clk, dout, din1, din2, we);
output reg [7:0] dout;
input clk, we;
input [7:0] din1, din2;
wire [7:0] din;

syn_hyper_source my_source(din);
defparam my_source.label = "probe_sig"; /* to thread the signal this
tag_name must match to name used in the hyper connect block */
defparam my_source.w = 8;

always @(posedge clk)
if (we)

dout <= din;
assign din = din1 & din2;

Setting Up HDL Source Files Chapter 3: Preparing the Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 93

endmodule

module sub1_module (clk, dout, din1, din2, we);
output[7:0] dout;
input clk, we;
input [7:0] din1, din2;
lower_module lower_module (clk, dout, din1, din2, we);
endmodule

module sub2_module (clk, dout, din1, din2, we);
output [7:0] dout;
input clk, we;
input [7:0] din1, din2;
sub1_module sub1_module (clk, dout, din1, din2, we);
endmodule

module top (clk, dout, din1, din2, we, probe);
output[7:0] dout;
output [7:0] probe;
input clk, we;
input [7:0] din1, din2;

syn_hyper_connect connect_block(probe);
defparam connect_block.label = "probe_sig"; /* to thread the signal this
tag_name must match to name used in the hyper connect block */
defparam connect_block.w = 8;

sub2_module sub2_module (clk, dout, din1, din2, we);

endmodule

LO

Chapter 3: Preparing the Input Setting Up HDL Source Files

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
94 June 2009

The following figures show how the hyper source signal automatically gets
connected through the hierarchy of the IP in the HDL Analyst views.

RTL View

Technology View

Using Mixed Language Source Files Chapter 3: Preparing the Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 95

Using Mixed Language Source Files
With the Synplify Pro and Synplify Premier software, you can use a mixture of
VHDL and Verilog input files in your project. For examples of the VHDL and
Verilog files, see the Reference Manual. You cannot use Verilog and VHDL
files together in the same design with the Synplify tool.

1. Remember these restrictions and set up the mixed language design files
accordingly:

– You can not use defparams across languages.

– Verilog does not support unconstrained VHDL ports

2. If you want to organize the Verilog and VHDL files in different folders,
select Options->Project View Options and toggle on the View Project Files in
Folders option.

When you add the files to the project, the Verilog and VHDL files are in
separate folders in the Project view.

3. When you open a project or create a new one, add the Verilog and VHDL
files as follows:

– Select the Project->Add Source File command or click the Add File button.

– On the form, set Files of Type to HDL Files (*.vhd, *.vhdl, *.v).

– Select the Verilog and VHDL files you want and add them to your
project. Click OK. For details about adding files to a project, see
Making Changes to a Project, on page 274.

LO

Chapter 3: Preparing the Input Using Mixed Language Source Files

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
96 June 2009

The files you added are displayed in the Project view. This figure shows
the files arranged in separate folders.

4. When you set device options (Implementation Options button), specify the
top-level module. For more information about setting device options, see
Setting Logic Synthesis Implementation Options, on page 289.

– If the top-level module is Verilog, click the Verilog tab and type the
name of the top-level module.

– If the top-level module is VHDL, click the VHDL tab and type the name
of the top-level entity. If the top-level module is not located in the
default work library, you must specify the library where the compiler
can find the module. For information on how to do this, see VHDL
Panel, on page 148.

Using Mixed Language Source Files Chapter 3: Preparing the Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 97

You must explicitly specify the top-level module, because it is the
starting point from which the mapper generates a merged netlist.

5. Select the Implementation Results tab on the same form and select one
output HDL format for the output files generated by the software. For
more information about setting device options, see Setting Logic
Synthesis Implementation Options, on page 289.

– For a Verilog output netlist, select Write Verilog Netlist.

– For a VHDL output netlist, select Write VHDL Netlist.

– Set any other device options and click OK.

You can now synthesize your design. The software reads in the mixed
formats of the source files and generates a single .srs file that is used
for synthesis.

LO

Chapter 3: Preparing the Input Working with Constraint Files

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
98 June 2009

Working with Constraint Files
Constraint files are text files that are automatically generated by the SCOPE
interface (see Specifying Timing Constraints, on page 219), or which you
create manually with a text editor. They contain Tcl commands or attributes
that constrain the synthesis run. Alternatively, you can set constraints in the
source code, but it is not the preferred method.

This section contains information about

• When to Use Constraint Files over Source Code, on page 98

• Tcl Syntax Guidelines for Constraint Files, on page 99

• Using a Text Editor for Constraint Files, on page 100

• Using Synopsys Design Compiler Constraints, on page 102

• Checking Constraint Files, on page 104

• Generating Constraint Files for Forward Annotation, on page 105

When to Use Constraint Files over Source Code
You can add constraints in constraint files (generated by SCOPE interface or
entered in a text editor) or in the source code. In general, it is better to use
constraint files, because you do not have to recompile for the constraints to
take effect. It also makes your source code more portable.

However, if you have black box timing constraints like syn_tco, syn_tpd, and
syn_tsu, you must enter them as directives in the source code. Unlike
attributes, directives can only be added to the source code, not to constraint
files. See Entering Attributes and Directives, on page 304 for more information
on adding directives to source code.

Working with Constraint Files Chapter 3: Preparing the Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 99

Tcl Syntax Guidelines for Constraint Files
This section covers general guidelines for using Tcl for constraint files:

• Tcl is case-sensitive.

• For naming objects:

– The object name must match the name in the HDL code.

– Enclose instance and port names within curly braces { }.

– Do not use spaces in names.

– Use the dot (.) to separate hierarchical names.

– In Verilog modules, use the following syntax for instance, port, and
net names:

v:cell [prefix:]object_name

Where cell is the name of the design entity, prefix is a prefix to
identify objects with the same name, object_name is an instance path
with the dot (.) separator. The prefix can be any of the following:

– In VHDL modules, use the following syntax for instance, port, and net
names in VHDL modules:

v:cell [.view] [prefix:]object_name

Where v: identifies it as a view object, lib is the name of the library,
cell is the name of the design entity, view is a name for the architec-
ture, prefix is a prefix to identify objects with the same name, and
object_name is an instance path with the dot (.) separator. View is only
needed if there is more than one architecture for the design. See the
table above for the prefixes of objects.

Prefix (Lower-case) Object

i: Instance names

p: Port names (entire port)

b: Bit slice of a port

n: Net names

LO

Chapter 3: Preparing the Input Working with Constraint Files

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
100 June 2009

• Name matching wildcards are * (asterisk matches any number of
characters) and ? (question mark matches a single character). These
characters do not match dots used as hierarchy separators. For
example, the following string identifies all bits of the statereg instance in
the statemod module:

i:statemod.statereg[*]

Using a Text Editor for Constraint Files
This section shows you how to manually create a Tcl constraint file. The
software automatically creates this file if you use the SCOPE interface to
enter the constraints. The Tcl constraint file only contains general timing
constraints. Black box constraints must be entered in the source code. For
details of the Tcl commands, refer to the Reference Manual. For additional
information, see When to Use Constraint Files over Source Code, on page 98.

1. Open a file for editing.

– Make sure you have closed the SCOPE window, or you could
overwrite previous constraints.

– To create a new file, select File->New, and select the Constraint File
(SCOPE) option. Type a name for the file and click OK.

– To edit an existing file, select File->Open, set the Files of Type filter to
Constraint Files (.sdc) and open the file you want.

2. Follow the syntax guidelines in Tcl Syntax Guidelines for Constraint Files,
on page 99.

Working with Constraint Files Chapter 3: Preparing the Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 101

3. Enter the timing constraints you need. For the syntax, see the Reference
Manual. If you have black box timing constraints, you must enter them
in the source code.

The following code excerpt shows some typical Tcl constraints:

Override the default frequency for clk_fast and set it to run
at 66.0 MHz.

define_clock {clk_fast} -freq 66.0

To define... Use...

Clock frequencies define_clock. See Defining Clocks, on page 222
for additional information.

Clock frequency other than
the one implied by the
signal on the clock pin

syn_reference_clock (attribute). See Defining
Clocks, on page 222 for additional information

Clock domains with
asymmetric duty cycles

define_clock. See Defining Clocks, on page 222
for additional information

Edge-to-edge clock delays define_clock_delay. See Defining Clocks, on
page 222 for additional information

Speed up paths feeding
into a register

define_reg_input_delay.

Speed up paths coming
from a register

define_reg_output_delay.

Input delays from outside
the FPGA

define_input_delay. See Defining Input and
Output Constraints, on page 226 for additional
information

Output delays from your
FPGA

define_output_delay. See Defining Input and
Output Constraints, on page 226 for additional
information

Paths with multiple clock
cycles

define_multicycle_path. See Defining Multi-cycle
Paths, on page 234 for additional information

False paths (certain
technologies)

define_false_path. See Defining False Paths, on
page 235 for additional information.

Path delays define_path_delay. See Defining
From/To/Through Points for Timing Exceptions,
on page 231 for additional information

LO

Chapter 3: Preparing the Input Working with Constraint Files

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
102 June 2009

Set a default input delay of 4 ns
define_input_delay -default 4.0

Except for the "sel" signal, which has an input delay of 8 ns
define_input_delay {sel} 8.0

The outputs have an off-chip delay of 3.0 ns
define_output_delay -default 3.0

4. You can also add vendor-specific attributes in the constraint file using
define_attribute. See Specifying Attributes in the Constraints File (.sdc), on
page 310 for more information.

5. Save the file.

6. Add the file to the project as described in Making Changes to a Project,
on page 274, and run synthesis.

Using Synopsys Design Compiler Constraints
The FPGA synthesis tools can read some native Design Compiler (SDC)
constraint files for a supported set of clock definition, I/O delay, and timing
exception constraints. To use these constraints for FPGA synthesis, do the
following:

1. If you are importing constraints in the Design Compiler SDC format, do
not use other constraints in the FPGA synthesis format.

2. Add the Design Compiler file to your project.

3. Run the constraint checker, as described in Checking Constraint Files,
on page 104 and edit the constraint files as needed.

4. Edit your Design Compiler file if needed.

– Make sure the object identifiers map as expected:

Synopsys Design Compiler Identifiers FPGA Synthesis Identifiers

get_clocks
(Wildcards are not supported)

c:

get_registers r:

get_nets n:

Working with Constraint Files Chapter 3: Preparing the Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 103

– If you use different naming conventions than the default FPGA
assumptions, add the appropriate command to the beginning of your
file. You must add it to the beginning of the file, so that it is read first.
The following table lists the default FPGA naming convention and the
corresponding Design Compiler rule.

If your naming conventions do not match these defaults, add the
appropriate command specifying your naming convention to the
beginning of the file, as shown in these examples:

The FPGA synthesis tool accepts the following native Design Compiler
constraints, and uses them to run synthesis:

get_ports p:

get_cells i:

get_pins t:

FPGA Design Compiler Rule

Hierarchy separator . set_hierarchy_separator { . }

Register names _reg set_rtl_ff_names { _reg }

Bus names [] bus_naming_style { %s[%d] }

Bus array separator [][] bus_dimension_separator_style {][}

Default You use Add this to your file

Hierarchy separator A.B Slash: A/B set_hierarchy_separator {/}

Naming bit 5 of bus ABC ABC[5] Underscore bus_naming_style {%s_%d}

Naming row 2 bit 3 of
array ABC [2x16]

ABC [2] [3] Underscore
ABC[2_3]

bus_dimension_separator_style {_}

Synopsys Design Compiler Identifiers FPGA Synthesis Identifiers

LO

Chapter 3: Preparing the Input Working with Constraint Files

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
104 June 2009

Checking Constraint Files
For certain technologies, you can check your constraints and their syntax. Do
the following:

1. Make sure your target is a technology that supports this feature.

2. Generate a constraint file.

3. Select Run->Constraint Check.

This command generate a report that checks the syntax and applica-
bility of the timing constraints in the .sdc file(s) for your project. The
report is written to the project_name_cck.rpt file and lists the following
information:

– Constraints that are not applied

– Constraints that are valid and applicable to the design

– Wildcard expansion on the constraints

– Constraints on objects that do not exist

For a description of this file, see Constraint Checking Report, on
page 335 of the Reference Manual.

all_clocks set_false_path

all_inputs set_input_delay

all_outputs set_max_delay

all_registers set_multicycle_path

create_clock set_output_delay

create_generated_clock

Working with Constraint Files Chapter 3: Preparing the Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 105

Generating Constraint Files for Forward Annotation
The tool automatically generates vendor-specific constraint files that you can
use for forward-annotation. The synthesis constraints are mapped to the
appropriate vendor constraints.You can control this process with some
attributes as described in the following procedure.

1. Set attributes to control forward annotation.

– To forward-annotate timing constraints for Actel Axcelerator, Fusion,
ProASIC (500K), ProASIC Plus (PA), and ProASIC3/3E /3L families,
set the clock period, max delay, input delay, output delay, multiple-
cycle paths, and false paths in the SCOPE interface.

– To forward-annotate I/O constraints (define_input_delay and
define_output_delay) to the .tcl file for APEX designs or the
synplicity.ucf file for Xilinx designs, set syn_forward_io_constraints
with a value of 1 on the top level of the design or as a global attribute.

– To forward-annotate clocks for Xilinx DCMs and DLLs, define the
clock at the primary inputs and any Xilinx phase shift and frequency
multiplication properties you need. See Defining Other Clock
Requirements, on page 225 for details. The synthesis software
forward-annotates the DLL/DCM inputs.

– To forward-annotate clocks for Altera PLLs, define the input
frequency value. See Defining Other Clock Requirements, on page 225
for details. The synthesis software forward-annotates the PLL inputs.

– For some Lattice designs, set the -from and -to false path and multi-
cycle constraints on the Others tab of the SCOPE interface.

For details about these attributes, see the Reference Manual.

2. Select Project->Implementation Options, and check Write Vendor Constraints in
the Implementation Results tab.

Currently you can forward-annotate constraints for some vendors only.

3. Click OK and run synthesis.

The software converts the synthesis define_input_delay, define_output_delay,
define_clock (including the define_clock constraints generated by auto
constraining), define_multicycle_path, define_false_path, define_max_delay, and
global frequency constraints into corresponding commands in the
following files:

LO

Chapter 3: Preparing the Input Using Input from Related Tools

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
106 June 2009

– *.acf file for Altera

– filename_sdc.sdc file for Actel

– synplicity.ucf file for Xilinx

– $DESIGN_synplify.lpf file for Lattice

Open the Lattice ispLEVER place-and-route tool, then import the
$DESIGN_synplify.lpf file before running PAR. If a user-created *.lpf
file already exists, ispLEVER backs it up into *.lpf.bak and copies
the contents of $DESIGN_synplify.lpf into the $DESIGN.lpf file which
is then used for all computations.

See the Reference Manual for details about forward annotation.

Using Input from Related Tools
The following show you how to incorporate input from other tools like System
Designer and Synplify DSP.

Using Input from System Designer
You use System Designer to import and stitch together IP. To incorporate
these components in your design, include the following files generated by
System Designer in your synthesis project:

• Synplify sub-library file synthesis.slib

• HDL files
VHDL files in vhdl folder and Verilog files in the verilog folder in the project
directory.

Using Input from Synplify DSP
The Synplify DSP tool generates IP for DSP designs. Include this in your
synthesis project by adding the source files generated by the Synplify DSP
tool.

Converting Synopsys DesignWare Components Chapter 3: Preparing the Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 107

Converting Synopsys DesignWare Components
The Synplify Premier and Synplify Premier with Design Planner tools can
convert supported Synopsys

®
 DesignWare components that have been

instantiated in your VHDL or Verilog source code by using DW-compatible
models. For details on supported models and syntax, see Translating
DesignWare Components, on page 546 of the Reference Manual. For infor-
mation on how to instantiate the supported models, see

• Converting Verilog Library Components, on page 107

• Converting VHDL Library Components, on page 109

Converting Verilog Library Components
This section describes the following:

• Instantiating and Compiling Verilog Components, on page 107

• Inferring Verilog Functions, on page 108

Instantiating and Compiling Verilog Components
To instantiate the components, enable access to the Verilog DW-compatible
module library (dw_verilog.v) by :

1. Opening the Implementation Options dialog box in the Project view.

2. Going to the Options tab and enabling the Compile with Designware Library
(dw_verilog.v) switch to automatically use the dw_verilog.v file during
compilation.

3. To replace an existing DW-compatible module with your own module in
the dw_verilog.v library, add the file to your project file. For example:

add_file -verilog "my_DW_component"

This command tells the Synplify Premier tool to use your version of the
module. The module name in my_DW_component must be the same
name as the component you want to replace. For a list of compatible
models and their names, see Supported Components – by Function, on
page 546 of the Reference Manual.

LO

Chapter 3: Preparing the Input Converting Synopsys DesignWare Components

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
108 June 2009

4. Before you compile your project, enable the V2001 switch by doing one
of the following:

– Check the Verilog 2001 check box on the Verilog tab of the Implementation
Options dialog box.

– Adding the following command in the #add_file options section of your
project file: set_option -vlog_std v2001.

The dw_verilog.v file uses Verilog 2001 constructs, so you must enable
this option before compiling.

5. Compile and synthesize the design as usual.

The models extract the functionality of the component, but not its imple-
mentation. The mappers synthesize the model to the most appropriate
implementation. If there is no DW-compatible model defined for a
DesignWare component in your source code, you get an error message.
For a list of compatible models and their names, see Supported Compo-
nents – by Function, on page 546 of the Reference Manual.

Inferring Verilog Functions
You can infer functions for a subset of the DW-compatible models. For a list
of the supported functions, see Supported Components – by Function, on
page 546 of the Reference Manual. To use this method, add the directory
containing the DW-compatible functions (dw_functions) to your include path,
as described in the following procedure. You can either use the GUI method
described in step 1 or the command line method described in step 2.

1. To set up function inferencing from the GUI, do the following:

– Open the Implementation Options dialog box in the Project view.

– Go to the Verilog tab and type the following path in the Include Path Order
field:

install_dir/lib/designware/dw_functions

2. To set up function inferencing from the command line, add the following
line to your project file:

set_option -include_path
"install_dir/lib/designware/dw_functions"

3. Synthesize the design.

Converting Synopsys DesignWare Components Chapter 3: Preparing the Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 109

Converting VHDL Library Components
For VHDL designs, this section provides setup information so that the
Synplify Premier or Synplify Premier with Design Planner tool can convert
DesignWare components to DW-compatible models.

• Instantiating VHDL Components, on page 109

• Creating and Editing VHDL Component Libraries, on page 109

Instantiating VHDL Components
The VHDL DesignWare components require the corresponding Verilog
components. To include the Verilog DW-compatible module library in your
project:

1. Open the Implementation Options dialog box in the Project view, go to the
Options tab, and enable the Compile with Designware Library (dw_verilog.v)
switch.

2. Specify the top module:

set_option -top_module "module_name"

You must specify the top module for mixed HDL designs.

3. Add the VHDL component libraries. For information about creating and
editing the VHDL component libraries, see Creating and Editing VHDL
Component Libraries, on page 109.

Creating and Editing VHDL Component Libraries
The following procedure shows you how to create and edit a VHDL library of
DesignWare-compatible models. For a list of supported DesignWare compo-
nents, see Supported Components – by Function, on page 546 of the Reference
Manual.

1. To create and add a new library, use the following command syntax:

add_file -library newlib
add_file -vhdl -lib newlib dw_name.vhd

For example, the following defines a new library my_lib and compiles the
component dw02_comp.vhd into this library:

LO

Chapter 3: Preparing the Input Converting Synopsys DesignWare Components

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
110 June 2009

add_file -library my_lib
add_file –vhdl –lib my_lib dw02_comp.vhd

2. To add a new set of DesignWare objects, such as entities and or
architectures to an existing library, use this command syntax:

add_file -vhdl -lib exisiting_lib "new_object"

The following command appends information for the new DW_square
component to the DW01 library:

add_file –vhdl –lib DW01 "DW_square.vhd"

3. To add a missing DesignWare component declaration to an existing
package, do the following:

– First add the missing component declaration to the library using this
command syntax:

add_file -vhdl -lib library_name "component_pkg.vhd"

The following example adds the missing DW_square component to the
dw01_comp.vhd library:

add_file -vhdl -lib DW01 "DW_square.vhd"

– Add the component declaration to the vhd package by adding a line
like the following to the project file. This example adds the component
declaration for DW_square in dw01_comp.vhd package. The
DW01_components package is declared in the file by name:
dw01_comp_add.vhd

add_file -vhdl -lib DW01 "DW01_comp_add.vhd"

4. To replace a component declaration in the existing package with a new
declaration, add a line like the following:

add_file –vhdl –lib DW01 "DW01_comp_replace.vhd"

The example shows a new declaration for a component,
DW01_comp_replace.vhd, in the DW01 library. For a list of supported
DesignWare components, see Supported Components – by Function, on
page 546 of the Reference Manual.

5. To replace an existing entity or architecture component in a library with
a component you define, do the following:

Converting Synopsys DesignWare Components Chapter 3: Preparing the Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 111

– Write your code for the component, and give the module the same
name as the module you want to replace. For example, if you want to
replace an existing component called DW_square, name your custom
design DW_square.vhd.

– Add a statement like the following to the project file to override the
existing module:

add_file -vhdl -lib DW02 DW_square.vhd

Your DW_square module overwrites the existing module in the DW02
library.

6. If your design references libraries or packages that are not included,
create a dummy package and add it to your project file.

This ensures that the compiler ignores the package and you do not get a
compiler error because the tool cannot find a library.

LO

Chapter 3: Preparing the Input Converting Synopsys DesignWare Components

Synopsys FPGA Synthesis User Guide
112 June 2009

Synopsys, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: +1 408 215-6000, Fax: +1 408 222-068
www.solvnet.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology,
Certify, DesignWare, HDL Analyst, Identify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro,
Synthesis Constraints Optimization Environment, and VCS are registered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-perfor-
mance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and TotalRecall are trademarks of Synopsys, Inc. All other
names mentioned herein are trademarks or registered trademarks of their respective companies.

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 113

C H A P T E R 4

Working with IP Input

This chapter describes how to work with IP from different sources. It
describes the following:

• Generating IP with SYNCore, on page 114

• The ReadyIP Encryption Flow, on page 143

• Working with Encrypted IP, on page 148

• Working with Altera IP, on page 161

• Working with Lattice IP, on page 194

• Working with Xilinx IP, on page 195

• Including Xilinx EDK Cores, on page 199

LO

Chapter 4: Working with IP Input Generating IP with SYNCore

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
114 June 2009

Generating IP with SYNCore
You can use the SYNCore IP wizard to generate FIFO, RAM, ROM,
adder/subtractor, and counter implementations. See the following for more
information.

• Specifying FIFOs with SYNCore, on page 114

• Specifying RAMs with SYNCore, on page 119

• Specifying ROMs with SYNCore, on page 125

• Specifying Adder/Subtractors with SYNCore, on page 130

• Specifying Counters with SYNCore, on page 137

Specifying FIFOs with SYNCore
The SYNCore IP Wizard helps you generate Verilog code for your FIFO imple-
mentations. The following procedure shows you how to generate Verilog code
for a FIFO you specify, using the SYNCore IP wizard.

1. Start the wizard.

– From the synthesis tool GUI, select Run->Launch SYNCore or click the
Launch SYNCore icon to start the SYNCore IP wizard.

Generating IP with SYNCore Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 115

– In the window that opens, select sfifo_model and click Ok. This opens
the first screen of the wizard.

2. Specify the parameters you need in the five pages of the wizard. For
details, refer to Specifying SYNCore FIFO Parameters, on page 117.

The FIFO symbol on the left reflects the parameters you set.

3. After you have specified all the parameters you need, click the Generate
button (lower left).

The tool displays a confirmation message (TCL execution successful!) and
writes the required files to the directory you specified in the parameters.
The HDL code is in Verilog.

The FIFO generated is a synchronous FIFO with symmetric ports and
with the same clock controlling both the read and write operations. Data
is written or read on the rising edge of the clock. All resets are synchro-
nous with the clock. All edges (clock, enable, and reset) are considered
positive.

LO

Chapter 4: Working with IP Input Generating IP with SYNCore

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
116 June 2009

SYNCore also generates a testbench for the FIFO that you can use for
simulation. The testbench covers a limited set of vectors for testing.

You can now close the SYNCore wizard.

4. Add the FIFO you generated to your design.

– Use the Add File command to add the Verilog design file that was
generated and the syncore_sfifo.v file to your project. These files are in
the directory for output files that you specified on page 1 of the
wizard.

– Use a text editor to open the instantiation_file.vin template file, which is
located in the same directory. Copy the lines that define the memory,
and paste them into your top-level module. The following shows a
template file (in red text) inserted into a top-level module.

– Edit the template port connections so that they agree with the port
definitions in the top-level module as shown in the example below.
You can also assign a unique name to each instantiation.

module top (

input Clk,
input [15:0] DataIn,
input WrEn,

);

fifo_a32 <instanceName>(
.Clock(Clock)
,.Din(Din)
,.Write_enable(Write_enable)

,.Dout(Dout)

endmodule

template,.Read_enable(Read_enable)

input RdEn,

,.Full(Full)
,.Empty(Empty)
)

output Full,
output Empty,
output [15:0] DataOut

Generating IP with SYNCore Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 117

Note that currently the FIFO models will not be implemented with the
dedicated FIFO blocks available in certain technologies.

Specifying SYNCore FIFO Parameters
The following elaborates on the parameter settings for SYNCore FIFOs. The
status, handshaking, and programmable flags are optional. For descriptions
of the parameters, see SYNCore FIFO Wizard, on page 190 in the Reference
Manual. For timing diagrams, see SYNCore FIFO Compiler, on page 561 in the
Reference Manual.

1. Start the SYNCore wizard, as described in Specifying FIFOs with
SYNCore, on page 114.

2. Do the following on page 1 of the FIFO wizard:

– In Component Name, specify a name for the FIFO. Do not use spaces.

– In Directory, specify a directory where you want the output files to be
written. Do not use spaces.

fifo_a32 busfifo(
.Clock(Clk)
,.Din(DataIn)
,.Write_enable(WrEn)

,.Dout(DataOut)

endmodule

module top (

input Clk,
input [15:0] DataIn,
input WrEn,

);

input RdEn,

,.Read_enable(RdEn)

,.Full(Full)
,.Empty(Empty)
)

output [15:0] DataOut

output Full,
output Empty,

LO

Chapter 4: Working with IP Input Generating IP with SYNCore

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
118 June 2009

– In Filename, specify a name for the Verilog output file with the FIFO
specifications. Do not use spaces.

– Click Next. The wizard opens another page where you can set
parameters.

3. For a FIFO with no status, handshaking, or programmable flags, use the
default settings. You can generate the FIFO, as described in Specifying
FIFOs with SYNCore, on page 114.

4. To set an almost full status flag, do the following on page 2 of the FIFO
wizard:

– Enable Almost Full.

– Set associated handshaking flags for the signal as desired, with the
Overflow Flag and Write Acknowledge options.

– Click Next when you are done.

5. To set an almost empty status flag, do the following on page 3:

– Enable Almost Empty.

– Set associated handshaking flags for the signal as desired, with the
Underflow Flag and Read Acknowledge options.

– Click Next when you are done.

6. To set a programmable full flag, do the following:

– Make sure you have enabled Full on page 2 of the wizard and set any
handshaking flags you require.

– Go to page 4 and enable Programmable Full.

– Select one of the four mutually exclusive configurations for
Programmable Full on page 4. See Programmable Full, on page 572 in
the Reference Manual for details.

– Click Next when you are done.

7. To set a programmable empty flag, do the following:

– Make sure you have enabled Empty on page 3 of the wizard and set
any handshaking flags you require.

– Go to page 5 and enable Programmable Empty.

Generating IP with SYNCore Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 119

– Select one of the four mutually exclusive configurations for
Programmable Empty on page 5. See Programmable Empty, on
page 575 in the Reference Manual for details.

You can now generate the FIFO and add it to the design, as described in
Specifying FIFOs with SYNCore, on page 114.

Specifying RAMs with SYNCore
The SYNCore IP wizard helps you generate Verilog code for your RAM imple-
mentation requirements.

The following procedure shows you how to generate Verilog code for a RAM
you specify, using the SYNCore IP wizard.

1. Start the wizard.

– From the synthesis tool GUI, select Run->Launch SYNCore or click the
Launch SYNCore icon to start the SYNCore IP wizard.

– In the window that opens, select ram_model and click Ok. This opens
the first screen of the wizard.

LO

Chapter 4: Working with IP Input Generating IP with SYNCore

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
120 June 2009

2. Specify the parameters you need in the wizard.

– For details about the parameters for a single-port RAM, see
Specifying Parameters for Single-Port RAM, on page 122.

– For details about the parameters for a dual-port RAM, see Specifying
Parameters for Dual-Port RAM, on page 123. Note that dual-port
implementations are only supported for some technologies.

The RAM symbol on the left reflects the parameters you set.

The default settings for the tool implement a block RAM with synchro-
nous resets, and where all edges (clock, enable, and reset) are considered
positive.

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner.

The tool displays a confirmation message is displayed (TCL execution
successful!) and writes the required files to the directory you specified in
the parameters. The HDL code is in Verilog.

SYNCore also generates a testbench for the RAM. The testbench covers a
limited set of vectors.

Generating IP with SYNCore Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 121

You can now close the SYNCore Memory Compiler.

4. Edit the RAM files if necessary.

– The default RAM has a no_rw_check attribute enabled. If you do not
want this, edit syncore_ram.v and comment out the `define
SYN_MULTI_PORT_RAM statement, or use `undef
SYN_MULTI_PORT_RAM.

– If you want to use the synchronous RAMs available in the target
technology, make sure to register either the read address or the
outputs.

5. Add the RAM you generated to your design.

– Use the Add File command to add the Verilog design file that was
generated and the syncore_ram.v file to your project. These files are in
the directory for output files that you specified on page 1 of the
wizard.

– Use a text editor to open the instantiation_file.vin template file, which is
located in the same directory. Copy the lines that define the memory,
and paste them into your top-level module. The following figure
shows a template file (in red text) inserted into a top-level module.

module top (

input ClkA,
input [7:0] AddrA,
input [15:0] DataInA,
input WrEnA,

output [15:0] DataOutA

);

myram2 <InstanceName> (
.PortAClk(PortAClk)
, .PortAAddr(PortAAddr)
, .PortADataIn(PortADataIn)
, .PortAWriteEnable(PortAWriteEnable)
, .PortADataOut(PortADataOut)
);

endmodule

template

LO

Chapter 4: Working with IP Input Generating IP with SYNCore

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
122 June 2009

– Edit the template port connections so that they agree with the port
definitions in the top-level module as shown in the example below.
You can also assign a unique name to each instantiation.

Specifying Parameters for Single-Port RAM
To create a single-port RAM with the SYNCore Memory Compiler, you need to
specify a single read/write address (single port) and a single clock. You only
need to configure Port A. The following procedure lists what you need to
specify. For descriptions of each parameter, refer to SYNCore RAM Wizard, on
page 199 in the Reference Manual.

1. Start the SYNCore RAM wizard, as described in Specifying RAMs with
SYNCore, on page 119.

2. Do the following on page 1 of the RAM wizard:

– In Component Name, specify a name for the memory. Do not use
spaces.

– In Directory, specify a directory where you want the output files to be
written. Do not use spaces.

module top (

input ClkA,
input [7:0] AddrA,
input [15:0] DataInA,
input WrEnA,

output [15:0] DataOutA

);

myram2 decoderram(
.PortAClk(ClkA)
, .PortAAddr(AddrA)
, .PortADataIn(DataInA)
, .PortAWriteEnable(WrEnA)
, .PortADataOut(DataOutA)
);

endmodule

Generating IP with SYNCore Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 123

– In Filename, specify a name for the Verilog file that will be generated
with the RAM specifications. Do not use spaces.

– Enter data and address widths.

– Enable Single Port, to specify that you want to generate a single-port
RAM. This automatically enables Single Clock.

– Click Next. The wizard opens another page where you can set
parameters for Port A.

The RAM symbol dynamically updates to reflect the parameters you set.

3. Do the following on page 2 of the RAM wizard:

– Set Use Write Enable to the setting you want.

– Set Register Read Address to the setting you want.

– Set Synchronous Reset to the setting you want. Register Outputs is
always enabled

– Specify the read access you require for the RAM.

You can now generate the RAM by clicking Generate, as described in
Specifying RAMs with SYNCore, on page 119. You do not need to specify
any parameters on page 3, as this is a single-port RAM and you do not
need to specify Port B. All output files are in the directory you specified
on the first page of the wizard.

For details about setting dual-port RAM parameters, see Specifying
Parameters for Dual-Port RAM, on page 123. For read/write timing
diagrams, see Read/Write Timing Sequences, on page 585 of the Refer-
ence Manual.

Specifying Parameters for Dual-Port RAM
The following procedure shows you how to set parameters for dual-port
memory in the SYNCore wizard. Dual-port RAMs are only supported for some
technologies. For information about generating single-port RAMs, see Speci-
fying Parameters for Single-Port RAM, on page 122. It shows you how to
generate these common RAM configurations:

• One read access and one write access

• Two read accesses and one write access

• Two read accesses and two write accesses

LO

Chapter 4: Working with IP Input Generating IP with SYNCore

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
124 June 2009

For the corresponding read/write timing diagrams, see Read/Write Timing
Sequences, on page 585 of the Reference Manual.

1. Start the SYNCore RAM wizard, as described in Generating IP with
SYNCore, on page 114.

2. Do the following on page 1 of the RAM wizard:

– In Component Name, specify a name for the memory. Do not use
spaces.

– In Directory, specify a directory where you want the output files to be
written. Do not use spaces.

– In Filename, specify a name for the Verilog file that will be generated
with the RAM specifications. Do not use spaces.

– Enter data and address widths.

– Enable Dual Port, to specify that you want to generate a dual-port
RAM.

– Specify the clocks.

– Click Next. The wizard opens another page where you can set
parameters for Port A.

3. Do the following on page 2 of the RAM wizard to specify settings for Port
A:

– Set parameters according to the kind of memory you want to
generate:

For a single clock... Enable Single Clock.

For separate clocks for
each of the ports...

Enable Separate Clocks For Each Port.

One read & one write Enable Read Only Access.

Two reads & one write Enable Read and Write Access.
Specify a setting for Use Write Enable.

Two reads & two writes Enable Read and Write Access.
Specify a setting for Use Write Enable.
Specify a read access option for Port A.

Generating IP with SYNCore Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 125

– Specify a setting for Register Read Address.

– Set Synchronous Reset to the setting you want. Register Outputs is
always enabled.

– Click Next. The wizard opens another page where you can set
parameters for Port B. The page and the parameters are identical to
the previous page, except that the settings are for Port B instead of
Port A.

4. Specify the settings for Port B on page 3 of the wizard according to the
kind of memory you want to generate:

The RAM symbol on the left reflects the parameters you set. All output
files are written to the directory you specified on the first page of the
wizard.

You can now generate the RAM by clicking Generate, as described in
Generating IP with SYNCore, on page 114, and add it to your design.

Specifying ROMs with SYNCore
The SYNCore IP wizard helps you generate Verilog code for your ROM imple-
mentation requirements.

The following procedure shows you how to generate Verilog code for a ROM
you define using the SYNCore IP wizard.

1. Start the wizard.

– From the FPGA synthesis tool GUI, select Run->Launch SYNCore or
click the Launch SYNCore icon to start the SYNCore IP wizard.

One read & one write Enable Write Only Access.
Set Use Write Enable to the setting you want.

Two reads & one write Enable Read Only Access.
Specify a setting for Register Read Address.

Two reads & two writes Enable Read and Write Access.
Specify a setting for Use Write Enable.
Specify a setting for Register Read Address.
Set Synchronous Reset to the setting you want.
Note that Register Outputs is always enabled.
Select a read access option for Port B.

LO

Chapter 4: Working with IP Input Generating IP with SYNCore

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
126 June 2009

– In the window that opens, select rom_model and click Ok to open page
1 of the wizard.

2. Specify the parameters you need in the wizard. For details about the
parameters, see Specifying ROM Parameters, on page 129. The ROM
symbol on the left reflects any parameters you set.

Generating IP with SYNCore Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 127

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner. The tool displays a confirmation message
(TCL execution successful!) and writes the required files to the directory you
specified on page 1 of the wizard. The HDL code is in Verilog.

SYNCore also generates a testbench for the ROM. The testbench covers
a limited set of vectors.

You can now close the SYNCore ROM Compiler.

4. Edit the ROM files if necessary. If you want to use the synchronous
ROMs available in the target technology, make sure to register either the
read address or the outputs.

5. Add the ROM you generated to your design.

– Use the Add File command to add the Verilog design file that was
generated and the syncore_rom.v file to your project. These files are in
the directory for output files that you specified on page 1 of the
wizard.

– Use a text editor to open the instantiation_file.vin template file. This file
is located in the same output files directory. Copy the lines that
define the ROM, and paste them into your top-level module. The
following figure shows a template file (in red text) inserted into a top-
level module.

module test_rom_style(z,a,clk,en,rst);
input clk,en,rst;
output reg [3:0] z;
input [6:0] a;

my1stROM <InstanceName> (
 // Output Ports
 .DataA(DataA),

 // Input Ports
 .ClkA(ClkA),
 .EnA(EnA),
 .ResetA(ResetA),
 .AddrA(AddrA)
);

template

LO

Chapter 4: Working with IP Input Generating IP with SYNCore

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
128 June 2009

– Edit the template port connections so that they agree with the port
definitions in the top-level module as shown in the example below.
You can also assign a unique name to each instantiation.

Port List
PortA interface signals are applicable for both single-port and dual-port
configurations; PortB signals are applicable for dual-port configuration only.

 Name Type Description

ClkA Input Clock input for Port A

EnA Input Enable input for Port A

AddrA Input Read address for Port A

ResetA Input Reset or interface disable pin for Port A

DataA Output Read data output for Port A

ClkB Input Clock input for Port B

EnB Input Enable input for Port B

module test_rom_style(z,a,clk,en,rst);
input clk,en,rst;
output reg [3:0] z;
input [6:0] a;

my1stROM decode_rom(
 // Output Ports
 .DataA(z),

 // Input Ports
 .ClkA(clk),
 .EnA(en),
 .ResetA(rst),
 .AddrA(a)
);

Generating IP with SYNCore Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 129

Specifying ROM Parameters
If you are creating a single-port ROM with the SYNCore IP wizard, you need to
specify a single read address and a single clock, and you only need to
configure the Port A parameters on page 2 . If you are creating a dual-port
ROM, you must additionally configure the Port B parameters on page 3. The
following procedure lists what you need to specify. For descriptions of each
parameter, refer to SYNCore RAM Wizard, on page 199 in the Reference
Manual.

1. Start the SYNCore ROM wizard, as described in Specifying ROMs with
SYNCore, on page 125.

2. Do the following on page 1 of the ROM wizard:

– In Component Name, specify a name for the memory. Do not use
spaces.

– In Directory, specify a directory where you want the output files to be
written. Do not use spaces.

– In Filename, specify a name for the Verilog file that will be generated
with the ROM specifications. Do not use spaces.

– Enter values for Read Data width and ROM address width (minimum depth
value is 2; maximum depth of the memory is limited to 2^256).

– Select Single Port Rom to indicate that you want to generate a single-
port ROM or select Dual Port Rom to generate a dual-port ROM.

– Click Next. The wizard opens page 2 where you set parameters for Port
A.

The ROM symbol dynamically updates to reflect any parameters you set.

3. Do the following on page 2 (Configuring Port A) of the RAM wizard:

– For synchronous ROMs, select Register address bus AddrA and/or
Register output data bus DataA to register the read address and/or the
outputs. Selecting either checkbox enables the Enable for Port A
checkbox which is used to select the Enable level.

AddrB Input Read address for Port B

ResetB Input Reset or interface disable pin for Port B

DataB Output Read data output for Port B

LO

Chapter 4: Working with IP Input Generating IP with SYNCore

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
130 June 2009

– Set the Configure Reset Options. Enabling the checkbox enables the type
of reset (asynchronous or synchronous) and allows an output data
pattern (all 1’s or a specified pattern) to be defined on page 4.

4. If you are generating a dual-port ROM, set the port B parameters on
page 3 (the page 3 parameters are only enabled when Dual Port Rom is
selected on page 1).

5. On page 4, specify the location of the ROM initialization file and the data
format (Hexadecimal or Binary). ROM initialization is supported using
memory-coefficient files. The data format is either binary or hexadecimal
with each data entry on a new line in the memory-coefficient file
(specified by parameter INIT_FILE). Supported file types are .txt, .mem,
.dat, and .init (recommended).

6. Generate the ROM by clicking Generate, as described in Specifying ROMs
with SYNCore, on page 125 and add it to your design. All output files are
in the directory you specified on page 1 of the wizard.

For read/write timing diagrams, see Read/Write Timing Sequences, on
page 585 of the Reference Manual.

Specifying Adder/Subtractors with SYNCore
The SYNCore IP wizard helps you generate Verilog code for your
adder/subtractor implementation requirements. The following procedure
shows you how to generate Verilog code for an adder/subtractor that you
define using the SYNCore IP wizard.

1. Start the wizard.

– From the FPGA synthesis tool GUI, select Run->Launch SYNCore or
click the Launch SYNCore icon to start the SYNCore IP wizard.

Generating IP with SYNCore Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 131

– Ιn the window that opens, select addnsub_model and click Ok to open
page1 of the wizard.

LO

Chapter 4: Working with IP Input Generating IP with SYNCore

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
132 June 2009

2. Specify the parameters you need in the wizard. For details about the
parameters, see Specifying Adder/Subtractor Parameters, on page 135.
The ADDnSUB symbol on the left reflects any parameters you set.

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner.

The tool displays a confirmation message (TCL execution successful!)
and writes the required files to the directory you specified on page 1 of
the wizard. The HDL code is in Verilog.

The SYNCore wizard also generates a testbench for your
adder/subtractor. The testbench covers a limited set of vectors. You can
now close the wizard.

4. Add the adder/subtractor you generated to your design.

– Edit the adder/subtractor files if necessary.

– Use the Add File command to add the Verilog design file that was
generated and the syncore_addnsub.v file to your project. These files are
in the directory for output files that you specified on page 1 of the
wizard.

– Use a text editor to open the instantiation_file.v template file. This file is
located in the same output files directory. Copy the lines that define
the adder/subtractor and paste them into your top-level module. The
following figure shows a template file (in red text) inserted into a top-
level module.

Generating IP with SYNCore Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 133

– Edit the template port connections so that they agree with the port
definitions in the top-level module as shown in the example below.
You can also assign a unique name to each instantiation.

module top (
output [15 : 0] Out,
input Clk,
input [15 : 0] A,
input CEA,
input RSTA,
input [15 : 0] B,
input CEB,

template

LO

Chapter 4: Working with IP Input Generating IP with SYNCore

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
134 June 2009

input RSTB,
input CEOut,
input RSTOut,
input ADDnSUB,
input CarryIn);

My_ADDnSUB ADDnSUB_inst (
// Output Ports

.PortOut(Out),
// Input Ports

.PortClk(Clk),

.PortA(A),

.PortCEA(CEA),

.PortRSTA(RSTA),

.PortB(B),

.PortCEB(CEB),

.PortRSTB(RSTB),

.PortCEOut(CEOut),

.PortRSTOut(RSTOut),

.PortADDnSUB(ADDnSUB),

.PortCarryIn(CarryIn));
endmodule

Port List
The following table lists the port assignments for all possible configurations;
the third column specifies the conditionsunder which the port is available.

Port Name Description Required/Optional

PortA Data input for
adder/subtractor
Parameterized width and
pipeline stages

Always present

PortB Data input for
adder/subtractor
Parameterized width and
pipeline stages

Not present if
adder/subtractor is
configured as a constant
adder/subtractor

PortClk Primary clock input; clocks all
registers in the unit

Always present

PortRstA Reset input for port A pipeline
registers (active high)

Not present if pipeline stage
for port A is 0

Generating IP with SYNCore Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 135

Specifying Adder/Subtractor Parameters
The SYNCore adder/subtractor can be configured as any of the following:

• Adder

• Subtractor

• Dynamic Adder/Subtractor

If you are creating a constant input adder, subtractor, or a dynamic
adder/subtractor with the SYNCore IP wizard, you must select Constant Value
Input and specify a value for port B in the Constant Value/Port B Width field on
page 2 of the parameters. The following procedure lists the parameters you
need to define when generating an adder/subtractor. For descriptions of each
parameter, see SYNCore Adder/Subtractor Wizard, on page 206 in the
Reference Manual.

1. Start the SYNCore adder/subtractor wizard as described in Specifying
Adder/Subtractors with SYNCore, on page 130.

PortRstB Reset input for port B pipeline
registers (active high)

Not present if pipeline stage
for port B is 0 or for constant
adder/subtractor

PortADDnSUB Selection port for dynamic
operation

Not present if
adder/subtractor configured
as standalone adder or
subtractor

PortRstOut Reset input for output register
(active high)

Not present if output pipeline
stage is 0

PortCEA Clock enable for port A
pipeline registers (active high)

Not present if pipeline stage
for port A is 0

PortCEB Clock enable for port B
pipeline registers (active high)

Not present if pipeline stage
for port B is 0 or for constant
adder/subtractor

PortCarryIn Carry input for
adder/subtractor

Always present

PortCEOut Clock enable for output
register (active high)

Not present if output pipeline
stage is 0

PortOut Data output Always present

Port Name Description Required/Optional

LO

Chapter 4: Working with IP Input Generating IP with SYNCore

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
136 June 2009

2. Enter the following on page 1 of the wizard:

– Ιn the Component Name field, specify a name for your
adder/subtractor. Do not use spaces.

– In the Directory field, specify a directory where you want the output
files to be written. Do not use spaces.

– Ιn the Filename field, specify a name for the Verilog file that will be
generated with the adder/subtractor definitions. Do not use spaces.

– Select the appropriate configuration in Configure the Mode of Operation.

3. Click Next. The wizard opens page 2 where you set parameters for port A
and port B.

4. Configure Port A and B.

– In the Configure Port A section, enter a value in the Port A Width field.

– If you are defining a synchronous adder/subtractor, check Register
Input A and then check Clock Enable for Register A and/or Reset for Register
A.

– To configure port B as a constant port, go to the Configure Port B
section and check Constant Value Input. Enter the constant value in the
Constant Value/Port B Width field.

– To configure port B as a dynamic port, go to the Configure Port B
section and check Enable Port B and enter the port width in the
Constant Value/Port B Width field.

– To define a synchronous adder/subtractor, check Register Input B and
then check Clock Enable for Register B and/or Reset for Register B.

5. In the Configure Output Port section:

– Enter a value in the Output port Width field.

– If you are registering the output port, check Register output Port.

– If you are defining a synchronous adder/subtractor check Clock Enable
for Register PortOut and/or Reset for Register PortOut.

6. In the Configure Reset type for all Reset Signal section, click Synchronous Reset
or Asynchronous Reset as appropriate.

As you enter the page 2 parameters, the ADDnSUB symbol dynamically
updates to reflect the parameters you set.

Generating IP with SYNCore Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 137

7. Generate the adder/subtractor by clicking the Generate button as
described in Specifying Adder/Subtractors with SYNCore, on page 130
and add it to your design. All output files are in the directory you
specified on page 1 of the wizard.

Specifying Counters with SYNCore
The SYNCore IP wizard helps you generate Verilog code for your counter
implementation requirements.

The following procedure shows you how to generate Verilog code for a counter
that you define using the SYNCore IP wizard.

1. Start the wizard.

– From the FPGA synthesis tool GUI, select Run->Launch SYNCore or
click the Launch SYNCore icon to start the SYNCore IP wizard.

– Ιn the window that opens, select counter_model and click Ok to open
page1 of the wizard.

LO

Chapter 4: Working with IP Input Generating IP with SYNCore

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
138 June 2009

2. Specify the parameters you need in the wizard. For details about the
parameters, see Specifying Counter Parameters, on page 141. The
COUNTER symbol on the left reflects any parameters you set.

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner.

The tool displays a confirmation message (TCL execution successful!)
and writes the required files to the directory you specified on page 1 of
the wizard. The HDL code is in Verilog.

The SYNCore wizard also generates a testbench for your counter. The
testbench covers a limited set of vectors. You can now close the wizard.

4. Add the counter you generated to your design.

– Edit the counter files if necessary.

– Use the Add File command to add the Verilog design file that was
generated and the syncore_addnsub.v file to your project. These files are
in the directory for output files that you specified on page 1 of the
wizard.

Generating IP with SYNCore Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 139

– Use a text editor to open the instantiation_file.v template file. This file is
located in the same output files directory. Copy the lines that define
the counter and paste them into your top-level module. The following
figure shows a template file (in red text) inserted into a top-level
module.

Edit the template port connections so that they agree with the port
definitions in the top-level module as shown in the example below.
You can also assign a unique name to each instantiation.

template

LO

Chapter 4: Working with IP Input Generating IP with SYNCore

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
140 June 2009

module counter #(
parameter COUNT_WIDTH = 5,
parameter STEP = 2,
parameter RESET_TYPE = 0,
parameter LOAD = 2,
parameter MODE = "Dynamic")

(
// Output Ports

output wire [WIDTH-1:0] Count,
// Input Ports

input wire Clock,
input wire Reset,
input wire Up_Down,
input wire Load,
input wire [WIDTH-1:0] LoadValue,
input wire Enable);

SynCoreCounter #(
.COUNT_WIDTH(COUNT_WIDTH),
.STEP(STEP),
.RESET_TYPE(RESET_TYPE),
.LOAD(LOAD),
.MODE(MODE))

SynCoreCounter_ins1 (
.PortCount(PortCount),
.PortClk(Clock),
.PortRST(Reset),
.PortUp_nDown(Up_Down),
.PortLoad(Load),
.PortLoadValue(LoadValue),
.PortCE(Enable));

endmodule

Port List
The following table lists the port assignments for all possible configurations;
the third column specifies the conditionsunder which the port is available.

Generating IP with SYNCore Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 141

Specifying Counter Parameters
The SYNCore counter can be configured for any of the following functions:

• Up Counter

• Down Counter

• Dynamic Up/Down Counter

The counter core can have a constant or variable input load or no load value.
If you are creating a constant-load counter, you will need to select Enable Load
and Load Constant Value on page 2 of the wizard. If you are creating a variable-
load counter, you will need to select Enable Load and Use Variable Port Load on
page 2. The following procedure lists the parameters you need to define when
generating a counter. For descriptions of each parameter, see SYNCore
Counter Wizard, on page 210 of the Reference Manual.

1. Start the SYNCore counter wizard, as described in Specifying Counters
with SYNCore, on page 137.

2. Enter the following on page 1 of the wizard:

Port Name Description Required/Optional

PortCE Count Enable input pin with
size one (active high)

Always present

PortClk Primary clock input Always present

PortLoad Load Enable input which
loads the counter (active high).

Not present for parameter
LOAD=0

PortLoadValue Load value primary input
(active high)

Not present for parameter
LOAD=0 and LOAD=1

PortRST Reset input which resets the
counter (active high)

Always present

PortUp_nDown Primary input which
determines the counter mode.
0 = Up counter
1 = Down counter

Present only for
MODE=”Dynamic”

PortCount Counter primary output Always present

LO

Chapter 4: Working with IP Input Generating IP with SYNCore

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
142 June 2009

– Ιn the Component Name field, specify a name for your counter. Do not
use spaces.

– In the Directory field, specify a directory where you want the output
files to be written. Do not use spaces.

– Ιn the Filename field, specify a name for the Verilog file that will be
generated with the counter definitions. Do not use spaces.

– Enter the width and depth of the counter in the Configure the Counter
Paramaters section.

– Select the appropriate configuration in the Configure the Mode of Counter
section.

3. Click Next. The wizard opens page 2 where you set parameters for
PortLoad and PortLoadValue.

– Select Enable Load option and the required load option in Configure Load
Value section.

– Select the required reset type in the Configure Reset type section.

The COUNTER symbol dynamically updates to reflect the parameters you
set.

4. Generate the counter core by clicking Generate button. All output files
are written to the directory you specified on page1 of the wizard.

The ReadyIP Encryption Flow Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 143

The ReadyIP Encryption Flow
The ReadyIP™ encryption flow is a design flow that encourages interopera-
bility while protecting IP implementations using encryption/decryption
technology licensed from RSA Securities. This flow offers the following advan-
tages: interoperability, protection of IP, reuse of IP, and a standard flow for IP
encryption. Synopsys has donated this scheme to VSIA (OpenIP) and it is in
the process of being made into a standard.

See the following:

• Overview of the Synopsys ReadyIP Flow, on page 143

• Encryption and Decryption, on page 144

Overview of the Synopsys ReadyIP Flow
The complete flow for protecting IP requires a partnership between the IP
vendor, Synopsys, and the silicon vendor, as illustrated in the following
figure. However, depending on the level of agreement between Synopsys and
the silicon vendor downstream, the re-encryption of IP after synthesis can
vary from the ideal flow shown in the figure.

LO

Chapter 4: Working with IP Input The ReadyIP Encryption Flow

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
144 June 2009

For further details of the hand-offs between vendors and how encryption and
decryption are handled, see Encryption and Decryption, on page 144.

Encryption and Decryption
There are two major classes of encryption/decryption algorithms: symmetric,
and asymmetric (see Encryption and Decryption Methodologies, on page 613
in the Reference Manual for details). Each has its own advantages and disad-
vantages. The Synopsys approach in the ReadyIP flow is a hybrid scheme that
uses both asymmetric and symmetric encryption to leverage the strengths of
each scheme. The methodology described here can also be used for other
design handoffs. For example, for a handoff from synthesis to place-and-
route, the synthesis tool would be in the upstream position occupied by the
IP vendor in this flow, and the FPGA vendor would be in the downstream
position occupied by the synthesis tool.

The ReadyIP Encryption Flow Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 145

The following figure illustrates the steps in this encryption/decryption
methodology, showing the handoff from an IP vendor to a Synopsys FPGA
synthesis tool.

The following describes each of the phases shown in the figure. Note that
Synopsys provides the encryptIP script (The encryptIP Script, on page 611 in
the Reference Manual) to simplify and automate the process of encrypting
data for the IP vendor.

Data Encryption - Step 1
The IP vendor encrypts the IP data using their own symmetric key. This key is
called the data key. The result of encoding is a data block. Using symmetric
encryption offers two advantages to the IP vendor: fast data encryption
because it is symmetric encryption, and freedom to use any symmetric
scheme they choose.

4.

3.

5.

Unencrypted
source data

Encrypt with IP vendor’s
symmetric data key

Encrypt data key with
Synopsys public key

Bundle data block and
key block in one file

Symmetrically
encrypted
data block

Asymmetrically
encrypted key
block

Decode data key with
Synopsys private key

Decode data block with
decrypted data key

1.

2.

Bundled file
with data block
and key block

Unencrypted
source data

Symmetrically
encrypted
data block

IP VENDOR

Synopsys FPGA

Private
Public

S
S

LO

Chapter 4: Working with IP Input The ReadyIP Encryption Flow

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
146 June 2009

Data Key Encryption - Step 2
Next, the IP vendor encrypts the data key used to encode the IP block, and
generates a key block. For this operation, the vendor uses RSA asymmetric
encryption and the public key provided by Synopsys.

Asymmetric encryption offers the following advantages:

• Although asymmetric encryption is compute-intensive, the data key
itself is small, so this will not be time-intensive.

• The IP vendor can use public keys from different vendors to encrypt the
same block for different EDA vendors. This ensures that IP consistency
is maintained, because there is no need for multiple copies.

• Only the public key from the downstream vendor needs to be passed to
the IP vendor.

Bundling of Encrypted Data Block and Data Key - Step 3
The IP vendor bundles the encrypted data block with the key block into one
file for handoff to the EDA vendor. Note that this methodology allows the IP
vendor to create just one version of the IP which includes the key blocks for
all the downstream vendors it supports; for example, a synthesis tool and a
simulation tool. Also, this approach eliminates the need to securely transmit
the symmetric key, because this is included in the file. Security is maintained
because the key and the data are encrypted.

Source data Encrypted data

Symmetric Encryption/Decryption with One Key

Source data Encrypted data

Public key

Private key

Asymmetric Encryption/Decryption with Public and Private Keys

The ReadyIP Encryption Flow Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 147

In the figure, this is the point at which the IP vendor hands off the IP to the
synthesis tool.

Data Key Decryption - Step 4
Decryption is a two-stage process. The first step is to decrypt the symmetric
data key from the IP vendor, which was encrypted using the asymmetric
public key provided. To decode this, you use the private key counterpart to
the public key and extract the data key.

Data Decryption - Step 5
The second step is to use the extracted data key to access the IP data. As the
data key is the original symmetric key used to encode the IP, the process is
quick. The synthesis tools can now synthesize the unencrypted IP.

After synthesis, the IP can be re-encrypted if the vendor has adopted the
Synopsys methodology. See Output Methods for encryptIP, on page 614 in the
Reference Manual for a description of the choices available.

Re-Encryption in the ReadyIP Flow
Re-encryption of the synthesized IP for FPGA vendors downstream requires
that the FPGA vendor supply Synopsys with a public key. If such an
agreement is not in place, the IP is treated as a black box. Accordingly, you
can either have an IP flow that outputs regular netlists with black boxes, or
one that outputs encrypted netlists.

LO

Chapter 4: Working with IP Input Working with Encrypted IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
148 June 2009

Working with Encrypted IP
The encryption approach used by Synplify Pro and Premier follows the
OpenIP scheme that Synopsys donated to VSIA and which has now been
submitted to the IEEE (The ReadyIP Encryption Flow, on page 143). With this
approach, the IP vendor can encrypt and control distribution of the IP from
their own website. The synthesis user will have access from the synthesis tool
to IP that the vendor makes available for download and evaluation within a
synthesis design.

The following describe how to encrypt and package your IP for evaluation if
you are an IP vendor, and how to access and evaluate available IP, if you are
an end-user.

• Encrypting Your IP, on page 148

• Preparing the IP Package, on page 153

• Evaluating Vendor IP, on page 158

Encrypting Your IP
IP vendors can use the ReadyIP scheme to provide IP for synthesis users to
evaluate and use. You can encrypt your IP. The ReadyIP scheme uses a two-
stage encryption process:

• First, you encrypt your IP files using a symmetric encryption algorithm
and your own session or data key. This creates an encrypted data block.
Initially, this session key may be dictated by the FPGA vendor. In the
future and in the ReadyIP standard, any key may be used.

• Next, you encrypt the session key for the encrypted data block using an
asymmetric algorithm and the Synopsys public key. Synplify currently
supports RSA encryption.

Synopsys provides a script that simplifies this process. See the following
procedure for details about using it.

Preparing and Encrypting Your IP
To prepare and encrypt your IP, do the following:

1. Gather your RTL files.

Working with Encrypted IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 149

You only encrypt the RTL. You can encrypt any number of Verilog and
VHDL (or mixed) RTL files to form your encrypted IP, and each file may
be encrypted in whole or in part.

2. Determine your file setup for each IP.

– Create a single set of files for the IP (for use with all supported
FPGAs), if your IP has no vendor-specific or vendor-optimized
content, and the output method is supported by all intended
consumers (blackbox or plaintext).

– Create multiple versions of your protected IP if you have specific
FPGA vendors or specific FPGA vendor families; if you are using FPGA
device family specific RTL like architecture-specific instantiations; or
if you optimized your RTL or constraints for use with a specific FPGA
vendor device family or FPGA vendor.

3. Encrypt the files with the encryptIP script. as described in Encrypting IP
with the encryptIP Script, on page 149.

4. Package your IP, as described in Preparing the IP Package, on page 153.

5. Verify that your IP works with the synthesis tools by going through the
procedure the user would use.

– For system-level IP, run it through System Designer™ and ensure
bus-model compatibility between your IP and any other IP to which it
interfaces. See the System Designer documentation for details on
using this tool.

– Start the synthesis tool and load the IP with the Import IP->Import IP
Package command. You may load your IP into an existing Synplify
project.

– Run synthesis.

Encrypting IP with the encryptIP Script
The following procedure shows you how to encrypt your data with the
encryptIP script. The encryptIP script automates the two-stage encryption
process proposed in the ReadyIP scheme (The ReadyIP Encryption Flow, on
page 143).

• First, it encrypts your IP files using a symmetric encryption algorithm
and your own session or data key. This creates an encrypted data block.

LO

Chapter 4: Working with IP Input Working with Encrypted IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
150 June 2009

• Next, it encrypts the session key for the encrypted data block using an
asymmetric algorithm and the Synopsys public key. Synplify currently
supports RSA encryption.

1. Install the encryptIP Perl script.

– Contact Synopsys and obtain the encryptIP Perl script.

– Install perl on your machine. You cannot run the script if you do not
have perl installed.

2. Make sure you have the right key length for the encryption algorithm
you are using.

For example, TEST1234 becomes a 64-bit key, so it matches the des-cbc
algorithm.

3. Run the encryptIP script on each RTL file you want to encrypt.

The following example encrypts the Verilog plain_ip.v file into an
encrypted file called protected_ip.v, using AES128-cbc encryption. The
session key is MY_AES_SAMPLEKEY. See Syntax for Running encryptIP,
on page 611 in the Reference Manual for details about the syntax and
required parameters.

perl encryptIP -in plain_ip.v -out protected_ip.v -c aes128-cbc
-k MY_AES_SAMPLEKEY –bd 16OCT2007 -om plaintext -v

4. Make sure you specify the appropriate output method (-om) when you
run the script.

This is important because the output method (-om) determines what is
encrypted to the user. When the example above is synthesized, the user
can view the output netlist because the output method specified is plain-
text, which means that the synthesis output netlist includes the IP
netlist in an unencrypted and readable form. See Specifying the Output
Method for encryptIP, on page 151 for more information.

The script encrypts the IP with the standard symmetric encryption
algorithm you specified, and produces a data_block. The data key used for
encrypting the HDL is then encrypted with an asymmetric algorithm and
the Synopsys public key, and produces a key_block. The data_block and
the key_block are put together with the appropriate pragmas for the flow
being used, and the script creates an encrypted HDL file. For a detailed
figure, see Encryption and Decryption, on page 144.

Working with Encrypted IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 151

All other output files from synthesis (like .srm, .srd, and .srs files) are
encrypted using the same encryption method specified for the input to
synthesis. Output constraints are not encrypted.

5. Check the encrypted RTL file to make sure that there is only one key
block present.

Specifying the Output Method for encryptIP
You can control access to the IP by setting the appropriate output method.
You specify the output method using the -om parameter, as described in
Syntax for Running encryptIP, on page 611 in the Reference Manual.

The output method mainly affects the output netlist. The following are guide-
lines for setting the output method for the encryptIP script, and detail the
effects of different settings:

1. Set -om to persistent_key in the following cases:

– If you are working with a Lattice non-CPLD technology

– If you have an agreement in place with Synopsys and want the output
netlist to be encrypted

2. Set -om to plaintext in the following cases:

– If you want to allow the IP to be incorporated in a physical synthesis
or logic synthesis design

For physical synthesis, the Synplify Premier tool runs global
placement and logic synthesis simultaneously. To place the IP and its
contents, the tool must be allowed to access and optimize it. Setting
the output method to plaintext allows the tool to synthesize, run
gate-level simulations, place and route, and implement an FPGA (that
includes the IP) on a board.

– If you want the IP to be freely optimized by the synthesis tools

Although IP cores are already optimized, the synthesis tools can effect
additional optimizations based on the design context in which it will
be used. When the synthesis tool is allowed to optimize the IP, it can
prune away IP logic that is unused or unnecessary in the current
design context. Or take the case where the output of an instantiated
IP core is timing-critical because it drives hundreds of user loads. If
the synthesis tool can freely optimize, it can replicate sources within
the core and fix the problem.

LO

Chapter 4: Working with IP Input Working with Encrypted IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
152 June 2009

3. To let the IP be incorporated in a logic synthesis design, set -om to
plaintext or blackbox.

Setting the output method to plaintext allows the tool to synthesize,
run gate-level simulations, place and route, and implement an FPGA
(that includes the IP) on a board. Setting the output method to blackbox
does not allow the tool to run gate-level simulations or place and route
the IP, because it only uses the port and connectivity information.

4. If you have set -om to plaintext and you want to specify individual cores
as white boxes, set the syn_macro directive to 1 on the view for the IP.

Note that you must set this on the view, not the instance. When this is
set, the tool treats the IP as a white box and only uses the timing and
connection information from the IP. The synthesis tool maintains the IP
boundary and only trims unused logic inside the IP.

5. During synthesis, the IP contents appear as a black box in RTL,
Technology, and Physical Analyst views, regardless of the output
method selected.

Even if you specify -om plaintext, you cannot push down into an IP in
an RTL, Technology, or Physical Analyst view.

6. After synthesis, the output method affects the results in the following
ways:

– Output constraints for an IP are in the standard Synopsys format and
are not encrypted.

– The output method affects the contents of the output netlist and its
format. This table summarizes the encryptIP behavior with different
output methods.

Method (-om) Output Netlist After Synthesis

blackbox The output netlist contains the IP interface only and no IP
contents. It only includes IP ports and connections. The IPs are
treated as black boxes, and there are no nets or instances shown
inside the IP. This applies to all the netlist formats generated for
different vendors, whether it is HDL (.vm or .vhm), EDIF (.edf or
.edn), or .vqm.

plaintext The output netlist contains your unencrypted IP, which is
completely readable. Nothing is encrypted.

Working with Encrypted IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 153

Preparing the IP Package
Do the following to package your IP and make it accessible from the synthesis
tools:

1. Collect the files for the package.

– Encrypt the files you need, as described in Encrypting Your IP, on
page 148.

– Make sure your package includes the files listed in IP Package File
List, on page 155.

– Structure the files as described in Suggested Directory Structure, on
page 155.

2. For IP-XACT models for use with System Designer (see Providing System-
Level Models for the IP, on page 157), make sure of the following:

– At a minimum, include a top-level .xml file that specifies the
complete component, vendor, library, name, and component version
(VLNV). This file references library components that are described in
other files in the directory tree using relative paths.

– If you want to allow System Designer to generate HDL files for the IP
for later synthesis, include the Verilog/VHDL files for the IP in the
package. This allows the core to be evaluated using a synthesis flow.

– If you do not want to allow System Designer to generate HDL files for
synthesis, do not include the Verilog/VHDL files in the package. The
System Designer tool creates a top-level netlist and corresponding
wrappers and generates an error message for the missing files. This
method allows the core to be tested for compatibility with the rest of
the system, but it will not be an evaluation with complete synthesis.

The IP-XACT models consist of a library of your system-level compo-
nents, including bus definitions. When System Designer reads this
library, the various components like specific timers, buses, and CPUs,

persistent_key The output netlist includes encrypted versions of the IP. For
Lattice designs, the tool generates one output netlist (EDIF or
HDL) that includes the encrypted IP blocks. The netlist is
readable, except for the IP block sections, which are encrypted.

Method (-om) Output Netlist After Synthesis

LO

Chapter 4: Working with IP Input Working with Encrypted IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
154 June 2009

appear in the library window for the user to drag and drop and instan-
tiate, as they assemble a design from the components. See the System
Designer documentation for details.

3. If your IP package is intended for synthesis only, without subsystem
assembly, create a compressed package for download, using one of these
methods:

– Create a compressed tarball (.tar.gz), which is a tar archive
compressed with the gzip utility, using one of these commands:

tar cf -file-list | gzip -c > compressed-tarball
gtar -cf compressed-tarball file-list

Preserve the directory structure when you run gzip.

– Create a zip file (.zip) by running WinZip. WinZip archives and
preserves your directory hierarchy.

4. If your IP package is intended to be a subsystem that will be assembled
by System Designer, create a compressed tarball (.tar.gz) using one of
these commands:

tar cf -file-list | gzip -c > compressed-tarball
gtar -cf compressed-tarball file-list

Preserve the directory structure when you run gzip.

5. Post the packaged IP on your website for downloading.

The user generally untars or unzips the IP package into a top-level direc-
tory after downloading it. The synthesis tools can then read the contents
of the directory.

6. Supply Synopsys with the following:

– The URL for the download package.

– Vendor and advertising information you wish to display on the
Synopsys website. See Supplying Vendor Information, on page 157 for
details.

Working with Encrypted IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 155

IP Package File List
Your IP package should contain the following files:

Suggested Directory Structure
Follow these recommendations when you structure the IP package:

• If you include a Synopsys .prj project file or an xml file for use in
System Designer, make sure to use relative paths from the .prj or .xml
directory to refer to other files like the Verilog or VHDL files.

• Always use relative paths to reference a file.

• Always preserve directory structure when you run gzip.

• You can place IP-XACT xml files in the top-level directory or in a common
subdirectory. You can have multiple files or a single file for the sam
component or variants of a component. However, it is preferred that you
keep all IP-XACT components that are in one library at the same direc-
tory level, even if it is many levels deep in the directory hierarchy.

• For packaging, System Designer treats IP-XACT bus definitions just like
IP core components. So, place each bus definition in its own separate

Files Description

ipinfo. txt Text file that lists the name of the IP, the version, restrictions
for use, support contact information, and an email alias to
request a licence for the full RTL for your IP.

Documentation,
preferably a PDF

Documents the IP, and includes detailed information about
usage restrictions like vendor, device family, etc.

Readme An optional text file that contains instructions on use of the IP
for assembly and/or synthesis, and hints on how to use it
correctly.

Encrypted HDL or
EDIF

Protected RTL for the IP, created using the Synopsys
encryptIP script. See the documentation for details.

SDC constraints Unencrypted design constraints for the IP. You need only
maintain a single file for both the Synopsys synthesis tools,
as the Synplify Pro software ignores any constraints that are
specific to Synplify Premier.

SPIRIT IP-XACT
v1.2 models

System-level models for your IP. This allows the synthesis
tools to include your IP in a system-level design by stitching
the IP together using bus architectures.

LO

Chapter 4: Working with IP Input Working with Encrypted IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
156 June 2009

sub-hierarchy, parallel to the sub-hierarchies of your other system-level
components. This makes it easy for the user to see if the component
library includes the necessary bus definitions, and to load just the bus
definition files into System Designer.

The following example shows the structure of a Leon2 processor, which is
included with the System Designer installation. Note that although compo-
nents are placed deep in the hierarchy, they are all at the same depth.
Common files are in the common subdirectory, at the same level as the compo-
nents. Bus definitions are at the same depth, in a parallel directory.

Working with Encrypted IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 157

Providing System-Level Models for the IP
If you have system-level IP like microprocessors and peripherals, you can
additionally provide system-level models for your protected IP. This allows
users to assemble your IP as part of a subsystem, using the Synplify Pro and
Synplify Premier system-level assembly tool, System Designer.

This tool reads IP-XACT models (an XML schema) as defined by the SPIRIT
Consortium (www.spiritconsortium.org). The initial release of System Designer will
be Spirit v1.2 compliant with an expectation that version 1.4 will be
supported in 2008.

Supplying Vendor Information
To make your IP accessible for downloads and evaluation from the Synopsys
synthesis tools, you must supply Synopsys with some vendor information as
well as information for each of the cores or IPs to be used.

1. Supply Synopsys with the following general information to advertise
your company and IP on the Synopsys website:

2. Supply Synopsys with the following information about each core or IP to
be used:

IP vendor name and logo Your vendor name and logo for display.

Optional IP description Short paragraph describing the IP and key
features.

Email alias Synopsys sends leads to this alias when
evaluation cores are requested on the Synopsys IP
website.

Website URL Unique URL for accessing IP. After the user has
filled out lead information on the website, the
Synopsys tool directs the user to this URL to
download the IP. The lead form on your website can
be pre-filled by prior arrangement with Synopsys
Marketing.

LO

Chapter 4: Working with IP Input Working with Encrypted IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
158 June 2009

Evaluating Vendor IP
The Synplify Pro and Synplify Premier synthesis tools facilitate the
connection between the IP vendor and the IP user by offering a mechanism
through which you can evaluate and use available vendor IP in a synthesis
project.

To evaluate vendor IP, use this procedure:

1. In the synthesis tool, select Import IP->Browse and Download ReadyIP.

The IP User Information dialog box opens.

IP name Name of the IP.

IP short
description

Sentence describing the IP, which is displayed in the
summary view on the Synopsys website.

IP paragraph
description

More detailed description of the IP, covering functional
description and compatibility with other cores or
peripherals.

Notes about usage Any other information, like licensing requirements

Core datasheet
(HTML or PDF)

Information about the characteristics, features,
functions, and interfaces.

Supported FPGA
vendors and
devices

List of the targeted vendors and devices that the core
supports.

IP-XACT
compatibility
information

List of the IP-XACT version number supported, the IP-
XACT VLNV, and the IP-XACT VLNVs of all the bus
definitions required for the core, along with a link to
download each of these bus definitions.

Working with Encrypted IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 159

2. Fill out your information, and click OK.

You are directed to a website with offerings from IP vendors.

3. For RTL-based IP, do the following:

– Download the IP package from the vendor website. Usually, the
download is a compressed tar archive (.tar.gz) or a zip (.zip) file.
Each IP core is a separate package.

– Unzip each package into a unique directory. The tools can read a .zip
or .sar file directly, but you must unzip a tar archive first. Unzipping
is recommended, because if you read in a .zip or .sar package
directly, everything in that package is imported into the project.

– Include the IP in a new or current synthesis project.

4. For IP-XACT-based IP, do the following:

– Create or open an existing synthesis project.

– Select Import IP->Launch System Designer, and open the System Designer
tool.

– Use the System Designer tool to read in the .xml files and assemble
the IP components into a subsystem. See the System Designer
documentation for details.

5. Synthesize your design.

LO

Chapter 4: Working with IP Input Working with Encrypted IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
160 June 2009

– If you are working with IP-XACT models, assemble the components
into a subsystem as described in the previous step. Then synthesize
the design.

– If you are not working with subsystem components, run synthesis
using the encrypted RTL files and unencrypted constraints from the
unzipped IP directory.

The content of the evaluation IP is solely determined by the vendor.
Depending on the amount of information in the model IP, you can run
complete synthesize the IP, or only do a more limited evaluation of its
compatibility, because it is treated as a black box.

6. After you have completed your evaluation, contact the vendor to license
the IP.

Working with Altera IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 161

Working with Altera IP
You can incorporate and synthesize different kinds of Altera IP in your
synthesis design. See the folowing for details:

• Using Altera LPMs or Megafunctions in Synthesis, on page 161

• Implementing Megafunctions with Clearbox Models, on page 165

• Implementing Megafunctions with Grey Box Models, on page 175

• Including Altera MegaCore IP Using an IP Package, on page 181

• Including Altera Processor Cores Generated in SOPC Builder, on
page 186

• Working with SOPC Builder Components, on page 191

Using Altera LPMs or Megafunctions in Synthesis
You can include Altera LPMs or Megafunctions in your Synplify Pro and
Synplify Premier design in the following ways:

• Generate structural Verilog/VHDL for the IP and include it in your
design, as described in Recommended Method for Including Altera LPMs,
on page 162.

• For newer Altera technologies, the synthesis tool can infer the Clearbox
or greybox megafunctions as described in Automatically Inferring
Megafunctions with Clearbox Information, on page 166 and Using
Clearbox Information for Instantiated Megafunctions, on page 170

• For older Altera technologies, if you have a Clearbox netlist generated by
the Quartus tool for the IP, include the Clearbox netlist in the project,
and synthesize the design. See Instantiating Clearbox Netlists for
Megafunctions, on page 173.

• Infer Altera LPMs or megafunctions included in the
<install_dir>/lib/altera directory. This lets the Synplify Pro and
Synplify Premier tools access supported LPMs and Megafunctions as
required. Note that if you are using a VHDL component from a non-
default Quartus library, you must set the Quartus version and add the
library file you want to use to the .prj file with an -add file command.

LO

Chapter 4: Working with IP Input Working with Altera IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
162 June 2009

Currently, physical synthesis only supports LPMs and Megafunctions for
Stratix II, Stratix II GX, and Stratix III devices. Note, at this time the Synplify
Premier software cannot handle the megafunction alt_pll component. This
megafunction is treated as a black box.

Recommended Method for Including Altera LPMs
The following is the recommended methodology for incorporating the LPM or
megafunction, where you generate structural Verilog or VHDL files for the
megafunction.

1. Use the Altera MegaWizard Plug-in Manager to generate structural
Verilog or VHDL files for the LPMs or megafunctions. See LPM /
Megafunction Example, on page 163 for an example.

2. Add the structural Verilog or VHDL files in the project. For the example,
you would add my_ram.v file to the project.

3. Instantiate the LPMs or megafunctions with a wrapper in your top-level
HDL source code.

For the example in LPM / Megafunction Example, on page 163, instan-
tiate the megafunction wrapper, my_ram, in the top-level HDL source
code.

module top (
…

);

my_ram my_ram_instantiation (
.address(),
.clock(),
.data(),
.wren(),
.q()

);

endmodule // top

4. Select the correct Quartus version.

This ensures that the synthesis tool accesses the appropriate port and
parameter definitions for these LPMs or megafunctions. If you need to,
ensure that existing megafunction wrappers comply with the latest
applicable version of the Quartus II place-and-route tool, by updating
the wrappers with this Quartus command:

Working with Altera IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 163

qmegawiz -silent

5. Synthesize the design.

When the physical synthesis tool encounters an ALTSYNCRAM
megafunction, it automatically executes a Quartus function which
determines how to implement the component type and defparams, and
how to write out the contents in the final netlist (.vqm).

For this example, the Synplify Premier software writes out a
stratixii_ram_block primitive for this component in the final .vqm netlist.
stratixii_ram_block altsyncram_component_ram_block1a_0_0_0_Z (

.portadatain({data_c[0]}),

.portaaddr({address_c[7], address_c[6], address_c[5], address_c[4],
address_c[3], address_c[2], address_c[1], address_c[0]}),
.portawe(wren_c),
.clk0(clock_c),
.portadataout({q_c[0]})

);
defparam altsyncram_component_ram_block1a_0_0_0_Z.connectivity_checking = "OFF";
defparam altsyncram_component_ram_block1a_0_0_0_Z.init_file =

"C:/public/qinghong/ram_init/rev_1/init_values.mif";
defparam altsyncram_component_ram_block1a_0_0_0_Z.init_file_layout = "port_a";
defparam altsyncram_component_ram_block1a_0_0_0_Z.logical_ram_name = "ALTSYNCRAM";
defparam altsyncram_component_ram_block1a_0_0_0_Z.operation_mode = "single_port";
defparam altsyncram_component_ram_block1a_0_0_0_Z.port_a_address_width = 8;
defparam altsyncram_component_ram_block1a_0_0_0_Z.port_a_data_out_clear = "none";
defparam altsyncram_component_ram_block1a_0_0_0_Z.port_a_data_out_clock =

"clock0";
defparam altsyncram_component_ram_block1a_0_0_0_Z.port_a_data_width = 1;
defparam

altsyncram_component_ram_block1a_0_0_0_Z.port_a_disable_ce_on_input_registers =
"on";

defparam
altsyncram_component_ram_block1a_0_0_0_Z.port_a_disable_ce_on_output_registers
= "on";

defparam altsyncram_component_ram_block1a_0_0_0_Z.port_a_first_address = 0;
defparam altsyncram_component_ram_block1a_0_0_0_Z.port_a_first_bit_number = 0;
defparam altsyncram_component_ram_block1a_0_0_0_Z.port_a_last_address = 255;
defparam altsyncram_component_ram_block1a_0_0_0_Z.port_a_logical_ram_depth

= 256;
defparam altsyncram_component_ram_block1a_0_0_0_Z.port_a_logical_ram_width = 4;
defparam altsyncram_component_ram_block1a_0_0_0_Z.power_up_uninitialized =

"false";
defparam altsyncram_component_ram_block1a_0_0_0_Z.ram_block_type = "M512";
defparam altsyncram_component_ram_block1a_0_0_0_Z.lpm_type

= "stratixii_ram_block";

LPM / Megafunction Example
The following example shows the megafunction wrapper and the associated
defparams generated by the Altera MegaWizard Plug-in Manager for a single-
port RAM megafunction, ALTSYNCRAM.

LO

Chapter 4: Working with IP Input Working with Altera IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
164 June 2009

/ megafunction wizard: %RAM: 1-PORT%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: altsyncram

// ==
// File Name: my_ram.v
// Megafunction Name(s):
// altsyncram
//
// Simulation Library Files(s):
// altera_mf
// ==
// **
// THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!
//
// 7.0 Build 33 02/05/2007 SJ Full Version
// **

//Copyright (C) 1991-2007 Altera Corporation
//Your use of Altera Corporation's design tools, logic functions
//and other software and tools, and its AMPP partner logic
//functions, and any output files from any of the foregoing
//(including device programming or simulation files), and any
//associated documentation or information are expressly subject
//to the terms and conditions of the Altera Program License
//Subscription Agreement, Altera MegaCore Function License
//Agreement, or other applicable license agreement, including,
//without limitation, that your use is for the sole purpose of
//programming logic devices manufactured by Altera and sold by
//Altera or its authorized distributors. Please refer to the
//applicable agreement for further details.

// synopsys translate_off
`timescale 1 ps / 1 ps
// synopsys translate_on
module my_ram (

address,
clock,
data,
wren,
q);

input[7:0] address;
input clock;
input[3:0] data;
input wren;
output[3:0] q;

wire [3:0] sub_wire0;
wire [3:0] q = sub_wire0[3:0];

altsyncram altsyncram_component (
.wren_a (wren),
.clock0 (clock),
.address_a (address),
.data_a (data),
.q_a (sub_wire0),
.aclr0 (1'b0),
.aclr1 (1'b0),
.address_b (1'b1),
.addressstall_a (1'b0),

Working with Altera IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 165

.addressstall_b (1'b0),

.byteena_a (1'b1),

.byteena_b (1'b1),

.clock1 (1'b1),

.clocken0 (1'b1),

.clocken1 (1'b1),

.clocken2 (1'b1),

.clocken3 (1'b1),

.data_b (1'b1),

.eccstatus (),

.q_b (),

.rden_a (1'b1),

.rden_b (1'b1),

.wren_b (1'b0));
defparam

altsyncram_component.clock_enable_input_a = "BYPASS",
altsyncram_component.clock_enable_output_a = "BYPASS",
altsyncram_component.init_file = "init_values.mif",
altsyncram_component.intended_device_family = "Stratix II",
altsyncram_component.lpm_type = "altsyncram",
altsyncram_component.numwords_a = 256,
altsyncram_component.operation_mode = "SINGLE_PORT",
altsyncram_component.outdata_aclr_a = "NONE",
altsyncram_component.outdata_reg_a = "CLOCK0",
altsyncram_component.power_up_uninitialized = "FALSE",
altsyncram_component.ram_block_type = "M512",
altsyncram_component.widthad_a = 8,
altsyncram_component.width_a = 4,
altsyncram_component.width_byteena_a = 1;

endmodule

Implementing Megafunctions with Clearbox Models
Generally, user-instantiated Quartus megafunctions do not have timing
information and are treated as black boxes, so the synthesis tool cannot
optimize timing at the megafunction boundary. For example, the synthesis
software does not move the registers of a pipelined LPM_MULT to improve
FMAX. Instead of black boxes, you can implement the megafunctions as grey
boxes (see Implementing Megafunctions with Grey Box Models, on page 175) or
clear boxes, as described here. The Synplify software does not support this
flow.

Altera Clearbox netlists provide structural information for modules
containing the following primitives lcell, mac_mult, mac_out, and ram_block. The
Clearbox netlist is a fully synthesizeable Altera megafunction. When you
synthesize with a clear box model, you get better timing and resource utiliza-
tion estimates, because the synthesis tool knows the architectural details
used in the Quartus II software. For details, see the following:

• Automatically Inferring Megafunctions with Clearbox Information, on
page 166

LO

Chapter 4: Working with IP Input Working with Altera IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
166 June 2009

• Using Clearbox Information for Instantiated Megafunctions, on page 170

• Instantiating Clearbox Netlists for Megafunctions, on page 173

Automatically Inferring Megafunctions with Clearbox Information
Use this method with the newer Altera families. With this method, you do not
have to explicitly do anything with the Clearbox megafunction, as the
synthesis tool automatically infers the megafunction and calls Quartus for
the supporting Clearbox details.

1. Structure the RTL so that the synthesis tool can infer the megafunctions
from the code.

The following table lists some tips for controlling inference:

Multipliers in DSP blocks Use syn_multstyle to control inference.

ROMs • The address line must be at least two bits wide.
• The ROM must be at least half full.
• A CASE or IF statement must make 16 or more

assignments using constant values of the same
width.

Shift registers Use syn_srlstyle to control inference.

VQM

Synthesis

Timing optimization and resource
utilization use Clearbox information.

VQM includes Clearbox
internals if option was set

VQM does not include
Clearbox primitives.

VQM

Inferred
Megafunction

Instantiated
Megafunction

Instantiated Megafunction
with Clearbox Netlist

Synthesis

Clearbox netlist used for timing
analysis. No optimization.

Working with Altera IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 167

See the Reference Manual for details about the attributes.

2. Set up the synthesis tool to use the clearbox information.

– Make sure the QUARTUS_ROOTDIR environment variable is set and
pointing to the same Quartus version as the library.

– In the synthesis tool, open the Implementation Options dialog box to the
Device tab, and set the synthesis tool to a supported family:

– On the same tab, check that Verification Mode is disabled.

– Set the Altera Models device option.

– Click OK.

3. Set any other options you want, and click Run to synthesize the design.

RAMs • The address line must be at least two bits wide.
• Do not have resets on the memory.
• Check whether read and write ports must be

synchronous for your targe family.
• Avoid blocking statements when modeling the

RAM, because not all Verilog HDL blocking
assignments are mapped to RAM blocks.

• Use syn_ramstyle to control inference.
• Use $readmemb or $readmemh to initialize RAMs.

Synplify Pro Stratix II, Stratix III, Stratix IV, Arria II, Arria GX

Synplify Premier
(placement)

Stratix II, Stratix III, Stratix IV

To generate vqm that contains... Set it to...

The contents of the megafunction as well as grey box
netlists for any grey boxes in the design

on

The contents of the megafunction clearbox_only

The megafunction without its contents off

LO

Chapter 4: Working with IP Input Working with Altera IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
168 June 2009

The synthesis tool infers the megafunction from the RTL code. For
example, it infers a RAM from this code:

module ram(q, a, d, we, clk);
output[7:0] q;
input [7:0] d;
input [3:0] a;
input we, clk;
reg [7:0] q ;
reg [3:0] read_add;
reg [7:0] mem [0:15];

always @(posedge clk) begin
q = mem[read_add];
end

always @(posedge clk) begin
if(we)
mem[a] <= d;
read_add <= a;

end
endmodule

It then calls the Clearbox executable which returns a netlist containing
the Clearbox internals for the inferred megafunction (based on the Altera
Models setting). The synthesis tool uses this information to optimize
timing and allocate resources. The RTL view shows the generic memory
inferred, but the Technology view shows some of the stratixii_ram_block
Clearbox primitives that were implemented after calling the Clearbox
executable.

Working with Altera IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 169

The tool writes out the Clearbox information in the vqm netlist, according
to the Altera Models setting. In addition, for the alt2gxb_reconfig,
altasmi_parallel, altpll_reconfig, and altremote_update megafunctions, the
synthesis tool writes out the vqm exactly as generated by the Altera
Megawizard. The Altera tool defines the lower levels of content for these
megafunctions (“clearbox=2” setting) with the parameters set for the
megafunction, and that is how they are written to the vqm.

4. Use this vqm file to place and route in Quartus II.

RTL View

Technology View

LO

Chapter 4: Working with IP Input Working with Altera IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
170 June 2009

Using Clearbox Information for Instantiated Megafunctions
There are two ways of instantiating megafunctions and using Clearbox infor-
mation in your synthesis design. The following is the recommended method
for instantiation in the newer Altera technologies, where you instantiate just
the megafunction, and the tool automatically infers the corresponding
Clearbox details. For older technologies, instantiate the Clearbox netlist for
the megafunction, as described in Instantiating Clearbox Netlists for
Megafunctions, on page 173.

1. Generate the Verilog or VHDL megafunction using the Altera
Megafunction wizard.

This is just the megafunction file, not a Clearbox primitive netlist.

2. Set up the megafunction for synthesis.

– Instantiate the megafunction in your synthesis design.

– Add the megafunction wrapper file to your project file.

3. Set up the synthesis tool to use the Clearbox information automatically.

– Make sure the QUARTUS_ROOTDIR environment variable is set and
pointing to the same Quartus version as the library.

– In the synthesis tool, open the Implementation Options dialog box to the
Device tab, and set the synthesis tool target to a supported family:

– On the same tab, check that Verification Mode is disabled.

– Set the Altera Models device option.

Synplify Pro Stratix II, Stratix III, Stratix IV, Arria II, Arria GX

Synplify Premier
(placement)

Stratix II, Stratix III, Stratix IV

To generate vqm that contains... Set it to...

The contents of the megafunction as well as grey box
netlists for any grey boxes in the design

on

The contents of the megafunction clearbox_only

The megafunction without its contents off

Working with Altera IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 171

– Click OK.

4. Set any other options you want, and click Run to synthesize the design.

The tool instantiates the megafunction and calls the Clearbox execut-
able, which returns a netlist containing the Clearbox internals for the
megafunction (based on the Altera Models setting). The synthesis tool uses
this information to optimize timing and allocate resources.

The RTL view below shows an instantiated megafunction, ALTSYNCRAM.
The corresponding Technology view shows the stratixii_ram_block Clearbox
primitives. The tool generated the Clearbox information for the instanti-
ated megafunction by calling Quartus.

LO

Chapter 4: Working with IP Input Working with Altera IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
172 June 2009

The tool writes out the Clearbox information in the vqm netlist, according
to the Altera Models setting. In addition, for the alt2gxb_reconfig,
altasmi_parallel, altpll_reconfig, and altremote_update megafunctions, the
synthesis tool writes out the vqm exactly as generated by the Altera
Megawizard. The Altera tool defines the lower levels of content for these
megafunctions (“clearbox=2” setting) with the parameters set for the
megafunction, and that is how they are written to the vqm.

5. Use the vqm file to place and route in Quartus II.

RTL View

Technology View

Working with Altera IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 173

Instantiating Clearbox Netlists for Megafunctions
For older Altera technologies which do not supported the automatic inference
of Clearbox information (see Automatically Inferring Megafunctions with
Clearbox Information, on page 166 and Using Clearbox Information for Instan-
tiated Megafunctions, on page 170), you can read in a Clearbox netlist. You
only need to use the netlist method described here for older Altera target
families that do not support the other flows.

1. Generate the megafunction files with a Clearbox netlist.

– Use the Altera Megafunction wizard to generate structural VHDL or
Verilog files for the megafunctions in your design. Make sure the
Synthesized Timing Netlist option is disabled. The Clearbox netlist has the
full content of the megafunction either in VHDL or Verilog. The
synthesis software uses this timing and resource information for the
megafunctions, but does not synthesize the internals of the
megafunctions.

– If you are using VHDL, comment out the LIBRARY and USE clauses in
the file generated by the Altera MegaWizard tool. This is because
because the Altera MegaWizard file declares the Clearbox
components before instantiating them, so you do not need references
to the vhd files that contain the component declarations. The following
shows a Stratix example of the lines to be commented out; for other
technologies, comment out the corresponding lines:

LIBRARY stratix;
USE stratix.all;

– Make sure the Clearbox components match the Quartus version.
Because of ongoing modifications in Quartus, the component
declarations may not match. The component declarations are
packaged with the software in the lib/altera/quartus_IInn subdirectory.
Use the file from the subdirectory that corresponds to the Quartus
version that you are using. For example, the stratix.vhd and stratix.v files
for use with Quartus 8.1 are in the quartus_II81 subdirectory.

– If you change from one version of Quartus to another or if you change
the target device, regenerate the Clearbox files using the Altera
Megafunction wizard before proceeding. Failure to regenerate these
files can result in a parameter-mismatch error.

2. Instantiate the megafunction in your design.

LO

Chapter 4: Working with IP Input Working with Altera IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
174 June 2009

3. Add the megafunction file (which includes the Clearbox components) to
your project.

– Add the Clearbox Verilog/VHDL file to your project. It contains the
port and parameter definitions for the Clearbox primitives.

– If you are using Verilog, the software does not automatically include
the definitions because Verilog does not support library statements.

4. Set implementation options for the megafunction.

– Click Implementation Options, and set the target technology on the Device
tab.

– On the Implementation Results tab, select the appropriate Quartus
version. This is important, because the version determines the format
of the output .vqm file, which varies with different Quartus versions. If
you are using Verilog, the software automatically adds the Verilog
component declaration files for the selected target technology to your
project from the lib/altera/quartus_IInn subdirectory. Failing to specify the
version can result in a parameter mismatch error.

– Click OK.

5. Optionally, set up the files so that you can run Quartus from the
synthesis tool by doing either of the following:

– Select the Clearbox file from the project file list, right-click and select
File Options. Set File Type to Clearbox Verilog or Clearbox VHDL and click
OK.

– Use the Tcl command appropriate to your file type:

add_file -clearbox_verilog "dsp/my_dsp_syn.v"
add_file -clearbox_vhdl "dsp/my_dsp_syn.vhd"

When you run Quartus from the synthesis UI, the Clearbox files must be
in the <implementation>/par_1 directory, which is only created after
the synthesis run. Specifying the Clearbox files ensures that they are
copied to the directory after it is created. You can now synthesize the
design, as described in the previous step.

6. Set any other options and synthesize the design.

The software uses the Clearbox timing and resource information from
the structural files to calculate paths more accurately. It implements the
megafunctions as hierarchical instances, not black boxes. The RTL and

Working with Altera IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 175

Technology views both show the lowest-level primitives. The following
figure for example, shows stratixii_ram_blocks.

The .vqm file generated for Quartus after synthesis only contains a
wrapper; it does not include the Clearbox primitives. The description of
the primitives is in the Clearbox netlist generated in step 1 and used as
input to synthesis.

7. Before you run Quartus, put all these files in the same result directory:

– The structural Verilog/VHDL Clearbox netlist generated by Quartus
and used as input to synthesis. This file contains timing and resource
usage definitions for the primitives.

– The .vqm file generated after synthesis, which contains the wrapper.

– The Quartus project file.

Placing these files in the same directory ensures that the Quartus
software can find all the information it needs in the .vqm file and the
original structural Verilog/VHDL files.

Implementing Megafunctions with Grey Box Models
Altera provides the capability of implementing various MegaCore® IP cores
generated with the Altera MegaWizard tool. These cores use proprietary RTL
code for parameterization, generation, and instantiation in your design.
Generally, user-instantiated Quartus megafunctions do not come with any
timing information and are treated as black boxes, so the synthesis tool

RTL View

Technology View

LO

Chapter 4: Working with IP Input Working with Altera IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
176 June 2009

cannot optimize timing at the megafunction boundary. Instead of using black
boxes, you can implement the megafunctions using Clearbox primitives (see
Implementing Megafunctions with Clearbox Models, on page 165) or as grey
boxes, as described here. Use the grey box methodology when logic is
encrypted or when there are no Clearbox models for the megafunction.

There are three ways to use grey boxes:

The following procedures show you how to implement an Altera megafunction
as a grey box in the Synplify Pro and Synplify Premier tools. The Synplify
software does not support grey box flows.

• Automatically Using Grey Box Information for Megafunctions, on
page 176

• Using Grey Box Information for Instantiated Megafunctions, on
page 177

• Instantiating Megafunctions Using Grey Box Netlists, on page 179

Automatically Using Grey Box Information for Megafunctions
1. Structure the RTL so that the synthesis tool can infer the megafunctions

from the code.

2. Set up the synthesis tool to use the clearbox information.

VQM

Synthesis

Calls Altera for grey box timing and
resource information.

VQM does not include grey box internals

Inferred
Megafunction

Instantiated
Megafunction

Instantiated Megafunction
with Grey Box Netlist

Synthesis

Uses netlist for timing and resource
information.

Working with Altera IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 177

– Make sure the QUARTUS_ROOTDIR environment variable is set and
pointing to the same Quartus version as the library.

– In the synthesis tool, open the Implementation Options dialog box to the
Device tab, and set the synthesis tool to a supported family:

– On the same tab, check that Verification Mode is disabled.

– To use grey box timing information, set Altera Models device option to
on.

– Click OK.

3. Set any other options you want, and click Run to synthesize the design.

The synthesis tool infers the megafunction from the RTL code. It then
calls the Altera grey box executable which returns a netlist containing
the timing and resource information for the inferred megafunction. The
synthesis tool uses this information to optimize timing and allocate
resources. The RTL view shows the generic memory inferred, but the
Technology view shows the primitives that were implemented after
calling the grey box executable.

The tool does not include the grey box information in the output vqm
netlist. (

4. To place and route in Quartus II, use the following files:

– The synthesis vqm output netlist

– The encrypted file for the megafunction

Using Grey Box Information for Instantiated Megafunctions
There are two ways of instantiating grey box megafunctions in your synthesis
design. The following procedure shows you how to instantiate a grey box
megafunction without a grey box netlist; to instantiate one with a grey box
netlist, refer to the procedure in Instantiating Megafunctions Using Grey Box
Netlists, on page 179.

Synplify Pro Stratix II, Stratix III, Stratix IV, Arria II, Arria GX

Synplify Premier
(placement)

Stratix II, Stratix III, Stratix IV

LO

Chapter 4: Working with IP Input Working with Altera IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
178 June 2009

1. Generate the Verilog or VHDL megafunction using the Altera
Megafunction wizard.

This is just the megafunction wrapper file, and does not include a grey
box netlist.

2. Set up the megafunction for synthesis.

– Instantiate the megafunction in your synthesis design.

– Add the megafunction wrapper file to your project file.

3. Set up the synthesis tool to use the grey box information.

– Make sure the QUARTUS_ROOTDIR environment variable is set and
pointing to the same Quartus version as the library.

– In the synthesis tool, open the Implementation Options dialog box to the
Device tab, and set the synthesis tool target to a supported family:

– On the same tab, check that Verification Mode is disabled.

– To use grey box timing information, set Altera Models device option to
on.

– Click OK.

4. Set any other options you want, and click Run to synthesize the design.

The tool instantiates the megafunction and calls the grey box execut-
able, which returns a netlist containing the grey box timing for the
instantiated megafunction. The RTL view shows the instantiated
megafunction. The corresponding Technology view shows the primitives.

The tool instantiates the megafunction in the output vqm netlist, but
does not include the grey box timing information.

5. To place and route in Quartus II, use the following files:

– The synthesis vqm output netlist, which includes an empty
instantiation of the megafunction.

– The encrypted file for the megafunction.

Synplify Pro Stratix II, Stratix III, Stratix IV, Arria II, Arria GX

Synplify Premier
(placement)

Stratix II, Stratix III, Stratix IV

Working with Altera IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 179

Instantiating Megafunctions Using Grey Box Netlists
The following procedure shows you how to use a greybox netlist to incor-
porate cores in a Synplify Pro or Synplify Premier design. The greybox netlist
file is only used for synthesis.

1. Make sure you have installed Quartus II 7.2 or later.

2. Use the Altera MegaWizard tool to generate the files for the IP core and a
greybox netlist. The following example shows the files needed for a
project:

– To generate the greybox netlist, enable the Generate netlist option in the
Megawizard tool when you set up simulation. The greybox netlist
provides the logic connectivity of specific mapped instances, but does
not represent the true functionality of the MegaCore IP.

– Parameterize the IP core and generate the IP files. The tool outputs a
greybox file along with the other synthesis files.

3. Set up your design.

– Instantiate the megafunction in your synthesis design.

– In the synthesis tool, add the megafunction wrapper and the grey box
netlist files to your synthesis project.

– If you have the encrypted megafunction file, add that to your project
too. It will not be used for synthesis, but passed to P&R.

If your core uses encrypted IP that is part of the Quartus install
directory IP (not generated by the MegaWizard IP tool), you do not
need to add it to the project. Just make sure you are linked to the
appropriate Quartus directory. Paths to these Quartus IP libraries are
automatically forward-annotated in a Tcl file for place and route.

top.v Top level design file. See top.v, on page 185.

my_ip_core.v Top-level wrapper generated by the MegaWizard tool, which
instantiates the encrypted module encrypted_ip.v. See
my_ip_core.v, on page 186.

encrypted_ip.v Encrypted IP core that is not readable.

my_ip_core_gb.v Greybox netlist that contains mapped instances of the IP
core. The LUT masks are scrambled.

LO

Chapter 4: Working with IP Input Working with Altera IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
180 June 2009

The following shows the project view with the IP files added:

4. Designate the files to be passed to the P&R tool, like the wrapper file and
the encrypted file. Do the following for each file you want to pass to the
P&R tool:

– Right-click a file in the Project view and select File Options.

– Enable Use for Place and Route Only in the dialog box and click OK.

– Do this for every IP component file instantiated in the top-level IP
wrapper.

Working with Altera IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 181

The synthesis tool ignores these tagged files for synthesis but copies
them to the P&R directory after synthesis is done so that they can be
used by the P&R tool.

5. Set implementation options.

– Click Implementation Options and set the target technology on the Device
tab.

– Go to the Implementation Results tab and specify the correct version for
the place-and-route tool. This is important because the version
determines the format for the vqm output file, which varies with
different versions.

– Set any other options or constraints you want.

6. Synthesize the design.

The synthesis tool uses the greybox netlist file for synthesis and timing
analysis. The RTL and Technology views show the internals of the core
IP, because the greybox netlist file contains mapped instances. The log
file reports any critical paths found within the core, and the Technology
view displays timing numbers and critical paths.

After synthesis, the vqm netlist does not contain the mapped instances
found in the greybox netlist. It only contains a top-level instantiation of
my_ip_core, not its contents. If you synthesized with the Synplify Premier
tool, the placement locations of instances in the greybox netlist are not
forward-annotated to the P&R tool.

7. To place and route in Quartus II, use the following files:

– The synthesis vqm output netlist.

– The Altera wrapper file for the megafunction (not used for synthesis).

– The encrypted file for the megafunction (not used for synthesis).

Including Altera MegaCore IP Using an IP Package
You can include MegaCore® IP cores generated with the Altera MegaWizard
tool using the method described below, but it is preferred that you use a
greybox netlist instead (Instantiating Megafunctions Using Grey Box Netlists,
on page 179).

LO

Chapter 4: Working with IP Input Working with Altera IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
182 June 2009

For information about including cores generated with SOPC Builder, see
Including Altera Processor Cores Generated in SOPC Builder, on page 186.

1. Make sure you have installed Quartus II 7.2 or later.

2. Use the Altera MegaWizard tool to generate the files for the IP core. The
following is an example of the files needed for the project:

3. Copy the MegaCore IP and associated library files into a single directory.

You can find the library files associated with the IP core in the MegaW-
izard output directory and in the IP library files in the Quartus installa-
tion directory (for example, altera/72/pc_compiler.lib).

4. Import the core into the synthesis design.

– Start the synthesis tool, and make sure the technology you are
targeting in Synplify Pro or Synplify Premier is either Stratix II,
Stratix II-GX, Stratix III, or Stratix IV.

– In the synthesis UI, select Import IP->Import IP Package.

– In the IP Directory field, enter the path to the directory with the
consolidated files.

top.v Top level design file. See top.v, on page 185.

my_ip_core.v Top-level wrapper generated by the MegaWizard tool, which
instantiates the encrypted module encrypted_ip.v. See
my_ip_core.v, on page 186.

my_ip_core_enc.v Encrypted IP core that is not readable.

Working with Altera IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 183

– In the Package Name field, enter the name of the top-level module. In
our example, this is my_ip_core.

– Click OK.

The tool imports the file and creates a directory called System IP. This
includes a sub-directory with the package name (pci_core in our
example), which contains all the IP-related files.

5. Tag the IP component files so that they are not compiled for synthesis.
They are used for P&R, but not for synthesis.

– Right-click a file and select File Options.

– Enable Use for Place and Route Only in the dialog box and click OK.

LO

Chapter 4: Working with IP Input Working with Altera IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
184 June 2009

– Do this for every IP component file instantiated in the top-level IP
wrapper.

6. Instantiate the NIOS core in the top-level file for your synthesis design.

7. Synthesize the design.

The tool automatically generates a greybox netlist for the IP core, and
uses it for timing. It does not use the internals of the core. The RTL view
only displays the top-level of the core, but you can view the internals
when you push down into the core in the Technology view.

Working with Altera IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 185

The log file reports any critical paths found within the core, and the
Technology view displays timing numbers and critical paths.

After synthesis, the vqm netlist that is written out does not contain the
mapped instances found in the greybox netlist. It only contains a top-
level instantiation of my_ip_core, not its contents.

If you synthesized with the Synplify Premier tool, the placement
locations of instances in the greybox netlist are not forward-annotated to
the P&R tool.

Examples of MegaCore IP Files for Synthesis

top.v
The following is a simple example of a top-level MegaCore IP file (top.v) that is
included in a synthesis project.

module top (in1, in2, out1, out2)

RTL View

Technology View

LO

Chapter 4: Working with IP Input Working with Altera IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
186 June 2009

input in1, in2;
output out1, out2;

my_ip_core (in1, in2, out1, out2);

endmodule;

my_ip_core.v
The following is a simple example of a top-level MegaCore wrapper file that is
included in a synthesis project.

module my_ip_core (in1, in2, out1, out2)

input in1, in2;
output out1, out2;

encrypted_ip (in1, in2, out1, out2);

endmodule;

Including Altera Processor Cores Generated in SOPC Builder
Altera provides the capability of implementing configurable processor cores.
NIOS® II cores are created using the Altera SOPC Builder tool, which uses
proprietary RTL code to parameterize, generate, and instantiate NIOS II cores
in your design. The following procedure shows you how to use the greybox
flow to incorporate these cores in a Synplify Pro or Synplify Premier design
targeting certain Altera technologies. For information about including
MegaCore cores, see Instantiating Megafunctions Using Grey Box Netlists, on
page 179.

1. Make sure the following requirements are in place:

– Install Quartus II 7.2 or later.

– Install the MegaCore® IP library.

2. Generate the NIOS II core files as follows:

– In Altera SOPC Builder, generate Verilog or VHDL output for the
NIOS II core files. Note that this flow does not support a block symbol
file (.bsf); you must generate RTL code for the cores. The files may or
may not be encrypted.

Working with Altera IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 187

– Create a top-level wrapper for the core. In most cases, this wrapper
instantiates the components used to create the embedded system.
For example, if the embedded system consists of a NIOS II processor
that uses a PCI bus to interfaces to internal memory, the wrapper
would contain instantiations for the processor, memory and the PCI
bus.

– Copy all generated IP core output files and the corresponding library
files into a single directory. Typically you must include the generated
HDL files, as well as any MegaCore IP cores in your design.
Depending on your design, the MegaCore IP files can be in the
MegaWizard IP tool output directory and in the IP library files in the
Quartus install directory (altera/72/ip/pci_compiler/lib).

The following example shows the list of files for a design that contains
a NIOS II core processor with internal memory that drives an LCD
display. This example does not have any MegaCore IP.

File Description

top.v User-defined top level of the design

first_nios2_system_bb.v User-defined module definition

first_nios2_system.v Top-level wrapper for SOPC system (SOPC Builder)

cpu.v Module instantiated in top-level wrapper (SOPC Builder)

cpu_jtag_debug_module.v Module instantiated in top-level wrapper (SOPC Builder)

cpu_jtag_debug_module_
wrapper.v

Module instantiated in top-level wrapper (SOPC Builder)

cpu_mult_cell.v Module instantiated in top-level wrapper (SOPC Builder)

cpu_test_bench.v Module instantiated in top-level wrapper (SOPC Builder)

first_nios2_system.v Module instantiated in top-level wrapper (SOPC Builder)

jtag_uart.v Module instantiated in top-level wrapper (SOPC Builder)

led_pio.v Module instantiated in top-level wrapper (SOPC Builder)

onchip_mem.v Module instantiated in top-level wrapper (SOPC Builder)

sys_clk_timer.v Module instantiated in top-level wrapper (SOPC Builder)

sysid.v Module instantiated in top-level wrapper (SOPC Builder)

LO

Chapter 4: Working with IP Input Working with Altera IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
188 June 2009

3. Import the core into the synthesis design.

– Start the synthesis tool, and make sure the technology you are
targeting in Synplify Pro or Synplify Premier is either Stratix II,
Stratix II-GX, Stratix III, or Stratix IV.

– In the synthesis UI, select Import IP->Import IP Package.

– In the IP Directory field, enter the path to the directory with the
consolidated files.

– In the Package Name field, enter the name of the top-level module. In
our example, this is first_nios2_system.

– Click OK.

The tool imports the file and creates a directory called System IP. This
includes a sub-directory with the package name (first_nios2_system in our
example), which contains all the IP-related files.

Working with Altera IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 189

4. Tag the IP component files so that they are not compiled for synthesis.
They are used for P&R, but not for synthesis.

– Right-click a file and select File Options.

– Enable Use for Place and Route Only in the dialog box and click OK.

– Do this for every IP component file instantiated in the top-level IP
wrapper.

5. Instantiate the NIOS core in the top-level file for your synthesis design.

6. Synthesize the design.

LO

Chapter 4: Working with IP Input Working with Altera IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
190 June 2009

The tool automatically generates a greybox netlist for the IP core, and
uses it for timing. It does not use the internals of the core. The RTL view
only displays the top-level of the core, but you can view the internals
when you push down into the core in the Technology view.

The log file reports any critical paths found within the NIOS II core:

Worst Path Information

RTL View

Technology View

Working with Altera IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 191

Path information for path number 1:
Requested Period: 4.000
- Setup time: 0.187
+ Clock latency at ending point: 0.000
= Required time: 3.813

- Propagation time: 6.856
- Clock latency at starting point: 0.000
= Slack (critical) : -3.043

Number of logic level(s): 38
Starting point:
first_nios2_system_ins.gbmodule_the_cpu_M_alu_result[0] / regout
Ending point:
first_nios2_system_ins.gbmodule_the_cpu_M_status_reg_pie / datain
The start point is clocked by clk [rising] on pin clk
The end point is clocked by clk [rising] on pin clk

After synthesis, the vqm netlist that is written out does not contain the
mapped instances found in the greybox netlist. It only contains a top-
level instantiation of first_nios2_system, not its contents.

If you synthesized with the Synplify Premier tool, the placement
locations of instances in the greybox netlist are not forward-annotated to
the P&R tool.

Working with SOPC Builder Components
If you want to include subsystems created with the Altera SOPC Builder, use
the following procedure, which uses the underlying sopc2syn utility. The
following procedure shows you how to set up a SOPC project for synthesis.
For information on incorporating SOPC Builder cores, see Including Altera
Processor Cores Generated in SOPC Builder, on page 186.

1. Start the Synplify Pro/Premier software, and select Import IP->Import Altera
SOPC Project. This opens the Import Altera Design dialog box.

LO

Chapter 4: Working with IP Input Working with Altera IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
192 June 2009

2. Do the following to import the SOPC project you created with the Altera
tools.

– In PTF File, specify the Altera ptf file you want to import.

– Specify a location for the synthesis project to be created in Project
Location, and a name for the project in Project Name.

– Set the options you want in the Import Options section. Define the black
boxes and white boxes in your design with the Black Box, Force Black
Box Cores, and Force White Box Cores options, as described in Specifying
SOPC Components as Black Boxes and White Boxes, on page 193.

The tool will not complete synthesis if it finds inadequately defined
components, and you will have to iterate through synthesis again.

– Click OK.

Working with Altera IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 193

The software uses the underlying sopc2syn functionality (see The
SOPC2Syn Utility, on page 629 in the Reference Manual)) to read the
Altera files and include the information from them into the synthesis
project.

3. To include an SOPC component as a subsystem in a larger design,
create the subsystem as described in the previous steps and instantiate
the subsystem in the top-level HDL.

Specifying SOPC Components as Black Boxes and White Boxes
Accurately defining SOPC components as black boxes and white boxes is very
important, because the synthesis run will fail if the design is not correctly
specified, and you will have to iterate through another run. A black box is a
component that does not have any definitions.

1. In the Synplify Pro/Premier software, and select Import IP->Import Altera
Project. This opens the Import Altera Design dialog box.

2. If you want to treat a core as a black box during synthesis, list the
component in the Force White Box Cores field, and set disable the Clear Box
option.

With these settings, the tool copies the core wrapper file to the Synplify
folder and edits it to add the black box attribute. The component is
treated as a black box during synthesis. If the tool does not find the
named component, it issues a warning message.

3. If you want to treat a core as a white box during synthesis, list the
component in the Force White Box field, and enable the Clear Box option.

With these settings, the tool goes through the Clearbox flow, and treats
the core as a white box during synthesis. If it does not find the named
component or the Clearbox file, it issues a warning message.

LO

Chapter 4: Working with IP Input Working with Lattice IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
194 June 2009

Working with Lattice IP
The Lattice IP encryption scheme uses the flow described in Encryption and
Decryption, on page 144. The following procedure details how to incorporate
Lattice encrypted IP in your design.

1. Create a synthesis project.

2. Obtain the IP from Lattice, and add the encrypted file to your project.

The Lattice IP is encrypted using the persistent_key method described in
Specifying the Output Method for encryptIP, on page 151.

3. Synthesize your design.

The tool automatically decrypts the protected IP and synthesizes it with
the other unencrypted files in the design. During synthesis, the IP is
treated as a black box and you cannot view its contents in HDL Analyst
views.

After synthesis, the tool generates one output netlist. The IP is re-
encrypted and included in this netlist. The rest of the netlist is not
encrypted and can be read. The IP is not included in any simulation
netlists that are written out; it is treated as a black box.

See Encryption and Decryption, on page 144 for a flow diagram of this
process.

Working with Xilinx IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 195

Working with Xilinx IP
You can incorporate Xilinx IP into your design in different ways, depending
on the format of the IP. For further information about secure and non-secure
edn,ngc, and ngo files, see the following:

• Xilinx IP Cores, on page 195

• Including Xilinx Cores for Logic and Physical Synthesis, on page 196

For information about including EDK cores or IP produced with encryptIP, see
Working with EDK Cores, on page 204 and Evaluating Vendor IP, on page 158,
respectively.

Xilinx IP Cores
The following table describes the Xilinx IP cores:

EDN The tool can read the contents of an EDN core. This means that it can
absorb and optimize the contents, and place them along with the rest
of the design during physical synthesis. The tool includes the core
contents in the synthesized EDIF, and forward-annotates any
placement constraints in the accompanying ncf file.

NGO The tool can read the contents of the NGO core. This means that it
can absorb and optimize the contents, and place them along with the
rest of the design during physical synthesis. The tool includes the
core contents in the synthesized EDIF, and forward-annotates any
placement constraints in the accompanying ncf file.

NGC, non-
secured

The tool can read the core contents, and perform limited optimizations
of the core, like constant propagation. For physical synthesis, it can
also place the contents along with the rest of the design. The tool
annotates the core contents to the synthesized EDIF, and forward-
annotates any placement constraints in the accompanying ncf file.

NGC,
secured

The tool can read the contents of secure NGC cores. The tool might
perform limited optimizations of the core like constant propagation.
The tool writes a separate encrypted EDIF netlist for each core.

LO

Chapter 4: Working with IP Input Working with Xilinx IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
196 June 2009

The following table broadly summarizes how the synthesis tool treats various
kinds of IP:

Including Xilinx Cores for Logic and Physical Synthesis
The following procedure shows you how to include Xilinx secure and non-
secure cores in your project for logic synthesis or graph-based physical
synthesis.

The procedure itself is the same for both secure and non-secure cores, but
the implementation details are different, because the two kinds of cores are
treated differently.

1. Instantiate the Xilinx core in your top-level RTL.

2. Make sure you are targeting a technology that supports this design flow.

3. Add the edn, ngo, and/or ngc core files directly to your project. The
synthesis tools can read these formats and incorporate the cores into
the design.

IP Format Synthesis Input Synthesis Output Format

EDN, Non-secure NGC,
NGO

Add file Plain text

Secure NGC Add file Encrypted EDIF

Encrypted EDK Add IP with Import IP->Import
Xilinx EDK Project

Black boxes or white
boxes

Encrypted RTL from
encryptIP

Download with Import IP->
Download IP from Synopsys,
unzip, and add file

Black box or plain text, as
determined by IP owner

Working with Xilinx IP Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 197

4. Set the syn_macro attribute to determine how you want the cores to be
treated during synthesis.

5. Synthesize the design.

– Optionally, set the option to automatically run P&R from the
synthesis tool interface after synthesis is complete. If you chose to
run P&R from the synthesis tool, the output netlist and constraint
files are automatically copied to the P&R directory.

– Set any other options.

– Click the Run button to run synthesis.

The synthesis tools read the timing and resource usage information
from the core files. For physical synthesis, the tool runs logic synthesis
and places the design at the same time. The synthesis process treats the
cores as follows:

IP Core File IP Visibility Effect of Synthesis Optimizations

EDN
NGO
NGC, non-secured

Core contents
visible to the
synthesis tool

The tool can do some optimizations on
the core, like constant propagation. For
physical synthesis, the contents can be
placed along with the rest of design.

NGC, secured Core contents
visible to the
synthesis tool

The tool cannot optimize or place cores
or absorb them into the netlist. During
synthesis, the secure core is treated as a
white box (a model that includes the port
interface and timing information only),
and all optimizations are based on this.

To... Set...

Optimize the core and write it out to the netlist syn_macro=0

Prevent optimizations, and write out the core to the netlist as a
white box (a model that includes the port interface and timing
information only)

syn_macro=1
(on the view)

LO

Chapter 4: Working with IP Input Working with Xilinx IP

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
198 June 2009

After synthesis, the tool generates core output files for P&R:

Non-secure core with
no black box attributes
attached

The synthesis tools might perform limited
optimizations like constant propagation as needed.
You can view the internals of the core in the RTL and
Technology views.

Non-secure core
marked as a white box

The synthesis tool does not modify the core or write
out the internals of the core in the synthesized netlist.

Secure cores The tool might perform limited optimizations, like
constant propagation.
You can view the internals of the core in the
Technology view.

EDN
NGC, non-secured
NGO

• The tool generates one main output netlist that includes
all the unencrypted cores. The log file resource usage
report includes the resources used by the cores.

• All timing constraints are forward-annotated in the
synplicity.ucf file. This file includes imported UCF
constraints (see Converting and Using Xilinx UCF
Constraints, on page 255) as well as user-specified
timing constraints.

• Placement constraints are forward-annotated in the
<design>.ncf file.

NGC, secured • The tool writes out a top-level EDIF file which references
individual EDIFs for each instantiation of a secure core.
These files are not included in the main netlist.The tool
suffixes the original core name with _syn when it names
the lower-level files. The log file report of resource usage
includes the resources used by the cores.

• The synthesis tool puts all timing constraints into one
synplicity.ucf file for the P&R tool. This file includes
imported UCF constraints (see Converting and Using
Xilinx UCF Constraints, on page 255) as well as user-
specified timing constraints.

• Placement constraints, excluding constraints for secure
cores, are forward-annotated in a <design>.ncf file.

• For each secure core, the tool generates an individual
.ncf file with the constraints for that core.

Including Xilinx EDK Cores Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 199

Including Xilinx EDK Cores
The Xilinx Embedded Development Kit (EDK) allows you to implement
embedded designs using IBM PowerPC™ hard processor cores, Xilinx Micro-
Blaze™ soft processor cores, and Xilinx-supplied implementations of buses,
block RAMs, and peripherals such as USB and PCIs. You can use EDK-
generated embedded processor subsystems in a Synplify Pro or Synplify
Premier synthesis flow, which treats the entire design as one entity. This
allows you to optimize and debug across the entire design, including the
embedded core. The heart of this functionality is the edk2syn utility, which is
described in The EDK2Syn Utility, on page 622 in the Reference Manual.

This section describes how to implement the flow, including the following:

• The Synplify-EDK Design Flow, on page 199

• Xilinx Hardware Development Flows, on page 207

• Working with EDK Cores, on page 204

The Synplify-EDK Design Flow
The following figure summarizes the process used to incorporate Xilinx
embedded cores into a single FPGA design. The steps that follow go into more
detail.

Place and route with ISE

Read bitmap file into XPS

Generate embedded cores
with XPS or ISE

Synplify Pro/PremierXilinx

Read into synthesis project.

Synthesize and optimize

.ise or .xmp

 .prj

<system>.bit
<system>_bd.bmm

LO

Chapter 4: Working with IP Input Including Xilinx EDK Cores

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
200 June 2009

1. Create your embedded design, using one of the following Xilinx
methodologies:

– Use ISE and the Xilinx EDK-ISE hardware development flow to
generate an ise file. This is the recommended flow for creating
processor-based subsystems. See Xilinx EDK-ISE Hardware
Development Flow, on page 208 for details.

– Use EDK and the Xilinx standalone EDK hardware flow to generate
an xmp file. See Xilinx Standalone EDK Hardware Development Flow,
on page 209.

2. Specify whether the embedded design is a top-level module or a
submodule, as described in Specifying a Subsystem as a Top-Level
Module, on page 204 and Specifying a Subsystem as a Submodule, on
page 205.

3. Create the EDK synthesis project and generate core netlists.

– Select Project->Project Options->Hierarchy and Flow. Select Implement Design
in ISE (Export to Project Navigator Flow: DEPRECATED).

– Run the project using Hardware->Generate Netlist.

The tool runs XST on all the cores one by one to generate the synthe-
sized NGC netlists. Synopsys synthesis tools do not use XST-generated
NGC files if an IP core is not encrypted. The XST-generated NGC files are
only needed for encrypted cores like Microblaze.

Depending on the flow you used, you now have an ise file (Xilinx EDK-
ISE hardware flow) or xmp file (Xilinx standalone EDK hardware flow).

4. Import the ISE/EDK project into the Synplify Pro or Premier tool.

See Setting up the EDK Synthesis Project, on page 201 for details.

5. Synthesize, place, and route the design. See Synthesizing EDK Cores, on
page 203 for details.

6. Import the bitmap file back into the XPS environment.

– If you ran P&R from the synthesis tool GUI, copy the <design>.bit and
<design>_bd.bmm files from the synplify/rev_1/par_1 directory to the
implementation directory in the EDK project.

– Go back to the XPS GUI and select Project->Import from ProjNav.

– Select the .bit and .bmm files.

Including Xilinx EDK Cores Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 201

– Click OK.

– Run Device Configuration->Update Bitstream.

The bitstream can now be downloaded into the FPGA.

Setting up the EDK Synthesis Project
The following procedure provides the details on setting up an EDK project for
synthesis.

1. Start the Synplify Pro/Premier software, and select Import IP->Import Xilinx
EDK Project. This opens the Import Xilinx EDK dialog box.

2. Do the following in the Import Xilinx EDK dialog box to import the EDK
project you created with the Xilinx tools (described in the first steps of
the procedure in The Synplify-EDK Design Flow, on page 199).

– Go to Xilinx EDK or ISE Project File and specify the EDK file (.xmp) or ISE
file (.ise) you want to import. For example:

E:/basic_ppc/top.ise
E:/basic_mb/system.xmp

LO

Chapter 4: Working with IP Input Including Xilinx EDK Cores

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
202 June 2009

– Specify a location for the synthesis project to be created in Project
Location, and a name for the project in Project Name.

– Define the black boxes and white boxes in your design with the Black
Box, Force Black Box Cores, and Force White Box Cores options, as
described in Specifying EDK Cores as Black Boxes and White Boxes,
on page 206. If you are using an encrypted core, make sure to specify
how you want to handle it. See Dealing with Encrypted EDK Cores, on
page 207 for details.

The tool will not complete synthesis if it finds inadequately defined
components, and you will have to iterate through synthesis again.

– Set the options you want in the Import Options section.

– Click OK.

Synplify uses underlying edk2syn functionality (see The EDK2Syn Utility,
on page 622 in the Reference Manual) to read the following Xilinx files
and include the information from them into the synthesis project.

It generates a log file called edk2syn.log.

3. If you used the Xilinx standalone EDK hardware development flow to
create the system, add any custom files manually to the Synplify project.

If you used the Xilinx EDK-ISE hardware development flow, you do not
need to do this, because any custom logic is included in the .ise project
file and automatically read by the synthesis tools.

.ise Project file. In the ISE project directory, if created

.xpm and .mhs Project file. In the EDK project directory, if created

.mpd, .pao,
HDL (.v, .vhd),
.edn, .ngo, .ngc

Design specification files. In EDK project directory, if
available, or in the EDK hardware library at the location
specified in the EDK installation path

Including Xilinx EDK Cores Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 203

The cores are now part of the Synplify design. The following figure shows
an RTL view of a design that includes EDK cores.

4. To include an EDK core as a subsystem in a larger design, create the
subsystem as described in the previous steps and instantiate the
subsystem in the top-level HDL.

Synthesizing EDK Cores
After you have set up your synthesis project as described in Setting up the
EDK Synthesis Project, on page 201, you can synthesize your design. You can
also run Xilinx placement and routing from the synthesis tool interface.

1. If you have ucf constraints, convert them to the sdc format used by the
synthesis tools. See Converting and Using Xilinx UCF Constraints, on
page 255 for more information about using this utility.

2. Set implementation options for synthezing the EDK cores:

– Click Impl Options. Go to the Place and Route tab and make sure that
P&R Job is enabled. This option is on by default. When it is enabled,
the software automatically runs Xilinx P&R on the design after
synthesis.

– If you are using Synplify Premier, enable the Physical Synthesis option
to take advantage of physical synthesis optimizations.

LO

Chapter 4: Working with IP Input Including Xilinx EDK Cores

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
204 June 2009

3. Set other options and constraints as usual.

4. Click Run to synthesize, place, and route the embedded hardware
system. The synthesis tool runs the Xilinx place and route tool after
synthesizing the design.

After the run, the Synplify and P&R tools generate the following files:

If you use a Tcl script, do not save it from the synthesis tool interface.
Doing so will result in hard-coded paths, and the Tcl file will not be
portable. Save the Tcl file manually from outside the synthesis tool.

Working with EDK Cores
The following describe how to handle some issues with EDK cores:

• Specifying a Subsystem as a Top-Level Module, on page 204

• Specifying a Subsystem as a Submodule, on page 205

• Specifying EDK Cores as Black Boxes and White Boxes, on page 206

• Dealing with Encrypted EDK Cores, on page 207

Specifying a Subsystem as a Top-Level Module
The following procedure shows how to use the EDK-ISE flow to integrate
Xilinx processor subsystems as top-level modules.

1. Start ISE, and in a new or existing project, do one of the following:

.prj Synthesis project file

.sdc Synthesis constraint file

.ucf Post-synthesis timing constraint file generated for Xilinx P&R

OPT file and
core wrapper
file

Xilinx Xflow OPT file and core wrapper file, generated after
synthesis for any cores that are black boxes for the synthesis
tool

.bmm Bitmap file, generated after place and route and located in the
Synplify place and route (par) directory

.bit Bitmap file, generated after place and route and located in the
Synplify place and route (par) directory

Including Xilinx EDK Cores Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 205

– If you have an existing processor design XMP file, add it with Add
Source.

– If you want to create a new processor design, use New Source, selecting
Embedded Processor as a source type.

2. In the XPS GUI, select Hardware->Generate Netlist and generate the netlist.

3. Go back to ISE and do the following:

– Run the View HDL Instantiation Template process in the Processes window
to open the template in the Project Navigator editor pane.

– Copy the component declaration for the embedded system from the
template and paste it into your top-level design architecture.

– Copy the instantiation sample of the embedded system from the
template into your top-level design and provide net name connections
as necessary.

– Add a User Constraint File (UCF) from the XPS project data directory.

– Implement the design.

Specifying a Subsystem as a Submodule
The following procedure shows how to use the EDK-ISE flow to integrate
Xilinx processor subsystems as submodules. You can use either a top-down
or bottom-up approach.

1. To use the top-down approach, do the following:

– Start the ISE software and create a top-level project.

– Create a new embedded processor source to include in the top-level
design. This automatically starts XPS.

– Develop your embedded submodule in XPS.

– Generate a netlist in XPS.

– Return to the Project Navigator and synthesize your top-level design
in ISE. You can then instantiate and connect the embedded
subsystem to your top-level FPGA design.

2. To use the bottom-up approach, do the following:

– Start XPS and develop your embedded processor design as a
submodule.

LO

Chapter 4: Working with IP Input Including Xilinx EDK Cores

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
206 June 2009

– Generate a netlist in XPS.

– Start the ISE software and add the embedded submodule as a source
to include in your top-level ISE software project.

Specifying EDK Cores as Black Boxes and White Boxes
Accurately defining EDK cores as black boxes and white boxes is very
important, because the synthesis run will fail if the design is not correctly
specified, and you will have to iterate through another run. A black box is a
component that does not have any definitions. A white box for the EDK flow
has a core definition in either .edn or .ngc format.

1. In the Synplify Pro/Premier software, and select Import IP->Import Xilinx
EDK Project. This opens the Import Xilinx EDK dialog box.

2. If the core does not have any definitions, as with the encrypted cores
(Dealing with Encrypted EDK Cores, on page 207), enable the Black Box
option.

Enabling this option causes the core wrapper file to be copied to the
project folder and the black box attribute to be added for the core, so
that the core is treated as a black box during synthesis.

3. If you want to treat a core as a black box during synthesis, enable the
Force Black Box option.

When this option is enabled, the software searches for the core in the
mhs file, copies the core wrapper file to the Synplify folder and edits it to
add the black box attribute. The core is treated as a black box during
synthesis. If it does not find the named core, it issues a warning
message.

4. If you want to treat a core as a white box during synthesis, enable the
Force White Box option.

The software searches for the core in the mhs file, and for a definition file
named implementation/<core>.ngc. It adds this file to the project. The
core is treated as a white box during synthesis. If it does not find the
named core or the .ngc file, it issues a warning message.

Including Xilinx EDK Cores Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 207

Dealing with Encrypted EDK Cores
Sometimes, as with MicroBlaze cores, a core is encrypted. In this case, you
have a choice on how to handle the core.

• Define the encrypted core as a black box

To treat the core as a black box, make sure to enable the Black Box option
for the core when you are setting options in the Import Xilinx EDK dialog
box (step 3 in the process described in The Synplify-EDK Design Flow, on
page 199). This signifies that the core is a black box for Synplify, and the
tool reads the PAO file and the pointer to the encrypted definition file. It
uses the information from the core wrapper file. The core is not
optimized during synthesis. After synthesis, the tool generates core
wrapper files for the black boxes.

• Do not define the encrypted core as a black box

If you have a netlist for your core, disable the Black Box option for the
core when you are setting options in the Import Xilinx EDK dialog box (step
3 in the process described in The Synplify-EDK Design Flow, on
page 199). This causes the Synplify tool to look for a definition file
named implementation/<core>.ngc, which it adds to the synthesis
project. If it does not find the file, you get an error message. These cores
are freely optimized during synthesis, and are not encrypted in the
Synplify output.

• Define the encrypted core as a white box, using the secure ngc flow

Beginning with Synplify Pro and Synplify Premier 9.0.2, you can use the
secure ngc flow to include encrypted cores as white boxes in your
synthesis design. A white box is a model that includes the port interface
and timing information only. See Including Xilinx Cores for Logic and
Physical Synthesis, on page 196for details about this methodology.

Xilinx Hardware Development Flows
There are two Xilinx hardware flows that you can use to generate embedded
hardware in HDL format:

• The Xilinx EDK-ISE Hardware Development Flow, using Xilinx ISE. This
is the recommended flow. See Xilinx EDK-ISE Hardware Development
Flow, on page 208 for details.

LO

Chapter 4: Working with IP Input Including Xilinx EDK Cores

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
208 June 2009

• The Xilinx Standalone EDK Hardware Development Flow, using Xilinx
Platform Studio (XPS). See Xilinx Standalone EDK Hardware Develop-
ment Flow, on page 209 for details.

Xilinx EDK-ISE Hardware Development Flow
The EDK-ISE flow is the recommended flow for creating processor-based
embedded sub-systems. The biggest advantage of this flow is that it supports
the addition of non-peripheral custom logic to the system. Unlike the EDK-
XFLOW, this flow lets you add HDL files that contain non-peripheral custom
logic directly to the project.

The following figure shows the entire Xilinx hardware flow, with the hardware
compilation phase expanded to show the component synthesis (Synplify) and
P&R (ISE) steps. In this flow the EDK platform generator (Platgen) writes out
the hardware platform. During the hardware compilation phase, synthesis
and place-and-route tools are used to generate a hardware bitstream, which
is then merged with the software executable to generate the final download.bit
file.

ISE

EDIF IP Netlist

Synthesis

& ISE

Processor
IP

PLATGEN

system.bit

Source code

system.ucf

bram_init.bmm

MHS File
system.mhs

Processor, peripherals,
and bus specification

Automatic HW
platform generation

Hardware compilation

HW configuration

Bitstream

1

2

3

Xilinx HW Development Flow

Synplify

Software
executable

download.bit

Including Xilinx EDK Cores Chapter 4: Working with IP Input

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 209

You can use the EDK-ISE flow to integrate processor subsystems as top-level
modules or submodules, as described in Specifying a Subsystem as a Top-
Level Module, on page 204 and Specifying a Subsystem as a Submodule, on
page 205.

Xilinx Standalone EDK Hardware Development Flow
Use the following flow to generate PowerPC- or MicroBlaze-based embedded
processor systems or submodules by directly invoking Xilinx Platform Studio
(XPS), instead of invoking it through the Integrated System Environment
(ISE)™. XPS provides an integrated environment for creating the software and
hardware specification flows for an Embedded Processor system.

The following figure shows the entire Xilinx hardware flow, with the hardware
compilation phase expanded to show the component synthesis (Synplify) and
P&R (ISE) steps. In this flow, EDK Platform Generator (Platgen) writes out the
HDL hardware platform in a specific format. The EDK-XFLOW treats each
hardware component as an independent core, and generates a separate XST
project file for each core. During synthesis, the process runs XST on all the
cores one by one, to generate synthesized netlists (NGC files).

Processor, peripherals,
and bus specification

Automatic HW platform
generation with EDK Platgen

Hardware compilation

HW configuration

1

2

3

HW Development Flow

Run P&R using XFlow
(Top level + NGC/EDN for each block)

Synthesize top level

Synthesize IP blocks bottom-up

HW Platform Generation

Hardware Compilation

Bitstream

Software
executable

download.bit

LO

Chapter 4: Working with IP Input Including Xilinx EDK Cores

Synopsys FPGA Synthesis User Guide
210 June 2009

Synopsys, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: +1 408 215-6000, Fax: +1 408 222-068
www.solvnet.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology,
Certify, DesignWare, HDL Analyst, Identify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro,
Synthesis Constraints Optimization Environment, and VCS are registered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-perfor-
mance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and TotalRecall are trademarks of Synopsys, Inc. All other
names mentioned herein are trademarks or registered trademarks of their respective companies.

XFLOW is a built-in feature that runs the ISE tools in the background
through a command-line script file. It runs system top-level hardware
synthesis, mapping, and P&R processes in the background so that you do not
have to work with the Xilinx Integrated System Environment (ISE) to generate
the configuration bitstream file. This flow also compiles and executes multiple
software applications, generates libraries for the code, and merges software
with hardware files for downloading to a target board.

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 211

C H A P T E R 5

Specifying Constraints

This chapter describes how to specify constraints for your design. It covers
the following:

• Using the SCOPE UI, on page 212

• Specifying Timing Constraints, on page 219

• Specifying Timing Exceptions, on page 230

• Using Collections, on page 237

• Using Auto Constraints, on page 251

• Translating Altera QSF Constraints, on page 253

• Converting and Using Xilinx UCF Constraints, on page 255

For additonal information about working with constraints, see Working with
Constraint Files, on page 98.

For information about specifying attributes and directives, and setting project
options, see Setting up a Logic Synthesis Project, on page 269.

LO

Chapter 5: Specifying Constraints Using the SCOPE UI

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
212 June 2009

Using the SCOPE UI
You can use a text editor to create a constraint file as described in Working
with Constraint Files, on page 98, but it is easier to use the SCOPE (Synthesis
Constraint Optimization Environment) window, which provides a spread-
sheet-like interface for entering constraints. The SCOPE interface is good for
editing most constraints, but there are some constraints (like black box
constraints) which can only be entered as directives in the source files. If you
want to use a text editor to edit a constraint file, close the SCOPE window
before editing the file, or you will overwrite results.

You can also use the SCOPE window to add attributes, define collections and
specify constraints for them. For details, see Specifying Attributes Using the
SCOPE Editor, on page 308 and Creating and Using Collections (SCOPE
Window), on page 238.

Creating a Constraint File Using the SCOPE Window
The following procedure shows you how to open the SCOPE window to
generate constraint files. For details about generating constraint files for
compile point modules (in the Synplify Premier and Synplify Pro tools), see
Logical Compile-Point Synthesis, on page 560.

1. To create a new constraint file, follow these steps:

– Compile the design (F7). If you do not compile the design, you can still
use the SCOPE window, but the software does not automatically
initialize the clocks and I/O ports. You have to type in entries
manually because the software has no knowledge of the design.

– Open the SCOPE window by clicking the SCOPE icon in the toolbar
(), pressing Ctrl-n, or selecting File -> New. If you use one of the latter
two methods, select Constraint File (SCOPE) as the type of file to open.
This opens the Initialize New Constraint File dialog box.

Using the SCOPE UI Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 213

– Optionally, select the constraints to be initialized and click OK. If you
started with a compiled design, setting these options automatically
initializes the Clock and Inputs/Outputs tabs with the appropriate
signals.

An empty SCOPE spreadsheet window opens. The tabs along the bottom
of the SCOPE window list the different kinds of constraints you can add.
For each kind of constraint, the columns contain specific data.

2. To open an existing file, do one of the following:

– Double-click the file from the project window.

– Press Ctrl-o or select File->Open. In the dialog box, set the kind of file
you want to open to Constraint Files (SCOPE) (*.sdc), and double-click to
select the file from the list.

The SCOPE window opens with the file you specified. For details about
editing the file, see Entering and Editing Constraints in the SCOPE

File->New Ctrl-n

LO

Chapter 5: Specifying Constraints Using the SCOPE UI

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
214 June 2009

Window, on page 214. If you want to edit the Tcl file directly, see
Working with Constraint Files, on page 98.

Entering and Editing Constraints in the SCOPE Window
Enter constraints directly in the SCOPE window. You can use the Initialize
Constraint panel to enter default constraints, and then use the direct method
to modify, add, or delete constraints.

The Synplify Pro tool also lets you add constraints automatically. For infor-
mation about auto constraints, see Using Auto Constraints, on page 251.

1. Click the appropriate tab at the bottom of the window to enter the kind
of constraint you want to create:

To define... Click...

Clock frequency for a clock signal output of clock divider logic
A specific clock frequency that overrides the global frequency

Clocks

Edge-to-edge clock delay that overrides the automatically
calculated delay.

Clock to
Clock

Constraints for a group of objects you have defined as a
collection with the Tcl command. For details, see Creating and
Using Collections (SCOPE Window), on page 238.

Collections

Input/output delays that model your FPGA input/output
interface with the outside environment

Inputs/
Outputs

Delay constraints for paths feeding into/out of registers Registers

Paths that require multiple clock cycles Delay Paths

Paths to ignore for timing analysis (false paths) Delay Paths

Maximum delay for paths Delay Paths

Attributes, like syn_reference_clock, that were not entered in
the source files

Attributes

Using the SCOPE UI Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 215

The SCOPE window displays columns appropriate to the kind of
constraint you picked. You can now enter constraints using the wizard,
or work directly in the SCOPE window.

2. Enter or edit constraints as follows:

– For attribute cells in the spreadsheet, click in the cell and select from
the pull-down list of available choices.

– For object cells in the spreadsheet, click in the cell and select from
the pull-down list. When you select from the list, the objects
automatically have the proper prefixes in the SCOPE window.

Alternatively, you can drag and drop an object from an HDL Analyst
view into the cell, or type in a name. If you drag a bus, the software
enters the whole bus (busA). To enter busA[3:0], select the appropriate
bus bits before you drag and drop them. If you drag and drop or type
a name, make sure that the object has the proper prefix identifiers:

I/O standards for certain technologies of the Actel, Altera, and
Xilinx devices for any port in the I/O Standard panel of the
SCOPE window.

I/O Standard

Compile points in a top-level constraint file. See Using Compile-
point Synthesis, on page 573 for more information about
compile points. (The Synplify tool does not support this flow.)

Compile
Points

Place and route tool constraints
Other constraints not used for synthesis, but which are passed
to other tools. For example, multiple clock cycles from a
register or input pin to a register or output pin

Other

Prefix Identifiers Description for...

v:design_name hierarchies or “views” (modules)

c:clock_name clocks

i:instance_name instances (blocks)

p:port_name ports (off-chip)

To define... Click...

LO

Chapter 5: Specifying Constraints Using the SCOPE UI

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
216 June 2009

– For cells with values, type in the value or select from the pull-down
list.

– Click the check box in the Enabled column to enable the constraint or
attribute.

– Make sure you have entered all the essential information for that
constraint. Scroll horizontally to check. For example, to set a clock
constraint in the Clocks tab, you must fill out Enabled, Clock, Frequency
or Period, and Clock Group. The other columns are optional. For details
about setting different kinds of constraints, go to the appropriate
section listed in Specifying Timing Constraints, on page 219.

3. For common editing operations, refer to this table:

4. Save the file by clicking the Save icon and naming the file.

The software creates a TCL constraint file (.sdc). See Working with
Constraint Files, on page 98 for information about the commands in this
file.

t:pin_name hierarchical ports, and pins of instantiated cells

b:name bits of a bus (port)

n:net_name internal nets

To... Do...

Cut, copy, paste,
undo, or redo

Select the command from the popup (hold down the
right mouse button to get the popup) or from the
Edit menu.

Copy the same value
down a column

Select Fill Down (Ctrl-d) from the Edit or popup
menus.

Insert or delete rows Select Insert Row or Delete Rows from the Edit or
popup menus.

Find text Select Find from the Edit or popup menus. Type the
text you want to find, and click OK.

Prefix Identifiers Description for...

Using the SCOPE UI Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 217

5. To apply the constraints to your design, you must add the file to the
project now or later.

– Add it immediately by clicking Yes in the prompt box that opens after
you save the constraint file.

– Add it later, following the procedure for adding a file described in
Making Changes to a Project, on page 274.

Setting SCOPE Display Preferences
You can set format and colors in the SCOPE window. The following table lists
some preferences and shows you how to set them.

To... Do this...

Set the appearance of
lines and buttons in
the SCOPE table

With a SCOPE window open, select View-> Properties.
Set the options you want on the Display Settings form.
Check the Save settings to profile option if you want to
settings to be the default.

Set fonts, colors, and
borders for a row

Select a SCOPE row.
Select Format -> Style.
On the Styles form, check Save as Default if you want the
new settings to be the default.
Select the category you want to change (Row Header or
Standard), and click Change.
Set the display options you want and click OK on both
forms.

Set fonts, colors, and
borders for a column

Select a SCOPE row.
Select Format -> Style.
On the Styles form, check Save as Default if you want the
new settings to be the default.
Select the category you want to change (Column Header or
Standard), and click Change.
Set the display options you want and click OK on both
forms.

Set fonts, colors, and
borders for a single
cell

Select a SCOPE cell.
Select Format -> Cells.
Set the display options you want and click OK.

LO

Chapter 5: Specifying Constraints Using the SCOPE UI

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
218 June 2009

Align text in columns
and rows

Select a column or row in the SCOPE window.
Select Format -> Align.
Click the alignment you want and click OK.

Size columns/rows to
text

Select a column or row in the SCOPE window.
Select Format -> Resize Rows or Format -> Resize Columns.

Hide/show cells Select a SCOPE cell.
Select Format -> Cover Cells to hide a cell.
Select Format -> Remove Covering to show a hidden cell.

To... Do this...

Specifying Timing Constraints Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 219

Specifying Timing Constraints
You can define timing constraints in the SCOPE interface, which automati-
cally generates a Tcl constraints file, or manually with a text editor, as
described in Using a Text Editor for Constraint Files, on page 100.

The SCOPE interface is much easier to use, and you can define various
timing constraints in it. For the equivalent Tcl syntax, see Chapter 14, Tcl
Commands and Scripts in the Reference Manual. See the following for
different timing constraints:

• Entering Default Constraints, on page 219

• Setting Clock and Path Constraints, on page 220

• Defining Clocks, on page 222

• Defining Input and Output Constraints, on page 226

• Specifying Standard I/O Pad Types, on page 228

• Specifying Xilinx Timing Constraints, on page 228

• Using -route for Physical Synthesis in Xilinx Designs, on page 230

To set constraints for timing exceptions like false paths and multicycle paths,
see Specifying Timing Exceptions, on page 230.

For information about physical constraints, see Setting Constraints for
Physical Synthesis, on page 347

Entering Default Constraints
To edit or set individual constraints, or to create constraints in the Other tab,
work directly in the SCOPE window (Setting Clock and Path Constraints, on
page 220). For auto constraints in Synplify Pro, see Using Auto Constraints,
on page 251. To apply the constraints, add the file to the project according to
the procedure described in Making Changes to a Project, on page 274. The
constraints file has an .sdc extension. See Working with Constraint Files, on
page 98 for more information about constraint files.

LO

Chapter 5: Specifying Constraints Specifying Timing Constraints

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
220 June 2009

Setting Clock and Path Constraints
The following table summarizes how to set different clock and path
constraints from the SCOPE window. For information about setting compile
point constraints or attributes, see Logical Compile-Point Synthesis, on
page 560 for more information about compile points and Specifying Attributes
Using the SCOPE Editor, on page 308. For information about setting default
constraints, see Entering Default Constraints, on page 219.

To define... Pane Do this to set the constraint...

Clocks Clock Select the clock object (Clock).
Specify a clock name (Clock Alias), if required.
Type a frequency value (Frequency) or a period (Period).
Change the default Duty Cycle or set Rise/Fall At, if
needed.
Change the default clock group, if needed
Check the Enabled box.
See Defining Clocks, on page 222 for information about
clock attributes.

Virtual
clocks

Clock Set the clock constraints as described for clocks, above.
Check the Virtual Clock box.

Route delay Clock
Inputs/
Outputs
Registers

Specify the route delay in nanoseconds. Refer to
Defining Clocks, on page 222, Defining Input and
Output Constraints, on page 226 and the Register
Delays section of this table details.

Edge-to-edge
clock delay

Clock to
Clock

Select the starting edge for the delay constraint (From
Clock Edge).
Select the ending edge for the constraint (To Clock Edge).
Enter a delay value.
Mark the Enabled check box.

Input/output
delays

Inputs/
Outputs

See Defining Input and Output Constraints, on
page 226 for information about setting I/O constraints.

Specifying Timing Constraints Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 221

Register
delays

Registers Select the register (Register).
Select the type of delay, input or output (Type).
Type a delay value (Value).
Check the Enabled box.
If you do not meet timing goals after place-and-route,
adjust the clock constraint as follows:
• In the Route column for the constraint, specify the

actual route delay (in nanoseconds), as obtained from
the place-and-route results. Adding this constraint is
equivalent to putting a register delay on that input
register.

• Resynthesize your design.

Maximum
path delay

Delay Path Select the Delay Type path of Max Delay.
Select the port or register (From/Through). See Defining
From/To/Through Points for Timing Exceptions, on
page 231 for more information.
Select another port or register if needed (To/Through).
Set the delay value (Max Delay).
Check the Enabled box.

Multi-cycle
paths

Delay Paths See Defining Multi-cycle Paths, on page 234.

False paths Delay Paths
Clock to
Clock

See Defining False Paths, on page 235 for details.

Global
attributes

Attributes Set Object Type to <global>.
Select the object (Object).
Set the attribute (Attribute) and its value (Value).
Check the Enabled box.

Attributes Attributes Do either of the following:
• Select the type of object (Object Type).

Select the object (Object).
Set the attribute (Attribute) and its value (Value).
Check the Enabled box.

• Set the attribute (Attribute) and its value (Value).
Select the object (Object).
Check the Enabled box.

Other Other Type the TCL command for the constraint (Command).
Enter the arguments for the command (Arguments).
Check the Enabled box.

To define... Pane Do this to set the constraint...

LO

Chapter 5: Specifying Constraints Specifying Timing Constraints

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
222 June 2009

Defining Clocks
Clock frequency is the most important timing constraint, and must be set
accurately. If you are planning to auto constrain your design (Using Auto
Constraints, on page 251), do not define any clocks. The following procedures
show you how to define clock frequency (Defining Clock Frequency, on
page 222) and set other clock constraints that affect timing, like clock groups
(Defining Other Clock Requirements, on page 225).

Defining Clock Frequency
This section shows you how to define clock frequency either through the GUI
or in a constraint file. See Defining Other Clock Requirements, on page 225 for
other clock constraints. If you want to use auto constraints (Synplify Pro
only), do not define your clocks.

1. Define a realistic global frequency for the entire design, either in the
Project view or the Constraints tab of the Implementation Options dialog box.

This target frequency applies to all clocks that do not have specified
clock frequencies. If you do not specify any value, a default value of 1
MHz (or 1000 ns clock period) applies to all timing paths whenever the
clock associated with both start and end points of the path is not speci-
fied. Each clock that uses the global frequency is assigned to its own
clock group. See Defining Other Clock Requirements, on page 225 for
more information about clock group settings.

The global frequency also applies to any purely combinatorial paths. The
following figure shows how the software determines constraints for
specified and unspecified start or end clocks on a path:

clkA

clkB

Logic
C

A B

Specifying Timing Constraints Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 223

2. Define frequency for individual clocks on the Clocks tab of the SCOPE
window (define_clock constraint).

– Specify the frequency as either a frequency in the Frequency column
(-freq Tcl option) or a time period in the Period column (-period Tcl
option). When you enter a value in one column, the other is
calculated automatically.

– For asymmetrical clocks, specify values in the Rise At (-rise) and Fall At
(-fall) columns. The software automatically calculates and fills out the
Duty Cycle value.

The software infers all clocks, whether declared or undeclared, by
tracing the clock pins of the flip-flops. However, it is recommended that
you specify frequencies for all the clocks in your design. The defined
frequency overrides the global frequency. Any undefined clocks default
to the global frequency.

3. Define internal clock frequencies (clocks generated internally) on the
SCOPE Clocks tab (define_clock constraint). Apply the constraint
according to the source of the internal clock.

If clkA is... And clkB is... The effect for logic C is...

Undefined Defined The path is unconstrained unless you specify that
clkB be constrained to the inferred clock domain for
clkA

Defined Undefined The path is unconstrained unless you specify that
clkA be constrained to the inferred clock domain for
clkB.

Defined Defined For related clocks in the same clock group, the
relationship between clocks is calculated; all other
paths between the clocks are treated as false paths.

Undefined Undefined The path is unconstrained.

LO

Chapter 5: Specifying Constraints Specifying Timing Constraints

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
224 June 2009

4. For signals other than clocks, define frequencies with the
syn_reference_clock attribute. You can add this attribute on the SCOPE
Attributes tab.

You might need to do this if your design uses an enable signal as a
clocking signal because of limited clocking resources. If the enable is
slower than the clock, defining the enable frequency separately instead
slowing down the clock frequency ensures more accuracy. If you slow
down the clock frequency, it affects all other registers driven by the
clock, and can result in longer run times as the tool tries to optimize a
non-critical path.

Define this attribute as follows:

– Define a dummy clock on the Clocks tab (define_clock constraint).

– Add the syn_reference_clock attribute (Attributes tab) to the affected
registers to apply the clock. In the constraint file, you can use the Find
command to find all registers enabled by a particular signal and then
apply the attribute:

define_clock -virtual dummy -period 40.0
define_attribute {find –seq * -hier –filter @(enable == en40)}

syn_reference_clock dummy

5. For Altera PLLs and Xilinx DCMs and DLLs, define the clock at the
primary inputs.

– For Altera PLLs, you must define the input frequency, because the
synthesis software does not use the input value you specified in the
Mega wizard software. The synthesis tool assigns all the PLL outputs
to the same clock group. It forward-annotates the PLL inputs.

Source Add SCOPE constraint/define_clock to...

Register Register.

Instance, like a PLL
or clock DLL

Instance. If the instance has more than one clock
output, apply the clock constraints to each of the
output nets, making sure to use the n: prefix (to
signify a net) in the SCOPE table.

Combinatorial logic Net. Make sure to use the n: prefix in the SCOPE
interface.

Specifying Timing Constraints Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 225

– If needed, use the Xilinx properties directly to define the DCMs and
DLLs. The synthesis software assigns defined DCMs and DLLs to the
same clock group, because it considers these clocks to be related. It
forward-annotates the DLL/DCM inputs. The following shows some
examples of the properties you can specify

6. After synthesis, check the Performance Summary section of the log file for a
list of all the defined and inferred clocks in the design.

7. If you do not meet timing goals after place-and-route, adjust the clock
constraint as follows:

– Open the SCOPE window with the clock constraint.

– In the Route column for the constraint, specify the actual route delay
(in nanoseconds), as obtained from the place-and-route results.
Adding this constraint is equivalent to putting a register delay on all
the input registers for that clock.

– Resynthesize your design.

Defining Other Clock Requirements
Besides clock frequency (described in Defining Clock Frequency, on page 222),
you can also set other clock requirements, as follows:

• If you have limited clock resources, define clocks that do not need a
clock buffer by attaching the syn_noclockbuf attribute to an individual
port, or the entire module/architecture.

• Define the relationship between clocks by setting clock domains. By
default, each clock is in a separate clock group named default_clkgroup<n>
with a sequential number suffix.

– On the SCOPE Clocks tab, group related clocks by putting them into
the same clock group. Use the Clock Group field to assign all related
clocks to the same clock group.

– Make sure that unrelated clocks are in different clock groups. If you
do not, the software calculates timing paths between unrelated clocks
in the same clock group, instead of treating them as false paths.

DLLs Phase shift and frequency multiplication properties like
duty_cycle_correction and clkdv_divide

DCMs DCM properties like clkfx_multiply and clkfx_divide

LO

Chapter 5: Specifying Constraints Specifying Timing Constraints

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
226 June 2009

– Input and output ports that belong to the System clock domain are
considered a part of every clock group and will be timed. See Defining
Input and Output Constraints, on page 226 for more information.

The software does not check design rules, so it is best to define the
relationship between clocks as completely as possible.

• Define all gated clocks with the define_clock constraint.

Avoid using gated clocks to eliminate clock skew. If possible, move the
logic to the data pin instead of using gated clocks. If you do use gated
clocks, you must define them explicitly, because the software does not
propagate the frequency of clock ports to gated clocks.

To define a gated clock, attach the define_clock constraint to the clock
source, as described above for internal clocks. To attach the constraint
to a keepbuf (a keepbuf is a placeholder instance for clocks generated from
combinatorial logic), do the following:

– Attach the syn_keep attribute to the gated clock to ensure that it
retains the same name through changes to the RTL code.

– Attach the define_clock constraint to the keepbuf generated for the gated
clock.

• Specify edge-to-edge clock delays on the Clock to Clock tab
(define_clock_delay).

• After synthesis, check the Performance Summary section of the log file for a
list of all the defined and inferred clocks in the design.

Defining Input and Output Constraints
In addition to setting I/O delays in the SCOPE window as described in Setting
Clock and Path Constraints, on page 220, you can also set the Use clock period
for unconstrained IO option.

• Open the SCOPE window, click Inputs/Outputs, and select the port (Port).
You can set the constraint for

– All inputs and outputs (globally in the top-level netlist)

– For a whole bus

– For single bits

Specifying Timing Constraints Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 227

You can specify multiple constraints for the same port. The software
applies all the constraints; the tightest constraint determines the worst
slack. If there are multiple constraints from different levels, the most
specific overrides the more global. For example, if there are two bit
constraints and two port constraints, the two bit constraints override
the two port constraints for that bit. The other bits get the two port
constraints.

• Specify the constraint value in the SCOPE window:

– Select the type of delay: input or output (Type).

– Type a delay value (Value).

– Check the Enabled box, and save the constraint file in the project.

Make sure to specify explicit constraints for each I/O path you want to
constrain.

• To determine how the I/O constraints are used during synthesis, do the
following:

– Select Project->Implementation Options, and click Constraints.

– To use only the explicitly defined constraints disable Use clock period for
unconstrained IO.

– To synthesize with all the constraints, using the clock period for all
I/O paths that do not have an explicit constraint enable Use clock
period for unconstrained IO.

– Synthesize the design. When you forward-annotate the constraints,
the constraints used for synthesis are forward-annotated for place-
and-route.

• Input or output ports with explicitly defined constraints, but without a
reference clock (-ref option) are included in the System clock domain and
are considered to belong to every defined or inferred clock group.

• If you do not meet timing goals after place-and-route and you need to
adjust the input constraints; do the following:

– Open the SCOPE window with the input constraint.

– In the Route column for the input constraint, specify the actual route
delay in nanoseconds, as obtained from the place-and-route results.
Adding this constraint is equivalent to putting a register delay on the
input register.

– Resynthesize your design.

LO

Chapter 5: Specifying Constraints Specifying Timing Constraints

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
228 June 2009

Specifying Standard I/O Pad Types
For certain Actel, Altera, and Xilinx technologies, you can specify a standard
I/O pad type to use in the design. The equivalent Tcl command is
define_io_standard.

1. Open the SCOPE window and go to the I/O Standard tab.

2. In the Port column, select the port. This determines the port type in the
Type column.

3. Enter an appropriate I/O pad type in the I/O Standard column. The
Description column shows a description of the I/O standard you selected.

For details of supported I/O standards for different vendors, refer to the
relevant section in the Reference Manual: Actel I/O Standards, on
page 417, Altera I/O Standards, on page 418, and Xilinx I/O Standards,
on page 427.

4. Where applicable, set other parameters like drive strength, slew rate,
and termination.

You cannot set these parameter values for industry I/O standards
whose parameters are defined by the standard.

The software stores the pad type specification and the parameter values
in the syn_pad_type attribute. When you synthesize the design, the I/O
specifications are mapped to the appropriate I/O pads within the
technology.

Specifying Xilinx Timing Constraints
For Xilinx designs, you can import Xilinx constraints from a ucf file in
addition to specifying constraints within the synthesis tool. In the output
files, the synthesis tool separates the timing constraints from the physical
constraints. Timing constraints are written to the synplicity.ucf file and
physical constraints to the <design>.ncf file, as shown in this figure:

Specifying Timing Constraints Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 229

1. To specify user constraints, use the SCOPE interface.

See Entering and Editing Constraints in the SCOPE Window, on page 214
for details on how to specify constraints.

2. To use constraints from a Xilinx ucf file, use the procedures described in
Converting and Using Xilinx UCF Constraints, on page 255.

3. Synthesize the design.

The synthesis tool writes out the timing constraints and physical
constraints into separate files:

4. Use synplicity.ucf and <design>.ncf as input to the Xilinx place-and-route
tool. Update scripts or older par_opt files if needed to ensure that these
files are used to drive place-and-route.

synplicity.ucf Contains all timing constraints, whether user-specified or
translated from a ucf file

<design>.ncf Contains all physical constraints

UCF

ucf2sdc

User constraints

Synthesis SDC Constraints

Timing

synplicity.ucf <design>.ncf

Physical

LO

Chapter 5: Specifying Constraints Specifying Timing Exceptions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
230 June 2009

Using -route for Physical Synthesis in Xilinx Designs
For the Xilinx physical synthesis flows, use the -route constraint as follows:

• Remove it for logic synthesis

During logic synthesis the -route option either tightens or loosens timing
constraints, without affecting constraints forward annotated to the
Xilinx ISE place-and-route tool. The Synplify Pro software tunes the
delay estimates to compensate for differences between logic synthesis
and the actual place-and-route delays. The Synplify Premier tool uses a
different timing model for interconnect delays, therefore, the -route
constraint generally should not be used.

• Use it at a global level in a physical synthesis run to produce a better
netlist during global placement.

The Synplify Premier graph-based timing estimation for critical paths
automatically handles the correlation between the synthesis and place-
and-route tools. For physical synthesis, apply the -route constraint to
global clocks from the SCOPE Clock panel. For example:

define_clock {clk} -period 4 -clockgroup cg1 -route 1

Remember to monitor the effects of using the -route constraint from the Pre-
placement Timing Snapshot report in the log file. A clock constrained by the -route
option should target a slightly negative slack.

Specifying Timing Exceptions
You can specify the following timing exception constraints, either from the
SCOPE interface or by manually entering the Tcl commands in a file:

• Multicycle Paths—Paths with multiple clock cycles.

• False Paths—Clock paths that you want the synthesis tool to ignore
during timing analysis and assign low (or no) priority during optimiza-
tion.

• Max Delay Paths—Point-to-point delay constraints for paths.

Specifying Timing Exceptions Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 231

The following show you how to specify timing exceptions in the SCOPE GUI.
For the equivalent Tcl syntax, see Chapter 14, Tcl Commands and Scripts in
the Reference Manual.

• Defining From/To/Through Points for Timing Exceptions, on page 231

• Defining Multi-cycle Paths, on page 234

• Defining False Paths, on page 235

For information about resolving timing exception conflicts, see Conflict
Resolution for Timing Exceptions, on page 451 in the Reference Manual.

Defining From/To/Through Points for Timing Exceptions
For multi-cycle path, false path, and maximum path delay constraints, you
must define paths with a combination of From/To/Through points. Whenever the
tool encounters a conflict in the way timing-exception constraints are written,
see Conflict Resolution for Timing Exceptions, on page 451 to determine how
resolution occurs based on the priorities defined.

The following guidelines provide details for defining these constraints. You
must specify at least one From, To, or Through point.

• In the From field, identify the starting point for the path. The starting
point can be a clock (c:), register (i:), top-level input or bi-directional port
(p:), or black box output (i:). To specify multiple starting points:

– Such as the bits of a bus, enclose them in square brackets: A[15:0] or
A[*].

– Select the first start point from the HDL Analyst view, then drag and
drop this instance into the From cell in SCOPE. For each subsequent
instance, press the Shift key as you drag and drop the instance into
the From cell in SCOPE. For example, valid Tcl command format
include:

define_multicycle_path -from {i:aq i:bq} 2

define_multicycle_path -from [i:aq i:bq} -through {n:xor_all} 2

• In the To field, identify the ending point for the path. The ending point
can be a clock (c:), register (i:), top-level output or bi-directional port (p:),
or black box input (i:). To specify multiple ending points, such as the
bits of a bus, enclose them in square brackets: B[15:0].

LO

Chapter 5: Specifying Constraints Specifying Timing Exceptions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
232 June 2009

• A single through point can be a net (n:), hierarchical port (t:), or instanti-
ated cell pin (t:). To specify a net:

– Click in the Through field and click the arrow. This opens the Product of
Sums (POS) interface.

– Either type the net name with the n: prefix in the first cell or drag the
net from an HDL Analyst view into the cell.

– Click Save.

For example, if you specify n:net1, the constraint applies to any path
passing through net1.

• To specify an OR when constraining a list of through points, you can type
the net names in the Through field or you can use the POS UI. To do this:

– Click in the Through field and click the arrow. This opens the Product of
Sums interface.

– Either type the first net name in a cell in a Prod row or drag the net
from an HDL Analyst view into the cell. Repeat this step along the
same row, adding other nets in the Sum columns. The nets in each
row form an OR list.

– Alternatively, select Along Row in the SCOPE POS interface. In an HDL
Analyst view, select all the nets you want in the list of through points.
Drag the selected nets and drop them into the POS interface. The tool
fills in the net names along the row. The nets in each row form an OR
list.

Specifying Timing Exceptions Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 233

– Click Save.

The constraint works as an OR function and applies to any path passing
through any of the specified nets. In the example shown in the previous
figure, the constraint applies to any path that passes through net1 or
net2.

• To specify an AND when constraining a list of through points, type the
names in the Through field or do the following:

– Open the Product of Sums interface as described previously.

– Either type the first net name in the first cell in a Sum column or drag
the net from an HDL Analyst view into the cell. Repeat this step down
the same Sum column.

– Alternatively, select Down Column in the SCOPE POS interface. In an
HDL Analyst view, select all the nets you want in the list of through
points. Drag the selected nets and drop them into the POS interface.
The tool fills in the net names down the column.

The constraint works as an AND function and applies to any path
passing through all the specified nets. In the previous figure, the
constraint applies to any path that passes through net1 and net3.

• To specify an AND/OR constraint for a list of through points, type the
names in the Through field (see the following figure) or do the following:

– Create multiple lists as described previously.

– Click Save.

LO

Chapter 5: Specifying Constraints Specifying Timing Exceptions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
234 June 2009

In this example, the synthesis tool applies the constraint to the paths
through all points in the lists as follows:

net1 AND net3
OR net1 AND net4
OR net2 AND net3
OR net2 AND net4

Defining Multi-cycle Paths
To define a multi-cycle path constraint, use the Tcl define_multicycle_path
command, or select the SCOPE Delay Paths tab and do the following;

1. From the Delay Type pull-down menu, select Multicycle.

2. Select a port or register in the From or To columns, or a net in the Through
column. You must set at least one From, To, or Through point. You can use
a combination of these points. See Defining From/To/Through Points for
Timing Exceptions, on page 231 for more information.

3. Select another port or register if needed (From/To/Through).

4. Type the number of clock cycles (Cycles).

5. Specify the clock period to use for the constraint by going to the Start/End
column and selecting either Start or End.

If you do not explicitly specify a clock period, the software uses the end
clock period. The constraint is now calculated as follows:

multicycle_distance = clock_distance + (cycles -1) * reference_clock_period

In the equation, clock_distance is the shortest distance between the
triggering edges of the start and end clocks, cycles is the number of

Specifying Timing Exceptions Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 235

clock cycles specified, and reference_clock_period is either the specified
start clock period or the default end clock period.

6. Check the Enabled box.

Defining False Paths
You define false paths by setting constraints explicitly on the Delay Paths tab
or implicitly on the Clock or Clock to Clock tabs. You can also define false paths
with the corresponding define_false_path, define_clock, and define_clock_delay Tcl
commands. See Defining From/To/Through Points for Timing Exceptions, on
page 231 for object naming and specifying through points.

• To define a false path between ports or registers, select the SCOPE Delay
Paths tab, and do the following:

– From the Delay Type pull-down menu, select False.

– Use the pull-down to select the port or register from the appropriate
column (From/To/Through).

– Check the Enabled box.

The software treats this as an explicit false constraint and assigns it the
highest priority. Any other constraints on this path are ignored.

• To define a false path between two clocks, select the SCOPE Clocks tab,
and assign the clocks to different clock groups:

The software implicitly assumes a false path between clocks in different
clock groups. This false path constraint can be overridden by a
maximum path delay constraint, or with an explicit constraint.

• To define a false path between two clock edges, select the SCOPE Clock to
Clock tab, and do the following:

– Specify one clock as the starting clock edge (From Clock Edge).

– Specify the other clock as the ending clock edge (To Clock Edge).

– Click in the Delay column, and select false.

– Mark the Enabled check box.

Use this technique to specify a false path between any two clocks,
regardless of clock groups. This constraint can be overridden by a
maximum delay constraint on the same path.

LO

Chapter 5: Specifying Constraints Specifying Timing Exceptions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
236 June 2009

• To override an implicit false path between any two clocks described
previously, set an explicit constraint between the clocks by selecting the
SCOPE Clock to Clock tab, and doing the following:

– Specify the starting (From Clock Edge) and ending clock edges (To Clock
Edge).

– Specify a value in the Delay column.

– Mark the Enabled check box.

The software treats this as an explicit constraint. You can use this
method to constrain a path between any two clocks, regardless of
whether they belong to the same clock group.

• To set an implicit false path on a path to/from an I/O port:

– Select Project->Implementation Options->Constraints

– Disable Use clock period for unconstrained IO

Using Collections Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 237

Using Collections
A collection is a group of objects. It can consist of just one object, or of other
collections. You can set the same constraint for multiple objects if you group
them together in a collection. You can either define collections in the SCOPE
window or type the commands in the Tcl script window. The Synplify tool
does not support collections.

• Comparing Methods for Defining Collections, on page 237

• Creating and Using Collections (SCOPE Window), on page 238

• Creating Collections (Tcl Commands), on page 241

• Using the Tcl Find Command to Define Collections, on page 244

• Using the Expand Tcl Command to Define Collections, on page 246

• Viewing and Manipulating Collections (Tcl Commands), on page 247

Comparing Methods for Defining Collections
The find and expand Tcl commands that are used to define collections in the
Synplify Premier and Synplify Pro software can either be entered in the Tcl
script window or in the SCOPE window. It is recommended that you use the
SCOPE interface for two reasons:

• When you use the SCOPE interface, the software uses the top-level
database to find objects, which is a good practice. The Tcl window
commands are based on the current Analyst view. If you use the Tcl
script window to type in a command after mapping, the search is based
on the mapped database, which could have instances that have been
renamed, replicated, or removed.

Similarly, the current Analyst view could be a lower-level view. In the
design shown above, if you push down into B, and then type find -hier
a* in the Tcl window, the command finds a3 and a4. However if you cut

a2

Top B

a1

a3a4

LO

Chapter 5: Specifying Constraints Using Collections

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
238 June 2009

and paste the same command into the SCOPE Collections tab, your
results would include a1, a2, a3, and a4, because the SCOPE interface
uses the top-level database and searches the entire hierarchy.

• If you use the Tcl script window, you have to redefine the collection the
next time you open the project. When you define a collection in the
SCOPE window, the software saves the information in the constraint file
for the project.

• You cannot apply constraints to collections defined in the Tcl script
window, but you can apply constraints and attributes to SCOPE collec-
tions.

Creating and Using Collections (SCOPE Window)
The following procedure shows you how to define collections in the Synplify
Pro or Synplify Premier SCOPE window. You can also type the commands
directly in the Tcl script window (Creating Collections (Tcl Commands), on
page 241). See Comparing Methods for Defining Collections, on page 237 for a
comparison of the two methods.

1. Define a collection by doing the following:

– Open the SCOPE window and click the Collections tab.

– In the Collection Name column, type a name for the collection. This is
equivalent to defining the collection with the set command, as
described in Creating Collections (Tcl Commands), on page 241.

– In the Commands column, select find or expand. For tips on using these
commands, see Using the Tcl Find Command to Define Collections, on
page 244 and Using the Expand Tcl Command to Define Collections, on
page 246. For complete syntax details, see the Reference Manual.

Using Collections Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 239

If you cut and paste a Tcl Find command from the Tcl window into the
SCOPE Collections tab, remember that the SCOPE interface works on
the top-level database, while the Find command in the Tcl window
works on the current level displayed in the Analyst view. See
Comparing Methods for Defining Collections, on page 237.

– In the Command Arguments column, type only the arguments to the
command you set in the Commands column, so that you locate the
objects you want. Do not repeat the command itself. For details of the
syntax, see the Reference Manual. Objects in a collection do not have
to be of the same type. The collections defined above do the following:

The collections you define appear in the SCOPE pull-down object
lists, so you can use them to define constraints.

– To crossprobe the objects selected by the find and expand commands,
click Select in the Select in Analyst column. The schematic views
highlight the objects located by these commands. For other viewing
operations, see Viewing and Manipulating Collections (Tcl Commands),
on page 247.

2. To create a collection that is made up of other collections, do this:

– Define the collections as described in the previous step. These
collections must be defined before you can concatenate them or add
them together in a new collection.

– To concatenate collections or add to collections, type a name for the
new collection in the Collection Name column. Set Commands to one of
the operator commands like c_union or c_diff. Type the appropriate
arguments in Command Arguments. See Creating Collections (Tcl
Commands), on page 241 for a list of available commands and the
Reference Manual for the complete syntax.

– Click Run Commands. The software runs through the commands in
sequence, so you must first define collections before doing any group
or comparative operations.

Collection Finds...

find_all All components in the module endpMux

find_reg All registers in the module endpMux

find_comb All combinatorial components under endpMux

LO

Chapter 5: Specifying Constraints Using Collections

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
240 June 2009

The software saves the information in the constraint file for the project.

3. To apply constraints to a collection do the following:

– Define a collection as described in the previous steps.

– Go to the appropriate SCOPE tab and specify the collection name
where you would normally specify the object name. Collections
defined in the SCOPE interface are available from the pull-down
object lists. The following figure shows the collections defined in step
1 available for setting a false path constraint.

– Specify the rest of the constraint as usual. The software applies the
constraint to all the objects in the collection. See examples of
constraints in Example: Attribute Attached to a Collection, on
page 240.

Example: Attribute Attached to a Collection
The following example shows the xc_area_group attribute applied to $find_reg,
which results in all the registers in this collection being placed in the same
region. Check the .srr file, the netlist, and if you are using Synplify Premier,
the Design Planner view to see that the attribute is honored.

Using Collections Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 241

Creating Collections (Tcl Commands)
This section describes how to type in and use the Tcl collection commands
instead of the SCOPE window (Creating and Using Collections (SCOPE
Window), on page 238). Although you can type these commands in the Tcl
window (Synplify Premier and Synplify Pro) or put them in a Tcl script, it is
recommended that you use the SCOPE window, for the reasons described in
Comparing Methods for Defining Collections, on page 237.

For details of the syntax for the commands described here, refer to Tcl
Collection Commands, on page 1251 in the Reference Manual.

1. To create a collection, name it with the set command and assign it to a
variable.

A collection can consist of individual objects, Tcl lists (which can have
single elements as arguments), or other collections. Use the Tcl find and
expand commands to locate objects for the collection (see Using the Tcl
Find Command to Define Collections, on page 244 and Using the Expand
Tcl Command to Define Collections, on page 246). The following example
creates a collection called my_collection which consists of all the modules
(views) found by the find command.

set my_collection [find -view {*}]

2. To create collections derived from other collections, do the following:

– Define a new variable for the collection.

– Create the collection with one of the operator commands from this
table:

To... Use this command...

Add objects to a collection c_union. See Examples: c_union
Command, on page 242

Concatenate collections c_union. See Examples: c_union
Command, on page 242.

LO

Chapter 5: Specifying Constraints Using Collections

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
242 June 2009

3. If your Tcl collection includes instances that have special characters
make sure to use extra curly braces or use a backslash to escape the
special character. See Examples: Names with Special Characters, on
page 244 for details.

Once you have created a collection, you can do various operations on the
objects in the collection (see Viewing and Manipulating Collections (Tcl
Commands), on page 247), but you cannot apply constraints to the collection.

Examples: c_union Command
This example adds the reg3 instance to collection1, which contains reg1 and
reg2 and names the new collection sumCollection.

set sumCollection [c_union $collection1 {i:reg3}]
c_list $sumCollection

{"i:reg1" "i:reg2" "i:reg3"}

If you added reg2 and reg3 with the c_union command, the command removes
the redundant instances (reg2) so that the new collection would still consist of
reg1, reg2, and reg3.

This example concatenates collection1and collection2 and names the new
collection combined_collection:

set combined_collection [c_union $collection1 $collection2]

Create a collection from the
differences between collections

c_diff. See Examples: c_diff Command, on
page 243.

Create a collection from common
objects in collections

c_intersect. See Examples: c_intersect
Command, on page 243.

Find objects that belong to just
one collection

c_symdiff. See Examples: c_symdiff
Command, on page 243.

To... Use this command...

Using Collections Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 243

Examples: c_diff Command
This example compares a list to a collection (collection1) and creates a new
collection called subCollection from the list of differences:

set collection1 {i:reg1 i:reg2}
set subCollection [c_diff $collection1 {i:reg1}]
c_print $subCollection

"i:reg2"

You can also use the command to compare two collections:

set reducedCollection [c_diff $collection1 $collection2]

Examples: c_intersect Command
This example compares a list to a collection (collection1) and creates a new
collection called interCollection from the objects that are common:

set collection1 {i:reg1 i:reg2}
set interCollection [c_intersect $collection1 {i:reg1 i:reg3}]
c_print $interCollection

"i:reg1"

You can also use the command to compare two collections:

set common_collection [c_intersect $collection1 $collection2]

Examples: c_symdiff Command
This example compares a list to a collection (collection1) and creates a new
collection called diffCollection from the objects that are different. In this case,
reg1 is excluded from the new collection because it is in the list and collection1.

set collection1 {i:reg1 i:reg2}
set diffCollection [c_symdiff $collection1 {i:reg1 i:reg3}]
c_list $diffCollection

{"i:reg2" "i:reg3"}

You can also use the command to compare two collections:

set symdiff_collection [c_symdiff $collection1 $collection2]

LO

Chapter 5: Specifying Constraints Using Collections

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
244 June 2009

Examples: Names with Special Characters
Your instance names might include special characters, as for example when
your HDL code uses a generate statement. If your instance names have special
characters, do the following:

Make sure that you include extra curly braces {}, as shown below:

define_scope_collection GRP_EVENT_PIPE2 {find -seq
{EventMux\[2\].event_inst?_sync[*]} -hier}

define_scope_collection mytn {find -inst {i:count1.co[*]}}

Alternatively, use a backslash to escape the special character:

define_scope_collection mytn {find -inst i:count1.co\[*\]}

Using the Tcl Find Command to Define Collections
It is recommended that you use the SCOPE window rather than the Tcl
window described here to specify the find command, for the reasons described
in Comparing Methods for Defining Collections, on page 237.

The Tcl find command returns a collection of objects. If you want to create a
collection of connectivity-based objects, use the Tcl expand command instead
of find (Using the Expand Tcl Command to Define Collections, on page 246).
This section lists some tips for using the Tcl find command.

1. Tcl find always searches at the top-level of your design, irregardless of
the current Analyst view.

2. Create a collection by typing the find command and assigning the results
to a variable. The following example finds all instances with a primitive
type DFF and assigns the collection to the variable $result:

set result [find -hier -inst {*} -filter @ view == FDE]

The result is a random number like s:49078472, which is the collection of
objects found. For a list of some useful find commands, see Examples:
Useful Find Commands, on page 246.

3. The following table lists some usage tips for specifying the find command.
For the full details of the syntax, refer to Tcl find Command, on
page 1260 of the Reference Manual.

Using Collections Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 245

4. Once you have defined the collection, you can view the objects in the
collection, using one of the following methods, which are described in
more detail in Viewing and Manipulating Collections (Tcl Commands), on
page 247:

Case rules Use the case rules for the language from which the
object was generated:
• VHDL: case-insensitive
• Verilog: case-sensitive. Make sure that the object

name you type in the SCOPE window matches the
Verilog name.

For Synplify Pro and Synplify Premier mixed language
designs, use the case rules for the parent module.
This example finds any object in the current view that
starts with either a or A:

find {a*} -nocase

Pattern matching You have two choices:
• Specify the -regexp argument, and then use regular

expressions for pattern matching.
• Do not specify -regexp, and use only the * and ?

wildcards for pattern matching.

Restricting search by
type of object

Use the -object_type argument. The following
command finds all nets that contain syn.

find -net {*syn*}

Restricting search to
hierarchical levels
below the current view

Use the -hier argument. The following example finds
all objects below the current view that begin with a:

find {a*} -hier

Restricting search by
object property

• Select Project->Implementation Options. On the Device
tab, enable Annotated Properties for Analyst.

• Compile or synthesize the design. After the compile
stage, the tool annotates the design with properties
like clock pins. You can find objects based on these
annotated properties.

• Use the -filter argument to the find command. The
following example finds any register in the current
view that is clocked by myclk.

find -seq {*} -filter {@clock==myclk}
find -seq {*} -clock myclk

LO

Chapter 5: Specifying Constraints Using Collections

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
246 June 2009

– Select the collection in an HDL Analyst view (select).

– Print the collection using the -print option to the find command.

– Print the collection without carriage returns or properties (c_list).

– Print collection in columns, with optional properties (c_print).

5. To manipulate the objects in the collection, use the commands
described in Viewing and Manipulating Collections (Tcl Commands), on
page 247.

Examples: Useful Find Commands

Using the Expand Tcl Command to Define Collections
The Tcl expand command returns a collection of objects that are logically
connected between the specified expansion points. This section contains tips
on using the Tcl expand command to generate a collection of objects that are
related by their connectivity. For the syntax details, refer to Tcl expand
Command, on page 1257 in the Reference Manual.

• Specify at least one from, to, or through point as the starting point for
the command. You can use any combination of these points. The
following example expands the cone of logic between reg1 and reg2.

expand -from {i:reg1} -to {i:reg2}

If you only specify a through point, the expansion stops at sequential
elements. The following example finds all elements in the transitive
fanout and transitive fanin of a clock-enable net:

expand -thru {n:cen}

To find... Use a command like this example...

Instances by slack value set result [find –hier –inst {*} –filter @slack <= {-1.000}]

Instance within a slack
range

set result [find –hier –inst {*} –filter @slack <= {-1.000} &&
@slack >= {+1.000}]

Pins by fanin/fanout value set result [find –hier –inst {*.D} –filter @fanin <= {50}]

Sequential components by
primitive type

set result [find –hier –seq {*} –filter @view=={ FDRSE}

Using Collections Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 247

• To specify the hierarchical scope of the expansion, use the -hier
argument. If you do not specify this argument, the command only works
on the current view. The following example expands the cone of logic to
reg1, including instances below the current level:

expand -hier -to {i:reg1}

If you only specify a through point, you can use the -level argument to
specify the number of levels of expansion. The following example finds
all elements in the transitive fanout and transitive fanin of a clock-
enable net across one level of hierarchy:

expand -thru {n:cen} -level 1

• To restrict the search by type of object, use the -object_type argument.
The following command finds all pins driven by the specified pin.

expand -pin -from {t:i_and3.z}

• To print a list of the objects found, either use the -print argument to the
find command, or use the c_print or c_list commands (see Creating Collec-
tions (Tcl Commands), on page 241).

Viewing and Manipulating Collections (Tcl Commands)
The following section describes various operations you can do on the collec-
tions you defined. For full details of the syntax, see Tcl Collection Commands,
on page 1251 in the Reference Manual.

1. To view the objects in a collection, use one of the methods described in
subsequent steps:

– Select the collection in an HDL Analyst view (step 2).

– Print the collection without carriage returns or properties (step 3).

– Print the collection in columns (step 4).

– Print the collection in columns with properties (step 5).

2. To select the collection in an HDL Analyst view, type select <collection>.

For example, select $result highlights all the objects in the $result collec-
tion.

LO

Chapter 5: Specifying Constraints Using Collections

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
248 June 2009

3. To print a simple list of the objects in the collection, uses the c_list
command, which prints a list like the following:

{i:EP0RxFifo.u_fifo.dataOut[0]} {i:EP0RxFifo.u_fifo.dataOut[1]}
{i:EP0RxFifo.u_fifo.dataOut[2]} ...

The c_list command prints the collection without carriage returns or
properties. Use this command when you want to perform subsequent
Tcl commands on the list. See Example: c_list Command, on page 250.

4. To print a list of the collection objects in column format, use the c_print
command. For example, c_print $result prints the objects like this:

{i:EP0RxFifo.u_fifo.dataOut[0]}
{i:EP0RxFifo.u_fifo.dataOut[1]}
{i:EP0RxFifo.u_fifo.dataOut[2]}
{i:EP0RxFifo.u_fifo.dataOut[3]}
{i:EP0RxFifo.u_fifo.dataOut[4]}
{i:EP0RxFifo.u_fifo.dataOut[5]}

5. To print a list of the collection objects and their properties in column
format, use the c_print command as follows:

– Annotate the design with a full list of properties by selecting Project-
>Implementation Options, going to the Device tab, and enabling Annotated
Properties for Analyst. Synthesize the design. If you do not enable the
annotation option, properties like clock pins will not be annotated as
properties.

– Check the properties available by right-clicking on the object in the
HDL Analyst view and selecting Properties from the popup menu. You
see a window with a list of the properties that can be reported.

– In the Tcl window, type the c_print command with the -prop option. For
example, typing c_print -prop slack -prop view -prop clock $result lists the
objects in the $result collection, and their slack, view and clock
properties.

Object Name slack view clock
{i:EP0RxFifo.u_fifo.dataOut[0]} 0.3223 "FDE" clk
{i:EP0RxFifo.u_fifo.dataOut[1]} 0.3223 "FDE" clk
{i:EP0RxFifo.u_fifo.dataOut[2]} 0.3223 "FDE" clk
{i:EP0RxFifo.u_fifo.dataOut[3]} 0.3223 "FDE" clk
{i:EP0RxFifo.u_fifo.dataOut[4]} 0.3223 "FDE" clk

Using Collections Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 249

{i:EP0RxFifo.u_fifo.dataOut[5]} 0.3223 "FDE" clk
{i:EP0RxFifo.u_fifo.dataOut[6]} 0.3223 "FDE" clk
{i:EP0RxFifo.u_fifo.dataOut[7]} 0.3223 "FDE" clk
{i:EP0TxFifo.u_fifo.dataOut[0]} 0.1114 "FDE" clk
{i:EP0TxFifo.u_fifo.dataOut[1]} 0.1114 "FDE" clk

– To print out the results to a file, use the c_print command with the -file
option. For example, c_print -prop slack -prop view -prop clock $result -file
results.txt writes out the objects and properties listed above to a file
called results.txt. When you open this file, you see the information in a
spreadsheet format.

6. You can do a number of operations on a collection, as listed in the
following table. For details of the syntax, see Tcl Collection Commands,
on page 1251 in the Reference Manual.

To... Do this...

Copy a collection Create a new variable for the copy and copy the original
collection to it with the set command. When you make
changes to the original, it does not affect the copy, and
vice versa.

set my_collection_copy $my_collection

List the objects in a
collection

Use the c_print command to view the objects in a
collection, and optionally their properties, in column
format:

"v:top"
"v:block_a"
"v:block_b"

Alternatively, you can use the -print option to an
operation command to list the objects.

Generate a Tcl list
of the objects in a
collection

Use the c_list command to view a collection or to convert
a collection into a Tcl list. You can manipulate a Tcl list
with standard Tcl commands. In addition, the Tcl
collection commands work on Tcl lists.
This is an example of c_list results:

{"v:top" "v:block_a" "v:block_b"}
Alternatively, you can use the -print option to an
operation command to list the objects.

LO

Chapter 5: Specifying Constraints Using Collections

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
250 June 2009

Example: c_list Command
The following provides a practical example of how to use the c_list command.
This example first finds all the CE pins with a negative slack that is less than
0.5 ns and groups them in a collection:

set get_components_list [c_list [find -hier -pin {*.CE} -filter
@slack < {0.5}]]

The c_list command returns a list:

{t:EP0RxFifo.u_fifo.dataOut[0].CE} {t:EP0RxFifo.u_fifo.dataOut[1].CE}
{t:EP0RxFifo.u_fifo.dataOut[2].CE} ..

You can use the list to find the terminal (pin) owner:

proc terminal_to_owner_instance {terminal_name terminal_type} {
regsub -all $terminal_type$ $terminal_name {} suffix
regsub -all {^t:} $suffix {i:} prefix
return $prefix
}

foreach get_component $get_components_list {
append owner [terminal_to_owner_instance $get_component {.CE}]

" "
}

puts "terminal owner is $owner"

This returns the following, which shows that the terminal (pin) has been
converted to the owning instance:

terminal owner is i:EP0RxFifo.u_fifo.dataOut[0]
i:EP0RxFifo.u_fifo.dataOut[1] i:EP0RxFifo.u_fifo.dataOut[2]

Iterate through a
collection

Use the foreach command. This example iterates
through all the objects in the collection:
foreach port [find -port *] {
define_false_path -from $port }

To... Do this...

Using Auto Constraints Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 251

Using Auto Constraints
Auto constraining is available for certain technologies in both Synplify Pro
and Synplify Premier, however, the Physical Synthesis option must be disabled
in the Synplify Premier tool. You can synthesize with automatic constraints
as a first step to get an idea of what you can achieve. Automatic constraints
generate the fastest design implementation, so they force the timing engine to
work harder. Based on the results from auto-constraining, you can refine the
constraints manually later. For an explanation of how auto constraints work,
see Auto Constraints, on page 386 in the Reference Manual.

1. To automatically constrain your design, first do the following:

– Set your device to a technology that supports auto-constraining. With
supported technologies, the Auto Constrain button under Frequency in
the Project view is available.

– Do not define any clocks. If you define clocks using the SCOPE
window or a constraint file, or set the frequency in the Project view,
the software uses the user-defined define_clock constraints instead of
auto constraints.

– Make sure any multi-cycle or false path constraints are specified on
registers.

2. Enable the Auto Constrain button on the left side of the Project view.
Alternatively, select Project->Implementation Options->Constraints, and enable
the Auto Constrain option there.

LO

Chapter 5: Specifying Constraints Using Auto Constraints

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
252 June 2009

3. If you want to auto constrain I/O paths, select Project->Implementation
Options->Constraints and enable Use Clock Period for Unconstrained IO.

If you do not enable this option, the software only auto constrains flop-
to-flop paths. Even when the software auto constrains the I/O paths, it
does not generate these constraints for forward-annotation.

4. Synthesize the design.

The software puts each clock in a separate clock group and adjusts the
timing of each clock individually. At different points during synthesis it
adjusts the clock period of each clock to be a target percentage of the
current clock period, usually 15% - 25%.

After the clocks, the timing engine constrains I/O paths by setting the
default combinational path delay for each I/O path to be one clock
period.

The software writes out the generated constraints in a file called
AutoConstraint_<design_name>.sdc in the run directory. It also
forward-annotates these constraints to the place-and-route tools.

5. Check the results in AutoConstraint_<design_name>.sdc and the log
file. To open the .sdc file as a text file, right-click the file in the
Implementation Results view and select Open as Text.

Translating Altera QSF Constraints Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 253

The flop-to-flop constraints use syntax like the following:

define_clock -name {b:leon|clk} -period 13.327 -clockgroup
Autoconstr_clkgroup_0 -rise 0.000 -fall 6.664 -route 0.000

6. You can now add the generated .sdc file to the project and rerun
synthesis with these constraints.

Translating Altera QSF Constraints
If you have an Altera Quartus Settings File (QSF) with timing or pad
constraints, you can use the qsf2sdc translator to translate these constraints
to the sdc format and use the translated constraints to drive synthesis.

1. Run the qsf2sdc utility.

– Make sure the input QSF file has a .qsf extension.

– From the command line, run the translator on the QSF file. The
translator is in the bin directory: install_dir/bin/qsf2sdc.exe. Use the
following syntax:

<install_dir>/bin/qsf2sdc -iqsf <constraints_file>.qsf
-osdc <constraints_file>.sdc
[-oqsf <residual_constraints_file>.qsf] [-all]
[-silent]

The translator generates a constraint file in the sdc format, which
contains the timing-related constraints from the QSF file that are
relevant to synthesis. It ignores the other backend constraints in the file.
See Altera qsf2sdc Utility, on page 541 in the Reference Manual for
details of the syntax and a list of supported pin location and I/O
constraints.

2. After translating the constraints, edit the new .sdc file.

The translator converts the most common timing and physical
constraints. However, because of the diversity and complexity of QSF
format, the resulting .sdc file requires manual intervention.

– Visually inspect the translated file.

The original QSF commands are written as comments in the new .sdc
file so that you can validate the translated constraints. Constraints

LO

Chapter 5: Specifying Constraints Translating Altera QSF Constraints

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
254 June 2009

which were successfully translated are specified as Supported.
However, constraints which were unsuccessfully translated are
specified as Unsupported. Use the -silent option to suppress all the
#Supported and #Unsupported messages in the .sdc file.

– Manually edit the SDC file to complete the translation of constraints,
as necessary.

– Optionally, use the -all option to convert any instances with location
assignments. By default, only pin location assignments and IO
standards are automatically converted.

3. To run physical synthesis, create one .sdc file.

– Include timing constraints created previously into the .sdc file
containing the translated physical constraints. Make sure that all of
the following types of constraints are combined into the .sdc file

Timing Constraints:
Clock
Clock-to-clock
IO delays
IO standard, drive, slew and pull-up/pull-down
Multi-cycle and false paths
Max-delay paths
DCM parameters

Physical Constraints
SYN_LOC on IO pins and pad types

Physical constraints applied to invariant objects (such as registers,
instantiated macros and modules) can be safely translated to SDC
constraints. Use the Design Planner tool for advanced physical
constraints.

– Include any synthesis attributes from logic synthesis, such as
syn_ramstyle, into the .sdc file.

4. Edit the original QSF file.

– Remove all translated constraints from the original .qsf file.

– If there are any untranslated QSF commands left in the file, add the
.qsf file to your project. The file must have the same base name as
the .vqm netlist so that the Altera P&R tool can source the file.

Converting and Using Xilinx UCF Constraints Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 255

5. Run a constraint check by selecting Run->Constraint Check.

This command generates a report that checks the syntax and applica-
bility of the timing constraints in the .sdc file(s) for your project. The
report is written to the project_name_cck.rpt file.

6. Add the generated .sdc file to the project, and use it to drive synthesis.

Converting and Using Xilinx UCF Constraints
As you iterate through the flow, you might want to use Xilinx UCF constraints
to guide synthesis. To do this, you must translate the UCF constraints into
SDC constraints that the synthesis tools can use. The following procedures
show you how convert the UCF constraints in logic and physical synthesis
designs and then forward-annotate them for place-and-route. Although this
utility is also documented here, it is recommended that you do not use this
method, as it will not be available in future releases of the software.

• Using Xilinx UCF Constraints in a Logic Synthesis Design, on page 255

• Using Xilinx UCF Constraints in a Physical Synthesis Design, on
page 258

• Support for UCF Conversion, on page 260

• Using the Legacy UCF2SDC Utility, on page 264.
The process for the command-line ucf2sdc_old utility (see Xilinx Legacy
ucf2sdc Utility, on page 537 in the Reference Manual) is a little different
from the other method described, as it does not use mapper information,
run the constraint checker, or create a new project. The utility is still
available, but will not be supported in future releases.

Using Xilinx UCF Constraints in a Logic Synthesis Design
You can run logic synthesis in the Synplify Pro tool or in the Synplify Premier
tool in logic synthesis mode. The following procedure shows you how to use
Xilinx UCF constraints for a logic synthesis run with either of the tools.

LO

Chapter 5: Specifying Constraints Converting and Using Xilinx UCF Constraints

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
256 June 2009

1. Start with the Xilinx constraint files to be translated.

– You can use the following kinds of files:

These files must refer to design objects n the mapped synthesis tool
database so as to be consistent with subsequent synthesis runs. If
you use a UCF file that refers to XST design objects, naming might be
inconsistent. You can have multiple constraint files, one for the top-
level, and others for blocks. See Supported Input Files for UCF
Conversion, on page 261 for details about the input files.

– Add all Xilinx constraint files to be converted to the logic synthesis
project.

– Add the corresponding netlist files to the project, along with the
constraint file.

2. Do an initial synthesis run.

– Set up a P&R implementation.

– Synthesize the design and run P&R.

– Check the log files for any constraint-related warnings and fix them
before proceeding.

3. Select Project->Convert Vendor Constraints to open the UCF to SDC Conversion
dialog box.

UCF Top-level constraint file, with corresponding EDIF file (edf)

NCF Block-level constraint file, with corresponding EDIF file (edn, edf,
ngc or ngo)

XCF Block-level constraint file, with corresponding EDIF file (ngc or ngo)

Converting and Using Xilinx UCF Constraints Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 257

4. Specify the translation options:

– Specify a name for the new project in Project Name.

– Set a location for the new project in Project Location.

– In the Constraint Files section, enable the files you want to use. This
section lists the files you added to the project in step 2. If you do not
have corresponding EDIF files for the constraint files you enable, you
see warning messages in the box at the bottom of the dialog box.

– Enable Run Constraints Checker after Conversion and Invoke Report File.

– Click the Convert button in the upper right.

The tool uses information from the project .srd file and translates the
constraints in the input files, using a separate process for the top
level and for each block. It then creates a new project. Note that it
does not delete the original project or files, but creates a new one. See

LO

Chapter 5: Specifying Constraints Converting and Using Xilinx UCF Constraints

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
258 June 2009

Generated Files after UCF Conversion, on page 261 for names and
descriptions of the files generated after conversion.

Finally, it runs the constraints checker and reports any Xilinx
constraints that cannot be translated. See Support for UCF
Conversion, on page 260 for information about supported and
unsupported constraints.

– Check the ucf2sdc.log file for any errors or warnings.

5. To use the generated sdc file to drive synthesis for the new project, do
the following:

– Open the sdc file and check it. Edit it if necessary. You can also
rename this file.

– Make sure the file is added to the project.

– Run logic synthesis by clicking Run.

6. After logic synthesis, you can do either or both of the following:

– Use the newly-generated project and the sdc files with translated
constraints for physical synthesis. See Using Xilinx UCF Constraints
in a Physical Synthesis Design, on page 258 for more information.

– Use the synplicity.ucf and unsupported.ucf files for Xilinx P&R.
You can use the ucf2sdc.log file and the unsupported.ucf file to
manually translate any remaining constraints.

Using Xilinx UCF Constraints in a Physical Synthesis Design
When you use UCF constraints in a physical synthesis design, it is assumed
that you did a baseline logic synthesis run, and that you have certain files for
the design. The following procedure shows you how to translate and use UCF
constraints in a physical synthesis design with the Synplify Premier software.

1. Run through an initial logic synthesis and P&R run, with either the
Synplify Pro or the Synplify Premier tool in logic synthesis mode. See
step 1 of Using Xilinx UCF Constraints in a Logic Synthesis Design, on
page 255.

For Synplify Premier designs, the conversion of UCF constraints
requires the .srd, .prj, and .ucf files.

2. Do not enable physical synthesis.

Converting and Using Xilinx UCF Constraints Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 259

3. Select Project->Convert Vendor Constraints to open the UCF to SDC Conversion
dialog box.

4. Do the following:

– Specify a name for the new project in Project Name.

– Set a location for the new project in Project Location.

– In the Constraint Files section, check that the files you want to translate
are enabled. The list should include the files you added in step 2. If
you do not have corresponding EDIF files for the constraint files you
enable, you see warning messages in the box at the bottom of the
dialog box.

– Enable Run Constraints Checker after Conversion and Invoke Report File.

– Click the Convert button in the upper right.

LO

Chapter 5: Specifying Constraints Converting and Using Xilinx UCF Constraints

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
260 June 2009

The tool uses information from the project .srd file, the .prj file, and
the .ucf files. It translates the constraints in the Xilinx input constraint
files and creates a new project. It does not overwrite or delete the files
from the input project. Finally, it runs the constraints checker and
reports any Xilinx constraints that cannot be translated. See Supported
UCF Constraints, on page 263 for a list of supported and unsupported
constraints.

It generates the following output constraint files:

5. To use the generated sdc file to drive further synthesis, do the following:

– Open the ucf2sdc.log and check each ucf translation section in this
file for errors or warnings.

– Open the sdc file and check it. Edit it if necessary.

– Make sure the file is added to the project.

– Run physical synthesis.

6. Use the synplicity.ucf and .ncf files for Xilinx P&R.

You can check the ucf2sdc.log file for messages and manually translate
any untranslated constraints in the synplify.ucf file before running
P&R.

Support for UCF Conversion
For procedures on converting UCF constraints, see the methods listed
Converting and Using Xilinx UCF Constraints, on page 255. The following
describe what the software supports when translating UCF constraints to
SDC.

• Supported Input Files for UCF Conversion, on page 261

• Generated Files after UCF Conversion, on page 261

• Supported UCF Constraints, on page 263

<ucfFile>_conv.sdc Translated UCF constraints. Could have multiple files.

unsuppported.ucf Unsupported input Xilinx constraints, in the ucf
format for forward-annotation. This includes any
physical constraints that are not used by the synthesis
tools.

Converting and Using Xilinx UCF Constraints Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 261

Supported Input Files for UCF Conversion
The synthesis software can translate Xilinx constraints from UCF, NCF, and
XCF files with the Project->Convert Vendor Constraints command. The UCF file is
for the top-level design, and the XCF and NCF files are for blocks. The
following table lists support criteria for each of these formats:

Generated Files after UCF Conversion
The tool creates these files after UCF conversion:

UCF • You can only have UCF files for the top-level project.
• Paths referring to elements must start at the top level.
• The UCF file must be one written for the Synopsys FPGA synthesis netlist.

If it is an XST netlist, object names may not match.

NCF • You can only use block-level NCF files.
• A project can have multiple NCF files.
• Each NCF file must have a corresponding edn, edf, ngc, or ngo file with

the same name.

XCF • You can only use block-level XCF files.
• A project can have multiple XCF files.
• Each XCF file must have a corresponding ngc or ngo file with the same

name.

ucf2sdc.log Log file that contains messages after ucf conversion
completes.

<prjFile>_conv.prj The default name for the new project that was generated.

LO

Chapter 5: Specifying Constraints Converting and Using Xilinx UCF Constraints

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
262 June 2009

<ucfFile>_conv.sdc Contains converted Xilinx constraints for logic synthesis.
The tool generates a corresponding sdc file for each input
ucf file. The name for this file is derived from the input
UCF file name.

synplify.ucf After logic synthesis, this one file contains all the
supported input Xilinx constraints in the ucf format.
Unsupported constraints are in a separate file.
After physical synthesis, this one file contains both
supported and unsupported constraints in the ucf
format.

unsupported.ucf File that contains all the unsupported Xilinx constraints
in the ucf format after logic synthesis. This can include
any physical constraints not used for synthesis.

Top.prj

For further synthesis

Top.srd
Top.ucf

Top.srs
IP1.ngc
IP1.xcf

Top.srs
IP2.edn
IP2.ncf

Top_conv.prj

Top_conv.sdc
Top_unsupported.ucf
ucf2sdc.log

IP1_conv.sdc
IP1_unsupported.ucf
ucf2sdc.log

IP2_conv.sdc
IP2_unsupported.ucf
ucf2sdc.log

Converting and Using Xilinx UCF Constraints Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 263

The next figure shows how the project-level input files are handled in a post-
translation synthesis run:

Supported UCF Constraints
The UCF converter supports the following types of constraints:

FF RAM ROM DSP Net Inst View Collection Port Pin

PERIOD Yes Yes Yes Yes

FROM/TO Yes Yes Yes Yes Yes Yes Yes Yes Yes

TIG Yes Yes Yes Yes Yes Yes Yes Yes Yes

OFFSET Yes Yes Yes Yes Yes Yes Yes Yes Yes

TNM
TNM_NET
TIMEGRP

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

LOC Yes Yes Yes Yes Yes Yes Yes Yes Yes

IO PROPS Yes Yes Yes Yes

General
PROPs

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Top.v
Top.sdc
Top_conv.sdc
Top_unsupported.ucf

1P1.ngc
IP1_conv.sdc
IP1_unsupported.ucf

Top.edf
synplicity.ucf

Top.prj

For P&R

1P2.edn
IP2._conv.sdc
IP2_unsupported.ucf

Logical
and

Physical
Synthesis

LO

Chapter 5: Specifying Constraints Converting and Using Xilinx UCF Constraints

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
264 June 2009

Unsupported UCF Constraints
Currently, the UCF converter does not handle the following:

• Back-annotated netlists from the physical synthesis flow.

• Case-sensitive matching on instance and net names. For example: aBc.

• Nets driven by LUTs, except for nets that source OPADs.

• Collections that include inferred RAMs or DSPs. The tool cannot
guarantee that inferred components match.

• The MAXDELAY constraint.

The UCF converter does not currently convert the following keywords:

Using the Legacy UCF2SDC Utility
If you have a Xilinx User Constraint File (UCF) with timing or pad constraints,
you can also use the ucf2sdc_old command to translate these constraints to
the sdc format and use the translated constraints to drive synthesis. However,
it is recommended that you use the methodology described in Using Xilinx
UCF Constraints in a Logic Synthesis Design, on page 255 or Using Xilinx UCF
Constraints in a Physical Synthesis Design, on page 258, as the ucf2sdc_old
command will be phased out in future releases.

1. Run this utility.

– Make sure the input UCF file has a .ucf extension.

– From the command line, run the translator on the UCF file. The
translator is in the bin directory: install_dir/bin/ucf2sdc_old.exe. Use the
following syntax:

Unsupported Keywords Description

BRAMS_PORT[A/B] Predefined keyword

INPUT_JITTER, PRIORITY, DATAPATHONLY TIMESPEC constraint

RISING, FALLING TIMEGRP constraint

CLOSED, OPEN AREA_GROUP constraint

HIGH, LOW, VALID OFFSET constraint

Converting and Using Xilinx UCF Constraints Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 265

<install_dir>/bin/ucf2sdc_old -iucf <constraints_file>.ucf
-osdc <constraints_file>.sdc

The translator generates a file in the .sdc format, with the translated
timing-related constraints from the UCF file. It ignores the other
backend constraints in the UCF file. See Xilinx Legacy ucf2sdc Utility,
on page 537 in the Reference Manual for details.

The following table shows which UCF constraints are translated:

2. After translating the constraints, edit the new .sdc file.

The translator converts the most common timing and physical
constraints. However, you still need to check it manually.

– Visually inspect the translated file. The original UCF commands are
written as comments in the new .sdc file so that you can validate the
translated constraints.

– Manually edit the SDC file to complete the translation of constraints,
as necessary.

3. To run physical synthesis, create one .sdc file.

– Include the timing constraints created previously for logic synthesis
into the .sdc file containing the translated physical constraints. Make
sure that the following constraints are combined into one .sdc file:

Supported on INST, NET, PIN, SET Supported on NET

AREA_GROUP PHASE_SHIFT
BLKNM REG
BUFG RLOC
DRIVE RLOC_ORIGIN
FAST SLEW
HBLKNM SLOW
HU_SET STARTUP_WAIT
IOB TIMEGRP
IOBDELAY TIMESPEC
IOSTANDARD TNM
KEEP_HIERARCHY TNM_NET
LOC TPSYNC
MAP TPTHRU
OPT_EFFORT U_SET
OPTIMIZE USE_RLOC
PERIOD XBLKNM

COLLAPSE
MAXDELAY
MAXSKEW
OPEN_DRAIN
PULLDOWN
PULLUP
USELOWSKEWLINES
WIREAND

LO

Chapter 5: Specifying Constraints Converting and Using Xilinx UCF Constraints

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
266 June 2009

Timing Constraints
Clock
Clock-to-clock
IO delays
IO standard, drive, slew and pull-up/pull-down
Multi-cycle and false paths
Max-delay paths
DCM parameters

Physical Constraints
Register packing into IOB
LOC on IO pads
Macro LOC/RLOC constraints (BUFG, DCM, DSP, MULT, etc.)
Instance LOC/RLOCs (Register, LUT, SRL, RAMS, RAMD, etc.)
AREA_GROUP constraints

Physical constraints on invariant objects like registers, instantiated
macros and modules, can be safely translated to SDC constraints.
Use the Design Planner tool for advanced physical constraints.

– Also, include any synthesis attributes, from logic synthesis, such as
syn_ramstyle, in the .sdc file.

4. Make sure all UCF constraints are forward-annotated to theP&R tool.

– Edit the original input.ucf file and delete all constraints that were
successfully translated to sdc.

– If any untranslated UCF commands remain in the original file (such
as the PROHIBIT constraint), add the edited ucf file to the project. This
file now only contains the untranslated commands. These UCF
constraints are not used for synthesis, but after synthesis, the tool
copies the untranslated UCF commands to the synplicity.ucf file
and appends the other sdc timing constraints to the same file. After
synthesis, all timing constraints are in the synplicity.ucf file.

5. Save the project file.

6. Use the .sdc file to drive synthesis.

The tool generates two output constraint files after synthesis:

Converting and Using Xilinx UCF Constraints Chapter 5: Specifying Constraints

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 267

See Specifying Xilinx Timing Constraints, on page 228 for an illustration.

7. Make sure to use the updated synplicity.ucf file and the design.ncf file to
drive the Xilinx place-and-route tool. If necessary, update any scripts or
par_opt files generated with older versions of the synthesis tools.

synplicity.ucf Contains all timing constraints, whether user-specified sdc
constraints, ucf constraints translated to sdc, or unsupported
ucf constraints that are passed without translation Physical
constraints that are not used for synthesis are included in this
file, along with other unsupported constraints.

design.ncf Contains all physical constraints for forward-annotation.

LO

Chapter 5: Specifying Constraints Converting and Using Xilinx UCF Constraints

Synopsys FPGA Synthesis User Guide
268 June 2009

Synopsys, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: +1 408 215-6000, Fax: +1 408 222-068
www.solvnet.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology,
Certify, DesignWare, HDL Analyst, Identify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro,
Synthesis Constraints Optimization Environment, and VCS are registered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-perfor-
mance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and TotalRecall are trademarks of Synopsys, Inc. All other
names mentioned herein are trademarks or registered trademarks of their respective companies.

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 269

C H A P T E R 6

Setting up a Logic Synthesis Project

When you synthesize a design with the Synopsys FPGA synthesis tools, you
must set up a project for your design. The following describe the procedures
for setting up a project for logic synthesis:

• Setting Up Project Files, on page 270

• Project File Hierarchy Management, on page 279

• Setting Up Implementations and Workspaces, on page 285

• Setting Logic Synthesis Implementation Options, on page 289

• Entering Attributes and Directives, on page 304

• Searching Files, on page 312

• Archiving Files and Projects, on page 315

To set up a physical synthesis project, you follow the steps for setting up a
logic synthesis project, and then additionally follow the procedures described
in Chapter 7, Setting up a Physical Synthesis Project.

LO

Chapter 6: Setting up a Logic Synthesis Project Setting Up Project Files

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
270 June 2009

Setting Up Project Files
For a specific example on setting up a project file, refer to the Synplify and
Synplify Pro tutorial. This section describes the following:

• Creating a Project File, on page 270

• Opening an Existing Project File, on page 273

• Making Changes to a Project, on page 274

• Setting Project View Display Preferences, on page 275

• Updating Verilog Include Paths in Older Project Files, on page 277

Creating a Project File
You must set up a project file for each project. A project contains the data
needed for a particular design: the list of source files, the synthesis results
file, and your device option settings. The following procedure shows you how
to set up a project file using individual commands.

1. Start by selecting one of the following: File->Build Project, File->Open Project,
or the P icon. Click New Project.

The Project window shows a new project. Click the Add File button, press
F4, or select the Project->Add Source File command. The Add Files to Project
dialog box opens.

2. Add the source files to the project.

– Make sure the Look in field at the top of the form points to the right
directory. The files are listed in the box. If you do not see the files,
check that the Files of Type field is set to display the correct file type. If
you have mixed input files, follow the procedure described in Using
Mixed Language Source Files, on page 95.

Setting Up Project Files Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 271

– To add all the files in the directory at once, click the Add All button on
the right side of the form. To add files individually, click on the file in
the list and then click the Add button, or double-click the file name.

You can add all the files in the directory and then remove the ones
you do not need with the Remove button.

If you are adding VHDL files, select the appropriate library from the
the VHDL Library popup menu. The library you select is applied to all
VHDL files when you click OK in the dialog box.

Your project window displays a new project file. If you click on the plus
sign next to the project and expand it, you see the following:

– A folder (two folders for mixed language designs) with the source files.
If your files are not in a folder under the project directory, you can set
this preference by selecting Options->Project View Options and checking
the View project files in folders box. This separates one kind of file from
another in the Project view by putting them in separate folders.

LO

Chapter 6: Setting up a Logic Synthesis Project Setting Up Project Files

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
272 June 2009

– The implementation, named rev_1 by default. Implementations are
revisions of your design within the context of the synthesis software,
and do not replace external source code control software and
processes. Multiple implementations let you modify device and
synthesis options to explore design options. You can have multiple
implementations in Synplify Premier and Synplify Pro, but not in
Synplify. Each implementation has its own synthesis and device
options and its own project-related files.

3. Add any libraries you need, using the method described in the previous
step to add the Verilog or VHDL library file.

– For vendor-specific libraries, add the appropriate library file to the
project. Note that for some families, the libraries are loaded
automatically and you do not need to explicitly add them to the
project file.

To add a third-party VHDL package library, add the appropriate .vhd
file to the design, as described in step 2. Right click the file in the
Project view and select File Options, or select Project-> Set VHDL library.
Specify a library name that is compatible with the simulators. For
example, MYLIB. Make sure that this package library is before the top-
level design in the list of files in the Project view.

For information about setting Verilog and VHDL file options, see
Setting Verilog and VHDL Options, on page 298. You can also set
these file options later, before running synthesis.

For additional vendor-specific information about using vendor macro
libraries and black boxes, see Optimizing Actel Designs, on page 760,
Optimizing Altera Designs, on page 764, Optimizing Lattice Designs,
on page 785, and Optimizing Xilinx Designs, on page 797.

Setting Up Project Files Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 273

– For generic technology components, you can either add the
technology-independent Verilog library supplied with the software
(<install_dir>/lib/generic_ technology/gtech.v) to your design, or add your
own generic component library. Do not use both together as there
may be conflicts.

4. Check file order in the Project view. File order is especially important for
VHDL files.

– For VHDL files, you can automatically order the files by selecting Run-
>Arrange VHDL Files. Alternatively, manually move the files in the
Project view. Package files must be first on the list because they are
compiled before they are used. If you have design blocks spread over
many files, make sure you have the following file order: the file
containing the entity must be first, followed by the architecture file, and
finally the file with the configuration.

– In the Project view, check that the last file in the Project view is the
top-level source file. Alternatively, you can specify the top-level file
when you set the device options.

5. Select File->Save, type a name for the project, and click Save. The Project
window reflects your changes.

6. To close a project file, select the Close Project button or File->Close Project.

Opening an Existing Project File
There are two ways to open a project file: the Open Project and the generic File
->Open command.

1. If the project you want to open is one you worked on recently, you can
select it directly: File->Recent Projects-> projectName.

2. Use one of the following methods to open any project file:

LO

Chapter 6: Setting up a Logic Synthesis Project Setting Up Project Files

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
274 June 2009

The project opens in the Project window.

Making Changes to a Project
Typically, you add, delete, or replace files.

1. To add source or constraint files to a project, select the Add Files button
or Project->Add Source File to open the Select Files to Add to Project dialog box.
See Creating a Project File, on page 270 for details.

2. To delete a file from a project, click the file in the Project window, and
press the Delete key.

3. To replace a file in a project,

– Select the file you want to change in the Project window.

– Click the Change File button, or select Project->Change File.

– In the Source File dialog box that opens, set Look In to the directory
where the new file is located. The new file must be of the same type as
the file you want to replace.

– If you do not see your file listed, select the type of file you need from
the Files of Type field.

– Double-click the file. The new file replaces the old one in the project
list.

Open Project Command File->Open Command

Select File->Open Project, click the
Open Project button on the left side of
the Project window (Synplify Pro and
Synplify Premier only), or click the
P icon.
To open a recent project, double-
click it from the list of recent
projects.
Otherwise, click the Existing Project
button to open the Open dialog box
and select the project.

Select File->Open.
Specify the correct directory in the
Look In: field.
Set File of Type to Project Files (*.prj). The
box lists the project files.
Double-click on the project you want
to open.

Setting Up Project Files Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 275

4. To specify how project files are saved in the project, right click on a file
in the Project view and select File Options. Set the Save File option to either
Relative to Project or Absolute Path.

5. To check the time stamp on a file, right click on a file in the Project view
and select File Options. Check the time that the file was last modified.
Click OK.

Setting Project View Display Preferences
You can customize the organization and display of project files.

1. Select Options->Project View Options.

The Project View Options form opens. Available options vary, depending on
the tool. The Synplify Premier and Synplify Pro options are the same.

2. To organize different kinds of input files in separate folders, check View
Project Files in Folders.

Synplify Pro and Synplify Premier Options
Synplify Options

LO

Chapter 6: Setting up a Logic Synthesis Project Setting Up Project Files

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
276 June 2009

Checking this option creates separate folders in the Project view for
constraint files and source files.

3. Control file display with the following:

– Automatically display all the files, by checking Show Project Library. If
this is unchecked, the Project view does not display files until you
click on the plus symbol and expand the files in a folder.

– Check one of the boxes in the Project File Name Display section of the
form to determine how filenames are displayed. You can display just
the filename, the relative path, or the absolute path.

4. To view project files in customized custom folders, check View Project Files
in Custom Folders. For more information, see Creating Custom Folders, on
page 279. Type folders are only displayed if there are multiple types in a
custom folder.

Setting Up Project Files Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 277

5. To open more than one implementation in the same Project view, check
Allow Multiple Projects to be Opened. You can only use multiple
implementations with the Synplify Pro and Synplify Premier tools.

6. Control the output file display with the following:

– Check the Show all Files in Results Directory box to display all the output
files generated after synthesis.

– Change output file organization by clicking in one of the header bars
in the Implementation Results view. You can group the files by type
or sort them according to the date they were last modified.

7. To view file information, select the file in the Project view, right-click,
and select File Options. For example, you can check the date a file was
modified.

Updating Verilog Include Paths in Older Project Files
If you have a project file created with an older version of the software (prior to
8.1), the Verilog include paths in this file are relative to the results dir or the
source file with the `include statements. In releases after 8.1, the project file

Custom
Folders

Project 2

Project 1

LO

Chapter 6: Setting up a Logic Synthesis Project Setting Up Project Files

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
278 June 2009

include paths are relative to the project file only. The GUI in the more recent
releases does not automatically upgrade the older .prj files to conform to the
newer rules. To upgrade and use the old project file, do one of the following:

• Manually edit the .prj file in a text editor and add the following on the
line before each set_option -include_path:

 set_option -project_relative_includes 1

• Start a new project with a newer version of the software and delete the
old project. This will make the new .prj file obey the new rule where
includes are relative to the .prj file.

Project File Hierarchy Management Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 279

Project File Hierarchy Management
The following sections describe how you can create and manage customized
folders and files in the Project view:

• Creating Custom Folders

• Other Custom Folder Operations

• Other Custom File Operations

Creating Custom Folders
You can create logical folders and customize files in various hierarchy
groupings within your Project view. These folders can be specified with any
name or hierarchy level. For example, you can arbitrarily match your
operating system file structure or HDL logic hierarchy. Custom folders are
distinguished by their blue color.

There are several ways to create custom folders and then add files to them in
a project. Use one of the following methods:

1. Right-click on a project file or another custom folder and select Add Folder
from the popup menu. Then perform any of the following file operations:

– Right-click on a file or files and select Place in Folder. A sub-menu
displays so that you can either select an existing folder or create a
new folder.

LO

Chapter 6: Setting up a Logic Synthesis Project Project File Hierarchy Management

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
280 June 2009

Note that you can arbitrarily name the folder, however do not use the
character (/) because this is a hierarchy separator symbol.

– To rename a folder, right-click on the folder and select Rename from
the popup menu. The Rename Folder dialog box appears; specify a new
name.

2. Use the Add Files to Project dialog box to add the entire contents of a folder
hierarchy, and optionally place files into custom folders corresponding
to the OS folder hierarchies listed in the dialog box display.

– To do this, select the Add File button in the Project view.

– Select the requested folder(s) such as dsp from the dialog box, then
click the Add button. This places all the files from the dsp hierarchy
into the custom folder you just created.

Project File Hierarchy Management Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 281

– To automatically place the files into custom folders corresponding to
the OS folder hierarachy, check the option called Add Files to Custom
Folders on the dialog box.

– By default, the custom folder name is the same name as the folder
containing files or folder to be added to the project. However, you can
modify how folders are named, by clicking on the Folders Option
button. The following dialog box is displayed.

To use:

– Only the folder containing files for the folder name, click on Use OS
Folder Name.

– The path name to the selected folder to determine the level of
hierarchy reflected for the custom folder path.

3. You can drag and drop files and folders from an OS Explorer application
into the Project view. This feature is available on Windows and Linux or
Solaris desktops running KDE.

– When you drag and drop a file, it is immediately added to the project.
If no project is open, the software creates a project.

LO

Chapter 6: Setting up a Logic Synthesis Project Project File Hierarchy Management

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
282 June 2009

– When you drag and drop a file over a folder, it will be placed in that
folder. Initially, the Add Files to Project dialog box is displayed asking
you to confirm the files to be added to the project. You can click OK to
accept the files. If you want to make changes, you can click the
Remove All button and specify a new filter or option.

Other Custom Folder Operations
The following procedure describes how you can remove files from folders,
delete folders, and change the folder hierarchy.

1. To remove a file from a custom folder, either:

– Drag and drop it into another folder or onto the project.

– Highlight the file, right-click and select Remove from Folder from the
popup menu.

Do not use the Delete (DEL) key, as this removes the file from the
project.

2. To delete a custom folder, highlight it then right-click and select Delete
from the popup menu or press the DEL key. When you delete a folder,
make one of the following choices:

– Click Yes to delete the folder and the files contained in the folder from
the project.

– Click No to just delete the folder.

3. To change the hierarchy of the custom folder:

– Drag and drop the folder within another folder so that it is a sub-
folder or over the project to move it to the top-level.

– To remove the top-level hierarchy of a custom folder, drag and drop
the desired sub-level of hierarchy over the project. Then delete the
empty root directory for the folder.

For example, if the existing custom folder directory is:

/Examples/Verilog/RTL

Suppose you want a single-level RTL hierarchy only, then drag and
drop RTL over the project. Thereafter, you can delete the
/Examples/Verilog directory.

Project File Hierarchy Management Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 283

Other Custom File Operations
Additionally, you can perform the following types of custom file operations:

1. To suppress the display of files in the Type folders, right-click in the
Project view and select Project View Options or select Options->Project View
Options. Disable the option View Project Files in Type Folders on the dialog
box.

2. To display files in alphabetical order instead of project order, check the
Sort Files button in the Project view control panel. Click the down arrow
key in the bottom-left corner of the panel to toggle the control panel on
and off.

Control Panel Toggle

LO

Chapter 6: Setting up a Logic Synthesis Project Project File Hierarchy Management

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
284 June 2009

3. To change the order of files in the project:

– Make sure to disable custom folders and sorting files.

– Drag and drop a file to the desired position in the list of files.

4. To change the file type, drag an drop it to the new type folder. The
software will prompt you for verification.

Setting Up Implementations and Workspaces Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 285

Setting Up Implementations and Workspaces
Workspaces and implementations are extensions of the project metaphor
used in the Synplify Pro and Synplify Premier synthesis software. The
Synplify software does not support multiple implementations or workspaces.

This section describes the following:

• Working with Multiple Implementations, on page 285

• Creating Workspaces, on page 287

• Using Workspaces, on page 288

Working with Multiple Implementations
The Synplify Premier and Synplify Pro tools let you create multiple implemen-
tations of the same design and then compare results. This lets you exper-
iment with different settings for the same design. Implementations are
revisions of your design within the context of the synthesis software, and do
not replace external source code control software and processes.

1. Click the Add Implementation button or select Project->New Implementation and
set new device options (Device tab), new options (Options tab), or a new
constraint file (Constraints tab).

The software creates another implementation in the project view. The
new implementation has the same name as the previous one, but with a
different number suffix. The following figure shows two implementations,
rev1 and rev2, with the current (active) implementation highlighted.

The new implementation uses the same source code files, but different
device options and constraints. It copies some files from the previous
implementation: the .tlg log file, the .srs RTL netlist file, and the
<design>_fsm.sdc file generated by FSM Explorer. The software keeps a
repeatable history of the synthesis runs.

LO

Chapter 6: Setting up a Logic Synthesis Project Setting Up Implementations and Workspaces

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
286 June 2009

2. Run synthesis again with the new settings.

– To run the current implementation only, click Run.

– To run all the implementations in a project, select Run->Run All
Implementations.

You can use multiple implementations to try a different part or experi-
ment with a different frequency. See Setting Logic Synthesis Implementa-
tion Options, on page 289 for information about setting options.

The Project view shows all implementations with the active implementa-
tion highlighted and the corresponding output files generated for the
active implementation displayed in the Implementation Results view on
the right; changing the active implementation changes the output file
display. The Log Watch window monitors the active implementation. If
you configure this window to watch all implementations, the new imple-
mentation is automatically updated in the window.

3. Compare the results.

– Use the Log watch window to compare selected criteria. Make sure to
set the implementations you want to compare with the Configure Watch
command. See Using the Log Watch Window, on page 600 for details.

– To compare details, compare the log file results.

4. To rename an implementation, click the right mouse button on the
implementation name in the project view, select Change Implementation
Name from the popup menu, and type a new name.

Note that the current UI overwrites the implementation; releases prior to
9.0 preserve the implementation to be renamed.

5. To copy an implementation, click the right mouse button on the
implementation name in the project view, select Copy Implementation from
the popup menu, and type a new name for the copy.

Setting Up Implementations and Workspaces Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 287

6. To delete an implementation, click the right mouse button on the
implementation name in the project view, and select Remove
Implementation from the popup menu.

Creating Workspaces
The Synplify Premier and Synplify Pro tools let you group projects together
into workspaces. A workspace is like a container for a number of projects.

1. To create a new workspace, select File->New Workspace or right-click in
the Project view and select Build Workspace.

2. In the dialog box,

– Select the project files (.prj) of the projects you want to add to the
workspace.

– Name the workspace and click OK.

The Project view displays the workspace and the associated projects
under it. The workspace file is also a .prj file.

3. To open more than one project in the same Project view, check Allow
Multiple Projects to be Opened. After you set up the new project, you can see
it in the Project view.

Project 1

Project 2

LO

Chapter 6: Setting up a Logic Synthesis Project Setting Up Implementations and Workspaces

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
288 June 2009

Using Workspaces
You can use your workspace to simplify your work flow. For example, you can
set up dependencies between projects in the same workspace.The Synplify
software does not support workspaces.

1. To add a project to a workspace, right-click the workspace and select
Insert Project. Select the project file you want to add, and click OK.

2. To remove a project from a workspace, right-click on the project and
select Remove Project from Workspace.

3. To synthesize a single project in a workspace, click Run.

The software synthesizes the current project.

4. To run all the projects in a workspace, do the following:

– If you have multiple implementations within a project, check that the
correct implementation is active. To make an implementation active,
click on the implementation in the Project view.

– Select the workspace in the Project view, right-click, and select Run all
Projects.

The software synthesizes the active implementations of all the projects
in the workspace.

Setting Logic Synthesis Implementation Options Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 289

Setting Logic Synthesis Implementation Options
You can set global options for your synthesis implementations, some of them
technology-specific. This section describes how to set global options like
device, optimization, and file options with the Implementation Options command.
For information about setting constraints for the implementation, see Speci-
fying Timing Constraints, on page 219. For information about overriding
global settings with individual attributes or directives, see Entering Attributes
and Directives, on page 304.

This section discusses the following topics:

• Setting Device Options, on page 289

• Setting Optimization Options, on page 292

• Specifying Global Frequency and Constraint Files, on page 294

• Specifying Result Options, on page 296

• Specifying Timing Report Output, on page 297

• Setting Verilog and VHDL Options, on page 298

Setting Device Options
Device options are part of the global options you can set for the synthesis
run. They include the part selection (technology, part and speed grade) and
implementation options (I/O insertion and fanouts). The options and the
implementation of these options can vary from technology to technology, so
check the vendor chapters of the Reference Manual for information about
your vendor options.

1. Open the Implementation Options form by clicking the Implementation Options
button or selecting Project->Implementation Options, and click the Device tab
at the top if it is not already selected.

2. Select the technology, part, package, and speed. Available options vary,
depending on the technology you choose. Also, the Synplify Premier
software does not support as many technologies as do the Synplify and
Synplify Pro tools.

LO

Chapter 6: Setting up a Logic Synthesis Project Setting Logic Synthesis Implementation Options

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
290 June 2009

3. Set the device mapping options. The options vary, depending on the
technology you choose.

– If you are unsure of what an option means, click on the option to see
a description in the box below. For full descriptions of the options,
click F1 or refer to the appropriate vendor chapter in the Reference
Manual.

– To set an option, type in the value or check the box to enable it.

For more information about setting fanout limits, pipelining, and
retiming, see Setting Fanout Limits, on page 446, Pipelining, on
page 429, and Retiming, on page 433, respectively. For details about
other vendor-specific options, refer to the appropriate vendor chapter
and technology family in the Reference Manual. Note that the Synplify
tool does not support all these optimization options.

Setting Logic Synthesis Implementation Options Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 291

4. Set other implementation options as needed (see Setting Logic Synthesis
Implementation Options, on page 289 for a list of choices). Click OK.

5. Click the Run button to synthesize the design.

The software compiles and maps the design using the options you set.

6. To set device options with a script, use the set_option Tcl command.

The following table contains an alphabetical list of the device options on
the Device tab mapped to the equivalent Tcl commands. Because the
options are technology- and family-based, all of the options will not
apply to your design. All commands begin with set_option, followed by the
syntax in the column as shown. Check the Reference Manual for the
most comprehensive list of options for your vendor.

The following table shows typical device options.

Option Tcl Command (set_option...)

Annotated Properties for Analyst -run_prop_extract {1|0}

Disable I/O Insertion -disable_io_insertion {1|0}

Device Mapping Options Vary by Technology

LO

Chapter 6: Setting up a Logic Synthesis Project Setting Logic Synthesis Implementation Options

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
292 June 2009

Setting Optimization Options
Optimization options are part of the global options you can set for the imple-
mentation. This section tells you how to set options like frequency and global
optimization options like resource sharing. You can also set some of these
options with the appropriate buttons on the UI.

1. Open the Implementation Options form by clicking the Implementation
Options button or selecting Project->Implementation Options, and click the
Options tab at the top.

2. Click the optimization options you want, either on the form or in the
Project view. Your choices vary, depending on the technology. If an
option is not available for your technology, it is grayed out. Setting the
option in one place automatically updates it in the other. The Synplify
software does not support all the options shown below.

Disable Sequential Optimizations -no_sequential_opt {1|0}

Enhanced Optimization -enhanced_optimization {0|1}

Fanout Guide -fanout_guide fanout_value

Fix Gated Clocks -fixgatedclocks {0|1|2|3}

Fix Generated Clocks -fixgeneratedclocks {0|1|2|3}

Package -package pkg_name

Part -part part_name

Pipelining -pipe {0|1}

Retiming -retiming {0|1}

Speed -speed_grade speed_grade

Technology -technology keyword

Update Compile Point Timing Data -update_models_cp {0|1}

Verification Mode -verification_mode {0|1}

Option Tcl Command (set_option...)

Setting Logic Synthesis Implementation Options Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 293

For details about using these optimizations refer to the following
sections:

The equivalent Tcl set_option command options are -symbolic_fsm_compiler,
-use_fsm_explorer, -resource_sharing, -pipe, and -retiming.

3. Set other implementation options as needed (see Setting Logic Synthesis
Implementation Options, on page 289 for a list of choices). Click OK.

4. Click the Run button to run synthesis.

The software compiles and maps the design using the options you set.

FSM Compiler Optimizing State Machines, on page 453

FSM Explorer Running the FSM Explorer, on page 458
Note: Only a subset of the Xilinx, Altera, and Actel
technologies support the FSM Explorer option. Use the
Project->Implementation Options->Options panel to
determine if this option is supported for the device you
specify in your tool.

Resource Sharing Sharing Resources, on page 450

Pipelining Pipelining, on page 429

Retiming Retiming, on page 433

Implementation Options->OptionsProject View

Optimization Options

LO

Chapter 6: Setting up a Logic Synthesis Project Setting Logic Synthesis Implementation Options

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
294 June 2009

Specifying Global Frequency and Constraint Files
This procedure tells you how to set the global frequency and specify the
constraint files for the implementation.

1. To set a global frequency, do one of the following:

– Type a global frequency in the Project view.

– Open the Implementation Options form by clicking the Implementation
Options button or selecting Project->Implementation Options, and click the
Constraints tab.

The equivalent Tcl set_option commands is -frequency frequency_value.

You can override the global frequency with local constraints, as
described in Specifying Timing Constraints, on page 219. In the Synplify
Pro tool, you can automatically generate clock constraints for your
design instead of setting a global frequency. See Using Auto Constraints,
on page 251 for details.

Implementation Options->Constraints

Project View

Global Frequency and Constraints

Setting Logic Synthesis Implementation Options Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 295

2. To specify constraint files for an implementation, do one of the following:

– Select Project->Implementation Options->Constraints. Check the constraint
(.sdc) files you want to use in the project.

– With the implementation you want to use selected, click Add File in the
Project view, and add the constraint files you need.

To create constraint files, see Specifying Timing Constraints, on
page 219.

3. To remove constraint files from an implementation, do one of the
following:

– Select Project->Implementation Options->Constraints. Click off the checkbox
next to the file name.

– In the Project view, right-click the constraint file to be removed and
select Remove from Project.

This removes the constraint file from the implementation, but does not
delete it.

4. To specify or remove a Synplify Premier design plan (.sfp), use the
techniques described in steps 2 and 3, or do the following:

– Select Project->Implementation Options->Design Planning. Check the box
next to the file you want.

– To delete a file, disable the check box next to the file name on the
Design Planning tab.

LO

Chapter 6: Setting up a Logic Synthesis Project Setting Logic Synthesis Implementation Options

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
296 June 2009

When the implementation is synthesized, the Synplify Premier tool uses
the region assignments in this file for the second phase of optimization
to perform physical synthesis.

5. Set other implementation options as needed (see Setting Logic Synthesis
Implementation Options, on page 289 for a list of choices). Click OK.

When you synthesize the design, the software compiles and maps the
design using the options you set.

Specifying Result Options
This section shows you how to specify criteria for the output of the synthesis
run.

1. Open the Implementation Options form by clicking the Implementation Options
button or selecting Project->Implementation Options, and click the
Implementation Results tab at the top.

2. Specify the output files you want to generate.

– To generate mapped netlist files, click Write Mapped Verilog Netlist or Write
Mapped VHDL Netlist.

– To generate a vendor-specific constraint file for forward annotation,
click Write Vendor Constraint File. See Generating Constraint Files for
Forward Annotation, on page 105 for more information.

3. Set the directory to which you want to write the results.

Setting Logic Synthesis Implementation Options Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 297

4. Set the format for the output file. The equivalent Tcl command for
scripting is project -result_format format.

You might also want to set attributes to control name-mapping. For
details, refer to the appropriate vendor chapter in the Reference Manual.

For certain Altera technologies (see Generating Vendor-Specific Output,
on page 836), the .vqm result format allows you to also select the version
of Quartus II you are using from the pop-up menu.

5. Set other implementation options as needed (see Setting Logic Synthesis
Implementation Options, on page 289 for a list of choices). Click OK.

When you synthesize the design, the software compiles and maps the
design using the options you set.

Specifying Timing Report Output
You can determine how much is reported in the timing report by setting the
following options.

In the Synplify Premier tool, you can also use this tab to generate hierar-
chical-based island timing reports for certain technologies like Xilinx Virtex-
II, Virtex-II Pro, Virtex-4, Virtex-5, Spartan-3, and Altera Stratix technologies.
For more information about generating island timing reports, see Generating
the Island Timing Report Automatically, on page 745 and Generating the
Island Timing Report Interactively, on page 747.

1. Selecting Project->Implementation Options, and click the Timing Report tab.

2. Set the number of critical paths you want the software to report.

LO

Chapter 6: Setting up a Logic Synthesis Project Setting Logic Synthesis Implementation Options

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
298 June 2009

3. Specify the number of start and end points you want to see reported in
the critical path sections.

4. Set other implementation options as needed (see Setting Logic Synthesis
Implementation Options, on page 289 for a list of choices). Click OK.

When you synthesize the design, the software compiles and maps the
design using the options you set.

Setting Verilog and VHDL Options
When you set up the Verilog and VHDL source files in your project, you can
also specify certain compiler options.

Setting Verilog File Options
You set Verilog file options by selecting either Project->Implementation Options->
Verilog, or Options->Configure Verilog Compiler. For information about creating
always block hierarchy for Synplify Premier, see Setting Synplify Premier
Netlist Restructuring Optimizations, on page 330.

Setting Logic Synthesis Implementation Options Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 299

1. Specify the Verilog format to use.

– To set the compiler globally for all the files in the project, select
Project->Implementation Options->Verilog. If you are using Verilog 2001 or
SystemVerilog, check the Reference Manual for supported constructs.

– To specify the Verilog compiler on a per file basis, select the file in the
Project view. Right-click and select File Options. Select the appropriate
compiler. The default is Verilog 2001.

2. Specify the top-level module if you did not already do this in the Project
view.

3. To extract parameters from the source code, do the following:

– Click Extract Parameters.

– To override the default, enter a new value for a parameter.

LO

Chapter 6: Setting up a Logic Synthesis Project Setting Logic Synthesis Implementation Options

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
300 June 2009

The software uses the new value for the current implementation only.
Note that parameter extraction is not supported for mixed designs.

4. Type in the directive in Compiler Directives, using spaces to separate the
statements.

You can type in directives you would normally enter with 'ifdef and ‘define
statements in the code. For example, SIZE=32 TEST_IMPL results in the
software writing the following statements to the project file:

set_option -hdl_define -set SIZE=32 TEST_IMPL

5. In the Include Path Order, specify the search paths for the include
commands for the Verilog files that are in your project. Use the buttons
in the upper right corner of the box to add, delete, or reorder the paths.

6. In the Library Directories, specify the path to the directory which
contains the library files for your project. Use the buttons in the upper
right corner of the box to add, delete, or reorder the paths.

7. Set other implementation options as needed (see Setting Logic Synthesis
Implementation Options, on page 289 for a list of choices). Click OK.

Setting Logic Synthesis Implementation Options Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 301

When you synthesize the design, the software compiles and maps the
design using the options you set.

Setting VHDL File Options
You set VHDL file options by selecting either Project->Implementation
Options->VHDL, or Options->Configure VHDL Compiler.

For VHDL source, you can specify the options described below. For infor-
mation about creating process hierarchy for Synplify Premier, see Setting
Synplify Premier Netlist Restructuring Optimizations, on page 330.

1. Specify the top-level module if you did not already do this in the Project
view. If the top-level module is not located in the default work library, you
must specify the library where the compiler can find the module. For
information on how to do this, see VHDL Panel, on page 148.

You can also use this option for mixed language designs or when you
want to specify a module that is not the actual top-level entity for HDL
Analyst displaying and debugging in the schematic views.

2. For user-defined state machine encoding, do the following:

– Specify the kind of encoding you want to use.

– Disable the FSM compiler.

LO

Chapter 6: Setting up a Logic Synthesis Project Setting Logic Synthesis Implementation Options

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
302 June 2009

When you synthesize the design, the software uses the compiler direc-
tives you set here to encode the state machines and does not run the
FSM compiler, which would override the compiler directives. Alterna-
tively, you can define state machines with the syn_encoding attribute, as
described in Defining State Machines in VHDL, on page 369.

3. To extract generics from the source code, do this:

– Click Extract Generic Constants.

– To override the default, enter a new value for a generic.

The software uses the new value for the current implementation only.
Note that you cannot extract generics if you have a mixed language
design.

4. To push tristates across process/block boundaries, check that Push
Tristates is enabled. For details, see Push Tristates Option, on page 153 in
the Reference Manual.

5. Determine the interpretation of the synthesis_on and synthesis_off
directives:

– To make the compiler interpret synthesis_on and synthesis_off directives
like translate_on/translate_off, enable the Synthesis On/Off Implemented as
Translate On/Off option.

– To ignore the synthesis_on and synthesis_off directives, make sure that
this option is not checked. See translate_off/translate_on Directive,
on page 1151 in the Reference Manual for more information.

Setting Logic Synthesis Implementation Options Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 303

6. Set other implementation options as needed (see Setting Logic Synthesis
Implementation Options, on page 289 for a list of choices). Click OK.

When you synthesize the design, the software compiles and maps the
design using the options you set.

LO

Chapter 6: Setting up a Logic Synthesis Project Entering Attributes and Directives

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
304 June 2009

Entering Attributes and Directives
Attributes and directives are pieces of information that you attach to design
objects to control the way in which your design is analyzed, optimized, and
mapped. For further details, refer to these subtopics:

• Specifying Attributes and Directives, on page 304

• Specifying Attributes and Directives in VHDL, on page 305

• Specifying Attributes and Directives in Verilog, on page 307

• Specifying Attributes Using the SCOPE Editor, on page 308

• Specifying Attributes in the Constraints File (.sdc), on page 310

Specifying Attributes and Directives
Attributes control mapping optimizations and directives control compiler
optimizations. Because of this difference, you must specify directives in the
source code. However, attributes can be added to the constraint file or the
source code.

HDL Source Code
This is the only way to specify directives. You can also specify attributes in
the source code, but if you do so, you must recompile the design whenever
you change an attribute value. This can be very time-consuming for large
designs, so the preferred way is to specify attributes in the constraint file, as
described above.

For information about procedures to add attributes and directives, see the
following:

• Specifying Attributes and Directives in VHDL, on page 305

• Specifying Attributes and Directives in Verilog, on page 307

Constraint File (.sdc)
This is the preferred method for specifying attributes because it is more
flexible; you do not have to recompile the design. You can add attributes to a
constraint file using one of the ways described here:

Entering Attributes and Directives Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 305

Specifying Attributes and Directives in VHDL
You can use other methods to add attributes to objects, as listed in Entering
Attributes and Directives, on page 304. However, you can specify directives
only in the source code. There are two ways of defining attributes and direc-
tives in VHDL:

• Using the predefined attributes package

• Declaring the attribute each time it is used

For details of VHDL attribute syntax, see VHDL Attribute and Directive Syntax,
on page 881 in the Reference Manual.

Using the Predefined VHDL Attributes Package
The advantage to using the predefined package is that you avoid redefining
the attributes and directives each time you include them in source code. The
disadvantage is that your source code is less portable. The attributes package
is located in product_installation_dir/lib/vhd/synattr.vhd.

1. To use the predefined attributes package included in the software
library, add these lines to the syntax:

library synplify;
use synplify.attributes.all;

Enter them... Description Details

In the SCOPE
Attributes tab

A graphical interface
for generating or
editing an .sdc file

• Specifying Attributes Using the
SCOPE Editor, on page 308

• How Attributes and Directives are
Specified, on page 896 of the
Reference Manual

By manually
editing the
constraint file

Tcl constraint file
(.sdc)

• Specifying Attributes in the
Constraints File (.sdc), on page 310

• Syntax for individual attributes is
included in the descriptions of the
attributes in the Reference Manual.

LO

Chapter 6: Setting up a Logic Synthesis Project Entering Attributes and Directives

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
306 June 2009

2. Add the attribute or directive you want after the design unit declaration.

declarations ;
attribute attribute_name of object_name : object_kind is value ;

For example:

entity simpledff is
port (q: out bit_vector(7 downto 0);

 d : in bit_vector(7 downto 0);
clk : in bit);

attribute syn_noclockbuf of clk : signal is true;

For details of the syntax conventions, see VHDL Attribute and Directive
Syntax, on page 881 in the Reference Manual.

3. Add the source file to the project.

Declaring VHDL Attributes and Directives
If you do not use the attributes package, you must redefine the attributes
each time you include them in source code.

1. Every time you use an attribute or directive, define it immediately after
the design unit declarations using the following syntax:

design_unit_declaration ;
attribute attribute_name : data_type ;
attribute attribute_name of object_name : object_kind is value ;

For example:

entity simpledff is
port (q: out bit_vector(7 downto 0);

 d : in bit_vector(7 downto 0);
clk : in bit);

attribute syn_noclockbuf : boolean;
attribute syn_noclockbuf of clk :signal is true;

2. Add the source file to the project.

Entering Attributes and Directives Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 307

Specifying Attributes and Directives in Verilog
You can use other methods to add attributes to objects, as described in
Entering Attributes and Directives, on page 304. However, you can specify
directives only in the source code.

Verilog does not have predefined synthesis attributes and directives, so you
must add them as comments. The attribute or directive name is preceded by
the keyword synthesis. Verilog files are case sensitive, so attributes and direc-
tives must be specified exactly as presented in their syntax descriptions. For
syntax details, see Verilog Attribute and Directive Syntax, on page 717 in the
Reference Manual.

1. To add an attribute or directive in Verilog, use Verilog line or block
comment (C-style) syntax directly following the design object. Block
comments must precede the semicolon, if there is one.

For details of the syntax rules, see Verilog Attribute and Directive Syntax,
on page 717 in the Reference Manual. The following are examples:

module fifo(out, in) /* synthesis syn_hier = "firm“ */;

module b_box(out, in); // synthesis syn_black_box

2. To attach multiple attributes or directives to the same object, separate
the attributes with white spaces, but do not repeat the synthesis keyword.
Do not use commas. For example:

case state /* synthesis full_case parallel_case */;

Specifying Attributes Using the SCOPE Editor
The SCOPE window provides an easy-to-use interface to add any attribute.
You cannot use it for adding directives, because they must be added to the
source files. (See Specifying Attributes and Directives in VHDL, on page 305 or
Specifying Attributes and Directives in Verilog, on page 307). The following
procedure shows how to add an attribute directly in the SCOPE window.

Verilog Block Comment Syntax Verilog Line Comment Syntax

/* synthesis attribute_name = value */
/* synthesis directory_name = value */

// synthesis attribute_name = value
// synthesis directory_name = value

LO

Chapter 6: Setting up a Logic Synthesis Project Entering Attributes and Directives

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
308 June 2009

1. Start with a compiled design and open the SCOPE window. To add the
attributes to an existing constraint file, open the SCOPE window by
clicking on the existing file in the Project view. To add the attributes to a
new file, click the SCOPE icon and click Initialize to open the SCOPE
window.

2. Click the Attributes tab at the bottom of the SCOPE window.

You can either select the object first (step 3) or the attribute first (step 4).

3. To specify the object, do one of the following in the Object column. If you
already specified the attribute, the Object column lists only valid object
choices for that attribute.

– Select the type of object in the Object Filter column, and then select an
object from the list of choices in the Object column. This is the best
way to ensure that you are specifying an object that is appropriate,
with the correct syntax.

– Drag the object to which you want to attach the attribute from the
RTL or Technology views to the Object column in the SCOPE window.
For some attributes, dragging and dropping may not select the right
object. For example, if you want to set syn_hier on a module or entity
like an and gate, you must set it on the view for that module. The
object would have this syntax: v:<module_name> in Verilog, or
v:<library>.<module_name> in VHDL, where you can have multiple
libraries.

– Type the name of the object in the Object column. If you do not know
the name, use the Find command or the Object Filter column. Make
sure to type the appropriate prefix for the object where it is needed.
For example, to set an attribute on a view, you must add the v: prefix
to the module or entity name. For VHDL, you might have to specify
the library as well as the module name.

4. If you specified the object first, you can now specify the attribute. The
list shows only the valid attributes for the type of object you selected.
Specify the attribute by holding down the mouse button in the Attribute
column and selecting an attribute from the list.

Entering Attributes and Directives Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 309

If you selected the object first, the choices available are determined by
the selected object and the technology you are using. If you selected the
attribute first, the available choices are determined by the technology.

When you select an attribute, the SCOPE window tells you the kind of
value you must enter for that attribute and provides a brief description
of the attribute. If you selected the attribute first, make sure to go back
and specify the object.

5. Fill out the value. Hold down the mouse button in the Value column, and
select from the list. You can also type in a value.

If you manually type an attribute the software does not recognize, or
select an incompatible attribute/object combination, the attribute cell is
shaded in red.

6. Save the file.

The software creates a Tcl constraint file composed of define_attribute
statements for the attributes you specified. See How Attributes and
Directives are Specified, on page 896 of the Reference Manual for the
syntax description.

7. Add it to the project, if it is not already in the project.

– Choose Project -> Implementation Options.

– Go to the Constraints panel and check that the file is selected. If you
have more than one constraint file, select all those that apply to the
implementation.

LO

Chapter 6: Setting up a Logic Synthesis Project Entering Attributes and Directives

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
310 June 2009

The software saves the SCOPE information in a Tcl constraint file, using
define_attribute statements. When you synthesize the design, the software
reads the constraint file and applies the attributes.

Specifying Attributes in the Constraints File (.sdc)
When you use the SCOPE window (Specifying Attributes Using the SCOPE
Editor, on page 308), the attributes are automatically written to the .sdc
constraint file using the Tcl define_attribute syntax. The following procedure
explains how to specify attributes directly in the constraint file. For infor-
mation about editing constraints in the file, see Using a Text Editor for
Constraint Files, on page 100.

1. In the .sdc constraint file, enter the attribute and specify the value you
want, using the define_attribute syntax. For example,

define_attribute {object_name} attribute_name value

Check the attribute descriptions in the Reference Manual for the exact
syntax and values of the attribute.

Entering Attributes and Directives Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 311

The following code excerpt provides an example of attributes defined in the
.sdc file. (Some of these attributes are specific to Xilinx devices):

Assign a location for scalar port "sel".
define_attribute {sel} xc_loc "P139"

Assign a pad location to all bits of a bus.
define_attribute {b[7:0]} xc_loc "P14, P12, P11, P5, P21,

P18, P16, P15"

Assign a fast output type to the pad.
define_attribute {a[5]} xc_fast 1

Use a regular buffer instead of a clock buffer for clock "clk_slow".
define_attribute {clk_slow} syn_noclockbuf 1

Relax timing by not buffering "clk_slow", because it is the slow clock
Set the maximum fanout to 10000.

define_attribute {clk_slow} syn_maxfan 10000

LO

Chapter 6: Setting up a Logic Synthesis Project Searching Files

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
312 June 2009

Searching Files
A find-in-files feature is available to perform string searches within a
specified set of files. Advantages to using this feature include:

• Ability to restrict the set of files to be searched to a project or implemen-
tation.

• Ability to crossprobe the search results.

The find-in-files feature uses a dialog box to specify the search pattern, the
criteria for selecting the files to be searched, and any search options such as
match case or whole word. The files that meet the criteria are searched for the
pattern, and a list of the files containing the search pattern are displayed at
the bottom of the dialog box.

To use the find-in-files feature, open the Find in Files dialog box by selecting
Edit->Find in Files and enter the search pattern in the Find what field at the top of
the dialog box.

Searching Files Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 313

Identifying the Files to Search
The Find In section at the top of the dialog box identifies the files to be
searched:

• Project Files – searches the files included in the selected project (use the
drop-down menu to select the project). By default, the files in the active
project are searched. The files can reside anywhere on the disk; any
project ‘include files are also searched.

• Implementation Directory – searches all files in the specified implemen-
tation directory (use the drop-down menu to select the implementation).
By default, the files in the active implementation are searched. You can
search all implementations by selecting <All Implementations> from the
drop-down menu. If Include sub-folders for directory searches is also selected,
all files in the implementation directory hierarchy are searched.

• Directory – searches all files in the specified directory (use the browser
button to select the directory). If Include sub-folders for directory searches is
also selected, all files in the directory hierarchy are searched.

All of the above selection methods can be applied concurrently when
searching for a specified pattern.

The Result Window selection is used after any of the above selection methods to
search the resulting list of files for a subsequent subpattern.

Filtering the Files to Search
A file filter allows the file set to be searched to be further restricted based on
the matching of patterns entered into the File filter field.

• A pattern without a wildcard or a “.” (period) is interpreted as a filename
extension. For example, sdc restricts the search to only constraint files.

• Multiple patterns can be specified using a semicolon delimiter. For
example, v;vhd restricts the files searched to only Verilog and VHDL files.

• Wildcard characters can be used in the pattern to match file names. For
example, a*.vhd restricts the files searched to VHDL files that begin with
an “a” character.

Leaving the File filter field empty searches all files that meet the Find In criteria.

The Match Case, Whole Word, and Regular Expressions search options can be used
to further restrict searches.

LO

Chapter 6: Setting up a Logic Synthesis Project Searching Files

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
314 June 2009

Initiating the Search
After entering the search criteria, click the Find button to initiate the search.
All matches found are listed in the results area at the bottom of the dialog
box; the status line just below the Find button reports the number of matches
found in the indicated number of files and the total number of files searched.

While the find operation is running, the status line is continually updated
with how many matches are found in how many files and how many files are
being searched.

Search Results
The search results are displayed is the results window at the bottom of the
dialog box. For each match found, the entire line of the file is the displayed in
the following format:

fullpath_to_file(lineNumber): matching_line_text

For example, the entry

C:\Designs\leon\dcache.vhd(487): wdata := r.wb.data1;

indicates that the search pattern (data1) was found on line 487 of the
dcache.vhd file.

To open the target file at the specified line, double-click on the line in the
results window.

Archiving Files and Projects Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 315

Archiving Files and Projects
Use the archive utility to archive, extract (unarchive), or copy design projects.
Archived files are in a proprietary format and saved to a file name using the
.sar extension. The archive utility is available through the Project menu in the
GUI or using the project command in the Tcl window.

This document provides a description of how to use the utility.

• Archive a Project

• Un-Archive a Project

• Copy a Project

Archive a Project
Use the archive utility to store the files for a design project into a single
archive file in a proprietary format (.sar). You can archive an entire project or
selected files from a project. If you want to create a copy of a project without
archiving the files, see Copy a Project, on page 323.

Here are the steps to create an archive:

1. In the Project view, select Project->Archive Project to bring up the wizard.

The Tcl command equivalent is project -archive. For a complete description
of the project Tcl command options for archiving, see project, on
page 1215 of the Reference Manual.

The archive utility automatically runs a syntax check on the active
project (Run->Syntax Check command) to ensure that a complete list of
project files is generated. If you have Verilog 'include files in your project,
the utility includes the complete list of Verilog files. It also checks the
syntax automatically for each implementation in the project to ensure
that the file list is complete for each implementation as well. The wizard
displays the name of the project to archive, the top-level directory where
the project file is located (root directory), and other information.

LO

Chapter 6: Setting up a Logic Synthesis Project Archiving Files and Projects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
316 June 2009

2. Do the following on the first page of the wizard:

– Fill in Destination File with a location for the archive file.

– Set Archive Style. You can archive all the project files with all the
implementations or selectively archive files and implementations

– To archive only the active implementation, enable Active Implementation.

– To selectively archive files, enable Customized file list, and use the check
boxes to include files in or exclude files from the archive.Use the Add
Extra Files button on the second page to include additional files in the
project.

Archiving Files and Projects Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 317

– Click Next.

The tool summary displays all the files in the archive and shows the
full uncompressed file size. The actual size is smaller after the
archiving operation as there is no duplication of files.

LO

Chapter 6: Setting up a Logic Synthesis Project Archiving Files and Projects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
318 June 2009

3. Use the Back button to correct directory or file information and/or
follow-up on any missing files, as appropriate.

4. Verify that the current archive contains the files that you want, then
click Archive which creates the project archive .sar file and displays the
following prompt:

5. Click Done if you are finished.

Archiving Files and Projects Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 319

If you want to send the archive to another site, go on to the next step.
For example, you can send the design project to the Synopsys FTP site.

6. To send the archive to another site, do the following:

– Click FTP Archive File.

– Fill in your email address. At the Synopsys web site, this email
address, plus a date and time stamp are prepended to the .sar file
name to uniquely identify your archive file.

– Fill in the other details about the FTP site destination, including
username and password if you are sending it to sites other than the
Synopsys one.

7. Click Transfer.

This completes the archive transfer. The Status field in the dialog box
displays the transfer results.

LO

Chapter 6: Setting up a Logic Synthesis Project Archiving Files and Projects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
320 June 2009

Un-Archive a Project
Use this procedure to extract design project files from an archive file (.sar).

1. In the Project view, select Project->Un-Archive Project to display the wizard

The Tcl command equivalent is project -unarchive. For a complete descrip-
tion of the project Tcl command options for archiving, see project, on
page 1215 of the Reference Manual.

2. In the wizard, enter the following:

– Name of the .sar file containing the project files.

– Name of project to extract (un-archive). This field is automatically
extracted from the.sar file and cannot be changed.

– Pathname of directory in which to write the project files (destination.

– Click Next.

Archiving Files and Projects Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 321

3. Make sure all the files that you want to extract are checked and
references to these files are resolved.

– If there are files in the list that you do not want to include when the
project is un-archived, uncheck the box next to the file. The un-
checked files will be commented out in the project file (.prj) when
project files are extracted.

– If you need to resolve a file in the project before un-archiving, click
the Resolve button and fill out the dialog box.

– If you want to replace a file in the project, click the Change button and
fill out the dialog box. Put the replacement files in the directory you
specify in Replace directory. You can replace a single file, any
unresolved files, or all the files. You can also undo the replace
operation.

LO

Chapter 6: Setting up a Logic Synthesis Project Archiving Files and Projects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
322 June 2009

4. Click Next and verify that the project files you want are displayed in the
Un-Archive Summary.

5. If you want to load this project in the UI after files have been extracted,
enable the Load project into Synplicity after un-archiving option.

6. Click Un-Archive.

A message dialog box is displayed while the files are being extracted.

Archiving Files and Projects Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 323

7. If the destination directory already contains project files with the same
name as the files you are extracting, you are prompted so that the
existing files can be overwritten by the extracted files.

Copy a Project
Use this utility to create an unarchived copy of a design project. You can copy
an entire project or just selected files from the project. However, if you want
to create an archive of the project, where the entire project is stored as a
single file, see Archive a Project, on page 315.

Here are the steps to create a copy of a design project:

1. From the Project view, select Project->Copy Project.

The Tcl command equivalent is project -copy. For a complete description of
the project Tcl command options for archiving, see project, on page 1215
of the Reference Manual.

This command automatically runs a syntax check on the active project
(Run->Syntax Check command) to ensure that a complete list of project
files is generated. If you have Verilog include files in your project, they
are included. The utility runs this check for each implementation in the
project to ensure that the file list is complete for each implementation
and then displays the wizard, which contains the name of the project
and other information.

LO

Chapter 6: Setting up a Logic Synthesis Project Archiving Files and Projects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
324 June 2009

2. Do the following in the wizard

– Specify the destination directory where you want to copy the files.

– Select the files to copy. You can choose to copy all the project files;
one or more individual files, input files only, or customize the list to
be copied.

– To specify a custom list of files, enable Customized file list. Use the check
boxes to include or exclude files from the copy. Enable SRS if you
want to copy all .srs files (RTL schematics). You cannot enable the
Source Files option if you select this. Use the Add Extra Files button to
include additional files in the project.

Archiving Files and Projects Chapter 6: Setting up a Logic Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 325

– Click Next.

LO

Chapter 6: Setting up a Logic Synthesis Project Archiving Files and Projects

Synopsys FPGA Synthesis User Guide
326 June 2009

Synopsys, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: +1 408 215-6000, Fax: +1 408 222-068
www.solvnet.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology,
Certify, DesignWare, HDL Analyst, Identify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro,
Synthesis Constraints Optimization Environment, and VCS are registered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-perfor-
mance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and TotalRecall are trademarks of Synopsys, Inc. All other
names mentioned herein are trademarks or registered trademarks of their respective companies.

3. Do the following:

– Verify the copy information.

– Enter a destination directory. If the directory does not exist it will be
created.

– Click Copy.

This creates the project copy.

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 327

C H A P T E R 7

Setting up a Physical Synthesis Project

The process to set up a physical synthesis project is the same as for a logic
synthesis project, but it requires a few additional steps. The following
describe the additional steps needed to set up a physical synthesis project:

• Setting up for Physical Synthesis, on page 328

• Setting Options for Physical Synthesis, on page 330

• Setting Constraints for Physical Synthesis, on page 347

• Forward-Annotating Physical Synthesis Constraints, on page 351

• Backannotating Physical Synthesis Constraints, on page 353

LO

Chapter 7: Setting up a Physical Synthesis Project Setting up for Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
328 June 2009

Setting up for Physical Synthesis
This figure summarizes the steps for setting up a physical synthesis project.
The shaded boxes are either optional steps, or steps that are specific to a flow
or certain technologies. Although the figure makes a distinction between
setting options or constraints for logic synthesis and physical synthesis, you
can actually define both types of options at the same time.

See the following for details about physical synthesis setup:

For information about... See...

Implementation options Setting Options for Physical Synthesis, on
page 330

Constraints Setting Constraints for Physical Synthesis, on
page 347

Create project

Set implementation options
for logic synthesis

Set implementation options
for physical synthesis

Set constraints for logic
synthesis

Set constraints for physical
synthesis

Create a floorplan file
(Design Planner flows)

Create a P&R options file
(Altera & Xilinx)

Create a P&R
implementation (if needed)

Setting up for Physical Synthesis Chapter 7: Setting up a Physical Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 329

Creating floorplan files Using Design Planner Floorplan Constraints, on
page 347

Creating P&R
implementations

Creating a Place and Route Implementation, on
page 332

Creating P&R options files Specifying Altera Place-and-Route Options, on
page 337
Specifying Xilinx Place-and-Route Options in a Tcl
File, on page 340

For information about... See...

LO

Chapter 7: Setting up a Physical Synthesis Project Setting Options for Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
330 June 2009

Setting Options for Physical Synthesis
After you have set up logic synthesis options for the implementation with the
Implementation Options command (see Setting Options for Physical Synthesis, on
page 330), you can set other options specific to physical synthesis.

The following describe them :

• Setting Synplify Premier Netlist Restructuring Optimizations, on
page 330

• Creating a Place and Route Implementation, on page 332

• Specifying Altera Place-and-Route Options, on page 337

• Specifying Xilinx Place-and-Route Options in a Tcl File, on page 340

• Specifying Xilinx Place-and-Route Options in an .opt File, on page 341

• Specifying Xilinx Global Placement Options, on page 346

Setting Synplify Premier Netlist Restructuring Optimizations
You can set these options if you have zippered or bit-sliced your design or for
other restructuring operations. The netlist restructuring options are only
available in the Synplify Premier tool.

1. Select Project->Implementation Options, and click on the Netlist Restructure tab.

Setting Options for Physical Synthesis Chapter 7: Setting up a Physical Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 331

2. To reduce the number of ports, eliminate feedthrough ports by enabling
Feedthrough Optimization. This can improve routability in the place-and-
route tool.

3. To reduce area, enable Constant Propagation.

Where possible, this option eliminates the logic used when constant
inputs to logic cause their outputs to be constant. It is sometimes
possible to eliminate this type of logic altogether during optimization.

4. To provide more granularity for applying a design plan to large modules
at the always block or process level, enable Create Always/Process Level
Hierarchy.

Currently a design plan can be applied to either modules or to individual
gates, registers, and so on. For a module that is too large to fit in a row
or defined region, you might need an extra level of granularity which is
not as detailed as a gate-level description. This option creates an
additional, intermediate level of hierarchy to which you can apply a
design plan.

For example, in Verilog, the always block becomes a module with the
signals in the sensitivity list becoming inputs of the module and the
signals that get their values set becoming outputs of the modules.
Similarly, in VHDL, a process becomes a module. You might find that it is
easier to apply a design plan to these always blocks/processes.

5. To group Altera Stratix MAC configurations together into one MAC
block, enable Create MAC Hierarchy.

6. To add or delete netlist restructure files, such as the files created for bit-
slicing or zippering, do the following:

– On the Project->Implementation Options->Netlist Restructuring tab, check the
box next to the file you want to add.

– To remove a file, disable the check box next to the file name.

LO

Chapter 7: Setting up a Physical Synthesis Project Setting Options for Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
332 June 2009

You can add or delete the files from the Project view. When the imple-
mentation is synthesized, the Synplify Premier tool uses the specified
netlist restructure files for physical synthesis.

7. Set other implementation options as needed (see Setting Logic Synthesis
Implementation Options, on page 289). Click OK.

Creating a Place and Route Implementation
For Altera, Actel, and Xilinx technologies, the Synplify Pro and Synplify
Premier tools automatically create a place-and-route implementation after
synthesis completes. The following steps show you how to manually create a
place-and-route implementation.

1. Make sure you have the correct version of the P&R tool installed, and
that all variables for the tool have been set.

– Check the release notes for version information. Select Help->Online
Documents->release_notes.pdf and go to Third Party Tool Versions.

– For Actel technologies, set the Actel ALSDIR and PATH environment
variables to point to a valid installation of the place and route tool.

– For Altera technologies, set the QUARTUS_ROOTDIR and PATH
environment variables to point to a valid installation of the place and
route tool.

Setting Options for Physical Synthesis Chapter 7: Setting up a Physical Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 333

– For Xilinx technologies, set the XILINX and PATH environment
variables to point to a valid installation of the place and route tool.

The Synplify Premier UI automatically sets the PAR_BELDLYRPT
environment variable to 1. This environment variable is set so that
the Xilinx place-and-route placement file (.xdl) is generated with a
particular format. The software uses this .xdl file to backannotate
the placement information

2. To create a place-and-route implementation, do one of the following:

– Click on the Add P& R Implementation button from the Project view.

– Select an implementation in the Project view, then right-click and
select Add New Place & Route Job.

The Add New Place and Route Job dialog box opens. The available options
differ slightly, depending on the technology.

LO

Chapter 7: Setting up a Physical Synthesis Project Setting Options for Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
334 June 2009

3. Set the options you need. Available place-and-route options vary
depending on the synthesis tool and technology.

– Specify the Place & Route Job Name. The default is pr_n. Avoid using
spaces in the implementation name.

– Enable Run Place and Route following synthesis.

– Select a place-and-route options file. If you do not specify one, the
tool uses the settings in the default file.

Setting Options for Physical Synthesis Chapter 7: Setting up a Physical Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 335

For Altera and Xilinx designs, refer to the information in Specifying
Altera Place-and-Route Options, on page 337 or Specifying Xilinx
Place-and-Route Options in a Tcl File, on page 340 for details. For
Xilinx designs, you can also override global placement options with
an environment variable, as described in Specifying Xilinx Global
Placement Options, on page 346.

– If you are going to run Synplify Premier physical synthesis, you can
choose to backannotate data for certain Altera and Xilinx
technologies. See Backannotating Place-and-Route Data, on page 353
for details.

– For Xilinx designs, you can automatically generate a coreloc file with
backannotated data after place-and-route. See Generating a Xilinx
Coreloc Placement File, on page 354 for more information.

– For physical synthesis with Altera Stratix III, Stratix II GX, or Stratix
II devices you can select the Use placement constraints from physical
synthesis. See Forward Annotating Altera Physical Constraints, on
page 351.

4. Enable the Run Place & Route following synthesis option. Click OK if you are
not setting the options described in the next step.

This creates the place-and-route implementation under the current
synthesis implementation. Currently, you cannot change the location of
the P&R directory.

Conversely, if you do not want to create a place-and-route implementa-
tion, disable the Run Place & Route following synthesis option.

5. For Xilinx and Altera technologies, you can also do the following:

– Specify a place-and-route options file. If you do not specify one, the
tool automatically uses the default options in these files:

<install_directory>\lib\altera\altera_par.tcl
<install_directory>\lib\xilinx\xilinx_par.tcl

Actel <install_dir>\lib\Actel\Actel_par.opt

Altera <install_dir>\lib\Altera\Altera_par.tcl

Xilinx <install_dir>\lib\Xilinx\Xilinx_par.opt

LO

Chapter 7: Setting up a Physical Synthesis Project Setting Options for Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
336 June 2009

You can change or override the default options. See Specifying Altera
Place-and-Route Options, on page 337 and Specifying Xilinx Place-
and-Route Options in a Tcl File, on page 340 for details.

– Backannotate constraints to the P&R tool. See Backannotating Place-
and-Route Data, on page 353 for details.

– Forward-annotate constraints from the P&R tool. See Forward
Annotating Altera Physical Constraints, on page 351.

– Click OK.

6. Select the implementation in the Project view to see the place-and-route
implementation.

To create subsequent place-and-route implementations, select the
place-and-route implementation, right-click, and select Add Place & Route
Job. You can repeat the preceding steps to add as many P&R implemen-
tations as you need.

7. Synthesize the design.

– Enable the P&R implementation you want to use, if you have not
already done so (Implementation Options->Place and Route tab).

Place and Route implementation

Setting Options for Physical Synthesis Chapter 7: Setting up a Physical Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 337

– Click the Run button, or right-click in the Project view and select Run
Place & Route Job from the popup menu.

If the synthesis implementation associated with the place-and-route
implementation has not been synthesized, Run Place & Route Job invokes
synthesis as well. After synthesis, the place-and-route tool is automati-
cally run. If you have a Xilinx design and have specified an options file,
the software uses these options during place-and-route.

8. To run in batch mode, do this:

– Create a place-and-route implementation, as described previously.

– Use the -run all command. If the synthesis implementation is selected
the software only runs synthesis; you must run place-and-route
separately. Otherwise, make the current implementation the place-
and-route implementation before issuing the batch command.

Specifying Altera Place-and-Route Options
This section shows you how to customize your Altera place-and-route run by
specifying a place-and-route options file or .tcl script. You can use either the
default file or create a custom file.

LO

Chapter 7: Setting up a Physical Synthesis Project Setting Options for Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
338 June 2009

1. To use the default place-and-route options, click the Add P&R
Implementation button in the Project view and select Use Default Options File
in the dialog box. Click OK.

The software uses the options in the altera_par.tcl file which is located in
the installation directory.

2. To use an existing options file (.tcl script):

– Click the Add P&R Implementation button in the Project view.

– Click Existing Options File. Select the file name in the next dialog box,
and click Open.

– Return to the Add New Place & Route Job dialog box and make sure the
correct options file is selected. Click OK.

3. To create a new place-and-route options file:

– Click the Add P&R Implementation button in the Project view. In the
dialog box, click Create New Options File. Specify the file name in the
next dialog box, and click OK.

A text window opens with the default options file. This file is
automatically added to the project.

– Edit the default options to customize this options file. For more
information about the contents of this file, see Options in the Altera
Place-and-Route Options File, on page 339.

Setting Options for Physical Synthesis Chapter 7: Setting up a Physical Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 339

– Save the file.

– Return to the Add New Place & Route Job dialog box, and make sure the
options file you created is selected.

– Select Run Place & Route following synthesis. Click OK.

The software uses the options file to place and route the design after
synthesis.

4. View the results.

– Select the P&R implementation in the Project view. The result files are
displayed in the Implementation Results view.

– View the log file quartus.log for information about the run.

Options in the Altera Place-and-Route Options File
To customize the Altera place-and-route options file, you can edit the default
options file (altera_par.tcl). This file contains the options for the following place-
and-route processes:

• Fitter Options

• Timing Analyzer Options

• Analysis & Synthesis Options

Fitter Options
Edit the following default fitter options for the Quartus process shown below.

Timing Analyzer Options
Edit the following default timing analyzer options for the Quartus process
shown below.

LO

Chapter 7: Setting up a Physical Synthesis Project Setting Options for Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
340 June 2009

Analysis & Synthesis Options
Edit the following default analysis and synthesis options for the Quartus
process shown below.

Specifying Xilinx Place-and-Route Options in a Tcl File
This section shows you how to customize your Xilinx place-and-route run by
specifying a place-and-route Tcl file. This file uses the Xilinx xtclsh flow. You
can use either the default Tcl file or create a custom file.

This is the recommended methodology, but if you must use the old Xilinx
xflow, refer to the procedure in Specifying Xilinx Place-and-Route Options in an
.opt File, on page 341.

1. To use the default place-and-route options, do the following:

– Click the Add P&R Implementation button in the Project view and select
Use Default Options File in the dialog box.

– Click OK.

By default, the software uses the Tcl file located in the installation direc-
tory. This file is used by the Xilinx xtclsh executable to run the P&R tool.

2. To use an existing Tcl options file, do the following:

– Click the Add P&R Implementation button in the Project view.

Setting Options for Physical Synthesis Chapter 7: Setting up a Physical Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 341

– Click Existing Options File. Select the file you want, and click Open.

– Right-click the implementation, select Add New Place & Route Job, and
make sure the correct options file is selected. Click OK.

3. To create a new place-and-route Tcl file, do this:

– Click the Add P&R Implementation button in the Project view.

– Click Create New Options File. Specify a file name and click Open. The
tool generates a default Tcl file and automatically adds it to the
project.

A text window opens with the default Tcl file options.

4. Edit the file.

– Edit the default options to customize this file.

– Save the file.

5. Synthesize, place, and route the design.

– Right-click the implementation, select Add New Place & Route Job, and
make sure the Tcl file is selected.

– Select Run Place & Route following synthesis. Click OK.

The software uses the Tcl file to place and route the design after
synthesis.

6. View the results.

– Select the P&R implementation in the Project view. The result files are
displayed in the Implementation Results view.

– View the log file xflow.log for information about the run.

Specifying Xilinx Place-and-Route Options in an .opt File
If you are using the old Xilinx xflow, you specify P&R options in a .opt file
instead of a Tcl file, which is the recommended methodology (see Specifying
Xilinx Place-and-Route Options in a Tcl File, on page 340.)

1. To use the default place-and-route options, do the following:

– Click the Add P&R Implementation button in the Project view and select
Use Default Options File in the dialog box.

LO

Chapter 7: Setting up a Physical Synthesis Project Setting Options for Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
342 June 2009

– Click OK.

By default, the software uses the opt file located in the installation direc-
tory, which is used by the xflow executable to run the P&R tool.

2. To use an existing options file, do the following:

– Click Implementation Options, go to the Device tab, and enable Use Xilinx
Xflow. By default, the synthesis tools use the xtclsh executable and the
corresponding Tcl options file, so you must explicitly turn on the Use
Xilinx Xflow option to use Xflow.

– Click the Add P&R Implementation button in the Project view.

– Click Existing Options File. Select the opt file you want to use, and click
Open.

– Select the implementation in the project view, right-click, and select
Add Place & Route Job. In the dialog box, and sure that the correct
options file is selected. Click OK.

3. To create a new place-and-route options file, do this:

– Click the Add P&R Implementation button in the Project view.

– Select File->New. Set the file type to Xilinx Option File, type a file name.,
enable the Add to Project option, and click OK. This file is automatically
added to the project.

A text window opens with the options file.

4. Edit the file.

– Edit the default options to customize this options file. For more
information about the contents of this file, see Options in the Xilinx
Place-and-Route Options File, on page 343.

– Save the file.

Setting Options for Physical Synthesis Chapter 7: Setting up a Physical Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 343

5. Synthesize, place, and route the design.

– Return to the Add New Place & Route Job dialog box, and make sure the
options file you created is selected.

– Select Run Place & Route following synthesis. Click OK.

The software uses the options file to place and route the design after
synthesis.

6. View the results.

– Select the P&R implementation in the Project view. The result files are
displayed in the Implementation Results view.

– View the log file xflow.log for information about the run.

Options in the Xilinx Place-and-Route Options File
To customize the Xilinx place-and-route options file, you can edit the default
options file (xilinx_par.opt). This file contains the options for the following place-
and-route processes:

• Translator Options

• Mapper Options

• Place-and-Route Options

• Post Place-and-Route Timing Report Options

• Bitgen Generation Options

Translator Options
Edit the following default translator options for the ngdbuild command as
shown below.

LO

Chapter 7: Setting up a Physical Synthesis Project Setting Options for Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
344 June 2009

Mapper Options
Edit the following default mapper options for the map command as shown
below.

Place-and-Route Options
Edit the following default place-and-route options for the par command as
shown below.

Setting Options for Physical Synthesis Chapter 7: Setting up a Physical Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 345

Post Place-and-Route Timing Report Options
Edit the following default post place-and-route timing report options for the
post_par_trce command as shown below.

Bitgen Generation Options
Edit the following default bit generation options for the bitgen command as
shown below.

LO

Chapter 7: Setting up a Physical Synthesis Project Setting Options for Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
346 June 2009

Specifying Xilinx Global Placement Options
For graph-based physical synthesis in Xilinx designs, you can override the
default values for global placement in the options file.

1. Create a file with your preferred global placement options.

2. Use the SYN_XILINX_GLOBAL_PLACE_OPT environment variable to point
to your options file:

SYN_XILINX_GLOBAL_PLACE_OPT ="C:/Temp/test.opt"

Setting Constraints for Physical Synthesis Chapter 7: Setting up a Physical Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 347

Setting Constraints for Physical Synthesis
The following describe how to set up various constraints for physical
synthesis. Some procedures are technology-specific or may apply only if you
are using Design Planner.

• Using Design Planner Floorplan Constraints, on page 347

• Translating Pin Location Files, on page 348

• Translating Actel I/O Constraints, on page 348

• Setting Physical Synthesis Constraints for Altera, on page 349

For additional information on translating Altera QSF and Xilinx UCF
constraints to the synthesis sdc format, see Translating Altera QSF
Constraints, on page 253 and Converting and Using Xilinx UCF Constraints, on
page 255, respectivley.

Using Design Planner Floorplan Constraints
For physical synthesis flows that use Design Planner (Altera and Xilinx
technologies), use the floorplan constraints you generated to drive synthesis.
You can use the following procedure before logic synthesis, because you only
need a compiled design.

1. Start with a compiled design.

The Design Planner flows are only supported for certain Altera and Xilinx
technologies.

2. Floorplan the design with Design Planner, and assign RTL modules,
paths or components to regions on the device. See
Chapter 11, Floorplanning with Design Planner for details.

3. Add the floorplan file to the design.

– After floorplanning, add the design plan file (.sfp), to the project.

– Enable the file in the Implementation Options ->Design Planning tab.

4. Run synthesis.

You can run the preliminary logic synthesis step of the physical
synthesis flows, or you can run physical synthesis. When you run
physical synthesis, the placement constraints from the sfp file are
honored.

LO

Chapter 7: Setting up a Physical Synthesis Project Setting Constraints for Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
348 June 2009

Translating Pin Location Files
You can automatically convert Altera and Xilinx place-and-route pin location
constraint files to SCOPE constraint files (.sdc) with the Run->Translate Vendor
IO command.

1. Select Run ->Translate Vendor IO.

2. Enter the name of the Altera .pin or Xilinx .pad file you want to
translate.

3. Type a name for the .sdc constraint file you want to create.

4. Click on Add to Project, as appropriate, then click OK.

The pin locations from the files are translated into SDC constraints. If
you add the constraint file to the project, it can be used for design
planning and synthesis. Note that if there are pin assignment conflicts
between SDC constraints and pin locations assigned in Design Planner,
the SDC constraints take precedence. For other methods to assign pins,
see Importing Pin Assignments from Pin Assignment Files, on page 498
and Assigning Pins Interactively, on page 495.

Translating Actel I/O Constraints
This section provides information on defining timing and physical constraints
and attributes for physical synthesis in Actel designs. You can use the
pdc2sdc utility to automatically convert the Actel constraints, or you can do it
manually.

1. Lock down the I/O placement for physical synthesis.

– Make sure you have run logic synthesis.

Setting Constraints for Physical Synthesis Chapter 7: Setting up a Physical Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 349

– Convert the I/O loc constraints in the designname_ba.pdc place-and-
route file to the sdc format.

You do this by assigning the syn_loc attribute to the I/Os either in the
Attributes tab of the SCOPE UI, or by manually assigning the syn_loc
attribute to the I/Os in the .pdc file. For the attribute syntax, see
syn_loc Attribute, on page 1029 of the Reference Manual.

Alternatively, you can use the pdc2sdc command line utility to convert
Actel physical constraints to synthesis constraints. Run pdc2sdc from
any shell window using the following syntax to translate the pin
locations from the fil into sdc constraints:

pdc2sdc -ipdc <constraints_file>.pdc
-osdc <constraints_file>.sdc
[-opdc <residual_constraints_file>.pdc] [-all]
[-silent]

For more detail about the syntax, see Actel pdc2sdc Utility, on
page 545 in the Reference Manual.

2. Run a constraint check.

– Make sure you target a technology that supports this feature.

– Generate a constraint file, then select Run->Constraint Check.This
command generates a report that checks the syntax and applicability
of the timing constraints in the .sdc file(s) for your project. The report
is written to the project_name_cck.rpt file.

Setting Physical Synthesis Constraints for Altera
The following procedure describes the general procedure for setting up
physical synthesis constraints for Altera designs.

1. Create an sdc timing constraints file, as described in Creating a
Constraint File Using the SCOPE Window, on page 212, and add it to
your project.

Use timing constraints to specify performance goals for the design and
describe the environment.

2. Translate Altera QSF constraints, as described in Translating Altera QSF
Constraints, on page 253.

LO

Chapter 7: Setting up a Physical Synthesis Project Setting Constraints for Physical Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
350 June 2009

3. Select Run->Constraint Check to check the constraints in the constraints
file. See Checking Constraint Files, on page 104.

This command generates a report that checks the syntax and applica-
bility of the timing constraints in the .sdc file(s) for your project. The
report is written to the project_name_cck.rpt file.

4. If you are using Design Planner, create a floorplan file and add it to your
project. See Using Design Planner Floorplan Constraints, on page 347 for
details.

Forward-Annotating Physical Synthesis Constraints Chapter 7: Setting up a Physical Synthesis
Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 351

Forward-Annotating Physical Synthesis Constraints
See the following for more information:

• Forward Annotating Altera Physical Constraints, on page 351

Forward Annotating Altera Physical Constraints
You can choose to forward annotate physical constraints from the Synplify
Premier physical synthesis tool, or else, let the Quartus II place-and-route
tool determine how to handle the physical constraints. Forward-annotation is
only available for Altera Stratix IV, Stratix III, Stratix II GX, or Stratix II
devices. Use the following procedure.

New Implementation
Do the following for a new implementation:

1. Enable the Physical Synthesis switch.

If the switch is disabled, physical synthesis optimizations are performed
but placement constraints will not be forward annotated.

2. Click on the Add P&R Implementation button from the Project view or right-
click and select Add Place & Route Job from the popup menu to create a
new P&R implementation.

3. On the Add New Place & Route Job dialog box, enable or disable the Use
placement constraints from physical synthesis option. By default, this option is
enabled.

The Physical Synthesis switch must be enabled to use this option. When
this option is disabled, physical synthesis optimizations are performed
but placement constraints will not be forward annotated.

Existing Implementation
Do the following for an existing place-and-route implementation:

1. Enable the Physical Synthesis switch.

If the switch is disabled, physical synthesis optimizations are performed
but placement constraints will not be forward annotated.

LO

Chapter 7: Setting up a Physical Synthesis Project Forward-Annotating Physical Synthesis
Constraints

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
352 June 2009

2. In the Project view, select the place-and-route implementation, then
right-click and select P&R Options from the popup menu.

3. Enable or disable the Use placement constraints from physical synthesis option
from the popup dialog box. By default, this option is enabled.

Project View Button Implementation Pop-up Menu
OR

Right-click on
Add Place and Route Job

or
P&R Options

Backannotating Physical Synthesis Constraints Chapter 7: Setting up a Physical Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 353

Backannotating Physical Synthesis Constraints
For more accurate results, you can resynthesize your design using place-and-
route data from the back-end tools.

Backannotating Place-and-Route Data
You can also choose to back annotate place-and-route data which provides
accurate timing and placement information during physical synthesis.
However, this option is only applicable for certain Altera and Xilinx technol-
ogies.

Use the following procedure to backannotate place and route data. Do not
backannotate designs that contain IP cores.

New Implementation
Do the following for a new place-and-route implementation:

1. Click on the Add P&R Implementation button from the Project view.

2. On the Add New Place & Route Job dialog box, enable the Backannotate
placement and timing data following Place & Route option.

Existing Implementation
Do the following for an existing place-and-route implementation:

1. In the Project view, select the place-and-route implementation, then
right-click and select P&R Options from the popup menu.

2. Enable the Back Annotate option from the popup dialog box.

LO

Chapter 7: Setting up a Physical Synthesis Project Backannotating Physical Synthesis Constraints

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
354 June 2009

Generating a Xilinx Coreloc Placement File
You can use the Synplify Premier tool to generate a coreloc constraint file that
contains the placement for all “anchor” or “core” instances in the design, like
IOs, BlockRAM s, BlockMULTs, FIFOs, DSP48s, DCMs, and BUFs. You can
pass this file to the P&R tool for backannotation.

Using core location constraints ensures that block and I/O placement are
equivalent when you compare logic and physical synthesis. Include the
coreloc.sdc file to both logic and physical synthesis runs. This placement
information is also very useful for timing convergence. By stabilizing block
and I/O locations, you eliminate any changes to results that stem from
placement variations when running small designs..

To generate a coreloc file, do the following:

1. Before you run synthesis, make sure to enable the Backannotate placement
and timing Data following Place & Route switch when you create the place-and-
route implementation before running synthesis.

Right-click on
Add Place & Route Job

Project View Button
Implementation Pop-up Menu

OR

or
P&R Options

Backannotating Physical Synthesis Constraints Chapter 7: Setting up a Physical Synthesis Project

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 355

The filename_coreloc.sdc file is generated during place-and-route
backannotation and is written to the results directory. The filename is the
same base name as the EDIF output netlist (filename.edf).

2. After the synthesis run, when the file has been generated, add the
filename_coreloc.sdc file to your project.

To guarantee consistent and stable comparisons, include the
coreloc.sdc file to both logic and physical synthesis runs.

3. Re-run synthesis.

LO

Chapter 7: Setting up a Physical Synthesis Project Backannotating Physical Synthesis Constraints

Synopsys FPGA Synthesis User Guide
356 June 2009

Synopsys, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: +1 408 215-6000, Fax: +1 408 222-068
www.solvnet.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology,
Certify, DesignWare, HDL Analyst, Identify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro,
Synthesis Constraints Optimization Environment, and VCS are registered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-perfor-
mance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and TotalRecall are trademarks of Synopsys, Inc. All other
names mentioned herein are trademarks or registered trademarks of their respective companies.

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 357

C H A P T E R 8

Inferring High-Level Objects

This chapter contains guidelines on how to structure your code or attach
attributes so that the synthesis tools can automatically infer high-level
objects like RAMs. See the following for more information:

• Defining Black Boxes for Synthesis, on page 358

• Defining State Machines for Synthesis, on page 367

• Inferring RAMs, on page 372

• Initializing RAMs, on page 400

• Inferring Shift Registers, on page 410

• Working with LPMs, on page 416

LO

Chapter 8: Inferring High-Level Objects Defining Black Boxes for Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
358 June 2009

Defining Black Boxes for Synthesis
Black boxes are predefined components for which the interface is specified,
but whose internal architectural statements are ignored. They are used as
place holders for IP blocks, legacy designs, or a design under development.

This section discusses the following topics:

• Instantiating Black Boxes and I/Os in Verilog, on page 358

• Instantiating Black Boxes and I/Os in VHDL, on page 360

• Adding Black Box Timing Constraints, on page 362

• Adding Other Black Box Attributes, on page 366

The Fix Gated Clocks option is only available in the Synplify Pro and Synplify
Premier tools. For information about using black boxes with the Fix Gated
Clocks option, see Working with Gated Clocks, on page 464.

Instantiating Black Boxes and I/Os in Verilog
Verilog black boxes for macros and I/Os come from two sources: commonly-
used or vendor-specific components that are predefined in Verilog macro
libraries, or black boxes that are defined in another input source like a
schematic. For information about instantiating black boxes in VHDL, see
Instantiating Black Boxes and I/Os in VHDL, on page 360. Additional infor-
mation about black boxes can be found in Working with Gated Clocks, on
page 464, Instantiating CoreGen Cores, on page 804, and Instantiating Virtex
PCI Cores, on page 805. The Fix Gated Clocks option is only available in the
Synplify Pro and Synplify Premier tools.

The following process shows you how to instantiate both types as black
boxes. Refer to the Synplify_install_dir/examples directory for examples of
instantiations of low-level resources.

1. To instantiate a predefined Verilog module as a black box:

– Select the library file with the macro you need from the
Synplify_install_dir/lib/technology directory. Files are named
technology.v. Most vendor architectures provide macro libraries that
predefine the black boxes for primitives and macros.

Defining Black Boxes for Synthesis Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 359

– Make sure the library macro file is the first file in the source file list
for your project.

2. To instantiate a module that has been defined in another input source
as a black box:

– Create an empty macro that only contains ports and port directions.

– Put the syn_black_box synthesis directive just before the semicolon in
the module declaration.

module myram (out, in, addr, we) /* synthesis syn_black_box */;
output [15:0] out;
input [15:0] in;
input [4:0] addr;
input we;

endmodule

– Make an instance of the stub in your design.

– Compile the stub along with the module containing the instantiation
of the stub.

– To simulate with a Verilog simulator, you must have a functional
description of the black box. To make sure the synthesis software
ignores the functional description and treats it as a black box, use
the translate_off and translate_on constructs. For example:

module adder8(cout, sum, a, b, cin);
// Code that you want to synthesize
/* synthesis translate_off */
// Functional description.
/* synthesis translate_on */
// Other code that you want to synthesize.
endmodule

3. To instantiate a vendor-specific (black box) I/O that has been defined in
another input source:

– Create an empty macro that only contains ports and port directions.

– Put the syn_black_box synthesis directive just before the semicolon in
the module declaration.

– Specify the external pad pin with the black_box_pad_pin directive, as in
this example:

module BBDLHS(D,E,GIN,GOUT,PAD,Q)
/* synthesis syn_black_box black_box_pad_pin="PAD"

LO

Chapter 8: Inferring High-Level Objects Defining Black Boxes for Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
360 June 2009

– Make an instance of the stub in your design.

– Compile the stub along with the module containing the instantiation
of the stub.

4. Add timing constraints and attributes as needed. See Adding Black Box
Timing Constraints, on page 362 and Adding Other Black Box Attributes,
on page 366.

5. After synthesis, merge the black box netlist and the synthesis results file
using the method specified by your vendor.

Instantiating Black Boxes and I/Os in VHDL
VHDL black boxes for macros and I/Os come from two sources: commonly-
used or vendor-specific components that are predefined in VHDL macro
libraries, or black boxes that are defined in another input source like a
schematic. For information about instantiating black boxes in VHDL, see
Instantiating Black Boxes and I/Os in Verilog, on page 358.

The following process shows you how to instantiate both types as black
boxes. Refer to the Synplify_install_dir/examples directory for examples of
instantiations of low-level resources.

1. To instantiate a predefined VHDL macro (for a component or an I/O),

– Select the library file with the macro you need from the
Synplify_install_dir/lib/vendor directory. Files are named
family.vhd. Most vendor architectures provide macro libraries that
predefine the black boxes for primitives and macros.

– Add the appropriate library and use clauses to the beginning of your
design units that instantiate the macros.

library family ;
use family.components.all;

2. To create a black box for a component from another input source:

– Create a component declaration for the black box.

– Declare the syn_black_box attribute as a boolean attribute.

– Set the attribute to true.

Defining Black Boxes for Synthesis Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 361

library synplify;
use synplify.attributes.all;
entity top is

port (clk, rst, en, data: in bit; q: out bit);
end top;

architecture structural of top is
component bbox

port(Q: out bit; D, C, CLR: in bit);
end component;

attribute syn_black_box of bbox: component is true;
...

– Instantiate the black box and connect the ports.

begin
my_bbox: bbox port map (

Q => q,
D => data,
C => clk,
CLR => rst);

– To simulate with a VHDL simulator, you must have the functional
description of a black box. To make sure the synthesis software
ignores the functional description and treats it as a black box, use
the translate_off and translate_on constructs. For example:

architecture behave of ram4 is
begin

synthesis translate_off
stimulus: process (clk, a, b)
-- Functional description

end process;
synthesis translate_on

-- Other source code you WANT synthesized

3. To create a vendor-specific (black box) I/O for an I/O defined in another
input source:

– Create a component declaration for the I/O.

– Declare the black_box_pad_pin attribute as a string attribute.

– Set the attribute value on the component to be the external pin name
for the pad.

LO

Chapter 8: Inferring High-Level Objects Defining Black Boxes for Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
362 June 2009

library synplify;
use synplify.attributes.all;
...

component mybuf
port(O: out bit; I: in bit);

end component;
attribute black_box_pad_pin of mybuf: component is "I";

– Instantiate the pad and connect the signals.

begin
data_pad: mybuf port map (

O => data_core,
I => data);

4. Add timing constraints and attributes. See Adding Black Box Timing
Constraints, on page 362, Using Gated Clocks for Black Boxes, on
page 471, and Adding Other Black Box Attributes, on page 366. The Fix
Gated Clocks option is only available in the Synplify Pro and Synplify
Premier tools.

Adding Black Box Timing Constraints
A black box does not provide the software with any information about
internal timing characteristics. You must characterize black box timing
accurately, because it can critically affect the overall timing of the design. To
do this, you add constraints in the source code or in the SCOPE interface.

You attach black box timing constraints to instances that have been defined
as black boxes. There are three black box timing constraints, syn_tpd, syn_tsu,
and syn_tco. There are additional attributes for black box pins and black
boxes with gated clocks; see Adding Other Black Box Attributes, on page 366
and Using Gated Clocks for Black Boxes, on page 471. The Fix Gated Clocks
option is only available in the Synplify Pro and Synplify Premier tools.

Defining Black Boxes for Synthesis Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 363

1. Define the instance as a black box, as described in Instantiating Black
Boxes and I/Os in Verilog, on page 358 or Instantiating Black Boxes and
I/Os in VHDL, on page 360.

2. Determine the kind of constraint for the information you want to specify:

3. In VHDL, use the following syntax for the constraints.

– Use the predefined attributes package by adding this syntax

library synplify;
use synplify.attributes.all;

In VHDL, you must use the predefined attributes package. For each
directive, there are ten predeclared constraints in the attributes
package, from directive_name1 to directive_name10. If you need more
constraints, declare the additional constraints using integers greater
than 10. For example:

attribute syn_tco11 : string;
attribute syn_tco12 : string;

– Define the constraints in either of these ways:

To define... Use...

Propagation delay through the black box syn_tpd

Setup delay (relative to the clock) for input pins syn_tsu

Clock-to-output delay through the black box syn_tco

Black Box

D

syn_tpd

syn_tsu

syn_tco

Q

clk

LO

Chapter 8: Inferring High-Level Objects Defining Black Boxes for Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
364 June 2009

The following table shows the appropriate syntax for att_value. See the
Reference Manual for complete syntax information.

The following is an example of black box attributes, using VHDL
signal notation:

architecture top of top is
component rcf16x4z port(

ad0, ad1, ad2, ad3 : in std_logic;
di0, di1, di2, di3 : in std_logic;
wren, wpe : in std_logic;
tri : in std_logic;
do0, do1, do2 do3 : out std_logic;

end component

attribute syn_tpd1 of rcf16x4z : component is
"ad0,ad1,ad2,ad3 -> do0,do1,do2,do3 = 2.1";

attribute syn_tpd2 of rcf16x4z : component is
"tri -> do0,do1,do2,do3 = 2.0";

attribute syn_tsu1 of rcf16x4z : component is
"ad0,ad1,ad2,ad3 -> ck = 1.2";

attribute syn_tsu2 of rcf16x4z : component is
"wren,wpe,do0,do1,do2,do3 -> ck = 0.0";

VHDL
syntax

attribute attribute_name<n> : "att_value"

Verilog-style
notation

attribute attribute_name<n> of bbox_name :
component is "att_value"

Attribute Value Syntax

syn_tsu<n> bundle -> [!]clock = value

syn_tco<n> [!]clock -> bundle = value

syn_tpd<n> bundle -> bundle = value

• <n> is a numerical suffix.
• bundle is a comma-separated list of buses and scalar signals, with no

intervening spaces. For example, A,B,C.
• ! indicates (optionally) a negative edge for a clock.
• value is in ns.

Defining Black Boxes for Synthesis Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 365

4. In Verilog, add the directives as comments, as shown in the following
example. For explanations about the syntax, see the table in the
previous step or the Reference Manual.

module ram32x4 (z, d, addr, we, clk)
/* synthesis syn_black_box
syn_tpd1="addr[3:0]->z[3:0]=8.0"
syn_tsu1="addr[3:0]->clk=2.0"
syn_tsu2="we->clk=3.0" */;

output [3:0[z;
input [3:0] d;
input [3:0] addr;
input we;
input clk;
endmodule

5. To add black box attributes through the SCOPE interface, do the
following:

– Open the SCOPE spreadsheet and select the Attributes panel.

– In the Object column, select the name of the black-box module or
component declaration from the pull-down list. Manually prefix the
black box name with v: to apply the constraint to the view.

– In the Attribute column, type the name of the timing attribute, followed
by the numerical suffix, as shown in the following table. You cannot
select timing attributes from the pull-down list.

– In the Value column, type the appropriate value syntax, as shown in
the table in step 3.

– Save the constraint file, and add it to the project.

The resulting constraint file contains syntax like this:

define_attribute v:{blackbox_module} attribute<n> {att_value}

6. Synthesize the design, and check black box timing.

LO

Chapter 8: Inferring High-Level Objects Defining Black Boxes for Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
366 June 2009

Adding Other Black Box Attributes
Besides black box timing constraints, you can also add other attributes to
define pin types on the black box or define gated clocks. You cannot use the
attributes for all technologies. Check the Reference Manual for details about
which technologies are supported. For information about black boxes with
gated clocks, see Using Gated Clocks for Black Boxes, on page 471. The Fix
Gated Clocks option is only available in the Synplify Pro and Synplify Premier
tools.

1. To specify that a clock pin on the black box has access to global clock
routing resources, use syn_isclock.

Depending on the technology, different clock resources are inserted. In
Xilinx, the software inserts BUFG, for Actel it inserts CLKBUF, and for
QuickLogic, it inserts Q_CKPAD.

2. To specify that the software need not insert a pad for a black box pin,
use black_box_pad_pin.

Use this for technologies that automatically insert pad buffers for the
I/Os like Xilinx, some Altera families, Actel, QuickLogic, and some
Lattice technologies.

3. To define a tristate pin so that you do not get a mixed driver error when
there is another tristate buffer driving the same net, use
black_box_tri_pins.

Pad

Clk

Clk buffer

syn_isclock

black_box_tri_pins

Black Box

black_box_pad_pin

Defining State Machines for Synthesis Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 367

4. To ensure consistency between synthesized black box netlist names and
the names generated by third party tools or IP cores, use the following
attributes (Xilinx only):

– syn_edif_bit_format

– syn_edif_scalar_format

5. To specify that a port on a black box is connected to an internal
STARTUP block in Xilinx XC4000architectures, use the xc_isgr directive.

Defining State Machines for Synthesis
A finite state machine (FSM) is a piece of hardware that advances from state
to state at a clock edge. The synthesis software recognizes and extracts the
state machines from the HDL source code. For guidelines on setting up the
source code, see the following:

• Defining State Machines in Verilog, on page 368

• Defining State Machines in VHDL, on page 369

• Specifying FSMs with Attributes and Directives, on page 369

For information about the attributes used to define state machines, see
Running the FSM Compiler, on page 455.

Black Box

StartupR

R
xc_isgr

LO

Chapter 8: Inferring High-Level Objects Defining State Machines for Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
368 June 2009

Defining State Machines in Verilog
The synthesis software recognizes and automatically extracts state machines
from the Verilog source code if you follow these coding guidelines. The
software attaches the syn_state_machine attribute to each extracted FSM.

For alternative ways to define state machines, see Defining State Machines in
VHDL, on page 369 and Specifying FSMs with Attributes and Directives, on
page 369.

• In Verilog, model the state machine with case, casex, or casez state-
ments in always blocks. Check the current state to advance to the next
state and then set output values. Do not use if statements.

• Always use a default assignment as the last assignment in the case
statement, and set the state variable to ‘bx. This is a “don’t care” state-
ment and ensures that the software can remove unnecessary decoding
and gates.

• Make sure the state machines have a synchronous or asynchronous
reset to set the hardware to a valid state after power-up, or to reset the
hardware when you are operating.

• Use explicit state values for states using parameter or ‘define state-
ments. This is an example of a parameter statement that sets the
current state to 2’h2:

parameter state1 = 2’h1, state2 = 2’h2;
...
current_state = state2;

This example shows how to set the current state value with ‘define
statements:

‘define state1 2’h1
‘define state2 2’h2
...
current_state = ‘state2;

Make state assignments using parameter with symbolic state names.Use
parameter over `define, because `define is applied globally whereas
parameter definitions are local. Local definitions make it easier to reuse
certain state names in multiple FSM designs. For example, you might
want to reuse common state names like RESET, IDLE, READY, READ,
WRITE, ERROR and DONE. If you use `define to assign state names, you
cannot reuse a state name because the name has already been taken in

Defining State Machines for Synthesis Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 369

the global name space. To use the names multiple times, you have to
`undef state names between modules and redefine them with `define
state names in the new FSM modules. This method makes it difficult to
probe the internal values of FSM state buses from a testbench and
compare them to the state names.

Defining State Machines in VHDL
The synthesis software recognizes and automatically extracts state machines
from the VHDL source code if you follow coding guidelines. For alternative
ways to define state machines, see Defining State Machines in Verilog, on
page 368 and Specifying FSMs with Attributes and Directives, on page 369.

The following are VHDL guidelines for coding. The software attaches the
syn_state_machine attribute to each extracted FSM.

• Use CASE statements to check the current state at the clock edge,
advance to the next state, and set output values. You can also use IF-
THEN-ELSE statements, but CASE statements are preferable.

• If you do not cover all possible cases explicitly, include a WHEN OTHERS
assignment as the last assignment of the CASE statement, and set the
state vector to some valid state.

• If you create implicit state machines with multiple WAIT statements, the
software does not recognize them as state machines.

• Make sure the state machines have a synchronous or asynchronous
reset to set the hardware to a valid state after power-up, or to reset the
hardware when you are operating.

• To choose an encoding style, attach the syn_encoding attribute to the
enumerated type. The software automatically encodes your state
machine with the style you specified.

Specifying FSMs with Attributes and Directives
If your design has state machines, the software can extract them automati-
cally with the FSM Compiler (see Optimizing State Machines, on page 453), or
you can manually specify attributes to define the state machines. You attach
the attributes to the state registers. For detailed information about the
attributes and their syntax, see the Reference Manual.

LO

Chapter 8: Inferring High-Level Objects Defining State Machines for Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
370 June 2009

The following steps show you how to use attributes to define FSMs for
extraction. For alternative ways to define state machines, see Defining State
Machines in Verilog, on page 368 and Defining State Machines in VHDL, on
page 369.

1. To determine how state machines are extracted, set attributes in the
source code as shown in the following table:

For information about how to add attributes, see Entering Attributes and
Directives, on page 304.

2. To determine the encoding style used for the state machine, set the
syn_encoding attribute in the source code or in the SCOPE window. For
VHDL users there are alternative methods, described in the next step.

The FSM Compiler and the FSM Explorer honor this setting. The
different values for this attribute are briefly described here:

To... Attribute

Specify a state machine for extraction and
optimization

syn_state_machine=1

Prevent state machines from being extracted
and optimized

syn_state_machine=0

Prevent the state machine from being
optimized away

syn_preserve=1

Situation: If... syn_encoding Value Explanation

Area is important sequential One of the smallest encoding
styles.

Speed is
important

onehot Usually the fastest style and
suited to most FPGA styles.

Recovery from an
invalid state is
important

safe, with another
style. For example:
/* synthesis
syn_encoding =
"safe, onehot" */

Forces the state machine to
reset. For example, where an
alpha particle hit in a hostile
operating environment causes a
spontaneous register change,
you can use safe to reset the
state machine.

Defining State Machines for Synthesis Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 371

3. If you are using VHDL, you have two choices for defining encoding:

– Use syn_encoding as described above, and enable the FSM compiler.

– Use syn_enum_encoding to define the states (sequential, onehot, gray, and
safe) and disable the FSM compiler. If you do not disable the FSM
compiler, the syn_enum_encoding values are not implemented. This is
because the FSM compiler, a mapper operation, overrides
syn_enum_encoding, which is a compiler directive.

Use this method for user-defined FSM encoding. For example:

attribute syn_enum_encoding of state_type : type is "001 010 101";

There are
<5 states

sequential Default encoding.

Large output
decoder follows
the FSM

sequential or
gray

Could be faster than onehot,
even though the value must be
decoded to determine the state.
For sequential, more than one bit
can change at a time; for gray,
only one bit changes at a time,
but more than one bit can be
hot.

There are a large
number of flip-
flops

onehot Fastest style, because each state
variable has one bit set, and
only one bit of the state register
changes at a time.

Situation: If... syn_encoding Value Explanation

LO

Chapter 8: Inferring High-Level Objects Inferring RAMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
372 June 2009

Inferring RAMs
There are two methods of handling RAMs: instantiation and inference. The
software can automatically infer RAMs if they are structured correctly in your
source code. For details, see the following sections:

• Inference Versus Instantiation, on page 372

• Basic Guidelines for Coding RAMs, on page 373

• Specifying RAM Implementation Styles, on page 378

• Implementing Altera RAMs Automatically, on page 379

• Implementing Xilinx RAMs Automatically, on page 383

• Implementing Altera FLEX and APEX RAMs, on page 385

• Implementing Altera Stratix Multi-Port RAMs, on page 388

• Inferring Altera Stratix III LUTRAMs, on page 389

• Inferring Xilinx Block RAMs Using Registered Addresses, on page 391

• Inferring Xilinx Block RAMs Using Registered Output, on page 393

• Initializing Xilinx RAM, on page 404

• Mapping Xilinx ROM to Block RAM, on page 398

For information about generating RAMs with SYNCore, see Specifying RAMs
with SYNCore, on page 119.

Inference Versus Instantiation
There are two methods to handle RAMs: instantiation and inference. Many
FPGA families provide technology-specific RAMs that you can instantiate in
your HDL source code. The software supports instantiation, but you can also
set up your source code so that it infers the RAMs. The following table sums
up the pros and cons of the two approaches.

Inferring RAMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 373

Basic Guidelines for Coding RAMs
Read through the limitations before you start. See Inference Versus Instanti-
ation, on page 372 for information. The following steps describe general rules
for coding RAMs so that the compiler infers them; to ensure that they are
mapped to the vendor-specific implementation you want, see Specifying RAM
Implementation Styles, on page 378, Implementing Altera RAMs Automatically,
on page 379, and Implementing Xilinx RAMs Automatically, on page 383.

1. Make sure that the RAM meets minimum size and address width
requirements for your technology. The software implements RAMs that
are smaller than the minimum as registers.

2. Structure the assignment to a VHDL signal/Verilog register as follows:

– To infer a RAM, structure the code as an indexed array or a case
structure. Code it as a two-dimensional array (VHDL) or memory
(Verilog) with writes to one process.

– Control the structure with a clock edge and a write enable.

The software extracts RAMs even if write enables are tied to true (VCC),
if you have complex write enables coded in nested IF statements, or if
you have RAMs with synchronous resets.

Inference in Synthesis Instantiation

Advantages
Portable coding style
Automatic timing-driven synthesis
No additional tool dependencies

Advantages
Most efficient use of the RAM primitives
of a specific technology
Supports all kinds of RAMs

Limitations
Glue logic to implement the RAM might
result in a sub-optimal implementation.
Can only infer synchronous RAMs
No support for address wrapping
No support for RAM enables, except for
write enable
Pin name limitations means some pins
are always active or inactive

Limitations
Source code is not portable because it is
technology-dependent.
Limited or no access to timing and area
data if the RAM is a black box.
Inter-tool access issues, if the RAM is a
black box created with another tool.

LO

Chapter 8: Inferring High-Level Objects Inferring RAMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
374 June 2009

3. For a single-port RAM, make the address for indexing the write-to the
same as the address for the read-from. The following code and figure
illustrate how the software infers a single-port RAM.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity ramtest is
port (q : out std_logic_vector(3 downto 0);

d : in std_logic_vector(3 downto 0);
addr : in std_logic_vector(2 downto 0);
we : in std_logic;
clk : in std_logic);

end ramtest;

architecture rtl of ramtest is

type mem_type is array (7 downto 0) of std_logic_vector
(3 downto 0);

signal mem : mem_type;

begin
q <= mem(conv_integer(addr));

process (clk) begin
if rising_edge(clk) then

if (we = '1') then
mem(conv_integer(addr)) <= d;

end if;
end if;
end process;

end rtl;

Inferring RAMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 375

For technology-specific details, see Implementing Altera RAMs Automati-
cally, on page 379 and Implementing Xilinx RAMs Automatically, on
page 383.

4. For a dual-port RAM, make the write-to and read-from addresses
different. The following figure and code example illustrate how the
software infers a dual-port RAM.

module ram16x8(z, raddr, d, waddr, we, clk);
output [7:0] z;
input [7:0] d;
input [3:0] raddr, waddr;
input we;
input clk;
reg [7:0] z;
reg [7:0] mem0, mem1, mem2, mem3, mem4, mem5, mem6, mem7;
reg [7:0] mem8, mem9, mem10, mem11, mem12, mem13, mem14, mem15;
always @(mem0 or mem1 or mem2 or mem3 or mem4 or mem5 or mem6 or

mem7 or mem8 or mem9 or mem10 or mem11 or mem12 or mem13 or

LO

Chapter 8: Inferring High-Level Objects Inferring RAMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
376 June 2009

mem14 or mem15 or raddr)
begin

case (raddr[3:0])
4'b0000: z = mem0;
4'b0001: z = mem1;
4'b0010: z = mem2;
4'b0011: z = mem3;
4'b0100: z = mem4;
4'b0101: z = mem5;
4'b0110: z = mem6;
4'b0111: z = mem7;
4'b1000: z = mem8;
4'b1001: z = mem9;
4'b1010: z = mem10;
4'b1011: z = mem11;
4'b1100: z = mem12;
4'b1101: z = mem13;
4'b1110: z = mem14;
4'b1111: z = mem15;

endcase
end

always @(posedge clk) begin
if(we) begin

case (waddr[3:0])
4'b0000: mem0 = d;
4'b0001: mem1 = d;
4'b0010: mem2 = d;
4'b0011: mem3 = d;
4'b0100: mem4 = d;
4'b0101: mem5 = d;
4'b0110: mem6 = d;
4'b0111: mem7 = d;
4'b1000: mem8 = d;
4'b1001: mem9 = d;
4'b1010: mem10 = d;
4'b1011: mem11 = d;
4'b1100: mem12 = d;
4'b1101: mem13 = d;
4'b1110: mem14 = d;
4'b1111: mem15 = d;

endcase
end
end
endmodule

Inferring RAMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 377

For technology-specific details, see Implementing Altera RAMs Automati-
cally, on page 379 and Implementing Xilinx RAMs Automatically, on
page 383.

5. To infer multi-port RAMs or nrams (certain technologies only), do the
following:

– Target a technology that supports multi-port RAMs.

– Register the read address.

– Add the syn_ramstyle attribute with a value of no_rw_check. If you do not
do this, the compiler errors out.

– Make sure that the writes are to one process. If the writes are to
multiple processes, use the syn_ramstyle attribute to specify a RAM.

6. For RAMs where inference is not the best solution, use either one of
these approaches:

– Implement them as regular logic using the syn_ramstyle attribute with
a value of registers. You might want to do this if you have to conserve
RAM resources.

– Instantiate RAMs using the black box methodology. Use this method
in cases where RAM is implemented in two cells instead of one
because the RAM address range spans the word limit of the primitive
and the software does not currently support address wrapping. If the
address range is 8 to 23 and the RAM primitive is 16 words deep, the
software implements the RAM as two cells, even though the address
range is only 16 words deep. Refer to the list of limitations in
Inference Versus Instantiation, on page 372 and the vendor-specific
information referred to in the previous step to determine whether you
should instantiate RAMs.

7. Synthesize your design.

The compiler infers one of the following RAMs from the source code. You
can view them in the RTL view:

RAM1 RAM

RAM2 Resettable RAM

NRAM Multi-port RAM

LO

Chapter 8: Inferring High-Level Objects Inferring RAMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
378 June 2009

If the number of words in the RAM primitive is less than the required
address range, the compiler generates two RAMs instead of one, leaving
any extra addresses unused.

Once the compiler has inferred the RAMs, the mapper implements the
inferred RAMs in the technology you specified. For details of how to map
the RAM inferred by the compiler to the implementation you want, see
Specifying RAM Implementation Styles, on page 378, Implementing Altera
RAMs Automatically, on page 379, and Implementing Xilinx RAMs
Automatically, on page 383.

Specifying RAM Implementation Styles
You can manually influence how RAMs are implemented with the syn_ramstyle
attribute, as described in the following procedure. The valid values vary
slightly, depending on the technology you use. Check the Reference Manual
for the values that apply to the technology you choose.

If you would rather set up your design so that the software automatically
maps the RAMs to the components you want, see Implementing Altera RAMs
Automatically, on page 379 and Implementing Xilinx RAMs Automatically, on
page 383 for some vendor-specific details.

1. If you do not want to use RAM resources, attach the syn_ramstyle
attribute with a value of registers to the RAM instance name or to the
signal driven by the RAM.

Use this value for small RAMs. The software implements the RAMs
according to the technology. They can be implemented as registers
(Altera, Xilinx), LPMs, dedicated RAM resources (QuickLogic) or synchro-
nous dual-port memory cells (some Lattice technologies).

2. To use the dedicated memory resources on the FPGA (Altera
technologies), do the following:

– Set syn_ramstyle to block_ram.

– For newer Altera technologies like Stratix, specify mapping to
TriMatrix memories by setting syn_ramstyle to M512, M4K, or M-RAM.

– For Flex10K architectures, register the read address, because the
technology does not support dual-port RAMs.

– If you do not want glue logic created, register the RAM output. For
Altera Stratix designs, you can set syn_ramstyle to no_rw_check.

Inferring RAMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 379

The software implements the RAMS as EABs or ESBs, depending on the
technology.

3. To implement RAMs using dedicated Block SelectRAM+ in Xilinx Virtex
technologies, do the following. To use distributed memory, see the next
step.

– Set syn_ramstyle to block_ram.

– Register the read address, because the technology is fully
synchronous.

– If you do not want to generate glue logic for dual-port RAMs, either
register the RAM output or set syn_ramstyle to no_rw_check. Use this
attribute value only if you do not care about a read/write check.

4. To implement RAMs using distributed memory in Xilinx technologies,
set syn_ramstyle to select_ram. Set syn_ramstyle explicitly, because by
default the software first implements block RAM, and select RAM only if
it cannot implement block RAM.

Implementing Altera RAMs Automatically
The following procedure shows you how to implement various Altera RAMs
automatically. You can always override the automatic implementation by
specifying the syn_ramstyle attribute, as described in Specifying RAM Imple-
mentation Styles, on page 378 or instantiate LPMs instead of using RAMs.

1. Follow the guidelines described for RAM inference by the compiler (Basic
Guidelines for Coding RAMs, on page 373).

The Altera mapper does not implement any RAMs that are not first
inferred by the compiler.

2. To implement RAM in Flex and Apex families, see the details described
in Implementing Altera FLEX and APEX RAMs, on page 385.

3. To implement Stratix block RAM, follow these guidelines:

– If you are a Verilog user, avoid using blocking statements when you
model the RAMs because not all blocking assignments are mapped to
block RAM.

LO

Chapter 8: Inferring High-Level Objects Inferring RAMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
380 June 2009

– Synchronize the read and write addresses by registering either the
read address or output. RAMs with asynchronous read and write are
mapped to logic.

– Use syn_ramstyle with a value of no_rw_check to disable the creation of
glue logic in dual-port mode.

– Make sure the Altera Quartus tool is installed, for best results with
Stratix II devices. When Quartus is installed, the synthesis software
takes advantages of the Stratix II RAMs and MACs and writes out
Stratix II primitives that you can view in the Technology view. If you
do not install Quartus, the synthesis software infers LPMs.

During synthesis, the mapper maps Altera Stratix RAM to ALTSYNCRAM
in the following modes:

4. To implement Stratix single-port RAMs, ensure the following:

– The read and write addresses share a single address.

– There is only one data input.

– There is only RAM output.

– Either the read address or the output is registered.

– For multiple clocks, both the read address and the output must be
registered.

The mapper maps the RAM to the dedicated memory resource, ALTSYN-
CRAM, which is fully synchronous. It is mapped in SINGLE_PORT mode,
and all ports are registered. The ALTSYNCRAM implementation is deter-
mined by the Quartus place-and-route tool.

Single-port One address bus

Dual-port One address bus (where old data cannot be obtained in
single-port mode), or
Two buses: one each for read and write.

Bidirectional Two buses: one for read/write and one for read only

Inferring RAMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 381

5. To implement Stratix dual-port RAMs, make sure of the following:

– The code is written so that the hardware exactly matches the RTL
behavior. For example, if your code allows simultaneous reads and
writes to the same address, it can result in a mismatch between the
RTL and hardware behaviors. In such a case, the mapper does not
map the RAM inferred by the compiler to the dedicated ALTSYNCRAM
resources and you get a warning message. See Dual-Port RAM Code
Examples, on page 1349 of the Reference Manual.

– The design has different read and write addresses.

– There is only one data input.

– There is only RAM output.

– Either the read address or the output is registered.

– The read and write addresses can have different clocks. However if
you register the read, write, and output, at least two of them must
share a clock.

– For multiple clocks, both the read address and the output must be
registered.

The mapper maps the RAM to ALTSYNCRAM in DUAL_PORT mode, which
is fully synchronous. The actual ALTSYNCRAM implementation is deter-
mined by the Quartus place-and-route tool.

LO

Chapter 8: Inferring High-Level Objects Inferring RAMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
382 June 2009

The following figure shows one dual-port RAM implementation:

6. To implement Stratix dual-port RAMs in bidirectional mode, make sure
of the following:

– The code must be written so that there are no mismatches between
the hardware and RTL behaviors. See Dual-Port RAM Code Examples,
on page 1349 of the Reference Manual for an explanation and
examples.

– The design has different read and write addresses. There are two read
addresses.

– There is only one data input.

– There are two RAM outputs.

– Either the read address or the output is registered.

– The read and write addresses can have different clocks. However if
you register the read, write, and output, at least two of them must
share a clock.

– For multiple clocks, both the read address and the output must be
registered.

The mapper maps the RAM to ALTSYNCRAM in BIDIR_DUAL_PORT mode,
which is fully synchronous. The actual ALTSYNCRAM implementation is
determined by the Quartus place-and-route tool.

7. To implement Stratix multi-ports RAMs automatically, see Implementing
Altera Stratix Multi-Port RAMs, on page 388.

Inferring RAMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 383

Implementing Xilinx RAMs Automatically
The following procedure shows you how to implement various Xilinx RAMs
automatically. You can always override the automatic implementation by
specifying the syn_ramstyle attribute, as described in Specifying RAM Imple-
mentation Styles, on page 378.

1. Follow the guidelines described for RAM inference by the compiler (Basic
Guidelines for Coding RAMs, on page 373).

The Xilinx mapper does not implement any RAMs that are not first
inferred by the compiler.

2. To automatically implement distributed RAM, make sure the write
operation is synchronous and the read operation is asynchronous.

The Xilinx mapper implements RAMs inferred by the compiler as
asynchronous RAMs, using the CLB resources.

3. To implement block SelectRAM+, do the following:

– Make the write port synchronous. The read port can be
asynchronous.

– Register the read address (see Inferring Xilinx Block RAMs Using
Registered Addresses, on page 391).

– Make sure the RAM is a minimum of 2K bits.

The Xilinx mapper automatically implements RAMs inferred by the
compiler as Block SelectRAM+, using the dedicated memory resources
on the FPGA. The enable pin is tied to active and the reset pin is tied to
inactive.

4. To implement single-port block RAM automatically, do the following:

– Register the output. (see Inferring Xilinx Block RAMs Using Registered
Output, on page 393).

– Make the read and write addresses the same.

– Make sure that the read and write clocks are the same.

– Make sure the read and write enables are the same.

The Xilinx mapper automatically implements RAMs inferred by the
compiler as single-port Block SelectRAM+, using the dedicated memory
resources on the FPGA. The enable signal has the highest priority.

LO

Chapter 8: Inferring High-Level Objects Inferring RAMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
384 June 2009

Where applicable, the tool uses the parity bus to infer data bus widths.
The mapper also uses the Write modes in some Xilinx architectures, as
described in the next step.

5. To implement dual-port block RAM automatically, do the following:

– Register the output. (see Inferring Xilinx Block RAMs Using Registered
Output, on page 393).

– Your design can have different read and write addresses, multiple
clocks, and different read and write enables.

The Xilinx mapper implements RAMs inferred by the compiler as dual-
port block SelectRAM+, using the dedicated memory resources on the
FPGA. The dual-port RAM has only one write port. The software
automatically inserts glue logic for address collision and recovery,
unless you specify otherwise with the syn_ramstyle attribute.

The mapper also implements the Write modes available with certain
Xilinx architectures to indicate the output value when the write enable
is active. The RAM implementations are shown here:

Write Mode Xilinx Architecture RAM Implementation

Writefirst
(data_in goes to data_out)

Virtex-II, Virtex-II Pro,
Virtex-4, Spartan-3,
Spartan-3 Automotive, and
Spartan-3E

Block SelectRAM+
(single-port or dual-port)
Distributed RAM

Virtex, Virtex-E, Spartan-II,
Spartan-IIE, and Spartan-IIE
Automotive

Block SelectRAM+
(single-port or dual-port)
Distributed RAM

Inferring RAMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 385

6. To implement true dual-port block (multi-port) RAM automatically,
make sure the design meets the following conditions:

– The compiler has inferred multi-port RAMs (nrams). See Basic
Guidelines for Coding RAMs, on page 373 for details.

– The inferred nram has two writes and one read. The read shares an
address with only one of the write ports, or two inferred RAMs share
the same write addresses, clocks, and enables, but have different
read addresses. In the latter case, the mapper pairs the RAMs
together and maps them to true dual-port RAM.

The Xilinx mapper implements RAMs inferred by the compiler as true
dual-port block SelectRAM+, using the dedicated memory resources on
the FPGA. The dual-port RAM has one read port and multiple write
ports. Each write port has its own write clock, write enable, data in, and
write address.

Implementing Altera FLEX and APEX RAMs
The alternative to inferring RAMs in an Altera design is to instantiate LPMs.
See Inference Versus Instantiation, on page 372 and Working with LPMs, on
page 416.

Readfirst
(memory goes to
data_out)

Virtex-II, Virtex-II Pro,
Virtex-4, Spartan-3,
Spartan-3 Automotive, and
Spartan-3E

Block SelectRAM+
(single-port)
Distributed RAM

Virtex, Virtex-E, Spartan-II,
Spartan-IIE, and Spartan-IIE
Automotive

Distributed RAM

Nochange
(data_out is unchanged)

Virtex-II, Virtex-II Pro,
Virtex-4, Spartan-3,
Spartan-3 Automotive, and
Spartan-3E

Block SelectRAM+
(single-port)
Distributed RAM

Virtex, Virtex-E, Spartan-II,
Spartan-IIE, and Spartan-IIE
Automotive

Distributed RAM

Write Mode Xilinx Architecture RAM Implementation

LO

Chapter 8: Inferring High-Level Objects Inferring RAMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
386 June 2009

The software supports single-port RAMs for the FLEX10K family and single-
port or dual-port RAMs for the FLEX10KE, APEX20K, and 20KE families. It
inserts bypass logic to resolve a read/write behavior difference between the
RTL and post-synthesis gate-level simulations. There is a half-cycle difference
between the two: the post-RTL simulation shows memory updates occurring
on the positive edge of the system clock, and the post-synthesis simulation
shows memory updates on the negative edge. The following procedure shows
you how to set up your code.

1. Structure your source code as described in Basic Guidelines for Coding
RAMs, on page 373.

2. Include an explicit read address register.

The address must be registered to implement a synchronous RAM in an
LPM. You do not need an explicit read address for the Flex 10KE, ACEX,
APEX, APEX II, Excalibur, and Mercury families, because these archi-
tectures support dual-port RAMs with independent read and write regis-
ters.

3. To eliminate bypass logic, register the output of the RAM. The following
example defines a register, Q, for this purpose:

module ram_test(q, a, d, we, clk);
output[7:0] q;
input [7:0] d;
input [6:0] a;
input we, clk;
//Register the RAM output to eliminate glue logic
reg [7:0] q;
reg [6:0] read_add;
reg [7:0] mem [127:0];
always @(posedge clk) begin
q = mem[read_add];
end

always @(posedge clk) begin
if(we)
//Register RAM data and read address
mem[read_add] <= d;
read_add <= a;

end
endmodule

When you synthesize this example, the software creates a single-port
synchronous RAM, implemented with as few registers as possible. If you

Inferring RAMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 387

do not care about the insertion of glue logic, do not register the RAM
output:

module ram_test(q, a, d, we, clk);
output[7:0] q;
input [7:0] d;
input [6:0] a;
input we, clk;
reg [6:0] read_add;
reg [7:0] mem [127:0];
assign q = mem[read_add];

always @(posedge clk) begin
if(we)
//Register RAM data and read address
mem[read_add] <= d;
read_add <= a;

end
endmodule

When you synthesize this example, the software creates a bypass mux to
resolve the read/write simulation behavior on the positive and negative
edges of the clock.

You can use the syn_ramstyle attribute to ensure that the RAM is imple-
mented as an EAB or ESB, or to disable RAM inference as needed. See
Specifying RAM Implementation Styles, on page 378 for details.

4. Run synthesis.

The software automatically infers Altera-specific synchronous RAMs and
implements them in EABs or ESBs. When source code is written as a
single-port RAM, the software implements it as a dual-port RAM with
single-port RAM functionality, using the LPM_RAM_DQ:ALTDPRAM primi-
tive. The following table lists the family-specific details of implementa-
tion:

FLEX10K Single-port synchronous
RAMs

LPMRAMDQ

FLEX10KE
APEX20K
APEX20KE

Single-port or dual-port
RAMs with asynchronous
READs

ALTDPRAM

LO

Chapter 8: Inferring High-Level Objects Inferring RAMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
388 June 2009

Implementing Altera Stratix Multi-Port RAMs
The software can infer true multi-port RAMs, where both ports are used to
read and write simultaneously. Implementing Stratix ALTSYNCRAM compo-
nents is a two-step process: first the synthesis compiler infers the RAM
primitive, and then the mapper maps the primitive to ALTSYNCRAM.

1. Make sure the compiler infers an nram, by following the guidelines in
Basic Guidelines for Coding RAMs, on page 373.

For multi-port RAMs, the compiler infers an nram primitive, where n is
the number of write ports. You can view this in the RTL view.

2. To map the nram automatically to ALTSYNCRAM, ensure that it follows
these guidelines:

– The nram has two writes and one read. The read shares an address
with only one of the write ports.

– Make sure there are only two clocks, one for each port.

– You cannot have more than two write ports; nram primitives with
more than two ports are mapped to logic.

– The read address is registered.

– If the output is registered, the mapper retimes and infers block RAM.

The software maps nram primitives as follows:

After synthesis, the software writes out the following for the place-and-
route tool:

defparam mem_1_1_Z.lpm_type = "altsyncram";

Primitive Description Mapping

2 write ports, 1 read. The read shares an
address with only one of the write ports

ALTSYNCRAM in bidir mode

2 nrams each with 2 write addresses and 1 read,
which share the same write addresses, clocks,
and enables, but different read addresses

Paired together and mapped
to ALTSYNCRAM

> 2 write ports Logic

> 2 clocks Logic

Inferring RAMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 389

Inferring Altera Stratix III LUTRAMs
The Altera Stratix III technology has LUTRAM memory components. MLAB
(Memory LAB) resources are configured as LUTRAM. MLABs can be
configured as single-port RAM or ROM, or simple dual-port RAM. LUTRAM
writes occur on the falling edge of the clock and can be configured to have
synchronous or asynchronous read.

The following procedure shows you how to set up the synthesis tool to map
memory to MLABs and LUTRAMs. Note that you cannot currently map to a
LUTRAM ROM, nor can you initialize asynchronous memory.

1. Start with a Stratix III design.

2. Enable the Clearbox flow option.

If this option is not enabled, the memories are mapped to ALTSYNCRAM
or ALTDPRAM instead of LUTRAM.

3. Set the syn_ramstyle attribute to MLAB.

This automatically maps the RAM to MLAB resources, which can be
configured as LUTRAMs. If you do not want to infer LUTRAM, set
syn_ramstyle to registers.

For Verilog code examples that implement LUTRAM, see Altera Stratix III
LUTRAM Examples, on page 695 in the Reference Manual.

4. Synthesize your design.

The software maps aysnchronous RAMs to LUTRAM, and reports
resource utilization in the log file, like this example:

Memory ALUTs: 10 (0% of 19000)

LO

Chapter 8: Inferring High-Level Objects Inferring RAMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
390 June 2009

The following shows how the software maps an SDPRAM with registered
output and asynchronous read to a simple dual-port RAM in the RTL view:

The following shows how the same memory is mapped in the Technology view
to a stratixiii_mlab_cell LUTRAM component:

Inferring RAMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 391

Inferring Xilinx Block RAMs Using Registered Addresses
There are two ways to infer block RAMs in Xilinx Virtex designs: using regis-
tered addresses and using registered output. For information about the
latter, see Inferring Xilinx Block RAMs Using Registered Output, on page 393.
The following procedure shows you how to set up your code with an explicit
read address register.

The software does not currently infer block RAMs for Virtex designs automat-
ically; you have to use an attribute. It inserts bypass logic to resolve a
read/write behavior difference between the RTL and post-synthesis gate-level
simulations. It inserts the glue logic because it does not know the output at
the read port when the read address and the write address access the same
memory location.

1. Use instantiation instead of inference in the following cases where the
software currently does not infer the RAMs:

– RAMs with enable signals, RAM resets, or initialization settings.

– Inaccessible pins: read enable pins are always active, and reset pins
are always inactive.

– Dual-port RAMs with read/write on a port.

2. For single-port RAM, do the following:

– Make sure the read and write clocks are the same.

– Make sure the read and write addresses are the same.

– Make sure the enable signals are the same. Use only write enable
signals.

– Register the address, as shown in the following code:

always @(posedge clk)
if(we)

mem[addr] = din;

always @(posedge clk)
addr_reg = addr;

assign dout = mem[addr_reg]

LO

Chapter 8: Inferring High-Level Objects Inferring RAMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
392 June 2009

– To forward-annotate initialization values, use the Xilinx INIT property,
as described in Initializing Xilinx RAM, on page 404.

3. For dual-port RAM, do the following:

– Register the address as shown in this code:

always @(posedge clk)
if(we)

mem[waddr] = din;

always @(posedge clk)
raddr_reg = raddr;

assign dout = mem[raddr_reg]

+ Glue logic to resolve read/write discrepancies

Inferring RAMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 393

– To forward-annotate initialization values, see Initializing Xilinx RAM,
on page 404.

4. To prevent the insertion of glue logic, add the
syn_ramstyle="no_rw_check" attribute.

By default, the software inserts glue logic when the read and write
addresses access the same memory location, because it does not know
the output of the read port. The glue logic prevents a mismatch between
the RTL and post-synthesis simulation results. See Specifying RAM
Implementation Styles, on page 378 or the Reference Manual for more
information about this attribute.

5. To infer Virtex block RAM, add the syn_ramstyle="block_ram" attribute
to the register signal in your source code, or to the output signal of the
RAM in the SCOPE window. See Specifying RAM Implementation Styles,
on page 378 or the Reference Manual for more information about this
attribute.

6. Run synthesis.

The software implements the circuit using Xilinx RAMB4_S<n>_-S<n>
primitives. The Xilinx dual-port block RAM is implemented with one
write port.

Inferring Xilinx Block RAMs Using Registered Output
For Virtex-II and Virtex-II Pro designs, you can code block RAMs with regis-
tered output as described here, or with registered addresses (see Inferring
Xilinx Block RAMs Using Registered Addresses, on page 391). For information
about forward-annotating initialization values, see Initializing Xilinx RAM, on
page 404.

This information is organized into these subtopics:

• Advantages of Using Registered Output, on page 394

• Block RAM Mapping for Virtex-II Write Modes, on page 394

• Xilinx Single-Port Example with Registered Output, on page 396

• Xilinx Single-Output Dual-Port Example with Registered Output, on
page 398

LO

Chapter 8: Inferring High-Level Objects Inferring RAMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
394 June 2009

Advantages of Using Registered Output
The registered output method allows you to use reset and enable lines as well
as the different write modes in Virtex architectures. The following table shows
the advantages of using registered output instead of registered addresses:

Block RAM Mapping for Virtex-II Write Modes
The following table summarizes how the software implements Block RAM for
the write modes in different Virtex families when you register the outputs. See
Xilinx Single-Port Example with Registered Output, on page 396 and Xilinx
Single-Output Dual-Port Example with Registered Output, on page 398 for
examples.

Registered Read Address Registered Output

Read and write clocks must be the
same

Can have different clocks

No enable, reset supported Supports enable and reset signals

Virtex Virtex-E Virtex-II Virtex-II Pro

WRITEFIRST Mode

With enable and reset,
enable takes precedence

SP SP SP SP

With enable and reset, reset
takes precedence

SP SP SP SP

Without enable SP SP SP SP

Without reset SP SP SP SP

Without enable or reset SP SP SP SP

READFIRST Mode

With enable and reset,
enable takes precedence

Select
RAM

Select
RAM

SP SP

SP: Single-port block RAM
DP: Single-output, dual-port block RAM

Inferring RAMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 395

With enable and reset, reset
takes precedence

Select
RAM

Select
RAM

SP SP

Without enable Select
RAM

Select
RAM

SP SP

Without reset Select
RAM

Select
RAM

SP SP

Without enable or reset Select
RAM

Select
RAM

SP SP

NOCHANGE Mode

With enable and reset,
enable takes precedence

DP DP SP SP

With enable and reset, reset
takes precedence

DP DP SP SP

Without enable DP DP SP SP

Without reset DP DP SP SP

Without enable or reset DP DP SP SP

Virtex Virtex-E Virtex-II Virtex-II Pro

SP: Single-port block RAM
DP: Single-output, dual-port block RAM

LO

Chapter 8: Inferring High-Level Objects Inferring RAMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
396 June 2009

Xilinx Single-Port Example with Registered Output
This example shows the single-port 257x9 RAM with reset and enable
extracted from the following code, where the output is registered. To forward-
annotate initialization values, use the Xilinx INIT property as described in
Initializing Xilinx RAM, on page 404.

Inferring RAMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 397

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity ramtest is port(
do : out std_logic_vector(8 downto 0);
addr : in std_logic_vector(8 downto 0);
di : in std_logic_vector(8 downto 0);
en,clk,we,rst : in std_logic);

end ramtest;

architecture beh of ramtest is
type memtype is array (256 downto 0) of std_logic_vector(8 downto
0);
signal mem : memtype;
attribute syn_ramstyle : string;
attribute syn_ramstyle of mem : signal is "block_ram";

begin
process(clk)
begin

if clk'event and clk='1' then
if(en='1') then

if (rst='1') then
do <= "000000000";

elsif (we='1') then
do <= di;

else
do <= mem(CONV_INTEGER(addr));

end if;
end if;
end if;

end process;

process(clk)
begin

if clk'event and clk='1' then
if (en='1' and we='1') then

mem(CONV_INTEGER(addr)) <= di;
end if;
end if;

end process;

end beh;

LO

Chapter 8: Inferring High-Level Objects Inferring RAMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
398 June 2009

Xilinx Single-Output Dual-Port Example with Registered Output
For Virtex and Virtex-II Pro designs, the software maps components to single-
output dual-port block RAMs when the RAMs are coded with different read
and write addresses, different read and write clocks, and different enable
signals.

To forward-annotate initialization values, see Initializing Xilinx RAM, on
page 404.

In the following example, the read port has no enable, and the component is
mapped to single-output dual-port block RAM:

always@(posedge clk_r)
if(rst == 1)

data_out = 0;
else

data_out = mem[addr_out];
always @(posedge clk_w)

if (we) mem[addr_in] = data_in;

Mapping Xilinx ROM to Block RAM
For Xilinx Virtex architectures, the software can map ROM into block RAM,
provided you follow the guidelines in this procedure.

1. Place a dff register in front of the ROM, or place one of the following after
the ROM:

Inferring RAMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 399

where dffe is an enabled flip-flop, dffre is an enabled flip-flop with
asynchronous reset, dffse is an enabled flip-flop with asynchronous set,
and dffpatre is an enabled, vectored flip-flop with asynchronous reset
pattern.

2. Ensure that the registers and ROMs are within the same hierarchy.

3. Ensure that the number of outputs of the candidate ROM is 64 or fewer.

4. Make sure that at least half the addresses possess assigned values. For
example, in a ROM with ten address bits (1024 unique addresses), at
least 512 of those unique addresses must be assigned values.

5. Specify the syn_romstyle attribute with the value set to block_rom.

6. Synthesize the design.

The software maps the ROM into block RAM.

Asynchronous Synchronous

dff, dffe

dffr, dffre sdffr, sdffre

dffs, dffse sdffs, sdffse

dffpatr, dffpatre sdffpatr, sdffpatre

LO

Chapter 8: Inferring High-Level Objects Initializing RAMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
400 June 2009

Initializing RAMs
You can specify startup values for RAMs and pass them on to the place-and-
route tools. See the following for ways to set the initial values:

• Initializing RAMs in Verilog, on page 400

• Initializing RAMs in VHDL, on page 401

• Initializing Xilinx RAM, on page 404

Initializing RAMs in Verilog
In Verilog, you specify startup values using initial statements, which are
procedural assign statements guaranteed by the language to be executed by
the simulator at the start of the simulation. This means that any assignment
to a variable within the body of the initial statement is treated as if the
variable was initialized with the corresponding LHS value. You can initialize
memories using the built-in load memory system tasks $readmemb (binary)
and $readmemh (hex). For Xilinx RAMs, you can alternatively initialize RAMs
using the INIT property, as described in Specifying the INIT Property for Xilinx
RAMs (Verilog), on page 405 and Specifying the INIT Property with Attributes,
on page 408.

The following procedure is the recommended method for specifying initial
values:

1. Create a data file with an initial value for every address in the memory
array. This file can be a binary file or a hex file. See Initialization Data
File, on page 653 in the Reference Manual for details of the formats for
these files.

2. Do the following in the Verilog file to define the module:

– Include the appropriate task enable statement, $readmemb or
$readmemh, in the initial statement for the module:

$readmemb | $readmemh ("fileName", memoryName) ;

Use $readmemb for a binary file and $readmemh for a hex file. For
descriptions of the syntax, see Initial Values in Verilog, on page 650 in
the Reference Manual.

Initializing RAMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 401

– Make sure the array declaration matches the order in the initial value
data file you specified. As the file is read, each number encountered is
assigned to a successive word element of the memory. The software
starts with the left-hand address in the memory declaration, and
loads consecutive words until the memory is full or the data file has
been completely read. The loading order is the order in the
declaration. For example, with the following memory definition, the
first line in the data file corresponds to address 0:

reg [7:0] mem_up [0:63]

With this next definition, the first line in the data file applies to
address 63:

reg [7:0] me_down [63:0]

3. To forward-annotate initial values, use the $readmemb or $readmemh
statements, as described in Initializing RAMs with $readmemb and
$readmemh, on page 404.

See RAM Initialization Example, on page 652 in the Reference Manual for
an example of a Verilog single-port RAM.

Initializing RAMs in VHDL
There are two ways to initialize RAMs in the VHDL code: with signal declara-
tions or with variable declarations. For Xilinx RAMs, you can also initialize
RAMs using the INIT property (see Specifying the INIT Property for Xilinx RAMs
(VHDL), on page 407 and Specifying the INIT Property with Attributes, on
page 408).

Initializing VHDL Rams with Signal Declarations
The following example shows a single-port RAM that is initialized with signal
initialization statements. For alternative methods, see Initializing VHDL Rams
with Variable Declarations, on page 403 and Specifying the INIT Property for
Xilinx RAMs (VHDL), on page 407.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

LO

Chapter 8: Inferring High-Level Objects Initializing RAMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
402 June 2009

entity w_r2048x28 is
port (

clk : in std_logic;
adr : in std_logic_vector(10 downto 0);
di : in std_logic_vector(26 downto 0);
we : in std_logic;
dout : out std_logic_vector(26 downto 0));

end;

architecture arch of w_r2048x28 is

-- Signal Declaration --

type MEM is array(0 to 2047) of std_logic_vector (26 downto 0);
signal memory : MEM := (
"111111111111111000000000000"
,"111110011011101010011110001"
,"111001111000111100101100111"
,"110010110011101110011110001"
,"101001111000111111100110111"
,"100000000000001111111111111"
,"010110000111001111100110111"
,"001101001100011110011110001"
,"000110000111001100101100111"
,"000001100100011010011110001"
,"000000000000001000000000000"
,"000001100100010101100001110"
,"000110000111000011010011000"
,"001101001100010001100001110"
,"010110000111000000011001000"
,"011111111111110000000000000"
,"101001111000110000011001000"
,"110010110011100001100001110"
,"111001111000110011010011000"
,"111110011011100101100001110"
,"111111111111110111111111111"
,"111110011011101010011110001"
,"111001111000111100101100111"
,"110010110011101110011110001"
,"101001111000111111100110111"
,"100000000000001111111111111"
,others => (others => '0'));

begin
process(clk)

Initializing RAMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 403

begin
if rising_edge(clk) then

if (we = '1') then
memory(conv_integer(adr)) <= di;

end if;
dout <= memory(conv_integer(adr));

end if;
end process;

end arch;

Initializing VHDL Rams with Variable Declarations
The following example shows a RAM that is initialized with variable declara-
tions. For alternative methods, see Initializing VHDL Rams with Signal Decla-
rations, on page 401 and Initializing RAMs with $readmemb and $readmemh,
on page 404.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity one is
generic (data_width : integer := 6;

address_width :integer := 3
);

port (data_a :in std_logic_vector(data_width-1 downto 0);
raddr1 :in unsigned(address_width-2 downto 0);

waddr1 :in unsigned(address_width-1 downto 0);
we1 :in std_logic;
clk :in std_logic;
out1 :out std_logic_vector(data_width-1 downto 0));

end;

architecture rtl of one is
type mem_array is array(0 to 2**(address_width) -1) of

std_logic_vector(data_width-1 downto 0);
begin

WRITE1_RAM : process (clk)
variable mem : mem_array := (1 => "111101", others => (1=>'1',

others => '0'));
begin

if rising_edge(clk) then
out1 <= mem(to_integer(raddr1));
if (we1 = '1') then

LO

Chapter 8: Inferring High-Level Objects Initializing RAMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
404 June 2009

mem(to_integer(waddr1)) := data_a;
end if;

end if;
end process WRITE1_RAM;
end rtl;

Initializing Xilinx RAM
In addition to the methods described in Initializing RAMs in Verilog, on
page 400 and Initializing RAMs in VHDL, on page 401, you can forward-
annotate RAM initialization values using the Xilinx INIT property. If you are
using Verilog, you can also initialize the RAM using the $readmemb and
$readmemh system tasks. See the following:

• Initializing RAMs with $readmemb and $readmemh, on page 404

• Specifying the INIT Property for Xilinx RAMs (Verilog), on page 405

• Specifying the INIT Property for Xilinx RAMs (VHDL), on page 407

• Specifying the INIT Property with Attributes, on page 408

Note the following differences between the methods:

• You can use the INIT property with any code. The $readmemb and
$readmemh system tasks are only applicable in Verilog.

• The Verilog initial values only affect the output of the compiler, not the
mapper. They ensure that the synthesis results match the simulation
results and are not forward annotated.

Initializing RAMs with $readmemb and $readmemh
1. Create a data file with an initial value for every address in the memory

array. This file can be a binary file or a hex file. See Initialization Data
File, on page 653 in the Reference Manual for details.

2. Include one of the task enable statements, $readmemb or $readmemh, in
the initial statement for the module:

$readmemb | $readmemh ("fileName", memoryName) ;

Use $readmemb for a binary file and $readmemh for a hex file. For details
about the syntax, see Initial Values in Verilog, on page 650 in the Refer-
ence Manual.

Initializing RAMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 405

Specifying the INIT Property for Xilinx RAMs (Verilog)
You can initialize and forward-annotate the values for Xilinx Verilog RAMs by
specifying the INIT property. In Verilog, you can do this by using the
defparams statement or by specifying the property in a global comment. The
following examples illustrate these two methods.

• Using defparam to Specify Initialization Values for Xilinx RAMs, on
page 405

• Using Global Comments to Specify Initialization Values for Xilinx RAMs,
on page 406

Using defparam to Specify Initialization Values for Xilinx RAMs
1. Include defparam statements in the Verilog file, using one statement for

each word. Use the following syntax for the INIT property:

defparam name.INIT_xx=value;

The following example for Virtex block RAM would have 16 statements,
because it is 4K bits in size. Each statement has 64 hex values in each
INIT, because there are 16 INIT statements (64 x 4 and 256 x 16 = 4K).

RAMB4_S4 pkt_len_ram_lo (
.CLK (clock),
.RST (1'b0),
.EN (1'b1),
.WE (we),
.ADDR (address),
.DI (data),
.DO (q)
);

defparam pkt_len_ram_lo.INIT_00=
"00170016001500140013001200110010000f000e000d000c000b000a00090008 ";
defparam pkt_len_ram_lo.INIT_01=
"00270026002500240023002200210020001f001e001d001c001b001a00190018’;

name Is the name of the RAM.

xx Indicates the part of the RAM you are initializing. It can be any hex
number from 00 to FF.

value Sets the initialization value in hex.

LO

Chapter 8: Inferring High-Level Objects Initializing RAMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
406 June 2009

defparam pkt_len_ram_lo.INIT_02=
"00370036003500340033003200310030002f002e002d002c002b002a00290028";
...
defparam pkt_len_ram_lo.INIT_0F=
"0107010601050104010301020101010000ff00fe00fd00fc00fb00fa00f900f8";

When you synthesize the design, the software forward-annotates the
RAM initialization information to the Xilinx P&R software in the EDIF
netlist.

Using Global Comments to Specify Initialization Values for Xilinx RAMs
1. Add the INIT property.

– Attach the INIT property to the instance as shown:

– Define the INIT_xx=value property as follows:

– Keep the entire statement on one line. Let your editor wrap lines if it
supports line wrap, but do not press Enter until the end of the
statement.

2. For RAM, specify a hex value for the INIT statement as shown here:

RAM16X1S RAM1(...) /* synthesis INIT = "0000" */;

3. For Virtex block RAM, specify 16 different INIT statements. End the
initialization data with a semicolon.

All Virtex block RAMs have 16 INIT statements because they are all
4Kbits in size, although they are configured differently: 4Kx1, 2Kx2,
1Kx4, 512x8, and 256x16.

RAM /* synthesis INIT = "value" */

Block RAM /* synthesis INIT_xx = "value" */

xx Indicate the part of the RAM you are initializing with a number from
00 to FF.

value Set the initialization value, in hex. You have 64 hex values in each INIT
(64 x 4 = 256 and 256 x 16 = 4K), because there are 16 INIT
statements.

Initializing RAMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 407

he following example for Virtex block RAM would have 16 statements,
because it is 4K bits in size. Each statement has 64 hex values in each
INIT, because there are 16 INIT statements (64 x 4 and 256 x 16 = 4K).

RAMB4_S4 pkt_len_ram_lo (
.CLK (clock),
.RST (1'b0),
.EN (1'b1),
.WE (we),
.ADDR (address),
.DI (data),
.DO (q)
)

/* synthesis
INIT_00="00170016001500140013001200110010000f000e000d000c000b000a00090008"
INIT_01="00270026002500240023002200210020001f001e001d001c001b001a00190018"
INIT_02="00370036003500340033003200310030002f002e002d002c002b002a00290028"
...
INIT_0F="0107010601050104010301020101010000ff00fe00fd00fc00fb00fa00f900f8"
*/;

When you synthesize the design, the software forward-annotates the
RAM initialization information to the Xilinx place-and-route software.

Specifying the INIT Property for Xilinx RAMs (VHDL)
1. Add the INIT property.

– Attach the INIT property to the label as shown:

– Keep the entire statement on one line. Let the editor wrap lines if it
supports line wrap, but do not press Enter until the end of the
statement.

2. For RAM, specify hex values for the INIT statement as shown:

attribute INIT of RAM1 : label is "0000";:

RAM attribute INIT of object : label is "value";

Block RAM attribute INIT_xx of object : label is "value";

LO

Chapter 8: Inferring High-Level Objects Initializing RAMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
408 June 2009

3. For Virtex block RAM, specify 16 different INIT statements.

– Define the INIT_xx=value property as follows:

All Virtex block RAMs have 16 INIT statements because they are all
4Kbits in size, although they are configured differently: 4Kx1, 2Kx2,
1Kx4, 512x8, and 256x16.

– End the initialization data with a semicolon.

When you synthesize the design, the software forward-annotates the
RAM initialization information to the Xilinx place-and-route software.

Specifying the INIT Property with Attributes
When you set the INIT property in the source code, it is difficult to pass on the
values if the RAM instances are mapped to registers. When you specify INIT as
an attribute, either in the SCOPE window or the constraint file, you are
working with a mapped RAM, and the values are passed to the P&R tool. You
can use this method to specify the initialization values for a RAM whether you
are using Verilog or VHDL.

1. Compile and map the design.

2. Select the RAM in the SCOPE window.

– Open SCOPE and go to the Attributes panel.

– Open the Technology view. Drag and drop the RAM into the window.

3. Define the INIT (RAM) orINIT_xx = value (Block RAM) property in SCOPE.
Alternatively you can edit the .sdc file using define_attribute statements.

xx Indicate the part of the RAM you are initializing with a number from
00 to FF.

value Set the initialization value, in hex. You have 64 hex values in each INIT
(64 x 4 = 256 and 256 x 16 = 4K), because there are 16 INIT
statements.

xx Indicates the part of the RAM you are initializing with a number from
00 to FF.

value Sets the initialization value, in hex. You have 64 hex values in each
INIT (64 x 4 = 256 and 256 x 16 = 4K), because there are 16 INIT
statements.

Initializing RAMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 409

All Virtex block RAMs have 16 INIT statements because they are all
4Kbits in size, although they are configured differently: 4Kx1, 2Kx2,
1Kx4, 512x8, and 256x16.

When you synthesize the design, the software forward-annotates the
initialization values as constraints in the .sdc file. The following
example shows a value of ABBADABAABBADABA defined for INIT_00 and
INIT_01 on mem.mem_0_0 in the .sdc file:

define_attribute {i:mem.mem_0_0} INIT_00 {ABBADABAABBADABA}
define_attribute {i:mem.mem_0_0} INIT_01 {ABBADABAABBADABA}

These initialization values are forward-annotated as constraints to the
Xilinx place-and-route software.

LO

Chapter 8: Inferring High-Level Objects Inferring Shift Registers

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
410 June 2009

Inferring Shift Registers
The software infers shift registers for Xilinx Virtex and Altera Stratix architec-
tures. For Altera Stratix designs, you can implement the shift register as an
altshift_tap with tap points. Use the following procedure.

1. Set up the HDL code for the sequential shift components. See Shift
Register Examples, on page 412 for examples.

Note the following:

2. Specify the implementation style with the syn_srlstyle attribute.

You can set the value globally or on individual registers. For example, if
you do not want the components automatically mapped to shift regis-
ters, set it globally to registers. You can then override this with specific
settings on individual registers as needed.

Altera • The registers must be dff or dffe registers.
• All registers must have the same type and use the same control

signals.

Xilinx • The new component represents a set of three or more registers that
can be shifted left (from a low address to a higher address).

• The contents of only one register can be seen at a time, based on
the read address.

• For static components, the software only taps the output of the last
register. The read address of the inferred component is set to a
constant.

syn_srlstyle Value Implemented as...

registers registers

select_srl Xilinx SRL16 primitives

no_extractff_srl Xilinx SRL16 primitives without output flip-flops

altshift_tap Altera Altshift_tap components

Inferring Shift Registers Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 411

3. For Altera shift registers, use attributes to control how the registers are
packed:

If you do not specify anything, registers are packed across hierarchy. In
all cases, the registers are not packed if doing so violates DRC restric-
tions.

4. Run synthesis

After compilation, the software displays the components as seqShift
components in the RTL view. The following figure shows the components
in the RTL view.

In the technology view, the components are implemented as Xilinx
SRL16 or Altera altshift_tap primitives or registers, depending on the
attribute values you set.

To... Attach...

Prevent a register from being packed
into shift registers

syn_useioff or syn_noprune to the
register. You can also use syn_srlstyle
with a value of registers.

Prevent two registers from being
packed into the same shift registers

syn_keep between the two registers.
The algorithm slices the chain
vertically, and packs the two registers
into separate shift registers.

Specify that two registers be packed
in different shift registers

syn_srlstyle with different group names
for the registers you want to separate
(syn_srlstyle= altshift_tap, group_name)

LO

Chapter 8: Inferring High-Level Objects Inferring Shift Registers

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
412 June 2009

5. Check the results in the log file and the technology file.

The log file reports the shift registers and the number of registers packed
in them.. The following is an Altera example, showing the number of
registers packed and taps inferred:

ShiftTap: 1 (10100 registers)

Shift Register Examples

Altera Shift Register (VHDL)
library ieee;
use ieee.std_logic_1164.all;

entity test is
port (
clk : in std_logic;
din : in std_logic_vector(31 downto 0);
dout : out std_logic_vector(31 downto 0);
tap7 : out std_logic_vector(31 downto 0);
tap6 : out std_logic_vector(31 downto 0);
tap5 : out std_logic_vector(31 downto 0);
tap4 : out std_logic_vector(31 downto 0);
tap3 : out std_logic_vector(31 downto 0);
tap2 : out std_logic_vector(31 downto 0);
tap1 : out std_logic_vector(31 downto 0)
);
end test;

architecture rtl of test is
type dataAryType is array(31 downto 0) of std_logic_vector(31
downto 0);
signal q : dataAryType;

begin
process (Clk)
begin

if (Clk'Event And Clk = '1') then
q <= (q(30 DOWNTO 0) & din);

end if;
end process;

Inferring Shift Registers Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 413

dout <= q(31);
tap7 <= q(27);
tap6 <= q(23);
tap5 <= q(19);
tap4 <= q(15);
tap3 <= q(11);
tap2 <= q(7);
tap1 <= q(3);

end rtl;

Altera Shift Register (Verilog)
module
test(dout,tap7,tap6,tap5,tap4,tap3,tap2,tap1,din,shift,clk);

output [7:0] dout;
output [7:0] tap7;
output [7:0] tap6;
output [7:0] tap5;
output [7:0] tap4;
output [7:0] tap3;
output [7:0] tap2;
output [7:0] tap1;
input [7:0] din;
input shift, clk;
reg [7:0] q[63:0];

integer n;

assign dout = q[63];
assign tap7 = q[55];
assign tap6 = q[47];
assign tap5 = q[39];
assign tap4 = q[31];
assign tap3 = q[23];
assign tap2 = q[15];
assign tap1 = q[7];

always @(posedge clk)
if (shift)
begin

q[0] <= din;
for (n=0; n<63; n=n+1)

begin

LO

Chapter 8: Inferring High-Level Objects Inferring Shift Registers

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
414 June 2009

q[n+1] <= q[n];
end

end

endmodule

Xilinx Shift Register (VHDL)
This is a VHDL example of a shift register with no resets. It has four 8-bit
wide registers and a 2-bit wide read address. Registers shift when the write
enable is 1.

library IEEE;
use IEEE.std_logic_1164.all;

entity srltest is
port (inData: std_logic_vector(7 downto 0);

clk, en : in std_logic;
outStage : in integer range 3 downto 0;
outData: out std_logic_vector(7 downto 0)

);
end srltest;

architecture rtl of srltest is
type dataAryType is array(3 downto 0) of std_logic_vector(7

downto 0);
signal regBank : dataAryType;

begin
outData <= regBank(outStage);
process(clk, inData)

begin
if (clk'event and clk = '1') then

if (en='1') then
regBank <= (regBank(2 downto 0) & inData);
end if;

end if;
end process;

end rtl;

Inferring Shift Registers Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 415

Xilinx Shift Register (Verilog)
module test_srl(clk, enable, dataIn, result, addr);
input clk, enable;
input [3:0] dataIn;
input [3:0] addr;
output [3:0] result;
reg [3:0] regBank[15:0];
integer i;

always @(posedge clk) begin
if (enable == 1) begin

for (i=15; i>0; i=i-1) begin
regBank[i] <= regBank[i-1];

end
regBank[0] <= dataIn;

end
end

assign result = regBank[addr];

endmodule

LO

Chapter 8: Inferring High-Level Objects Working with LPMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
416 June 2009

Working with LPMs
Some technologies support LPMs (Library of Parameterized Modules), which
are technology-independent logic functions that are parameterized for
scalability and adaptability. There are two ways to instantiate LPMs in your
source code: as black boxes, or by using prepared components.

The following table compares the methods for instantiating LPMs.

See the following for more information about instantiating LPMs:

• Instantiating Altera LPMs as Black Boxes, on page 417

• Instantiating Altera LPMs Using VHDL Prepared Components, on
page 421

• Instantiating Altera LPMs Using a Verilog Library, on page 423

Black Box
Method

Verilog Library/VHDL
Prepared Component Method

Applies to any LPM Yes No

Synthesis LPM timing support No Yes

Synthesis procedure More coding Simple

Working with LPMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 417

Instantiating Altera LPMs as Black Boxes
The method described here uses either Verilog or VHDL LPMs in the Altera-
prescribed megafunction format. Alternatively, you can use the methods
described in Instantiating Altera LPMs Using a Verilog Library, on page 423 or
Instantiating Altera LPMs Using VHDL Prepared Components, on page 421.
For information about using Clearbox in Synplify Pro Stratix designs, see
Implementing Megafunctions with Clearbox Models, on page 165.

1. Generate the LPM using the Altera MegaWizard Plug-in Manager. If you
generate the file using another method, make sure to use the same
MegaWizard format, where ALTSYNCRAM is instantiated.

For examples of coding style, see LPM Megafunction Example (Verilog), on
page 417 and LPM Megafunction Example (VHDL), on page 419.

2. Manually edit the LPM file and add the syn_black_box attribute to make
the LPM a black box for synthesis.

See the examples in LPM Megafunction Example (Verilog), on page 417
and LPM Megafunction Example (VHDL), on page 419.

3. Instantiate the LPM in your design so that the LPM is not the top level.
Synthesize the design.

The synthesis software treats the LPM as a black box. After synthesis,
the software writes out a .vqm file where the module is a black box.

4. Add the original LPM file to the results directory and use it along with
the .vqm file to place and route your design.

The place-and-route software uses the synthesized design information
from the .vqm file and adds in the ALTSYNCRAM parameter information
from the original megafunction file to place and route the LPM RAM
correctly.

LPM Megafunction Example (Verilog)
The following file shows the coding style the Altera MegaWizard uses to
generate a Verilog LPM file, with the syn_black_box attribute added for
synthesis.

LO

Chapter 8: Inferring High-Level Objects Working with LPMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
418 June 2009

module mylpm (
data,
wren,
wraddress,
rdaddress,
clock,
q)/* synthesis syn_black_box */;

input [7:0] data;
input wren;
input [4:0] wraddress;
input [4:0] rdaddress;
input clock;
output [7:0] q;

wire [7:0] sub_wire0;
wire [7:0] q = sub_wire0[7:0];

altsyncram altsyncram_component (
.wren_a (wren),
.clock0 (clock),
.address_a (wraddress),
.address_b (rdaddress),
.data_a (data),
.q_b (sub_wire0));

defparam
altsyncram_component.operation_mode = "DUAL_PORT",
altsyncram_component.width_a = 8,
altsyncram_component.widthad_a = 5,
altsyncram_component.numwords_a = 32,
altsyncram_component.width_b = 8,
altsyncram_component.widthad_b = 5,
altsyncram_component.numwords_b = 32,
altsyncram_component.lpm_type = "altsyncram",
altsyncram_component.width_byteena_a = 1,
altsyncram_component.outdata_reg_b = "UNREGISTERED",
altsyncram_component.indata_aclr_a = "NONE",
altsyncram_component.wrcontrol_aclr_a = "NONE",
altsyncram_component.address_aclr_a = "NONE",
altsyncram_component.address_reg_b = "CLOCK0",
altsyncram_component.address_aclr_b = "NONE",
altsyncram_component.outdata_aclr_b = "NONE",
altsyncram_component.read_during_write_mode_mixed_ports

= "DONT_CARE",
altsyncram_component.ram_block_type = "AUTO",
altsyncram_component.intended_device_family = "Stratix";

endmodule

Working with LPMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 419

LPM Megafunction Example (VHDL)
Instantiate a file like this one at the top level, and include it in the project file,
as shown in the preceding figure.

ENTITY myram IS
PORT(
data : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
wren : IN STD_LOGIC := '1';
wraddress : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
rdaddress : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
clock : IN STD_LOGIC ;
q : OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);

END myram;

ARCHITECTURE SYN OF mylpram IS
SIGNAL sub_wire0 : STD_LOGIC_VECTOR (7 DOWNTO 0);

COMPONENT altsyncram
GENERIC (

operation_mode : STRING;
width_a : NATURAL;
widthad_a : NATURAL;
numwords_a : NATURAL;
width_b : NATURAL;
widthad_b : NATURAL;
numwords_b : NATURAL;
lpm_type : STRING;
width_byteena_a : NATURAL;
outdata_reg_b : STRING;
indata_aclr_a : STRING;
wrcontrol_aclr_a : STRING;
address_aclr_a : STRING;
address_reg_b : STRING;
address_aclr_b : STRING;
outdata_aclr_b : STRING;
read_during_write_mode_mixed_ports : STRING;
ram_block_type : STRING;
intended_device_family : STRING

);

LO

Chapter 8: Inferring High-Level Objects Working with LPMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
420 June 2009

PORT (
wren_a : IN STD_LOGIC ;
clock0 : IN STD_LOGIC ;
address_a : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
address_b : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
q_b : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
data_a : IN STD_LOGIC_VECTOR (7 DOWNTO 0)

);

 END COMPONENT;

BEGIN
<= sub_wire0(7 DOWNTO 0);

altsyncram_component : altsyncram
GENERIC MAP (

operation_mode => "DUAL_PORT",
width_a => 8,
widthad_a => 5,
numwords_a => 32,
width_b => 8,
widthad_b => 5,
numwords_b => 32,
lpm_type => "altsyncram",
width_byteena_a => 1,
outdata_reg_b => "CLOCK0",
indata_aclr_a => "NONE",
wrcontrol_aclr_a => "NONE",
address_aclr_a => "NONE",
address_reg_b => "CLOCK0",
address_aclr_b => "NONE",
outdata_aclr_b => "NONE",
read_during_write_mode_mixed_ports => "DONT_CARE",
ram_block_type => "AUTO",
intended_device_family => "Stratix"

)

PORT MAP (
wren_a => wren,
clock0 => clock,
address_a => wraddress,
address_b => rdaddress,
data_a => data,
q_b => sub_wire0

);

END SYN;

Working with LPMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 421

Instantiating Altera LPMs Using VHDL Prepared Components
Prepared LPM Components, available as component declarations in
LPM_COMPONENTS, use generics instead of attributes to specify different
design parameters. After you specify library and use clauses, instantiate the
components and assign (map) the ports and the values for the generics. Refer
to the Max+Plus II or Quartus II documentation for ports and generics that
require mapping. See Prepared LPM Components Provided by Synopsys
(VHDL), on page 1345 in the Reference Manual for a list of vailable LPM
components.

The prepared components method is the simplest to use, but it does not cover
all available LPMs. For other methods, see Instantiating Altera LPMs as Black
Boxes, on page 417), or Instantiating Altera LPMs Using a Verilog Library, on
page 423 (Altera only). The prepared components method uses generics
instead of attributes to specify design parameters. You specify the library,
instantiate the components, and assign (map) the ports and the values for the
generics.

1. In the higher-level entity, specify the appropriate library and use
clauses.

library lpm;
use lpm.components.all;

The prepared components are in the <install_dir>\lib\vhd directory.
The Altera LPM prepared components are in lpm.

2. Instantiate the prepared component.

3. Assign the ports and values for the generics. These assignments override
the generic values in the library. Refer to the vendor documentation for
details about ports and values for generics.

This is an example of an LPM instantiated at a higher level:

library ieee, lpm;
use ieee.std_logic_1164.all;
use lpm.components.all;

entity test is
port(data : in std_logic_vector (5 downto 0);

distance : in std_logic_vector (7 downto 0);
result : out std_logic_vector (5 downto 0);

end test;

LO

Chapter 8: Inferring High-Level Objects Working with LPMs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
422 June 2009

architecture arch1 of test is
begin
u1 : lpm_clshift

generic map (LPM_WIDTH=>6, LPM_WIDTHDIST =>8)
port map (data=>data, distance=>distance, result=>result);

end arch1;

Prepared Components LPM Example (Altera)
This example shows the instantiation of the prepared component lpm_ram_dq:

library lpm;
use lpm.lpm_components.all;
library ieee;
use ieee.std_logic_1164.all;

entity lpm_inst is
port (clock, we: in std_logic;

data : in std_logic_vector(3 downto 0);
address : in std_logic_vector(3 downto 0);
q : out std_logic_vector (3 downto 0));

end lpm_inst;

architecture arch1 of lpm_inst is
begin

I0 : lpm_ram_dq
generic map (LPM_WIDTH => 4,

 LPM_WIDTHAD => 4,
 LPM_TYPE => "LPM_RAM_DQ")

port map (data => data,
 address => address,
 we => we,
 inclock => clock,
 outclock => clock,
 q => q);

end arch1;

Working with LPMs Chapter 8: Inferring High-Level Objects

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 423

Instantiating Altera LPMs Using a Verilog Library
For Altera LPMs, you can also instantiate LPMs from a Verilog library. For
other methods of instantiating LPMs, see Instantiating Altera LPMs as Black
Boxes, on page 417 and Instantiating Altera LPMs Using VHDL Prepared
Components, on page 421.

1. Add the Verilog library file <install_dir>/lib/altera/altera_lpm.v to
your project. The following shows the code for LPM_RAM_DP.

module lpm_ram_dp (q, data, wraddress, rdaddress, rdclock,
wrclock,

rdclken, wrclken, rden, wren) /*synthesis syn_black_box*/;

parameter lpm_type = "lpm_ram_dp";
parameter lpm_width = 1;
parameter lpm_widthad = 1;
parameter numwords = 1<<lpm_widthad;
parameter lpm_indata = "REGISTERED";
parameter lpm_outdata = "REGISTERED";
parameter lpm_rdaddress_control = "REGISTERED";
parameter lpm_wraddress_control = "REGISTERED";
parameter lpm_file = "UNUSED";
parameter lpm_hint = "UNUSED";

input [lpm_width-1:0] data;
input [lpm_widthad-1:0] rdaddress, wraddress;
input rdclock, wrclock, rdclken, wrclken, wren, rden;
output [lpm_width-1:0] q;
endmodule //lpm_ram_dp

2. Instantiate the LPM in the higher-level module. For example:

module top(d, q1, wclk, rclk, wraddr, raddr, wren, rden,
wrclken, rdclken) ;

parameter AWIDTH = 4;
parameter DWIDTH = 8;
parameter WDEPTH = 1<<AWIDTH;

input [AWIDTH-1:0] wraddr, rdaddr;
input [DWIDTH-1:0] d;
input wclk, rclk, wren, rden;
input wrclken, rdclken;
output [DWIDTH-1:0] q1;

LO

Chapter 8: Inferring High-Level Objects Working with LPMs

Synopsys FPGA Synthesis User Guide
424 June 2009

Synopsys, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: +1 408 215-6000, Fax: +1 408 222-068
www.solvnet.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology,
Certify, DesignWare, HDL Analyst, Identify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro,
Synthesis Constraints Optimization Environment, and VCS are registered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-perfor-
mance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and TotalRecall are trademarks of Synopsys, Inc. All other
names mentioned herein are trademarks or registered trademarks of their respective companies.

lpm_ram_dp u1(.data(d), .wrclock(wclk), .rdclock(rclk), .q(q1),
.wraddress(wraddr), .rdaddress(rdaddr), .wren(wren),
.rden(rden), .wrclken(wrclken), .rdclken(rdclken));

defparam u1.lpm_width = DWIDTH;
defparam u1.lpm_widthad = AWIDTH;
defparam u1.lpm_indata = "REGISTERED";
defparam u1.lpm_outdata = "REGISTERED";
defparam u1.lpm_wraddress_control = "REGISTERED";
defparam u1.lpm_rdaddress_control = "REGISTERED";
endmodule

For information about using the LPMs in Altera simulation flows, see
Using LPMs in Simulation Flows, on page 777.

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 425

C H A P T E R 9

Specifying Design-Level Optimizations

This chapter covers techniques for optimizing your design using built-in tools
or attributes. For vendor-specific optimizations, see Chapter 18, Optimizing
for Specific Targets. It describes the following:

• Tips for Optimization, on page 426

• Pipelining, on page 429

• Retiming, on page 433

• Preserving Objects from Optimization, on page 440

• Optimizing Fanout, on page 446

• Sharing Resources, on page 450

• Inserting I/Os, on page 452

• Optimizing State Machines, on page 453

• Inserting Probes, on page 461

• Working with Gated Clocks, on page 464

• Optimizing Generated Clocks, on page 477

LO

Chapter 9: Specifying Design-Level Optimizations Tips for Optimization

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
426 June 2009

Tips for Optimization
The software automatically makes efficient tradeoffs to achieve the best
results. However, you can optimize your results by using the appropriate
control parameters. This section describes general design guidelines for
optimization. The topics have been categorized as follows:

• General Optimization Tips, on page 426

• Optimizing for Area, on page 427

• Optimizing for Timing, on page 428

General Optimization Tips
This section contains general optimization tips that are not directly area or
timing-related. For area optimization tips, see Optimizing for Area, on
page 427. For timing optimization, see Optimizing for Timing, on page 428.

• In your source code, remove any unnecessary priority structures in
timing-critical designs. For example, use CASE statements instead of
nested IF-THEN-ELSE statements for priority-independent logic.

• If your design includes safe state machines, use the syn_encoding
attribute with a value of safe. This ensures that the synthesized state
machines never lock in an illegal state.

• For FSMs coded in VHDL using enumerated types, use the same
encoding style (syn_enum_encoding attribute value) on both the state
machine enumerated type and the state signal. This ensures that there
are no discrepancies in the type of encoding to negatively affect the final
circuit.

• Make sure that the source code supports inferencing or instantiation by
using architecture-specific resources like memory blocks.

• Some designs benefit from hierarchical optimization techniques. To
enable hierarchical optimization on your design, set the syn_hier
attribute to firm.

• For accurate results with timing-driven synthesis, explicitly define clock
frequencies with a constraint, instead of using a global clock frequency.

Tips for Optimization Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 427

Optimizing for Area
This section contains information on optimizing to reduce area. Optimizing
for area often means larger delays, and you will have to weigh your perfor-
mance needs against your area needs to determine what works best for your
design. For tips on optimizing for performance, see Optimizing for Timing, on
page 428. General optimization tips are in General Optimization Tips, on
page 426.

• Increase the fanout limit when you set the implementation options. A
higher limit means less replicated logic and fewer buffers inserted
during synthesis, and a consequently smaller area. In addition, as P&R
tools typically buffer high fanout nets, there is no need for excessive
buffering during synthesis. See Setting Fanout Limits, on page 446 for
more information.

• Check the Resource Sharing option when you set implementation options.
With this option checked, the software shares hardware resources like
adders, multipliers, and counters wherever possible, and minimizes
area. See Sharing Resources, on page 450 for details.

• For designs with large FSMs, use the gray or sequential encoding styles,
because they typically use the least area. For details, see Specifying
FSMs with Attributes and Directives, on page 369.

• If you are mapping into a CPLD and do not meet area requirements, set
the default encoding style for FSMs to sequential instead of onehot. For
details, see Specifying FSMs with Attributes and Directives, on page 369.

• For small CPLD designs (less than 20K gates), you might improve area
by using the syn_hier attribute with a value of flatten. When specified, the
software optimizes across hierarchical boundaries and creates smaller
designs.

LO

Chapter 9: Specifying Design-Level Optimizations Tips for Optimization

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
428 June 2009

Optimizing for Timing
This section contains information on optimizing to meet timing requirements.
Optimizing for timing is often at the expense of area, and you will have to
balance the two to determine what works best for your design. For tips on
optimizing for area, see Optimizing for Area, on page 427. General optimi-
zation tips are in General Optimization Tips, on page 426.

• Use realistic design constraints, about 10 to 15 percent of the real goal.
Over constraining your design can be counter-productive because you
can get poor implementations. Use clock, false path, and multi-cycle
path constraints to make the constraints realistic.

• Select a balanced fanout constraint. A large constraint creates nets with
large fanouts, and a low fanout constraint results in replicated logic. See
Setting Fanout Limits, on page 446 for information about setting limits.

• If the critical path goes through arithmetic components, try disabling
Resource Sharing. You can get faster times at the expense of increased
area, but use this technique carefully. Adding too many resources can
cause longer delays and defeat your purpose.

• If the P&R and synthesis tools report different critical paths, use a
timing constraint with the -route option. With this option, the software
adds route delay to its calculations when trying to meet the clock
frequency goal. Use realistic values for the constraints.

• For FSMs, use the onehot encoding style, because it is often the fastest
implementation. If a large output decoder follows an FSM, gray or
sequential encoding could be faster.

• For designs with black boxes, characterize the timing models accurately,
using the syn_tpd, syn_tco, and syn_tso directives.

• If you see warnings about feedback muxes being created for signals
when you compile your source code, make sure to assign set/resets for
the signals. This improves performance by eliminating the extra mux
delay on the input of the register.

• Make sure that you pass your timing constraints to the place-and-route
tools, so that they can use the constraints to optimize timing.

• If you are working in the Synplify Premier tool and performance and
quality of results (QoR) are not essential to the application (as with early
prototyping and “what if” senarios), use the Fast Synthesis option. For
details, refer to Chapter 10, Fast Synthesis.

Pipelining Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 429

The Fast Synthesis option reduces the amount and number of mapper
optimizations performed so that you get faster synthesis runtimes. Once
the design has been evaluated with fast synthesis, the mapper optimiza-
tion effort can be returned to its normal, default level for optimum
performance/QoR evaluations. This option is only available with the
Synplify Premier tool for devices from the Xilinx Virtex and Spartan
families or the Altera Stratix families.

Pipelining
The pipelining feature is only available in the Synplify Pro and Synplify
Premier tools. Pipelining is the process of splitting logic into stages so that the
first stage can begin processing new inputs while the last stage is finishing
the previous inputs. This ensures better throughput and faster circuit perfor-
mance. If you are using selected technologies which use pipelining, you can
also use the related technique of retiming to improve performance. See
Retiming, on page 433 for details.

For pipelining, The software splits the logic by moving registers into the
multiplier or ROM:

This section discusses the following pipelining topics:

• Prerequisites for Pipelining, on page 429

• Pipelining the Design, on page 430

Prerequisites for Pipelining
The pipelining feature is only available in the Synplify Pro and Synplify
Premier tools.

• Currently, pipelining is only supported for certain Actel, Altera, Lattice,
and Xilinx technologies.

• In Xilinx Virtex designs, you can pipeline ROMs and multipliers. In
Altera designs, you can pipeline multipliers, but not ROMs.

• For Xilinx Virtex, Virtex-E, Virtex-II, Virtex-II Pro, and Virtex-4 devices,
you can only pipeline multipliers if the adjacent register has a synchro-
nous reset.

LO

Chapter 9: Specifying Design-Level Optimizations Pipelining

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
430 June 2009

• ROMs to be pipelined must be at least 512 words. Anything below this
limit is too small.

• For Xilinx Virtex designs, you can push any kind of flip-flop into the
module, as long as all the flip-flops in the pipeline have the same clock,
the same set/reset signal or lack of it, and the same enable control or
lack of it. For Altera designs, you must have asynchronous set/resets if
you want to do pipelining.

Pipelining the Design
The following procedure shows you techniques for pipelining.

1. Make sure the design meets the criteria described in Prerequisites for
Pipelining, on page 429.

2. To enable pipelining for the whole design, check the Pipelining check box.
from the button panel in the Project window, or with the Project-
>Implementation Options command (Device tab). The option is only available
in the appropriate technologies.

Use this approach as a first pass to get a feel for which modules you can
pipeline. If you know exactly which registers you want to pipeline, add
the attribute to the registers in the source code or interactively using the
SCOPE interface.

Pipelining Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 431

3. To check whether individual registers are suitable for pipelining, do the
following:

– Open the RTL view of the design.

– Select the register and press F12 to filter the schematic view.

– In the new schematic view, select the output and type e (or select
Expand from the popup menu. Check that the register is suitable for
pipelining.

4. To enable pipelining on selected registers, use either of the following
techniques:

– Check the Pipelining checkbox and attach the syn_pipeline attribute with
a value of 0 or false to any registers you do not want the software to
move. This attribute specifies that the register cannot be moved for
pipelining.

– Do not check the Pipelining checkbox. Attach the syn_pipeline attribute
with a value of 1 or true to any registers you want the software to
consider for retiming. This attribute marks the register as one that
can be moved during retiming, but does not necessarily force it to be
moved during retiming.

LO

Chapter 9: Specifying Design-Level Optimizations Pipelining

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
432 June 2009

The following are examples of the attribute:

SCOPE Interface:

Verilog Example:

reg [‘lefta:0] a_aux;
reg [‘leftb:0] b_aux;
reg [‘lefta+‘leftb+1:0] res /* synthesis syn_pipeline=1 */;
reg [‘lefta+‘leftb+1:0] res1;

VHDL Example:

architecture beh of onereg is
signal temp1, temp2, temp3,

std_logic_vector(31 downto 0);
attribute syn_pipeline : boolean;
attribute syn_pipeline of temp1 : signal is true;
attribute syn_pipeline of temp2 : signal is true;
attribute syn_pipeline of temp3 : signal is true;

5. Click Run.

The software looks for registers where all the flip-flops of the same row
have the same clock, no control signal, or the same unique control
signal, and pushes them inside the module. It attaches the syn_pipeline
attribute to all these registers. If there already is a syn_pipeline attribute
on a register, the software implements it.

6. Check the log file (*.srr). You can use the Find command for
occurrences of the word pipelining to find out which modules got
pipelined.

The log file entries look like this:

@N:|Pipelining module res_out1
@N:|res_i is level 1 of the pipelined module res_out1
@N:|r is level 2 of the pipelined module res_out1

Retiming Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 433

Retiming
The retiming feature is available in the Synplify Pro and Synplify Premier
tools. Retiming is a technique for improving the timing performance of
sequential circuits without having to modify source code. Retiming automati-
cally moves registers (register balancing) across combinatorial gates or LUTs
to improve timing while ensuring identical behavior as seen from the primary
inputs and outputs of the design. Retiming moves registers across gates or
LUTs, but does not change the number of registers in a cycle or path from a
primary input to a primary output. However, it can change the total number
of registers in a design.

The retiming algorithm retimes only edge-triggered registers. It does not
retime level-sensitive latches. Currently you can use retiming for certain
Actel, Altera, and Xilinx families. The option is not available if it does not
apply to the family you are using.

These sections contain details about using retiming.

• Controlling Retiming, on page 433

• Retiming Example, on page 435

• Retiming Report, on page 436

• How Retiming Works, on page 437

Controlling Retiming
The following procedure shows you how to use retiming.

1. To enable retiming for the whole design, check the Retiming check box.

You can set the Retiming option from the button panel in the Project
window, or with the Project->Implementation Options command (Device tab).
The option is only available in certain technologies.

LO

Chapter 9: Specifying Design-Level Optimizations Retiming

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
434 June 2009

For Altera and Xilinx designs, retiming is a superset of pipelining, so
when you select Retiming, you automatically select Pipelining. See
Pipelining, on page 429 for more information. For Actel designs, retiming
does not include pipelining.

Retiming works globally on the design, and moves edge-triggered regis-
ters as needed to balance timing.

2. To enable retiming on selected registers, use either of the following
techniques:

– Check the Retiming checkbox and attach the syn_allow_retiming attribute
with a value of 0 or false to any registers you do not want the software
to move. This attribute specifies that the register cannot be moved for
retiming. Refer to How Retiming Works, on page 437 for a list of the
components the retiming algorithm will move.

– Do not check the Retiming checkbox. Attach the syn_allow_retiming
attribute with a value of 1 or true to any registers you want the
software to consider for retiming. You can do this in the SCOPE

Set the retiming option in either place.

Retiming Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 435

interface or in the source code. This attribute marks the register as
one that can be moved during retiming, but does not necessarily force
it to be moved during retiming. If you apply the attribute to an FSM,
RAM or SRL that is decomposed into flip-flops and logic, the software
applies the attribute to all the resulting flip-flops

Retiming is a superset of pipelining; therefore adding syn_allow_retiming=1
on any registers implies syn_pipeline =1.

3. You can also fine-tune retiming using attributes:

– To preserve the power-on state of flip-flops without sets or resets (FD
or FDE) during retiming, set syn_preserve=1 or syn_allow_retiming=0 on
these flip-flops.

– To force flip-flops to be packed in I/O pads, set syn_useioff=1 as a
global attribute. This will prevent the flip-flops from being moved
during retiming.

4. Set other options for the run. Retiming might affect some constraints
and attributes. See How Retiming Works, on page 437 for details.

5. Click Run to start synthesis.

After the LUTs are mapped, the software moves registers to optimize
timing. See Retiming Example, on page 435 for an example. The software
honors other attributes you set, like syn_preserve, syn_useioff, and
syn_ramstyle. See How Retiming Works, on page 437 for details.

The log file includes a retiming report that you can analyze to under-
stand the retiming changes. It contains a list of all the registers added or
removed because of retiming. Retimed registers have a _ret suffix added
to their names. See Retiming Report, on page 436 for more information
about the report.

Retiming Example
The following example shows a design with retiming disabled and enabled.

LO

Chapter 9: Specifying Design-Level Optimizations Retiming

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
436 June 2009

The top figure shows two levels of logic between the registers and the output,
and no levels of logic between the inputs and the registers.

The bottom figure shows the results of retiming the three registers at the
input of the OR gate. The levels of logic from the register to the output are
reduced from two to one. The retimed circuit has better performance than the
original circuit. Timing is improved by transferring one level of logic from the
critical part of the path (register to output) to the non-critical part (input to
register).

Retiming Report
The retiming report is part of the log file, and includes the following:

• The number of registers added, removed, or untouched by retiming.

• Names of the original registers that were moved by retiming and which
no longer exist in the Technology view.

• Names of the registers created as a result of retiming, and which did not
exist in the RTL view. The added registers have a _ret suffix.

Retiming Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 437

How Retiming Works
This section describes how retiming works when it moves sequential compo-
nents (flip-flops). It lists some of the implications and results of retiming:

• Flip-flops with no control signals (resets, presets, and clock enables) are
the most common type of component moved. Flip-flops with minimal
control logic can also be retimed. Multiple flip-flops with reset, set or
enable signals that need to be retimed together are only retimed if they
have exactly the same control logic.

• The software does not retime the following combinatorial sequential
elements: flip-flops with both set and reset, flip-flops with attributes like
syn_preserve, flip-flops packed in I/O pads, level-sensitive latches, regis-
ters that are instantiated in the code, SRLs, and RAMs. If a RAM with
combinatorial logic has syn_ramstyle set to registers, the registers can be
retimed into the combinatorial logic.

• Retimed flip-flops are only moved through combinatorial logic. The
software does not move flip-flops across the following objects: black
boxes, sequential components, tristates, I/O pads, instantiated compo-
nents, carry and cascade chains, and keepbufs. For Altera designs,
registers that are in counter modes are not retimed to preserve the
performance benefit of the counter mode.

• You might not be able to crossprobe retimed registers between the RTL
and the Technology view, because there may not be a one-to-one corre-
spondence between the registers in these two views after retiming. A
single register in the RTL view might now correspond to multiple regis-
ters in the Technology view.

• Retiming effects of, or affected by, these attributes and constraints:

Attribute/Constraint Effect

False path constraint Does not retime flip-flops with different false path
constraints. Retimed registers affect timing
constraints.

Multicycle constraint Does not retime flip-flops with different multicycle
constraints. Retimed registers affect timing
constraints.

Register constraint Does not maintain define_reg_input_delay and
define_reg_output_delay constraints. Retimed
registers affect timing constraints.

LO

Chapter 9: Specifying Design-Level Optimizations Retiming

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
438 June 2009

• Retiming does not change the simulation behavior (as observed from
primary inputs and outputs) of your design, However if you are
monitoring (probing) values on individual registers inside the design,
you might need to modify your test bench if the probe registers are
retimed.

from/to timing
exceptions

If you set a timing constraint using a from/to
specification on a register, it is not retimed. The
exception is when using a max_delay constraint. In
this case, retiming is performed but the constraint is
not forward annotated. (The max_delay value would
no longer be valid.)

syn_hier=macro Does not retime registers in a macro with this
attribute.

syn_keep Does not retime across keepbufs generated because
of this attribute.

syn_hier=macro Does not retime registers in a macro with this
attribute.

syn_pipeline Automatically enabled if retiming is enabled.

syn_preserve Does not retime flip-flops with this attribute set.

syn_probe Does not retime net drivers with this attribute. If the
net driver is a LUT or gate, no flip-flops are retimed
across it.

syn_reference_clock On a critical path, does not retime registers with
different syn_reference_clock values together,
because the path effectively has two different clock
domains.

syn_useioff Does not override attribute-specified packing of
registers in I/O pads. If the attribute value is false,
the registers can be retimed. If the attribute is not
specified, the timing engine determines whether the
register is packed into the I/O block.

syn_allow_retiming Registers are not retimed if the value is 0.

Attribute/Constraint Effect

Retiming Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 439

How Retiming Works With Synplify Premier Regions
The following conditions can occur after a register has been retimed:

• If the retimed register and its driver and load remain in a Synplify
Premier-specific region, then the register will remain in the region.

• If the retimed register is moved outside of a Synplify Premier-specific
region but its load remains in the region, then the register will remain in
the region.

• If the retimed register and its driver and load are moved outside a
Synplify Premier-specific region, then the register will be moved outside
the region.

• If the retimed register is moved to the boundary of a Synplify Premier-
specific region, then tunneling can occur.

• Retiming may move a register across a Synplify Premier-specific region
but not across combinatorial logic.

LO

Chapter 9: Specifying Design-Level Optimizations Preserving Objects from Optimization

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
440 June 2009

Preserving Objects from Optimization
Synthesis can collapse or remove nets during optimization. If you want to
retain a net for simulation, probing, or for a different synthesis implemen-
tation, you must specify this with an attribute. Similarly, the software
removes duplicate registers or instances with unused output. If you want to
preserve this logic for simulation or analysis, you must use an attribute. The
following table lists the attributes to use in each situation. For details about
the attributes and their syntax, see the Reference Manual.

To Preserve... Attach... Result

Nets syn_keep on wire or reg
(Verilog), or signal (VHDL).
For Actel designs (except
500K and PA), use
alspreserve as well as
syn_keep.

Keeps net for simulation, a different
synthesis implementation, or for
passing to the place-and-route tool.

Nets for probing syn_probe on wire or reg
(Verilog), or signal (VHDL)

Preserves internal net for probing.
This attribute is only applicable to
the Synplify Pro and Synplify
Premier software.

Shared registers syn_keep on input wire or
signal of shared registers

Preserves duplicate driver cells,
prevents sharing. See Using
syn_keep for Preservation or
Replication, on page 441 for details
on the effects of applying syn_keep
to different objects.

Sequential
components

syn_preserve on reg or
module (Verilog), signal or
architecture (VHDL)

Preserves logic of constant-driven
registers, keeps registers for
simulation, prevents sharing

FSMs syn_preserve on reg or
module (Verilog), signal
(VHDL)

Prevents the output port or internal
signal that holds the value of the
state register from being optimized

Instantiated
components

 syn_noprune on module or
component (Verilog),
architecture or instance
(VHDL)

Keeps instance for analysis,
preserves instances with unused
outputs

Preserving Objects from Optimization Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 441

See the following for more information:

• Using syn_keep for Preservation or Replication, on page 441

• Controlling Hierarchy Flattening, on page 444

• Preserving Hierarchy, on page 444

Using syn_keep for Preservation or Replication
By default the tool considers replicated logic redundant, and optimizes it
away. If you want to maintain the redundant logic, use syn_keep to preserve
the logic that would otherwise be optimized away.

The following Verilog code specifies a replicated AND gate:

module redundant1(ina,inb,out1);
input ina,inb;
output out1,out2;
wire out1;
wire out2;

assign out1 = ina & inb;
assign out2 = ina & inb;;
endmodule

The compiler implements the AND function by replicating the outputs out1
and out2, but optimizes away the second AND gate because it is redundant.

To replicate the AND gate in the previous example, apply syn_keep to the input
wires, as shown below:

LO

Chapter 9: Specifying Design-Level Optimizations Preserving Objects from Optimization

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
442 June 2009

module redundant1d(ina,inb,out1,out2);
input ina,inb;
output out1,out2;
wire out1;
wire out2;

wire in1a /*synthesis syn_keep = 1*/;
wire in1b /*synthesis syn_keep = 1*/;
wire in2a /*synthesis syn_keep = 1*/;
wire in2b /*synthesis syn_keep = 1 */;

assign in1a = ina ;
assign in1b = inb ;
assign in2a = ina;
assign in2b = inb;
assign out1 = in1a & in1b;
assign out2 = in2a & in2b;
endmodule

Setting syn_keep on the input wires ensures that the second AND gate is
preserved:

Preserving Objects from Optimization Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 443

You must set syn_keep on the input wires of an instance if you want to
preserve the logic, as in the replication of this AND gate. If you set it on the
outputs, the instance is not replicated, because syn_keep preserves the nets
but not the function driving the net. If you set syn_keep on the outputs in the
example, you get only one AND gate, as shown in the next figure.

LO

Chapter 9: Specifying Design-Level Optimizations Preserving Objects from Optimization

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
444 June 2009

Controlling Hierarchy Flattening
Optimization flattens hierarchy. To control the flattening, use the syn_hier
attribute as described here. You can also use the attribute to prevent
flattening, as described in Preserving Hierarchy, on page 444.

1. Attach the syn_hier attribute to the module or architecture you want to
preserve. You can also add the attribute in SCOPE. If you use SCOPE to
enter the attribute, make sure to use the v: syntax.

2. Set the attribute value:

The software flattens the design as directed. If there is a lower-level
syn_hier attribute, it takes precedence over a higher-level one.

Preserving Hierarchy
The synthesis process includes cross-boundary optimizations that can flatten
hierarchy. To override these optimizations, use the syn_hier attribute as
described here. You can also use this attribute to direct the flattening process
as described in Controlling Hierarchy Flattening, on page 444.

1. Attach the syn_hier attribute to the module or architecture you want to
preserve. You can also add the attribute in SCOPE. If you use SCOPE to
enter the attribute, make sure to use the v: syntax.

To... Value...

Flatten all levels below, but not the current level flatten

Remove the current level of hierarchy without affecting
the lower levels

remove

Remove the current level of hierarchy and the lower levels flatten, remove

Flatten the current level (if needed for optimization) soft

Preserving Objects from Optimization Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 445

2. Set the attribute value:

The software flattens the design as directed. If there is a lower-level
syn_hier attribute, it takes precedence over a higher-level one.

To... Value...

Preserve the interface but allow cell packing across the
boundary

firm

Preserve the interface with no exceptions (Actel, Altera, and
Xilinx only)

hard

Preserve the interface and contents with no exceptions (Actel
(except PA, 500K, and ProASIC3 families), Altera, Lattice,
and QuickLogic only)

macro

Flatten lower levels but preserve the interface of the specified
design unit

flatten, firm

LO

Chapter 9: Specifying Design-Level Optimizations Optimizing Fanout

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
446 June 2009

Optimizing Fanout
You can optimize your results with attributes and directives, some of which
are specific to the technology you are using. Similarly, you can use specify
objects or hierarchy that you want to preserve during synthesis. For a
complete list of all the directives and attributes, see the Reference Manual.
This section describes the following:

• Setting Fanout Limits, on page 446

• Controlling Buffering and Replication, on page 448

Setting Fanout Limits
Optimization affects net fanout. If your design has critical nets with high
fanout, you can set fanout limits. You can only do this in certain technol-
ogies. For details specific to individual technologies, see the Reference
Manual.

1. To set a global fanout limit for the whole design, do either of the
following:

– Select Project-> Implementation Options->Device and type a value for the
Fanout Guide option.

– Apply the syn_maxfan attribute to the top-level view or module.

The value sets the number of fanouts for a given driver, and affects all
the nets in the design. The defaults vary, depending on the technology.
Select a balanced fanout value. A large constraint creates nets with large
fanouts, and a low fanout constraint results in replicated or buffered
logic. Both extremes affect routing and design performance. The right
value depends on your design. The same value of 32 might result in
fanouts of 11 or 12 and large delays on the critical path in one design or
in excessive replication in another design.

The software uses the value as a soft limit, or a guide. It traverses the
inverters and buffers to identify the fanout, and tries to ensure that all
fanouts are under the limit by replicating or buffering where needed (see
Controlling Buffering and Replication, on page 448 for details). However,
the synthesis tool does not respect the fanout limit absolutely; it ignores
the limit if the limit imposes constraints that interfere with optimization.

Optimizing Fanout Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 447

2. For certain Actel technologies, you can set a global hard fanout limit by
doing the following:

– Select Project-> Implementation Options->Device and type a value for the
Fanout Guide option, as described in the previous step.

– On the same tab, check the Hard Fanout Limit option.

This makes the specified value a global hard fanout limit for the design.

3. To override the global fanout guideline and set a soft fanout limit at a
lower level, set the syn_maxfan attribute on modules, views, or non-
primitive instances.

These limits override the more global limits for that object (including a
global hard limit in Actel technologies). However, these limits still
function as soft limits, and are replicated or buffered, as described in
Controlling Buffering and Replication, on page 448.

4. To set a hard or absolute limit, set the syn_maxfan attribute on a port,
net, register, or primitive instance.

Fanouts that exceed the hard limit are buffered or replicated, as
described in Controlling Buffering and Replication, on page 448.

5. To preserve net drivers from being optimized, attach the syn_keep or
syn_preserve attributes.

For example, the software does not traverse a syn_keep buffer (inserted
as a result of the attribute), and does not optimize it. However, the
software can optimize implicit buffers created as a result of other opera-
tions; for example, it does not respect an implicit buffer created as a
result of syn_direct_enable.

6. Check the results of buffering and replication in the following:

Attribute specified on... Effect

Module or view Soft limit for the module; overrides the global setting.

Non-primitive instance Soft limit; overrides global and module settings

Clock nets or
asynchronous control nets

Soft limit.

LO

Chapter 9: Specifying Design-Level Optimizations Optimizing Fanout

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
448 June 2009

– The log file (click View Log). The log file reports the number of buffered
and replicated objects and the number of segments created for the
net.

– The HDL Analyst views. The software might not follow DRC rules
when buffering or replicating objects, or when obeying hard fanout
limits.

Controlling Buffering and Replication
To honor fanout limits (see Setting Fanout Limits, on page 446) and reduce
fanout, the software either replicates components or adds buffers. The tool
uses buffering to reduce fanout on input ports, and uses replication to reduce
fanout on nets driven by registers or combinatorial logic. The software first
tries replication, replicating the net driver and splitting the net into segments.
This increases the number of register bits in the design. When replication is
not possible, the software buffers the signals. Buffering is more expensive in
terms of intrinsic delay and resource consumption. The following table
summarizes the behavior.

You can control whether high fanout nets are buffered or replicated, using
the techniques described here:

Replicates When... Creates Buffers When...

syn_maxfan is set on a
register output

syn_maxfan is set on input ports in Altera Apex, Actel
ProASIC (500K), ProASIC PLUS (PA) and ProASIC3
families, and QuickLogic pASIC3 designs

syn_replicate is 1 syn_replicate is 0.
Note that the syn_replicate attribute must be used in
conjunction with the syn_maxfan attribute for Actel
families. The syn_replicate attribute is used only to
turn off the replication.

syn_maxfan is set on a port/net that is driven by a
port or I/O pad

The net driver has a syn_keep or syn_preserve
attribute

The net driver is not a primitive gate or register

Optimizing Fanout Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 449

• To use buffering instead of replication, set syn_replicate with a value of 0
globally, or on modules or registers. The syn_replicate attribute prevents
replication, so that the software uses buffering to satisfy the fanout
limit. For example, you can prevent replication between clock bound-
aries for a register that is clocked by clk1 but whose fanin cone is driven
by clk2, even though clk2 is an unrelated clock in another clock group.

• To specify that high-fanout clock ports should not be buffered, set
syn_noclockbuf globally, or on individual input ports. Use this if you want
to save clock buffer resources for nets with lower fanouts but tighter
constraints.

• In Xilinx designs, you can handle extremely large clock fanout nets by
inserting a global buffer (BUFG) in your design. A global buffer reduces
delay for a large fanout net and can free up routing resources for other
signals.

• Turn off buffering and replication entirely, by setting syn_maxfan to a very
high number, like 1000.

LO

Chapter 9: Specifying Design-Level Optimizations Sharing Resources

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
450 June 2009

Sharing Resources
One of the ways you can optimize area is to use resource sharing. With
resource sharing, the software uses the same arithmetic operators for
mutually exclusive statements; for example, with the branches of a case
statement. Conversely, you can improve timing by disabling resource
sharing, but at the expense of increased area.

1. Specify resource sharing globally for the whole design with one of the
methods below. Enable the option to improve area; disable it to improve
timing.

– Select Project->Implementation Options->Options, and enable or disable
Resource Sharing. Alternatively, enable Resource Sharing in the Project
view.

– Apply the syn_sharing directive to the top-level module or architecture
in the source code. See syn_sharing Directive, on page 1095 of the
Reference Manual for syntax examples.

You cannot specify syn_sharing from the SCOPE interface, because it is a
compiler directive.

2. To specify resource sharing on an individual basis, or to override the
global setting, specify the syn_sharing attribute for the lower-level
module/architecture, using the syntax described in the previous step.

Verilog module top(out, in, clk_in) /* synthesis syn_sharing = "on" */;

VHDL architecture rtl of top is
attribute syn_sharing : string;
attribute syn_sharing of rtl : architecture is "off";

Sharing Resources Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 451

Multiple adders with syn_sharing off.

Shared adder resource with syn_sharing on.

LO

Chapter 9: Specifying Design-Level Optimizations Inserting I/Os

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
452 June 2009

Inserting I/Os
You can control I/O insertion globally, or on a port-by-port basis.

1. To control the insertion of I/O pads at the top level of the design, use the
Disable I/O Insertion option as follows:

– Select Project->Implementation Options and click the Device panel.

– Enable the option (checkbox on) if you want to do a preliminary run
and check the area taken up by logic blocks, before synthesizing the
entire design.

Do this if you want to check the area your blocks of logic take up,
before you synthesize an entire FPGA. If you disable automatic I/O
insertion, you do not get any I/O pads in your design, unless you
manually instantiate them.

– Leave the Disable I/O Insertion checkbox empty (disabled) if you want to
automatically insert I/O pads for all the inputs, outputs and
bidirectionals.

When this option is set, the software inserts I/O pads for inputs,
outputs, and bidirectionals in the output netlist. Once inserted, you
can override the I/O pad inserted by directly instantiating another
I/O pad.

– For the most control, enable the option and then manually
instantiate the I/O pads for specific pins, as needed.

2. For Lattice designs, you can force I/O pads to be inserted for input ports
that do not drive logic with the syn_force_pads attribute:

– To force I/O pad insertion at the module level, set the syn_force_pads
attribute on the module. Set the attribute value to 1. To disable I/O
pad insertion at the module level, set the syn_force_pads attribute for
the module to 0.

– To force I/O pad insertion on an individual port, set the
syn_force_pads attribute on the port with a value to 1. To disable I/O
insertion for a port, set the attribute on the port with a value of 0.

Enable this attribute to preserve user-instantiated pads, insert pads on
unconnected ports, insert bi-directional pads on bi-directional ports
instead of converting them to input ports, or insert output pads on
unconnected outputs.

Optimizing State Machines Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 453

If you do not set the syn_force_pads attribute, the synthesis design
optimizes any unconnected I/O buffers away.

Optimizing State Machines
You can optimize state machines with the symbolic FSM Compiler and the
FSM Explorer tools.

• The Symbolic FSM Compiler
An advanced state machine optimizer, it automatically recognizes state
machines in your design and optimizes them. Unlike other synthesis
tools that treat state machines as regular logic, the FSM Compiler
extracts the state machines as symbolic graphs, and then optimizes
them by re-encoding the state representations and generating a better
logic optimization starting point for the state machines.

• The FSM Explorer
A specialized state machine optimizer that explores different encoding
styles before selecting the best style. It uses the FSM Compiler to extract
state machines, and runs the FSM Compiler automatically if it has not
been run. The FSM Explorer functionality is only available in the
Synplify Pro and Synplify Premier tools.

For more information, see the following:

• Deciding when to Optimize State Machines, on page 453

• Running the FSM Compiler, on page 455

• Running the FSM Explorer, on page 458

Deciding when to Optimize State Machines
The FSM Explorer and the FSM Compiler are automatic tools for encoding
state machines, but you can also specify FSMs manually with attributes. For
more information about using attributes, see Specifying FSMs with Attributes
and Directives, on page 369.

LO

Chapter 9: Specifying Design-Level Optimizations Optimizing State Machines

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
454 June 2009

Here are the main reasons to use the FSM Compiler:

• To generate better results for your state machines

The software uses optimization techniques that are specifically tuned for
FSMs, like reachability analysis for example. The FSM Compiler also lets
you convert an encoded state machine to another encoding style (to
improve speed and area utilization) without changing the source. For
example, you can use a onehot style to improve results.

• To debug the state machines

State machine description errors result in unreachable states, so if you
have errors, you will have fewer states. You can check whether your
source code describes your state machines correctly. You can also use
the FSM Viewer to see a high-level bubble diagram and crossprobe from
there. The FSM Viewer is only available in the Synplify Pro and Synplify
Premier tools. For information about the FSM Viewer, see Using the FSM
Viewer, on page 670.

• To run the FSM Explorer

The FSM Explorer is a tool that examines all the encoding styles before
selecting the best option, based on the state machine extraction done by
the FSM Compiler. If the FSM Compiler has not been run previously, the
Explorer automatically runs it. For more information about using the
FSM Explorer, see Running the FSM Explorer, on page 458.

If you are trying to decide whether to use the FSM Compiler or the FSM
Explorer to optimize your state machines, remember these points:

• The FSM Explorer runs the FSM Compiler if it has not already been run,
because it picks encoding styles based on the state machines that the
FSM Compiler extracts.

• Like the FSM Compiler, you use the FSM Explorer to generate better
results for your state machines. Unlike the FSM Compiler, which picks
an encoding style based on the number of states, the FSM Explorer tries
out different encoding styles and picks the best style for the state
machine based on overall design constraints.

• The trade-off is that the FSM Explorer takes longer to run than the FSM
Compiler.

Optimizing State Machines Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 455

Running the FSM Compiler
You can run the FSM Compiler tool on the whole design or on individual
FSMs. See the following:

• Running the FSM Compiler on the Whole Design, on page 455

• Running the FSM Compiler on Individual FSMs, on page 456

Running the FSM Compiler on the Whole Design
1. Enable the compiler by checking the Symbolic FSM Compiler box in one of

these places:

– The main panel on the left side of the project window

– The Options tab of the dialog box that comes up when you click the
Add Implementation/New Impl or Implementation Options buttons

2. To set a specific encoding style for a state machine, define the style with
the syn_encoding attribute, as described in Specifying FSMs with
Attributes and Directives, on page 369.

If you do not specify a style, the FSM Compiler picks an encoding style
based on the number of states.

3. Click Run to run synthesis.

The software automatically recognizes and extracts the state machines
in your design, and instantiates a state machine primitive in the netlist
for each FSM it extracts. It then optimizes all the state machines in the
design, using techniques like reachability analysis, next state logic
optimization, state machine re-encoding and proprietary optimization
algorithms. Unless you specified an encoding style, the tool automati-
cally selects the encoding style. If you did specify a style, the tool uses
that style.

In the log file, the FSM Compiler writes a report that includes a descrip-
tion of each state machine extracted and the set of reachable states for
each state machine.

4. Select View->View Log File and check the log file for descriptions of the
state machines and the set of reachable states for each one. You see text
like the following:

LO

Chapter 9: Specifying Design-Level Optimizations Optimizing State Machines

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
456 June 2009

Extracted state machine for register cur_state
State machine has 7 reachable states with original encodings of:

0000001
0000010
0000100
0001000
0010000
0100000
1000000

....
original code -> new code

0000001 -> 0000001
0000010 -> 0000010
0000100 -> 0000100
0001000 -> 0001000
0010000 -> 0010000
0100000 -> 0100000
1000000 -> 1000000

5. Check the state machine implementation in the RTL and Technology
views and in the FSM viewer.

– In the RTL view you see the FSM primitive with one output for each
state.

– In the Technology view, you see a level of hierarchy that contains the
FSM, with the registers and logic that implement the final encoding.

– In the FSM viewer you see a bubble diagram and mapping
information. For information about the FSM viewer, see Using the
FSM Viewer, on page 670.

– In the statemachine.info text file, you see the state transition
information.

Running the FSM Compiler on Individual FSMs
If you have state machines that you do not want automatically optimized by
the FSM Compiler, you can use one of these techniques, depending on the
number of FSMs to be optimized. You might want to exclude state machines
from automatic optimization because you want them implemented with a
specific encoding or because you do not want them extracted as state
machines. The following procedure shows you how to work with both cases.

1. If you have just a few state machines you do not want to optimize, do the
following:

Optimizing State Machines Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 457

– Enable the FSM Compiler by checking the box in the button panel of
the Project window.

– If you do not want to optimize the state machine, add the
syn_state_machine directive to the registers in the Verilog or VHDL
code. Set the value to 0. When synthesized, these registers are not
extracted as state machines.

– If you want to specify a particular encoding style for a state machine,
use the syn_encoding attribute, as described in Specifying FSMs with
Attributes and Directives, on page 369. When synthesized, these
registers have the specified encoding style.

– Run synthesis.

The software automatically recognizes and extracts all the state
machines, except the ones you marked. It optimizes the FSMs it
extracted from the design, honoring the syn_encoding attribute. It writes
out a log file that contains a description of each state machine extracted,
and the set of reachable states for each FSM.

2. If you have many state machines you do not want optimized, do this:

– Disable the compiler by disabling the Symbolic FSM Compiler box in one
of these places: the main panel on the left side of the project window
or the Options tab of the dialog box that comes up when you click the
Add Implementation or Implementation Options buttons. This disables the
compiler from optimizing any state machine in the design. You can
now selectively turn on the FSM compiler for individual FSMs.

– For state machines you want the FSM Compiler to optimize
automatically, add the syn_state_machine directive to the individual
state registers in the VHDL or Verilog code. Set the value to 1. When
synthesized, the FSM Compiler extracts these registers with the
default encoding styles according to the number of states.

Verilog reg [3:0] curstate /* synthesis syn_state_machine=0 */ ;

VHDL signal curstate : state_type;
attribute syn_state_machine : boolean;
attribute syn_state_machine of curstate : signal is
false;v

LO

Chapter 9: Specifying Design-Level Optimizations Optimizing State Machines

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
458 June 2009

– For state machines with specific encoding styles, set the encoding
style with the syn_encoding attribute, as described in Specifying FSMs
with Attributes and Directives, on page 369. When synthesized, these
registers have the specified encoding style.

– Run synthesis.

The software automatically recognizes and extracts only the state
machines you marked. It automatically assigns encoding styles to the
state machines with the syn_state_machine attribute, and honors the
encoding styles set with the syn_encoding attribute. It writes out a log file
that contains a description of each state machine extracted, and the set
of reachable states for each state machine.

3. Check the state machine in the log file, the RTL and technology views,
and the FSM viewer, which is not available to Synplify users. For
information about the FSM viewer, see Using the FSM Viewer, on
page 670.

Running the FSM Explorer
1. If you need to customize the extraction process, set attributes.

– Use syn_state_machine=0 to specify state machines you do not want to
extract and optimize.

– Use syn_encoding if you want to set a specific encoding style.

Verilog reg [3:0] curstate /* synthesis syn_state_machine=1 */ ;

VHDL signal curstate : state_type;
attribute syn_state_machine : boolean;
attribute syn_state_machine of curstate : signal is true;

Verilog reg [3:0] curstate /* synthesis state_machine */ ;

VHDL signal curstate : state_type;
attribute syn_state_machine : boolean;
attribute syn_state_machine of curstate : signal is true;

Optimizing State Machines Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 459

The FSM Compiler honors the syn_state_machine attribute when it
extracts state machines, and the FSM Explorer honors the syn_encoding
attribute when it sets encoding styles. See Specifying FSMs with
Attributes and Directives, on page 369 for details.

2. Enable the FSM Explorer by checking the FSM Explorer box in one of
these places:

– The main panel on the left side of the project window

– The Options tab of the dialog box that comes up when you click the
Add Implementation or Implementation Options buttons.

If you have not checked the FSM Compiler option, checking the FSM
Explorer option automatically selects the FSM Compiler option.

3. Click Run to run synthesis.

The FSM Explorer uses the state machines extracted by the FSM
Compiler. If you have not run the FSM Compiler, the FSM Explorer
invokes the compiler automatically to extract the state machines,
instantiate state machine primitives, and optimize them. Then, the FSM
Explorer runs through each encoding style for each state machine that
does not have a syn_encoding attribute and picks the best style. If you
have defined an encoding style with syn_encoding, it uses that style.

The FSM Compiler writes a description of each state machine extracted
and the set of reachable states for each state machine in the log file. The
FSM Explorer adds the selected encoding styles. The FSM Explorer also
generates a <design>_fsm.sdc file that contains the encodings and
which is used for mapping.

Verilog reg [3:0] curstate /* synthesis syn_encoding="gray"*/ ;

VHDL signal curstate : state_type;
attribute syn_encoding : string;
attribute syn_encoding of curstate : signal is "gray";

LO

Chapter 9: Specifying Design-Level Optimizations Optimizing State Machines

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
460 June 2009

4. Select View->View Log File and check the log file for the descriptions. The
following extract shows the state machine and the reachable states as
well as the encoding style, gray, set by FSM Explorer.

Extracted state machine for register cur_state
State machine has 7 reachable states with original encodings of:

0000001
0000010
0000100
0001000
0010000
0100000
1000000

....
Adding property syn_encoding, value "gray", to instance
cur_state[6:0]
List of partitions to map:

view:work.Control(verilog)

Encoding state machine work.Control(verilog)-
cur_state_h.cur_state[6:0]
original code -> new code

0000001 -> 000
0000010 -> 001
0000100 -> 011
0001000 -> 010
0010000 -> 110
0100000 -> 111
1000000 -> 101

5. Check the state machine implementation in the RTL and Technology
views and in the FSM viewer.

For information about the FSM viewer, see Using the FSM Viewer, on
page 670.

Inserting Probes Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 461

Inserting Probes
The probe insertion feature is only available with the Synplify Pro and
Synplify Premier tools. Probes are extra wires that you insert into the design
for debugging. When you insert a probe, the signal is represented as an
output port at the top level. You can specify probes in the source code or by
interactively attaching an attribute.

Specifying Probes in the Source Code
To specify probes in the source code, you must add the syn_probe attribute to
the net. You can also add probes interactively, using the procedure described
in Adding Probe Attributes Interactively, on page 462.

1. Open the source code file.

2. For Verilog source code, attach the syn_probe attribute as a comment on
any internal signal declaration:

module alu(out, opcode, a, b, sel);
output [7:0] out;
input [2:0] opcode;
input [7:0 a, b;
input sel;
reg [7:0] alu_tmp /* synthesis syn_probe=1 */;
reg [7:0] out;

//Other code

The value 1 indicates that probe insertion is turned on. For detailed
information about Verilog attributes and examples of the files, see the
Reference Manual.

To define probes for part of a bus, specify where you want to attach the
probes; for example, if you specify reg [1:0] in the previous code, the
software only inserts two probes.

3. For VHDL source code, add the syn_probe attribute as follows:

architecture rtl of alu is
signal alu_tmp : std_logic_vector(7 downto 0) ;
attribute syn_probe : boolean;
attribute syn_probe of alu_tmp : signal is true;
--other code;

LO

Chapter 9: Specifying Design-Level Optimizations Inserting Probes

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
462 June 2009

For detailed information about VHDL attributes and sample files, see the
Reference Manual.

4. Run synthesis.

The software looks for nets with the syn_probe attribute and creates
probes and I/O pads for them.

5. Check the probes in the log file (*.srr) and the Technology view.

This figure shows some probes and probe entries in the log file.

Adding Probe Attributes Interactively
The following procedure shows you how to insert probes by adding the
syn_probe attribute through the SCOPE interface. Alternatively, you can add
the attribute in the source code, as described in Specifying Probes in the
Source Code, on page 461.

1. Open the SCOPE window and click Attributes.

2. Push down as necessary in an RTL view, and select the net for which
you want to insert a probe point.

Do not insert probes for output or bidirectional signals. If you do, you
see warning messages in the log file.

3. Do the following to add the attribute:

– Drag the net into a SCOPE cell.

Adding property syn_probe, value 1, to net pc[0]
Adding property syn_probe, value 1, to net pc[1]
Adding property syn_probe, value 1, to net pc[2]
Adding property syn_probe, value 1, to net pc[3]
....
@N|Added probe pc_keep_probe_1[0] on pc_keep[0] in
eight_bit_uc
@N|Also padding probe pc_keep_probe_1[0]
@N|Added probe pc_keep_probe_2[1] on pc_keep[1] in
eight_bit_uc
@N|Also padding probe pc_keep_probe_2[1]
@N|Added probe pc_keep_probe_3[2] on pc_keep[2] in
eight_bit_uc

Inserting Probes Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 463

– Add the prefix n: to the net name in the SCOPE window. If you are
adding a probe to a lower-level module, the name is created by
concatenating the names of the hierarchical instances.

– If you want to attach probes to part but not all of a bus, make the
change in the Object column. For example, if you enter
n:UC_ALU.longq[4:0] instead of n:UC_ALU.longq[8:0], the software only
inserts probes where specified.

– Select syn_probe in the Attribute column, and type 1 in the Value
column.

– Add the constraint file to the project list.

4. Rerun synthesis.

5. Open a Technology view and check the probe wires that have been
inserted. You can use the Ports tab of the Find form to locate the probes.

The software adds I/O pads for the probes. The following figure shows
some of the pads in the Technology view and the log file entries.

Adding property syn_probe, value 1, to net pc[0]
Adding property syn_probe, value 1, to net pc[1]
Adding property syn_probe, value 1, to net pc[2]
Adding property syn_probe, value 1, to net pc[3]
....
@N|Added probe pc_keep_probe_1[0] on pc_keep[0] in
eight_bit_uc
@N|Also padding probe pc_keep_probe_1[0]
@N|Added probe pc_keep_probe_2[1] on pc_keep[1] in
eight_bit_uc
@N|Also padding probe pc_keep_probe_2[1]
@N|Added probe pc_keep_probe_3[2] on pc_keep[2] in
eight_bit_uc

LO

Chapter 9: Specifying Design-Level Optimizations Working with Gated Clocks

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
464 June 2009

Working with Gated Clocks
The gated clock feature is only available in the Synplify Pro and Synplify
Premier tools. This section first describes the gated clock solution, which is
available for certain Altera , Lattice, and Xilinx technology families. The infor-
mation is organized into these sections:

• Gated Clocks in Synopsys FPGA Designs, on page 464

• Prerequisites for Gated Clock Conversion, on page 467

• Synthesizing a Gated Clock Design, on page 469

• Using Gated Clocks for Black Boxes, on page 471

• Analyzing Gated Clock Conversion Reports, on page 472

• Restrictions on Using Gated Clocks, on page 475

Gated Clocks in Synopsys FPGA Designs
ASIC designs typically gate clocks to conserve power, with custom clock trees
defined for each individual tree. FPGA design has dedicated resources for
low-skew clock nets. If an FPGA design implements a large number of
customized clock trees on some other routing resource, it can result in clock
skew and timing problems.

If you use the dedicated FPGA global clock trees instead, you free up routing
resources and expedite placement and routing. Dedicated FPGA clock trees
are routed to every sequential device on the die and are designed with low
skew to avoid hold-time violations. Using these global clock trees allows the
programmable routing resources of the FPGA to be used primarily for logic
interconnect and simplifies static timing analysis because checks for hold-
time violations based on minimum delays are unnecessary.

The solution is to separate the gating from the clock inputs, and combine
individual clocks trees on the dedicated FPGA global clock trees. The software
logically separates the gating from the clock and routes the gating to the
clock enables on the sequential devices, using the programmable routing
resources of the FPGA.

Working with Gated Clocks Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 465

The software separates a clock net going through an AND, NAND, OR, or NOR
gate by doing one of the following:

• Inserting a multiplexer in front of the input pin of the synchronous
element and connecting the clock net directly to the clock pin

• Moving the gating from the clock input pin to the dedicated enable pin,
when this pin is available.

The ungated or base clock is routed to the clock inputs of the sequential
devices using the global FPGA clock resources. Typically, many gated clocks
are derived from the same base clock, so separating the gating from the clock
allows a single global clock tree to be used for all gated clocks that reference
that base clock.

See the following figure for examples of eliminating gated clocks.

LO

Chapter 9: Specifying Design-Level Optimizations Working with Gated Clocks

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
466 June 2009

d

a
b

clk

Gated Clock

d
a
b

clk

Fixed Gated Clock

d

a
b

clk

Gated Clock
en

D Q

0

1

d

a
b

clk

Fixed Gated Clock

en

clk

en1

en2

d

Gated Clock with syn_keep

d

clk

en1
en2

Fixed Gated Clock

D Q

D Q

EN

D Q

EN

D Q
D Q

EN

keep1

keep2

Working with Gated Clocks Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 467

Prerequisites for Gated Clock Conversion
For a gated clock to be converted successfully, the design must meet these
requirements:

Correct Logic Format
Specifically, the combinational logic for the gated clock must satisfy the
following two conditions to have the correct format:

• For at least one set of gating input values, the value output for the gated
clock must be constant and not change as the base clock changes.

• For at least one value of the base clock, changes in the gating input
must not change the value output for the gated clock.

The correct logic format requirements are illustrated with the simple gates
shown in the following figures. When the software synthesizes a design with
the Fix Gated Clock option enabled, clock enables for the AND gate and OR gate
are converted, but the exclusive-OR gate shown in the second figure is not
converted. The following table explains.

Condition Description

Combinational
logic only

The gated clock logic must consist only of combinational logic. A
derived clock that is the output of a register is not converted.

Single base
clock

Identify only one input to the combinational logic for the gated
clock as a base clock. To identify a net as a clock, specify a period
or frequency constraint for either the gate or the clock in the
constraint (.sdc) file. This example defines the clk input as the
base clock.
define_clock -name {clk} -freq 10.000 -clockgroup
default_clkgroup

Supported
primitives

The sequential primitive clocked by the gated clock must be a
supported object. The tools support gated clock conversion for
most sequential primitives. Black box modules driven by gated
clocks can be converted if special synthesis directives are used to
define the black box. See Using Gated Clocks for Black Boxes, on
page 471.

Correct logic
format

See Correct Logic Format, on page 467 for an example of the
correct logic format.

LO

Chapter 9: Specifying Design-Level Optimizations Working with Gated Clocks

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
468 June 2009

AND gate
gclks[1]

If either gate[1] or gate[2] is 0, then gclks[1] is 0, independent
of the value of clk which satisfies the first condition. Also, if clk is
0, then gclks[1] is 0, independent of the values of gate[1] and
gate[2] which satisfies the second condition. Because gclks[1]
satisfies both conditions, it is successfully converted to the clock-
enable format.

OR gate
gclks[2]

If either gate[1] or gate[2] is 1, then gclks[2] is 1 independent
of the value of clk which satisfies the first condition. Also, if clk is
1, then gclks[2] is 1 independent of the value of gate[1] or
gate[2] which satisfies the second condition. Because gclks[2]
satisfies both conditions, it is successfully converted to the clock-
enable format.

Exclusive-OR
gate
gclks[3]

 Irrespective of the value of gate[3], gclks[3] continues to toggle.
The exclusive-OR function causes gclks[3] to fail both conditions
which prevents gclks[3] from being converted.

D Q

din[1:3] D Q

gate[1:3]

dout[1:3]

D Q

clk

[1]

[1]

[2]

[2]

[3]

[1]

[2]

[3][1:3]

[1:3]

[1]

[2]

[3] [1:3]

dout_1[1]

dout_1[2]

dout_1[3]

gclks[2]

gclks[3]

gclks[1]

Before Gated Clock Conversion

Working with Gated Clocks Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 469

Synthesizing a Gated Clock Design
The Fix Gated Clocks option described here is only available in the Synplify Pro
and Synplify Premier tools for some Altera, Lattice, and Xilinx technology
families.

1. Make sure that the gated clocks have the correct logic format and satisfy
the prerequisites for conversion. See Prerequisites for Gated Clock
Conversion, on page 467 for details.

2. If the gated clock drives a black box, specify the clock and the associated
clock enable signal with the following directives: syn_force_seq_prim,
syn_isclock, and syn_gatedclk_en. See Using Gated Clocks for Black Boxes,
on page 471 for details.

3. Make sure the clock net has a constraint specified in a .sdc file for the
current implementation.

If you do not specify an explicit constraint on the clock net or set a
global frequency constraint, enabling Fix Gated Clocks as described in the
next step will not have any effect.

D Q

din[1:3]

CE

D Q

gate[1:3]

dout[1:3]

D Q

clk

CE[1]

[1]

[2]

[2]

[3]

[1]

[2]

[3][1:3]

[1:3]

[1]

[2]

[3] [1:3]

dout_1[1]

dout_1[2]

dout_1[3]

un15_ce

gclks[3]

ce[1]

After Gated Clock Conversion

The clock enables for the AND and
OR gates are converted, but the
clock enable for the exclusive OR
remains the same.

LO

Chapter 9: Specifying Design-Level Optimizations Working with Gated Clocks

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
470 June 2009

4. Enable the Fixed Gated Clocks option.

– Select Project->Implementation Options.

– On the Device tab, set the value of Fixed Gated Clocks according to the
kind of report you want to generate in the log file (see the following
table).

5. Synthesize the design.

The Fix Gated Clocks option works on flip-flops, counters, latches,
synchronous memories, and instantiated technology primitives. The
software logically separates the gating from the clock and routes the
gating to the clock enables on the sequential devices, using the
programmable routing resources of the FPGA. The ungated base clock is
routed to the clock inputs of the sequential devices using the global

Value Effect

1 Does not report any gated clock conversions.

2 Only reports sequential elements that could not be converted.

3 The default. Reports the conversion status of all sequential
elements.

0 Disables the option.

Working with Gated Clocks Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 471

clock resources. Because many gated clocks are normally derived from
the same base clock, separating the gating from the clock allows a single
global clock tree to be used for all gated clocks that reference the same
base clock.

See Restrictions on Using Gated Clocks, on page 475 for additional infor-
mation.

6. Check the results in the Gated Clock Report section of the log file. See
Analyzing Gated Clock Conversion Reports, on page 472 for an example
of this report.

Using Gated Clocks for Black Boxes
To fix gated clocks that drive black boxes, you must identify the clock and
clock enable signal inputs to the black box. Use the syn_force_seq_prim,
syn_isclock, and syn_gatedclk_clock_en directives to do this. Refer to the
Reference Manual for information about these directives. You assume
responsibility for their functionality.

The following is an example of a black box with the required directives
specified.

Verilog
module bbe (ena, clk, data_in, data_out)
/* synthesis syn_black_box */
/* synthesis syn_force_seq_prim="clk" */
;
input clk
/* synthesis syn_isclock = 1 */
/* synthesis syn_gatedclk_clock_en="ena" */;
input data_in,ena;
output data_out;
endmodule

VHDL
library synplify;
use synplify.attributes.all;

LO

Chapter 9: Specifying Design-Level Optimizations Working with Gated Clocks

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
472 June 2009

entity bbe is
port (

clk : in std_logic;
en : in std_logic;
data_in : in std_logic;
data_out : out std_logic);

attribute syn_isclock : boolean;
attribute syn_isclock of clk : signal is true;
attribute syn_gatedclk_clock_en : string;
attribute syn_gatedclk_clock_en of clk : signal is "en";

end bbe;

architecture behave of bbe is

attribute syn_black_box : boolean;
attribute syn_force_seq_prim : string;
attribute syn_black_box of behave : architecture is true;
attribute syn_force_seq_prim of behave : architecture is "clk";

begin

end behave;

Analyzing Gated Clock Conversion Reports
The value of the Fix Gated Clocks option determines how the conversions in the
log file are reported:

For elements that could not be converted, the conversion also lists why the
conversion did not occur.

Value Effect

1 Does not report any gated clock conversions.

2 Only reports sequential elements that could not be converted.

3 The default. Reports the conversion status of all sequential elements. See
example, below.

0 Disables the option.

Working with Gated Clocks Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 473

Example
When Fix Gated Clocks is set to 3 (all sequential elements reported), the report
for the logic shown in Correct Logic Format, on page 467 would look like this:

================= Gated clock report =================

The following instances have been converted
Seq Inst Clock

dout_1[2] clk_c
dout_1[1] clk_c
===================

The following instances have NOT been converted
Seq Inst Clock Reason for not converting

dout_1[3] G_8 Gating structure not compatible
===

Working with Gated Clock Error Messages
The following table describes the gated clock conversion error messages that
are reported in the Gated Clock Report section of the log file. The following terms
are used in the descriptions:

• user clock – the clock defined in the SDC file by the user

• clock driver – the driver to the clock pin of the sequential element

Error Message Explanation

Added MUX in data path The software added a MUX to the gated clock path
because the sequential element did not have an
equivalent gate with enable.

Cannot convert primitive
instance of the type

The software encountered a primitive in the gating logic
that cannot be handled by gated clock conversion.

Cannot find gated clock
property

The software cannot find a syn_gatedclk_data_in and/or
syn_gatedclk_data_out property on the sequential
instance.

Enable pin not found There is no enable pin on an equivalent sequential
element with enable.

LO

Chapter 9: Specifying Design-Level Optimizations Working with Gated Clocks

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
474 June 2009

Found combination loop
involving the gating logic

There is a combinational loop in the gating logic, which
prevented gated clock conversion.

Found unsupported
combinational gate in gating
logic

There is an instance in the gating logic that could not
be handled currently by gated clock conversion.

Gated clock does not have
declared clock, add/enable
clock constraint in SDC file

The user-defined clock signal is not defined in the SDC
file, and this causes the gated clock conversion to fail.

Gated clock either has NO
DRIVER or has MULTIPLE
DRIVERS

The gated clock conversion code cannot determine
which clock to use because of one of the following:
• There is no user clock driving the sequential element

through the gating logic.
• There are multiple user-defined clocks driving the

gating logic.

Gating structure creates
Improper gating logic

The gating logic that corresponds to the sequential
element could not be reduced to a form where it
satisfies the following three rules needed for gated clock
conversion:
• For certain combinations of the gating signals, the

gated clock signal must be capable of being disabled
• For the remaining combinations of the gating signals,

the gated clock signal equals either the clock signal or
its inverted value

• Finally, all gated clock signal transitions can only
result from the clock signal transitions, and no
enable signal transition can result in a gated clock
signal transition

Instance has no clock pin The sequential gate does not have a clock pin.

Library cell is not marked as
sequential

The library cell has been marked as non sequential,
with the property syn_force_seq_prim set to zero.

Multiple declared clocks
found

There are multiple user-defined clocks in the gating
logic.

No gating logic found There is no gating logic (this message is no longer
displayed in the gated clock report).

Not in chip The clock driver is in another FPGA, not in the FPGA in
which the sequential element is present.

Error Message Explanation

Working with Gated Clocks Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 475

Restrictions on Using Gated Clocks
Currently, the Fix Gated Clocks option has the following restrictions:

• If the syn_keep attribute is assigned to a net, the Fix Gated Clocks option
does not preserve this net during optimization. Refer to the third
example in Gated Clocks in Synopsys FPGA Designs, on page 464.

• The Fix Gated Clocks option cannot be implemented for inferred counters
in Altera technologies.

• Gated clock conversion is not performed across hard and locked
compile-point boundaries.

• The Fix Gated Clocks option cannot be implemented by the Synplify
Premier tool if the gates associated with the gated clock are assigned to
different Synplify Premier design plan regions. See the following figure.

The Fix Gated Clocks option can be applied if all gates associated with the
gated clock are assigned to the same Synplify Premier design plan
region. Also, the flip-flops can be assigned to any Synplify Premier
region.

Property dontfixgatedclock
found

There is a syn_dontfixgatedclock on a sequential
instance, which prevented gated clock conversion.

The width of the input not
equal to the width of the
output

There is an input/output data width mismatch on the
sequential element. This prevents the software from
using a MUX-based feedback loop to enable gated clock
conversion. The sequential element does not have an
equivalent gate with enable.

Unknown reason The software is unable to determine the reason why
gated clock conversion is failing. Contact Synopsys
Support.

User asserted syn_keep
found on gated clock logic

There is a user-asserted syn_keep on one of the gates in
the gating logic or one of the nets found in the gating
logic. This prevented gated clock conversion.

Error Message Explanation

LO

Chapter 9: Specifying Design-Level Optimizations Working with Gated Clocks

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
476 June 2009

clk

en1

en2

d

Gated Clock

D Q

Rgn1 Rgn2

Fixed Gated Clock
Cannot Implement

Optimizing Generated Clocks Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 477

Optimizing Generated Clocks
The tool has an option for generated clocks that is available for specific
Altera, Xilinx, and Lattice families. When this option is enabled, the gener-
ated-clock logic is replaced during synthesis with logic that uses the initial
clock with an enable. With generated-clock optimization, the original circuit
functionality is preserved while performance is improved by reducing clock
skew.

Generated-Clock Optimization Example
The following code segment is used to illustrate generated-clock optimization:

module gen_clk(clk1,a,b,c,q);
input clk1, a, b, c;
output q;
reg ao,bo,q;
wire en;

always @(posedge clk1)
begin

ao <= a;
bo <= b;

end
assign en = ao & bo;

always @(posedge en)
begin

q <= c;
end

endmodule

With generated-clock optimization disabled (Fix Generated Clocks set to 0), the
circuit in the following figure shows a flip-flop (q) driven by a generated clock
that originates from the combinational logic driven by flip-flops ao and bo
which, in turn, are driven by the initial clock (clk1).

LO

Chapter 9: Specifying Design-Level Optimizations Optimizing Generated Clocks

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
478 June 2009

When generated-clock optimization is enabled (Fix Generated Clocks set to 1, 2,
or 3), flip-flop q is replaced with an enable flip-flop. This flip-flop is clocked by
the initial clock (clk1) and is enabled by combinational logic based on the a
and b inputs as shown in the following figure.

Enabling Generated-Clock Optimization
Generated-clock optimization is enabled by entering a non-zero value in the
Fix Generated Clocks field in the Device tab of the Implementation Options dialog
box. The following table describes the options.

Logic

a

b

c

clk1
clk2

Before Generated Clock Optimization

q

b0

a0

After Generated Clock Optimization

Logic

b
a

c

clk1

enable

q

b0

Optimizing Generated Clocks Chapter 9: Specifying Design-Level Optimizations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 479

When a value of 2 or 3 is entered, the log file includes a generated clock
optimization report.

Conditions for Generated-Clock Optimization
To perform generated-clock optimization, the following conditions must be
met:

1. The combinational logic must be driven by flip-flops.

2. The input flip-flops, such as ao and bo in the previous figure, cannot
have an active set or reset.

For example, if ao has an active-low reset, then the reset must be
disabled (tied ‘high’) for generated-clock optimization. Similar rules
apply to all the input flip-flops in the cone.

3. All input flip-flops must be driven by the same edge of the same clock.

4. With generated-clock optimization, you do not have to specify a primary
clock.

Fix generated clock value Description

0 Disable generated-clock optimization.

1 Perform optimization with no messages.

2 Perform optimization and report unoptimized
sequential elements.

3 The default. Perform optimization and report the
status of all sequential elements.

LO

Chapter 9: Specifying Design-Level Optimizations Optimizing Generated Clocks

Synopsys FPGA Synthesis User Guide
480 June 2009

Synopsys, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: +1 408 215-6000, Fax: +1 408 222-068
www.solvnet.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology,
Certify, DesignWare, HDL Analyst, Identify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro,
Synthesis Constraints Optimization Environment, and VCS are registered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-perfor-
mance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and TotalRecall are trademarks of Synopsys, Inc. All other
names mentioned herein are trademarks or registered trademarks of their respective companies.

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 481

C H A P T E R 1 0

Fast Synthesis

The following describe how to use the Fast Synthesis feature in Synplify
Premier:

• About Fast Synthesis, on page 482

• Using Fast Synthesis, on page 483

LO

Chapter 10: Fast Synthesis About Fast Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
482 June 2009

About Fast Synthesis
Fast synthesis is a feature available in the Synplify Premier software. It is a
logic synthesis design flow that is specific to Synplify Premier, like enhanced
optimization or design-plan based logic synthesis.

What fast synthesis does is to significantly reduce synthesis runtimes by a
factor of 2 or 3. It accomplishes this by reducing the number of optimizations
performed, so there is a trade-off in performance.

You can use fast synthesis with designs targeting Altera Stratix and Xilinx
Virtex and Spartan devices.

When to Use Fast Synthesis
Fast synthesis is best used in situations where quality of results (QoR) is not
crucial, or quick turanaround times are more important. Do not use this flow
is performance is critical. The following list some situations where fast
synthsis is effective:

• In the initial design development phase, when you need to quickly
evaluate a design or get a baseline result, and performance is secondary.

• When exploring "what if" scenarios when you have different implementa-
tions in mind for your design. In such a case, fast synthesis could save
you time working through different runs.

• When you need a quick preliminary synthesis result to help get post-
synthesis feedback.

• When prototyping a design (Altera Stratix and Xilinx Virtex and Spartan
families only). This can speed up the process for ASIC prototype
designers who are developing initial board-level implementations to
verify the design.

• When you need to have quick RTL-to-board turnaround times for debug
iterations.

Using Fast Synthesis Chapter 10: Fast Synthesis

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 483

Using Fast Synthesis
This section describes how to run Synplify Premier fast synthesis.

The Fast Synthesis Design Flow
The following figure summarizes the steps in the fast synthesis design flow.
The steps are described in Running Logic Synthesis with Fast Synthesis, on
page 483.

Running Logic Synthesis with Fast Synthesis
Use the following procedure for quick evaluations or where a faster runtime is
more important than the quality of results.

1. Create a Synplify Premier project.

2. Add the source files to the project.

3. Set attributes and constraints for the design.

In general, timing attributes are not honored in Fast Synthesis mode.

 Add Source Files

Set Constraints

Set Logic Mode

Create Project

Rerun synthesis

Set Options

Fails
requirements

Analyze Results

Run the Software

LO

Chapter 10: Fast Synthesis Using Fast Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
484 June 2009

4. Set options.

– Set any options that you want in the Implementation Options dialog box.

– Make sure that the Auto Constrain option is disabled.

5. Specify logic synthesis with fast synthesis.

– Disable the Physical Synthesis option, either in the Project window or in
the Implementation Options dialog box. This ensures that you are only
running logic synthesis. You cannot run fast synthesis if the Physical
Synthesis option is enabled.

– In the Device panel of the Implementation Options dialog box, set Target to
one of the supported Altera or Xilinx families.

– Enable Fast Synthesis either in the Project view or the Options panel of
the Implementation Options dialog box. This option is off by default, and
you must explicitly enable it.

The tool reduces the amount and number of logic synthesis
optimizations performed, and this results in faster runtimes. If you
have both Fast Synthesis and Enhanced Optimization enabled (see Logic
Synthesis with Enhanced Optimization, on page 36), the software
ignores the Enhanced Optimization setting and runs fast synthesis.

– Click OK.

6. Click Run to run logic synthesis.

7. Analyze the results, using the log file, the HDL Analyst schematic views,
the Message window and the Log Watch window.

After you have analyzed the results of this preliminary run, you can do
another fast synthesis run, or disable the Fast Synthesis option and repeat
synthesis with a full-scale logic or physical synthesis run.

If Fast Synthesis is intended for quick synthesis results and not for a fast
board implementation, it is recommended that you do not run P&R on
the resulting netlist, as you might get sub-optimal QOR and longer P&R
runtimes.

Implementation Options->OptionsProject View

Fast Synthesis and Other Synthesis Options Chapter 10: Fast Synthesis

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 485

Fast Synthesis and Other Synthesis Options
When you run fast synthesis, other optimizations can be affected.

Option Usage with Fast Synthesis

Auto Constrain Do not use this option with fast synthesis.

Enhanced Optimization Do not set this option with fast synthesis, as it will be
ignored.

FSM Explorer You can use this option with fast synthesis.

Physical synthesis You cannot run fast synthesis with physical synthesis
enabled. Fast synthesis only operates in logic synthesis
mode in the Synplify Premier tool. Fast synthesis does not
generate any placement information.

Pipelining You can use this option with fast synthesis.

Resource Sharing You can use this option with fast synthesis.

Retiming If you enable Fast Synthesis, the tool does not do any
retiming optimizations.

Timing constraints You can set any design constraints as you would normally
do. However, if your goal is to shorten runtimes for a fast
board implementation for example, it is recommended
that you either use loose timing constraints or set the
global clock to 1 Mhz.

LO

Chapter 10: Fast Synthesis Fast Synthesis and Other Synthesis Options

Synopsys FPGA Synthesis User Guide
486 June 2009

Synopsys, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: +1 408 215-6000, Fax: +1 408 222-068
www.solvnet.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology,
Certify, DesignWare, HDL Analyst, Identify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro,
Synthesis Constraints Optimization Environment, and VCS are registered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-perfor-
mance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and TotalRecall are trademarks of Synopsys, Inc. All other
names mentioned herein are trademarks or registered trademarks of their respective companies.

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 487

C H A P T E R 11

Floorplanning with Design Planner

The Synplify Premier Design Planner tool lets you create a design plan to
physically constrain portions of a design to specific regions on a device. It is
important to place physical constraints carefully, and this tool helps you do
this. For an overview of the design flow and steps, see Design Plan-based
Physical Synthesis, on page 48; the topics below describe how to use the tool.

Netlist restructure files usually contain primitives that have been bit sliced or
modules that have been zippered. The design plan (.sfp) and netlist
restructure files are used during optimization to improve the overall design
performance.

The following describe the Design Planner tool, bit slicing, and zippering in
more detail:

• Using Design Planner, on page 488

• Assigning Pins and Clocks, on page 495

• Working with Regions, on page 505

• Working with Altera Regions, on page 519

• Working with Xilinx Regions, on page 523

• Assigning Objects to Xilinx Regions, on page 527

• Using Process-Level Hierarchy, on page 542

• Bit Slicing, on page 543

• Zippering, on page 550

LO

Chapter 11: Floorplanning with Design Planner Using Design Planner

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
488 June 2009

Using Design Planner
The Design Planner functionality is only available for certain Altera and Xilinx
technologies. You can use the Design Planner tool either in combination with
graph-based physical synthesis (Graph-Based Physical Synthesis with Design
Planner, on page 46) or in a design plan-based physical synthesis flow
(Design Plan-based Physical Synthesis, on page 48). The following describes
the basics of using Design Planner.

• Starting Design Planner, on page 488

• Copying Objects in the Design Planner Tool, on page 490

• Controlling Pin Display in the Design Plan Editor, on page 491

• Creating and Using a Design Plan File for Physical Synthesis, on
page 494

Starting Design Planner
After the design is compiled, you create a design plan by doing the following:

1. Start with a compiled design.

It is best if you run logic synthesis first to ensure that there are no errors
before you start physical synthesis, but you can run Design Planner on
a design that has just been compiled but not synthesized.

2. Click the New Design Plan icon () in the Project view. Alternatively, you
can also create a new design plan file using File->New from the Project
menu.

3. If you have not run area estimation, or the area estimation file is out-of-
date, the Estimation Needed dialog box appears asking if you want to run
estimation.

– If you do not see this box, the No area estimate warning check box on the
Assignments tab of Tools->Design Planner Preferences is disabled.

– If you click No, the Design Planner is displayed.

– If you click Yes, the tool first runs area estimation, and the Running
Estimation dialog opens and displays the runtime of the job. Once
estimation is complete, the Design Planner opens.

Using Design Planner Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 489

LO

Chapter 11: Floorplanning with Design Planner Using Design Planner

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
490 June 2009

The following figure shows the Design Planner and RTL views.

Copying Objects in the Design Planner Tool
You can use the cut, copy, and paste functions in the Design Plan Editor and
Design Plan Hierarchy Browser views instead of drag and drop. Note the
following caveats:

• You can only use cut, copy, and paste on assignments (modules, primi-
tives, and nets).

• You cannot cut or copy regions using the Design Planner tool and, you
cannot paste to multiple regions.

Design Plan Views

Using Design Planner Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 491

The following table summarizes the cut and paste operations.

Controlling Pin Display in the Design Plan Editor
The Design Plan Editor contains the device floorplan and region view in the
Design Planner, and is available for Altera and Xilinx devices. It lets you view
and assign external ports or internal nets to I/O pins on the device.

1. To expand the pin view, do the following:

– Open the Design Planner and toggle on View->Expanded Pin View, or use
Ctrl-e. This enables the expanded pin view in the Design Plan Editor.
The following figure shows the enabled and disabled views for a
design.

To... Do this...

Assign a module or
primitive from a HDL
Analyst view

• Select the module/primitive in HDL Analyst and
press Ctrl-c to copy it.

• Select the destination region in Design Planner and
paste with Ctrl-v.

Assign a net to an I/O block
from HDL Analyst

• Select the net in HDL Analyst and copy.
• Select the I/O block region and paste it.

Assign a module or
primitive from the Hierarchy
Browser Unassigned Bin

• Select the module or primitive in the hierarchy
browser and copy it.

• Select the destination region and paste it.

Replicate a module or
primitive using the
Hierarchy Browser

• Select the module or primitive within the region
using the hierarchy browser and copy.

• Select the destination region and paste. This
displays the Replication dialog box.

Move an assignment using
the Hierarchy Browser view

• Select the module or primitive in the region using
the Hierarchy Browser, and cut it using Ctrl-x.

• Select the destination region and paste.

LO

Chapter 11: Floorplanning with Design Planner Using Design Planner

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
492 June 2009

2. To adjust the size of the pins in the view, do the following:

– Select View->Adjust Pin View... the Adjust Pin View dialog box appears.

– Adjust the view by moving the slider to either a smaller or larger view
of the pins.

– Click OK to save your new pin view setting or Cancel to restore your
original pin view setting.

Using Design Planner Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 493

3. To display the device I/O pin names, in different views, see the table
below:

When you select a pin in the Design Plan Hierarchy Browser, the corre-
sponding pin location is highlighted in the other views. The following
figure shows an example of I/O pins displayed in all three views of the
Design Planner.

To ... Do this...

List the pin names in the Design
Plan Hierarchy Browser

Select the expand icon next to Pins.

List the pin names in the Design
Plan view

Click the design name in the Design Plan
Hierarchy Browser. This lists the design objects
in the Design Plan view.
Double-click the Pins folder in the Design Plan
view.

View information about the pins
in the Design Plan view

Right-click and select Show/Hide columns, then
select the columns you need in the dialog box:
Clock, Name, Side, Seq, Dir, or Port/Net.

Display the pin number Place your cursor over the pin in the Design
Plan Editor.

Design Plan
Design Plan View Design Plan EditorHierarchy Browser

LO

Chapter 11: Floorplanning with Design Planner Using Design Planner

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
494 June 2009

Creating and Using a Design Plan File for Physical Synthesis
To create a design plan file, you must have the Design Planner option. Even if
you have this option, you do not need to use a design plan file for graph-
based synthesis. However, for older Altera and Xilinx technologies, the design
plan file is required to run physical synthesis. The following procedure shows
you how to generate a design plan file

1. Use the Design Plan editor to interactively assign RTL modules, paths or
components to regions on the device.

For information about working with regions and assignment of logic, see
Assigning Pins and Clocks, on page 495 and Working with Regions, on
page 505.

For additional, technology-specific information on assigning logic to
regions, see Working with Altera Regions, on page 519, Working with
Xilinx Regions, on page 523, and Assigning Objects to Xilinx Regions, on
page 527.

When you have finished assigning the logic, the tool generates an .sfp
physical constraint file.

2. When you create an RTL region, select Block Region Tool and then
configure the region. See Creating Regions, on page 505 for details.

3. Use the design plan file for physical synthesis.

– Add the file to the project.

– Go to Implementation Options ->Design Planning and enable the file.

– Run physical synthesis.

The physical synthesis tool uses the placement information in the
design plan file as physical constraints for synthesis.

Assigning Pins and Clocks Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 495

Assigning Pins and Clocks
This section discusses the following general guidelines for displaying and
assigning pin assignments for design planning:

• Assigning Pins Interactively, on page 495

• Importing Pin Assignments from Pin Assignment Files, on page 498

• Assigning Clock Pins, on page 498

• Modifying Pin Assignments, on page 500

• Using Temporary Pin Assignments, on page 501

• Viewing Assigned Pins in Different Views, on page 502

• Viewing Pin Assignment Information, on page 503

Assigning Pins Interactively
In addition to the methods described in Importing Pin Assignments from Pin
Assignment Files, on page 498 for importing pin assignments, you can
manually assign pins using the methods described here. You can either
assign the pins in the SCOPE window, or use Design Planner to assign pins.

1. To assign pins directly in the SCOPE window, do the following:

– Open the SCOPE Attributes tab.

– Select a port. Assign it to a pin location using a pin location
constraint appropriate to your technology or the syn_loc constraint.

– Alternatively, manually add constraints to the .sdc file.

The pin assignments are stored as constraints in the .sdc file. For Xilinx
designs, if you have the pin locations defined as UCF constraints, you
can automatically translate them into SDC constraints. See Importing
Pin Assignments from Pin Assignment Files, on page 498 for details.

2. To assign a pin in Design Planner, do the following:

– Open the Design Plan window and make sure you can see the pins
clearly. See Viewing Pin Assignment Information, on page 503 for
information on displaying the pins.

LO

Chapter 11: Floorplanning with Design Planner Assigning Pins and Clocks

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
496 June 2009

– Select a pin in the Design Plan RTL view or the Hierarchy Browser for
that RTL view.

– Drag the pin to the location you want in the Design Plan. You can
drag it to the appropriate pin in the graphic Design Plan editor view,
or to the appropriate pin name in the Design Plan Hierarchy Browser
or Design Plan view.

The design plan views reflect the new status of the pin. For details, see
Viewing Assigned Pins in Different Views, on page 502.

Drag pins from either
of these views...

..to any of these views.

Assigning Pins and Clocks Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 497

This example shows a pin assignment:

3. To assign a bus port (group of signals), drag a bus port from the RTL
view and drop it to one device pin in the Design Plan Editor view.

The software allocates the remaining pin(s) depending upon its location
on the device. Pins located on the left and right sides of the device are
allocated from bottom to top. Pins located on the top and bottom of the
device are allocated from left to right. Pins that are occupied are
skipped. All devices allocate pins using this convention.

For information about viewing pin assignments and related information,
see Viewing Assigned Pins in Different Views, on page 502.

The following figure shows bus port assignment:

LO

Chapter 11: Floorplanning with Design Planner Assigning Pins and Clocks

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
498 June 2009

Importing Pin Assignments from Pin Assignment Files
The following procedure describes methods for reading pin assignments from
files into the design plan. To assign pins manually, see Assigning Pins Interac-
tively, on page 495.

The methods described here are used at different phases of the design
process. When you import pin assignments from a file, you are usually back
annotating the design with pin assignments generated after placement and
routing (Altera .pin or Xilinx .pad files). For Xilinx designs, you can also import
user-defined constraints in the UCF format at the physical synthesis stage.

1. For Xilinx designs, convert user-defined pin locations to SDC
constraints by doing the following:

– Define the pin locations in the UCF syntax, and save the file.

– Translate the location constraints to SDC, using the procedure
described in Converting and Using Xilinx UCF Constraints, on
page 255.

– Add the constraint file to the project.

Use the UCF file to add pin location constraints to the design before you
run initial placement.

2. To convert pin location information from Altera .pin or Xilinx .pad files
to SCOPE SDC constraints, see Translating Pin Location Files, on
page 348.

Be careful if you use both SDC and .sfp file constraints, because you can
create potential mismatches between the two files. The SCOPE
constraint file (.sdc) typically takes precedence over the Design Plan file
(.sfp) for pin assignment conflicts. For descriptions of possible conflicts,
see Assigning Pins Interactively, on page 495.

For information about viewing pin assignments and related information,
see Viewing Assigned Pins in Different Views, on page 502.

Assigning Clock Pins
Clock pins are available for Altera and Xilinx devices, and are displayed in
green in the Design Plan Editor to distinguish them from the signal I/O pins.

Assigning Pins and Clocks Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 499

There are several methods of assigning I/O pins, so you might encounter pin
assignment conflicts like the following:

• Imported information from a .pin or .pad file with different device
packages and parts.

• The .sdc file might contain I/O pin locations that conflict with the pin
locations specified in the .sfp file. The SCOPE constraint file (.sdc)
typically takes precedence over the Design Plan file (.sfp) when conflicts
exist after pin assignments.

• If pin assignments from the back end place-and-route tool are added
into the .sfp file, potential pin lock conflicts may occur. In case of a
conflict, the tool generates an appropriate warning message.

• Design rule checks are implemented if there are multiple assignments to
the same I/O pins or ports.

The following procedure shows you how to assign clock pins.

1. To assign a clock pin, drag and drop a signal to a clock pin, as described
in Assigning Pins Interactively, on page 495.

A message asks you to confirm the assignment to ensure that the
correct signal gets assigned to the clock pin. After assignment, the pin
changes to pink.

You cannot drag and drop a bus (group of signals) to a clock pin. If you
drag and drop a bus to an I/O pin near a clock pin, the tool skips the
clock pin when it assigns the bus to the I/O pins.

2. To view the information in the Design Plan view, enable the Clock column
on the Select Columns dialog box. This displays whether or not a pin is a
clock (Yes or No).

LO

Chapter 11: Floorplanning with Design Planner Assigning Pins and Clocks

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
500 June 2009

Modifying Pin Assignments
The following shows you how to change pin assignments once they have been
made.

1. To undo an assignment, click on the pin in any of the three views, right-
click, and select Delete Pin Assignment.

2. To reassign a port, drag and drop it at a new location in the Design Plan
editor.

3. To change the current order of pin assignments from clockwise to
counter-clockwise or vice versa, do the following:

– Select a set of pins in any view of the Synplify Premier Design
Planner.

Design Plan View

Design Plan Editor

Clock Pins

Assigning Pins and Clocks Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 501

– Right-click and select Reverse Pin Assignments from the pop-up menu.
The reversed pin assignments are displayed in the Design Planner
views.

4. To rearrange or reorder pin assignments for nets or ports, do the
following:

– Move the pins to temporary assignments. See Using Temporary Pin
Assignments, on page 501 for details.

– Assign them to the desired locations.

Using Temporary Pin Assignments
Use temporary assignments to rearrange or reorder pin assignments for nets
or ports

1. To create a temporary assignment, drag and drop an assigned pin from
the Design Plan editor to the Temporary Assigns icon () in the Hierarchy
Browser.

The Temporary Assigns container lists the pins with temporary assign-
ments. Note that you cannot drag and drop assignments from the HDL
Analyst RTL view to Temporary Assigns.

2. To re-assign a pin with a temporary assignment, do either of the
following:

– For assignment to a new location, drag and drop the pin from the
Temporary Assigns container to the new pin or region location in the
Design Plan Editor. You can also reassign the pin using the methods
described in Assigning Pins Interactively, on page 495.

– To return the pin to its original placement location, select the
assignment in the Temporary Assigns. Then, right-click and select
Reassign from the pop-up menu.

As pins in the Temporary Assigns container are reassigned, they are
automatically removed from Temporary Assigns.

3. To remove assignments from all the pins, select the Temporary Assigns
icon, right-click, and select Empty.

4. To sort pin assignments by description, name, or origin in the Design
Plan View, do the following:

LO

Chapter 11: Floorplanning with Design Planner Assigning Pins and Clocks

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
502 June 2009

– Display the appropriate column by right-clicking and selecting Show
Columns->Description/Origin from the popup menu.

– Click on the column heading in the Design Plan View to sort.

5. To undo or redo operations in the Temporary Assigns container, use the
Edit->Undo or Edit->Redo commands.

The following figure shows a temporary assignment:

Viewing Assigned Pins in Different Views
The following table summarizes how pin assignments are displayed in the
Design Plan views:

Design Plan
Hierarchy Browser

Assigned pins include assignment information. Selected
assigned pins are red.

Design Plan view To view information for the pins, select Show/Hide columns
from the popup menu and choose the kinds of information
you want to display for the pins, like pin direction and port
or net information.

Assigning Pins and Clocks Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 503

Viewing Pin Assignment Information
This section lists different methods you can use to obtain information about
your pin assignments. These methods are in addition to the display infor-
mation described in Viewing Pin Assignment Information, on page 503.

1. To view information for a particular pin, use the following:

– Tooltips
To display a tooltip, move your cursor over a pin or port in the Design
Plan editor or in the RTL view.

– The visual clues described in Viewing Pin Assignment Information, on
page 503.

2. To display connectivity between the I/O pads and the assigned logic for
regions on the device, do the following:

– To view connectivity for all regions, right-click in the Design Plan
Editor and select Rats Nest->Show from the pop-up menu.

– To view connectivity for one region, select it and right-click in the
Design Plan Editor. Select Rats Nest->Show Selected from the menu.

Design Plan editor Orange: Selected assigned pins
Red: Unselected assigned pins
Blue: Selected unassigned pins
Green: Unassigned clock pins
Pink: Unselected assigned clock pins
To view the pin number and assignment for a pin, place the
cursor over the pin.

RTL view Assigned ports are displayed in blue. Place your cursor over
a pin to display information about it.

LO

Chapter 11: Floorplanning with Design Planner Assigning Pins and Clocks

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
504 June 2009

– To disable the connectivity display, right-click in the Design Plan
Editor and select Rats Nest->Hide.

Alternatively, you can also select View->Rats Nest from the Project menu,
then choose the Show, Hide, or Show Selected command.

The display shows lines (rat’s nesting) to indicate the connectivity.

3. To view pin assignment statistics for the design, right-click on the Pins
folder in the Design Plan Hierarchy Browser, and select Properties from
the pop-up menu.

The Properties dialog box shows the total number of pins, the number of
assigned pins, and the percentage of pins assigned.

4. Use crossprobing.

When you select assigned ports in any of the Design Planner views or
the HDL Analyst RTL view, the corresponding pins are highlighted in the
other views view. Similarly, if you select a net that has an assigned pin
in the RTL view, the corresponding pin is highlighted in the Design
Planner views. If you select the assigned pin in a Design Planner view,
the corresponding internal net is highlighted in the RTL view.

Working with Regions Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 505

Working with Regions
This section discusses the following general guidelines for placing and editing
regions in the Design Planner before running physical synthesis:

• Creating Regions, on page 505

• Using Region Tunneling, on page 507

• Viewing Intellectual Property (IP) Core Areas, on page 510

• Assigning Logic to Top-level Chip Regions, on page 510

• Assigning Logic to Regions, on page 514

• Replicating Logic Manually, on page 515

• Assigning Critical Paths from Island Timing to a Region, on page 516

• Checking Utilization, on page 517

Creating Regions
Region placement depends on the data flow and pin locations in your design.
The following procedure shows you how to create a region.

1. If needed, select View->Expanded Pin View and adjust the view to display
the device with or without I/O pins.

2. To create a region, right-click in the Design Plan Editor and select Block
Region Tool to begin the region drawing process.

For more information about creating technology-specific regions, refer to
the following table depending on the technology you have selected.

3. Position the cursor where you want to create the region and then drag
the cursor diagonally to create a rectangular area for the region.

For... See

Altera designs Creating Design Planner Regions for Altera Designs, on
page 520

Xilinx designs Creating Regions for Xilinx Designs, on page 525

LO

Chapter 11: Floorplanning with Design Planner Working with Regions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
506 June 2009

– Do not create regions that overlap or are contained within an area
reserved for IP (see Viewing Intellectual Property (IP) Core Areas, on
page 510).

See the following vendor-specific guidelines to determine where to place
the regions.

4. You can configure the region to apply selected tunneling modes. See
Using Region Tunneling, on page 507 for ways to configure regions.

5. Then, assign logic to the region. For more information, see Assigning
Logic to Regions, on page 514.

Altera

Critical path placement Run the target place-and-route tool with no constraints
to obtain the placement of the critical path. Use the
Design Plan Editor to create a region in this area. This is
a good starting point to determine what row to begin
with when placing the critical path on the logic device
using the Synplify Premier Design Planner tool.

Overlapping regions You can overlap regions to optimize placement. However,
be aware that that the Synplify Premier Design Planner
software treats overlapping regions no differently than
regions that do not overlap.

Xilinx

Region size The size and location of Xilinx regions can be easily
modified, so a rough estimate is usually sufficient.

Critical path placement You can get a good starting point for region placement
from the Xilinx floorplanner. Run placement and routing
without constraints, then use the floorplanner to
determine where the critical path logic is placed. Use
this information to create a region in the same general
area on the logic device using the Design Planner tool.

Overlapping regions The Synplify Premier Design Planner software supports
overlapping regions, but the Xilinx place-and-route tool
cannot always place these designs. Overlapped regions
can potentially create an error.

Working with Regions Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 507

Using Region Tunneling
The Synplify Premier software can apply tunneling optimizations to region
assignments. To do this:

1. Highlight a region in the Design Planner, then right-click and select
Region Type.

2. You can configure the region by selecting one of the following modes
shown in the table below. Some options are vendor-specific.

Note, it is possible to highlight multiple regions and then select a
tunneling option for those regions simultaneously.

3. To view tunneling status for the region, do the following:

– To view tunneling status for a region, highlight the region, then right-
click and select the Properties option. From this dialog box, the
tunneling status for the region is displayed.

– To display the tunneling status for all the regions, go to the Design
Plan view, right-click and select Show/Hide columns. From the Select
Columns dialog box, check the box next to Tunneling. The view
displays a column with the tunneling status for all the regions.

Set the option to... To...

Soft (Tunneling On) Allows components to be moved across the region
boundaries in both directions. This is the default.

Hard (Tunneling Off) Ensures that components are not moved out of the
region, but allow other objects to be moved into the
region.

Keep-out (Xilinx) Ensures that no placement occurs in the region. Use
this option to create decongestion areas for
optimizing your design.

IP Block (Altera) Ensures that the region only contains the IP block.
Use this for encrypted IP, to ensure that nothing
except for the IP logic is placed in this region.

LO

Chapter 11: Floorplanning with Design Planner Working with Regions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
508 June 2009

The Design Planner can display how tunneling is implemented. Also, the
status of the region is saved and written out to the Synplify Premier
physical constraint file (.sfp).

Working with Regions Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 509

Moving and Sizing Regions
You can move and resize regions using the cursor arrow keys or the mouse
button. The following procedure provides details.

1. To move a regions use the arrow keys or the mouse button.

– Select the region.

– To use the arrow keys:, use the left, right, up, or down keys to
reposition the region.

– To use the mouse button, press the left mouse button while dragging
the region to the desired position on the device.

The tool displays WYSIWYG region boundaries that show you exactly
what you are doing when you move or resize the boundaries.

– To preserve the logic and memory resources of a region when it is
moved, hold down the Shift key when you move it.

The tool preserves the logic and memory resources when you move a
region. For example, Xilinx devices can preserve the number of CLBs
and BRAMs and Altera devices can preserve the number of LABs and
ESBs in a region.

2. To resize a region, use the arrow keys or the mouse button.

– Select the region.

– To use the arrow keys:, press and hold the Ctrl and Shift keys
simultaneously. An initial resizing arrow appears along the edge of
the region. Continue to hold down Ctrl and Shift while pressing the
appropriate arrow keys (left, right, up, or down) to resize the region in
the direction you want. Release the Shift key. You can no longer resize
the region.

– To resize a region with the mouse button, press the left mouse button
on any of the handles of the rectangle while dragging the region in the
direction you want the region resized.

The tool does not preserve logic and memory resources when you resize
a region.

LO

Chapter 11: Floorplanning with Design Planner Working with Regions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
510 June 2009

Viewing Intellectual Property (IP) Core Areas
Dedicated areas on the device reserved for IP cores appear as gray boxes in
the Design Plan Editor. A device can contain up to can contain up to four IP
core areas depending on the part specified for the device.

• To view information about the IP core, move your cursor over the gray
box to display a tooltip with information. Do not create regions that
overlap or are contained within an IP core area.

Assigning Logic to Top-level Chip Regions
You can specify the top-level device as a region and then assign logic to this
chip region. To do this:

1. Open the Design Plan view.

Notice the Chip Region hierarchy under the device part and package
designation in the Design Plan Hierarchy view.

IP Core

Working with Regions Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 511

2. Assign logic to the chip region. To do this, you can:

– Highlight logic in the RTL view, then right-click and select
Assign to->Chip from the popup menu.

Design Plan Hierarchy View

LO

Chapter 11: Floorplanning with Design Planner Working with Regions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
512 June 2009

– Highlight logic to assign from Logic in the Design Plan Hierarchy view,
then right-click and select Assign to->Chip from the popup menu.

Working with Regions Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 513

– Otherwise, simply drag-and-drop highlighted logic from the Logic to
Chip hierarchy tree in the Design Plan Hierarchy view.

The chip assignments are reflected in the Design Plan Hierarchy view as
shown in the following figure.

Design Plan Hierarchy View

Drag-and-Drop Logic to Chip Region

LO

Chapter 11: Floorplanning with Design Planner Working with Regions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
514 June 2009

Assigning Logic to Regions
1. To assign individual instances to regions, make sure that Edit Regions is

enabled and do either of the following:

– Drag and drop the logic into the region.

– Select the instance in an HDL Analyst, Design Plan Hierarchy
Browser, or Design Plan view. Right-click and select Assign to->
<region_name>. The regions are listed in order of recent use.

For technology-specific tips about assigning logic to regions, see the
following:

– Assigning Logic to Altera Design Planner Regions, on page 521

2. To assign a critical path to a region, do the following:

– Select the critical path, filtering it if necessary. You can do this from
the log file.

– Drag the selected critical path from the RTL view or the Island Timing
view into a region in Design Planner.

By assigning the critical path instances to the same region, you can
optimize the timing.

Working with Regions Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 515

3. For critical paths from pin-locked I/Os, assign the critical path to a
region that is close to the pin positions.

Physically constraining logic close the to locked pins minimizes routing
delays.

For information about device utilization, see Checking Utilization, on
page 517.

Replicating Logic Manually
When the fanout from an instance fans goes to instances in several other
instances, you might want to replicate the instance to avoid the routing delay
between the regions. You can use the methods described here.

1. Replicate logic by copying and pasting.

– Copy (Ctrl-c) the logic to be replicated from the original region.

– Paste (Ctrl-v) the replicated logic in the region where it is required.

Each region now contains a local copy of the instance. If you replicate an
in a region where the instance does not drive any logic, the tool does not
create a copy of the instance in that region. Therefore, when you look at
the RTL netlist of the region, the replica of the instance does not appear.

2. Assign the same instance logic from the HDL Analyst RTL view to
different regions.

The Instance Replication dialog box opens. Confirm whether or not you
want to replicate the selected logic instance in the specified region.

LO

Chapter 11: Floorplanning with Design Planner Working with Regions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
516 June 2009

Assigning Critical Paths from Island Timing to a Region
Critical paths in the Synplify Premier island timing report are determined
based on a pre-defined range from the worst case slack of the island. The
following procedure explains how to assign island critical paths to a region:

1. Synthesize (compile and map) the design.

2. Set up the views.

– Create a new implementation for the project, which includes a design
plan.

– Click on the New Design Plan icon button () to open the Design
Planner view.

– Open the flattened RTL view.

3. Select the paths.

– Open the hierarchical-based island timing report file (.tah) or use the
Island Timing Analyst. Make sure that the start and end points in
this report match start and end points in the place-and-route timing
report.

– Press the Alt key and select the RTL start and end points from the
island timing report file (.tah) or use the Island Timing Analyst. Then,
do either of the following:

When all the start and end points are selected, right-click and press
Filter Analyst from the popup menu in the .tah file.

Click on the Cross Probe button in the Island Timing Analyst and filter
the selected gates in the flattened RTL view. Currently, for
crossprobing to work properly in the Island Timing Analyst, open the
flattened Technology view also.

4. Assign the paths to a region.

– Right-click and select Expand Paths from the popup menu in the
flattened RTL view.

– Either right-click and select Assign to->region_name or drag-and-drop
the selected expanded paths to the region in the Design Plan Editor of
the Design Planner view.

5. Run estimation for any design plans created.

Working with Regions Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 517

6. Save these assignments to the Synplify Premier design plan file (.sfp).

Run synthesis for this implementation with a design plan.

Checking Utilization
Use the following tips and guidelines for device and region utilization when
assigning logic to regions.

1. To view device utilization, select Run->Estimate Area.

Utilization is reported in the log file.

2. To estimate region utilization, do the following:

– To estimate utilization for all the regions, right-click in the Design
Plan Editor view, right-click and select Estimate All Regions.

– To estimate region utilization for an individual region, right-click with
a selected region and select Estimate Regions.

Estimates are in terms of instances. As the job runs, the region is
greyed-out and a label in the upper-left corner of the region displays the
elapsed time of the estimation job. The label remains until estimation is
complete. Est Pending appears in the upper-left corner of all regions
waiting for region estimation.

Regions displayed in red have a utilization higher than 80%. See step 4
for more information about utilization.

3. To view region utilization information, use one of these methods:

– For utilization information for the whole design, view the log file.

– For utilization information about the current estimation run, view the
status in the Tcl Script window. or select Run->Job Status immediately
after an estimation run.

– To view utilization information for a selected region, right-click and
select Properties. You can also view the tooltip information.

– To display utilization information for regions in the Design Plan view,
click Regions in the Design Plan Hierarchy Browser. This updates the
Design Plan view with statistics for the regions.

– To determine which statistics to display in the Design Plan view,
right-click in this view and select Show/Hide Columns. Select the options

LO

Chapter 11: Floorplanning with Design Planner Working with Regions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
518 June 2009

for utilization you want to display. The available options can vary
with the technology.

4. Follow these guidelines for device and region utilization.

– Keep device utilization below 90%. Higher utilization rates can lead to
problems with timing closure.

– If device utilization is over 90%, and if the design contains several
finite state machines, try using the sequential encoding style, (instead
of one-hot) to free up more space on the device.

– Keep region utilization below 80%. This allows for Synplify Premier
Design Planner area estimations and for additional area required for
routing and replicating. The place-and-route tools consider the
design plan to be a hard constraint, so if there is not enough area in
the region for routing, the place-and-route tool will error out.

5. If utilization exceeds the guidelines, resize the region to ensure that it is
not over utilized.

Working with Altera Regions Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 519

Working with Altera Regions
The guidelines in this section provide tips and strategies for using the
Synplify Premier Design Planner for design planning with Altera Stratix and
Cyclone devices. It supports the following technologies:

• Stratix families
(Stratix IV, Stratix III, Stratix II GX, Stratix II, Stratix GX, and Stratix)

• Cyclone families
(Cyclone II and Cyclone)

You can use the Design Planner to view the Altera devices, then create
regions and assign critical path logic to them. The Stratix and Cyclone family
of devices use a row and column coordinate system, with the origin (1,1)
located at the lower-left corner of the device. All components align with row
and column boundaries. The device features can include LABs (logic blocks),
512 RAMs, 4K RAMs, M9K RAMs, M144K RAMs, and MRAMs (512K RAMs).
Depending on the device and part and package used, the number of these
blocks on the device may vary.

LO

Chapter 11: Floorplanning with Design Planner Working with Altera Regions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
520 June 2009

The following shows an Altera Stratix device in the Design Plan Editor.

This section describes the following:

• Creating Design Planner Regions for Altera Designs, on page 520

• Assigning Logic to Altera Design Planner Regions, on page 521

Creating Design Planner Regions for Altera Designs
This section contains Stratix- and Cyclone-specific information about
creating regions. For information about how to create a region, see Creating
Regions, on page 505.

LABs 512 RAMs 4K RAMs DSPsMLABs

Working with Altera Regions Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 521

• You can create a region around any number of LAB, RAM, and DSP
structures on the device. You can create regions that contain only LABs,
only RAMs, only DSPs, or regions that include any combination of LABs,
RAMs, and DSPs, as required. However, you cannot create a region that
is completely contained within the boundaries of one of these blocks.

• Regions can be moved or resized.

• When you create, move, or resize regions, they snap to the row/column
grid on the device.

Assigning Logic to Altera Design Planner Regions
This section contains tips and guidelines for mapping MACs, RAMs, and
ROMs to regions.

Mapping MACs
1. Enable the Create MAC Hierarchy optimization on the Netlist Restructure tab

of the Implementation Options dialog box.

For example, this option is enabled by default for Stratix devices. When
enabled, it maps MAC configurations together into one MAC block so
that this block can be easily assigned to DSP regions for physical
synthesis.

2. Follow these guidelines when assigning MACs:

– Place MAC blocks in a region containing DSP resources. If you do not
do this, the MAC block is mapped to logic and a warning message is
generated in the log file (.srr). You can display DSP resources after
you estimate utilization. See Checking Utilization, on page 517 for a
procedure.

– Do not place signed and unsigned multipliers in the same DSP block.

3. If you are using the syn_multstyle attribute, note the following:

– Do not set the attribute value to logic for a MAC. If the attribute is set
to logic, the tool maps the MAC to logic and generates a warning
message in the log file (.srr).

– Do not place a multiplier with a syn_multstyle=lpm_mult attribute in a
region without DSP resources. If you do, the tool maps the multiplier
to the MAC block and generates a warning message in the log file.

LO

Chapter 11: Floorplanning with Design Planner Working with Altera Regions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
522 June 2009

Mapping RAMs and ROMs
1. Place RAM/ROM logic in a region containing RAM/ROM resources.

If you do not, the tool maps the RAM/ROM to logic and generates a
warning message in the log file (.srr). You can display RAM and ROM
resources after you estimate utilization. See Checking Utilization, on
page 517 for a procedure.

2. Ensure that the register driving the address or the output register is
assigned to the same region.

If not, the RAM will not be inferred.

3. If you are using the syn_ramstyle attribute, note the following:

– Do not set syn_multstyle=logic, and then assign the RAM/ROM logic to a
region with RAM/ROM resources. The tool maps the ROM/ROM
instance to logic, and generates a warning message in the log file
(.srr).

– Do not assign RAM/ROM logic with an attached syn_ramstyle=blockram
attribute to a region without RAM/ROM resources. If you do so, the
tool maps the RAM/ROM to altsyncram and generates a warning
message in the log file.

Working with Xilinx Regions Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 523

Working with Xilinx Regions
The guidelines in this section provide tips and strategies for using the
Synplify Premier Design Planner for design planning with Xilinx devices. The
Design Planner supports the following Xilinx technologies:

• Virtex families
(Virtex-5, Virtex-4, Virtex-II Pro, Virtex-II, Virtex-E, and Virtex)

• Spartan-3

For more information see the following:

• Xilinx Device Resources, on page 523

• Creating Regions for Xilinx Designs, on page 525

Xilinx Device Resources
The Xilinx devices can include resources like Block FIFOs, DSP elements ,
Block RAMs, Block multiplexers, DCMs, and I/O banks . The resources are
located within the device or around the perimeter, depending on the
technology family you select. The number of resources vary with the
technology family. The following figure shows the lower left corner of a Virtex-
4 device.

LO

Chapter 11: Floorplanning with Design Planner Working with Xilinx Regions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
524 June 2009

I/O Banks

DSPs DCMsBRAM/FIFO
Blocks

Working with Xilinx Regions Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 525

The following example displays the same resources on a Virtex-II device.

Creating Regions for Xilinx Designs
The following vendor-specific guidelines are intended to supplement the
procedure described in Creating Regions, on page 505. Use the following
recommendations to help you design plan regions in the Design Plan Editor
for Xilinx devices:

• Base your placement on the Configurable Logic Block (CLB) coordinate
system, which varies with the device:

Family Row1 Col1 Location

Virtex, Virtex-E Top-left corner

Virtex-5, Virtex-4, Virtex-II Pro, Virtex-II,
Spartan-3

Bottom-left corner

I/O Banks

Block Multipliers

DCMsBlock RAMs

I/O Pins

LO

Chapter 11: Floorplanning with Design Planner Working with Xilinx Regions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
526 June 2009

• The number of CLB rows in a region must be greater than the length of
the cascade/carry chain logic assigned to it. Refer to Handling Critical
Paths with Cascading Cells or Carry Chain Logic, on page 530.

• Avoid overlapping regions on Xilinx devices. Although the Design
Planner supports overlapping regions, the Xilinx place-and-route tool
cannot place some designs with overlapping regions and can result in an
error.

• For optimum region utilization in Spartan-3 architectures, create
regions that are at least 6 x 6 CLBs.

• Regions that drive a global bus signal must overlap other regions that
drive the same global bus signal either in rows or columns. For Virtex
family architectures, all tristates feeding the same bus signal are
required to be on the same CLB row or column (4 bus signals per
row/column).

• If multiple regions drive a global bus signal make sure that there is some
overlap between all the regions that drive the signal.

Row Overlap

Assigning Objects to Xilinx Regions Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 527

Assigning Objects to Xilinx Regions
The following provide more informationabout assigning objects to Xilinx
regions:

• Assigning Xilinx Critical Paths to Design Planner Regions, on page 527

• Assigning Xilinx Block RAMs to Regions, on page 534

• Assigning Xilinx Block Multipliers to Regions, on page 539

• Assigning Xilinx DSP Blocks to Regions, on page 540

Assigning Xilinx Critical Paths to Design Planner Regions
The following describe techniques for using Design Planner to handle Xilinx
critical paths:

• Splitting a Critical Path into Multiple Logic Regions, on page 527

• Dividing Long Critical Paths into Smaller Regions, on page 528

• Handling Virtex Critical Paths with High Fanout Nets, on page 529

• Handling Critical Paths with Cascading Cells or Carry Chain Logic, on
page 530

• Handling Critical Paths with Bit Slicing, on page 531

• Handling Critical Paths with Pipelining, on page 532

• Handling Designs with Multiple Critical Paths, on page 533

• Handling Critical Paths with Large Multiplexers, on page 533

Splitting a Critical Path into Multiple Logic Regions
If a critical path contains logic that should be placed closely together, you can
use Design Planner to split a critical path into multiple regions that contain
common logic. For instance, if a critical path ends with a large multiplexer
feeding a register, you might find that the large mux is decomposed and
spread out throughout the region. To prevent the mux from spreading, you
can split the region into two, then constrain the mux and the register to one
region and the rest of the logic to the other region.

LO

Chapter 11: Floorplanning with Design Planner Assigning Objects to Xilinx Regions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
528 June 2009

Dividing Long Critical Paths into Smaller Regions
For the most optimal timing results, you must divide the logic of the modules
containing the critical path into smaller regions. Assign logic to each of the
regions so that it follows the dataflow of the design. This example uses a
critical path that runs through modules A, B, and C.

1. Assign the first section to one region.

– Determine the start point of the critical path in module A and the end
point in module A.

– Assign this portion of the critical path to one region.

2. Assign the second section to another region.

– Determine the start and end points of the critical path in module B.

– Assign this portion of the critical path to a second region.

3. Repeat the previous step for module C and assign it to a third region.

logic

Include mux with register
in another region

Place this logic
into one region

Critical path
start point

A

CP
logic

CP
logic

CP
logic

CP end point

Determine start/end Determine start point

Assign to one region Assign to third region

B C

Assign to second region

R3

Determine end point

R2R1

Assigning Objects to Xilinx Regions Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 529

Handling Virtex Critical Paths with High Fanout Nets
The Virtex family of devices contain secondary routing buffers on the first and
last CLB rows of the device. These routing buffers can only be accessed from
the first and last CLB row close to the vertical center of the device.

When a critical path contains a design with high fanout nets, it is best to
place that critical path in a region that includes the first or last CLB row near
the middle column of the device, so that the tool can access the routing
buffers.

Extracting Enable Registers
For the Design Planner software to extract an enable register, the mux and
the register must be kept together. If a register of a critical path is fed by a
mux that is outside the critical path, you must constrain the mux along with
the register and the rest of the critical path logic into the same region.

LO

Chapter 11: Floorplanning with Design Planner Assigning Objects to Xilinx Regions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
530 June 2009

If the critical path is divided between two or more regions, place the register
and the associated mux in the same region to ensure that the enable register
is extracted.

Handling Critical Paths with Cascading Cells or Carry Chain Logic
If your critical path contains cascading cells or carry chains, use the following
procedure to create regions.

1. Create a region that is large enough to support the cascade/carry chain
assignment:

If a region is not large enough, the Xilinx place-and-route tool fails. The
area requirements vary with the technology. For an 8-bit adder in a
Virtex design you must create a region with at least 4 CLBs in the
vertical direction to accommodate the carry chain. The following table
shows the area requirements.

Virtex-5 (repackaged device),
Virtex-E and Virtex

2 bit slices/CLB

Virtex-4, Virtex-II Pro, Virtex-II, and Spartan-3 4 bit slices/CLB

logic

critical
path

Include this mux in same
region with the critical path
to extract enable register

logic

critical path too large
for one region

Include mux with register
in the same region to
extract enable register

Assigning Objects to Xilinx Regions Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 531

2. Assign the cascade/carry chain logic to the region.

The tool implements a carry chain DRC (design rule check) to ensure
that the region is large enough. The Design Plan view displays informa-
tion like the following:

If you have a DRC violation, the region is orange. You must resize the
region to avoid a place-and-route failure.

Handling Critical Paths with Bit Slicing
If the critical path involves a datapath that is too wide for one region, you can
use bit-slicing to divide the datapath.

1. Use bit-slicing to divide the datapath.

MaxChainLength Length of the longest cascade/carry chain that can fit into
the specified region.

MaxChainLength
Use

Length of the longest cascade/carry chain assigned to the
region, obtained after you estimate the region utilization.

MaxChainLength
Use (%)

Percentage of the length of the longest cascade/carry chain
assigned to the region and the longest cascade/carry chain
that fits into the region, after you run region estimation.
This percentage can show that the cascade/carry chain
exceeds its capacity to fit into the region.

Design Plan EditorDesign Plan View

LO

Chapter 11: Floorplanning with Design Planner Assigning Objects to Xilinx Regions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
532 June 2009

2. Replicate the register and place with the common logic of the critical
path.

3. Place one half of the critical path in one region and the other half of the
critical path in another region.

Handling Critical Paths with Pipelining
If the critical path contains a register that follows either a multiplier or ROM
that is pipelined, then create two regions as follows:

1. Place the critical path starting point and logic in one region.

2. Place the multiplier or ROM with the pipeline register in another region.

logic 8

8

Critical path
starting point

R2

R1

logic

Use bit slicing

16 1616

8

16

R2

reg
_1

CP1

reg
_2

8

8

8

8

CP2 start point (replicate reg_1)

R1

16

Assigning Objects to Xilinx Regions Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 533

Handling Designs with Multiple Critical Paths
If a design has multiple critical paths that do not share the same start and
end points, place them in separate regions.

If a design has multiple critical paths that share the same end point, try to
constrain only the common logic in a separate region and constrain the other
logic that is connected to each starting point registers in separate regions for
each path. Place the common logic region between these regions to minimize
distances.

Handling Critical Paths with Large Multiplexers
If the critical path contains a large multiplexer, make sure that the region
containing the mux also includes the control logic for that mux.

logic

Place multiplier with pipelining in one region (R2)

Place critical path starting point
and logic in one region (R1)

R1 R2

Critical path
ending point

Critical paths
starting points

logic

logic

logic

CP1

CP2 R1 R2 R3

R2

R1

R3

Place common logic
into center region

LO

Chapter 11: Floorplanning with Design Planner Assigning Objects to Xilinx Regions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
534 June 2009

Assigning Xilinx Block RAMs to Regions
Block RAM resources are limited. The Design Planner tool allows you to view
the resources and create block RAM regions in the Design Plan Editor. This
section includes information about the following:

• Viewing Block RAM Resources, on page 534

• Creating Block RAM Regions, on page 535

• Assigning RAM to Block RAM Regions, on page 536

Viewing Block RAM Resources
The target FPGA device footprint displays the following resources: CLBs,
Block RAMs (RAMB36_FIFO36, RAMB16_FIFO16, and BRAMs), and I/O
pins. The coordinate system for block RAMs and CLBs starts at row=0, col=0.
The height and width of the block RAMs is similar to the view in the Xilinx
place-and-route tool.

The following figure displays the RAMB36_FIFO36 blocks on a Virtex-5
device.

Family Block RAM Height

Virtex-5 (RAMB36_FIFO36) and
Virtex-4 (RAMB16_FIFO16) blocks

2 CLB rows

Virtex-II Pro, Virtex-II, and Spartan-3 4 CLB rows

Virtex and Virtex-E 4 CLB rows

Place in same region

Assigning Objects to Xilinx Regions Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 535

To view information about a block RAM, use the tooltip, or right-click and
select Properties when you have the RAM selected.

Creating Block RAM Regions
To create a block RAM region, use the procedure described in Creating
Regions, on page 505 and the Block Region Tool command. A tool tip displays
the coordinate locations for CLBs and BRAMs and the capacity of the region,
when you drag the cursor over these locations.

Note the following when you create and place block RAM regions:

• Block RAM regions can consist only of CLBs, only block RAMs, or a
combination of CLBs and block RAMs.

• Block RAM regions can overlap.

RAM Blocks

LO

Chapter 11: Floorplanning with Design Planner Assigning Objects to Xilinx Regions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
536 June 2009

• You can calculate region-to-region delay based on the CLB location. For
regions consisting only of block RAMs, region-to-region delay can be
calculated from a representative CLB location.

• If a critical path includes block RAMs, make sure that the region
containing the critical path is close to or includes a sufficient number of
block RAMs. Select a block RAM that is within or close to the region
containing the rest of the critical path logic.

• If a critical path contains several RAMs, place block RAMs in one region
and place standard logic in another region.

• If the block RAMs span all CLB rows, select the wider region R2 in the
following figure instead of R1. R2 allows more area for routing

Assigning RAM to Block RAM Regions
1. Turn on the rats nesting option so you can view the interconnect.

2. Create the block RAM region.

logicRAM 1

Place logic portion
in R2

in R1
Place element

RAM 2

in R1
Place element

R1 R2

R1 R2

Assigning Objects to Xilinx Regions Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 537

3. Assign the RAM by dragging and dropping the RAM modules from the
HDL Analyst RTL view to the Design Planner view.

– To automatically infer block RAM, assign the register driving the RAM
and the block RAM to the same region.

– To automatically infer block RAM in Virtex-II and Spartan-3 designs,
assign the block RAM and its output register to the same region.

– To automatically infer block RAM from instantiated block RAMs with
non-Xilinx primitive names, specify the syn_resources
"Blockrams=value" attribute in the HDL source code.

Once you have assigned the RAM, the resulting implementation from the
Design Plan Editor is saved to a Design Plan file (.sfp). The location
constraints for block RAM regions are written to a Xilinx netlist
constraint file (.ncf), and these constraints are honored by the Xilinx
place-and-route tool.

4. If you are using the syn_ramstyle attribute, follow these specification
guidelines

– Avoid mismatches between attributes specified in the SCOPE editor
and the HDL code. If there is a conflict, SCOPE attributes take
precedence.

– To ensure that the RAM is assigned to the region and implemented in
the way that you want, specify the attribute value appropriately:

If you do not specify an attribute, logic RAMs assigned to a block RAM
region are implemented as block RAMs.

To implement the RAM as ... Use this syn_ramstyle value...

Block RAM block_ram
Or, do not specify the attribute.

Registers registers
This floats RAM logic and generates a warning.

Select RAM select_ram
This floats RAM logic and generates a warning.

Block RAM without doing
read/write checks

no_rw_check

LO

Chapter 11: Floorplanning with Design Planner Assigning Objects to Xilinx Regions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
538 June 2009

5. Estimate the area of the block RAM region to ensure that the logic RAM
can fit into the region in the form in which they are implemented. See
Checking Utilization, on page 517 for a procedure.

Over-utilized areas are displayed in orange.

6. To display information like the dimensions of CLBs and BRAMs, the
number of BRAMs, BRAM usage, and the percentage of BRAM usage for
each block RAM region, do the following in the Design Plan view:

– Right-click in the Design Plan view and select Show/Hide columns...

– Select the information you want to display from the Select Columns
dialog box. The Design Plan view displays the selected information.

RAM Implementation Region Area Estimation Needs

Block RAM Ensure that block RAMs can fit into that region.

Standard logic The logic is not constrained and can float anywhere
on the device. You must estimate the block RAM
region to ensure all logic can fit into that region.

Block RAMs without
standard logic, assigned
to a CLB-only region

The block RAM logic is not constrained and can
float anywhere on the device.

Design Plan View Design Plan Editor

Assigning Objects to Xilinx Regions Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 539

Assigning Xilinx Block Multipliers to Regions
Block mult resources are limited. If a critical path includes multipliers, make
sure that the region containing the critical path is close to or includes a suffi-
cient number of block mult resources. The Design Planner tool allows you to
create block Mult regions in the Design Plan Editor. This can help you
visualize where block Mults are placed on the device.

The following describe how to work with Xilinx block multipliers.

• Viewing Xilinx Block Mult Resources, on page 539

• Creating Block Mult Regions, on page 539

• Assigning Multipliers to Block Mult Regions, on page 539

• Assigning Xilinx DSP Blocks to Regions, on page 540

Viewing Xilinx Block Mult Resources
Block mult resources have their unique coordinate system starting at
location (row=0, col=0). The Design Planner lets you view block mult resources
for Xilinx Virtex-II Pro, Virtex-II, and Spartan-3 devices. You can move the
mouse cursor over any resource on the device to display a tool tip identifying
its description. Once you create and assign logic to a block mult region, you
can also display capacity and utilization results for these resources.

Creating Block Mult Regions
To create a block mult region, use the procedure described in Creating
Regions, on page 505 and the Block RegionTool command. You can create block
mult regions that consist only of CLBs, only block mults, or a combination of
CLBs and block mults. Block mult regions can overlap.

Once you have created the region, you can calculate region-to-region delay
based on the CLB location. For regions consisting only of block Mults,
calculate region-to-region delay from a representative CLB location.

Assigning Multipliers to Block Mult Regions
1. Turn on the rats nesting option so you can view the interconnect.

2. Create the block mult region.

LO

Chapter 11: Floorplanning with Design Planner Assigning Objects to Xilinx Regions

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
540 June 2009

3. Assign the mult by dragging and dropping it from the HDL Analyst RTL
view to the Design Planner view.

4. Run area estimation by right-clicking in the Design Plan Editor and
selecting Estimate Regions or Estimate All Regions. See Checking Utilization,
on page 517 for a detailed procedure.

5. Right-click in the Design Plan view and select Show/Hide Columns from the
pull-down menu. Select the region usage criteria you want to display:
BlockMults, Block Mult Use, and Block Mult Use (%).

Assigning Xilinx DSP Blocks to Regions
The DSP48 slices support many independent functions which include multi-
pliers, multiplier accumulators (MACs), multipliers followed by an
adder/subtractor, three-input adders, wide bus multiplexers, magnitude
comparators, and wide counters.

The Design Planner tool allows you to create DSP block regions and assign
these components to them to constrain the logic. For example, you can assign
a multiplier and its surrounding logic to a DSP region to constrain it to a
region for synthesis.

The following figure shows part of the floorplan for a Virtex-4 or Virtex-5
device, where a multiplier is assigned to the mult region and its surrounding
logic is assigned to regions rgn1 to rgn5.

Assigning Objects to Xilinx Regions Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 541

After synthesis, the HDL Analyst Technology view shows that the multiplier
and its surrounding logic are constrained to the DSP48 module.

DSP Mult Region

Surrounding Logic Block Regions
(rgn1 - rgn5)

LO

Chapter 11: Floorplanning with Design Planner Using Process-Level Hierarchy

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
542 June 2009

Using Process-Level Hierarchy
Depending on the technology you use, process-level hierarchy can affect
design performance positively or negatively. The tendency is to affect Xilinx
designs positively and Altera designs slightly negatively.

Process-level hierarchy is turned off by default in the Synplify Premier UI. The
mapper treats designs with and without process-level hierarchy in the same
way. However, if you have process-level hierarchy, there are extensive name
changes, which can affect the mappers and the place-and-route tools.

Bit Slicing Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 543

Bit Slicing
Bit slicing is a technique you can use when a primitive is too large to fit into a
region, or when you want more granularity to control placement. It allows you
to break up large primitives into smaller ones, which you can then place in
different regions. To divide instances, use the zippering technique described
in Zippering, on page 550. If you are going to use both zippering and bit
slicing, see the guidelines described in Zippering Guidelines, on page 551.

The following describe bit slicing in more detail

• Using Bit Slicing, on page 543

• Bit Slice Examples, on page 547

• Zippering, on page 550

Using Bit Slicing
1. In the Synplify Premier project window, open a new (File->New->Netlist

Restructure File) or an existing .nrf file, then click the Bit Slices tab.

The .nrf file is a netlist restructure file that defines the logical division of
primitive outputs. The tool reads the slice_primitive commands in this
file which define the division. For information about this command and
its use in a script, see slice_primitive in the Chapter 14, Tcl
Commands and Scripts of the Reference Manual.

LO

Chapter 11: Floorplanning with Design Planner Bit Slicing

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
544 June 2009

If you have an existing .tcl file, you can view it in this graphical inter-
face by renaming it with a .nrf extension, and then opening it as
described.

2. Type in or drag and drop the instance to slice from the RTL view into this
tab.

For bit slicing, you can only divide bus primitives of the following types:

If you used zippering on a module before bit slicing a primitive within
the module, use the post-zippering name of the instance in the bit
slicing command. To do this, run Compile Only (F7) after using zippering
on a module, and then open the RTL view to get the new module
instance name. Drag and drop the element to be bit sliced from the new
RTL view.

3. Set bit-slicing preferences.

– To slice an instance by a specified number of bits per slice or by a
specified number of slices, see the details in Slicing an Instance into a
Specified Number of Slices, on page 545.

– To divide an instance into slices of varying widths, see the procedure
in Custom Slicing, on page 545.

– To globally bit slice all instances of the same type in the netlist, select
Slice all instances of this type.

4. Save the file.

The Project view now shows the netlist restructure folder.

5. Select (Project->Implementation Options) and click the Netlist Restructure tab.
Make sure that the netlist restructure file that you just created is
checked in the Netlist Restructure Files section, and click OK.

6. Select Run->Compile Only (F7) to run netlist restructuring on your design.
The sections of the sliced element are displayed and can now be
individually assigned.

buf or register

inv xor mux

tristate and latch

Bit Slicing Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 545

Slicing an Instance into a Specified Number of Slices
The following procedure shows you how too slice an instance by a specified
number of bits per slice or into a specified number of slices. To slice into
varying bit widths, see Custom Slicing, on page 545.

1. Open the Netlist Restructure tab, as described in Using Bit Slicing, on
page 543.

2. Enter a value.

You can now return to the rest of the bit-slicing procedure described in
Using Bit Slicing, on page 543.

Custom Slicing
The following procedure shows you how to define slices of varying widths. For
a specified number of slices, see Slicing an Instance into a Specified Number of
Slices, on page 545.

1. Open the Netlist Restructure tab, as described in Using Bit Slicing, on
page 543.

2. Click the Custom button. This enables the MSB/LSB table and the Slice
button.

To create... Do this..

Slices with a
specified number of
bits per slice

Click the Bits per Slice button and enter a value for the
number of bits.
The tool allocates n instance for each group of bits, and
allocates any remaining bits to the last instance. For an
example, see Slicing into Primitives of Equal Size, on
page 547.

A specific number of
slices

Click the Slices button and enter a value for the
number of slices. For an example, see Slicing into
Predefined Primitives, on page 548.
The tool divides the bits equally between the specified
number of instances, and assigns any partial numbers
to the last instance.

LO

Chapter 11: Floorplanning with Design Planner Bit Slicing

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
546 June 2009

3. To define a slice, do the following:

– Select the top entry in the table, then click on the Slice button. This
displays the Select New Slice MSB.

– Either click OK to slice the number of bits into two or enter the
starting MSB for the next slice.

The upper limit of the bit range is always one less than the previously
assigned MSB so that each slice is at least one bit wide. When you click
OK, the table is updated and the Slice button is again enabled, so you
can define a new slice.

4. Continue to select entries in the table and click Slice to redisplay the
Select New Slice MSB popup menu and define the additional slices.

See Slicing into Predefined Primitives, on page 548 for an example of
custom slicing.

5. To undo an entry, merge the entries by doing the following:

– Select two (or more) adjacent slice definitions by holding down the Ctrl
key and clicking the table entries to select them.

– Click Join.

You can now return to the rest of the bit-slicing procedure described in
Using Bit Slicing, on page 543.

Bit Slicing Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 547

Setting Viewing Options for Bit Slices
This procedure shows you how to set some viewing options.

1. To keep the current level as it is and only view the effects of bit slicing
one level down in the design hierarchy, go to the Bit Slices tab of the
netlist restructure file GUI and enable Preserve the Hierarchical View.

2. To view information about the bits, do the following:

– Select a group of bits in an HDL Analyst view.

– Right-click and select Properties. A dialog box displays the bit slicing
properties for the primitive. Click OK to dismiss this dialog box. For
additional information, see Zippering Guidelines, on page 551.

Bit Slice Examples
The following examples illustrate two different cases of bit slicing a 96-bit bus
XOR primitive. The following figure shows the primitive before bit slicing.

Slicing into Primitives of Equal Size
In this example, the Bits per Slice value is set to 36. The tool divides the output
of the y[95:0] primitive into three individual primitives. The first two primitives
each contain the requested 36 bits; and the last primitive contains the
remaining 24 bits (y[95:72]). The following figure shows the results of this bit
slicing RTL view.

LO

Chapter 11: Floorplanning with Design Planner Bit Slicing

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
548 June 2009

Slicing into Predefined Primitives
In this example, the Custom setting is used to define three individual primi-
tives with widths of 48, 32, and 16. For more explanation about defining
custom slices, see Custom Slicing, on page 545.

The RTL view for this bit slicing example is shown in the following figure.

Bit Slicing Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 549

LO

Chapter 11: Floorplanning with Design Planner Zippering

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
550 June 2009

Zippering
Zippering is a technique that divides a logic block that is too large to fit into a
region into a number of smaller instances. The instances can then be placed
in separate regions. To divide large primitives, use the bit slicing technique
described in Bit Slicing, on page 543.

Zippering works by dividing the outputs of a block into groups. Once divided,
a “cone-of-logic” is traced back through the hierarchy to the input pins to
create instances containing only the requisite logic for that cone. The tool
replicates logic while calculating the cone of logic, based on the number of
inputs in the cone.

This section contains information about the following:

• Zippering Guidelines, on page 551

• Using Zippering, on page 551

• Zippering Example, on page 555

Zippering Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 551

Zippering Guidelines
The following guidelines apply if you are using both bit slicing and zippering:

• You can combine zippering and bit slicing commands in a single .nrf
file. Bit slicing commands are automatically placed before zippering
commands, so as the file is read line-by-line, the primitives are sliced
before any outputs are zippered.

• If you zipper a block before bit slicing a primitive in the block, the bit
slicing command must use the post-zippering name of the instance. A
simple way to do this is to recompile after zippering a block, push down
into the RTL view of the new hierarchical block with the primitive, and
then drag the primitive to the bit slicing UI.

Follow these guidelines for zippering:

• Zippering usually increases overall area utilization. Area can increase
dramatically if you randomly select output groups.

• You can zipper at any level in the hierarchy above the leaf level. You
must specify the full hierarchical instance name.

• After zippering, individual instances may not include all of the contents
of the original instance.

• Hierarchical instances cannot be used when the Zipper all instances of this
type box is checked (or the -nl option is used with the zipper_inst_hier
command).

Using Zippering
1. In the Synplify Premier project view, create a new file (File->New->Netlist

Restructure File) or open an existing .nrf file. Then click the Zippering tab.

LO

Chapter 11: Floorplanning with Design Planner Zippering

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
552 June 2009

The .nrf file is a netlist restructure file that defines the logical division of
primitive outputs. The tool reads the zipper_inst_hier commands in
this file to determine the logical divisions for a module. Division bound-
aries are specified by identifying groups of output signals. For informa-
tion about this command and its use in a script, see zipper_inst_hier
in the Chapter 14, Tcl Commands and Scripts of the Reference Manual.

If you have an existing .tcl file, you can view it in this graphical inter-
face by renaming it with a .nrf extension, and then opening it as
described.

2. Drag and drop the block to be zippered from the RTL view to the UI.

3. Specify the input groups.

– Click on the “+” sign in the Pin Groups window to expand Group 0. This
displays the output nets.

Zippering Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 553

– To define a section for zippering, click on Add Group. This adds an
empty group to the Pin Groups window. Each group represents a
zippered section. Continue to add additional groups until you have
the number you need.

4. Assign nets to groups.

– Click on a net in group 0 and drag the net to the new group. Use the
Ctrl and Shift keys to select more that one net. The following figure
shows net out5[31:0], out6[31:0], out7[31:0], and out8[31:0] dragged from
Group 0 to Group 1. You can click the + sign to expand Group 1and view
the new assignment.

LO

Chapter 11: Floorplanning with Design Planner Zippering

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
554 June 2009

– To slice a bus nets and divide it into separate groups, click Slice Pin.
To divide the bus into two slices, click OK in the resulting dialog box.
To create more slices or specify custom widths, enter an MSB for the
new (second) slice and click OK. You can then accept the displayed
MSB for the new (next) slice or enter another MSB for the next slice.
The upper limit of the bit range displayed is always one less than the
MSB of the parent slice so that each slice is at least one bit wide.

If you split a bus net incorrectly, you can undo the split by selecting the
nets using the Ctrl or Shift key and clicking Join Pins.

– Continue to arrange the groups by dragging nets to the individual
groups. Make sure that you specify the groups for zippering
judiciously, as sub-optimal zippering can significantly increase
design size because of logic replication. For an example, see Zippering
Example, on page 555.

5. When all the nets are arranged in groups, save the file.

6. Add the file to the project.

Zippering Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 555

7. Assign zippered elements.

– Close the view and return to the Project view.

– Click Implementation Options and select the Netlist Restructure tab. Make
sure that the netlist restructure file is checked.

– Run Compile Only (F7) on your design with the netlist restructure file
and open the updated RTL view, which reflects the divided logic.

– Press F9 to rerun area estimation. Because of logic replication,
zippering increases the total area of the design.

– Assign parts of the zippered element individually to different regions.

To view properties, select a group of instance pins, right-click and select
Properties. A dialog box displays the zippering pin group properties of the
module.

Zippering Example
Zippering requires careful examination of your design to logically divide the
block into an optimal number of instances and logical signal boundaries.
This hierarchical block simple example, requires 325 I/O pins with 256
output pins for the eight output buses and 69 input pins.

The number of I/O pins required for the block might be too large to fit into
one region. If you go down one level and examine the hierarchy, you see that
you can logically divide the block into two instances as shown by the broken

LO

Chapter 11: Floorplanning with Design Planner Zippering

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
556 June 2009

line in the next figure. The outputs from module top_inst can be divided
between two instances, which out1, out2, out3, and out4 in one instance and
out5, out6, out7, and out8 in the other instance. Each instance would require a
smaller number of output pins for the split buses, with some input pins and
some replication of common logic. The two instances can be assigned to
different regions.

The following figure shows the RTL view results after zippering. The original
block is split into two instances. The first instance, top_inst_0.1_1, contains the
out5 through out8 buses, and the second instance, top_inst_0.1_0, contains the
out1 through out4 buses. The first instance requires 153 I/O pins, and the
second instance requires 197 I/O pins.

Common Logic

Zippering Chapter 11: Floorplanning with Design Planner

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 557

LO

Chapter 11: Floorplanning with Design Planner Zippering

Synopsys FPGA Synthesis User Guide
558 June 2009

Synopsys, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: +1 408 215-6000, Fax: +1 408 222-068
www.solvnet.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology,
Certify, DesignWare, HDL Analyst, Identify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro,
Synthesis Constraints Optimization Environment, and VCS are registered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-perfor-
mance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and TotalRecall are trademarks of Synopsys, Inc. All other
names mentioned herein are trademarks or registered trademarks of their respective companies.

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 559

C H A P T E R 1 2

Running Logical Compile Points

The following sections describe how to use the Logical Compile Point iterative
flows:

• Logical Compile-Point Synthesis, on page 560

• About Compile Points, on page 562

• Compile Point Synthesis, on page 571

• Using Compile-point Synthesis, on page 573

• Xilinx Compile-point Synthesis Flow, on page 583

LO

Chapter 12: Running Logical Compile Points Logical Compile-Point Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
560 June 2009

Logical Compile-Point Synthesis
This section describes the compile-point synthesis flow, which automates the
traditional bottom-up flow for large designs. This feature is available with the
Synplify Pro and Synplify Premier products, for use with certain technology
families. This section includes the following topics:

• Overview, on page 560

• About Compile Points, on page 562

• Compile Point Synthesis, on page 571

• Using Compile-point Synthesis, on page 573

For information about technology-specific flows, see the following:

• Quartus II Incremental Compilation, on page 857

• Xilinx Compile-point Synthesis Flow, on page 583

• Working with Xilinx Incremental Flows, on page 862

Overview
The compile-point synthesis flow addresses the need for overall stability of a
design while portions of the design evolve, as well as provides better runtime
performance of the place-and-route tools. These needs are met by dividing
design requirements into parts or points that can be processed separately.
For example:

• Portions of a design can be isolated to stabilize results. These parts are
frozen as they are completed, while work continues, independently, on
the rest of the design.

• To improve runtime place-and-route performance when processing large
designs, some place-and-route tools let you decompose your design into
portions that are processed incrementally.

Traditionally, to accomplish these tasks designers have resorted to bottom-up
design and synthesis. Previously, designers who used bottom up flows have
been limited in the following ways:

• Top-down synthesis produces better results, because it can optimize
intelligently, taking into account the relations between the parts of a
design.

Logical Compile-Point Synthesis Chapter 12: Running Logical Compile Points

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 561

• Bottom-up design has required designers to write and maintain sets of
long, complex, error-prone scripts to direct synthesis and keep track of
design dependencies. Typical scripts involve stitching, modeling, and
ordering of compilations.

Compile-point synthesis is designed to handle these issues. For more details,
see Traditional Bottom-up Design and Compile Points, on page 561.

Traditional Bottom-up Design and Compile Points
In a traditional bottom-up flow, a design is divided into parts that can be
processed independently. Traditionally, this approach has been used in the
following cases:

• Where parts of the design need to be isolated to stabilize results. The
design team can freeze portions of the design as they are completed,
while continuing to work independently on the rest of the design.

• To process large designs where a top-down approach is not possible
because of memory and runtime limits. The bottom-up flow permits
partial recompiles and multiprocessing to speed up design compilation.

For certain device technologies, the compile-point synthesis flow lets you
design incrementally and synthesize designs that exceed runtime limits for
top-down synthesis. For details about the supported compile-points flows
and their respective generic flow diagrams, see Logical Compile-Point
Synthesis, on page 560.

Compile-point synthesis is a top-down flow that lets you choose the exact mix
of incremental synthesis you need — and lets you change that mix at any
time. You choose which parts of your design to synthesize and place-and-
route independently. The compile-point synthesis lets you break down a
design into smaller synthesis units or compile points. The software treats
each compile point as a block for incremental mapping, and the design team
can work on individual compile points independently of the rest of the design.
A design can have any number of compile points, and compile points can be
nested.

Because constraints are not automatically budgeted, manual time budgeting
is important. Compile-point constraints directly affect quality of results. You
must provide reasonably accurate timing constraints for each compile point.
Then, because the synthesis tool manages design dependencies for you,
working with compile points is no more difficult than working without them.

LO

Chapter 12: Running Logical Compile Points About Compile Points

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
562 June 2009

About Compile Points
Compile points are parts of a design that act as relatively independent
synthesis units; they have their own constraint files and are optimized
individually. They are resynthesized only as needed, based on an analysis of
design dependencies and the nature of design changes. Compile point topics
include:

• Nesting: Child and Parent Compile Points

• Advantages of Using Compile Points

• Compile Point Types

• Compile Point Feature Summary

• Using syn_hier with Compile Points

• Using syn_allowed_resources with Compile Points

• define_compile_point and define_current_design

• About Interface Logic Models (ILMs)

Nesting: Child and Parent Compile Points
A design can have any number of compile points, and compile points can be
nested inside other compile points. In the figure below, compile point CP6 is
nested inside compile point CP5, which is nested inside compile point CP4.

About Compile Points Chapter 12: Running Logical Compile Points

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 563

To simplify things, the term child is used here to refer to a compile point that
is contained inside another compile point; the term parent is used to refer to
the compile point that contains the child. These terms are not used here in
their strict sense of direct, immediate containment: If a compile point A is
nested in B, which is nested in C, then A and B are both considered children
of C, and C is a parent of both A and B. The top level is considered the parent
of all compile points. In the figure above, both CP5 and CP6 are children of
CP4; both CP4 and CP5 are parents of CP6; CP5 is an immediate child of CP4
and an immediate parent of CP6.

Advantages of Using Compile Points
Some advantages of using compile points in the design flow include:

• Smaller memory consumption compared to top-down processing
without compile points.

• Incremental synthesis which maintains design stability and reduces run
times.

• Runtime advantage for multiple instantiations of a compile point.

CP1

CP2

CP3

CP5 is nested inside CP4.
CP5 is an immediate child of CP4.
CP4 is the immediate parent of CP5.
CP4 is also the parent of CP6 and CP7.

The top level is a parent of all compile points.
It is an immediate parent of CP1, CP2, CP3,
and CP4, and parent to all other compile points.

CP6 & CP7 are nested inside CP5.
CP5 is the immediate parent of CP6 & CP7.
CP6 & CP7 are immediate children of CP5.
CP6 & CP7 are children of both CP4 & CP5.
CP4 & CP5 are parents of CP6 & CP7.

Top Level

CP6

CP4

CP5

CP7

LO

Chapter 12: Running Logical Compile Points About Compile Points

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
564 June 2009

Compile Point Types
You can control the amount of boundary optimizations for compile points
using compile point types:

• Soft

• Hard

• Locked (default)

• Locked, Partition

Soft
With type soft, the boundary of a compile point can be reoptimized during top-
level mapping. Timing optimizations such as sizing and buffering and DRC
logic optimizations can modify boundary instances of the compile point and
combine the instances with functions from the containing design. The
interface of the compile point can also be modified. Multiple instances are
uniquified. Any optimization changes can propagate both ways: into the
compile point and from the compile point to its parent.

In the figure above, compile_point is represented with a dotted boundary to
show that logic can be moved in or out of the compile point.

One advantage of using soft mode is that it usually yields the best quality of
results compared to the other compile point types because the software is
allowed to utilize boundary optimizations. However, a design using soft
compile points can have longer runtime than the same design using hard or
locked compile points.

Optimization of entire logic cone across boundary

TOP

compile_point = soft

About Compile Points Chapter 12: Running Logical Compile Points

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 565

Hard
With type hard, the compile point boundary can be reoptimized during top
level mapping and instances on both sides of the boundary can be modified
by timing and DRC optimizations using top-level constraints. However, the
boundary is not modified. Any changes can propagate in either direction
while the compile point boundary (port/interface) remains unchanged.
Multiple instances are uniquified.

In the figure above, compile_point is shown with a solid boundary to emphasize
that no logic can be moved in or out of the compile point.

One advantage of using hard compile point type is that it allows for optimiza-
tions on both sides of the boundary without changing the boundary. There is
some trade-off of quality of results to keep the boundaries which is usually
done for verification of the sub-blocks. Using hard also allows for hierarchical
equivalence checking for the compile point module.

Locked
The locked compile point type is the default. When the compile point type is
locked, there are no interface changes or reoptimization performed on the
compile point during top-level mapping. An interface logic model (ILM) of the
compile point is created (see About Interface Logic Models (ILMs), on page 570)
and included for the top-level mapping. The ILM requires less memory than
the whole netlist because the model contains only the paths necessary to
provide an accurate timing model for top-level mapping. This ILM remains
unchanged during top-level mapping. The locked value indicates that all
instances of the same compile point are identical and unaffected by top-level
constraints or critical paths. As a result, the multiple instances of the compile
point module remain identical even though the compile point is uniquified.

TOP

compile_point = hard

Optimization on both sides

LO

Chapter 12: Running Logical Compile Points About Compile Points

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
566 June 2009

You will see unique names for multiple instances of the compile points in the
Technology view (.srm file). However, in the final Verilog netlist (.vma file) the
original module names for the multiple instances are restored.

Timing optimization can modify only instances outside the compile point.
Although used to time the top-level netlist, changes do not propagate into or
out of a locked compile point.

In the figure above, compile_point is shown with a solid boundary to emphasize
that no logic is moved in or out of the compile point during top-level mapping.

Some advantages of using locked mode include:

• Consumes smallest amount of memory. Also used for large designs
because of this memory advantage.

• Provides most runtime advantage compared to other compile point
types.

• Allows for obtaining stable results for a completed part of the design.

• Allows for hierarchical place and route with multiple output netlists for
each compile point and the top-level output netlist.

• Allows for hierarchical simulation.

Some limitations of using locked mode include:

– Automatic time budgeting

– Gated clocks or generated clocks

– Constant propagation

– Tristate pads embedded within compile points

TOP

compile_point = locked

No optimization inside compile point

About Compile Points Chapter 12: Running Logical Compile Points

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 567

– BUFG insertion

– GSR hookup

– IO pads, such as IBUF/OBUF buffers, should not be instantiated
within compile points

This mode has the largest trade-off of quality of results because no boundary
optimizations can occur. For this reason, it is very important to provide
accurate constraints for the locked compile point.

Locked, Partition
The locked compile point type can also be used with the partition option. When
you specify type as locked, partition, the synthesis tool generates a netlist file for
the compile points that are defined. Each compile point also includes a
timestamp, for example, when the module was last synthesized.

This mode provides place and route runtime advantages and allows for
obtaining stable results for a completed design. However, this mode has the
largest trade-off of quality of results because no boundary optimizations can
occur.

Compile Point Feature Summary
The following table provides a summary of how compile points are handled
during synthesis:

Features Compile Point Type

Soft Hard Locked

Boundary Optimizations yes limited no

Uniquification of multiple
instance modules

yes yes limited

Compile Point Interface (port
definitions)

modified not modified not modified

Hierarchical Simulation no no yes

LO

Chapter 12: Running Logical Compile Points About Compile Points

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
568 June 2009

Using syn_hier with Compile Points
For syn_hier on a compile point, the only valid value is flatten. All other values
of this attribute are ignored for compile points.

The syn_hier attribute behaves normally for all other module boundaries that
are not defined as compile points.

Using syn_allowed_resources with Compile Points
Apply the syn_allowed_resources attribute to a compile point to specify its
allowed resources. When a compile point is synthesized, the resources of its
siblings and parents cannot be taken into account because it stands alone as
an independent synthesis unit. This attribute limits dedicated resources such
as block RAMs or DSPs that the compile point can use, so that there is
adequate resources available during the top-down flow.

For more information about this attribute, see syn_allowed_resources
Attribute, on page 957.

define_compile_point and define_current_design
You can only set a compile point through the SCOPE interface, which creates
the .sdc file, or directly in the .sdc file. The define_compile_point command is
automatically written to the top-level constraint file for each compile point
you define. The following figure provides an example:

Hierarchical Equivalence
Checking

no yes yes

Interface Logic Model
(created/used)

no no yes

Final Netlist one one one top-level
netlist and one
netlist for each
compile point

Features Compile Point Type

About Compile Points Chapter 12: Running Logical Compile Points

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 569

This top-level .sdc file has one locked compile point, pgrm_cntr and uses the
following syntax for defining the compile point:

define_compile_point {v:work.prgm_cntr} -type {locked}

The first command in a compile point constraint file is define_current_design
which specifies the compile point module for the contained constraints. For
example:

define_current_design {pgrm_cntr}

When running synthesis this command sets the context for the constraint
file. The remainder of the file is similar to the top-level constraint file.

LO

Chapter 12: Running Logical Compile Points About Compile Points

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
570 June 2009

About Interface Logic Models (ILMs)
An interface logic model (ILM) of a locked compile point is a timing model that
contains only the interface logic necessary to provide accurate timing. An ILM
is a partial gate-level netlist and is output in Verilog to a file with a .vmd
extension. This partial netlist is a smaller file than the full netlist, which is
helpful in managing capacity, especially for larger designs. Using ILMs
improves the runtime for static timing analysis without compromising timing
accuracy. An ILM represents the original design accurately while requiring
less memory during mapping.

No timing optimizations are done on an ILM. The interface logic is preserved
with no modifications. All logic required to recreate timing at the top level is
included in the ILM. ILM logic includes any paths from:

• input/inout port to internal register

• internal register to output/inout port

• input/inout port to output/inout port

Internal register to internal register paths are removed from the model. The
following figure provides an example:

In this design, and_a is not included in the ILM because the timing path that
goes through and_a is an internal register-to-register path.

Gates included in ILM

Gate not included
 in ILM

and_a and_b

and_c or_a

CP 1

Compile Point Synthesis Chapter 12: Running Logical Compile Points

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 571

Compile Point Synthesis
Synthesis consists of two phases: compiling and mapping. During synthesis,
the design is first compiled, then mapped starting with the compile points at
the lowest level of hierarchy in the design. After the compile points are
mapped, the top-level is mapped. For more information, see:

• Compile Point Optimization, on page 571

• Forward-annotation of Compile-point Timing Constraints, on page 572

Compile Point Optimization
Compile points are optimized separately from their parent environments (the
containing compile-point or top-level), so they are unaffected by critical paths
or constraints in those environments. A compile point stands on its own, with
its own individual constraints.

You must set constraints on individual locked compile points, since top-level
constraints do not propagate down to them. However, compile point timing
models are taken into account when synthesizing higher levels, so you need
not duplicate compile-point timing constraints at the top level.

During synthesis, any compile points that have not yet been synthesized are
synthesized before the top level. Nested compile points are synthesized before
the parent compile points that contain them. In a previous figure above, CP6
is synthesized before CP5, which is synthesized before CP4.

A compile point that has already been synthesized is not resynthesized,
unless at least one of the following is true:

• You change the HDL source code defining the compile point in such a
way that the design logic is changed.

• You change the constraints applied to the compile point.

• You change any of the options on the Device panel of the Implementation
Options dialog box (except Update Compile Point Timing Data). In this case the
entire design is resynthesized, including all compile points. See Device
Panel, on page 140.

• You intentionally force the resynthesis of your entire design, including
all compile points – see Run -> Resynthesize All, Run Menu, on page 181.

LO

Chapter 12: Running Logical Compile Points Compile Point Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
572 June 2009

• The Update Compile Point Timing Data device mapping option is enabled and
at least one child of the compile point (at any level) has been remapped.
The option requires that the parent compile point be resynthesized using
the updated timing model of the child. Note: This includes the possibility
that the child was remapped earlier, while the option was disabled. The
newly enabled option then requires that the updated timing model of the
child be taken into account, by resynthesizing the parent.

The synthesis tool automatically detects design changes, and it resynthesizes
compile points only when necessary. A compile point is not resynthesized, for
example, just because you add or change a source code comment; since such
a change does not really affect the design.

Incremental synthesis of a compile point results in the creation of interme-
diate mapping files (.srd), which are located in a subdirectory named after
the compile point. You need not be concerned with these files. They are used
to save mapping information for subsequent synthesis runs. (If you happen
to delete them, the associated compile point will be resynthesized and the
files regenerated.)

Forward-annotation of Compile-point Timing Constraints
In addition to a top-level constraint file, each compile point can have an
associated constraint file. When constraints are forward-annotated to
placement and routing, they are included from all these files. However,
constraints on ports in the interface of a compile point are not forward
annotated.

More precisely, the constraints defined in the constraint file for a compile
point are of two kinds:

• Constraints applied to the interface (ports and bit ports) of the compile
point. These include input_delays, output_delays, and clock definitions on
the ports. Such constraints are only used when mapping the compile
point itself, not its parents. They are not used in the final timing report,
and they are not forward -nnotated.

• Constraints applied to instances inside the compile point, such as
timing exceptions and internal clocks. Such constraints are used when
mapping the compile point and its parents. They are used in the final
timing report, and they are forward-annotated.

Constraints on top-level ports are always forward annotated.

Using Compile-point Synthesis Chapter 12: Running Logical Compile Points

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 573

Using Compile-point Synthesis
This section provides information on how to use logical compile-point
synthesis with the Synplify Pro or Synplify Premier products. Note that
compile points are not available with the Synplify tool.

For a general description of the flow, see the Synplify Pro and Synplify Premier
Compile-point Flow, on page 573.

For vendor-specific flows, see:

• Quartus II Incremental Compilation, on page 857

• Xilinx Compile-point Synthesis Flow, on page 583

• Working with Xilinx Incremental Flows, on page 862

Synplify Pro and Synplify Premier Compile-point Flow
This section describes the compile-point- synthesis flow, which contains the
following steps to automate the traditional bottom-up flow for large designs.

• Set Implementation Options, on page 574

• Compile the Design, on page 575

• Define Compile Points and Top-Level Constraints, on page 575

• Set Constraints, on page 577

• Synthesize, on page 580

• Analyze Results, on page 580

• Resynthesize or Incrementally Synthesize, on page 581

The following figure shows the generic procedure for using the Synplify Pro or
Synplify Premier compile-point flow. For Actel designs, follow this generic
flow.

LO

Chapter 12: Running Logical Compile Points Using Compile-point Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
574 June 2009

Set Implementation Options
The first step in compile-point synthesis is to set the implementation options,
just as with the regular design flow.

1. Start the Synplify Pro tool or Synplify Premier; set up a design project for
the compile-point flow and open the project for the top-level design.

2. Press the Implementation Options button in the Project view to open the
Implementation Options dialog box.

3. Set the following:

Compile the Design

Set Implementation Options

Synthesize

Define Compile Points and
Top-Level Constraints

Set Constraints

F7

Analyze Results

Meets requirements

Place and Route

Resynthesize or
Incrementally Synthesize

Fails requirements or
needs design updates

Using Compile-point Synthesis Chapter 12: Running Logical Compile Points

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 575

– Select a technology that supports compile points and set the device,
part and speed grade options.

– Set the global frequency, and any other optimization options.

For the Synplify Premier tool:

– On the Netlist Restructure tab, disable the Netlist Optimization Options.

Note: Synplify Premier MultiPoint synthesis ignores the following
optimizations for compile points: Feedthrough Optimization, Constant
Propagation, and Create Always/Process Level Hierarchy.

– For certain Altera devices, disable Create MAC Hierarchy as well.

You are now ready to compile the design (Compile the Design, on
page 575).

Compile the Design
After setting the implementation options, you must compile the design. This
is the second step in the design flow.

1. Open the project for the top-level design.

2. Press F7 or select Run->Compile Only.

This compiles the design and enables the SCOPE constraints file to be
initialized, which is important for the defining the compile points and
their constraints, later in the flow.

The next step is to define compile points (Define Compile Points and Top-
Level Constraints, on page 575).

Define Compile Points and Top-Level Constraints
Compile points and constraints are both saved in a constraint file, so this
step can be combined with the setting of constraints, as convenient. This
procedure keeps the two steps separate.

You define compile points in a top-level constraint file. See About Compile
Points, on page 562 for details about compile points. You can add the compile
point definitions to an existing top-level.sdc file or create a new file.

1. Open a SCOPE window for the top-level file.

LO

Chapter 12: Running Logical Compile Points Using Compile-point Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
576 June 2009

– To define compile points in an existing top-level constraint file, open a
SCOPE window by double-clicking the file in the Project view.

– To define compile points in a new top-level constraint file, click the
SCOPE icon. Select the Select File Type tab, click Top Level, and click
OK.

Alternatively, you can create a new top-level constraint file when you
create the module-level constraint files, as described in Create Compile
Point and Top-Level Constraint Files, on page 578.

The SCOPE window opens.

2. Click the Compile Points tab.

– Set the module you want as a compile point using either of these
methods: select a module from the drop down list in the Module
column, or drag the instance from the HDL Analyst RTL view to the
Module column.

– The Type can be specified as locked, locked,partition, hard, or soft.

For a description of these types, see Compile Point Types, on page 564.

This tags the module as a compile point. The following figure shows the
the prgm_cntr module set as a locked compile point in the design flow.

Click and select.

Using Compile-point Synthesis Chapter 12: Running Logical Compile Points

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 577

3. Set any other top-level constraints like input/output delays, clock
frequencies or multicycle paths.

The parent level includes lower-level constraints. The software considers
the lower-level constraints when it maps the top level.

4. Save the top-level .sdc file.

You can now set constraints as described in Set Constraints, on
page 577.

Set Constraints
You can specify constraints for each compile point in individual .sdc files, as
well as set separate top-level constraints for the entire design. You need a
compile point constraint file for each locked compile point, and a constraint
file for the top level. Do not define the compile point constraints in the same
file as the top-level constraints.

If you supply a constraint file for soft and hard compile points, the compile
point timing models are taken into account and optimized separately during
this bottom-up synthesis. However, further optimizations can occur during
the top-down synthesis to help improve timing performance and overall
design results.

See the following sections for details about compile point constraints:

• Create Compile Point and Top-Level Constraint Files, on page 578

• Set Compile Point Constraints, on page 579

LO

Chapter 12: Running Logical Compile Points Using Compile-point Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
578 June 2009

Create Compile Point and Top-Level Constraint Files
You can create a module (compile point) constraint file as follows. Optionally,
you can generate a top-level constraint file at the same time that you define
the compile points.

1. In an open project, click the SCOPE icon (). The Create a New SCOPE
File dialog box opens.

2. Click the Select File Type tab and click the Compile Point option.

3. Select the module you want to make a compile point.

4. Click OK.

If you do not have a top-level file, you are prompted to create one. If you
have multiple top-level files, you can choose one or create a new one by
clicking New. For information about defining compile points in a top-
level file, see Define Compile Points and Top-Level Constraints, on
page 575.

5. Click OK to exit the prompt box, and then click OK again in the Create a
New SCOPE File dialog box to initialize the constraints.

Two SCOPE windows open, one for the top-level and one for the compile
point constraint file. You must define constraints for both the top-level
and the compile point. See Set Compile Point Constraints, on page 579

Using Compile-point Synthesis Chapter 12: Running Logical Compile Points

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 579

for details about setting compile point constraints. Set top-level
constraints as in a normal design flow.

Set Compile Point Constraints
To create or modify the compile point constraints, do the following:

1. If needed, open the SCOPE window for the compile point constraint file
by double-clicking the file in the Project view.

This opens the constraint file for the compile point. The name of the
compile point file appears in the banner of the SCOPE window. Note that
there is no Compile Point tab in the SCOPE UI when the constraint file is
for a compile point.

2. Set constraints for the compile point. In particular, do the following:

– Define clocks for the compile point.

– Specify I/O delay constraints for non-registered I/O paths that may
be critical or near critical.

– Set port constraints for the compile point that are needed for top-level
mapping.

You must set compile point constraints because parent constraints do
not propagate down to the compile points. However, compile point
constraints are considered while mapping the parent, so you do not
need to duplicate compile point constraints at the top level. Compile
point port constraints are not used at the parent level, because compile
point ports do not exist at that level.

If you want to use the syn_hier attribute with a compile point, the only
valid value is flatten. The software ignores any other value of syn_hier for
compile points. The syn_hier attribute behaves normally for all other
module boundaries that are not defined as compile points.

LO

Chapter 12: Running Logical Compile Points Using Compile-point Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
580 June 2009

3. Save the file. When prompted, click Yes to add the constraint file to the
top-level design project.

The software writes a file name_cp_number.sdc to the current directory.

Synthesize
After you have set up the compile points and the constraints, you can
synthesize the design.

1. Click Run and synthesize the top-level design.

The design is synthesized in two phases:

– First, compile points are synthesized from the bottom up, starting
with the compile point at the lowest level of hierarchy in the design.
Each compile point is synthesized independently. For each compile
point, the software creates a subdirectory named after the compile
point, in which it stores intermediate files for the compile point: RTL
netlist, mapped netlist, and model file. The model file contains the
hierarchical interface timing and resource information that is used to
synthesize the next level.

When a design is resynthesized, compile points are resynthesized
only if source code logic or constraints have been changed. If a
compile point has not changed, the model file from the previous run
is used. Once generated, the model file is not updated unless there is
an interface design change or you explicitly specify it.

– After all the compile points are synthesized, the software synthesizes
the design from the top down, using the model information for each
compile point.

The software writes out a single output netlist and one constraint file for
the entire design.

Analyze Results
The software writes timing and area results to one log file in the implemen-
tation directory. You can check this file and the RTL and Technology views to
determine if your design has met the goals for area and performance. You can
also view and isolate the critical paths, search for and highlight design
objects and crossprobe between the schematics and source files.

Using Compile-point Synthesis Chapter 12: Running Logical Compile Points

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 581

1. Check that the design meets the target frequency for the design. Use the
Log Watch window or check the log file.

2. Open the log file and check the following:

– Check top-level and compile point boundary timing. You can also
check this visually using the RTL and Technology view schematics. If
you find negative slack, check the critical path. If the critical path
crosses the compile point boundary, you might need to improve the
compile point constraints.

– Fix any errors. Remember that the mapper reports an error if
synthesis at a parent level requires that interface changes be made to
a locked compile point. The software does not change the compile
point interface, even if changes are required to fix DRC violations.

– Review all warnings and determine which should be addressed and
which can be ignored.

– Review the area report in the log file and determine if the cell usage is
acceptable for your design.

– Check all DRC information.

3. Check the RTL and Technology view schematics for a graphic view of the
design logic.

Note that even though instantiations of compile points do not have
unique names in the output netlist, they have unique names in the
Technology view. This is to facilitate timing analysis and the viewing of
critical paths.

Resynthesize or Incrementally Synthesize
This is an optional step. You can resynthesize a locked compile point or
synthesize your design incrementally. To obtain the best results, you should
also define any required constraints and set the proper implementation
options for the compile point before resynthesizing.

1. To synthesize a design incrementally, make the changes you need to fix
errors or improve your design.

– Define new compile point constraints or modify existing constraints
in the existing constraint file or in a new constraint file for the
compile point. Save the file.

LO

Chapter 12: Running Logical Compile Points Using Compile-point Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
582 June 2009

– If necessary, reset implementation options. Click Implementation Options
and modify the settings (operating conditions, optimization switches,
and global frequency).

2. Click Run to resynthesize the design.

When a design is resynthesized, compile points are not resynthesized
unless source code logic, implementation options, or constraints have
been modified. If there are no compile point interface changes, the
software synthesizes the immediate parent using the previously gener-
ated model file for the compile point.

3. To force the software to generate a new model file for the compile point,
click Implementation Options on the Device tab and enable Update Compile
Point Timing Data. Click Run.

The software regenerates the model file for each compile point when it
synthesizes the compile points. The new model file is used to synthesize
the parent. The option remains in effect until you disable it.

4. To override incremental synthesis and force the software to resynthesize
all compile points whether or not there have been changes made, use
the Run->Resynthesize All command. You might want to force resynthesis
to propagate changes from a locked compile point to its environment, or
resynthesize compile points one last time before tape out. When you use
this option, incremental synthesis is disabled for the current run only.

The Resynthesize All command does not regenerate model files for the
compile points unless there are interface changes. If you enable Update
Compile Point Timing Data and select Resynthesize All, you can resynthesize
the entire design and regenerate the compile point model files, but
synthesis will take longer than an incremental synthesis run.

Xilinx Compile-point Synthesis Flow Chapter 12: Running Logical Compile Points

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 583

Xilinx Compile-point Synthesis Flow
You can use the Synplify Pro or Synplify Premier compile-point synthesis flow
in conjunction with the Xilinx place-and-route tool to design and lock down a
design, one block at a time. For compile-point synthesis, the design is divided
into compile points, which are hierarchical logic blocks (modules) that you
can optimize independently from the rest of the design. The design team can
work on individual modules separately and concurrently, and then integrate
them into the top-level design using the compile-point synthesis flow. See
Using Xilinx Compile-point Synthesis, on page 583, for the following compile-
point synthesis procedure specific to Xilinx.

See Also:

• The Xilinx partition flow for incremental design changes is used in
conjunction with the compile-point synthesis flow (see Working with
Xilinx Incremental Flows, on page 862).

• For a generic procedure (that is not vendor-specific) on how to use the
compile-point flow, see Synplify Pro and Synplify Premier Compile-point
Flow, on page 573.

Using Xilinx Compile-point Synthesis
To implement Synplify Pro or Synplify Premier compile-point synthesis with
the Xilinx compile-point synthesis flow, follow these steps:

1. Set up a project, set implementation options, and compile the project

– Set up a project as usual, select the Xilinx target device.

– Set the implementation options.

On the Netlist Restructure tab of the Synplify Premier tool, make sure
to disable all the Netlist Optimization Options.

– Compile the design.

2. Define compile points in the top-level .sdc file.

– Click the Compile Points tab, and set compile points. The following
example shows three compile points set: ALU, comb_logic, and mult.

LO

Chapter 12: Running Logical Compile Points Xilinx Compile-point Synthesis Flow

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
584 June 2009

A compile point is a module that is treated as a block for incremental
mapping. In subsequent synthesis iterations, the software does not
resynthesize the compile point unless the original RTL netlist for the
compile point changes.

3. Create a compile point constraint file for each compile point.

– Click the SCOPE icon.

– In the Create a New SCOPE File dialog box, click the Select File Type tab,
then click Compile Point, and select the compile point. The following
examples shows v:work.alu selected.

– In the next dialog box, select the top-level .sdc file that defines the
compile points.

– Set the clock constraint for the compile point. This can be the same
as the top level. Save the file.

Xilinx Compile-point Synthesis Flow Chapter 12: Running Logical Compile Points

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 585

4. Synthesize your design and check the compile point summary in the
log file.

The software synthesizes the design from the bottom up, starting with
the compile point at the lowest level.

5. Place and route the design.

6. To synthesize the design incrementally, do the following:

– Make the design changes needed in the compile points.

– Click Run to resynthesize your design incrementally.

The synthesis software runs incrementally, only resynthesizing compile
points whose logic, implementation options, or timing constraints have
changed.

The following figure illustrates incremental synthesis by comparing
compile point summaries. After the first run, a syntax change was made
in the mult module, and a logic change in the comb_logic module. The
figure shows that incremental synthesis resynthesizes comb_logic (logic
change), but does not resynthesize mult because the logic did not change

Set a clock
constraint for
the compile
point

Set up a
constraint
file for the
compile
point

LO

Chapter 12: Running Logical Compile Points Xilinx Compile-point Synthesis Flow

Synopsys FPGA Synthesis User Guide
586 June 2009

Synopsys, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: +1 408 215-6000, Fax: +1 408 222-068
www.solvnet.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology,
Certify, DesignWare, HDL Analyst, Identify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro,
Synthesis Constraints Optimization Environment, and VCS are registered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-perfor-
mance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and TotalRecall are trademarks of Synopsys, Inc. All other
names mentioned herein are trademarks or registered trademarks of their respective companies.

even though there was a syntax change. Incremental synthesis re-uses
the mapped file generated from the previous run to incrementally
synthesize the top level.

Incremental Run Log Summary

First Run Log Summary

Syntax changes only; not resynthesized

Logic changes; compile
point resynthesized

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 587

C H A P T E R 1 3

Using Multiprocessing

The following sections describe how to use multiprocessing to run parallel
synthesis jobs and improve runtime:

• Multiprocessing With Compile Points, on page 588

– Setting Maximum Parallel Jobs, on page 588

– License Utilization, on page 589

LO

Multiprocessing With Compile Points

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
588 June 2009

Multiprocessing With Compile Points
Use the Configure Compile Point Process command to run multiprocessing with
compile points. This option allows the synthesis software to run multiple,
independent compile point jobs simultaneously, providing additional runtime
improvements for the logical compile point synthesis flows. On the Configure
Compile Point Process dialog box, specify the maximum number of synthesis
jobs you can run in parallel. Note, one license is used for each job. For a
description of how to set the maximum number of parallel synthesis jobs, see
Setting Maximum Parallel Jobs, on page 588.

To use multiprocessing in the Logical Compile Point Synthesis flows for the
Synplify Pro and Synplify Premier tools, see Chapter 12, Running Logical
Compile Points. For the Synplify Premier tool, the Physical Synthesis switch
must be turned off when you run compile points.

Setting Maximum Parallel Jobs
You can set maximum number of parallel jobs in the following ways:

• INI variable — MaxParallelJob

• Tcl variable — max_parallel_jobs

INI variable — MaxParallelJob

The maximum number of parallel jobs is set in the product .ini file. The
following commands are set in the <product>.ini file (for example,
synplify_premier_dp.ini):

[JobSetting]

MaxParallelJobs=<n>

The MaxParallelJobs value is used by the UI as well as in batch mode. This
value is effective until you specify a new value. To change the number of
parallel jobs you can run, use the Options->Configure Compile Point Process
command from the Project view menu. On the Configure Compile Point Process
dialog box, in the Maximum number of parallel synthesis jobs field you will see the
current .ini value. You can specify a new MaxParallelJobs value which is
effective until you change it again. Once you click OK, the new value is saved
in the .ini file. For a description of the dialog box, see Configure Compile Point
Process, on page 244.

Multiprocessing With Compile Points

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 589

Tcl variable — max_parallel_jobs

You can also manually set the maximum number of parallel jobs an override
value. To do this, use the Tcl command:

set_option -max_parallel_jobs <n>

You can choose to:

• Source the Tcl file containing this option.

• Add this option to the Project file.

• Set this option from the Tcl command window.

This max_parallel_jobs value is applied to all project files and their respective
implementations. This is a global option. The maximum number of parallel
jobs remains in effect until you specify a new value. This new value takes
affect immediately going forward. However, when you set this option from the
Tcl command window, the max_parallel_jobs value is not saved and will be lost
when you exit the application.

License Utilization
When you decide to run parallel synthesis jobs, a license is used for each
compile point job that runs. For example, if you set the Maximum number of
parallel synthesis jobs to 4, then the synthesis tool consumes one license and
three additional licenses are utilized to run the parallel jobs if they are
available for your computing environment. Licenses are released as jobs
complete, and then consumed by new jobs which need to run.

The actual number of licenses utilized depends on the:

1. Synthesis software scheme for the compile point requirements used to
determine the maximum number of parallel jobs or licenses a particular
design tries to use.

2. Value set on the Configure Compile Point Process dialog box.

3. Number of licenses actually available. You can use Help->Preferred License
Selection to check the number of available license. If you need to increase
the number of available licenses, you can specify multiple license types.
For more information, see Specifying License Types, on page 590.

LO

Multiprocessing With Compile Points

Synopsys FPGA Synthesis User Guide
590 June 2009

Synopsys, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: +1 408 215-6000, Fax: +1 408 222-068
www.solvnet.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology,
Certify, DesignWare, HDL Analyst, Identify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro,
Synthesis Constraints Optimization Environment, and VCS are registered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-perfor-
mance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and TotalRecall are trademarks of Synopsys, Inc. All other
names mentioned herein are trademarks or registered trademarks of their respective companies.

Note that factors 1 and 3 above can change during a single synthesis run.
The number of jobs equals the number of licenses; which then equates the
lowest value of these three factors.

Specifying License Types
You can specify multiple license types to increase the total number of licenses
available for multiprocessing. To do this, you can either:

• Use the command line option -licensetype when you excute your tool.

For example, suppose you have two synplifypremier licenses, two
synplifypremier_allvendor licenses, and three synplifypremier_xilinx licenses .
Type the following at the command line:

synplify_premier.exe -licensetype
“synplifypremier:synplifypremier_allvendor:synplifypremier_xilinx”

• Use one of the following environment variables specified with the license
type:

– SYNPLIFYPRO_LICENSE_TYPE (Synplify Pro tool)

– SYNPLIFYPREMIER_LICENSE_TYPE (Synplify Premier and Synplify
Premier with Design Planner tools)

setenv SYNPLIFYPREMIER_LICENSE_TYPE=
”synplifypremier:synplifypremier_allvendor:synplifypremier_xilinx”

Multiprocessing can access any of these seven license types for additional
licenses.

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 591

C H A P T E R 1 4

Synthesizing and Analyzing the Log File

This chapter describes how to run synthesis, and how to analyze the log file
generated after synthesis. See the following:

• Synthesizing Your Design, on page 592

• Checking Log Results, on page 596

• Handling Messages, on page 602

• Validating Logic Synthesis for Physical Synthesis, on page 609

LO

Chapter 14: Synthesizing and Analyzing the Log File Synthesizing Your Design

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
592 June 2009

Synthesizing Your Design
Once you have set your constraints, options, and attributes, running
synthesis is a simple one-click operation. See the following:

• Running Logic Synthesis, on page 592

• Running Physical Synthesis, on page 592

Running Logic Synthesis
When you run logic synthesis, the tool compiles the design and then maps it
to the technology target you selected.

1. If you want to compile your design without mapping it, select Run->
Compile Only or press F7.

A compiled design has the RTL mapping, and you can view the RTL view.
You might want to just compile the design when you are not ready to
synthesize the design, but when you need to use a tool that requires a
compiled design, like the SCOPE interface.

2. To synthesize the logic, set all the options and attributes you want, and
then click Run.

3. To run logic synthesis as the initial phase of physical synthesis, see
Running Physical Synthesis, on page 592.

You can now run physical synthesis as described in Running Physical
Synthesis, on page 592.

Running Physical Synthesis
When you run physical synthesis, the tool not only compiles the design and
maps it to the technology target you selected, but also uses placement infor-
mation to concurrently optimize and synthesize your design. Regardless of
the flow you are using, run physical synthesis in two phases. First, run logic
synthesis and fix any issues that come up. Then run physical synthesis.

Synthesizing Your Design Chapter 14: Synthesizing and Analyzing the Log File

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 593

1. Run logic synthesis as the initial phase of physical synthesis, by doing
the following:

– Set the options and attributes you want for physical synthesis,
making sure to set up P&R to run automatically after synthesis.

– Disable the Physical Synthesis switch either in the Project view or from
the Implementation Options dialog box (Implementation Options->Options).

– Click Run to run logic synthesis.

The Synplify Premier tool goes through compiling and mapping phases.
When logical synthesis completes, Done! (or Warnings!) displays in the
Project view. Output results files are shown in the right pane of the
Project view.

2. Make adjustments to your design as needed.

– Check the output files and analyze the results.

– Fix any errors.

See Validating Logic Synthesis for Physical Synthesis, on page 609 for
details.

3. Set options for the physical synthesis run.

– Set any other physical constraints.

LO

Chapter 14: Synthesizing and Analyzing the Log File Synthesizing Your Design

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
594 June 2009

– Enable the Physical Synthesis switch either in the Project view or from
the Implementation Options dialog box (Implementation Options->Options).

– If you want a different directory for your physical synthesis results,
click on the Implementation Options->Implementation Results tab and specify
a new name for the implementation.

– Make sure the place-and-route implementation is enabled
(Implementation Options->Place and Route tab).

– If you are using a Design Planner flow, click on the Design Planning tab
and enable the desired design plan file (.sfp) if needed.

You do not need a design plan file to run graph-based physical
synthesis. However, if you are using a graph-based flow and want to
use a design plan file, use the procedure described in Creating and
Using a Design Plan File for Physical Synthesis, on page 494.

For older Altera technologies, you must create a design plan (.sfp) to
run physical synthesis. See Chapter 11, Floorplanning with Design
Planner for more information.

Synthesizing Your Design Chapter 14: Synthesizing and Analyzing the Log File

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 595

– Click OK in the Implementation Options dialog box .

4. Run physical synthesis by clicking Run.

The tool performs optimizations using placement-aware synthesis.
Synthesis and placement are integrated by performing concurrent place-
ment and optimization based on timing constraints and device
technology.

LO

Chapter 14: Synthesizing and Analyzing the Log File Checking Log Results

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
596 June 2009

Checking Log Results
You can check the log file for information about the synthesis run. In
addition, the Synplify Pro and Synplify Premier interfaces have a Tcl Script
window, that echoes each command as it is run. The following describe
different ways to check the results of your run:

• Viewing the Log File, on page 596

• Analyzing Results Using the Log File Reports, on page 599

• Using the Log Watch Window, on page 600

Viewing the Log File
The log file contains the most comprehensive results and information about a
synthesis run. The default log file is in HTML format, but there is a text
version available too.

For Synplify Pro or Synplify Premier users who only want to check a few
critical performance criteria, it is easier to use the Log Watch window
(seeUsing the Log Watch Window, on page 600) instead of the log file. For
details, read through the log file.

1. To view the log file, do one of the following:

– To view the log file in the default HTML format, select View->Log File or
click the View Log button in the Project window. You see the log file in
HTML format. Alternatively you can double-click the
designName_srr.htm file in the Implementation Results view to open the
HTML log file.

– To see a text version of the log file, double-click the designName.srr file
in the Implementation Results view. A Text Editor window opens with the
log file.

Alternatively, you can set the default to show the text file version
instead of the HTML version. Select Options->Project View Options, and
toggle off the View log file in HTML option.

The log file lists the compiled files, details of the synthesis run, color-
coded errors, warnings and notes, and a number of reports. For infor-
mation about the reports, see Analyzing Results Using the Log File
Reports, on page 599.

Checking Log Results Chapter 14: Synthesizing and Analyzing the Log File

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 597

2. To navigate in the log file, use the following techniques:

– Use the scroll bars.

– Use the Find command as described in the next step.

– In the HTML file, click the appropriate header to jump to that point in
the log file. For example, you can jump to the Starting Points with Worst
Slack section.

3. To find information in the log file, select Edit->Find or press Ctrl-f. Fill out
the criteria in the form and click OK.

For general information about working in an Editing window, including
adding bookmarks, see Editing HDL Source Files with the Built-in
Text Editor, on page 85.

The areas of the log file that are most important are the warning
messages and the timing report. The log file includes a timing report
that lists the most critical paths. The Synplify Pro and Synplify Premier

Log File (Text)

Log File (HTML)

LO

Chapter 14: Synthesizing and Analyzing the Log File Checking Log Results

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
598 June 2009

products also let you generate a report for a path between any two desig-
nated points, see Using the Stand-alone Timing Analyst, on page 736.
The following table lists places in the log file you can use when searching
for information.

4. Resolve any errors and check all warnings.

You must fix errors, because you cannot synthesize a design with errors.
Check the warnings and make sure you understand them. See Checking
Results in the Message Viewer, on page 602 for information. Notes are
informational and usually can be ignored. For details about
crossprobing and fixing errors, see Handling Warnings, on page 609,
Editing HDL Source Files with the Built-in Text Editor, on page 85, and
Crossprobing from the Text Editor Window, on page 649.

If you see Automatic dissolve at startup messages, you can usually ignore
them. They indicate that the mapper has optimized away hierarchy
because there were only a few instances at the lower level.

5. If you are trying to find and resolve warnings, you can bookmark them
as shown in this procedure:

– Select Edit->Find or press Ctrl-f.

– Type @W as the criteria on the Find form and click Mark All. The
software inserts bookmarks at every line with a warning. You can
now page through the file from bookmark to bookmark using the
commands in the Edit menu or the icons in the Edit toolbar. For more
information on using bookmarks, see Editing HDL Source Files with
the Built-in Text Editor, on page 85.

To find... Search for...

Notes @N or look for blue text

Warnings and errors @W and @E, or look for purple
and red text respectively

Performance summary Performance Summary

The beginning of the timing report START TIMING REPORT

Detailed information about slack times,
constraints, arrival times, etc.

Interface Information

Resource usage Resource Usage Report

Gated clock conversions Gated clock report

Checking Log Results Chapter 14: Synthesizing and Analyzing the Log File

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 599

6. To crossprobe from the log file to the source code, click on the file name
in the HTML log file or double-click on the warning text (not the ID code)
in the ASCII text log file.

Analyzing Results Using the Log File Reports
The log file contains technology-appropriate reports like timing reports,
resource usage reports, and net buffering reports, in addition to any notes,
errors, and warning messages.

1. To analyze timing results, do the following:

– View the Timing Report by going to the Performance Summary section of
the log file.

– Check the slack times. See Handling Negative Slack, on page 756 for
details.

– Check the detailed information for the critical paths, including the
setup requirements at the end of the detailed critical path
description. You can crossprobe and view the information graphically
and determine how to improve the timing.

– In the HTML log file, click the link to open up the HDL Analyst view
for the path with the worst slack.

To generate Synplify Premier or Synplify Pro timing information about a
path between any two designated points, see Using the Stand-alone
Timing Analyst, on page 736. For information about the Synplify Premier
island-based timing report, see Working in the Schematic Views, on
page 614.

2. To check buffers,

– Check the report by going to the Net Buffering Report section of the log
file.

– Check the number of buffers or registers added or replicated and
determine whether this fits into your design optimization strategy.

3. To check logic resources,

– Go to the Resource Usage Report section at the end of the log file.

– Check the number and types of components used to determine if you
have used too much of your resources.

LO

Chapter 14: Synthesizing and Analyzing the Log File Checking Log Results

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
600 June 2009

Using the Log Watch Window
The Synplify Pro and Synplify Premier Log Watch window provides a more
convenient viewing mechanism than the log file for quickly checking key
performance criteria or comparing results from different runs. Its limitation is
that it only displays certain criteria. If you need details, use the log file, as
described in Viewing the Log File, on page 596.

1. Open the Log Watch window, if needed, by checking View->Log Watch
Window.

If you open an existing project, the Log Watch window shows the param-
eters set the last time you opened the window.

2. If you need a larger window, either resize the window or move the Log
Watch window as described below.

– Hold down Ctrl or Shift, click on the window, and move it to a position
you want. This makes the Log Watch window an independent
window, separate from the Project view.

– To move the window to another position within the Project view, right-
click in the window border and select Float in Main Window. Then move
the window to the position you want, as described above.

See Log Watch Window, on page 59 in the Reference Manual for informa-
tion about the popup menu commands.

3. Select the log parameter you want to monitor by clicking on a line and
selecting a parameter from the resulting popup menu.

The software automatically fills in the appropriate value from the last
synthesis run. You can check the clock requested and estimated
frequencies, the clock requested and estimated periods, the slack, and
some resource usage criteria.

Checking Log Results Chapter 14: Synthesizing and Analyzing the Log File

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 601

4. To compare the results of two or more synthesis runs, do the following:

– If needed, resize or move the window as described above.

– Click the right mouse button in the window and select Configure Watch
from the popup.

– Click Watch Selected Implementations and either check the
implementations you want to compare or click Watch All
Implementations. Click OK. The Log Watch window now shows a column
for each implementation you selected.

– In the Log Watch window, set the parameters you want to compare.

The software shows the values for the selected implementations side by
side. For more information about multiple implementations, see Tips for
Optimization, on page 426.

LO

Chapter 14: Synthesizing and Analyzing the Log File Handling Messages

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
602 June 2009

Handling Messages
This section describes how to work with the error messages, notes, and
warnings that result after a run. See the following for details:

• Checking Results in the Message Viewer, on page 602

• Filtering Messages in the Message Viewer, on page 604

• Filtering Messages from the Command Line, on page 606

• Automating Message Filtering with a Tcl Script, on page 607

• Handling Warnings, on page 609

Checking Results in the Message Viewer
The Tcl Script window, a Synplify Pro and Synplify Premier feature, includes
a Message Viewer. By default, the Tcl window is in the lower left corner of the
main window. This procedure shows you how to check results in the message
viewer.

1. If you need a larger window, either resize the window or move the Tcl
window. Click in the window border and move it to a position you want.
You can float it outside the main window or move it to another position
within the main window.

2. Click the Messages tab to open the message viewer.

The window lists the errors, warnings, and notes in a spreadsheet
format. See Message Viewer, on page 63 in the Reference Manual for a
full description of the window.

Handling Messages Chapter 14: Synthesizing and Analyzing the Log File

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 603

3. To reduce the clutter in the window and make messages easier to find
and understand, use the following techniques:

– Use the color cues. For example, when you have multiple synthesis
runs, messages that have not changed from the previous run are in
black; new messages are in red.

– Enable the Group Common IDs option in the upper right. This option
groups all messages with the same ID and puts a plus symbol next to
the ID. You can click the plus sign to expand grouped messages and
see individual messages.

There are two types of message groups:

- The same warning or note ID appears in multiple source files
indicated by a dash in the source files column.

- Multiple warnings or notes in the same line of source code indicated
by a bracketed number.

– Sort the messages. To sort by a column header, click that column
heading. For example, click Type to sort the messages by type. For
example, you can use this to organize the messages and work
through the warnings before you look at the notes.

– To find a particular message, type text in the Find field. The tool finds
the next occurrence. You can also click the F3 key to search forward,
and the Shift-F3 key combination to search backwards.

LO

Chapter 14: Synthesizing and Analyzing the Log File Handling Messages

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
604 June 2009

4. To filter the messages, use the procedure described in Filtering
Messages in the Message Viewer, on page 604. Crossprobe errors from
the message window:

– If you need more information about how to handle a particular
message, click the message ID in the ID column. This opens the
documentation for that message.

– To open the corresponding source code file, click the link in the Source
Location column. Correct any errors and rerun synthesis. For
warnings, see Handling Warnings, on page 609.

– To view the message in the context of the log file, click the link in the
Log Location column.

Filtering Messages in the Message Viewer
The Message viewer lists all the notes, warnings, and errors. It is not available
with the Synplify tool. The following procedure shows you how to filter out the
unwanted messages from the display, instead of just sorting it as described in
Checking Results in the Message Viewer, on page 602. For the command line
equivalent of this procedure, see Filtering Messages from the Command Line,
on page 606.

1. Open the message viewer by clicking the Messages tab in the Tcl window
as previously described.

2. Click Filter in the message window.

The Warning Filter spreadsheet opens, where you can set up filtering
expressions. Each line is one filter expression.

3. Set your display preferences.

Handling Messages Chapter 14: Synthesizing and Analyzing the Log File

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 605

– To hide your filtered choices from the list of messages, click Hide Filter
Matches in the Warning Filter window.

– To display your filtered choices, click Show Filter Matches.

4. Set the filtering criteria.

– Set the columns to reflect the criteria you want to filter. You can
either select from the pull-down menus or type your criteria. If you
have multiple synthesis runs, the pull-down menu might contain
selections that are not relevant to your design.

The first line in the following example sets the criteria to show all
warnings (Type column) with message ID FA188 (ID). The second set of
criteria displays all notes that begin with MF.

– Use multiple fields and operators to refine filtering. You can use
wildcards in the field, as in line 2 of the example. Wildcards are case-
sensitive and space-sensitive. You can also use ! as a negative
operator. For example, if you set the ID in line 2 to !MF*, the message
list would show all notes except those that begin with MF.

– Click Apply when you have finished setting the criteria. This
automatically enables the Apply Filter button in the messages window,
and the list of messages is updated to match the criteria.

The synthesis tool interprets the criteria on each line in the Warning
Filter window as a set of AND operations (Warning and FA188), and the
lines as a set of OR operations (Warning and FA188 or Note and MF*).

– To close the Warning Filter window, click Close.

LO

Chapter 14: Synthesizing and Analyzing the Log File Handling Messages

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
606 June 2009

5. To save your message filters and reuse them, do the following:

– Save the project. The synthesis tool generates a Tcl file called
projectName.pfl (Project Filter Log) in the same location as the main
project file. The following is an example of the information in this file:

log_filter -hide_matches
log_filter -field type==Warning

-field message==*Una*
-field source_loc==sendpacket.v
-field log_loc==usbHostSlave.srr
-field report=="Compiler Report"

log_filter -field type==Note
log_filter -field id==BN132
log_filter -field id==CL169
log_filter -field message=="Input *"
log_filter -field report=="Compiler Report"

– When you want to reuse the filters, source the projectName.pfl file.

You can also include this file in a synhooks Tcl script to automate your
process.

Filtering Messages from the Command Line
The following procedure shows you how to use Tcl commands to filter out
unwanted messages. If you want to use the GUI, see Filtering Messages in the
Message Viewer, on page 604. Message filtering is not available with the
Synplify tool.

1. Type your filter expressions in the Tcl window using the log_filter
command. For details of the syntax, see log_filter Tcl Command, on
page 1273 in the Reference Manual.

For example, to hide all the notes and print only errors and warnings,
type the following:

log_filter –enable
log_filter –hide_matches
log_filter –field type==Note

2. To save and reuse the filter commands, do the following:

– Type the log_filter commands in a Tcl file.

– Source the file when you want to reuse the filters you set up.

Handling Messages Chapter 14: Synthesizing and Analyzing the Log File

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 607

3. To print the results of the log_filter commands to a file, add the log_report
command at the end of a list of log_filter commands.

log_report -print filteredMsg.txt

This command prints the results of the preceding log_filter commands to
the specified text file, and puts the file in the same directory as the main
project file. The file contains the filtered messages, for example:

@N MF138 Rom slaveControlSel_1 mapped in logic. Mapper Report
wishbonebi.v (156) usbHostSlave.srr (819) 05:22:06 Mon Oct 18

@N(2) MO106 Found ROM, 'slaveControlSel_1', 15 words by 1 bits
Mapper Report wishbonebi.v (156) usbHostSlave.srr (820)
05:22:06 Mon Oct 18

@N MO106 Found ROM, 'slaveControlSel_1', 15 words by 1 bits Mapper
Report wishbonebi.v (156) usbHostSlave.srr (820) 05:22:06 Mon
Oct 18

@N MF138 Rom hostControlSel_1 mapped in logic. Mapper Report
wishbonebi.v (156) usbHostSlave.srr (821) 05:22:06 Mon Oct 18

@N MO106 Found ROM, 'hostControlSel_1', 15 words by 1 bits Mapper
Report wishbonebi.v (156) usbHostSlave.srr (822) 05:22:06 Mon
Oct 18

@N Synthesizing module writeUSBWireData Compiler Report
writeusbwiredata.v (59) usbHostSlave.srr (704) 05:22:06 Mon Oct 18

Automating Message Filtering with a Tcl Script
The following example shows you how to use a synhooks Tcl script to automat-
ically load a message filter file when a project opens and to send email with
the messages after a run.

1. Create a message filter file like the following. (See Filtering Messages in
the Message Viewer, on page 604 or Filtering Messages from the
Command Line, on page 606 for details about creating this file.)

log_filter -clear
log_filter -hide_matches
log_filter -field report=="VIRTEX2P MAPPER"
log_filter -field type==NOTE
log_filter -field message=="Input *"
log_filter -field message=="Pruning *"
puts "DONE!"

LO

Chapter 14: Synthesizing and Analyzing the Log File Handling Messages

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
608 June 2009

2. Copy the synhooks.tcl file and set the environment variable as described
in Automating Flows with synhooks.tcl, on page 884.

3. Edit the synhooks.tcl file so that it reads like the following example. For
syntax details, see Tcl synhooks File Syntax, on page 1271 in the
Reference Manual.

– The following loads the message filter file when the project is opened.
Specify the name of the message filter file you created in step 1. Note
that you must source the file.

proc syn_on_open_project {project_path} {
set filter filterFilename
puts "FILTER $filter IS BEING APPLIED"
source d:/tcl/filters/$filterFilename
}

– Add the following to print messages to a file after synthesis is done:

proc syn_on_end_run {runName run_dir implName} {
set warningFileName "messageFilename"

if {$runName == "synthesis"} {
puts "Mapper Done!"
log_report -print $warningFileName

set f [open [lindex $warningFileName] r]
set msg ""
while {[gets $f warningLine]>=0} {

puts $warningLine
append msg $warningLine\n
}

close $f

– Continue by specifying that the messages be sent in email. You can
obtain the smtp email packages off the web.

source "d:/tcl/smtp_setup.tcl"
proc send_simple_message {recipient email_server subject body}{

set token [mime::initialize -canonical text/plain -string
$body]

mime::setheader $token Subject $subject
smtp::sendmessage $token -recipients $recipient -servers

$email_server
mime::finalize $token

}
puts "Sending email..."

Validating Logic Synthesis for Physical Synthesis Chapter 14: Synthesizing and Analyzing the Log
File

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 609

send_simple_message {address1,address2}
yourEmailServer subjectText> emailText
}

}

When the script runs, an email with all the warnings from the synthesis
run is automatically sent to the specified email addresses.

Handling Warnings
If you get warnings (@W prefix) after a synthesis run, do the following:

• Read the warning message and decide if it is something you need to act
on, or whether you can ignore it.

• If the message is not self-explanatory or if you are unsure about how to
handle the error, click the message ID in either the message window or
HTML log file or double click the message ID in the ASCII text log file.
These actions take you to online information about the condition that
generated the warning.

Validating Logic Synthesis for Physical Synthesis
Use the following checklist to validate the results of logic synthesis in your
physical design flows. These points apply to physical design flows for Actel,
Altera, and Xilinx technologies.

1. Check that the logic synthesis run was successful. Check the following:

– The Physical Synthesis switch was disabled.

– Logic synthesis completed successfully.

– Check the log file, as described in Checking Log Results, on page 596.

2. Check that you used the correct version of the place-and-route tool. See
the Release Notes, Help->Online Documents->release_notes.pdf->Third Party Tool
Versions for information.

3. Check for black boxes. Search the synthesis .srr log file for black box.

A design that contains black boxes errors out in the tool and should be
eliminated from the design.

LO

Chapter 14: Synthesizing and Analyzing the Log File Validating Logic Synthesis for Physical
Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
610 June 2009

4. Check for combinational feedback loops. Search the synthesis .srr log
file for Found combinational loop.

Combinational loops cause random timing analysis results that invali-
date any comparison and should be eliminated from the design.

5. Make sure the clock constraints are correct. Check the Clock Relationships
table in the .srr log file.

6. Check that the forward annotated timing constraints are consistent with
the post place-and-route timing constraints.

7. Are the false and multi-cycle paths constraints correctly defined in the
.sdc file? Ensure that the back-annotation timing report (.srr log file in
the PAR directory) matches the report file.

The file varies, depending on the vendor:

For Altera and Xilinx designs, there are a couple of additional points to check:

1. Check that the clocks are routed on global resources.

– Check the Clock Path Skew numbers in the report file.
Clocks routed on general routing resources usually result in large
skews. Because the tool does not take clock skew into account, large
skews can degrade the quality of results (QoR) and result in poor
timing correlation. The name of the report file varies, depending on
the vendor:

Actel forward annotation file .tcl

Altera forward annotation file .tcl

Xilinx forward annotation file synplicity.ucf

Actel report file .twr

Altera report file .tan.rpt

Xilinx report file .twr

Validating Logic Synthesis for Physical Synthesis Chapter 14: Synthesizing and Analyzing the Log
File

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 611

For Virtex5 designs, see Working with Clock Skews in Xilinx Virtex-5
Physical Designs, on page 824.

2. For Xilinx designs, check that the DCM parameters correctly defined in
the source code or .sdc constraint file. Check the Clock Relationships table
in the .srr log file.

Altera report file .tan.rpt

Xilinx report file .twr

LO

Chapter 14: Synthesizing and Analyzing the Log File Validating Logic Synthesis for Physical
Synthesis

Synopsys FPGA Synthesis User Guide
612 June 2009

Synopsys, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: +1 408 215-6000, Fax: +1 408 222-068
www.solvnet.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology,
Certify, DesignWare, HDL Analyst, Identify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro,
Synthesis Constraints Optimization Environment, and VCS are registered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-perfor-
mance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and TotalRecall are trademarks of Synopsys, Inc. All other
names mentioned herein are trademarks or registered trademarks of their respective companies.

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 613

C H A P T E R 1 5

Analyzing with HDL Analyst and FSM Viewer

This chapter describes how to analyze logic in the HDL Analyst and FSM
Viewer. These tools are only available in the Synplify Pro and Synplify Premier
products, though you can purchase HDL Analyst as an option to the base
Synplify product.

See the following for detailed procedures:

• Working in the Schematic Views, on page 614

• Exploring Design Hierarchy, on page 627

• Finding Objects, on page 635

• Crossprobing, on page 645

• Analyzing With the HDL Analyst Tool, on page 654

• Using the FSM Viewer, on page 670

For information about analyzing timing, see Chapter 17, Analyzing Timing.
For information about using Synplify Premier Physical Analyst tool, see
Chapter 16, Analyzing Designs in Physical Analyst.

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Working in the Schematic Views

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
614 June 2009

Working in the Schematic Views
The HDL Analyst includes the RTL and Technology views, which are
schematic views used to graphically analyze your design. In the Synplify
product, these views are part of the optional HDL Analyst package. The RTL
view is available after a design is compiled; the Technology view is available
after a designed has been synthesized and contains technology-specific
primitives. In the Synplify Premier product, a RTL Floorplan view is available
after a floorplan has been created with physical constraint regions and
synthesized for the device.

For detailed descriptions of these views, see Chapter 2 of the Reference
Manual. This section describes basic procedures you use in the RTL and
Technology views. The information is organized into these topics:

• Differentiating Between the Views, on page 615

• Opening the Views, on page 615

• Viewing Object Properties, on page 617

• Viewing Object Properties, on page 617

• Selecting Objects in the RTL/Technology Views, on page 620

• Working with Multisheet Schematics, on page 621

• Moving Between Views in a Schematic Window, on page 623

• Setting Schematic View Preferences, on page 623

• Managing Windows, on page 625

For information on specific tasks like analyzing critical paths, see the
following sections:

• Exploring Object Hierarchy by Pushing/Popping, on page 628

• Exploring Object Hierarchy of Transparent Instances, on page 634

• Browsing to Find Objects, on page 635

• Crossprobing, on page 645

• Analyzing With the HDL Analyst Tool, on page 654

Working in the Schematic Views Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 615

Differentiating Between the Views
• The difference between the RTL and Technology views is that the RTL

view is the view generated after compilation, while the Technology view
is the view generated after mapping. The RTL view displays your design
as a high-level, technology-independent schematic. At this high level of
abstraction, the design is represented with technology-independent
components like variable-width adders, registers, large muxes, state
machines, and so on. This view corresponds to the .srs netlist file
generated by the software in the Synopsys proprietary format. For a
detailed description, see Chapter 2 of the Reference Manual.

• The Technology view contains technology-specific primitives. It shows
low-level, vendor-specific components such as look-up tables, cascade
and carry chains, muxes, and flip-flops, which can vary with the vendor
and the technology. This view corresponds to the .srm netlist file, gener-
ated by the software in the Synopsys proprietary format. For a detailed
description, see Chapter 2 of the Reference Manual.

• The Synplify Premier RTL Floorplan view displays a floorplan schematic
that includes all the logic assigned to any physical constraint regions
created on the device, as well as, all other logic of the design. This view
uses the same high-level abstraction and technology-independent
components of the RTL view.

Opening the Views
The procedure for opening an RTL or Technology view is similar; the main
difference is the design stage at which these views are available.

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Working in the Schematic Views

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
616 June 2009

All RTL and Technology views have the schematic on the right and a pane on
the left that contains a hierarchical list of the objects in the design. This pane
is called the Hierarchy Browser. The bar at the top of the window contains the
name of the view, the kind of view, hierarchical level, and the number of
sheets in the schematic. See Hierarchy Browser, on page 71 in the Reference
Manual for a description of the Hierarchy Browser.

To open an RTL
view...

Start with a compiled design.
To open a hierarchical RTL view, do one of the following:
• Select HDL Analyst->RTL->Hierarchical View.
• Click the RTL View icon () (a plus sign inside a circle).
• Double-click the .srs file in the Implementation Results view.
To open a flattened RTL view, select HDL Analyst->RTL->Flattened
View.

To open a
Technology
view...

Start with a mapped (synthesized) design.
To open a hierarchical Technology view, do one of the following:
• Select HDL Analyst ->Technology->Hierarchical View.
• Click the Technology View icon (NAND gate icon).
• Double-click the .srm file in the Implementation Results view.
To open a flattened Technology view, select HDL Analyst->
Technology->Flattened View.

To open a
Floorplan view

Start with a synthesized design that has been floorplanned with
physical constraint regions.
To open a RTL Floorplan view:
• Select HDL Analyst->RTL->Floorplanned View.
• Double-click the partitioned netlist (.srp) file from the

Implementation Results view.

Working in the Schematic Views Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 617

Viewing Object Properties
There are a few ways in which you can view the properties of objects.

1. To temporarily display the properties of a particular object, hold the
cursor over the object. A tooltip temporarily displays the information. at
the cursor and in the status bar at the bottom of the tool window.

2. Select the object, right-click, and select Properties. The properties and
their values are displayed in a table.

If you select an instance, you can view the properties of the associated
pins by selecting the pin from the list. Similarly, if you select a port, you
can view the properties on individual bits.

RTL View

Technology View

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Working in the Schematic Views

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
618 June 2009

3. To flag objects by property, do the following with an open
RTL/Technology view:

– Set the properties you want to see by selecting Options->HDL Analyst
Options->Visual Properties, and selecting the properties from the pull-
down list. Some properties are only available in certain views.

– Close the HDL Analyst Options dialog box.

Set this field to the pin
name to see pin properties

Working in the Schematic Views Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 619

– Enable View->Visual Properties. If you do not enable this, the software
does not display the property flags in the schematics. The HDL
Analyst annotates all objects in the current view that have the
specified property with a rectangular flag that contains the property
name and value. The software uses different colors for different
properties, so you can enable and view many properties at the same
time.

Example: Slow and New Properties
You can view objects with the slow property when you are analyzing your
critical path. All objects with this property do not meet the timing criteria.
The following figure shows a filtered view of a critical path, with slow instances
flagged in blue.

When you are working with filtered views, you can use the New property to
quickly identify objects that have been added to the current schematic with
commands like Expand. You can step through successive filtered views to
determine what was added at each step. This can be useful when you are
debugging your design.

The following figure expands one of the pins from the previous filtered view.
The new instance added to the view has two flags: new and slow.

Slow property

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Working in the Schematic Views

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
620 June 2009

Selecting Objects in the RTL/Technology Views
For mouse selection, standard object selection rules apply: In selection mode,
the pointer is shaped like a crosshair.

To select... Do this...

Single objects Click on the object in the RTL or Technology schematic, or click
the object name in the Hierarchy Browser.

Multiple objects Use one of these methods:
• Draw a rectangle around the objects.
• Select an object, press Ctrl, and click other objects you want to

select.
• Select multiple objects in the Hierarchy Browser. See

Browsing With the Hierarchy Browser, on page 635.
• Use Find to select the objects you want. See Using Find for

Hierarchical and Restricted Searches, on page 637.

Objects by type
(instances,
ports, nets)

Use Edit->Find to select the objects (see Browsing With the Find
Command, on page 636), or use the Hierarchy Browser, which
lists objects by type.

Working in the Schematic Views Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 621

The HDL Analyst view highlights selected objects in red. If the object you
select is on another sheet of the schematic, the schematic tracks to the
appropriate sheet. If you have other windows open, the selected object is
highlighted in the other windows as well (crossprobing), but the other
windows do not track to the correct sheet. Selected nets that span different
hierarchical levels are highlighted on all the levels. See Crossprobing, on
page 645 for more information about crossprobing.

Some commands affect selection by adding to the selected set of objects: the
Expand commands, the Select All commands, and the Select Net Driver and Select
Net Instances commands.

Working with Multisheet Schematics
The title bar of the RTL or Technology view indicates the number of sheets in
that schematic. In a multisheet schematic, nets that span multiple sheets are
indicated by sheet connector symbols, which you can use for navigation.

1. To reduce the number of sheets in a schematic, select Options->HDL
Analyst Options and increase the values set for Sheet Size Options - Instances
and Sheet Size Options - Filtered Instances. To display fewer objects per sheet
(increase the number of sheets), increase the values.

These options set a limit on the number of objects displayed on an unfil-
tered and filtered schematic sheet, respectively. A low Filtered Instances
value can cause lower-level logic inside a transparent instance to be
displayed on a separate sheet. The sheet numbers are indicated inside
the empty transparent instance.

2. To navigate through a multisheet schematic, refer to this table. It
summarizes common operations and ways to navigate.

All objects of a
certain type
(instances,
ports, nets)

To select all objects of a certain type, do either of the following:
• Right-click and choose the appropriate command from the

Select All Schematic/Current Sheet popup menus.
• Select the objects in the Hierarchy Browser.

No objects
(deselect all
currently
selected objects)

Click the left mouse button in a blank area of the schematic or
click the right mouse button to bring up the pop-up menu and
choose Unselect All. Deselected objects are no longer
highlighted.

To select... Do this...

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Working in the Schematic Views

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
622 June 2009

To view... Use one of these methods...

Next sheet or
previous sheet

Select View->Next/Previous Sheet.
Press the right mouse button and draw a horizontal mouse
stroke (left to right for next sheet, right to left for previous
sheet).
Click the icons: Next Sheet () or Previous Sheet ()
Press Shift-right arrow (Next Sheet) or Shift-left arrow (Previous
sheet).
Navigate with View->Back and View ->Forward if the
next/previous sheets are part of the display history.

A specific sheet
number

Select View->View Sheets and select the sheet.
Click the right mouse button, select View Sheets from the
popup menu, and then select the sheet you want.
Press Ctrl-g and select the sheet you want.

Lower-level logic of
a transparent
instance on
separate sheets

Check the sheet numbers indicated inside the empty
transparent instance. Use the sheet navigation commands like
Next Sheet or View Sheets to move to the sheet you need.

All objects of a
certain type

To highlight all the objects of the same type in the schematic,
right-click and select the appropriate command from the Select
All Schematic popup menu.
To highlight all the objects of the same type on the current
sheet, right-click and select the appropriate command from the
Select All Sheet popup menu.

Selected items
only

Filter the schematic as described in Filtering Schematics, on
page 658.

A net across
sheets

If there are no sheet numbers displayed in a hexagon at the
end of the sheet connector, select Options ->HDL Analyst Options
and enable Show Sheet Connector Index. Right-click the sheet
connector and select the sheet number from the popup as
shown in the following figure.

Sheet Connector Symbol

Sheet connector with multisheet popup menuConnected sheet numbers

Working in the Schematic Views Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 623

Moving Between Views in a Schematic Window
When you filter or expand your design, you move through a number of
different design views in the same schematic window. For example, you might
start with a view of the entire design, zoom in on an area, then filter an object,
and finally expand a connection in the filtered view, for a total of four views.

1. To move back to the previous view, click the Back icon or draw the
appropriate mouse stroke.

The software displays the last view, including the zoom factor. This does
not work in a newly generated view (for example, after flattening)
because there is no history.

2. To move forward again, click the Forward icon or draw the appropriate
mouse stroke.

The software displays the next view in the display history.

Setting Schematic View Preferences
You can set various preferences for the RTL and Technology views from the
user interface.

1. Select Options->HDL Analyst Options. For a description of all the options on
this form, see HDL Analyst Options Command, on page 255 in the
Reference Manual.

2. The following table details some common operations:

To... Do this...

Display the Hierarchy Browser Enable Show Hierarchy Browser (General tab).

Control crossprobing from an
object to a P&R text file

Enable Enhanced Text Crossprobing. (General
tab)

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Working in the Schematic Views

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
624 June 2009

Some of these options do not take effect in the current view, but are
visible in the next schematic view you open.

3. To view hierarchy within a cell, enable the General->Show Cell Interiors
option.

4. To control the display of labels, first enable the Text->Show Text option,
and then enable the Label Options you want. The following figure
illustrates the label that each option controls.

Determine the number of
objects displayed on a sheet.

Set the value with Maximum Instances on the
Sheet Size tab. Increase the value to display
more objects per sheet.

Determine the number of
objects displayed on a sheet in
a filtered view.

Set the value with Maximum Filtered Instances
on the Sheet Size tab. Increase the number
to display more objects per sheet. You
cannot set this option to a value less than
the Maximum Instances value.

To... Do this...

Show Cell Interior off Show Cell Interior on

Working in the Schematic Views Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 625

For a more detailed information about some of these options, see
Schematic Display, on page 351 in the Reference Manual.

5. Click OK on the HDL Analyst Options form.

The software writes the preferences you set to the .ini file, and they
remain in effect until you change them.

Managing Windows
As you work on a project, you open different windows. For example, you
might have two Technology views, an RTL view, and a source code window
open. The following guidelines help you manage the different windows you
have open. For information about cycling through the display history in a
single schematic, see Moving Between Views in a Schematic Window, on
page 623.

1. Toggle on View->Workbook Mode.

Below the Project view, you see tabs like the following for each open
view. The tab for the current view is on top. The symbols in front of the
view name on the tab help identify the kind of view.

Show

Show Symbol Name

Show Pin Name
Show Conn Name

Show Port Name

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Working in the Schematic Views

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
626 June 2009

2. To bring an open view to the front, if the window is not visible, click its
tab. If part of the window is visible, click in any part of the window.

If you previously minimized the view, it will be in minimized form.
Double-click the minimized view to open it.

3. To bring the next view to the front, click Ctrl-F6 in that window.

4. Order the display of open views with the commands from the Window
menu. You can cascade the views (stack them, slightly offset), or tile
them horizontally or vertically.

5. To close a view, press Ctrl-F4 in that window or select File->Close.

Exploring Design Hierarchy Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 627

Exploring Design Hierarchy
Schematics generally have a certain amount of design hierarchy. You can
move between hierarchical levels using the Hierarchy Browser or Push/Pop
mode. For additional information, see Analyzing With the HDL Analyst Tool,
on page 654. The topics include:

• Traversing Design Hierarchy with the Hierarchy Browser, on page 627

• Exploring Object Hierarchy by Pushing/Popping, on page 628

• Exploring Object Hierarchy of Transparent Instances, on page 634

Traversing Design Hierarchy with the Hierarchy Browser
The Hierarchy Browser is the list of objects on the left side of the RTL and
Technology views. It is best used to get an overview, or when you need to
browse and find an object. If you want to move between design levels of a
particular object, Push/Pop mode is more direct. Refer to Exploring Object
Hierarchy by Pushing/Popping, on page 628 for details.

The hierarchy browser allows you to traverse and select the following:

• Instances and submodules

• Ports

• Internal nets

• Clock trees (in an RTL view)

The browser lists the objects by type. A plus sign in a square icon indicates
that there is hierarchy under that object and a minus sign indicates that the
design hierarchy has been expanded. To see lower-level hierarchy, click on
the plus sign for the object. To ascend the hierarchy, click on the minus sign.

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Exploring Design Hierarchy

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
628 June 2009

Refer to Hierarchy Browser Symbols, on page 72 in the Reference Manual for
an explanation of the symbols.

Exploring Object Hierarchy by Pushing/Popping
To view the internal hierarchy of a specific object, it is best to use Push/Pop
mode or examine transparent instances, instead of using the Hierarchy
Browser described in Traversing Design Hierarchy with the Hierarchy
Browser, on page 627. You can access Push/Pop mode with the Push/Pop
Hierarchy icon, the Push/Pop Hierarchy command, or mouse strokes.

When combined with other commands like filtering and expansion
commands, Push/Pop mode can be a very powerful tool for isolating and
analyzing logic. See Filtering Schematics, on page 658, Expanding Pin and Net
Logic, on page 660, and Expanding and Viewing Connections, on page 664 for
details about filtering and expansion. See the following sections for informa-
tion about pushing down and popping up in hierarchical design objects:

– Pushing into Objects, on page 629, next

– Popping up a Hierarchical Level, on page 632

Click to expand and see
lower-level hierarchy

Click to collapse list

Exploring Design Hierarchy Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 629

Pushing into Objects
In the schematic views, you can push into objects and view the lower-level
hierarchy. You can use a mouse stroke, the command, or the icon to push
into objects:

1. To move down a level (push into an object) with a mouse stroke, put
your cursor near the top of the object, hold down the right mouse
button, and draw a vertical stroke from top to bottom. You can push
into the following objects; see step 3 for examples of pushing into
different types of objects.

– Hierarchical instances. They can be displayed as pale yellow boxes
(opaque instances) or hollow boxes with internal logic displayed
(transparent instances). You cannot push into a hierarchical instance
that is hidden with the Hide Instance command (internal logic is
hidden).

– Technology-specific primitives. The primitives are listed in the
Hierarchy Browser in the Technology view, under Instances - Primitives.

– Inferred ROMs and state machines.

The remaining steps show you how to use the icon or command to push
into an object.

Hierarchical object Press right mouse button and draw downward
to push into an object

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Exploring Design Hierarchy

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
630 June 2009

2. Enable Push/Pop mode by doing one of the following:

– Select View->Push/Pop Hierarchy.

– Right-click in the Technology view and select Push/Pop Hierarchy from
the popup menu.

– Click the Push/Pop Hierarchy icon () in the toolbar (two arrows
pointing up and down).

– Press F2.

The cursor changes to an arrow. The direction of the arrow indicates the
underlying hierarchy, as shown in the following figure. The status bar at
the bottom of the window reports information about the objects over
which you move your cursor.

3. To push (descend) into an object, click on the hierarchical object. For a
transparent instance, you must click on the pale yellow border. The
following figure shows the result of pushing into a ROM.

When you descend into a ROM, you can push into it one more time to
see the ROM data table. The information is in a view-only text file called
rom.info.

Exploring Design Hierarchy Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 631

Similarly, you can push into a state machine. (Synplify users cannot

push into state machines.) When you push into an FSM from the RTL
view, you open the FSM viewer where you can graphically view the
transitions. For more information, see Using the FSM Viewer, on
page 670. If you push into a state machine from the Technology view,
you see the underlying logic.

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Exploring Design Hierarchy

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
632 June 2009

Popping up a Hierarchical Level
1. To move up a level (pop up a level), put your cursor anywhere in the

design, hold down the right mouse button, and draw a vertical mouse
stroke, moving from the bottom upwards.

Exploring Design Hierarchy Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 633

The software moves up a level, and displays the next level of hierarchy.

2. To pop (ascend) a level using the commands or icon, do the following:

– Select the command or icon if you are not already in Push/Pop mode.
See Pushing into Objects, on page 629for details.

– Move your cursor to a blank area and click.

3. To exit Push/Pop mode, do one of the following:

– Click the right mouse button in a blank area of the view.

– Deselect View->Push/Pop Hierarchy.

– Deselect the Push/Pop Hierarchy icon.

– Press F2.

Press the right mouse button
and draw an upward stroke to
pop up a level

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Exploring Design Hierarchy

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
634 June 2009

Exploring Object Hierarchy of Transparent Instances
Examining a transparent instance is one way of exploring the design
hierarchy of an object. The following table compares this method with
pushing (described in Exploring Object Hierarchy by Pushing/Popping, on
page 628).

Pushing Transparent Instance

User
control

You initiate the operation
through the command or
icon.

You have no direct control; the transparent
instance is automatically generated by
some commands that result in a filtered
view.

Design
context

Context lost; the lower-
level logic is shown in a
separate view

Context maintained; lower-level logic is
displayed inside a hollow yellow box at the
hierarchical level of the parent.

Finding Objects Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 635

Finding Objects
In the schematic views, you can use the Hierarchy Browser or the Find
command to find objects, as explained in these sections:

• Browsing to Find Objects, on page 635

• Using Find for Hierarchical and Restricted Searches, on page 637

• Using Wildcards with the Find Command, on page 640

• Using Find to Search the Output Netlist, on page 643

For information about the Tcl Find command, which you use to locate objects,
and create collections, see Tcl expand Command, on page 1257 in the Refer-
ence Manual.

Browsing to Find Objects
You can always zoom in to find an object in the RTL and Technology
schematics. The following procedure shows you how to browse through
design objects and find an object at any level of the design hierarchy. You can
use the Hierarchy Browser or the Find command to do this. If you are familiar
with the design hierarchy, the Hierarchy Browser can be the quickest method
to locate an object. The Find command is best used to graphically browse and
locate the object you want.

Browsing With the Hierarchy Browser
1. In the Hierarchy Browser, click the name of the net, port, or instance

you want to select.

The object is highlighted in the schematic.

2. To select a range of objects, select the first object in the range. Then,
scroll to display the last object in the range. Press and hold the Shift key
while clicking the last object in the range.

The software selects and highlights all the objects in the range.

3. If the object is on a lower hierarchical level, do either of the following:

– Expand the appropriate higher-level object by clicking the plus
symbol next to it, and then select the object you want.

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Finding Objects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
636 June 2009

– Push down into the higher-level object, and then select the object
from the Hierarchy Browser.

The selected object is highlighted in the schematic. The following
example shows how moving down the object hierarchy and selecting an
object causes the schematic to move to the sheet and level that contains
the selected object.

4. To select all objects of the same type, select them from the Hierarchy
Browser. For example, you can find all the nets in your design.

Browsing With the Find Command
1. In a schematic view, select HDL Analyst->Find or press Ctrl-f to open the

Object Query dialog box.

2. Do the following in the dialog box:

– Select objects in the selection box on the left. You can select all the
objects or a smaller set of objects to browse. If length makes it hard to
read a name, click the name in the list to cause the software to
display the entire name in the field at the bottom of the dialog box.

Expand Instances
and select an
object on a lower
hierarchical level.

Schematic pushes
down to the correct
level to show the
selected object.

Finding Objects Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 637

– Click the arrow to move the selected objects over to the box on the
right.

The software highlights the selected objects.

3. In the Object Query dialog box, click on an object in the box on the right.

The software tracks to the schematic page with that object.

Using Find for Hierarchical and Restricted Searches
You can always zoom in to find an object in the RTL and Technology
schematics or use the Hierarchy Browser (see Browsing to Find Objects, on
page 635). This procedure shows you how to use the Find command to do
hierarchical object searches or restrict the search to the current level or the
current level and its underlying hierarchy.

1. If needed, restrict the range of the search by filtering the view, hiding
instances, or both. See Viewing Design Hierarchy and Context, on
page 655 and Filtering Schematics, on page 658 for details. With a
filtered view, the software only searches the filtered instances, unless
you set the scope of the search to Entire Design, as described below, in
which case Find searches the entire design. Hidden instances and their
hierarchy are excluded from the search. When you have finished the
search, use the Unhide Instances command to make the hierarchy visible.

You can use the filtering technique to restrict your search to just one
schematic sheet. Select all the objects on one sheet and filter the view.
Continue with the procedure.

2. To open the Object Query dialog box, right click in the RTL or Technology
view and select Find from the popup menu, press Ctrl-f, or click the Find
icon (). Reposition the dialog box so you can see both your schematic
and the dialog box.

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Finding Objects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
638 June 2009

3. Select the tab for the type of object. The Unhighlighted box on the left lists
all objects of that type (instances, symbols, nets, or ports).

For fastest results, search by Instances rather than Nets. When you select
Nets, the software loads the whole design, which could take some time.

4. Click one of these buttons to set the hierarchical range for the search:
Entire Design, Current Level & Below, or Current Level Only, depending on the
hierarchical level of the design to which you want to restrict your search.

The range setting is especially important when you use wildcards. See
Effect of Search Range on Wildcard Searches, on page 640 for details.
Current Level Only or Current Level & Below are useful for searching filtered
schematics or critical path schematics.

Use Entire Design to hierarchically search the whole design. For large
hierarchical designs, reduce the scope of the search by using the
techniques described in the first step.

The Unhighlighted box shows available objects within the scope you set.
Objects are listed in alphabetical order, not hierarchical order.

5. To search for objects in the mapped database or the output netlist, set
the Name Space option.

Finding Objects Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 639

The name of an object might be changed because of synthesis optimiza-
tions or to match the place-and-route tool conventions, so that the
object name may no longer match the name in the original netlist.
Setting the Name Space option ensures that the Find command searches
the correct database for the object. For example, if you set this option to
Tech View, the tool searches the mapped database (.srm) for the object
name you specify. For information about using this feature to find
objects from an output netlist, see Using Find to Search the Output
Netlist, on page 643.

6. Do the following to select objects from the list. To use wildcards in the
selection, see the next step.

– Click on the objects you want from the list. If length makes it hard to
read a name, click the name in the list to cause the software to
display the entire name in the field at the bottom of the dialog box.

– Click Find 200 or Find All. The former finds the first 200 matches, and
then you can click the button again to find the next 200.

– Click the right arrow to move the objects into the box on the right, or
double-click individual names.

The schematic displays highlighted objects in red.

7. Do the following to select objects using patterns or wildcards.

– Type a pattern in the Highlight Wildcard field. See Using Wildcards with
the Find Command, on page 640 for a detailed discussion of
wildcards.

The Unhighlighted list shows the objects that match the wildcard
criteria. If length makes it hard to read a name, click the name in the
list to cause the software to display the entire name in the field at the
bottom of the form.

– Click the right arrow to move the selections to the box on the right, or
double-click individual names. The schematic displays highlighted
objects in red.

You can use wildcards to avoid typing long pathnames. Start with a
general pattern, and then make it more specific. The following example
browses and uses wildcards successively to narrow the search.

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Finding Objects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
640 June 2009

8. You can leave the dialog box open to do successive Find operations. Click
OK or Cancel to close the dialog box when you are done.

For detailed information about the Find command and the Object Query
dialog box, see Find Command (HDL Analyst), on page 124 of the Reference
Manual.

Using Wildcards with the Find Command
Use the following wildcards when you search the schematics:

Effect of Search Range on Wildcard Searches
The asterisk and question mark do not cross hierarchical boundaries.
However, the scope of the search determines the starting points for the
searches, and this might make it appear as if the wildcards cross hierarchical
boundaries in some cases. If you are at 2A in the following figure and the
scope of the search is set to Current Level and Below, separate searches start at
2A, 3A1, and 3A2. Each search does not cross hierarchical boundaries. If the
scope of the search is Entire Design, the wildcard searches run from each
hierarchical point (1, 2A, 2B, 3A1, 3A2, 3B1, 3B2, and 3B3). The result of an
asterisk search (*) with Entire Design is a list of all matches in the design,
regardless of the current level.

Find all instances three levels down *.*.*

Narrow search to find instances that begin with i_ i_*.*.*

Narrow search to find instances that begin with un2 after the
second hierarchy separator

i_*.*.un2*

* The asterisk matches any sequence of characters.

? The question mark matches any single character.

. The dot explicitly matches a hierarchy separator, so type one dot for each level
of hierarchy. To use the dot as a pattern and not a hierarchy separator, type a
backslash before the dot: \.

Finding Objects Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 641

See Wildcard Search Examples, on page 642 for examples.

How a Wildcard Search Works
1. The starting point of a wildcard search depends on the range set for the

search.

2. The software applies the wildcard pattern to all applicable objects within
the range. For Current Level and Current Level and Below, the current level
determines the starting point.

Dots match hierarchy separators, unless you use the backslash escape
character in front of the dot (\.). Hierarchical search patterns with a dot
(like *.*) are repeated at each level included in the scope. See Effect of
Search Range on Wildcard Searches, on page 640 and Wildcard Search
Examples, on page 642 for details and examples, respectively. If you use
the *.* pattern with Current Level, the software matches non-hierarchical
names at the current level that include a dot.

Entire Design Starts at top level and uses the pattern to search from that
level. It then moves to any child levels below the top level and
searches them. The software repeats the search pattern at
each hierarchical point in the design until it searches the
entire design.

Current Level Starts at the current hierarchical level and searches that level
only. A search started at 2A only covers 2A.

Current Level
and Below

Starts at the current hierarchical level and searches that level.
It then moves to any child levels below the starting point and
conducts separate searches from each of these starting points.

2A

1

2B

3B33B23B13A23A1

Entire Design

Current
Level and
Below

Current
Level

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Finding Objects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
642 June 2009

Wildcard Search Examples
The figure shows a design with three hierarchical levels, and the table shows
the results of some searches on this design.

Scope Pattern Starting
Point

Finds Matches in...

Entire
Design

* 3A1 1, 2A, 2B, 3A1, 3A2, 3B1, 3B2, and 3B3 (* at all levels)

. 2B 2A and 2B (*.* from 1)
3A1, 3A2, 3B1, 3B2, and 3B3 (*.* from 2A and 2B)
No matches in 1 (because of the hierarchical dot),
unless a name includes a non-hierarchical dot.

Current
Level

* 1 1 only (no hierarchical boundary crossing)

. 2B 2B only. No search of lower levels even though
the dot is specified, because the scope is Current
Level. No matches, unless a 2B name includes a
non-hierarchical dot.

2A

1

2B

3B33B23B13A23A1

Finding Objects Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 643

Using Find to Search the Output Netlist
When the synthesis tool creates an output netlist like a .vqm or .edf file,
some names are optimized for use in the P&R tool. When you debug your
design for place and route looking for a particular object, use the Name Space
option in the Object Query dialog box to locate the optimized names in the
output netlist. The following procedure shows you how to locate an object,
highlight and filter it in the Technology view, and crossprobe to the source
code for editing.

1. Select the output netlist file option in the Implementations Results tab of the
Implementation Options dialog box.

2. After you synthesize your design, open your output netlist file and select
the name of the object you want to find.

Current
Level and
Below

* 2A 2A only (no hierarchical boundary crossing)

. 1 2A and 2B (*.* from 1)
3A1, 3A2, 3B1, 3B2, and 3B3 (*.* from 2A and 2B)
No matches from 1, because the dot is specified.

. 2B 3B1, 3B2, and 3B3 (*.* from 2B)

. 3A2 No matches (no hierarchy below 3A2)

..* 1 3A1, 3A2, 3B1, 3B2, and 3B3 (*.*.* from 1)
Search ends because there is no hierarchy two
levels below 2A and 2B.

Scope Pattern Starting
Point

Finds Matches in...

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Finding Objects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
644 June 2009

3. Copy the name and open a Technology view.

4. In the Technology view, press Ctrl-f or select Edit->Find to open the Object
Query dialog box and do the following:

– Paste the object name you copied into the Highlight Search field.

– Set the Name Space option to Netlist and click Find All.

Copy Name

Search by Tech View Search by Netlist

Crossprobing Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 645

If you leave the Name Space option set to the default of Tech View, the
tool does not find the name because it is searching the mapped
database instead of the output netlist.

– Double click the name to move it into the Highlighted field and close the
dialog box.

In the Technology view, the name is highlighted in the schematic.

5. Select HDL Analyst->Filter Schematic to view only the highlighted portion of
the schematic.

The tooltip shows the equivalent name in the Technology view.

6. Double click on the filtered schematic to crossprobe to the
corresponding code in the HDL file.

Crossprobing
Crossprobing is the process of selecting an object in one view and having the
object or the corresponding logic automatically highlighted in other views.
Highlighting a line of text, for example, highlights the corresponding logic in
the schematic views. Crossprobing helps you visualize where coding changes
or timing constraints might help to reduce area or improve performance.

compare_output_NE0(C_0)
slow

Alias: compare_output_NE0_cZ

Filtered View

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Crossprobing

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
646 June 2009

You can crossprobe between the RTL view, Technology view, the FSM Viewer
(not available in the Synplify product), the log file, the source files, and some
external text files from place-and-route tools. However, not all objects or
source code crossprobe to other views, because some source code and RTL
view logic is optimized away during the compilation or mapping processes.

This section describes how to crossprobe from different views. It includes the
following:

• Crossprobing within an RTL/Technology View, on page 646

• Crossprobing from the RTL/Technology View, on page 647

• Crossprobing from the Text Editor Window, on page 649

• Crossprobing from the Tcl Script Window, on page 652

• Crossprobing from the FSM Viewer, on page 652

Crossprobing within an RTL/Technology View
Selecting an object name in the Hierarchy Browser highlights the object in
the schematic, and vice versa.

In this example, when you select the DECODE module in the Hierarchy
Browser, the DECODE module is automatically selected in the RTL view.

Selected Object Highlighted Object

Instance in schematic (single-click) Module icon in Hierarchy Browser

Net in schematic Net icon in Hierarchy Browser

Port in schematic Port icon in Hierarchy Browser

Logic icon in Hierarchy Browser Instance in schematic

Net icon in Hierarchy Browser Net in schematic

Port icon in Hierarchy Browser Port in schematic

Crossprobing Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 647

Crossprobing from the RTL/Technology View
1. To crossprobe from an RTL or Technology views to other open views,

select the object by clicking on it.

The software automatically highlights the object in all open views. If the
open view is a schematic, the software highlights the object in the
Hierarchy Browser on the left as well as in the schematic. If the
highlighted object is on another sheet of a multi-sheet schematic, the
view does not automatically track to the page. If the crossprobed object
is inside a hidden instance, the hidden instance is highlighted in the
schematic.

If the open view is a source file, the software tracks to the appropriate
code and highlights it. The following figure shows crossprobing between
the RTL, Technology, and Text Editor (source code) views.

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Crossprobing

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
648 June 2009

2. To crossprobe from the RTL or Technology view to the source file when
the source file is not open, double-click on the object in the RTL or
Technology view.

Double-clicking automatically opens the appropriate source code file
and highlights the appropriate code. For example, if you double-click an
object in a Technology view, the HDL Analyst tool automatically opens
an editor window with the source code and highlights the code that
contains the selected register.

The following table summarizes the crossprobing capability from the RTL or
Technology view.

RTL View

Technology View

Text Editor

Crossprobing Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 649

Crossprobing from the Text Editor Window
To crossprobe from a source code window or from the log file to an RTL,
Technology, or FSM view, use this procedure. You can use this method to
crossprobe from any text file with objects that have the same instance names
as in the synthesis software. For example, you can crossprobe from place-
and-route files. See Example of Crossprobing a Path from a Text File, on
page 650 for a practical example of how to use crossprobing.

1. Open the RTL, FSM, or Technology view to which you want to
crossprobe. The FSM view is not a Synplify feature.

2. To crossprobe from an error, warning, or note in the html log file, click
on the file name to open the corresponding source code in another Text
Editor window; to crossprobe from a text log file, double-click on the text
of the error, warning, or note.

3. To crossprobe from a third-party text file (not source code or a log file),
select Options->HDL Analyst Options->General, and enable Enhanced text
crossprobing.

From To Procedure

RTL Source code Double-click an object. If the source code file is not
open, the software opens the Text Editor window to
the appropriate section of code. If the source file is
already open, the software scrolls to the correct
section of the code and highlights it.

RTL Technology The Technology view must be open. Click the object
to highlight and crossprobe.

RTL FSM Viewer
(not in
Synplify)

The FSM view must be open. The state machine
must be coded with a onehot encoding style. Click
the FSM to highlight and crossprobe.

Technology Source code If the source code file is already, open, the software
scrolls to the correct section of the code and
highlights it.
If the source code file is not open, double-click an
object in the Technology view to open the source
code file.

Technology RTL The RTL view must be open. Click the object to
highlight and crossprobe.

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Crossprobing

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
650 June 2009

4. Select the appropriate portion of text in the Text Editor window. In some
cases, it may be necessary to select an entire block of text to crossprobe.

The software highlights the objects corresponding to the selected code in
all the open windows. For example, if you select a state name in the
code, it highlights the state in the FSM viewer. If an object is on another
schematic sheet or on another hierarchical level, the highlighting might
not be obvious. If you filter the RTL or schematic view (right-click in the
source code window with the selected text and select Filter Schematic from
the popup menu), you can isolate the highlighted objects for easy
viewing.

Example of Crossprobing a Path from a Text File
This example selects a path in a log file and crossprobes it in the Technology
view. You can use the same technique to crossprobe from other text files like
place-and-route files, as long as the instance names in the text file match the
instance names in the synthesis tool.

1. Open the log file, the RTL, and Technology views.

2. Select the path objects in the log file.

– Select the column by pressing Alt and dragging the cursor to the end
of the column. On Solaris and Linux platforms, use the key to which
the Alt function is mapped; this is usually the Meta or Diamond key for
Solaris or the Ctrl-Alt key combination for Linux.

– To select all the objects in the path, right-click and choose Select in
Analyst from the popup menu. Alternatively, you can select certain
objects only, as described next.

The software selects the objects in the column, and highlights the path
in the open RTL and Technology views.

Crossprobing Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 651

– To further filter the objects in the path, right-click and choose Select
From from the popup menu. On the form, check the objects you want,
and click OK. Only the corresponding objects are highlighted.

Technology View

Text Editor

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Crossprobing

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
652 June 2009

3. To isolate and view only the selected objects, do this in the Technology
view: press F12, or right-click and select the Filter Schematic command
from the popup menu.

You see just the selected objects.

Crossprobing from the Tcl Script Window
Crossprobing from the Tcl script window is useful for debugging error
messages. You cannot do this with the Synplify product, because it does not
have the Tcl window feature.

To crossprobe from the Tcl Script window to the source code, double-click a
line in the Tcl window. To crossprobe a warning or error, first click the
Messages tab and then double-click the warning or error. The software opens
the relevant source code file and highlights the corresponding code.

Crossprobing from the FSM Viewer
You can crossprobe to the FSM Viewer if you have the FSM view open. You
can crossprobe from an RTL, Technology, or source code window. The
Synplify tool does not support the FSM viewer.

To crossprobe from the FSM Viewer, do the following:

1. Open the view to which you want to crossprobe: RTL/Technology view,
or the source code file.

2. Do the following in the open FSM view:

– For FSMs with a onehot encoding style, click the state bubbles in the
bubble diagram or the states in the FSM transition table.

Crossprobing Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 653

– For all other FSMs, click the states in the bubble diagram. You
cannot use the transition table because with these encoding styles,
the number of registers in the RTL or Technology views do not match
the number of registers in the FSM Viewer.

The software highlights the corresponding code or object in the open
views. You can only crossprobe from a state in the FSM table if you used
a onehot encoding style.

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Analyzing With the HDL Analyst Tool

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
654 June 2009

Analyzing With the HDL Analyst Tool
The HDL Analyst tool is a graphical productivity tool that helps you visualize
your synthesis results. It consists of RTL-level and technology-primitive level
schematics that let you graphically view and analyze your design.

• RTL View
Using BEST® (Behavior Extraction Synthesis Technology) in the RTL
view, the software keeps a high-level of abstraction and makes the RTL
view easy to view and debug. High-level structures like RAMs, ROMs,
operators, and FSMs are kept as abstractions in this view instead of
being converted to gates. You can examine the high-level structure, or
push into a component and view the gate-level structure.

• Technology View
The software uses module generators to implement the high-level struc-
tures from the RTL view, and maps them to technology-specific
resources.

To analyze information, compare the current view with the information in the
RTL/Technology view, the log file, the FSM view, and the source code, you
can use techniques like crossprobing, flattening, and filtering. Note that
Synplify users do not have access to the FSM viewer. See the following for
more information about analysis techniques.

• Viewing Design Hierarchy and Context, on page 655

• Filtering Schematics, on page 658

• Expanding Pin and Net Logic, on page 660

• Expanding and Viewing Connections, on page 664

• Flattening Schematic Hierarchy, on page 665

• Minimizing Memory Usage While Analyzing Designs, on page 670

For additional information about navigating the HDL Analyst views or using
other techniques like crossprobing, see the following:

• Working in the Schematic Views, on page 614

• Exploring Design Hierarchy, on page 627

• Finding Objects, on page 635

• Crossprobing, on page 645

Analyzing With the HDL Analyst Tool Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 655

Viewing Design Hierarchy and Context
Most large designs are hierarchical, so the synthesis software provides tools
that help you view hierarchy details or put the details in context. Alterna-
tively, you can browse and navigate hierarchy with Push/Pop mode, or flatten
the design to view internal hierarchy.

This section describes how to use interactive hierarchical viewing operations
to better analyze your design. Automatic hierarchy viewing operations that
are built into other commands are described in the context in which they
appear. For example, Viewing Critical Paths, on page 733 describes how the
software automatically traces a critical path through different hierarchical
levels using hollow boxes with nested internal logic (transparent instances) to
indicate levels in hierarchical instances.

1. To view the internal logic of primitives in your design, do either of the
following:

– To view the logic of an individual primitive, push into it. This
generates a new schematic view with the internal details. Click the
Back icon to return to the previous view.

– To view the logic of all primitives in the design, select Options->HDL
Analyst Options->General, and enable Show Cell Interior. This command
lets you see internal logic in context, by adding the internal details to
the current schematic view and all subsequent views. If the view is
too cluttered with this option on, filter the view (see Filtering
Schematics, on page 658) or push into the primitive. Click the Back
icon to return to the previous view after filtering or pushing into the
object.

The following figure compares these two methods:

Result of pushing into a primitive (new view
of lower-level logic) Result of enabling Show Cell Interior

option (same view with internal logic)

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Analyzing With the HDL Analyst Tool

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
656 June 2009

2. To hide selected hierarchy, select the instance whose hierarchy you
want to exclude, and then select Hide Instances from the HDL Analyst menu
or the right-click popup menu in the schematic view.

You can hide opaque (solid yellow) or transparent (hollow) instances.
The software marks hidden instances with an H in the lower left. Hidden
instances are like black boxes; their hierarchy is excluded from filtering,
expanding, dissolving, or searching in the current window, although
they can be crossprobed. An instance is only hidden in the current view
window; other view windows are not affected. Temporarily hiding unnec-
essary hierarchy focuses analysis and saves time in large designs.

Before you save a design with hidden instances, select Unhide Instances
from the HDL Analyst menu or the right-click popup menu and make the
hidden internal hierarchy accessible again. Otherwise, the hidden
instances are saved as black boxes, without their internal logic.
Conversely, you can use this feature to reduce the scope of analysis in a
large design by hiding instances you do not need, saving the reduced
design to a new name, and then analyzing it.

3. To view the internal logic of a hierarchical instance, you can push into
the instance, dissolve the selected instance with the Dissolve Instances
command, or flatten the design. You cannot use these methods to view
the internal logic of a hidden instance.

‘H’ indicates a
hidden instance

Analyzing With the HDL Analyst Tool Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 657

4. If the result of filtering or dissolving is a hollow box with no internal
logic, try either of the following, as appropriate, to view the internal
hierarchy:

– Select Options->HDL Analyst Options->Sheet Size and increase the value of
Maximum Filtered Instances. Use this option if the view is not too
cluttered.

– Use the sheet navigation commands to go to the sheets indicated in
the hollow box.

If there is too much internal logic to display in the current view, the
software puts the internal hierarchy on separate schematic sheets. It
displays a hollow box with no internal logic and indicates the schematic
sheets that contain the internal logic.

5. To view the design context of an instance in a filtered view, select the
instance, right-click, and select Show Context from the popup menu.

The software displays an unfiltered view of the hierarchical level that
contains the selected object, with the instance highlighted. This is useful
when you have to go back and forth between different views during
analysis. The context differs from the Expand commands, which show
connections. To return to the original filtered view, click Back.

Pushing into
an instance

Generates a view that shows only the internal logic. You do not
see the internal hierarchy in context. To return to the previous
view, click Back. See Exploring Object Hierarchy by
Pushing/Popping, on page 628 for details.

Flattening
the entire
design

Opens a new view where the entire design is flattened, except
for hidden hierarchy. Large flattened designs can be
overwhelming. See Flattening Schematic Hierarchy, on
page 665 for details about flattening designs.
Because this is a new view, you cannot use Back to return to
the previous view. To return to the top-level unflattened
schematic, right-click in the view and select Unflatten Schematic.

Flattening
an instance
by dissolving

Generates a view where the hierarchy of the selected instances
is flattened, but the rest of the design is unaffected. This
provides context. See Flattening Schematic Hierarchy, on
page 665 for details about dissolving instances.

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Analyzing With the HDL Analyst Tool

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
658 June 2009

Filtering Schematics
Filtering is a useful first step in analysis, because it focuses analysis on the
relevant parts of the design. Some commands, like the Expand commands,
automatically generate filtered views; this procedure only discusses manual
filtering, where you use the Filter Schematic command to isolate selected
objects. See Chapter 3 of the Reference Manual for details about these
commands.

This table lists the advantages of using filtering over flattening:

1. Select the objects that you want to isolate. For example, you can select
two connected objects.

If you filter a hidden instance, the software does not display its internal
hierarchy when you filter the design. The following example illustrates
this.

2. Select the Filter Schematic command, using one of these methods:

– Select Filter Schematic from the HDL Analyst menu or the right-click
popup menu.

– Click the Filter Schematic icon (buffer gate) ().

Filter Schematic Command Flatten Commands

Loads part of the design; better
memory usage

Loads entire design

Combine filtering with Push/Pop
mode, and history buttons (Back
and Forward) to move freely
between hierarchical levels

Must use Unflatten Schematic to return to top
level, and flatten the design again to see lower
levels. Cannot return to previous view if the
previous view is not the top-level view.

Analyzing With the HDL Analyst Tool Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 659

– Press F12.

– Press the right mouse button and draw a narrow V-shaped mouse
stroke in the schematic window. See Help->Mouse Stroke Tutor for
details.

The software filters the design and displays the selected objects in a
filtered view. The title bar indicates that it is a filtered view. Hidden
instances have an H in the lower left. The view displays other hierar-
chical instances as hollow boxes with nested internal logic (transparent
instances). For descriptions of filtered views and transparent instances,
see Filtered and Unfiltered Schematic Views, on page 344 and Trans-
parent and Opaque Display of Hierarchical Instances, on page 349 in the
Reference Manual. If the transparent instance does not display internal
logic, use one of the alternatives described in Viewing Design Hierarchy
and Context, on page 655, step 4.

3. If the filtered view does not display the pin names of technology
primitives and transparent instances that you want to see, do the
following:

– Select Options->HDL Analyst Options->Text and enable Show Pin Name.

– To temporarily display a pin name, move the cursor over the pin. The
name is displayed as long as the cursor remains over the pin.
Alternatively, select a pin. The software displays the pin name until
you make another selection. Either of these options can be applied to

Filtered view

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Analyzing With the HDL Analyst Tool

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
660 June 2009

individual pins. Use them to view just the pin names you need and
keep design clutter to a minimum.

– To see all the hierarchical pins, select the instance, right-click, and
select Show All Hier Pins.

You can now analyze the problem, and do operations like the following:

4. To return to the previous schematic view, click the Back icon. If you
flattened the hierarchy, right-click and select Unflatten Schematic to return
to the top-level unflattened view.

For additional information about filtering schematics, see Filtering
Schematics, on page 658 and Flattening Schematic Hierarchy, on page 665.

Expanding Pin and Net Logic
When you are working in a filtered view, you might need to include more logic
in your selected set to debug your design. This section describes commands
that expand logic fanning out from pins or nets; to expand paths, see
Expanding and Viewing Connections, on page 664.

Use the Expand commands with the Filter Schematic, Hide Instances, and Flatten
commands to isolate just the logic that you want to examine. Filtering
isolates logic, flattening removes hierarchy, and hiding instances prevents
their internal hierarchy from being expanded. See Filtering Schematics, on
page 658 and Flattening Schematic Hierarchy, on page 665 for details.

Trace paths, build up logic See Expanding Pin and Net Logic, on page 660
and Expanding and Viewing Connections, on
page 664

Filter further Select objects and filter again

Find objects See Finding Objects, on page 635

Flatten, or hide and flatten See Flattening Schematic Hierarchy, on
page 665. You can hide transparent or opaque
instances.

Crossprobe from filtered
view

See Crossprobing from the RTL/Technology
View, on page 647

Analyzing With the HDL Analyst Tool Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 661

1. To expand logic from a pin hierarchically across boundaries, use the
following commands.

The software expands the logic as specified, working on the current level
and below or working up the hierarchy, crossing hierarchical bound-
aries as needed. Hierarchical levels are shown nested in hollow
bounding boxes. The internal hierarchy of hidden instances is not
displayed.

For descriptions of the Expand commands, see HDL Analyst Menu, on
page 229 of the Reference Manual.

2. To expand logic from a pin at the current level only, do the following:

– Select a pin, and go to the HDL Analyst->Current Level menu or the right-
click popup menu->Current Level.

– Select Expand or Expand to Register/Ports. The commands work as
described in the previous step, but they do not cross hierarchical
boundaries.

3. To expand logic from a net, use the commands shown in the following
table.

– To expand at the current level and below, select the commands from
the HDL Analyst->Hierarchical menu or the right-click popup menu.

– To expand at the current level only, select the commands from the
HDL Analyst->Current Level menu or the right-click popup menu->Current
Level.

To... Do this (HDL Analyst->Hierarchical/Popup menu)...

See all cells connected
to a pin

Select a pin and select Expand. See Expanding
Filtered Logic Example, on page 662.

See all cells that are
connected to a pin,
up to the next register

Select a pin and select Expand to Register/Port. See
Expanding Filtered Logic to Register/Port Example,
on page 663.

See internal cells
connected to a pin

Select a pin and select Expand Inwards. The software
filters the schematic and displays the internal cells
closest to the port. See Expanding Inwards
Example, on page 663.

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Analyzing With the HDL Analyst Tool

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
662 June 2009

Expanding Filtered Logic Example

To... Do this...

Select the driver of
a net

Select a net and select Select Net Driver. The result is a
filtered view with the net driver selected (Selecting the Net
Driver Example, on page 664).

Trace the driver, across
sheets if needed

Select a net and select Go to Net Driver. The software shows
a view that includes the net driver.

Select all instances on
a net

Select a net and select Select Net Instances. You see a
filtered view of all instances connected to the selected net.

Analyzing With the HDL Analyst Tool Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 663

Expanding Filtered Logic to Register/Port Example

Expanding Inwards Example

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Analyzing With the HDL Analyst Tool

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
664 June 2009

Selecting the Net Driver Example

Expanding and Viewing Connections
This section describes commands that expand logic between two or more
objects; to expand logic out from a net or pin, see Expanding Pin and Net
Logic, on page 660. You can also isolate the critical path or use the Timing
Analyst to generate a schematic for a path between objects, as described in
Analyzing Timing in Schematic Views, on page 730.

Use the following path commands with the Filter Schematic and Hide Instances
commands to isolate just the logic that you want to examine. The two
techniques described here differ: Expand Paths expands connections between
selected objects, while Isolate Paths pares down the current view to only
display connections to and from the selected instance.

For detailed descriptions of the commands mentioned here, see Commands
That Result in Filtered Schematics, on page 370 in the Reference Manual.

1. To expand and view connections between selected objects, do the
following:

– Select two or more points.

– To expand the logic at the current level only, select HDL Analyst->
Current Level->Expand Paths or popup menu->Current Level Expand Paths.

– To expand the logic at the current level and below, select HDL Analyst->
Hierarchical->Expand Paths or popup menu->Expand Paths.

Analyzing With the HDL Analyst Tool Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 665

2. To view connections from all pins of a selected instance, right-click and
select Isolate Paths from the popup menu.

Unlike the Expand Paths command, the connections are based on the
schematic used as the starting point; the software does not add any
objects that were not in the starting schematic.

Flattening Schematic Hierarchy
Flattening removes hierarchy so you can view the logic without hierarchical
levels. In most cases, you do not have to flatten your hierarchical schematic
to debug and analyze your design, because you can use a combination of

Starting Point The Filtered View Traces Paths (Forward and Back) From All
Pins of the Selected Instance...

Filtered view Traces through all sheets of the filtered view, up to the next
port, register, hierarchical instance, or black box.

Unfiltered view Traces paths on the current schematic sheet only, up to the
next port, register, hierarchical instance, or black box.

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Analyzing With the HDL Analyst Tool

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
666 June 2009

filtering, Push/Pop mode, and expanding to view logic at different levels.
However, if you must flatten the design, use the following techniques., which
include flattening, dissolving, and hiding instances.

1. To flatten an entire design down to logic cells, use one of the following
commands:

– For an RTL view, select HDL Analyst->RTL->Flattened View. This flattens
the design to generic logic cells.

– For a Technology view, select Flattened View or Flattened to Gates View
from the HDL Analyst->Technology menu. Use the former command to
flatten the design to the technology primitive level, and the latter
command to flatten it further to the equivalent Boolean logic.

The software flattens the top-level design and displays it in a new
window. To return to the top-level design, right-click and select Unflatten
Schematic.

Unless you really require the entire design to be flattened, use Push/Pop
mode and the filtering commands (Filtering Schematics, on page 658) to
view the hierarchy. Alternatively, you can use one of the selective
flattening techniques described in subsequent steps.

2. To selectively flatten transparent instances when you analyze critical
paths or use the Expand commands, select Flatten Current Schematic from
the HDL Analyst menu, or select Flatten Schematic from the right-click
popup menu.

The software generates a new view of the current schematic in the same
window, with all transparent instances at the current level and below
flattened. RTL schematics are flattened down to generic logic cells and
Technology views down to technology primitives. To control the number
of hierarchical levels that are flattened, use the Dissolve Instances
command described in step 4.

If your view only contains hidden hierarchical instances or pale yellow
(opaque) hierarchical instances, nothing is flattened. If you flatten an
unfiltered (usually the top-level design) view, the software flattens all
hierarchical instances (transparent and opaque) at the current level and
below. The following figure shows flattened transparent instances.

Analyzing With the HDL Analyst Tool Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 667

Because the flattened view is a new view, you cannot use Back to return
to the unflattened view or the views before it. Use Unflatten Schematic to
return to the unflattened top-level view.

3. To selectively flatten the design by hiding instances, select hierarchical
instances whose hierarchy you do not want to flatten, right-click, and
select Hide Instances. Then flatten the hierarchy using one of the Flatten
commands described above.

Use this technique if you want to flatten most of your design. If you want
to flatten only part of your design, use the approach described in the
next step.

When you hide instances, the software generates a new view where the
hidden instances are not flattened, but marked with an H in the lower
left corner. The rest of the design is flattened. If unhidden hierarchical
instances are not flattened by this procedure, use the Flattened View or
Flattened to Gates View commands described in step 1 instead of the Flatten

Flatten Schematic
flattens unhidden
transparent instance.

Hidden transparent
instance is not
flattened.

Flatten Schematic
flattens unhidden
transparent instance.

Opaque hierarchical
instance is unaffected.

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Analyzing With the HDL Analyst Tool

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
668 June 2009

Current Schematic command described in step 2, which only flattens trans-
parent instances in filtered views.

You can select the hidden instances, right-click, and select Unhide
Instances to make their hierarchy accessible again. To return to the
unflattened top-level view, right-click in the schematic and select
Unflatten Schematic.

4. To selectively flatten some hierarchical instances in your design by
dissolving them, do the following:

– If you want to flatten more than one level, select Options->HDL Analyst
Options and change the value of Dissolve Levels. If you want to flatten
just one level, leave the default setting.

– Select the instances to be flattened.

– Right-click and select Dissolve Instances.

The results differ slightly, depending on the kind of view from which you
dissolve instances.

Starting View Software Generates a...

Filtered Filtered view with the internal logic of dissolved instances
displayed within hollow bounding boxes (transparent
instances), and the hierarchy of the rest of the design
unchanged. If the transparent instance does not display
internal logic, use one of the alternatives described in step 4
of Viewing Design Hierarchy and Context, on page 655. Use
the Back button to return to the undissolved view.

Unfiltered New, flattened view with the dissolved instances flattened in
place (no nesting) to Boolean logic, and the hierarchy of the
rest of the design unchanged. Select Unflatten Schematic to
return to the top-level unflattened view. You cannot use the
Back button to return to previous views because this is a new
view.

Analyzing With the HDL Analyst Tool Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 669

The following figure illustrates this.

Use this technique if you only want to flatten part of your design while
retaining the hierarchical context. If you want to flatten most of the
design, use the technique described in the previous step. Instead of
dissolving instances, you can use a combination of the filtering
commands and Push/Pop mode.

Dissolved logic for prgmcntr shown flattened in context when you start from an unfiltered view

Dissolved logic for prgmcntr shown nested when started from filtered view

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Using the FSM Viewer

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
670 June 2009

Minimizing Memory Usage While Analyzing Designs
When working with large hierarchical designs, use the following techniques
to use memory resources efficiently.

• Before you do any analysis operations such as searching, flattening,
expanding, or pushing/popping, hide (HDL Analyst->Hide Instances) the
hierarchical instances you do not need. This saves memory resources,
because the software does not load the hierarchy of the hidden
instances.

• Temporarily divide your design into smaller working files. Before you do
any analysis, hide the instances you do not need. Save the design. The
.srs and .srm files generated are smaller because the software does not
save the hidden hierarchy. Close any open HDL Analyst windows to free
all memory from the large design. In the Implementation Results view,
double-click one of the smaller files to open the RTL or Technology
schematic. Analyze the design using the smaller, working schematics.

• Filter your design instead of flattening it. If you must flatten your design,
hide the instances whose hierarchy you do not need before flattening, or
use the Dissolve Instances command. See Flattening Schematic Hierarchy,
on page 665 for details. For more information on the Expand Paths and
Isolate Paths commands, see RTL View and Technology View Popup Menu
Commands, on page 292 of the Reference Manual.

• When searching your design, search by instance rather than by net.
Searching by net loads the entire design, which uses memory.

• Limit the scope of a search by hiding instances you do not need to
analyze. You can limit the scope further by filtering the schematic in
addition to hiding the instances you do not want to search.

Using the FSM Viewer
The FSM Viewer option is available only in the Synplify Pro and Synplify
Premier tools. The FSM viewer displays state transition bubble diagrams for
FSMs in the design, along with additional information about the FSM. You
can use this viewer to view state machines implemented by either the FSM

Using the FSM Viewer Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 671

Compiler or the FSM Explorer. For more information, see Running the FSM
Compiler, on page 455 and Running the FSM Explorer, on page 458, respec-
tively.

1. To start the FSM viewer, open the RTL view and either

– Select the FSM instance, click the right mouse button and select View
FSM from the popup menu.

– Push down into the FSM instance (Push/Pop icon).

The FSM viewer opens. The viewer consists of a transition bubble
diagram and a table for the encodings and transitions. If you used
Verilog to define the FSMs, the viewer displays binary values for the
state machines if you defined them with the ‘define keyword, and
actual names if you used the parameter keyword.

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Using the FSM Viewer

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
672 June 2009

2. The following table summarizes basic viewing operations.

This figure shows you the mapping information for a state machine. The
Transitions tab shows you simple equations for conditions for each state.
The RTL Encodings tab has a State column that shows the state names in
the source code, and a Registers column for the corresponding RTL
encoding. The Mapped Encoding tab shows the state names in the code
mapped to actual values.

To view... Do...

From and to states, and conditions
for each transition

Click the Transitions tab at the
bottom of the table.

The correspondence between the
states and the FSM registers in the
RTL view

Click the RTL Encoding tab.

The correspondence between the
states and the registers in the
Technology View

Click the Mapped Encodings tab
(available after synthesis).

Just the transition diagram without
the table

Select View->FSM table or click the
FSM Table icon. You might have to
scroll to the right to see it.

Using the FSM Viewer Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 673

3. To view just one selected state,

– Select the state by clicking on its bubble. The state is highlighted.

– Click the right mouse button and select the filtering criteria from the
popup menu: output, input, or any transition.

The transition diagram now shows only the filtered states you set. The
following figure shows filtered views for output and input transitions for
one state.

States and Conditions

Mapped Encoding RTL Encoding

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Using the FSM Viewer

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
674 June 2009

Similarly, you can check the relationship between two or more states by
selecting the states, filtering them, and checking their properties.

4. To view the properties for a state,

– Select the state.

– Click the right mouse button and select Properties from the popup
menu. A form shows you the properties for that state.

To view the properties for the entire state machine like encoding style,
number of states, and total number of transitions between states,
deselect any selected states, click the right mouse button outside the
diagram area, and select Properties from the popup menu.

5. To view the FSM description in text format, select the state machine in
the RTL view and View FSM Info File from the right mouse popup. This is
an example of the FSM Info File, statemachine.info.

State Machine: work.Control(verilog)-cur_state[6:0]
No selected encoding - Synplify will choose
Number of states: 7
Number of inputs: 4
Inputs:

0: Laplevel
1: Lap
2: Start
3: Reset
Clock: Clk

CountCont state filtered by output transitions

CountCont state filtered by input transitions

Using the FSM Viewer Chapter 15: Analyzing with HDL Analyst and FSM Viewer

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 675

Transitions: (input, start state, destination state)
-100 S0 S6
--10 S0 S2
---1 S0 S0
-00- S0 S0
--10 S1 S3
-100 S1 S2
-000 S1 S1
---1 S1 S0
--10 S2 S5
-000 S2 S2
-100 S2 S1
---1 S2 S0
-100 S3 S5
-000 S3 S3
--10 S3 S1
---1 S3 S0
-000 S4 S4
--1- S4 S0
-1-- S4 S0
---1 S4 S0
-000 S5 S5
-100 S5 S4
--10 S5 S2
---1 S5 S0
1--0 S6 S6
---1 S6 S0
0--- S6 S0

LO

Chapter 15: Analyzing with HDL Analyst and FSM Viewer Using the FSM Viewer

Synopsys FPGA Synthesis User Guide
676 June 2009

Synopsys, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: +1 408 215-6000, Fax: +1 408 222-068
www.solvnet.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology,
Certify, DesignWare, HDL Analyst, Identify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro,
Synthesis Constraints Optimization Environment, and VCS are registered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-perfor-
mance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and TotalRecall are trademarks of Synopsys, Inc. All other
names mentioned herein are trademarks or registered trademarks of their respective companies.

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 677

C H A P T E R 1 6

Analyzing Designs in Physical Analyst

This document describes typical analysis tasks using graphical analysis with
the Physical Analyst tool. It covers the following:

• Analyzing Physical Synthesis Results, on page 678

• Using Physical Analyst, on page 683

• Displaying and Selecting Objects, on page 689

• Querying Physical Analyst Objects, on page 699

• Finding Objects, on page 704

• Crossprobing in Physical Analyst, on page 713

• Analyzing Netlists in Physical Analyst, on page 721

For information about analyzing timing in the Synplify Premier Physical
Analyst tool, see Analyzing Timing with Physical Analyst, on page 750.

LO

Chapter 16: Analyzing Designs in Physical Analyst Analyzing Physical Synthesis Results

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
678 June 2009

Analyzing Physical Synthesis Results
This section contains information about tools you can use to analyze physical
synthesis results. See the following:

• Analyzing Physical Synthesis Results Using Various Tools, on page 678

• Comparing Performance Results, on page 680

• Running Multiple Implementations, on page 681

• Checking Altera Pre-Placement Physical Synthesis Results, on page 681

Analyzing Physical Synthesis Results Using Various Tools
Default timing and area reports are presented in the .htm or .srr log file for
the design project. To view this information, click the View Log button in the
Project view (or View->View Log File). The following .htm log file shows both the
Table of Contents and the HTML log file contents for the design.

See Viewing the Log File, on page 596 for complete information on how to
interpret the log file results.

Analyzing Physical Synthesis Results Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 679

In addition, you can generate a stand-alone timing report to display more or
less information than what is provided in the log file. See the following:

• Using the Stand-alone Timing Analyst, on page 736

• Using the Island Timing Analyst, on page 743

Also, check the place-and-route results to determine if further synthesis is
required. For example, click on Xilinx P&R Report to check the xflow_par.log
file to verify that all constraints were met as shown below. For graph-based
physical synthesis, you can also click on Initial Placement Report to check the
xflow_gp.log file. Click on Quartus P&R Report to check the quartus.log file for
place-and-route results for Altera devices.

LO

Chapter 16: Analyzing Designs in Physical Analyst Analyzing Physical Synthesis Results

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
680 June 2009

Comparing Performance Results
Synplify Premier physical synthesis provides a timing closure solution that
yields more accurate timing correlation and faster timing closure for your
design. This section provides details on how to analyze results from logic
synthesis, physical synthesis and place and route to show more accurate
timing correlation between physical synthesis and final place and route
results. The diagram below provides an overview of how to use the Synplify
Premier tool and its features to analyze performance.

Analyzing Physical Synthesis Results Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 681

1. Determine performance improvement between logic synthesis and
physical synthesis by comparing, for each clock:

– The maximum frequency reported in the .tan.rpt file with the results
from logic synthesis (log file).

– The maximum frequency reported in the .tan.rpt file with the
physical synthesis results (log file).

2. Determine the timing correlation by comparing, for the critical clocks:

– The estimated performance in the .srr file.

– The actual performance in the .tan.rpt file.

3. Determine the productivity gain by comparing:

– The sum of logic synthesis runtime (reported in .srr file) with place-
and-route runtime (reported in quartus.log file).

– The physical synthesis runtime alone (reported in .srr file).

Running Multiple Implementations
You can create multiple implementations of the same design so that you can
compare the results of each implementation and place-and-route run. This
lets you experiment with different settings for the same design with different
place-and-route options. Implementations are revisions of your design within
the context of the Synplify Premier software and do not replace external
source code control software and processes.

For the Graph-based physical synthesis with a design plan flow, you can
run the first pass using the Synplify Premier software without a design
plan file (.sfp) to synthesize the design. Placement and routing runs
automatically. Then, create a new implementation and apply a design
plan for Design plan-based physical synthesis.

See Working with Multiple Implementations, on page 285 for more informa-
tion.

Checking Altera Pre-Placement Physical Synthesis Results
In Altera designs, graph-based physical synthesis generates an intermediate
file that you can display in the Technology View and use for debugging. Do
the following:

LO

Chapter 16: Analyzing Designs in Physical Analyst Analyzing Physical Synthesis Results

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
682 June 2009

1. After physical synthesis, open the preplace.srm file by double-clicking
or right-clicking the file in the Project view and selecting Open.

The preplace.srm file is an intermediate file that captures the netlist
after RTL physical synthesis and immediately before global placement,
showing the same results as would be obtained from logic synthesis.
This file is located in the physical synthesis implementation results
directory.

2. To view the corresponding timing slack for all the clocks in the design,
open the log file, and check the Pre-placement Timing Snapshot section of the
log file for the critical path reflected in the preplace.srm file.

For more information on analyzing synthesis results graphically, see the
following:

• Using Physical Analyst, on page 683

• Chapter 15, Analyzing with HDL Analyst and FSM Viewer

Using Physical Analyst Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 683

Using Physical Analyst
After you have placed and routed your design with backannotated informa-
tion, you can use the Physical Analyst tool to analyze the placement and
global routing. For descriptions of the interface, see the Reference Manual.

The Physical Analyst functionality is only available for the Synplify Premier
flows:

• Graph-based physical synthesis (Graph-Based Physical Synthesis, on
page 42)

• Graph-based physical synthesis with a design plan (Graph-Based
Physical Synthesis with Design Planner, on page 46)

For both these flows, you can also include a place-and-route implementation
with backannotation. The tool will display the placement information after
physical synthesis is run, for the following technologies:

See the following for more information:

• Opening the Physical Analyst Interface, on page 683

• Zooming in the Physical Analyst, on page 685

• Moving Between Views in the Physical Analyst, on page 686

• Using the Physical Analyst Context Window, on page 687

Opening the Physical Analyst Interface
The following procedure shows you how to open the tool and the control
panel.

1. Open the Physical Analyst view in any of the following ways:

– Click on the Physical Analyst icon () from the Physical Analyst
toolbar.

– Select HDL Analyst->Physical Analyst in the Project view.

Xilinx Virtex-II Pro, Virtex-4, Virtex-5, and Spartan-3

Altera Stratix II, Stratix II GX, Stratix III, and Stratix IV

LO

Chapter 16: Analyzing Designs in Physical Analyst Using Physical Analyst

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
684 June 2009

– Select the .srm file, then right-click and select Open Using Physical
Analyst from the popup menu.

2. To display the control panel for the Physical Analyst, do one of the
following:

– Click on the Physical Analyst Control Panel icon () in the Physical
Analyst toolbar.

– Select Options->Physical Analyst Control Panel.

– Use the keyboard shortcut key Ctrl-k.

Using Physical Analyst Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 685

3. To close the Physical Analyst control panel, use any of the toggle
methods listed in the previous step, or right-click in the control panel
and select Hide from the popup menu.

Zooming in the Physical Analyst
Since the objects displayed in the Physical Analyst full view might be very
small, a handy command to use is Zoom Selected. After selecting one or more
objects in the Physical Analyst view, you can access this command by

1. If you do not have objects selected, use any of the following global zoom
commands to change the display:

– View->Zoom In from the menu or the Zoom In ()icon.

– View->Zoom Out from the menu or the Zoom Out ()icon.

– View->Full View from the menu or the Full View () icon.

– View->Normal View from the menu or the Normal View () icon.

– Appropriate mouse strokes.

LO

Chapter 16: Analyzing Designs in Physical Analyst Using Physical Analyst

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
686 June 2009

For a description of the zoom options, see View Menu, on page 131 in
the Reference Manual. For a description of the mouse strokes, see Help->
Mouse Stroke Tutor.

2. To zoom into a particular object or area, select the objects and then use
the Zoom Selected command in one of the following ways:

– Click the Zoom Selected () icon.

– Right-click and select Zoom Selected from the popup menu.

– Use the following mouse stroke.

The Zoom Selected command centers the selected object or objects in the
view.

Moving Between Views in the Physical Analyst
When you filter or expand your design, you move through a number of
different design views in the same window. For example, you might start with
a view of the entire design, zoom in on an area and filter an object, and finally
expand a connection in the filtered view, for a total of three views.

1. To move back to the previous view, click the Back icon or draw the
appropriate mouse stroke in the Device window.

The software displays the last view, including the zoom factor. This does
not work in a newly generated view because there is no history.

2. To move forward again, click the Forward icon or draw the appropriate
mouse stroke.

The software displays the next view in the display history.

Using Physical Analyst Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 687

Using the Physical Analyst Context Window
The Physical Analyst context window occupies the lower portion of the
Control Panel view. The context window provides a point-of-reference to your
location on the device.

For example, suppose you:

1. Zoom in the Physical Analyst tool to get a better view of the objects you
selected on the device.

2. The context window in the control panel displays a rectangle around the
relevant area on the device. This is helpful because you now have a
point-of-reference to your location on the device.

3. Once a rectangle area is drawn in the context window, you can then:

Device ViewContext Window

Control Panel

LO

Chapter 16: Analyzing Designs in Physical Analyst Using Physical Analyst

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
688 June 2009

– move

– scroll

– stretch/shrink

this rectangle in the context window. This view will be reflected in the
Physical Analyst view.

4. To reinstate the full context window view, right-click and select Refresh in
this view.

Displaying and Selecting Objects Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 689

Displaying and Selecting Objects
This section describes how to display and select objects in the Physical
Analyst view.

• Setting Visibility for Physical Analyst Objects, on page 689

• Displaying Instances and Sites in Physical Analyst, on page 690

• Displaying Nets in Physical Analyst, on page 694

• Selecting Objects in Physical Analyst, on page 696

Setting Visibility for Physical Analyst Objects
You determine object visibility and selectability by setting it in the control
panel.

1. Select Options->Physical Analyst Control Panel to display the control panel.

2. To make an object visible, select the Vis box for that object.

This makes the boundaries for the selected type of object visible in the
Device view. You cannot select a visible object, unless it has been made
selectable. For details about object selection, see Displaying Instances
and Sites in Physical Analyst, on page 690, and Displaying Nets in
Physical Analyst, on page 694.

3. To make an object selectable, select the Vis and Sel boxes for that object.

The object must be visible before you can make it selectable. When an
object is selectable, you can get detailed information by rolling the
mouse over it to get a tool tip.

LO

Chapter 16: Analyzing Designs in Physical Analyst Displaying and Selecting Objects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
690 June 2009

Displaying Instances and Sites in Physical Analyst
The following procedure shows you how to display objects and sites in the
Physical Analyst window.

1. To display instances, open the Physical Analyst control panel and select
the Vis box for Instances.

The window displays instance bounds, instance locations, and signal
pins if all instances with placement information. It does not display the
signal pins of the instances.

- Signal nets visible and selectable

- Instances visible and selectable
- Instance internals visible

- Do not show enhanced view for instances

- Do not show signal flow

- Show pruned signals

- Sites visible

- Do not show internal signal pins

The Control Panel will display the following in the
Physical Analyst View:

Displaying and Selecting Objects Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 691

The following figure shows cell boundaries.

2. To display core cells at a fixed size regardless of zoom level, do the
following:

– With the Physical Analyst window active, select View->Configure
Enhanced Instance Display.

Site Rows

Core (CLB) Cell

LO

Chapter 16: Analyzing Designs in Physical Analyst Displaying and Selecting Objects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
692 June 2009

– Enable the Enhance Instance Shape for Better Visibility option.

– Set any other options you want and click OK.

The tool displays the core cells as diamonds of a fixed size.

Displaying and Selecting Objects Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 693

3. To display instances and their signal pins, select the Vis boxes for
Instances, Inst Display.

The Vis box for Signal Pins is selected automatically, and the tool displays
the signal pins. The following figure shows signal pins displayed:

LO

Chapter 16: Analyzing Designs in Physical Analyst Displaying and Selecting Objects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
694 June 2009

4. To display sites, do the following:

– Select the Vis box for Sites.

– To view sites more clearly, turn off the visibility of instances.

Displaying Nets in Physical Analyst
When nets are routed, they are connected to their respective instances.
Because of the long load time and the limited visibility when nets are super-
imposed on the view, net routes are not displayed by default. Nets are routed
from output pins to input pins and are shown with their corresponding point-
to-point connections on one layer of the device in the Physical Analyst view.

1. Route the nets, using one of these methods:

– Use an on-demand routing command like Expand or Show Critical Path.
For more netlist commands, see Analyzing Netlists in Physical
Analyst, on page 721.

Signal Pins (Inputs)

Signal Pins (Outputs)

Displaying and Selecting Objects Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 695

– Right-click and select Route Selected Instances. You can choose to
display nets for connected instances only, as well as, from input pins,
to output pins, or to all pins for selected instances.

2. Set the visibility options on the control panel. Select the Vis box for Nets.
You must select this to make the other options available.

The following example shows point-to-point net routing:

3. To reduce clutter in the display, try the following techniques:

– Isolate a critical path, or filter the design to show just a few paths you
want to analyze.

– In the control panel, select the Vis box for Prune Signals. When enabled,
this option displays net segment that connect to an instance that is
invisible because of filtering, for example, in a diminished color.

4. To view the direction of a signal, do either of the following:

– Place the cursor over a net to view the predominant direction of its
signal flow (right, left, up, or down).

LO

Chapter 16: Analyzing Designs in Physical Analyst Displaying and Selecting Objects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
696 June 2009

– Select the Vis box for Signal Flow. The net is displayed with arrows
showing the direction of its signal flow. The Signal Flow option is useful
when you display the critical path. You can follow the arrows and
lines along the critical path from the start point to the end point.

5. To hide all nets in the display, do either of the following:

– Right-click in the Physical Analyst and select Unfilter->Show All Instances,
Hide All Nets from the popup menu.

– Click the Reset filter icon ().

Selecting Objects in Physical Analyst
Selected objects are highlighted in the Physical Analyst view. If you have
other windows open and crossprobing enabled, you can highlight the selected
object in the other windows too.

The following procedure shows you ways to select objects.

1. To select an object, do the following:

Net ALUA[1]
 Fanout=13

Connects to SIGNAL PIN I1 (input) (INST UC_ALU_LONGQ_2)
Signal flows right

Critical Path Start

Displaying and Selecting Objects Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 697

– In the control panel, select the Sel box for the object to make it
selectable.

– Click on the object in the Device view.

2. To select multiple objects, use one of these methods:

– Draw a rectangle around the objects.

– Select an object, press Ctrl, and click other objects you want to
select. You can also deselect from the list of currently selected
objects while holding the Ctrl key.

– Position the cursor over an object and click the right mouse button;
the object is automatically selected in the view. To preserve a prior
selection, hold the Ctrl key and press the right mouse button.

– Right-click and choose one of the Select commands from the popup
menu.

3. To limit the selection range, use these techniques:

– Use the Physical Analyst control panel to enable or disable a class of
objects to be selected. For example you can disable selection for nets,
and only select instances in an area.

– Use the Filter and Unfilter commands to restrict the scope of selection.

– Use Find to select the objects you want. You can also use the Find
command to select a subset of objects of a particular type. See Using
Find to Locate Physical Analyst Objects), on page 704.

– Use the Go to Location command and specify an object location in
microns to go directly to a coordinate pair location. See Finding
Physical Analyst Objects by Their Locations, on page 708.

4. To select a net or instance that overlaps another, do the following.

– Move your cursor over the overlapping object you want to select. The
cursor changes shape to indicate that you need to resolve the
selection.

– Click the cursor, and the Resolve Selection dialog box opens.

LO

Chapter 16: Analyzing Designs in Physical Analyst Displaying and Selecting Objects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
698 June 2009

– Select the object you want from the list and click Close.

Once you have selected an object, the software highlights the selected object
in the Physical Analyst window. If you have other windows open and
crossprobing enabled, the object is highlighted in the other windows too.

Querying Physical Analyst Objects Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 699

Querying Physical Analyst Objects
The following procedures describe how to view object properties in the
Physical Analyst:

• Viewing Properties in Physical Analyst, on page 699

• Using Tool Tips to View Properties in Physical Analyst, on page 702

Viewing Properties in Physical Analyst
You can view properties for the device design and for selected objects
displayed in the view using the popup menu commands described here. For
site properties, use tooltips, as described in Using Tool Tips to View Properties
in Physical Analyst, on page 702.

1. To view general information for the design, right-click anywhere in the
Physical Analyst view, and select Physical Analyst Properties from the popup
menu.

The dialog box shows information like the design name, the number of
instances, unplaced instances, routed nets in the design, and the
location of the netlist and floorplan (.def) files.

LO

Chapter 16: Analyzing Designs in Physical Analyst Querying Physical Analyst Objects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
700 June 2009

2. To view properties for an instance, right-click the instance and select
Properties (Core Cell).

The dialog box lists information like the instance name, type, and pins;
placement information like its placement location and device-specific
location; and its delay, slack, and clock signal. It also indicates whether
the instance is included in the critical path.

3. To view properties for a net, right-click the net and select Properties (Net).

Querying Physical Analyst Objects Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 701

The dialog box lists information like the net name, logical nets, pin
count, and fanout. It also indicates if the net is a clock and if it has been
globally routed.

4. Click on an item in the list to view a definition of that term below.

LO

Chapter 16: Analyzing Designs in Physical Analyst Querying Physical Analyst Objects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
702 June 2009

Using Tool Tips to View Properties in Physical Analyst
You can use this method to view properties for any objects in the design, as
well as for various UI features. For instance, net, and design properties, you
can also use the popup commands described in Viewing Properties in Physical
Analyst, on page 699.

1. Enable View->Tool Tip.

2. Move your mouse over an object.

As you move the mouse over an object, you see information about that
object. Coordinates for the objects are in microns. The following is an
example of information for different objects.

Floorplan site column

Floorplan site
bounds=(1440.00,1540.00) ~ (1445.00,1740.00)
orien=N (0)
site BRAM (Core)

Site row 21
bounds=(1260.00,72.00)~(176.00,3384.00)
orien=N(0)
site CLB (Core)

Floorplan site
bounds=(1440.00,1540.00) ~ (1445.00,1740.00)
orien=N (0)
site BRAM (Core)

Floorplan site
bounds=(1470.00,1540.00)~(1475.00,1740.00)
orien=N(0)
site BMULT (Core)

Core Cell UC_ALU.LONGQ[5]
Type=LUT4_E2AA
Inputs=4
Outputs=1
Location=(1656.00,1503.00)
Device Location=SLICE_X47Y66
Delay=1.9900
Slack=0.5806bounds=(1260.00,72.00)~(176.00,3384.00)

Querying Physical Analyst Objects Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 703

3. To display the tooltip information in the Tcl window, do the following:

– Select an object directly. Do not use this method with area selections
or when objects are selected using other commands such as Expand or
Find.

– Either select View->Selection Transcription or right-click in the Physical
Analyst view and select Selection Transcription from the popup menu.

The tooltip information is displayed in the Tcl window. You can copy and
paste the information from the TCL window into other windows or files
like the SCOPE window, the Find Object dialog box, or a text file.

The following figure shows an example of an object selected on the
device and its tool tip information displayed in the TCL window.

TCL Window

Core Cell mem_add_fast[2]

LO

Chapter 16: Analyzing Designs in Physical Analyst Finding Objects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
704 June 2009

Finding Objects
To find and display objects in the Physical Analyst view, use the following
options:

• Using Find to Locate Physical Analyst Objects), on page 704

• Finding Physical Analyst Objects by Their Locations, on page 708

• Using Markers to Find Physical Analyst Objects, on page 709

• Identifying Encrypted IP Objects in Physical Analyst, on page 711

Using Find to Locate Physical Analyst Objects)
This procedure shows you how to use the Find command to do a search on the
entire design. The view displayed is flat, although the hierarchy of instance
names is retained. The Find command does not include physical instances in
its search.

1. To find nets, first make sure their display is enabled by selecting View->
Unfilter->Show All or the corresponding command from the popup menu.

2. Right-click and select Find from the popup menu or press Ctrl-f. Move the
dialog box so you can see both the view and the dialog box.

You can also open the dialog box by selecting Edit->Find from the menu or
by clicking the Find icon in the tool bar.

3. Select the tab (at the top of the dialog box) for the type of object. The
Unhighlighted box on the left will list objects of the selected type
(instances, symbols, nets, or ports).

Finding Objects Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 705

4. You can optionally restrict the scope of your search for the design in the
following ways:

– To filter the search using wildcards, see Using Wildcards with the Find
Command, on page 706.

– To further filter the object type, see Using Object Filters with the Find
Command, on page 707.

The Unhighlighted box shows available objects within the scope you set
when you click Find 200 or Find All. Objects are listed in alphabetical
order.

5. Do the following to select objects from the list.

– Click First 200 or Find All. The Unhighlighted box shows available objects
(in alphabetical order) within the scope you set when you click Find
200 or Find All. The former finds the first 200 matches, and then you
can click the button again to find the next 200.

– Move the objects you want to the Highlighted box by double-clicking
them, or by clicking them to select them, and then clicking the right
arrow. Right-click on the objects you want from the list.

LO

Chapter 16: Analyzing Designs in Physical Analyst Finding Objects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
706 June 2009

– If the object name exceeds the width of the Unhighlighted box, check
the object name by clicking the entry in the list, and viewing the
entire name in the field below the Unhighlighted box.

Objects transferred to the Highlighted box are automatically highlighted in
the view.

You can leave the dialog box open to do successive Find operations. Close the
dialog box when you are done.

Using Wildcards with the Find Command
The following procedure shows you how to use patterns or wildcards to
restrict the search range with the Find command when you are locating
objects in the Physical Analyst view. You can use wildcards to avoid typing
long path names. Start with a general pattern, and then make it more
specific.

1. Follow the first three steps described in Using Find to Locate Physical
Analyst Objects), on page 704.

2. Type a pattern in the Search By Name field.

When you use wildcards between hierarchies, all pattern matching is
displayed from the top level to the lowest level hierarchy, inclusively.

3. Click First 200 or Find All.

The Unhighlighted box lists the objects that match the wildcard pattern
criteria. If you selected First 200, it lists the first 200 matches, and then
you can click the button again to find the next 200.

4. Select and move the objects you want to the Highlighted box by doing one
of the following:

– Select the objects in the Unhighlighted box and click the right arrow.

– Double-click individual items in the Unhighlighted box.

* The asterisk matches any sequence of characters.

? The question mark matches any single character.

. The dot (period) explicitly matches a hierarchy separator, so type one dot
for each level of hierarchy. To use the dot as a pattern and not as a
hierarchy separator, type a backslash (\) before the dot.

Finding Objects Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 707

The objects are automatically highlighted in the view.

Using Object Filters with the Find Command
Use the Filter Search option on the Find Object dialog box to limit the objects you
are searching for to a particular subcategory. This can be very useful in large
designs.

1. Follow the first three steps described in Using Find to Locate Physical
Analyst Objects), on page 704.

At this point, you have already restricted your search to a certain type of
object by selecting one of the tabs at the top.

2. Select a subcategory from the pull-down list in Filter Search.

The listed subcategories are for the kind of object you have already
selected. For descriptions of the various subcategories, see Object Filter
Search for Find Command, on page 532 of the Reference Manual.

3. Click First 200 or Find All.

The Unhighlighted box lists the objects that match the filtered object
criteria. If you selected First 200, it lists the first 200 matches, and then
you can click the button again to find the next 200.

4. Select and move the objects you want to the Highlighted box by doing one
of the following:

– Select the objects in the Unhighlighted box and click the right arrow.

– Double-click individual items in the Unhighlighted box.

The objects are automatically highlighted in the view.

LO

Chapter 16: Analyzing Designs in Physical Analyst Finding Objects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
708 June 2009

Finding Physical Analyst Objects by Their Locations
The Go to Location command allows you to specify a coordinate pair location or
location of an object, and then zoom in on this location if requested.

This procedure shows you how to use the Go to Location command to search
for objects, for example instances.

1. In the Physical Analyst view, type Ctrl-g or right-click and select Go to
Location from the popup menu.

The command displays the Goto Location dialog box.

2. Do one of the following:

– Enter the coordinates of the location (see step 3 for details).

– Select a marker from the Marker pull-down. For information about
creating markers at object locations, see Using Markers to Find
Physical Analyst Objects, on page 709.

3. Enter a coordinate pair (X and Y) location value in microns. You can do
this in any of these ways:

– Type a coordinate pair in the field.

Finding Objects Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 709

The syntax is very flexible, providing various ways to separate
coordinates. You can use a space, or one of the following punctuation
marks: a comma (,), semi-colon (;), or colon (:). Optionally, enclose the
coordinate pair location in parentheses.

– Copy and paste a coordinate pair location from a log file (.srr) or
timing analyst file (.ta).

– Copy a location from a .def file. Note that the unit of measurement in
the .def file is database units. Use the UNITS DISTANCE MICRONS
factor from the .def file to convert database units to microns, before
using it here.

– If you have used the command before and have a history of locations,
select a location from the pull-down list in the History field.

A description of the object shows in the dialog box window, if applicable.

4. Select a zoom mode.

– To center the location, without zooming, select Scroll.

– To zoom into the selected area, select Zoom to Object.

– To zoom at the 100% level, select Zoom Normal.

5. Click OK.

The Physical Analyst view shows the location you specified, at the zoom
level you specified. The command keeps a running history of the
locations you specified, and they appear in the History pull-down the next
time you use the command.

Using Markers to Find Physical Analyst Objects
Markers are bookmarks for physical coordinates in the Physical Analyst view.
Markers are useful for analyzing floorplan placement in the Physical Analyst
view. You can find an object, such as an instance, then create a marker on
this instance.When multiple markers are defined, you can move from marker
to marker, as well as, measure the distance from a marker or between any
two markers.

1. You can create a marker in either of these ways:

– Select an object or click on the spot where you want to place the
marker. Type Ctrl-m, or right-click and then select Markers->Add Marker
from the popup menu. If a marker is created at an instance or net

LO

Chapter 16: Analyzing Designs in Physical Analyst Finding Objects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
710 June 2009

location, the marker’s name is Marker_<object_name>. All other
markers are named Marker1, Marker2, etc.

– Click on the spot where you want to create the marker. Either type
Ctrl-g or right-click and select Go to Location to open the Go to location
dialog box. Your coordinates appear in the coordinates field. Check
the Create Marker box in the dialog box. Either specify a name for the
marker, or use the default marker name, which is GotoMarker1,
GotoMarker2, etc. Click OK.

A marker symbol () appears in the Physical Analyst view at the
location specified. As you move the cursor over the marker, a tool tip
shows the marker name and its X and Y coordinates. You can also view
this information by selecting the marker, right-clicking, and selecting
Properties. The marker is automatically added to the list in the Go to
Location dialog box, and you can use it to locate objects, as described in
Finding Physical Analyst Objects by Their Locations, on page 708.

2. To move a marker, select the symbol (). Press the mouse button, drag
the marker to its new location, and then release the mouse button.

3. To delete a marker, select the marker and press the Del key.
Alternatively, right-click and select Markers->Remove Selected from the
popup menu. To delete all markers, right-click and select Markers->
Remove All from the popup menu.

Finding Objects Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 711

4. To use markers to locate an object, see the procedure described in
Finding Physical Analyst Objects by Their Locations, on page 708.

5. Do the following to use markers for measuring distances:

– To measure the distance from a marker to the cursor location, select
the marker and position the cursor. The status bar at the bottom of
the Physical Analyst view displays the manhattan distance (X+Y)
between the two points, calculated in microns. It also displays the XY
coordinates for the cursor.

– To measure the distance between two markers, select two markers.
The distance is displayed in the status bar. If you have more than two
markers selected, the distance is not calculated.

6. To navigate from one marker to another, do the following:

– To advance to the next marker, right-click and select Markers->Go to
Next from the popup menu, or use the F2 key.

– To go to the previous marker, right-click and select Markers->Go to
Previous from the popup menu or use the Shift+F2 keys.

The sequence for the markers is the order in which they were created. If
the view is zoomed, the selected marker is centered in the view.

Identifying Encrypted IP Objects in Physical Analyst
You can use the Physical Analyst to identify cells that belong to an encrypted
IP. When a cell belongs to an encrypted IP, it is implemented as the type LUT.

To view objects that might belong to encrypted IPs in the Physical Analyst
view, perform the following tasks:

1. Select the cell.

2. Right-click and select Properties (Core Cell) from the popup menu.

3. Notice that the Type property is set to LUT in the dialog box.

LO

Chapter 16: Analyzing Designs in Physical Analyst Finding Objects

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
712 June 2009

Crossprobing in Physical Analyst Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 713

Crossprobing in Physical Analyst
Crossprobing is the process of selecting an object in one view and having the
object or the corresponding logic automatically highlighted in other views.
The Physical Analyst responds to incoming cross probes as well as sending
out cross probes in response to selections.

For details, see

• Crossprobing from the Physical Analyst View, on page 713

• Crossprobing from a Text File to Physical Analyst, on page 716

• Crossprobing from the RTL View to Physical Analyst, on page 717

• Crossprobing from the Technology View to Physical Analyst, on
page 719

Crossprobing from the Physical Analyst View
1. Set crossprobing options.

– To crossprobe automatically from the Physical Analyst view, check
that View->Send Crossprobes when selecting is enabled.

– To crossprobe only on demand, disable View->Send Crossprobes when
selecting. This can be more efficient with large designs.

2. To crossprobe to different files and views, follow the appropriate steps:

To Crossprobe to.. Procedure

Source code • Make sure that View->Crosspobing->Crossprobing to HDL
Source is enabled.

• In the Physical Analyst view, double-click the object
you want to crossprobe.
If the source code file is not open, a Text Editor window
opens to the appropriate section of code (for example,
modules or instances). If the source file is already open,
the software scrolls to the correct section of the code
and highlights it.

LO

Chapter 16: Analyzing Designs in Physical Analyst Crossprobing in Physical Analyst

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
714 June 2009

RTL view • Open the RTL view.
• Make sure the crossprobing options (see step 1) are set

for your needs.
• In the Physical Analyst view, select the object you want

to crossprobe. The software highlights the
corresponding object in the RTL view.

Technology view • Open the Technology view.
• Make sure the crossprobing options (see step 1) are set

for your needs.
• In the Physical Analyst view, select the object you want

to crossprobe. The software highlights the
corresponding object in the Technology view.

To Crossprobe to.. Procedure

Crossprobing in Physical Analyst Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 715

The following shows on-demand crossprobing from the Physical Analyst view:

LO

Chapter 16: Analyzing Designs in Physical Analyst Crossprobing in Physical Analyst

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
716 June 2009

Crossprobing from a Text File to Physical Analyst
Instances from a text file, such as the HDL source code (Verilog/VHDL) or log
file (.srr) can be highlighted in the Physical Analyst. Make sure the Physical
Analyst view is already open.

1. Open the Physical Analyst view.

2. In the text file, highlight the appropriate portion of the text, like the
hierarchical instance name.

For some objects in source code files, you might have to select an entire
block of text.

3. Crossprobe the object.

– To show only the object selected, click the Filter Schematics icon in the
toolbar.

– Right-click in the text file and select Select in Analyst from the popup
menu.

4. Check the Physical Analyst view.

The selected instances are highlighted in this view. If the selected object
does not have visibility enabled for it in the Control panel, the visibility
will be automatically enabled.

Crossprobing in Physical Analyst Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 717

5. If needed, use the Reset filter icon to redisplay the unfiltered objects, if you
filtered the view in step 3.

Crossprobing from the RTL View to Physical Analyst
Follow this procedure to crossprobe from the RTL view to the Physical Analyst
view.

1. Open the Physical Analyst view.

2. Enable the View->Cross Probing->Cross Probing from RTL Analyst option.

3. Click the object (instance or macro) in the RTL view to highlight and
crossprobe it. You can use the schematic view, hierarchy browser, or the
Object Query dialog box to select the object.

Physical Analyst View

Log File

LO

Chapter 16: Analyzing Designs in Physical Analyst Crossprobing in Physical Analyst

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
718 June 2009

You can cross probe hierarchical objects in the RTL view to the set of
objects for which the hierarchy is synthesized in the Physical Analyst
view. You cannot cross probe primitives in the RTL view which do not
have a counterpart in the mapped netlist. The tool highlights all objects
relating to the RTL object. For example, if you selected a module, all
mapped objects with physical information that implement the module in
the Physical Analyst view are highlighted.

HDL Analyst View

Core cell va_start_byte_add[8:0] View
Physical Analyst

Crossprobing in Physical Analyst Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 719

Crossprobing from the Technology View to Physical Analyst
Follow this procedure to crossprobe from the RTL view to the Physical Analyst
view.

1. Open the Physical Analyst view.

2. Enable the View->Cross Probing->Cross Probing from Tech Analyst option.

3. Click the object in the Technology view to highlight and crossprobe. You
can use the schematic view, hierarchy browser, or the Object Query dialog
box to select the object.

When you select an instance in the Technology view, the placed primi-
tive that corresponds to that instance in the Physical Analyst is
highlighted.

4. To automatically route cross-probed instances, enable the View->Cross
Probing->Auto route cross probe insts option (the option is enabled by
default).

The following shows cross probing from the Technology view to the
Physical Analyst view when this option is enabled.

LO

Chapter 16: Analyzing Designs in Physical Analyst Crossprobing in Physical Analyst

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
720 June 2009

Technology View

Physical Analyst View

Analyzing Netlists in Physical Analyst Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 721

Analyzing Netlists in Physical Analyst
In the Physical Analyst view, there are a number of commands for tracing
logic and analyzing the netlist, which can be accessed from the right-click
popup menus. These commands are context-sensitive, depending on the
selected object and where you click. See Chapter 3, User Interface Commands
of the Reference Manual for a complete list of View menu and Physical Analyst
popup menu commands.

See the following for details:

• Filtering the Physical Analyst View, on page 721

• Expanding Pin and Net Logic in Physical Analyst, on page 722

• Expanding and Viewing Connections in Physical Analyst, on page 727

Filtering the Physical Analyst View
Filtering is a useful first step in analysis, because you can focus on the
relevant parts of the design. Some commands, like the Expand Paths
commands, automatically generate filtered views. This procedure only
discusses manual filtering, where you use the Filter command to isolate
selected objects.

1. Select the objects that you want to isolate.

2. Select the filter command, using one of these methods:

– Select Filter->Show Selected from the Physical Analyst View menu or
from the right-click popup menu.

– Click the Filter Schematics icon ().

– Press Alt and draw a narrow V-shaped mouse stroke in the schematic
window. See Help->Mouse Stroke Tutor for an illustration.

The software filters the design and displays the selected objects in a
filtered view. You can now analyze the objects and perform operations
like tracing paths, building up logic, filtering further, finding objects,
hiding objects, or crossprobing.

3. To return to the previous view, click the Back () icon.

LO

Chapter 16: Analyzing Designs in Physical Analyst Analyzing Netlists in Physical Analyst

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
722 June 2009

Expanding Pin and Net Logic in Physical Analyst
When you are working in a filtered view, you might need to include more logic
in your selected set to analyze your design. This section describes commands
that expand logic fanning out from pins or nets; to expand paths, see
Expanding and Viewing Connections in Physical Analyst, on page 727.

Use the Expand commands with the Filter and Nets->Visible commands to isolate
and connect the logic that you want to examine.

1. To expand logic from a pin, do the following in the Physical Analyst view.

To view.. Do this..

All cells connected
to a pin

• Select a pin on the cell instance.
• Right-click and select Expand->Selected Pins. See

Expanding Logic Example, on page 723.
If you change your selection to all output pins, all input
pins, or all pins, you can use the same command to
expand from these points.

All cells that are
connected to a pin,
up to the next
register/port

• Select a pin on the cell instance.
• Right-click and select Expand to Register/Port->Selected

Pins. See Expanding Logic to Register/Port Example,
on page 724.

If you change your selection to all output pins, all input
pins, or all pins, you can use the same command to
expand to registers and ports from these points.

Analyzing Netlists in Physical Analyst Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 723

Expanding Logic Example

LO

Chapter 16: Analyzing Designs in Physical Analyst Analyzing Netlists in Physical Analyst

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
724 June 2009

Expanding Logic to Register/Port Example

Analyzing Netlists in Physical Analyst Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 725

2. To expand logic from a net, use the commands shown in the following
table.

To... Do this...

Select all instances on
a net

Select a net and select Select Net Instances->All Pins.
The software shows an unfiltered view that includes
all the instances connected to the net along the
signal path.
You can also choose to show output pins or input
pins with this command.
See the following example.

Highlight all visible
instances on a net

Select a net and select Highlight Visible Net Instances-
>All Pins. You see a filtered view of all instances
connected to the selected net along the signal path.
You can also select to show output pins or input
pins.

Select the net driver Select a net and select Select Net Driver. The software
shows an unfiltered view that includes the driver of
the net.

Go to the net driver Select a net and select Go to Net Driver. The software
shows and scrolls to the driver of the net.

LO

Chapter 16: Analyzing Designs in Physical Analyst Analyzing Netlists in Physical Analyst

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
726 June 2009

This example shows instances on a critical path. First, the critical path
was filtered. Then one of the nets on the critical path selected and the
Select Net Instances->All Pins selected. The figure shows the results.

Analyzing Netlists in Physical Analyst Chapter 16: Analyzing Designs in Physical Analyst

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 727

Expanding and Viewing Connections in Physical Analyst
This section describes commands that expand logic between two or more
objects. To expand logic out from a net or pin, see Expanding Pin and Net
Logic in Physical Analyst, on page 722. You can also isolate the critical path
or use the Timing Analyst to generate a schematic for a path between objects,
as described in Analyzing Timing with Physical Analyst, on page 750.

Use the following path commands with the Filter and Nets->Visible commands to
isolate and connect the logic that you want to examine.

To expand and view connections between selected objects, do the following:

1. Select two or more objects.

2. To expand the logic, select Expand Paths->All Pins from the popup menu.
Alternatively, you can select to expand from selected pins.

LO

Chapter 16: Analyzing Designs in Physical Analyst Analyzing Netlists in Physical Analyst

Synopsys FPGA Synthesis User Guide
728 June 2009

Synopsys, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: +1 408 215-6000, Fax: +1 408 222-068
www.solvnet.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology,
Certify, DesignWare, HDL Analyst, Identify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro,
Synthesis Constraints Optimization Environment, and VCS are registered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-perfor-
mance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and TotalRecall are trademarks of Synopsys, Inc. All other
names mentioned herein are trademarks or registered trademarks of their respective companies.

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 729

C H A P T E R 1 7

Analyzing Timing

This chapter describes typical analysis tasks. It describes graphical analysis
with the HDL Analyst tool as well as interpretation of the text log file. It covers
the following:

• Analyzing Timing in Schematic Views, on page 730

• Using the Stand-alone Timing Analyst, on page 736

• Using the Island Timing Analyst, on page 743

• Analyzing Timing with Physical Analyst, on page 750

• Handling Negative Slack, on page 756

LO

Chapter 17: Analyzing Timing Analyzing Timing in Schematic Views

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
730 June 2009

Analyzing Timing in Schematic Views
You can use the Timing Analyst and HDL Analyst functionality to analyze
timing. This section describes the following:

• Viewing Timing Information, on page 730

• Annotating Timing Information in the Schematic Views, on page 731

• Analyzing Clock Trees in the RTL View, on page 733

• Viewing Critical Paths, on page 733

• Using the Stand-alone Timing Analyst, on page 736

• Handling Negative Slack, on page 756

• Using the Island Timing Analyst, on page 743 (Synplify Premier)

Viewing Timing Information
Some commands, like Show Critical Path, Hierarchical Critical Path, Flattened Critical
Path, automatically enable Show Timing Information and display the timing infor-
mation. The following procedure shows you how to do so manually.

1. To analyze timing, enable HDL Analyst->Show Timing Information.

This displays the timing numbers for all instances in a Technology view.
It shows the following:

Delay This is the first number displayed.
• Combinational logic

This first number is the cumulative path delay to the output of
the instance, which includes the net delay of the output.

• Flip-flops
This first number is the path delay attributed to the flip-flop. The
delay can be associated with either the input or output path,
whichever is worse, because the flip-flop is the end of one path
and the start of another.

Slack
Time

This is the second number, and it is the slack time of the worst
path that goes through the instance. A negative value indicates
that timing constraints can not be met.

Analyzing Timing in Schematic Views Chapter 17: Analyzing Timing

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 731

Annotating Timing Information in the Schematic Views
You can annotate the schematic views with timing information for the compo-
nents in the design. Once the design is annotated, you can search for these
properties and their associated instances.

1. In the Device panel of the Implementation Options dialog box, enable
Annotated Properties for Analyst.

For each synthesis implementation and each place-and-route imple-
mentation, the tool generates properties and stores them in two files
located in the project folder:

2. To view the annotated timing, open an RTL or Technology view.

3. To view the timing information from another associated implementation,
do the following:

– Open an RTL or Technology view. It displays the timing information
for that implementation.

.sap Synplify Annotated Properties
Contains the annotated design properties generated after compilation,
like clock pins.

.tap Timing Annotated Properties
Contains the annotated timing properties generated after compilation.

LO

Chapter 17: Analyzing Timing Analyzing Timing in Schematic Views

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
732 June 2009

– Select HDL Analyst->Select Timing, and select another implementation
from the list. The list contains the main implementation and all
associated place-and-route implementations. The timing numbers in
the current Analyst view change to reflect the numbers from the
selected implementation.

In the following example, an RTL View shows timing data from the test
implementation and the test/pr_1 (place and route) implementation.

4. Once you have annotated your design, you can filter searches using
these properties with the find command.

– Use the find -filter {@<prop_name>=<prop_value>} command for the
searches. See Find Filter Properties, on page 1266 in the Reference
Manual for a list of properties. For information about the find
command, see Tcl find Command, on page 1260 in the Reference
Manual.

– Precede the property name with the @ symbol.

For example to find fanouts larger than 60, specify find -filter {@fanout>=60}.

Analyzing Timing in Schematic Views Chapter 17: Analyzing Timing

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 733

Analyzing Clock Trees in the RTL View
To analyze clock trees in the RTL view, do the following:

1. In the Hierarchy Browser, expand Clock Tree, select all the clocks, and
filter the design.

The Hierarchy Browser lists all clocks and the instances that drive them
under Clock Tree. The filtered view shows the selected objects.

2. If necessary, use the filter and expand commands to trace clock
connections back to the ports and check them.

For details about the commands for filtering and expanding paths, see
Filtering Schematics, on page 658, Expanding Pin and Net Logic, on
page 660 and Expanding and Viewing Connections, on page 664.

3. Check that your defined clock constraints cover the objects in the
design.

If you do not define your clock constraints accurately, you might not get
the best possible synthesis optimizations.

Viewing Critical Paths
The HDL Analyst tool makes it simple to find and examine critical paths and
the relevant source code. The following procedure shows you how to filter and
analyze a critical path. You can also use the procedure described in Using the
Stand-alone Timing Analyst, on page 736 to view this and other paths.

1. If needed, set the slack time for your design.

– Select HDL Analyst->Set Slack Margin.

– To view only instances with the worst-case slack time, enter a zero.

– To set a slack margin range, type a value for the slack margin, and
click OK. The software gets a range by subtracting this number from
the slack time, and the Technology view displays instances within
this range. For example, if your slack time is -10 ns, and you set a
slack margin of 4 ns, the command displays all instances with slack
times between -6 ns and -10 ns. If your slack margin is 6 ns, you see
all instances with slack times between -4 ns and -10 ns.

LO

Chapter 17: Analyzing Timing Analyzing Timing in Schematic Views

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
734 June 2009

2. Display the critical path using one of the following methods. The
Technology view displays a hierarchical view that highlights the
instances and nets in the most critical path of your design.

– To generate a hierarchical view of the critical path, click the Show
Critical Path icon (stopwatch icon (), select HDL Analyst->Technology-
>Hierarchical Critical Path, or select the command from the popup menu.
This is a filtered view in the same window, with hierarchical logic
shown in transparent instances. History commands apply, so you
can return to the previous view by clicking Back.

– To flatten the hierarchical critical path described above, right-click
and select Flatten Schematic. The software generates a new view in the
current window, and flattens only the transparent instances needed
to show the critical path; the rest of the design remains hierarchical.
Click Back to go the top-level design.

– To generate a flattened critical path in a new window, select HDL
Analyst->Technology->Flattened Critical Path. This command uses more
memory because it flattens the entire design and generates a new
view for the flattened critical path in a new window. Click Back in this
window to go to the flattened top-level design or to return to the
previous window.

3. Use the timing numbers displayed above each instance to analyze the
path. If no numbers are displayed, enable HDL Analyst->Show Timing
Information. Interpret the numbers as follows:

Flattened Critical Path

Hierarchical Critical Path

Analyzing Timing in Schematic Views Chapter 17: Analyzing Timing

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 735

4. View instances in the critical path that have less than the worst-case
slack time. For additional information on handling slack times, see
Handling Negative Slack, on page 756.

If necessary change the slack margin and regenerate the critical path.

5. Crossprobe and check the RTL view and source code. Analyze the code
and the schematic to determine how to address the problem. You can
add more constraints or make code changes.

6. Click the Back icon to return to the previous view. If you flattened your
design during analysis, select Unflatten Schematic to return to the top-level
design.

There is no need to regenerate the critical path, unless you flattened
your design during analysis or changed the slack margin. When you
flatten your design, the view is regenerated so the history commands do
not apply and you must click the Critical Path icon again to see the critical
path view.

7. Rerun synthesis, and check your results.

If you have fixed the path, the window displays the next most critical
path when you click the icon.

Repeat this procedure and fix the design for the remaining critical paths.
When you are within 5-10 percent of your desired results, place and
route your design to see if you meet your goal. If so, you are done. If your
vendor provides timing-driven place and route, you might improve your
results further by adding timing constraints to place and route.

8.8, 1.2

Delay
For combinational logic, it is the cumulative delay to
the output of the instance, including the net delay of
the output. For flip-flops, it is the portion of the path
delay attributed to the flip-flop. The delay can be
associated with either the input path or output path,
whichever is worse, because the flip-flop is the end of
one path and the start of another.

Slack time
Slack of the worst path that
goes through the instance. A
negative value indicates that
timing has not been met.

LO

Chapter 17: Analyzing Timing Using the Stand-alone Timing Analyst

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
736 June 2009

Using the Stand-alone Timing Analyst
The timing report in the log file provides default timing information. Use the
stand-alone timing analyzer for your more specific requirements.You can run
the stand-alone timing analyzer to customize a timing report (.ta) for the
following types of information:

• More details on a specific path

• Results for paths other than the top five timing paths (default)

• Modifications to constraints for stand-alone timing analysis, without
rerunning synthesis

1. Select Analysis->Timing Analyst or click on the Timing Analyst icon().

Using the Stand-alone Timing Analyst Chapter 17: Analyzing Timing

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 737

2. Fill in the parameters as appropriate.

You can type in the from/to or through points on the Timing Report Generation
dialog box, or you can cut-and-paste or drag-and-drop valid objects from
the Technology view into the fields. However, it is recommended that you
open the Technology view, whenever you cut-and-paste or drag-and-
drop objects.

See Timing Report Generation Parameters, on page 218 in the Reference
Manual for details on timing analysis parameters and how they can be
filtered.

3. You can modify constraints to determine the effect on timing. To do this
you need a constraint file to use with the stand-alone Timing Analyzer.

– Select File->New and click on Analysis Constraint File.

– Fill in the constraint file name.

The tool automatically assigns the .adc extension to the filename.

LO

Chapter 17: Analyzing Timing Using the Stand-alone Timing Analyst

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
738 June 2009

– Make sure Add to Project is enabled and click OK.

This opens the text editor for you to create the new constraints.

– Enter any additional constraints that you want to apply for timing.
Keep in mind that the original .sdc file has already been applied to
the design. Any timing exception constraints in this file must not
conflict with constraints that are already in effect. See Conflict
Resolution for Timing Exceptions, on page 451 for information on how
the tool prioritizes timing exceptions.

For more information about applying .adc constraints, see Entering
Constraints into the .adc File, on page 741.

– When you are done, save and close the file. This adds the file to your
project.

If you have an existing.adc file, use the Add File command to add this
file to your project. Select Analysis Design Constraint Files (*.adc) as the file
type.

Using the Stand-alone Timing Analyst Chapter 17: Analyzing Timing

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 739

– Enable the appropriate .adc constraint file on the Timing Report
Generation dialog box.

LO

Chapter 17: Analyzing Timing Using the Stand-alone Timing Analyst

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
740 June 2009

4. Click OK to set the selected options.

5. Click Generate to run the report (or select Analysis->Timing).

If the design was run in Physical Synthesis mode, make sure that the
Physical Synthesis switch is still enabled when you run stand alone timing
analysis to ensure proper results.

The software generates a custom report file called project_name.ta ,
located in the implementation directory (the directory you specified for
synthesis results).

The software also generates a corresponding output netlist file, with an
.srm extension.

6. Analyze results.

– View the report (Open Report) in the Text Editor. The following figure
shows a sample report showing analysis results based on maximum
delay for the worst paths

Using the Stand-alone Timing Analyst Chapter 17: Analyzing Timing

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 741

– View the netlist (View Critical Path) in a Technology view. This
Technology view, labeled Timing View in the title bar, shows only the
paths you specified in the Timing Analyst dialog box. Note that the
Timing Analyst and Show Critical Path commands (and equivalent icons
and shortcuts) are disabled whenever the Timing View is active.

Entering Constraints into the .adc File
Constraints and collections applied in the .sdc file reference the RTL-level
database. Synthesis optimizations such as retiming and replication can
change object names during mapping. This is when RTL-level constraints are
properly translated and applied to the mapped objects.

However, the standalone timing analyst does not map objects. It simply reads
the gate-level object names from post mapping; this is reflected in the
Technology view. Therefore, you must define objects either explicitly or with
collections from the Technology view when you enter constraints into the
.adc file.

Example
Suppose register en_reg is replicated during mapping to reduce fanout. Also,
let’s assume that both registers en_reg and en_reg_rep2 connect to register
dataout[31:0].

LO

Chapter 17: Analyzing Timing Using the Stand-alone Timing Analyst

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
742 June 2009

If you define the following false path constraint in the .adc file:

define_false_path -from {{i:en_reg}} -to {{i:dataout[31:0]}}

the standalone timing analyzer does not automatically treat paths from the
replicated register en_reg_rep2 as false paths. Unlike constraints in the .sdc
file, you must specify this replicated register explicitly or as a collection. Only
then, are all paths properly treated as false paths.

So in this example, you must define the following constraints in the .adc file:

define_false_path -from {{i:en_reg}} -to {{i:dataout[31:0]}}

define_false_path -from {{i:en_reg_rep2}} -to
{{i:dataout[31:0]}}

or

define_scope_collection en_regs {find -seq {i:en_reg*} -filter
(@name == en_reg || @name == en_reg_rep2)}

define_false_path -from {{$en_regs}} -to {{i:dataout[31:0]}}

Using the Island Timing Analyst Chapter 17: Analyzing Timing

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 743

Using the Island Timing Analyst
In the Synplify Premier tool, after you synthesize a design, you can generate a
timing report that contains a hierarchical display for groups of connected
critical paths called islands. The island timing report is useful for creating a
design plan and analyzing critical paths (routing vs. logic delay), because it
identifies the instances or pins belonging to multiple paths and how the
critical paths in an island group are connected. Critical paths with a large
percentage of total route delay typically have better improvements with
design planning.

See the following for more information:

• Working in the Island Timing Analyst Interface, on page 743

• Generating the Island Timing Report Automatically, on page 745

• Generating the Island Timing Report Interactively, on page 747

• Defining Group Range and Global Range for Island Timing, on page 748

• Viewing the Island Timing Report, on page 749

For details on how to interpret information in this report, see Synplify Premier
Island Timing Report, on page 324.

The island timing report can be generated for the following technologies:

• Xilinx – Virtex-II, Virtex-II Pro, Virtex-4, Virtex-5, and Spartan-3

• Altera – Stratix, Stratix GX, Stratix II, Stratix II GX, Stratix III, Stratix IV,
Cyclone, and Cyclone II

Working in the Island Timing Analyst Interface
1. Open the Island Timing interface by clicking on the Control Panel icon

().

The Island Timing interface opens.

LO

Chapter 17: Analyzing Timing Using the Island Timing Analyst

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
744 June 2009

2. Set parameters and generate an island timing report, as described in
Generating the Island Timing Report Automatically, on page 745 and
Generating the Island Timing Report Interactively, on page 747.

The summary report opens.

3. The following table shows you how to organize and work with the
summary data:

Sort Columns Click on the column header to toggle between ascending
and descending order. When sorting several columns, the
most recent column clicked will be the most significant
column and the first column clicked becomes the least
significant column in the summary display. Islands are
sorted separately, unless you choose to display all paths
at a flat level.

Reorder the columns Drag and drop from the column header to the new
location.

Islands/Paths Summary Report

Islands/Paths Details ReportIslands/Paths Control Panel

Using the Island Timing Analyst Chapter 17: Analyzing Timing

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 745

Generating the Island Timing Report Automatically
Use the following process to automatically generate the hierarchical-bas
island timing report during the mapper phase.

Use the Islands/Paths control panel to generate an island timing report.

1. Open the Island Timing interface by clicking on the Control Panel icon
().

2. Set the following parameters either manually in their appropriate
parameter fields, or by using the slider controls on the control panel.

– Paths per Island
Specify the number of paths to report for each island.

– Global Range (ns)
Specify a global range from the worst case slack of the design to
determine the number of islands displayed in the timing report. Only
the islands above this global slack range (water level) are displayed in
the island report. See Defining Group Range and Global Range for
Island Timing, on page 748.

Select Islands or Critical
Paths

To select islands or critical paths, use the left-mouse
button.
To select multiple islands or paths use either the Shift or
Ctrl key with the left-mouse button.

Crossprobe to the HDL
Analyst

To crossprobe to the HDL Analyst view, do the following:
• Make sure to open the HDL Analyst flattened

Technology view first. If you are going use the RTL view,
make sure open the Technology view also.

• Then select islands or critical paths from the
Islands/Paths Summary display.

• Click on the Cross Probe button.
• You can then filter critical paths in the HDL Analyst

view.
• Use crossprobing from the HDL Analyst view, to see

timing data in the Technology view.
Note that when you choose to group by islands, simply
select the island to crossprobe the entire island which
includes all its paths in the HDL Analyst view.

LO

Chapter 17: Analyzing Timing Using the Island Timing Analyst

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
746 June 2009

– Group Range (ns)
Specify a group range from the worst case slack of the island to
determine the critical paths for each island. Only the paths within
this group slack range for an island are displayed in the island report.
See Defining Group Range and Global Range for Island Timing, on
page 748.

– Max Paths/Island
Specify the number of paths to report for each island. Type the
number of paths in the parameter field or use the up/down scroll
option located on the right side of the parameter box. If the number of
paths which do not meet the specified slack for an island exceeds the
maximum number of paths specified, then the most critical paths
within this limit are displayed in the island timing report.

3. Click the Generate Report button.

You can interactively change the values used to generate the timing
report. These changes are reflected in the Island Timing Analyst tool
immediately after you click on the Generate Report button.

For more details about the Island Timing Report, see Using the Island
Timing Analyst, on page 743.

Using the Island Timing Analyst Chapter 17: Analyzing Timing

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 747

4. After you have set all the implementation option settings, click OK and
close the dialog box.

5. When you are ready to synthesize your design, select Run->Synthesize in
the Project view or simply click on the Run button.

After synthesis completes, the log file (.srr) displays the following
message:

@N|Hierarchical island-based critical path report is located in
C:\path_directory\design_name.tah

The timing report file (.tah) is listed in the Implementation Results view of
your project.

See Viewing the Island Timing Report, on page 749 for further informa-
tion.

Generating the Island Timing Report Interactively
Use the following process to interactively generate the island report from the
Island Timing Analyst.

1. Select the Timing Report tab of the Implementation Options panel and in the
Island Timing Report section of this pane, check that the Generate Island
Report switch is disabled. Otherwise, the Island Timing Analyst will
display the report generated with the values used from this pane.

2. Then synthesize your design by either selecting Run->Synthesize in the
Project view or simply clicking on the Run button.

3. Invoke the Island Timing Analyst by either clicking on the Island Timing
Analyst icon () or selecting HDL Analyst->Island Timing Analyst from the
menu.

4. Then you must specify values for group range, global range, and
maximum paths per islands from the Islands/Paths Control panel. See
Defining Group Range and Global Range for Island Timing, on page 748.

5. Click on the Generate Report button from the Islands/Paths Control
panel.

See Viewing the Island Timing Report, on page 749 for more detailed
information.

LO

Chapter 17: Analyzing Timing Using the Island Timing Analyst

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
748 June 2009

Defining Group Range and Global Range for Island Timing
Global Range specifies the lower bound (or water level) for the timing report.
The Group Range value specifies the range from the worst case slack, and thus
determines the instances that are reported for each individual island.

The following table shows how different settings affect what is reported:

The following graphically shows how the island report lists all islands in the
design that fall within the range from -3 to -1 (global range). For each island,
it reports instances whose slack is within 1 ns of the worst-case slack for that
island (group range).

Worst Case
Slack

 -3 ns

Global Range 2 ns As the worst case slack is -3 ns, setting the global range
to 2 causes the water level to be -1 ns (-3 + 2). The
island report will not contain instances with a slack
that exceeds (is more positive) than -1.

Group Range 1 ns This specifies a range from the worst case slack for an
island; the software reports all island instances that fall
within this range. If the worst-case slack for an island
is -3 ns, the report for that island will contain instances
with slack in the range of -3ns to -2 ns (-3 +1).

Island 1

Island 2
Island 3

-3

-2

-1

0

Group range = 1

Water Level

Slack (ns)

Other path

Worst case slack

Using the Island Timing Analyst Chapter 17: Analyzing Timing

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 749

Viewing the Island Timing Report
The timing report lists the islands with their worst paths displayed based on
the number of paths you requested for the island. For each path, the logic
elements and nets and net delays are displayed in an ordered from-to list.

1. To view the hierarchical-based island timing report file, you must first
select Options->Project View Options and enable the Show all files in results
directory check box.

2. To view the timing report, either

– Double-click the .tah file.

– Select the .tah file, right-click and select Open as Text from the popup
menu.

3. To find information in the timing file, select Edit -> Find or press Ctrl-f. Fill
out the criteria in the form and click OK.

To view the island timing report interactively from the Island Timing
Analyst tool, see the Summary and Detail views in the Island Timing. See
Assigning Critical Paths from Island Timing to a Region, on page 516 for
details about how to use the critical path timing information in this file
or the tool for QoR improvements with physical synthesis.

LO

Chapter 17: Analyzing Timing Analyzing Timing with Physical Analyst

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
750 June 2009

Analyzing Timing with Physical Analyst
You can use the Physical Analyst functionality to analyze timing. This section
describes how to view and use the critical path for further physical synthesis.

• Viewing Critical Paths in Physical Analyst, on page 750

• Tracing Critical Paths Forward in Physical Analyst, on page 753

• Tracing Critical Paths Backward in Physical Analyst, on page 755

Viewing Critical Paths in Physical Analyst
The Physical Analyst tool makes it easy to find and examine critical paths
and the relevant logic in the HDL Analyst schematic view. Make sure the HDL
Analyst view is open, for example, by selecting HDL Analyst->Technology->
Flattened View or HDL Analyst->RTL->Flattened View. The following procedure
shows you how to filter and analyze a critical path.

1. To generate a view of the critical path with the Physical Analyst tool,
click the Show Critical Path icon (stopwatch icon () or select the
command from the popup menu. To zoom in on the critical path, right-
click and select Zoom Selected from the popup menu.

2. Check the Technology view.

You can also cross probe the critical path from the flattened Technology
view to the Physical Analyst view by clicking on the Show Critical Path icon
(). Then, right-click and select Select All Schematic->Instances. Make
sure the Physical Analyst view is open.

3. Check the Physical Analyst view. Critical path instances and nets
should be highlighted in this view.

Analyzing Timing with Physical Analyst Chapter 17: Analyzing Timing

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 751

4. In the HDL Analyst view that is already open, click on the Filter Schematics
icon (). Only the instances and nets belonging to the critical timing
path are displayed, as shown below.

LO

Chapter 17: Analyzing Timing Analyzing Timing with Physical Analyst

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
752 June 2009

5. In the HDL Analyst view, right-click and select Expand Paths from the
popup menu. Then, you can drag-and-drop this logic into a region on
the device design plan (.sfp) file for further physical synthesis.

Analyzing Timing with Physical Analyst Chapter 17: Analyzing Timing

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 753

Tracing Critical Paths Forward in Physical Analyst
The following procedure shows you how to trace a critical path forwards
starting from the instance containing the critical start point.

1. Do one of the following in the Physical Analyst view:

– Right-click and select Critical Path->Expand Path Forward from the popup
menu

– Press F3.

The instance containing the critical path start point is displayed in green
and highlighted. Move the cursor over the instance to display a tool tip
that specifies its name and identifies this as the critical start point.

You can also use the Filter Search option of the Find command to locate
the Critical path start point.

2. Select Critical Path->Expand Path Forward or press F3 again.

The next instances on the critical path and input ports that feed into the
path are displayed and highlighted and shown connected to the critical
path start point.

LO

Chapter 17: Analyzing Timing Analyzing Timing with Physical Analyst

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
754 June 2009

3. Repeat the previous step to continue to trace the path to the next
instance in the path. Continue until you reach the end point.

(Critical End)

(Critical Start)

Analyzing Timing with Physical Analyst Chapter 17: Analyzing Timing

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 755

The following figure shows you how the critical path is finally displayed.

Tracing Critical Paths Backward in Physical Analyst
The following procedure shows you how to trace a critical path backward. See
the figures in Tracing Critical Paths Forward in Physical Analyst, on page 753,
which also apply to this procedure.

1. Do one of the following in the Physical Analyst view:

– Right-click and select Critical Path->Expand Path Backward from the
popup menu.

– Press Shift+F3.

LO

Chapter 17: Analyzing Timing Handling Negative Slack

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
756 June 2009

The instance containing the critical path end point is displayed and
highlighted. Move the cursor over the instance to display a tool tip that
specifies its name and identifies this as the critical end point.

You can also use the Filter Search option of the Find command to locate
the Critical path end point. The cell location of the critical path end point is
displayed in red in the Physical Analyst view.

2. Use one of the methods described in the previous step to continue to
trace the net to the next instance in its path.

The next instance containing the critical path and output ports that feed
into the path are displayed and highlighted and shown connected to the
critical path end point.

3. Repeat the previous step until you reach the start point. See the figure
in step 3 of Tracing Critical Paths Forward in Physical Analyst, on
page 753 for an example of how the critical path is displayed.

Handling Negative Slack
Positive slack time values (greater than or equal to 0 ns) are good, while
negative slack time values (less than 0 ns) indicate the design has not met
timing requirements. The negative slack value indicates the amount by which
the timing is off because of delays in the critical paths of your design.

The following procedure shows you how to add constraints to correct negative
slack values. Timing constraints can improve your design by 10% to 20%.

1. Display the critical path in a filtered Technology view.

– For a hierarchical critical path, either click the Critical Path icon, select
HDL Analyst->Show Critical Path, or select HDL Analyst->Technology->
Hierarchical Critical Path.

– For a flat path, select HDL Analyst->Technology->Flattened Critical Path.

2. Analyze the critical path.

– Check the end points of the path. The start point can be a primary
input or a flip-flop. The end point can be a primary output or a flip-
flop.

Handling Negative Slack Chapter 17: Analyzing Timing

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 757

– Examine the instances. Use the commands described in Expanding
Pin and Net Logic, on page 660 and Expanding and Viewing
Connections, on page 664. For more information on filtering
schematics, see Filtering Schematics, on page 658.

3. Determine whether there is a timing exception, like a false or multicycle
path. If this is the cause of the negative slack, set the appropriate timing
constraint.

If there are fewer start points, pick a start point to add the constraint. If
there are fewer end points, add the constraint to an end point.

4. If your design does not meet timing by 20% or more, you may need to
make structural changes. You could do this by doing either of the
following:

– Enabling options like pipelining (Pipelining, on page 429), retiming
(Retiming, on page 433), FSM exploration (Running the FSM Explorer,
on page 458), or resource sharing (Sharing Resources, on page 450).
The Synplify product does not support pipelining, retiming, and FSM
exploration.

– Modifying the source code.

5. Rerun synthesis and check your results.

LO

Chapter 17: Analyzing Timing Handling Negative Slack

Synopsys FPGA Synthesis User Guide
758 June 2009

Synopsys, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: +1 408 215-6000, Fax: +1 408 222-068
www.solvnet.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology,
Certify, DesignWare, HDL Analyst, Identify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro,
Synthesis Constraints Optimization Environment, and VCS are registered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-perfor-
mance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and TotalRecall are trademarks of Synopsys, Inc. All other
names mentioned herein are trademarks or registered trademarks of their respective companies.

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 759

C H A P T E R 1 8

Optimizing for Specific Targets

This chapter covers techniques for optimizing your design for various
vendors. The information in this chapter is intended to be used together with
the information in Chapter 8, Inferring High-Level Objects.

This chapter describes the following:

• Optimizing Actel Designs, on page 760

• Optimizing Altera Designs, on page 764

• Optimizing Lattice Designs, on page 785

• Optimizing Xilinx Designs, on page 797

LO

Chapter 18: Optimizing for Specific Targets Optimizing Actel Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
760 June 2009

Optimizing Actel Designs
The Synplify and Synplify Pro synthesis tools support Actel designs. The
following procedures Actel-specific design tips.

• Using Predefined Actel Black Boxes, on page 760

• Using ACTGen Macros, on page 761

• Working with Radhard Designs, on page 762

• Improving Performance in Actel Physical Synthesis Designs, on
page 763

For additional Actel-specific information, see Passing Information to the P&R
Tools, on page 832 and Generating Vendor-Specific Output, on page 836.

Using Predefined Actel Black Boxes
The Actel macro libraries contain predefined black boxes for Actel macros so
that you can manually instantiate them in your design. For information
about using ACTGen macros, see Using ACTGen Macros, on page 761. For
general information about working with black boxes, see Defining Black
Boxes for Synthesis, on page 358.

To instantiate an Actel macro, use the following procedure.

1. Locate the Actel macro library file appropriate to your technology in one
of these subdirectories under synplify_install_dir/lib.

Use the macro file that corresponds to your target architecture. If you
are targeting the 1200XL architecture, use the act2.v or act2.vhd
macro library.

2. Add the Actel macro library at the top of the source file list for your
synthesis project. Make sure that the library file is first in the list.

proasic ProASIC (500K), ProASICPLUS (PA), ProASIC3/3E, Fusion, and
IGLOO/IGLOOe macros

actel Macros for all other Actel technologies.

Optimizing Actel Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 761

3. For VHDL, also add the appropriate library and use clauses to the top of
the files that instantiate the macros:

library family;
use family.components.all ;

Specify the appropriate technology in family; for example, act3.

Using ACTGen Macros
The following procedure shows you how to include ACTgen macros in your
design. For information about using Actel macro libraries, see Using
Predefined Actel Black Boxes, on page 760. For general information about
working with black boxes, see Defining Black Boxes for Synthesis, on
page 358.

1. In ACTgen, generate the function you want to include.

2. Use the Actel netlist translation utility to convert the resulting EDIF
netlist to VHDL or Verilog.

3. For VHDL macros, do the following:

– Edit the ACTgen VHDL file, and add the appropriate library clause at
the top of the file:

library family ;
use family.components.all

– Include the VHDL version of the ACTgen result in your synthesis
source file list.

4. For Verilog macros, do the following:

– Include the appropriate Actel macro library file for your target
architecture in your the source files list for your project.

– Include the Verilog version of the ACTgen result in your source file
list. Make sure that the Actel macro library is first in the source files
list, followed by the ACTgen Verilog files, followed by the other source
files.

5. Synthesize your design as usual.

LO

Chapter 18: Optimizing for Specific Targets Optimizing Actel Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
762 June 2009

Working with Radhard Designs
The following procedure outlines how to specify radhard values for a design
with the syn_radhardlevel attribute. Remember that the attribute is not recur-
sive. It only applies to all registers at the level where it is set and does not
affect lower-level registers.

You specify radhard values in modules and architecture in both the
Attributes panel in SCOPE and in the source code. However, for registers, it
must be specified in the source code only.

1. Add to your project the Actel macro files appropriate to the radhard
values you plan to set in the design. The macro files are in
install_dir/lib/actel:

For ProASIC3/3E devices only, you do not need to add the Actel macro
file to your project.

2. To set a global or default syn_radhardlevel attribute, do the following:

– Set the value in the source file for the module. The following sets all
registers of module_b to tmr:

– Make sure that the corresponding Actel macro file (see step 1) is the
first file listed in the project, if required.

3. To set a syn_radhardlevel value on a per register basis, set it in the source
file. You can use a register-level attribute to override a default value with
another value, or set it to a value of none, so that the global default value
is not applied to the register. To set the value in the source file, add the

Radhard Value Verilog Macro File VHDL Macro File

cc cc.v cc.vhd

tmr tmr.v tmr.vhd

tmr_cc tmr_cc.v tmr_cc.vhd

VHDL Verilog

library synplify;
use synplify.attributes.all;
attribute syn_radhardlevel of
behav: architecture is "tmr";

module module_b (a, b, sub,
clk, rst) /*synthesis
syn_radhardlevel="tmr"*/;

Optimizing Actel Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 763

attribute to the register. For example, to set the value of register bl_int to
tmr, enter the following in the module source file:

Improving Performance in Actel Physical Synthesis Designs
The Synplify Premier tool is timing-driven, so optimizations depend on timing
constraints and are applied until all constraints are met. Therefore, it is very
important that you adequately apply timing constraints for physical synthesis
and not over-constrain the tool. This section includes guidelines for applying
constraints.

1. Verify constraints consistency between synthesis and P&R:

– Clock constraints

– Clock-to-clock constraints

– I/O delays

– I/O standard, drive, slew and pull-up/pull-down

– Multi-cycle and false paths

– Max-delay paths

– DCM parameters

– Register packing into IOB

2. Ensure the final physical synthesis slack is negative, but no more than
10-15% of the clock constraint.

3. Check the log file for Pre-placement timing snapshot.

If it indicates that a clock has positive slack at this point, but in the final
results the clock has negative slack, use the -route constraint for the
clock. This option allows you to control the amount of early timing
optimizations for the clock domain. However, large -route values can
degrade performance. Therefore, to determine the correct -route value to
use, start with smaller values and increase iteratively. For example, start
with half the difference between the estimate and actual slack, or 5% of
the clock estimate, whichever is the smallest.

VHDL Verilog

library synplify;
use synplify.attributes.all;
attribute syn_radhardlevel of
bl_int: signal is "tmr"

reg [15:0] a1_int, b1_int
/*synthesis syn_radhardlevel
= "tmr"*/;

LO

Chapter 18: Optimizing for Specific Targets Optimizing Altera Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
764 June 2009

Optimizing Altera Designs
This section includes some Altera technology-specific tips for optimizing your
design. These tips are in addition to the general guidelines described in Tips
for Optimization, on page 426. This section discusses the following topics that
are specific to Altera technologies:

• Design Tips for APEX and FLEX Designs, next

• FLEX Design Tips, on page 765

• Determining ROM Implementation, on page 765

• Working with Altera EABs and ESBs, on page 767

• Working with Altera PLLs, on page 769

• Specifying Altera I/O Locations, on page 772

• Packing I/O Cell Registers in Altera Designs, on page 774

• Specifying HardCopy and Stratix Companion Parts, on page 775

• Specifying Core Voltage in Stratix III Designs, on page 776

• Using LPMs in Simulation Flows, on page 777

• Improving Altera Physical Synthesis Performance, on page 779

• Working with Quartus II, on page 779

In addition, you can use the techniques described in these other topics,
which apply to other vendors as well as Altera:

• Defining Black Boxes for Synthesis, on page 358

• Inferring RAMs, on page 372

• Inferring Shift Registers, on page 410

• Working with LPMs, on page 416

• Passing Information to the P&R Tools, on page 832

• Generating Vendor-Specific Output, on page 836

Optimizing Altera Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 765

Design Tips for APEX and FLEX Designs
Use these techniques when working with APEX and FLEX designs.

APEX Design Tips
• Set the option to map to ATOM primitives. When the software maps

elements to ATOM primitives, the Quartus tool can skip synthesis, thus
reducing run time. The pin assignments, part information, and cliquing
information are forward-annotated to Quartus.

• If you have a large design and need to conserve flip-flops, pack the regis-
ters into Apex I/O cells. See Packing I/O Cell Registers in Altera Designs,
on page 774 for more information.

FLEX Design Tips
The software automatically maps logic to Altera cells like LCELL, carry and
cascade primitives. However, the default setting for the Max+ Plus II place-
and-route tool is to do technology mapping. You must reconfigure Max+ Plus
II to take full advantage of the Synopsys synthesis results.

If you are not going to use the synthesis technology mapping, turn off the Map
logic to Lcells option before you run synthesis.

Determining ROM Implementation
The software automatically infers ROMs from CASE statements in the RTL
code. This procedure shows you how to control the implementation of ROM in
APEX and FLEX designs with the syn_romstyle attribute.

1. To implement the ROM structure as a block, do the following:

– Apply the syn_romstyle attribute to the signal output value.

– Set the value of the attribute to block_ROM. You can set the attribute
in the source code, the SCOPE interface, or directly in the constraint
file. See Entering Attributes and Directives, on page 304 for
information.

LO

Chapter 18: Optimizing for Specific Targets Optimizing Altera Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
766 June 2009

– Run synthesis.

The software implements all small ROMs (less than seven address bits)
as logic. It implements the larger ROM structures as extended system
blocks (ESBs) in APEX designs and extended array blocks (EABs) in
FLEX designs.

If you have to conserve ROM resources, you can turn off ROM imple-
mentation globally with the altera_auto_use_esb and altera_auto_use_eab
attributes, and then specify the ROMs you want implemented as block
ROMs with the syn_romstyle attribute.

2. To implement the ROM structure as discrete logic, do the following:

– Apply the syn_romstyle attribute to the signal output value.

– Set the value of the attribute to logic.

– Run synthesis.

The software implements all small ROMs (less than seven address bits)
and all other ROMs with this attribute as discrete logic primitives
instead of blocks.

Format Example

Verilog reg [3:0] z /* synthesis syn_romstyle="block_rom" */;

VHDL signal z : std_logic_vector(3 downto 0);
attribute syn_romstyle : string;
attribute syn_romstyle of z : signal is "block_rom";

Constraint
file syntax

define_attribute {z_20[3:0]} syn_romstyle
{block_rom}

Format Example

Verilog reg [3:0] z /* synthesis syn_romstyle="logic" */;

VHDL signal z : std_logic_vector(3 downto 0);
attribute syn_romstyle : string;
attribute syn_romstyle of z : signal is "logic";

Constraint file
syntax

define_attribute {z_20[3:0]} syn_romstyle {logic}

Optimizing Altera Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 767

3. To view the ROM in your design, do the following:

– Open the RTL view of the design.

– Find the ROM block and push into it. A text window opens and
displays the ROM table view of the data in the block.

Working with Altera EABs and ESBs
An Altera EAB is an extended array block, in FLEX10K designs. An ESB is an
extended system block in Apex 20K and 20KE designs.

1. Attach the altera_implement_in_eab attribute to the component you want to
implement as an EAB, and set the value to 1.

See altera_auto_use_eab Attribute, on page 915 in the Reference Manual
for syntax details.

2. To implement an ESB, do the following:

– Make your design hierarchical, and instantiate the module/entity in
the ESB at the top level.

– Attach the altera_implement_in_esb attribute to the component.

– Set the value to true.

When this attribute is set, the software implements the logic as a
PTERM in an extended system block.

3. Run synthesis.

For FLEX10KE, APEX20K, and 20KE designs, the software generates
Altera-specific single or dual-port RAMs with asynchronous READs.
When source code is written as a single port RAM, the software imple-
ments it as a dual-port RAM with single port RAM functionality, using
the LPM_RAM_DQ:ALTDPRAM primitive.

Verilog FLEX EAB Example
The following example uses the altera_implement_in_eab attribute to map logic
into EABs for Altera FLEX devices. An integer square root of an input bus of
width 2n with a result bus size of n was computed. This function is mapped to
a 256x4 block of RAM.

LO

Chapter 18: Optimizing for Specific Targets Optimizing Altera Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
768 June 2009

module sqrtb(z, a);
parameter asize = 8;
output [(asize/2)-1:0] z;
input [asize-1:0] a;
reg [(asize/2)-1:0] z;

always @(a) begin :lbl
integer i;
// r is remainder, tt is delta for adding one bit
// v is current sqrt value
reg [asize-1:0] v, r, tt;

v = 0;
r = a;
for (i = asize/2 - 1; i >= 0; i = i - 1) begin

tt = (v << (i + 1)) | (1 << (i + i));
if (tt <= r) begin

v = v | (1 << i);
r = r - tt;

end
end

z = v;
end
endmodule

VHDL FLEX EAB Example
This example uses the altera_implement_in_eab attribute to map logic into EABs
for Altera FLEX devices.

library ieee, synplify;
use ieee.std_logic_1164.all;

entity mymux is
port (in1: in std_logic_vector(9 downto 0);

sel : in std_logic;
dout : out std_logic_vector(9 downto 0));

end mymux;

architecture behave of mymux is
begin
dout <= in1 when sel = '1' else

(NOT in1) when sel = '0' else
(others => 'X');

end behave;

Optimizing Altera Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 769

library ieee;
use ieee.std_logic_1164.all;

entity eab_test is
port (a: in std_logic_vector(9 downto 0);

s: in std_logic;
o: out std_logic_vector(9 downto 0));

end eab_test;

architecture arch1 of eab_test is
component mymux is

port (in1: in std_logic_vector (9 downto 0);
in2: in std_logic_vector (9 downto 0);
sel : in std_logic;
dout: out std_logic_vector (9 downto 0));

end component mymux;
attribute altera_implement_in_eab : boolean;
attribute altera_implement_in_eab of U1: label is true;

begin
U1: mymux port map (

in1 => a,
sel => s,
dout => o);

end arch1;

Working with Altera PLLs
The synthesis software recognizes the Altera PLL component, altpll, from the
Stratix, Cyclone, and Arria GX device families. The following procedure shows
you how to use this component in your designs. The procedure uses the
Altera Megafunction wizard to generate structural VHDL or Verilog files for
the Altera PLLs.

1. If you are using VHDL, the altpll component normally will be declared in
the MegaWizard file, and you can comment out the LIBRARY and USE
clauses in the file. The following shows an example of the lines to be
commented out:

LIBRARY altera_mf;
USE altera_mf.altera_mf_components.all;

If the component declaration in the MegaWizard file is not compatible
with a particular Quartus software version, use the appropriate vhd file
packaged with the Synopsys software in the corresponding

LO

Chapter 18: Optimizing for Specific Targets Optimizing Altera Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
770 June 2009

lib/altera/quartus_IInn directory. For example, the altera_mf.vhd file for use
with Quartus 8.1 is in the quartus_II81 subdirectory.

2. If you are using Verilog, no action is necessary as the mapper
understands the altpll component.

For compatibility with different Quartus versions, altera_mf.v files are
packaged with the software in the lib/altera/quartus_IInn directory. Use the
file from the directory that corresponds to the Quartus version that you
are using.

3. Instantiate the altpll component in your design.

4. Add the MegaWizard Verilog or VHDL files to your project.

5. Open SCOPE and define the PLL input frequency in the SCOPE window.
The synthesis software does not use the input frequency from the Altera
MegaWizard software. Based on the input value you supply, the software
generates the PLL outputs. All PLL outputs are assigned to the same
clock group.

6. Set the target technology and the Quartus version (Implementation Options -
> Implementation Results), and synthesize as usual. The software uses the
altpll component information and the constraints when synthesizing your
design. The synthesis software forward-annotates the PLL input
constraints to Quartus.

Instantiating Special Buffers as Black Boxes in Altera Designs
You can instantiate special buffers, like global buffers for clocks, sets/resets,
and other heavily loaded signals, as black boxes in your design. See the
Altera documentation for details about special buffers and the number of
resources available for the part you are using.

1. Define a black-box module for your special buffer with the syn_black_box
directive.

See the examples below and syn_black_box Directive, on page 964in the
Reference Manual for syntax details.

2. Use this black-box module to buffer the signals you want assigned to
special buffers.

3. Synthesize the design and place-and-route as usual.

Optimizing Altera Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 771

The Altera tools accept the black box.

Verilog Example of Instantiating Special Buffers as Black Boxes
module global(a_out, a_in) /* synthesis syn_black_box */ ;
output a_out;
input a_in;

/* This continuous assignment is used for simulation,
but is ignored by synthesis. */

assign a_out = a_in;
endmodule

module top(clk, pad_clk) ;
output pad_clk;
input clk;
// pad_clk is the primary input
global clk_buf(pad_clk, clk);
endmodule

VHDL Example of Instantiating Special Buffers as Black Boxes
library ieee;
use ieee.std_logic_1164.all;
library synplify;
use synplify.attributes.all;

entity top is
port (clk : out std_logic;
pad_clk : in std_logic);
end top;

architecture structural of top is
-- In this example, "global" is an Altera vendor macro directly
-- instantiated in the Altera VHDL design as a black box.

component global
port(a_out : out std_logic; a_in : in std_logic) ;
end component;

-- Set the syn_black_box attribute on global to true.
attribute syn_black_box of global: component is true;

LO

Chapter 18: Optimizing for Specific Targets Optimizing Altera Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
772 June 2009

-- Declare clk, the internal global clock signal
begin
-- pad_clk is the primary input
clk_buf: global port map (clk, pad_clk);
end structural;

Specifying Altera I/O Locations
You can specify I/O locations in Altera designs using the syn_loc attribute. If
you do not specify I/O locations, the P&R tool automatically assigns them
locations.

1. If you used the QSF2SDC utility, to translate Altera QSF
set_location_assignment and set_instance_assignment constraints, do nothing.

The utility automatically assigns the syn_loc attribute to the pins with
constraints.

2. To define an I/O location manually, use the following syntax:

Verilog FLEX syn_loc Example
module adder_8(cout, sum, a, b, cin);

/* Put the cout output on pin 159. */
output cout /* synthesis syn_loc="@159" */;
output [7: 0] sum /* synthesis syn_loc=

"@17,@166,@191,@152,@15,@148,@147,@149" */;

/* Put the "a" input bus from bits 7 through 0 on pins
194, 177, 70, 97, 109, 6, 174, and 204, respectively. */

input [7: 0] a /* synthesis syn_loc=
"@194,@177,@70,@97,@109,@6,@174,@204" */;

/* Let Altera place the "b" and "cin" inputs. */
input [7:0] b;
input cin;
assign {cout, sum} = a + b + cin;
endmodule

Top-level .sdc file define_attribute {portName} syn_loc {pinNumbers}

Verilog object /* synthesis syn_loc = "pinNumbers" */

VHDL attribute syn_loc of object : objectType is "pinNumbers"

Optimizing Altera Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 773

Verilog APEX20K/E/C syn_loc Example
module alu(out1, opcode, a, b, sel, clk);
output [7:0] out1 /*synthesis syn_loc =

"14,12,11,5,21,18,16,15" */;
input [2:0] opcode;
input [7:0] a,b;
input sel, clk;
reg [7:0] alu_tmp;
reg [7:0] out1;

VHDL FLEX10K / ACEX1K / MAX syn_loc Example
library ieee, synplify;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity adder_8 is
port (a, b: in std_logic_vector (7 downto 0);

result: out std_logic_vector(7 downto 0));

-- Assign the "result" output bus from bits 7 down
-- through 0 on pins 17, 166, 191, 152, 15, 148, 147,
-- and 149, respectively
attribute syn_loc : string;
attribute syn_loc of result : signal is

"@17, @166, @191, @152, @15, @148, @147, @149";

-- Assign the "a" input bus from bits 7 through 0 on
-- pins 194, 177, 70, 97, 109, 6, 174, and 204.
attribute syn_loc of a : signal is

"@194, @177, @70, @97, @109, @6, @174, @204";

-- Let the "b" input be placed by Altera
end adder_8;

architecture behave of adder_8 is
begin

result <= a + b;
end;

VHDL APEX20K/E/C, APEX II syn_loc Example
attribute syn_loc : string;
attribute syn_loc of result : signal is "14, 12,

11, 5, 21, 18, 16, 15";

LO

Chapter 18: Optimizing for Specific Targets Optimizing Altera Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
774 June 2009

Packing I/O Cell Registers in Altera Designs
You can improve input or output path timing in designs by packing registers
into I/O cells with the syn_useioff attribute.

1. To pack the registers globally, set syn_useioff=1 on the top-level module or
architecture. Specify the attribute in the source code, the SCOPE
interface, or directly in the constraint file.

2. To set the attribute locally, set syn_useioff=1 on a port.

3. Synthesize the design.

The order of precedence used when there are conflicts for packing is
registers, followed by ports, and finally global.

Format Example

Verilog module test(d, clk, q) /* synthesis syn_useioff=1 */;

VHDL architecture rtl of test is
attribute syn_useioff : boolean;
attribute syn_useioff of rtl : architecture is true;

Constraint
file syntax

define_global_attribute syn_useioff 1

Format Example

Verilog module test(d, clk, q);
input [3:0] d;
input clk;
output [3:0] q /* synthesis syn_useioff=1 */;
reg q;

VHDL entity test is
port (d : in std_logic_vector (3 downto 0);
clk : in std_logic;
q : out std_logc_vector (3 downto 0);
attribute syn_useioff : boolean;
attribute syn_useioff of q : signal is true;
end test;

Constraint file
syntax

define_attribute {p:q[3:0]} syn_useioff 1

Optimizing Altera Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 775

The software infers I/O cells with presets or clears, and an embedded
flip-flop in the I/O cell. The software packs registers with asynchronous
clear pins and asynchronous preset pins for APEX20KE I/O cells.

If syn_useioff is enabled for Arria GX and Stratix families, registers are not
packed into Multiply/Accumulate (MAC) blocks.

Specifying HardCopy and Stratix Companion Parts
For Stratix II, Stratix III, and Stratix IV devices, you can specify an associated
HardCopy II, HardCopy III, or HardCopy IV companion part to allow you to
migrate from Stratix to HardCopy in Quartus. By default, no companion part
is specified for a Stratix device family. However, for a HardCopy device family,
a Stratix companion part must be specified.

You select the companion device in the Device tab of the Implementation Options
dialog box as in the following example:

You can use any of the following methods to specify companion parts:

• Select the companion device in the Device tab of the Implementation Options
dialog box as shown here:

LO

Chapter 18: Optimizing for Specific Targets Optimizing Altera Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
776 June 2009

• Use this Tcl command, where partName is the part name and number:

set_option -part_companion partName

When you specify a companion part, the mapper targets the device with the
least resources . For example, if your Stratix device has five memories and
the companion HardCopy device has four memories, the mapper only uses
four memory resources and maps the rest to logic.

Specifying Core Voltage in Stratix III Designs
For some Stratix III devices, you can specify core voltage. Do the following:

1. Click Implementation Options and do the following:

– On the Device tab, set Technology to a Stratix III device.

– Set Speed to -4.

This makes the Core Voltage option available.

2. Set Core Voltage to the value you want, and click OK.

Alternatively, you can use the corresponding Tcl command: set_option
-voltage <voltage_value>.

Optimizing Altera Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 777

For example:

set_option -voltage 1.1V
set_option -voltage none

Using LPMs in Simulation Flows
This section describes how to use instantiated LPMs in simulation flows. For
information about instantiating LPMs, see Working with LPMs, on page 416.

Simulation Flows
The simulation flows vary, depending on the method used to instantiate the
LPMs. For information about instantiating LPMs, see Instantiating Altera
LPMs Using VHDL Prepared Components, on page 421, Instantiating Altera
LPMs as Black Boxes, on page 417, and Instantiating Altera LPMs Using a
Verilog Library, on page 423. The following table summarizes the differences
between the flows:

Black Box Method Simulation Flow
Use the following flow when you instantiate LPMs as Verilog or VHDL black
boxes. You can use this procedure for any LPM supported by Altera.

Black Box Flow Verilog Library/VHDL
Prepared Component Flows

Applies to any LPM Yes No

Synthesis LPM timing
support

No Yes

Synthesis procedure Many steps Simple

RTL simulation Complicated steps Easy

Post-synthesis (.vm)
simulation

Yes No

Post-P&R (.vo) simulation Yes Yes

Software version Any version
Max+PlusII
Quartus II 1.0 or
earlier

Quartus II 1.1 or later

LO

Chapter 18: Optimizing for Specific Targets Optimizing Altera Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
778 June 2009

1. Use the Altera MegaWizard Plug-In Manager to create an LPM
megafunction with the same module and port names as the black-box
module in your synthesis design.

2. Compile the following:

– Test bench

– The design (RTL, post-synthesis .vm file, or the post-P&R .vo file)

– The .v file you generated in the previous step

3. Compile the LPM megafunction simulation model: 220model.v or
altera_mf.v.

4. For .vm or .vo simulation, compile the primitive simulation model. For
example apex20Ke_atoms.v.

5. Simulate the design.

Library/Prepared Component Simulation Flow
Use this simulation procedure when you use a Verilog library or VHDL
prepared components to instantiate the LPMs. You can use this flow for .vo
simulation if your design contains the supported LPMs.

1. Instantiate the LPMs.

– For VHDL designs, use the prepared components methods described
in Instantiating Altera LPMs Using VHDL Prepared Components, on
page 421 or Instantiating Altera LPMs as Black Boxes, on page 417.

– For Verilog designs, use the library methods described in
Instantiating Altera LPMs Using a Verilog Library, on page 423 or
Instantiating Altera LPMs as Black Boxes, on page 417.

2. Compile the test bench and design. The design can be either RTL or the
post-P&R .vo file.

3. Compile the LPM megafunction simulation model: 220model.v or
altera_mf.v.

4. For .vo simulation, compile the primitive simulation model. For example
apex20Ke_atoms.v.

5. Simulate the design.

Optimizing Altera Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 779

Improving Altera Physical Synthesis Performance
The Synplify Premier tool is timing-driven; optimizations depend on timing
constraints and are applied until all constraints are met. Therefore, it is very
important that you adequately apply timing constraints and not over-
constrain the tool. This section includes guidelines for applying constraints.

• Verify the consistency of constraints between synthesis and P&R:

– Clock constraints

– Clock-to-clock constraints

– IO delays

– IO standard, drive, slew and pull-up/pull-down

– Multi-cycle and false paths

– Max-delay paths

– DCM parameters

– Register packing into IOB

– SYN_LOC on IO pins and pad types

– Placement constraints on instances

• Ensure that the final physical synthesis slack is negative, but no more
than 10-15% of the clock constraint.

Working with Quartus II
The following procedures show you how to use the synthesis information to
run Quartus II in an integrated mode with the Synopsys FPGA synthesis tool,
directly from the synthesis interface, or in a standalone batch mode. Each
procedure assumes that you have set the QUARTUS_ROOTDIR environment
variable to point to your Quartus II installation directory. After synthesis, the
Verilog netlist (.vqm), forward annotated timing constraints and pin assign-
ments (.tcl/.scf) are placed in the named Quartus project.

Integrated Mode
To run Quartus II in an integrated mode:

1. In the project view, click the Add P&R Implementation button to display the
Add New Place & Route Job dialog box.

LO

Chapter 18: Optimizing for Specific Targets Optimizing Altera Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
780 June 2009

2. Optionally assign a P&R job name and click OK. The job is displayed in
the project view under the active implementation.

3. Right click on the RTL source file and select File Options to display the File
Properties dialog box.

4. In the File type field drop-down menu, select either Clearbox Verilog or
Clearbox VHDL according to the RTL file type and then click OK.

5. Click the Run button; the clearbox netlist is copied to the PR_1 directory,
the design is synthesized, and then placed and routed.

Synthesis Interface
To place and route interactively from the synthesis interface, select Quartus II->
Launch Quartus from the Options menu. This command opens the Quartus II
GUI and automatically runs Quartus II with the project settings from the

Optimizing Altera Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 781

synthesis run. You can monitor placement and routing as it progresses, see
errors and warning messages, check what percentage of the job has
completed, and execute other Quartus II commands.

Batch Mode
To run Quartus II in batch mode, select Quartus II->Run Background Compile from
the Options menu. This command runs place and route using the default
Quartus settings and the information in the project_name_cons.tcl and
project_name.tcl files to set up and compile the Quartus project and to read
the forward-annotated information from the prior synthesis run. Quartus log
files are updated with placement, routing, and timing data as the design
compiles.

Configuring Max+Plus II for FLEX and ACEX1K
Altera Max+Plus II software provides LAB arrays containing Logic Cells
(LCELLs), global routing between LABs, and local routing within LABs.
LCELLs implement many, simple logic gates. Taken together, these elements
control mapping for the FLEX and ACEX1K architectures.

The Synopsys synthesis tools map technology directly to Altera LCELLs. It
inserts LCELLS into its netlist to improve performance and logic use. You can
configure Max+Plus II in two ways:

• Using mapped logic from the synthesis tools. See Running Max+Plus II
With Mapped LCELLs, on page 781 for details.

• Without mapped logic, as described in Running Max+Plus II Without
Mapped LCELLs, on page 783. You might need to use this method when
registers are not properly packed, or if the design is too big or too slow.

Running Max+Plus II With Mapped LCELLs
To map logic to LCELLs, follow these steps:

1. Do the following in the synthesis tool graphic user interface:

– Turn on the Map Logic to LCELLs option (Device tab of the Implementation
Options dialog box).

– Synthesize the design.

LO

Chapter 18: Optimizing for Specific Targets Optimizing Altera Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
782 June 2009

– If necessary, set the syn_edif_name_length attribute to restricted. This
attribute ensures that port names in the EDIF output file do not
exceed 30 characters in length.

2. In Max+Plus II, select Assign->Global Project Logic Synthesis and change
Global Project Synthesis Style to WYSIWYG (the default is NORMAL). You can
also turn ON the following two options:

– Automatic I/O Cell Registers – This option moves registers into the I/Os,
reducing area and improving I/O performance, but selecting this
option might worsen internal clock frequency.

– Automatic Register Packing – This option (in FLEX10K) packs unrelated
logic and flip-flops into the same cells, reducing area and sometimes
delay, but selecting this option might worsen routability.

3. Do the following:

– Click the Define Synthesis Style button.

– Click the Advanced Options button. The Advanced Options dialog box
displays.

– Turn OFF the NOT Gate Push-Back option. Click OK three times to exit
the dialog boxes.

4. Run the place-and-route software.

5. Review the cell types in the Max+Plus II report file.

If cell types include LCELL, carry, cascade, dff, and dffe, then Max+Plus II
honored the mapping instructions, and you have finished.

If the report file contains a high percentage of and2, or2, or similar cell
types, or if many such cells exist along your critical paths, then
Max+Plus II did not honor the instructions and may have worsened the
results. If such unwanted cell types occur, use the method described in
Running Max+Plus II Without Mapped LCELLs, on page 783.

6. If you want faster timing, reset timing options in the synthesis tool
interface, re-run the tool on your design, and re-run Max+Plus II.

Optimizing Altera Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 783

Running Max+Plus II Without Mapped LCELLs
To obtain fast performance or small area when mapping cannot be used,
follow the steps below.

1. Use either of these methods to turn off the LCELLS option:

– Select Project -> Implementation Options -> Device and click off Map Logic to
LCELLs.

– Use the set_option Tcl command.

2. If necessary, set the syn_edif_name_length attribute to restricted, and
synthesize the design.

This attribute ensures that port names in the EDIF output file do not
exceed 30 characters in length.

3. If you want fast performance, take these steps:

– In Max+Plus II, choose Assign -> Global Project Logic Synthesis. In the
dialog box, change Style to FAST (the default is NORMAL).

– Set Automatic Fast I/O and Automatic Register Packing to ON.

Automatic Fast I/O moves registers into the I/Os, saving area and
improving I/O performance, but perhaps worsening internal clock
frequency.

Automatic Register Packing (in FLEX10K) packs unrelated logic and flip-
flops into the same cells. This saves area and sometimes delay, but
may worsen routability.

– Click OK to exit the form.

– Run placement and routing.

4. If you want small area, perform these steps:

– In Max+Plus II, choose Assign->Global Project Logic Synthesis. In the
dialog box, change Style to SLOW (the default is NORMAL).

– Set Automatic Fast I/O and Automatic Register Packing to ON.

Automatic Fast I/O moves registers into the I/Os, saving area and
improving I/O performance, but perhaps worsening internal clock
frequency.

LO

Chapter 18: Optimizing for Specific Targets Optimizing Altera Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
784 June 2009

Automatic Register Packing (in FLEX10K) packs unrelated logic and flip-
flops into the same cells. This saves area and sometimes delay, but
may worsen routability.

– Click the Define Synthesis Style button.

– Click the Use Default button in the dialog box. Change the Carry Chain
and Cascade Chain settings from Ignore to Manual.

– Click OK twice to exit the forms.

– Run placement and routing.

Configuring Max+Plus II for MAX Designs
To prepare the design for the P&R tool, you must make sure the port names
in your output file are the right length for Max+Plus II. Then select a
synthesis style that matches your objectives and configure Max+Plus II to
access the LMF.

1. Set the syn_edif_name_length attribute value to restricted.

This ensures that the port names in the EDIF output file do not exceed
30 characters. This matches the name length requirement for
Max+Plus II.

2. Select a synthesis style:

– From Altera Max+Plus II open the Assign -> Global Project Logic Synthesis
dialog box.

– Set the Global Project Synthesis Style option to either FAST or NORMAL.

If you select FAST for a congested part, Max+Plus II may be unable to
place-and-route your design, because global routing connections to
LABs are overloaded with LCELLs. If this congestion occurs, let
synthesis automatically map the logic into LCELLs.

3. Configure the compiler to access the LMF and interpret primitives in
EDIF netlists.

– Select the compiler, and then select Interfaces->EDIF Netlist Reader
Settings.

– Click CUSTOMIZE. A text box will display.

– Enter the full path to the LMF: install_dir/lib/synplcty.lmf

Optimizing Lattice Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 785

– Click the small box to the left of the path name.

– Make sure the power and ground signal names are set to default
values of VCC and GND.

Optimizing Lattice Designs
The Synplify and Synplify Pro synthesis tools include support for Lattice
technologies. This section describes the following techniques for working with
Lattice designs:

• Instantiating Lattice Macros, on page 785

• Using Lattice GSR Resources, on page 787

• Inferring Carry Chains in Lattice XPLD Devices, on page 788

• Inferring Lattice PIC Latches, on page 788

• Controlling I/O Insertion in Lattice Designs, on page 794

• Forward-Annotating Lattice Constraints, on page 795

• For additional information about working with Lattice designs, see
Passing Information to the P&R Tools, on page 832 and Generating
Vendor-Specific Output, on page 836.

Instantiating Lattice Macros
You can instantiate Lattice macros that are predefined in the Lattice libraries
that come with the tool, in the synplify_install_dir/lib directory.

1. To use a Verilog macro library, add the appropriate library to your
project, making sure that it is the first file in the source files list.

The Verilog macro libraries are under the synplify_install_dir/lib
directory: Add the library appropriate to the technology you are using

ORCA devices synplify_install_dir/lib/lucent/orca*.v
Replace the asterisk with either 2, 3, or 4, according to the
ORCA series you are using

LO

Chapter 18: Optimizing for Specific Targets Optimizing Lattice Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
786 June 2009

2. To use a VHDL macro library, add the appropriate library and use clauses
to your VHDL source code at the beginning of the design units that
instantiate the macros.

You only need the VHDL macro libraries for simulation, but it is good
practice to add them to the code. The library names may vary,
depending on the map file name, which is often user-defined. The
simulator uses the map file names to point to a library.

LatticeXP2/XP
devices

synplify_install_dir/lib/lucent/xp.v
synplify_install_dir/lib/lucent/xp2.v

LatticeSC/SCM
devices

synplify_install_dir/lib/lucent/sc.v

MachXO devices synplify_install_dir/lib/lucent/machxo.v

ECP/ECP2/EC
devices

synplify_install_dir/lib/lucent/ecp.v
synplify_install_dir/lib/lucent/ecp2.v
synplify_install_dir/lib/lucent/ec.v

ispXPGA devices synplify_install_dir/lib/lattice/lava1.v

CPLD devices synplify_install_dir/lib/cpld/lattice.v

CPLD Devices library lattice;
use lattice.components.all;

ORCA Devices Replace the asterisk with the series number (2, 3, or 4) for
the Lattice ORCA Series 2, Series 3, or Series 4 macro
library you are using.
library orca*;
use orca*.orcacomp.all;

LatticeXP2/XP
devices

library xp;
use xp.components.all
library xp2;
use xp.components.all

LatticeSC/SCM
devices

library sc;
use sc.components.all

MachXO devices library machxo;
use machxo.components.all

Optimizing Lattice Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 787

3. Instantiate the macros from the library as described in Instantiating
Black Boxes and I/Os in Verilog, on page 358 and Instantiating Black
Boxes and I/Os in VHDL, on page 360.

Using Lattice GSR Resources
The following procedure describes how to use GSR (global set/reset)
resources and check resource usage. The GSR resource is a prerouted signal
that connects to the reset input of every flip-flop, regardless of any other
defined reset signals.

1. For the LatticeECP/ECP2/EC, LatticeXP2/XP, LatticeSC/SCM,
MachXO, and ORCA families, you can control the use of GSR resources
as follows:

– To improve routability and performance, use the dedicated GSR
resource. Select Project ->Implementation Options and enable the Force
GSR Usage option on the Device tab.

When you set this option, the synthesis software creates a GSR
instance to access the resource. It uses the GSR resource for reset
signals, instead of general routing. All registers are reset. when the
GSR is activated, even if some flip-flops do not have a reset.

– If a global set/reset does not correctly initialize the design, turn off
the option. Select Project ->Implementation Options and disable the Force
GSR Usage option on the Device tab. When this option is off, the
software does not use the GSR resource unless all flip-flops have
resets, and all resets use the same signal.

2. To optimize area, set the Resource Sharing option, as described in Sharing
Resources, on page 450.

ECP/ECP2/EC
devices

library ecp;
use ecp.components.all;
library ecp2;
use ecp2.components.all;
library ec;
use ec.components.all

ispXPGA Devices library lava;
use lava.components.all;

LO

Chapter 18: Optimizing for Specific Targets Optimizing Lattice Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
788 June 2009

3. To check resource usage, do the following:

– Synthesize the design.

– Select View Log and check the Resource Usage section. For ORCA
families, you can compare the LUTs in the synthesis usage report to
the occupied PFUs (function units) in the report generated after
placement and routing. Each PFU consists of four 4-input LUTs and
four registers. An occupied PFU means that least one LUT or register
was used.

Inferring Carry Chains in Lattice XPLD Devices
For XPLD devices, you can control the inference of carry chains with the
syn_use_carry_chain attribute. By default, all counters are implemented as
carry chains when they are over 4 bits wide. To override this, set the
syn_use_carry_chain attribute with a value of 0 on the registers of the counter or
adder.

Inferring Lattice PIC Latches
The following procedure shows you how to control the inference of program-
mable I/O cells (PICs) in Lattice designs.

1. For the software to automatically infer PICs, make sure of the following:

– The latch must be at the input port.

– The latch must be directly driven by the input FPGA pad.

– The design has one of the supported input control schemes: no clear
or reset controls, and asynchronous clear or asynchronous resets.

After synthesis, the tool implements the following primitives for the
PICs:

See Examples of PIC Latches, on page 789 for examples of inferred PIC
latches.

IF1S1D Latches with asynchronous clear
Latches with GSR used for clear

IF1S1B Latches with asynchronous reset
Latches with GSR used for reset.

Optimizing Lattice Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 789

2. If you do not want to infer a PIC, set syn_keep on the input data net for
the latch.

After synthesis, the tool implements the latch as either a core latch with
the LATCH primitive or as a mux, depending on the Lattice technology
you selected. The following figure shows an input latch with no reset or
clear implemented as a mux and a core latch in different technologies.

Examples of PIC Latches
The following examples show how the tool infers PICs from the code:

• Positive Level Data Latch with No Resets or Clears, on page 790

• Negative Level Data Latch with No Resets or Clears, on page 791

• Positive Level Data Latch with Asynchronous Reset, on page 792

• Positive Level Data Latch with Asynchronous Clear, on page 793

With syn_keep: Implemented as Mux

With syn_keep: Implemented as Core Latch

LO

Chapter 18: Optimizing for Specific Targets Optimizing Lattice Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
790 June 2009

Positive Level Data Latch with No Resets or Clears

With this code, the tool implements the IFS1S1B latch primitive in the
Technology view:

VHDL library ieee; use ieee.std_logic_1164.all;
entity inlatch is port
(clk : in std_logic;
din : in std_logic;
dout: out std_logic);
end entity inlatch;
architecture bhve of inlatch is
begin
process(clk,din)
begin
if clk='1' then
dout <= din;

end if;
end process;

end bhve;

Verilog module inlatch (clk,din,dout);
input clk; input din; output dout;
reg dout;
always @(clk)
begin
if(clk)
 dout <= din;

end
endmodule

Optimizing Lattice Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 791

Negative Level Data Latch with No Resets or Clears

With this code, the tool implements the IFS1S1B latch primitive in the
Technology view:

VHDL library ieee; use ieee.std_logic_1164.all;
entity inlatch is port
(clk : in std_logic;
din : in std_logic;
dout: out std_logic);
end entity inlatch;
architecture bhve of inlatch is
begin
process(clk,din)
begin
if clk='0' then
dout <= din;

end if;
end process;

end bhve;

Verilog module inlatch (clk,din,dout);
input clk; input din; output dout;
reg dout;
always @(clk)
begin
if(!clk)
 dout <= din;

end
endmodule

LO

Chapter 18: Optimizing for Specific Targets Optimizing Lattice Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
792 June 2009

Positive Level Data Latch with Asynchronous Reset
The tool imfers the IFS1S1B latch primitive in the Technology view with the
code shown below:

VHDL library ieee; use ieee.std_logic_1164.all;
entity inlatch is port
(clk : in std_logic; aset: in std_logic;
din : in std_logic; dout: out std_logic);
end entity inlatch;
architecture bhve of inlatch is
begin
process(clk,din,aset)
begin
if aset ='1' then
dout <='1';

elsif clk='1' then
dout <= din;

end if;
end process;

end bhve;

Verilog module inlatch(clk,din,aset,dout);
input clk; input din; input aset; output dout;
reg dout;
always @(clk or aset)
begin
if(aset)
dout <= 1'b1;

else if (clk)
dout <= din;

end
endmodule

Optimizing Lattice Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 793

Positive Level Data Latch with Asynchronous Clear

With this code, the tool infers the IFS1S1D primitive in the Technology view:

VHDL library ieee; use ieee.std_logic_1164.all;
entity inlatch is port
(clk : in std_logic; aclr: in std_logic;
din : in std_logic; dout: out std_logic); }
end entity inlatch;
architecture bhve of inlatch is
begin
process(clk,din,aclr)
begin
if aclr ='1' then
dout <='0';

elsif clk='1' then
dout <= din;

end if;
end process;
end bhve;

Verilog module inlatch(clk,din,aclr,dout);
input clk; input din; input aclr; output dout;
reg dout;
always @(clk or aclr)
begin
if(aclr)
dout <= 1'b0;

else if (clk)
dout <= din;

end
endmodule

LO

Chapter 18: Optimizing for Specific Targets Optimizing Lattice Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
794 June 2009

Controlling I/O Insertion in Lattice Designs
You can control I/O insertion globally, or on a port-by-port basis.

1. To control the insertion of I/O pads at the top level of the design, use the
Disable I/O Insertion option as follows:

– Select Project->Implementation Options and click the Device panel.

– If you do not want to insert any I/O pads in the design, enable Disable
I/O Insertion

Do this if you want to check the area your blocks of logic take up,
before you synthesize an entire FPGA. If you disable automatic I/O
insertion, you do not get any I/O pads in your design, unless you
manually instantiate them.

– If you want to insert I/O pads, disable the Disable I/O Insertion option.

When this option is set, the software inserts I/O pads for inputs,
outputs, and bidirectionals in the output netlist. Once inserted, you
can override the I/O pad inserted by directly instantiating another
I/O pad.

2. To force I/O pads to be inserted for input ports that do not drive logic,
follow the steps below.

– To force I/O pad insertion at the module level, set the syn_force_pads
attribute on the module. Set the attribute value to 1. To disable I/O
pad insertion at the module level, set the syn_force_pads attribute for
the module to 0.

– To force I/O pad insertion on an individual port, set the
syn_force_pads attribute on the port with a value to 1. To disable I/O
insertion for a port, set the attribute on the port with a value of 0.

Enable this attribute to preserve user-instantiated pads, insert pads on
unconnected ports, insert bi-directional pads on bi-directional ports
instead of converting them to input ports, or insert output pads on
unconnected outputs.

If you do not set the syn_force_pads attribute, the synthesis design
optimizes any unconnected I/O buffers away.

Optimizing Lattice Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 795

Forward-Annotating Lattice Constraints
For LatticeECP2/ECP/EC, LatticeSCM, LatticeXP2/XP, MachXO, and ORCA
technology families, you can forward-annotate multicycle and false path
constraints to ispLEVER by following the procedure below. For additional
information about forward-annotation, see Generating Constraint Files for
Forward Annotation, on page 105.

1. To forward-annotate a from, to, or through multicycle constraint, open the
SCOPE spreadsheet and do either of the following:

– Click the Multi-Cycle Paths tab. Depending on the type of constraint you
want to set, select or type the instance name under the To, From or
Through column. Next, set the number of clock cycles under the Cycles
column.

When you set this constraint, the software runs timing-driven
synthesis and then forward-annotates the constraint.

– Click the Other tab. In the Command column, type define_multicycle_path.
In the Arguments column, type -from and the source port or register
name, and -to and the destination port or register name. For example:
-from in0_int -to output 2.

When you set this constraint from the Other tab, the software forward-
annotates the constraint, but does not run timing-driven synthesis
using this constraint.

2. To forward-annotate a false path constraint, open the SCOPE
spreadsheet and do either of the following:

– Click the False Paths panel. Depending on the type of constraint you
want to set, select or type the instance name under the To, From or
Through column. When you set this constraint, the software runs
timing-driven synthesis and then forward-annotates the constraint.

– Click the Other tab. In the Command column, type define_false_path. In
the Arguments column, type -from and the source port or register name,
and -to and the destination port or register name. For example:

Command Arguments

define_false_path -from in1_int -to output

define_false_path -from in* -to out*

LO

Chapter 18: Optimizing for Specific Targets Optimizing Lattice Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
796 June 2009

When you set this constraint from the Other tab, the software forward-
annotates the constraint, but does not run timing-driven synthesis
using this constraint.

3. Select Project->Implementation Options and enable the Write Vendor Constraint
File option on the Implementation Results tab.

4. Run your design. The synthesis tool creates the $DESIGN_synplify.lpf
file in the same directory as your results files.

5. Start the Lattice ispLEVER place-and-route tool and run the Map stage
(after importing the $DESIGN_synplify.lpf file).

6. Run the PAR and BIT stages in ispLEVER.

Optimizing Xilinx Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 797

Optimizing Xilinx Designs
This section contains tips for working with Xilinx designs:

• Designing for Xilinx Architectures, on page 797

• Specifying Xilinx Macros, on page 798

• Specifying Global Sets/Resets and Startup Blocks, on page 800

• Inferring Wide Adders, on page 801

• Instantiating CoreGen Cores, on page 804

• Packing Registers for Xilinx I/Os, on page 807

• Specifying Xilinx Register INIT Values, on page 810

• Specifying RLOCs, on page 819

• Specifying RLOCs and RLOC_ORIGINs with the synthesis Attribute, on
page 821

• Using Clock Buffers in Virtex Designs, on page 822

• Working with Clock Skews in Xilinx Virtex-5 Physical Designs, on
page 824

• Reoptimizing With EDIF Files, on page 826

• Improving Xilinx Physical Synthesis Performance, on page 827

• Running Post-Synthesis Simulation, on page 828

• Instantiating Special I/O Standard Buffers for Virtex, on page 825

For additional Xilinx-specific techniques, see Xilinx Compile-point Synthesis
Flow, on page 583, Working with Xilinx Incremental Flows, on page 862,
Working with Gated Clocks, on page 464, Inferring RAMs, on page 372, and
Inferring Shift Registers, on page 410. Note that some of these features are not
available in the Synplify product.

Designing for Xilinx Architectures
The tips listed here are in addition to the technology-independent design tips
described in Tips for Optimization, on page 426.

• For critical paths, attach the xc_fast attribute to the I/Os.

LO

Chapter 18: Optimizing for Specific Targets Optimizing Xilinx Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
798 June 2009

• To ensure that frequency constraints from register to output pads are
forward annotated to the P&R tools, add default input_delay and
output_delay constraints of 0.0 in the synthesis tool. The synthesis tool
forward-annotates the frequency constraints as PERIOD constraints
(register-to-register) and OFFSET constraints (input-to-register and
register-to-output). The place-and-route tools use these constraints.

• Run successive place-and-route iterations with progressively tighter
timing constraints to get the best results possible.

• Specify a UNISIM library using the following syntax:

library unisim;
use unisim.vcomponents.all;

Remove any other package files with user-defined UNISIM primitives.

Specifying Xilinx Macros
The synthesis tool provides Xilinx macro libraries that you can use to instan-
tiate components like I/Os, I/O pads, gates, counters, and flip-flops. Using
the macros from these libraries allows you to perform a subsequent
simulation run without changing your code.

1. To use the Verilog macro library, do the following:

– Review the library file for the available macros. The Verilog library is
install_dir/lib/xilinx/unisim.v.

– Add the unisim.v Xilinx macro library file to your project file.

– Make sure the library is the first in the list of source files..

2. To use a VHDL library, do the following:

– Review the unisim.vhd macro library in the install_dir/lib/xilinx
directory to check the macros that are available.

– Add the corresponding library and use clauses to the beginning of the
design units that instantiate the macros, as in the following example:

library unisim;
use unisim.vcomponents.all;

You do not need to add the macro library files to your the source files for
your project.

3. Instantiate the macro component in your design.

Optimizing Xilinx Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 799

4. To instantiate an I/O pad with different I/O standards, do the following:

– Specify the macro library as described in the first two steps.

– Instantiate the I/O pad component in your design. You can
instantiate IBUF, IBUFG, OBUF, OBUFT, and IOBUF components.

– In the source files, define the generic or parameter values for the I/O
standard. Use an IOSTANDARD generic/parameter to specify the I/O
standard you want. Refer to the Xilinx documentation for a list of
supported IOSTANDARDs. For certain pad types, you can also specify
the output slew rate (SLEW) and output drive strength (DRIVE). See
OBUF Instantiation Example, on page 799 for an example.

OBUF Instantiation Example
The following examples show the declaration of OBUF in macro library files:

VHDL component OBUF
generic (

IOSTANDARD : string := "default";
SLEW : string := "SLOW";
DRIVE : integer := 12

);
port (

O : out std_logic;
I : in std_logic;

);
end component;
attribute syn_black_box of OBUF : component is true

Verilog module OBUF(O, I); /* synthesis syn_black_box */
parameter IOSTANDARD="default";
parameter SLEW="SLOW";
parameter DRIVE=12;
output O;
input I;
endmodule

LO

Chapter 18: Optimizing for Specific Targets Optimizing Xilinx Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
800 June 2009

To use the macro libraries to instantiate I/O pad types, define the
generic/parameter values in the Verilog or VHDL source files. The following
examples show how to instantiate OBUF pads with an I/O standard value of
LVCMOS2, an output slew value of FAST, and an output drive strength of 24.

The resulting EDIF file contains the following, which corresponds to the
instantiations:

(instance (
rename dataZ0 "data")
(viewRef PRIM (cellRef OBUF (libraryRef VIRTEX)))
(property iostandard (string "LVCMOS2"))
(property slew (string "FAST"))
(property drive (integer 24))

)

Specifying Global Sets/Resets and Startup Blocks
The global set/reset (GSR) resource is a pre-routed signal that goes to the set
or reset input of each flip-flop in your design. Using this resource instead of
general routing for a set or reset signal can have a significant positive impact
on the routability and performance of your design. The synthesis tools infer
this resource automatically in most cases, but you can also specify access to
the GSR resource with a Xilinx startup block.

VHDL Data : OBUF
generic map (

IOSTANDARD => "LVCMOS2",
SLEW => "FAST",
DRIVE => 24

)
port map (

O => o1,
I => i1

);

Verilog OBUF Data(.O(o1), .I(i1));
defparam Data.IOSTANDARD = "LVCMOS2";
defparam Data.SLEW = "FAST";
defparam Data.DRIVE = 24;

Optimizing Xilinx Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 801

1. Specify access to the GSR as follows:

– To automatically use the GSR if needed, eslect Implementation Options ->
Device, and set Force GSR Usage to auto. With this setting, the tool
automatically determines if it needs to use the GSR.

– To use the GSR, set Force GSR Usage to yes.

– If you do not want to use the GSR, set Force GSR Usage to no.

2. For Xilinx XC designs, specify global sets/resets (GSR) as follows:

– For a design with a single GSR, the synthesis tools automatically
connect it to a startup block, even if the flip-flops have no sets/resets
specified. If you need to change this setting, select Project->
Implementation Options ->Device, and set Force GSR Usage to no. With this
setting, all flip-flops must have a set or reset and the set or reset
must be the same before GSR is used.

– For designs with multiple GSRs, the synthesis tool does not
automatically create a startup block for GSR. If you still want to use
one of the set or reset signals for GSR, you must instantiate a
STARTUP_GSR component manually, as described in the next step.

For XC4000 technologies, the synthesis tool forces the creation of a
startup block to access the GSR resource, if it is appropriate for your
design.

3. To instantiate a start-up block manually, do the following:

– Go to the install_dir/lib/xilinx directory and locate the
appropriate Xilinx startup blocks in either the Verilog (unisim.v) or
VHDL (unisim.vhd) format.

– Instantiate the startup block component in your design. Where there
is more than one component listed, you can use them independently,
because the blocks are merged to form a single block in the EDIF file.

Inferring Wide Adders
For Virtex-5 and Virtex-6 designs, you can map wide adder/subtractor struc-
tures to DSP48Es. Xilinx architectures let you use cascading DSP48Es and
the CARRYCASCOUT pin to support a structure with up to three pipeline
registers with different synchronous control signals. It supports two or three
signed/unsigned inputs (with carry/borrow).

LO

Chapter 18: Optimizing for Specific Targets Optimizing Xilinx Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
802 June 2009

The following shows the implementation of wide adders with one pipelined
register and no pipelined registers as DSP48Es:

To automatically map to DSP48Es in the synthesis tools, do the following:

1. Make sure the structure you want to map conforms with these rules:

– The adder/subtractor does not have more than 96 bits.

– All registers share the same control signals (enables, clocks, reset).
Registers with different control signals are mapped to the DSP48E, but
they are kept outside the DSP48E.

– The adder does not have a 48-bit input and a 49-bit output.

2. Set syn_dspstyle to dsp48.

You must set this attribute, or the tool does not infer a DSP48E. See
syn_dspstyle Attribute, on page 973 for the syntax fo r this attribute.

3. Synthesize the design.

If your structure has less than three pipelined registers, you see an
advisory message in the log file, because three pipelined registers give
the best performance.

Optimizing Xilinx Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 803

The following is an example of how the synthesis tool maps an adder->
register->register structure with 96-bit signed input and output to a DSP48E:

RTL View

Technology View

LO

Chapter 18: Optimizing for Specific Targets Optimizing Xilinx Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
804 June 2009

Instantiating CoreGen Cores
Predesigned IP cores save on design effort and improve performance. The
process for handling IP cores is slightly different for CoreGen and Virtex PCI
cores. The following procedure describes how to instantiate a CoreGen
module. For Virtex PCI cores, see Instantiating Virtex PCI Cores, on page 805.

1. Use the Xilinx CORE generator to create structural EDIF netlists and
generate timing and resource usage information for synthesis.

– For legacy cores, generate a single flat .edf netlist file.

– For newer cores, generate a top-level flat .edn or .edf netlist file that
instantiates .ndf files for each hierarchical level in the design.

2. Open the synthesis software, and add the generated files (.edf only for
legacy cores; .edn or .edf and .ndf for newer cores) to your project.

3. Define the core as a black box by adding the syn_black_box attribute to
the module definition line, or by using the Coregen .v file. The following
is an example of the attribute:

module ram64x8(din, addr, we, clk, dout)/* synthesis syn_black_box
*/;

input[7:0] din;
input [5:0] addr;
input we, clk;
output [7:0] dout;

endmodule;

4. Make sure the bus format matches the bus format in the core generator,
using the syn_edif_bit_format and syn_edif_scalar_format directives if needed.

module ram64x8(din, addr, we, clk, dout)
/* synthesis syn_black_box syn_edif_bit_format = "%u<%i>"
syn_edif_scalar format ="%u" */;

5. Instantiate the black box in the module or architecture.

ram64x8 r1(din, addr, we, clk, dout);

6. Synthesize the design.

If you supplied structural EDIF netlists, the software optimizes the
design based on the information in the structural netlists. The generated
reports contain the optimization information.

Optimizing Xilinx Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 805

Instantiating Virtex PCI Cores
For Virtex PCI cores, you can use either a top-down or bottom-up method-
ology. This figure shows a design that is used in the explanations of both
methodologies, below.

Bottom-Up Method
The bottom-up method synthesizes lower-level modules first. The synthesized
modules are then treated as black boxes and synthesized at the next level.
The following procedure refers to the figure shown above.

1. Synthesize the user-defined application (PING64) by itself.

– Make sure that the Disable I/O Insertion option is on.

– Specify the syn_edif_bit_format = "%u<%i>" and
syn_edif_scalar_format = "%u" attributes. This ensure that the

FF

PCIM_LC

BUFG

I/O

FF

FF

FF

FF

FF

I/O

I/O

I/O

BUFG

PCI_LC_ICFG

PCIM_TOP

PING64

LO

Chapter 18: Optimizing for Specific Targets Optimizing Xilinx Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
806 June 2009

EDIF bus names match the Xilinx upper-case, angle bracket style
bus names and the Xilinx upper-case net names, respectively.

The software generates an EDIF file for this module.

2. Synthesize the top-level module that contains the PCI core, with the
Disable I/O Insertion option enabled and the EDIF naming attributes
described in the previous step. Use the following files to synthesize:

– The top-level module (PCIM_LC) file, with the PCI core (PCI_LC_I)
declared as a black box with the syn_black_box attribute.

– A black box file for the core (PCI_LC_I), that only contains information
about the PCI core ports. This file is the source file that is generated
for simulation, not the .ngo file.

– The appropriate synthesis Virtex file (install_dir/lib/xilinx) that
contains module definitions of the I/O pads in the top-level module,
PCIM_LC.

The software generates an EDIF file for this module.

3. Synthesize the top level (PCIM_TOP) with Disable I/O Insertion off. Use the
following files:

– The source file for CFG.

– A black box file for PING64.

– A black box file for PCIM_LC.

– A top-level file that contains black box declarations for PING64 and
PCIM_LC.

The software generates an EDIF file for the top level.

4. Place and route using the Xilinx .ngo file for the core, and the three
EDIF files generated from synthesis: one for each of the modules PING64
and PCIM_LC, and the top-level EDIF file. Select the top-level EDIF file
when you run place-and-route.

Top-down Methodology
The top-down method instantiates user application blocks and synthesizes
all the source files in one synthesis run. This method can result in a smaller,
faster design than with the bottom-up method, because the tool can do cross-
boundary optimizations. The following procedure refers to the design shown
in the previous figure.

Optimizing Xilinx Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 807

1. Create your own configuration file for your application model (CFG).

2. Edit the top-level source file to do the following:

– Instantiate your application block (PING64) in the top-level source file.

– Add the ports from your application.

3. Add the appropriate synthesis Virtex file (install_dir/lib/xilinx) to
the project. This file contains module definitions of the I/O pads in the
PCIM_LC module.

4. Specify the top-level file in the project.

5. Synthesize your design with the following files:

– Virtex module definition file (previous step)

– Source files for top-level design, user application (PING64), PCIM_LC,
and CFG

– Simulation wrapper file for PCI core

The software generates an EDIF file for the top level.

6. Place and route the design using the top-level EDIF file from synthesis
and the Xilinx .ngo file for the PCI core.

Packing Registers for Xilinx I/Os
When a register drives an input or output, you might want to pack it in an
IOB instead of a CLB, as in these cases:

• The chip interfaces with another, and you have to minimize the register-
to-output or input-to-register delay.

• You have limited CLB resources, and packing the registers in an IOB
can free up some resources.

To pack registers in an IOB, you set the syn_useioff attribute.

1. To globally embed all the registers into IOBs, attach the syn_useioff
attribute to the module in one of these ways:

– Add the attribute in the SCOPE window, attaching it to the module,
architecture, or the top level. Check the Enable box, set the Attribute
column to syn_useioff, the Object column to <global>, and the attribute
value to 1. The constraint file syntax looks like this:

LO

Chapter 18: Optimizing for Specific Targets Optimizing Xilinx Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
808 June 2009

define_global_attribute syn_useioff 1

– To add the attribute in the Verilog source code, add this syntax to the
top level:

module global_test(d, clk, q) /* synthesis syn_useioff = 1 */;

– To add the attribute in the VHDL source code, add this syntax to the
top level architecture declaration:

architecture rtl of global_test is
attribute syn_useioff : boolean;
attribute syn_useioff of rtl : architecture is true;

For details about attaching attributes using the SCOPE interface and in
the source code, see Entering Attributes and Directives, on page 304.

When set globally, all boundary registers and (OE) registers associated
with the data registers are marked with the Xilinx IOB property. This
property is forward annotated in the EDIF netlist and used by the Xilinx
place-and-route tools to determine how the registers are packed. All
marked registers are packed in the corresponding IOBs.

2. To apply syn_useioff to individual registers or ports, use one of these
methods:

– Add the attribute in the SCOPE window, attaching it to the ports you
want to pack, and set the attribute value to 1. The resulting
constraint file syntax looks like this:

define_attribute {p:q[3:0]} syn_useioff 1

– To add the attribute in the Verilog source code, add this syntax:

module test is (d, clk, q);
input [3:0] d;
input clk;
output [3:0] q /* synthesis syn_useioff = 1 */;
reg q;

Optimizing Xilinx Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 809

– To add the attribute in the VHDL source code, add syntax as shown
inside the entity for the local port:

entity test is
port (d : in std_logic_vector(3 downto 0);

clk : in std_logic
q : out std_logic_vector(3 downto 0);

attribute syn_useioff : boolean;
attribute syn_useioff of q : signal is true;
end test;

The software attaches the IOB property as described in the previous step,
but only to the specified flip-flops. Packing for ports and registers
without the attribute is determined by timing preferences. If a register is
to be packed into an IOB, the IOB property is attached and forward
annotated. If it is to be packed into a CLB, the IOB property is not
forward annotated.

In Virtex designs where the synthesis software duplicates OE registers,
setting the syn_useioff attribute on a boundary register only enables the
associated OE register for packing. The duplicate is not packed, but
placed in a CLB. The packed registers are used for data path, and the
CLB registers are used for counter implementation.

In Virtex designs where a shift register is at a boundary edge and the
syn_useioff attribute is enabled, the software extracts only the initial or
final SRL16 shift register from the LUT for packing. The shift register
that is implemented in the technology view is smaller because of the
extraction.

3. If you set multiple syn_useioff attributes at different levels of the design,
the tool uses the most specific setting (highest priority).

This table summarizes syn_useioff priority settings, from the highest
priority (register) to the lowest (global):

I/O Type syn_useioff Value Description

Register 1 Packs registers into the I/O pad cells,
overriding port or global specifications.

0 Does not pack registers into I/O pad cells,
overriding port or global specifications.

LO

Chapter 18: Optimizing for Specific Targets Optimizing Xilinx Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
810 June 2009

Specifying Xilinx Register INIT Values
You can specify initial values for registers so that the RTL, gate-level simula-
tion, and the final implmentation results match. You can specify INIT values
for registers either with the HDL initialization specification built into Verilog
or VHDL, or by adding the synthesis attribute. You can then pass the values to
the Xilinx P&R tools .

Both methods are described in the following procedure, but the HDL specifi-
cation method is recommended.

1. To ensure that the register is not optimized away during synthesis, set
the syn_preserve directive on the register in the source code.

Use this directive even if you define the INIT values with a constraint in
the .sdc file. If you do not have this directive, the register can be removed
during optimization.

2. To set a register value using the HDL initialization feature, use the
following syntax:

For example:

Port 1 Packs registers into the I/O pad cells,
overriding any global specification.

0 Does not pack registers into I/O pad cells,
overriding any global specification.

Global 1 Packs registers into the I/O pad cells.

0 Does not pack registers into I/O pad cells.

HDL Initialization reg myreg=0;
initial myreg=0; (Verilog only)

Verilog HDL Initialization reg error_reg = 1’b0;
reg [7:0] address_reg = 8’hff;

VHDL HDL Initialization signal tmp: std_logic = ‘0’;

I/O Type syn_useioff Value Description

Optimizing Xilinx Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 811

This is the preferred method to pass INIT values to the Xilinx place-and-
route tools.

3. To set a register value using the synthesis attribute, add the attribute to
the register in the source code or the constraint file, and specify the INIT
value as a string:

Xilinx ISE 8.2sp3 and later versions require that the INIT value be a
string rather than an integer. For code examples, see INIT Values, on
page 1178 in the Reference Manual.

4. To specify different INIT values for each register bit on a bus, do the
following:

– Set syn_preserve on the register as described in step 1, so that it is not
optimized away. You can now either use the HDL specification or set
an attribute.

– To specify the values using the HDL specification, use the syntax as
shown in the following examples:

– To specify the value with the INIT attribute in the .sdc constraint file,
set INIT values for the individual register bits on the bus. Specify the
register using the i: prefix, with periods as hierarchy separators.

The following specifies INIT values for individual bits of rst_cntr, which
is part of the init_attrver module, under the top-level module:

define_attribute {i:init_attrver.rst_cntr[0]} INIT {"0"}
define_attribute {i:init_attrver.rst_cntr[1]} INIT {"1"}
define_attribute {i:init_attrver.rst_cntr[2]} INIT {"0"}
define_attribute {i:init_attrver.rst_cntr[3]} INIT {"1"}

Verilog reg [3:0] rst_cntr /* synthesis INIT="1" */;

VHDL attribute INIT: string;
attribute INIT of rst_cntr : signal is "1";

SDC define_attribute {i:rst_cntr} INIT {"1"}

Verilog HDL Bus Initialization reg [7:0] address_reg = 8’hff;

VHDL HDL Bus Initialization signal q: std_logic_vector
(11 downto 0) := X”755”;

LO

Chapter 18: Optimizing for Specific Targets Optimizing Xilinx Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
812 June 2009

5. Synthesize the design.

The tool forward-annotates the values to the Xilinx P&R tool in the EDIF
netlist. If the register is an asynchronous output register with an initial
value, the mapper preserves the initial value and packs the register into
the Block RAM.

Inserting Xilinx I/Os and Specifying Pin Locations
By default, the synthesis tools automatically insert I/Os for inputs, outputs,
and bidirectionals (such as IBUFs and OBUFs). You can change this by
enabling Disable IO Insertion in the Device tab of the Implementation Options dialog
box. You can also insert I/Os manually by instantiating them.

Whether you use the automatic or manual method, you can specify pin
locations for the I/Os with the xc_loc attribute. By default, or if no location is
specified, the Xilinx tool assigns pin locations automatically.

The following provide details:

• Assigning Pin Locations for Automatically Inserted Xilinx I/Os, on
page 812

• Manually Inserting Xilinx I/Os in Verilog, on page 815

• Manually Inserting Xilinx I/Os in VHDL, on page 817

Assigning Pin Locations for Automatically Inserted Xilinx I/Os
The synthesis tool automatically inserts the I/Os (unless you have checked
Disable IO Insertion in the Device tab of the Implementation Options dialog box). The
following procedure shows you how to assign pin locations for automatically
inserted I/Os in a Verilog or VHDL design.

1. Create a new top-level module or entity and instantiate it in your Verilog
or VHDL design.

This module/entity holds I/O placement information. Creating this lets
you keep your vendor-specific information separate from the rest of your
design. Your original design remains technology-independent.

For example, this is a Verilog counter definition:

Optimizing Xilinx Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 813

module cnt4 (cout, out, in, ce, load, clk, rst);
// Counter definition
endmodule

You create a top-level module that instantiates your design:

module cnt4_xilinx (cout, out, in, ce, load, clk, rst);

2. If you do not want to specify locations, specify the inputs or outputs as
usual. The following is an example of Verilog inputs in the top-level
module:

input ce, load, clk, rst;

The Xilinx place-and-route tool automatically places these inputs.

3. Optionally, specify I/O locations in the new top-level module, by setting
the xc_loc attribute.

You can specify the xc_loc attribute in the Attribute panel of the SCOPE
spreadsheet, as shown below.

Alternatively, you can specify it in the HDL files, as described in
Manually Inserting Xilinx I/Os in Verilog, on page 815 and Manually
Inserting Xilinx I/Os in VHDL, on page 817. See xc_loc Attribute, on
page 1165 in the Reference Manual for syntax details.

The following Verilog code includes xc_loc attributes that specify the
following locations:

– cout at A1

– out in the top left (TL) of the chip

– in[3] at P20, in[2] at P19, in[1] at P18, and in[0] at P17

output cout /* synthesis xc_loc="A1" */;
output [3:0] out /* synthesis xc_loc="TL" */;
input [3:0] in /* synthesis xc_loc="P20,P19,P18,P17" */;

LO

Chapter 18: Optimizing for Specific Targets Optimizing Xilinx Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
814 June 2009

4. Instantiate the top-level module or entity with the placement
information you specified in your design. For example:

cnt4 my_counter (.cout(cout), .out(out), .in(in),
.ce(ce), .load(load), .clk(clk), .rst(rst));

endmodule

5. Synthesize the design.

The synthesis tools automatically insert I/Os for inputs, outputs, and
bidirectionals (such as IBUFs and OBUFs). The Xilinx place-and-route
tool automatically selects locations for I/Os with no xc_loc attribute
defined. If you specified xc_loc settings, they are honored.

VHDL Automatic I/O Insertion Example
library synplify;
entity cnt4 is

port (cout: out bit;
output: out bit_vector (3 downto 0);
input: in bit_vector (3 downto 0);
ce, load, clk, rst: in bit);

end cnt4;

architecture behave of cnt4 is
begin
-- Behavioral description of the counter.
end behave;

-- New top level entity, created specifically
-- to place I/Os for Xilinx. This entity is typically
-- in another file, so that your original
-- design stays untouched and technology independent.

entity cnt4_xilinx is
port (cout: out bit;

output: out bit_vector (3 downto 0);
input: in bit_vector (3 downto 0);
ce, load, clk, rst: in bit);

-- Place a single I/O for cout at location A1.
attribute xc_loc : string;
attribute xc_loc of cout: signal is "A1";

-- Place all bits of "output" in the
-- top-left of the chip.
attribute xc_loc of output: signal is "TL";

Optimizing Xilinx Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 815

-- Place input(3) at P20, input(2) at P19,
-- input(1) at P18, and input(0) at P17
attribute xc_loc of input: signal is "P20, P19, P18, P17";

-- Let Xilinx place the rest of the inputs.
end cnt4_xilinx;

-- New top level architecture instantiates your design.
architecture structural of cnt4_xilinx is
-- Component declaration for your entity.

component cnt4
port (cout: out bit;

output: out bit_vector (3 downto 0);
input: in bit_vector (3 downto 0);
ce, load, clk, rst: in bit);

end component;
begin

-- Instantiate your VHDL design here:
my_counter: cnt4 port map (cout, output, input,

ce, load, clk, rst);
end structural;

Manually Inserting Xilinx I/Os in Verilog
To insert a Xilinx I/O manually, you must instantiate a black box macro for
that I/O from the Xilinx library file. You can then choose to assign it a
location or have the Xilinx tool automatically select one for it.

To insert an I/O manually and then use automatic location assignment, do
the following:

1. Add the install_dir/lib/xilinx/unisim.v macro library file to the top
of the source files list for your project.

2. Create instances of I/Os by instantiating a black box in your Verilog
source code.

These black boxes are empty Verilog module descriptions, taken from
the Xilinx macro library you specified in step 1. You can stop at this
step, and the Xilinx tool will automatically assign locations for the I/Os
you specified.

To insert an I/O manually and specify pin locations, do the following:

1. Create a new top-level module and instantiate your Verilog design.

LO

Chapter 18: Optimizing for Specific Targets Optimizing Xilinx Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
816 June 2009

2. Add the install_dir/lib/xilinx/unisim.v macro library file to the top
of the source files list for your project.

3. Create instances of I/Os by instantiating a black box in your Verilog
source code.

4. Specify I/O locations by adding the xc_loc attribute to the I/Os.

See Verilog Manual I/O Insertion Example, on page 816 for an example of
the code.The Xilinx tool honors any locations assigned with the xc_loc
attribute, and automatically selects locations for any remaining I/Os
without definitions.

Verilog Manual I/O Insertion Example
module cnt4 (cout, out, in, ce, load, clk, rst);
/* Your counter definition goes here, */
endmodule
/* Create a top level to place I/Os specifically

for Xilinx. Any top level pins which do not have
I/Os will be automatically inserted */

module cnt4_xilinx(cout, out, in, ce, load, clk, rst);
output [3:0] out;
output cout;
input [3:0] in;
input ce, load, clk, rst;wire [3:0] out_c, in_c;
wire cout_c;

/* The xc_loc attribute can be added right after the
instance name like that shown below, or right before
the semicolon. */

IBUF i3 /* synthesis xc_loc="P20" */ (.O(in_c[3]), .I(in[3]));
IBUF i2 /* synthesis xc_loc="P19" */ (.O(in_c[2]), .I(in[2]));
IBUF i1 /* synthesis xc_loc="P18" */ (.O(in_c[1]), .I(in[1]));
IBUF i0 /* synthesis xc_loc="P17" */ (.O(in_c[0]), .I(in[0]));

OBUF o3 /* synthesis xc_loc="TL" */ (.O(out[3]), .I(out_c[3]));
OBUF o2 /* synthesis xc_loc="TL" */ (.O(out[2]), .I(out_c[2]));
OBUF o1 /* synthesis xc_loc="TL" */ (.O(out[1]), .I(out_c[1]));
OBUF o0 /* synthesis xc_loc="TL" */ (.O(out[0]), .I(out_c[0]));

OBUF cout_p /* synthesis xc_loc="BL" */ (.O(cout), .I(cout_c));

cnt4 it(.cout(cout_c), .out(out_c), .in(in_c),
.ce(ce), .load(load), .clk(clk), .rst(rst));

endmodule

Optimizing Xilinx Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 817

Manually Inserting Xilinx I/Os in VHDL
To insert an I/O manually and then use automatic location assignment, do
the following:

1. Add the corresponding library and use clauses to the beginning of your
design units that instantiate the macros.

library unisim;
use unisim.vcomponents.all;

The Xilinx unisim.vhd macro library is always visible in the synthesis
tool, so do not add this library file to the source files list for your project.
To see which design units are available, use a text editor to view the file
located in the install_dir/lib/xilinx directory. Do not edit this file in
any way.

2. Create instances of I/Os by instantiating a black box in your Verilog
source code.

These black boxes are empty Verilog module descriptions, taken from
the Xilinx macro library you specified in step 1. You can stop at this
step, and the Xilinx tool will automatically assign locations for the I/Os
you specified.

To insert an I/O manually and specify pin locations, do the following:

1. Create a new top-level module and instantiate your VHDL design.

2. Instantiate the Xilinx I/Os.

3. Add the appropriate library and use clauses to the beginning of design
units that instantiate the I/Os.

library unisim;
use unisim.vcomponents.all;

See the source code in VHDL Manual I/O Insertion Example, on page 818
for an example.

4. To specify I/O locations, add the xc_loc attribute to the I/O instances for
which you want to specify the locations.

5. If you leave out the xc_loc attribute, the Xilinx place-and-route tool will
choose the locations.

LO

Chapter 18: Optimizing for Specific Targets Optimizing Xilinx Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
818 June 2009

VHDL Manual I/O Insertion Example
The following example is a behavioral D flip-flop with instantiated data input
I/O. The other ports will have synthesized I/Os.

library ieee, synplify;
use synplify.attributes.all;
use ieee.std_logic_1164.all;
-- Library and use clauses for access to the Xilinx Macro Library.
library unisim;
use unisim.vcomponents.all;

entity place_example is
port (q: out std_logic;

d, clk: in std_logic);
end place_example;

architecture behave of place_example is
signal dz: std_logic;

attribute xc_loc of I1: label is "P3";
begin
I1: IBUF port map (I=>d,O=>dz);

process (clk) begin
if rising_edge(clk) then

q<=dz;
end if;

end process;

end behave;

Working with Xilinx Buffers
By default, the synthesis tools do not automatically infer Xilinx buffers. If you
want the tools to infer Xilinx buffers, you must use attributes, as described
below.

1. To infer BUFGMUX components, do the following:

– Attach the syn_insert_buffer attribute to the mux instance. If you need
information on how to do this, see Entering Attributes and Directives,
on page 304.

– Set the attribute value to bufgmux. When you set this value, the tool
infers a BUFGMUX_1 if the muxed clock operates on the negative edge;

Optimizing Xilinx Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 819

otherwise it infers a BUFGMUX. If you do not specify this value, by
default the tool infers the LUT that drives the BUFG.

For details about the syn_insert_buffer syntax, see syn_insert_buffer
Attribute, on page 1014 in the Reference Manual

2. To infer IBUFDS, IBUFGDS, OBUFDS, OBUFTDS, and IOBUFDS differential
buffers, do the following:

– Attach the syn_diff_io attribute to the inputs of the buffer.

– Set the value to 1 or true.

For details about the syn_diff_io syntax, see syn_diff_io Attribute, on
page 968 in the Reference Manual.

Specifying RLOCs
RLOCs are relative location constraints. They let you control placement in
critical sections, thus improving performance. You specify RLOCs using three
attributes, xc_map, xc_rloc, and xc_uset. As with other attributes, you can
define them in the source code, or in the SCOPE window.

You can also specify RLOCs directly, as described in Specifying RLOCs and
RLOC_ORIGINs with the synthesis Attribute, on page 821.

1. Create the modules you want to constrain, and specify the kind of Xilinx
primitive you want to map them to, using the xc_map attribute. The
modules can have only one output.

module
bufgmux_1(c1,c2,sel,din,d
out);
input c1,c2,sel;
input [20:1] din;
output reg [20 : 1] dout;
wire clk;

assign clk = sel ? c1 :

sel

c2

c1

clk

din[20:1]

dout[20:1]

0

D[19:0] Q[19:0]1

dout[20:1]

LO

Chapter 18: Optimizing for Specific Targets Optimizing Xilinx Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
820 June 2009

This Verilog example shows a 4-input Spartan XOR module:

module fmap_xor4(z, a, b, c, d) /* synthesis xc_map=fmap*/ ;
output z;
input a, b, c, d;
assign z = a ^ b ^c ^d;
endmodule

This is the equivalent VHDL example:

library IEEE;
use IEEE.std_logic_1164.all;
entity fmap_xor4 is

port (a: in std_logic;
b: in std_logic;
c: in std_logic;
d: in std_logic
);

end fmap_xor4;

architecture rtl offmap_xor4 is
attribute xc_map : STRING;
attribute xc_map of rtl: architecture is "fmap";
begin

z <= a xor b xor c xor d;
end rtl;

2. Instantiate the modules you created at a higher hierarchy level.

3. Group the instances together (xc_uset attribute) and specify the relative
locations of instances in the group with the xc_rloc attribute.

This example shows the Verilog code for the top-level CLB that includes
the 4-input module in the previous example:

Family xc_map Value Max. Module Inputs

XC4000, Spartan families fmap
hmap

4
3

Virtex and Spartan-3
families

lut 4

Optimizing Xilinx Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 821

module clb_xor9(z, a) ;
output z;
input [8:0] a;
wire x03, x47;
//Code for XC4000 or Spartan
fmap_xor4 x03 /*synthesis xc_uset="SET1" xc_rloc="R0C0.f" */

(z03, a[0], a[1], a[2], a[3]);
fmap_xor4 x47 /*synthesis xc_uset="SET1" xc_rloc="R0C0.g" */

(z47, a[4], a[5], a[6], a[7]);
hmap_xor3 zz /*synthesis xc_uset="SET1" xc_rloc="R0C0.h" */

(z, z03, z47, a[8]);
//Code for Virtex differs because it includes the slice
fmap_xor4 x03 /*synthesis xc_uset="SET1" xc_rloc="R0C0.S0" */

(z03, a[0], a[1], a[2], a[3]);
fmap_xor4 x47 /*synthesis xc_uset="SET1" xc_rloc="R0C0.S0" */

(z47, a[4], a[5], a[6], a[7]);
hmap_xor3 zz /*synthesis xc_uset="SET1" xc_rloc="R0C0.S1" */

(z, z03, z47, a[8]);endmodule

4. Create a top-level design and instantiate your design.

Specifying RLOCs and RLOC_ORIGINs with the synthesis Attribute
 You can specify RLOCs and RLOC_ORIGINs with the synthesis attribute, and
then pass them to the Xilinx P&R tools. Alternatively, you can specify RLOCs
using the three attributes described in Specifying RLOCs, on page 819.

1. In the source code, use the synthesis attribute to specify the RLOC and
RLOC_ORIGIN values:

For code examples, see RLOC Constraints, on page 1179 in the Reference
Manual.

2. To specify different RLOC and RLOC_ORIGIN values for bits on a bus, do
the following:

Verilog /* synthesis RLOC_ORIGIN="X0Y2" RLOC="X0Y0" */;

VHDL attribute RLOC_ORIGIN : string;
attribute RLOC_ORIGIN of behave : architecture is "X0Y2";
attribute RLOC : string;
attribute RLOC of q : signal is "X0Y0";

LO

Chapter 18: Optimizing for Specific Targets Optimizing Xilinx Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
822 June 2009

– Specify the RLOC_ORIGIN for theVerilog module or VHDL architecture
in the source file. See step 1 for the syntax.

– Define RLOCs for the individual register bits as constraints in the .sdc
file. Do not define RLOCs for individual bits in the source code, or you
will get a Xilinx ISE error.

define_attribute {i:tmp[0]} RLOC {"X3Y0"}
define_attribute {i:tmp[1]} RLOC {"X2Y0"}
define_attribute {i:tmp[2]} RLOC {"X1Y0"}
define_attribute {i:tmp[3]} RLOC {"X0Y0"}

3. Synthesize the design.

The tool forward-annotates the values to the Xilinx P&R tool in the EDIF
netlist.

Using Clock Buffers in Virtex Designs
The software can infer a buffer called BUFGDLL that includes the CLKDLL
primitive. BUFGDLL consists of an IBUFG followed by a CLKDLL (Clock Delay
Locked Loop) followed by a BUFG. To use this CLKDLL primitive, you must
specify the xc_clockbuftype attribute. The following steps show you how to add
the attribute in SCOPE or the HDL files.

1. To specify the attribute in the SCOPE window, use the procedure
described in Specifying Attributes Using the SCOPE Editor, on page 307
to add the xc_clockbuftype attribute to a port.

The software infers a buffer as shown in the following figure.

The output EDIF netlist contains text like the following:

(instance clk_ibuf (viewRef PRIM (cellRef BUFGDLL (libraryRef VIRTEX)))

Optimizing Xilinx Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 823

2. To specify the attribute in Verilog, add the attribute as shown in this
example.

module test(d, clk, rst, q);
input [1:0] d;
input clk /* synthesis xc_clockbuftype = "BUFGDLL" */, rst;
output [1:0] q;
//other coding

3. To specify the attribute in VHDL, add the attribute as shown in this
example.

entity test_clkbuftype is
port (d: in std_logic_vector(3 downto 0);

clk, rst : in std_logic;
q : out std_logic_vector(3 downto 0)

);
attribute xc_clockbuftype of clk : signal is "BUFGDLL";
end test_clkbuftype

LO

Chapter 18: Optimizing for Specific Targets Optimizing Xilinx Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
824 June 2009

Working with Clock Skews in Xilinx Virtex-5 Physical Designs
The Synplify Premier software version 9.0.1 and later supports clock skews
for Virtex-5 devices , and the SRM clock insertion delay property (Clock input
arrival_time). Clock insertion delay models are included for the following
components:

– DCM

– BUFG

– BUFR

– BUFIO

– Flip-flops generating clocks

This feature ensures that cross-clock paths are compared correctly. Also, it
has a large impact on timing constraints for I/O paths, since any clock delay
will be added to the output delay and subtracted from the setup delay. This
results in improved timing correlation between the Synplify Premier software
and Xilinx timing.

Example1: Calculating Slack with Clock Skew
Clock skew is utilized to calculate the slack in the following Virtex-5 example:

• Source DCM (clock insertion delay = 0.000ns)

• Load IBUFG (clock insertion delay = 4.157ns)

Requested Period: 5.000
- (Setup Time): 0.004

+ (Clock Delay at Ending Point): 4.157
+ (Clock Latency at Ending Point): 0.000

= Required Time: 9.153
- (Propagation Time): 0.746

- (Clock Latency at Starting Point): 0.000
= Slack (non-critical): 8.407

Optimizing Xilinx Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 825

Example 2: Calculating Slack Using Clock Skew
Clock skew is utilized to calculate the slack in the following Virtex-5 example:

• Source IBUFG (clock insertion delay = 4.157ns)

• Load DCM (clock insertion delay = 0.000ns)

Requested Period: 5.000
- (Setup Time): 0.004

+ (Clock Latency at Ending Point): 0.000

= Required Time: 4.996
- (Propagation Time): 0.745

- (Clock Delay at Starting Point): 4.157
- (Clock Latency at Starting Point): 0.000

= Slack (critical): 0.094

The Synplify Premier software does not automatically forward annotate
constraints for derived clocks. Therefore, a clock generated from a set of flip-
flops and logic requires you to add a constraint in the UCF file. As a recom-
mendation, derive the clock period the same as the original clock and add a
2-cycle multicycle path from the clock to itself. Better solutions will be
provided in the future.

Instantiating Special I/O Standard Buffers for Virtex
The software supports all the I/O Virtex standards, like HSTL_*, CTT, AGP,
PC133_*, PC166_*, etc. You can either instantiate these primitives directly, or
specify them with the xc_padtype attribute.

1. To instantiate I/O buffers, use code like the following to specify them.

module inst_padtype(a, b, clk, rst, en, bidir, q) ;
input [0:0] a, b;
input clk, rst, en;
inout bidir;
output [0:0] q;

reg [0:0] q_int;
wire a_in, q_in;
IBUF_AGP i1 (.O(a_in), .I(a)) ;
IOBUF_CTT i2 (.O(q_in), .IO(bidir) , .I(q_in), .T(en)) ;
OBUF_F_12 o1 (.O(q), .I(q_in)) ;

LO

Chapter 18: Optimizing for Specific Targets Optimizing Xilinx Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
826 June 2009

always @(posedge clk or posedge rst)
if (rst)

q_int = 1’b0;
else

q_int = a & b;

endmodule

2. To specify the I/O buffers with an attribute, add the attribute in the
SCOPE window (refer to Specifying Timing Constraints, on page 219 for
details) or in the source code, as the following example illustrates.

module inst_padtype(a, b, clk, rst, en, bidir, q) ;
input [0:0] a /* synthesis xc_padtype = "IBUF_AGP" */, b;
input clk, rst, en;
inout bidir /* synthesis xc_padtype = "IOBUF_CTT" */;
output [0:0] q /* synthesis xc_padtype = "OBUF_F_12" */;

reg [0:0] q_int;

assign q = bidir;
assign bidir = en ? q_int : 1’bz;
always @(posedge clk or posedge rst)

if (rst)
q_int = 1’b0;

else
q_int = a_in & b;

endmodule

Reoptimizing With EDIF Files
You can resynthesize an EDIF file to refine and optimize your design further.

1. Make sure your design conforms to these rules:

– The design must not have mixed language files.

– The name of the EDIF file matches the module name.

2. Create a project and add the EDIF file to the design.

3. Specify the EDIF as the top-level design.

– Click Implementation Options and go to the Verilog or VHDL tab.

Optimizing Xilinx Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 827

– Enter the module name in the Top Level Module/Entity field. If your
module is not in the work library, specify the library first:

<library>.<module>

– Click OK.

4. Set any other options you want and resynthesize your design.

Improving Xilinx Physical Synthesis Performance
The Synplify Premier tool is timing-driven; optimizations depend on timing
constraints and are applied until all constraints are met. Therefore, it is very
important that you adequately apply timing constraints and not over-
constrain the tool. This section includes guidelines for applying constraints.

• Verify the consistency of constraints between synthesis and P&R:

– Clock constraints

– Clock-to-clock constraints

– IO delays

– IO standard, drive, slew and pull-up/pull-down

– Multi-cycle and false paths

– Max-delay paths

– DCM parameters

– Register packing into IOB

– LOC/RLOC constraints on macros (BUFG, DCM, RAMB, DSP, MULT,
etc.)

– LOC/RLOC constraints on instances (Register, LUT, SRL, RAMS,
RAMD, etc.)

– AREA_GROUP constraints

– IDELAYCTRL and IDELAY constraints

• Ensure that the final physical synthesis slack is negative, but no more
than 10-15% of the clock constraint.

• Check the log file for Pre-placement timing snapshot.
If it indicates that a clock has positive slack at this point, but in the final
results the clock has negative slack, use the -route constraint for the
clock. This lets you to control the amount of early timing optimizations

LO

Chapter 18: Optimizing for Specific Targets Optimizing Xilinx Designs

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
828 June 2009

for the clock domain. However, large -route values can degrade perfor-
mance. Therefore, to determine the correct -route value to use, start with
smaller values and increase iteratively. For example, start with half the
difference between the estimate and actual slack, or 5% of the clock
estimate, whichever is the smallest.

• Experiment with ignoring the relationally-placed macro (RPM)
constraints.

RPMs (also known as RLOCs) can negatively affect results. You can
compare placement results using the Synplify Premier tool by setting the
global attribute xc_use_rpms to 0. For details on this attribute, see
xc_use_rpms Attribute, on page 1188 in the Reference Manual.

• Ensure placement for I/Os, Block Rams, and DSP48 devices.

This version of the tool uses the Xilinx placer to generate locations for
I/Os and block components. To avoid block component placement
problems, you need to lock placement. See Generating a Xilinx Coreloc
Placement File, on page 354 for information.

Running Post-Synthesis Simulation
For post-synthesis simulation with a Xilinx design, do the following:

1. Run synthesis as usual.

The run generates a .vhm file, which references the synplify library:

library synplify;
use synplify.components.all;
library UNISIM;
use UNISIM.VCOMPONENTS.all;

2. Set up the libraries.

– Create a library called synplify and compile synplify.vhd into it. The
synplify.vhd file is located in install_dir/lib/vhdl_sim.

– Create a library called UINISIM, and compile the UNISIM simulation
library provided by Xilinx into it.

3. Compile the .vhm file into work. For example:

vcom -work synplify install_dir/lib/vhdl_sim/synplify.vhd

Optimizing Xilinx Designs Chapter 18: Optimizing for Specific Targets

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 829

Working with Xilinx Place-and-Route Software
The following procedure shows you how to run the Xilinx place-and-route tool
from within the synthesis software.

1. Set the XILINX environment variable to point to your Xilinx software
installation directory.

2. Start the synthesis software and open a synthesized design.

3. Start the place-and-route software:

– To start Xilinx Design Manager, select Options->Xilinx->Start Design
Manager.

– To start Xilinx floorplanner, select Options->Xilinx->Start Floorplanner.

– To start the ISE tool, select Options->Xilinx->Start ISE Project Navigator.

LO

Chapter 18: Optimizing for Specific Targets Optimizing Xilinx Designs

Synopsys FPGA Synthesis User Guide
830 June 2009

Synopsys, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: +1 408 215-6000, Fax: +1 408 222-068
www.solvnet.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology,
Certify, DesignWare, HDL Analyst, Identify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro,
Synthesis Constraints Optimization Environment, and VCS are registered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-perfor-
mance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and TotalRecall are trademarks of Synopsys, Inc. All other
names mentioned herein are trademarks or registered trademarks of their respective companies.

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 831

C H A P T E R 1 9

Working with Synthesis Output

This chapter covers techniques for optimizing your design for various
vendors. The information in this chapter is intended to be used together with
the information in Chapter 8, Inferring High-Level Objects.

This chapter describes the following:

• Passing Information to the P&R Tools, on page 832

• Generating Vendor-Specific Output, on page 836

• Invoking Third-Party Vendor Tools, on page 838

LO

Chapter 19: Working with Synthesis Output Passing Information to the P&R Tools

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
832 June 2009

Passing Information to the P&R Tools
The following procedures show you how to pass information to the place-and-
route tool; this information generally has no impact on synthesis. Typically,
you use attributes to pass this information to the place-and-route tools. This
section describes the following:

• Specifying Pin Locations, on page 832

• Specifying Locations for Actel Bus Ports, on page 833

• Specifying Macro and Register Placement, on page 833

• Passing Technology Properties, on page 834

• Specifying Padtype and Port Information, on page 834

Specifying Pin Locations
In certain technologies you can specify pin locations that are forward-
annotated to the corresponding place-and-route tool. The following procedure
shows you how to specify the appropriate attributes. For information about
other placement properties, see Specifying Macro and Register Placement, on
page 833.

1. Start with a design using one of the following vendors and technologies:
Actel, Altera, Xilinx, Lattice, or QuickLogic families.

2. Add the appropriate attribute to the port. For a bus, list all the bus pins,
separated by commas. To specify Actel bus port locations, see Specifying
Locations for Actel Bus Ports, on page 833.

– To add the attribute from the SCOPE interface, click the Attributes tab
and specify the appropriate attribute and value.

– To add the attribute in the source files, use the appropriate attribute
and syntax. See the Reference Manual for syntax details.

Family Attribute and Value

Actel syn_loc {pin_number}
or
alspin {pin_number}

Altera syn_loc {pin_number}

Passing Information to the P&R Tools Chapter 19: Working with Synthesis Output

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 833

Specifying Locations for Actel Bus Ports
You can specify pin locations for Actel bus ports. To assign pin numbers to a
bus port, or to a single- or multiple-bit slice of a bus port, do the following:

1. Open the constraint file an add these attributes to the design.

2. Specify the syn_noarrayports attribute globally to bit blast all bus ports in
the design.

define_global_attribute syn_noarrayports {1};

3. Use the alspin attribute to specify pin locations for individual bus bits.
This example shows locations specified for individual bits of bus
ADDRESS0.

define_attribute {ADDRESS0[4]} alspin {26}
define_attribute {ADDRESS0[3]} alspin {30}
define_attribute {ADDRESS0[2]} alspin {33}
define_attribute {ADDRESS0[1]} alspin {38}
define_attribute {ADDRESS0[0]} alspin {40}

The software forward-annotates these pin locations to the place-and-
route software.

Specifying Macro and Register Placement
You can use attributes to specify macro and register placement in Actel and
QuickLogic designs. The information here supplements the pin placement
information described in Specifying Pin Locations, on page 832 and bus pin
placement information described in Specifying Locations for Actel Bus Ports,
on page 833.

Lattice loc {pin_number}

QuickLogic ql_placement {pin_number}

Xilinx syn_loc {pin_number}
or
xc_loc {pin_number}
See Specifying RLOCs, on page 819 for details
about relative placement.

LO

Chapter 19: Working with Synthesis Output Passing Information to the P&R Tools

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
834 June 2009

Passing Technology Properties
The following table summarizes the attributes used to pass technology-
specific information for certain vendors. For details about the attributes in
the table, see the Reference Manual.

Specifying Padtype and Port Information
For many vendors, you can use attributes to specify technology-specific port
information or padtype.

For... Use...

Relative placement of Actel macros
and IP blocks

alsloc Attribute
define_attribute {u1} alsloc {R15C6}

Placement of Lattice ORCA input or
output registers next to I/O pads

orca_padtype Attribute
define_attribute { load } orca_padtype "IBT"

Vendor Attribute for passing properties

Lattice ORCA orca_props Attribute
define_attribute {p:data_in} orca_props {LEVELMODE=LVDS}

Xilinx Specify the Xilinx properties directly in the source code. The
software passes them to the place-and-route tool. For example:
attribute INIT of RAM1 : label is "0000";
or
/* synthesis INIT_xx = "value" */

Information Vendor Attribute

Padtype Lattice ORCA orca_padtype Attribute
define_attribute {AIN[3]} orca_padtype {IBT}

QuickLogic ql_padtype Attribute
define_attribute {clk} ql_padtype {CLOCK}

Xilinx xc_padtype Attribute
define_attribute {a[3:0]} xc_padtype {IBUF_GTLP}

Passing Information to the P&R Tools Chapter 19: Working with Synthesis Output

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 835

Ports Altera altera_io_opendrain Attribute
define_attribute {alucout} altera_io_opendrain {1}

Altera altera_io_powerup Attribute
define_attribute {seg [31:0]} altera_io_powerup {high}

Xilinx xc_isgsr Directive
define_attribute {bbgsr.gsrin} xc_isgsr {1}

Xilinx xc_pullup/xc_pulldown Attribute
define_attribute { port_name } xc_pulldown { 1 }

Information Vendor Attribute

LO

Chapter 19: Working with Synthesis Output Generating Vendor-Specific Output

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
836 June 2009

Generating Vendor-Specific Output
The following topics describe generating vendor-specific output in the
synthesis tools.

• Targeting Output to Your Vendor, on page 836

• Customizing Netlist Formats, on page 837

Targeting Output to Your Vendor
You can generate output targeted to your vendor.

1. To specify the output, click the Implementation Options button.

2. Click the Implementation Results tab, and check the output files you need.

The following table summarizes the outputs to set for the different
vendors, and shows the P&R tools for which the output is intended.

Vendor Output Netlist P&R Tool

Actel EDIF (.edn)
*_sdc.sdc

Designer Series

Altera Flex and Acex EDIF (.edf)
AHDL (.tdf)

MAX+PLUSII or Quartus II

Altera Apex, Stratix,
Max-II, Cyclone

Verilog (.vqm) Quartus II

Altera Max EDIF (.edf)
AHDL (.tdf)

MAX+PLUSII

Lattice EDIF (.edf) ispExpert

Lattice Mach EDIF (.edf) or .src ispExpert

Lattice Orca EDIF (.edn) ispLEVER

QuickLogic EDIF (.qdf or .edf) SpDE

Generating Vendor-Specific Output Chapter 19: Working with Synthesis Output

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 837

3. To generate mapped Verilog/VHDL netlists and constraint files, check
the appropriate boxes and click OK.

See Specifying Result Options, on page 296 for details about setting the
option. For more information about constraint file output formats and
how constraints get forward-annotated, see Generating Constraint Files
for Forward Annotation, on page 105.

Customizing Netlist Formats
The following table lists some attributes for customizing your Actel, Altera,
and Xilinx output netlists:

Xilinx CoolRunner EDIF (.edf) or .src Web Fitter for EDIF files,
Minc for *.src files

Xilinx Spartan and
XC4000, XC4500, etc.

EDIF (.edf)or XNF
(.xnf)

Design Manager or ISE
Project Navigator

Xilinx Virtex and
Spartan-3

EDIF (.edf) Design Manager or ISE
Project Navigator

For... Use...

Netlist formatting syn_netlist_hierarchy Attribute (Altera, Xilinx, Actel)
define_global_attribute syn_netlist_hierarchy {0}

EDIF formatting
(Xilinx)

syn_edif_bit_format Attribute (Xilinx)
define_global_attribute syn_edif_bit_format {%n<%i>}

syn_edif_name_length Attribute (Xilinx)
define_global_attribute syn_edif_name_length { restricted }

syn_edif_scalar_format Attribute (Xilinx)
define_global_attribute syn_edif_scalar_format {%u}

Bus specification syn_noarrayports Attribute (Altera, Xilinx, Actel)
define_global_attribute syn_noarrayports {1}

Vendor Output Netlist P&R Tool

LO

Chapter 19: Working with Synthesis Output Invoking Third-Party Vendor Tools

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
838 June 2009

Invoking Third-Party Vendor Tools
You can invoke third-party tools from within the Synopsys FPGA synthesis
products, and configure the locations and common arguments for the tools.
This capability lets you modify source files or libraries or debug problems
from within the third-party tool, without leaving the synthesis environment.

You can invoke preconfigured tools, or to add your own. The process consists
of two steps:

• Configuring Tool Tags, on page 838

• Invoking a Third-Party Tool, on page 839

Configuring Tool Tags
A tool tag is a a configuration definition for a tool you want to invoke from the
synthesis interface. You define a tool tag to set up the third-party tool you
want to use. The synthesis software has some popular applications already
configured for you to use when the synthesis software starts up: System
Designer, Altera Megawizard, Xilinx EDK, and Xilinx Coregen. The following procedure
shows you how to define your own tool tags, or add command arguments.
Use this to specify other tools, other versions of a tool, or to run a tool with
different arguments.

1. Select Options->Configure 3rd Party Tool Options from the Project view.

Invoking Third-Party Vendor Tools Chapter 19: Working with Synthesis Output

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 839

2. Define the application tag information for the tool you want to invoke.

– Specify the application you want to invoke in Application Tag Name.

– Specify how you want to invoke the application tool. If you want to
run the tool directly from the UI, select Direct Execution. If your
application is a Tcl procedure, select TCL Mode.

– Specify the location of the application executable or Tcl procedure
name in Application Name with Path or Tcl Procedure Name.

– Specify any command arguments you want in the Command Argument if
any field. You can use this to define a new tool tag or to add
arguments to a tool tag that is already defined.

For a list of predefined command arguments, click the + button and
select them from the list. Otherwise, type the command arguments.
For the System Designer and other internal Synopsys tools, you must
select $SynCode from the Command Argument if any field.

– Click Apply.

– Click Close.

The tool saves these settings in the FPGA synthesis tool .ini file and
retrieves them for subsequent invocations . For information about
invoking a third-party tool, see Invoking a Third-Party Tool, on page 839,
next.

Invoking a Third-Party Tool
You can define tool tags globally and then use these tool tags to run the third-
party tool from the Project view for the specified tool tag only. Some common
tool tags are preconfigured and are read when the application starts up. You
can add or modify existing tool tags or define your own Tcl procedures to
invoke within the FPGA synthesis tools.

1. Define a tool tag for your application, as described in Configuring Tool
Tags, on page 838.

2. Right-click in the Project view on a file or folder which is configured to
run the vendor tool, and select Launch Tools->Run Vendor Tool from the
popup menu.

This dialog box automatically displays tool tag information associated
with with the file or folder. If no tool tag information is specified, look for
the parent hierarchy and edit or change it, if possible.

LO

Chapter 19: Working with Synthesis Output Invoking Third-Party Vendor Tools

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
840 June 2009

3. To associate a file or folder with a particular third-party tool, do the
following:

– Select the file or folder in the Project view. If you select a folder, the
third-party tool is associated with all the files in the folder. If you
associate a tool with a file, this setting overrides the folder setting.

– Right-click a file or folder and select Launch Tools->Run Vendor Tool from
the popup menu.

– In the Vendor Tool Invocation dialog box, select the application in
Application Tag Name.

– Include any additional options you want to use with this file when
you invoke the vendor tool. You can set command arguments now, if
you did not configure them earlier.

– Verify the command string in the dialog box.

– Click Save, and Close. The third-party tool is associated with the file or
folder and appears in the Launch Tools menu.

4. To invoke an associated third-party tool for a file or folder, do the
following:

– Right-click the file or folder in the Project view.

– Select Launch Tools-><Third-Party Tool> from the popup menu. The
synthesis tool automatically runs the tool or Tcl procedure as
specified.

Invoking Third-Party Vendor Tools Chapter 19: Working with Synthesis Output

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 841

5. To invoke the tool at the same time that you associate a third-party tool
with a file or folder, or to add additional arguments on the fly, do the
following:

– Right-click a file or folder and select Launch Tools->Run Vendor Tool from
the popup menu.

– In the Vendor Tool Invocation dialog box, select the application in
Application Tag Name.

– Include any additional options you want to use with this file when
you invoke the vendor tool. You can set command arguments now, if
you did not configure them earlier.

– Verify the command string in the dialog box.

– Click Save. The tool and arguments you specified is associated with
the file or folder and appears in the Launch Tools menu.

If you defined a new tool tag, the 3rd Party Tool Configuration dialog box
appears. After saving the settings here, go back to the Vendor Tool
Invocation dialog box. You are prompted to save this information to the
project file before invoking the third-party tool.

– Click the Run button in the Vendor Tool Invocation dialog box. The
synthesis tool launches the third-party tool or runs the Tcl procedure
with the arguments you specified.

These settings are saved in the FPGA synthesis tool .ini file, from where
it can be retrieved for subsequent invocations.

LO

Chapter 19: Working with Synthesis Output Invoking Third-Party Vendor Tools

Synopsys FPGA Synthesis User Guide
842 June 2009

Synopsys, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: +1 408 215-6000, Fax: +1 408 222-068
www.solvnet.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology,
Certify, DesignWare, HDL Analyst, Identify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro,
Synthesis Constraints Optimization Environment, and VCS are registered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-perfor-
mance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and TotalRecall are trademarks of Synopsys, Inc. All other
names mentioned herein are trademarks or registered trademarks of their respective companies.

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 843

C H A P T E R 2 0

Running Post-Synthesis Operations

The following describe post-synthesis operations:

• VIF Formal Verification Flow, on page 844

• Running Place-and-Route after Synthesis, on page 849

• Simulating with the VCS Tool, on page 851

• Resynthesizing with QuickLogic Information, on page 856

• Quartus II Incremental Compilation, on page 857

• Working with Xilinx Incremental Flows, on page 862

• Working with the Identify RTL Debugger, on page 868

LO

Chapter 20: Running Post-Synthesis Operations VIF Formal Verification Flow

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
844 June 2009

VIF Formal Verification Flow
During synthesis, the Synplify Pro tool performs several sequential optimiza-
tions and design transformations to improve delay and area. These transfor-
mations make it difficult for a formal verification tool to match registers in the
result netlist with the corresponding registers in the source HDL (a prereq-
uisite for verifying equivalence). To solve this, the Synplify Pro software
provides a Tcl file interface that lets you integrate with verification tools. This
proprietary format is called the Verification Interface Format or VIF. This
feature is currently available for only Xilinx and Altera technologies.

This section describes the following:

• Overview of the VIF Flow, on page 844

• Generating a VIF File, on page 845

• Generating a VIF File, on page 845

• Using a Tcl Script for VIF Conversion, on page 847

• Handling Equivalency Check Failures, on page 848

Overview of the VIF Flow
The Synplify Pro VIF flow is based on a Tcl file generated during synthesis.
This file has a .vif extension. It contains a vendor-independent list of the
design transformations performed during synthesis so that the verification
tool can do equivalence checking and match up the post-synthesis registers
with the original golden netlist. The following diagram summarizes the two
ways in which you can use the .vif file as input.

VIF Formal Verification Flow Chapter 20: Running Post-Synthesis Operations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 845

Generating a VIF File
1. In the Synplify Pro interface, select Project->Implementation Options and set

the following on the Device tab:

Figure 20-1: Device options for generating VIF output

– Set Technology to an Altera or Xilinx family that supports the VIF flow.

– Disable Retiming. This is an optional, but recommended step. Register
retiming optimizations are hard to verify. The disadvantage is that
you may lose performance when you disable retiming.

HDL

Synplify Pro

Verilog Netlist
(.vm or .vqm)

.vif

VIF Translator

Verification Model Library
from FPGA Vendor

Third-party Equivalence
Checking Tool

Third-party
Verification File

Disable Retiming

Enable
Verification Mode

LO

Chapter 20: Running Post-Synthesis Operations VIF Formal Verification Flow

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
846 June 2009

– Enable the Verification Mode option. This is another optional step that
disables various sequential optimizations that can not be easily
verified; the inference of resettable SRLs for example. The trade-off
when you enable the Verification Mode option is that you may sacrifice
performance or area, because the optimizations are not performed.

The reason for disabling sequential optimizations is to make it easy
for the verification tool to sync up registers. Sequential optimizations
are hard to verify because registers are moved or optimized away. For
a list of VIF optimization commands, see step 4, below.

2. Go to the Implementation Results tab and enable Write Verification Interface
Format (VIF) File.

Figure 20-2: Implementation Results Options for Generating VIF Output

For Altera designs, make sure to use .vqm as the output format, not .vm.

3. Synthesize the design as usual.

The Synplify Pro software generates the .vif file and stores it in the
project/verif directory.

4. Check the .vif file to see how the optimizations were handled.

The following table lists the VIF commands used to map some synthesis
optimizations. For details of the command syntax, refer to Tcl VIF
Commands, on page 1275 in the Reference Manual.

Optimization VIF Command

FSM register mapping vif_set_fsmreg

FSM state encoding vif_set_state_map

Register merging vif_set_merge

Register replication vif_set_equiv

VIF Formal Verification Flow Chapter 20: Running Post-Synthesis Operations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 847

5. Use the .vif file as input to any formal verification tool that supports a Tcl
interface. Do one of the following:

– If you are using the Cadence Conformal tool, run the translation
script vif2conformal.tcl which is in the install dir/lib directory (see Using a
Tcl Script for VIF Conversion, on page 847 for details). This translates
the .vif file commands to commands for the Conformal tool.

– If your verification tool does not directly support VIF commands,
create a script that translates the .vif file commands to native Tcl
commands.

– If the verification tool supports the VIF commands in its Tcl
framework, use the file directly.

6. In the verification tool, use the information from the .vif file along with
the synthesis output when you check logic equivalence against the
golden netlist.

Using a Tcl Script for VIF Conversion
The Synplify Pro software includes Tcl scripts for use with the Cadence
Conformal tool. You can convert .vif files manually or automatically.

Converting VIF Manually
The following procedure describes how to convert .vif files manually.

1. Source the vif2conformal.tcl file by typing one of the following commands in
the Synplify Pro Tcl window:

source synplify_pro_install_dir/lib/vif2conformal.tcl

or

source $LIB/vif2conformal.tcl

Pruning of duplicate registers vif_set_constant, vif_set_transparent

Black boxes for undefined modules vif_set_map_point

Port direction changes vif_set_port_dir

Optimization VIF Command

LO

Chapter 20: Running Post-Synthesis Operations VIF Formal Verification Flow

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
848 June 2009

2. In the Tcl window, navigate to the verification folder containing the
design.vif file, and type the following command:

vif2conformal design.vif

The vif2conformal.tcl script runs on the design.vif file and translates the
information into Conformal side files (*.vtc, *.vsc, *.vmc, and so on). You
can now run Conformal using these files.

Automating VIF Conversion with Synhooks
You can create a script using the synhooks.tcl file (see Automating Flows with
synhooks.tcl, on page 884) to automate the generation of verification files. An
example of this file, synhooks_for_vif2conformal.tcl, is located in the
install_dir/examples directory.

The synhooks_for_vif2conformal.tcl Tcl script sets your environment to automat-
ically convert the Synplify Pro generated .vif file to Conformal-specific side
files at the end of each synthesis run. Use either of the following methods to
convert your files:

• Set the environment variable SYN_TCL_HOOKS to point to the
synhooks_for_vif2conformal.tcl file. For example:

SYN_TCL_HOOKS=install_dir/examples/synhooks_for_vif2conformal.tcl

• Source the synhooks_for_vif2conformal.tcl file in the Synplify Pro Tcl window
to set up automatic conversion. For example:

% source install_dir/examples/synhooks_for_vif2conformal.tcl

For this method, you must source the synhooks_for_vif2conformal.tcl file
every time you start a new project; otherwise the tool is reopened. The
automatic conversion setup is lost once you close a Synplify Pro project
or restart the tool.

Handling Equivalency Check Failures
If your design fails the equivalency check, try the following tips and
techniques to debug the results.

• Check the log file report and fix the errors reported.

• Check the optimization mapping in the vif file. See step 4 of Overview of
the VIF Flow, on page 844 for a list of commands.

Running Place-and-Route after Synthesis Chapter 20: Running Post-Synthesis Operations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 849

Running Place-and-Route after Synthesis
For Altera, Actel, and Xilinx technologies, you can create a place-and-route
implementation to run the tool automatically after synthesis. You can run
place-and-route from within the tool or in batch mode. This feature is only
available in the Synplify Pro and Synplify Premier tools.

You can run the place-and-route tool for your target technology automatically
after synthesis.

1. Check the Release Notes and make sure that you are using the correct
version of the P&R tool.

2. To manually launch the P&R tool in Altera and Xilinx technologies, do
the following:

– For Altera designs, select the run option you want from the Options->
<Altera_tool> menu. The tool launches and displays the P&R tool
interface. You can configure your settings and run P&R. See
Guidelines for Running Xilinx P&R, on page 850 for some tips.

– For Xilinx designs, select the run option you want from the Options->
Xilinx menu. The tool launches and displays displays the place-and-
route tool user interface, places the synthesis-generated netlist in a
Xilinx project, and names the project. Configure your Xilinx project
settings in the place-and-route tool. Run the Xilinx place-and-route
tool.

3. To automatically run the P&R tool after synthesis completes, do the
following:

– If necessary, set up a place-and-route implementation as described in
Creating a Place and Route Implementation, on page 332. You need a
P&R implementation for physical synthesis flows, or if you want to
use post-P&R data for backannotation.

– Click on the Add P&R Implementation button. In the dialog box, select
the P&R implementation you want to run and enable Run Place & Route
following synthesis.

– Synthesize the design.

The tool automatically runs P&R after synthesis.

LO

Chapter 20: Running Post-Synthesis Operations Running Place-and-Route after Synthesis

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
850 June 2009

Guidelines for Running Xilinx P&R
The following table lists some tips for running various phases of Xilinx place-
and-route:

NGDBuild Use the user constraint file (synplify.ucf) generated after synthesis.
From the command line, read the .ucf file into Xilinx place-and-route
NGDBuild with the -uc command.

MAP Do not map to 5-input functions. Do not use the -k command line
option. For information about using map with compile points, see
Logical Compile-Point Synthesis, on page 560.

PAR Do not use the default effort level of std. Instead, set it to high using the
-ol high command line option. For information about using par with the
Synplify Premier and Synplify Premier compile-point synthesis flows,
see Logical Compile-Point Synthesis, on page 560.

Simulating with the VCS Tool Chapter 20: Running Post-Synthesis Operations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 851

Simulating with the VCS Tool
The Synopsys VCS® tool is a high-performance, high-capacity Verilog
simulator that incorporates advanced, high-level abstraction verification
technologies into a single, open, native platform. You can launch this
simulation tool from the synthesis tools on Linux and Unix platforms by
following the steps below. The VCS tool does not run under the Windows
operating system.

1. Set up the tools.

– Install the VCS software and set up the $VCS_HOME environment
variable to define the location of the software.

– Set up the place-and-route tool.

– In the synthesis software, either select Run->Configure and Launch VCS
Simulator, or click the icon.

If you did not set up the $VCS_HOME environment variable, you are
prompted to define it. The Run VCS Simulator dialog box opens. For
descriptions of the options in this dialog box, see Configure and Launch
VCS Simulator, on page 212 of the Reference Manual.

2. In the dialog box, configure the simulation options.

– Specify the kind of simulation you want to run.

RTL simulation Enable Pre-Synthesis

Post-synthesis netlist simulation Enable Post-Synthesis

Post-P&R netlist simulation Enable Post P&R

LO

Chapter 20: Running Post-Synthesis Operations Simulating with the VCS Tool

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
852 June 2009

– Set options for VCS commands in the Specify options for each VCS Step
section. These options are written out as VCS commands in the
script. See the VCS documentation for details of command options.

To set... Type the option in...

VLOGAN command options for compiling and
analyzing Verilog, like the -q option

Verilog Compile

VHDLAN options for compiling and analyzing VHDL VHDL Compile

VCS command options Elaboration

SIMV command options, like -debug Simulation

Simulating with the VCS Tool Chapter 20: Running Post-Synthesis Operations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 853

3. If your project has Verilog files with `include statements, you must use
the +incdir+ <file name> argument when you specify the vlogan
command. You enter the +incdir+ in the Verilog Compile field in the VCS
popup window, as shown below:

LO

Chapter 20: Running Post-Synthesis Operations Simulating with the VCS Tool

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
854 June 2009

Example Verilog File:

`include "component.v"

module Top (input a, output x);

...

endmodule

The syntax for the VCS commands must reflect the relative location of
the Verilog files:

– If the Verilog files are in the same directory as the top.v file, specify:

- vlogan -work work Top.v +incdir+ ./

– If the Verilog files are in the a directory above the top.v file, specify:

- vlogan -work work Top.v +incdir+ ../include1 +incdir+ ../
include2

– If the Verilog files are in directories below and above the top.v file, specify:

- vlogan -work work Top.v +incdir+ ./include_dir1
+incdir../include_dir2

4. Specify the libraries and test bench files, if you are using them.

– To specify a library, click the green Add button, and specify the library
in the dialog box that opens. Use the full path to the libraries. For
pre-synthesis simulation, specifying libraries is optional.

– For post-synthesis and post-P&R synthesis, by default the dialog box
displays the UNISIM and SIMPRIM libraries in the P&R tool path. You
can add and delete libraries or edit them, using the buttons on the

Add

Edit

Delete

Simulating with the VCS Tool Chapter 20: Running Post-Synthesis Operations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 855

side. To restore the defaults, click the Verilog Defaults or VHDL Defaults
button, according to the language you are using.

– If you have test bench files, specify them in the Specify Test Bench Files
section. Use the buttons on the side to add, delete, or edit the files.

5. Specify the top-level module and run directory.

– Specify the top-level module or modules for the simulation in Top Level
Module(s).

– If necessary, edit the default run directory listed in the Specify Run
Directory field at the bottom of the dialog box. The default location is in
the implementation directory.

6. Generate the VCS script.

– To view the script before generating it, click the View Script button on
the top right of the dialog box. A window opens with the specified VCS
commands and options.

– To generate the VCS script, click Save As, or run VCS by clicking the
Run button in the upper right. The tool generates the XML script in
the directory specified.

7. To run VCS from the synthesis tool interface, do the following:

– If you do not already have it open, open the Run VCS Simulator dialog
box by clicking the icon.

– To use an existing script, click the Load From button on the lower right
and select the script in the dialog box that opens. Then click Run in
the Run VCS Simulator dialog box.

– If you do not have an existing script, specify the VCS options, as
described in the previous five steps. Click Run.

The tool invokes VCS from the synthesis interface, using the commands
in the script.

LO

Chapter 20: Running Post-Synthesis Operations Resynthesizing with QuickLogic Information

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
856 June 2009

Resynthesizing with QuickLogic Information
For QuickLogic designs, you can use pad placement information from the
place-and-route run when you resynthesize your design. You might want to
use this methodology to redesign a part so that it works in an existing
system, without having to change FPGA connections.

1. After synthesis, place and route your design with SpDE.

2. Check the following in the .scp command file generated by SpDE:

– Make sure the object names and the case in the .scp file match the
names and case in the source file.

– Use the portprop command to specify pad placement and pad type.

– Specify fixed placement for I/O pads with the instprop command.

For the syntax of these commands, see the Reference Manual.

3. Include the .scp command file in your project by doing one of the
following:

– Add the include directive to your project file, and specify the .scp file
with the pad placement information.

– Add the include directive to a Tcl script file, and specify the .scp file
with the pad placement information. Read the Tcl script into your
project.

For more information about the include directive, see the Reference
Manual.

4. Resynthesize your design.

When you modify and resynthesize the design, the software keeps the
pin locations specified in the included .scp file.

Quartus II Incremental Compilation Chapter 20: Running Post-Synthesis Operations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 857

Quartus II Incremental Compilation
The Altera Quartus II Incremental Compilation feature preserves design
implementation data so as to make incremental place-and-route updates.
This section describes how to use the Quartus II Incremental Compilation
flow in the Synplify Pro or Synplify Premier synthesis environment. For
complete details on this feature, see the Altera product documentation.

Use the Quartus II Incremental Compilation flow if you make design changes,
such as HDL changes to a small number of modules, moving a pin, changing
an attribute, or changing a timing constraint. You can also apply changes to
the critical timing path. This feature compares partitions (individual design
modules based on RTL hierarchies) in the previous and current implementa-
tions. It preserves partitions that are the same in the two implementations,
and re-implements any partitions that have been resynthesized in the current
implementation. It places and routes the individual partitions.

Quartus II Incremental Compilation Flow
In the Altera Quartus II Incremental Compilation flow, the synthesis software
automatically generates a Tcl script which creates design partition assign-
ments. The Quartus II software use this Tcl script to determine if partitions
should be preserved from previous place and route results when you
recompile the design. If a partition is removed, the Tcl script detects this and
an updated VQM netlist is forward annotated. This feature can save a signif-
icant amount of time in that placement and routing for the entire design does
not need to be rerun.

See the following topics for details on this flow:

• Altera Quartus II Incremental Compilation Diagram, below

• Synthesizing, Placing and Routing in the Quartus Incremental Flow, on
page 859

LO

Chapter 20: Running Post-Synthesis Operations Quartus II Incremental Compilation

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
858 June 2009

Altera Quartus II Incremental Compilation Diagram

Done

Altera Quartus II Incremental Compilation

Set up Project

Run Synthesis

Define Compile Points

Make

Yes No

changes to
HDL, constraints,

or critical
path?

Re-run Synthesis

Re-run Quartus II

Run Quartus II

Quartus II Incremental Compilation Chapter 20: Running Post-Synthesis Operations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 859

Synthesizing, Placing and Routing in the Quartus Incremental Flow
1. Set up the project file (.prj). See Setting Up Project Files, on page 270 if

you need details.

– Select the target device. Quartus II Incremental Compilation supports
most Stratix and subsequent device families.

– Add the appropriate HDL source files to the project.

– Set the implementation options.

– Compile the design.

2. Define compile points in the top-level constraint file using the SCOPE
UI. For details, see Using Compile-point Synthesis, on page 573.

– Click the Compile Points tab, and set compile points.

The compile points are design module partitions, which you define
based on the RTL-level hierarchies. On the Compile Points tab for the
required module select {locked, partition} from the Type field. See About
Compile Points, on page 562 for details about compile points.
Partitioning the design provides a mechanism where only modified
sections of the design need be updated, thus saving time. The
following example shows the compile point for v:ff_cp.

– Create a compile point constraint file for each compile point in the
SCOPE UI. For the details, see Set Constraints, on page 577.

3. Click Run to synthesize the design and check the compile point summary
in the log file.

Check the log file for messages like those displayed below.

LO

Chapter 20: Running Post-Synthesis Operations Quartus II Incremental Compilation

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
860 June 2009

The synthesis tool generates a VQM file where the compile points are
defined with "syn_hier=locked,physical" attributes. For subsequent
synthesis runs, the tool also automatically generates a Tcl script which
creates design partition assignments.

4. Run the Quartus II place-and-route tool.

The Quartus II software uses the compile point VQM files, as well as the
Tcl script file generated from the synthesis tool to determine if partitions
should be preserved from previous place and route results when you
recompile the design.

5. Go back to the synthesis tool and re-synthesize the modified design.

The synthesis tool only resynthesizes and optimizes the updated
modules. In the VQM file generated for this synthesis run, the tool does
not change the timestamp of a compile point if it has not changed since
the previous run; it preserves the old timestamp. Updated modules get a
new timestamp.

For an incremental run, the software only resynthesizes compile points
whose logic, implementation options, or timing constraints have
changed.

The following figure illustrates incremental synthesis by comparing
compile point summaries. After the first run, a logic change in the ff_cp

First Run Log Summary

Mapper Messages

Quartus II Incremental Compilation Chapter 20: Running Post-Synthesis Operations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 861

module. The figure shows that incremental synthesis resynthesizes ff_cp
(logic change), but does not resynthesize test because the logic did not
change.

6. Rerun the Quartus II tool and place and route the design.

The Altera Quartus II software performs a checksum on the compile
point file with the corresponding file from the previous run, and incre-
mentally places and routes only those partitions from updated files. It
leaves the other partitions untouched.

Incremental Run Log Summary

First Run Log Summary

Not resynthesized

Logic changes; compile
point resynthesized

LO

Chapter 20: Running Post-Synthesis Operations Working with Xilinx Incremental Flows

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
862 June 2009

Working with Xilinx Incremental Flows
This section describes how to use the Xilinx SmartCompile feature in the
synthesis environment. SmartCompile is a feature introduced in Xilinx ISE
version 9.1, that preserves design implementation data so as to make incre-
mental place and route updates. For complete details on SmartCompile, see
the Xilinx product documentation. You can use the following methods:

• Incremental Flow for Xilinx Designs, on page 862. Use this flow for
minor changes to a small number of modules.

• SmartGuide Global Placement Flow, on page 863. Use this flow for
minor changes to a small number of modules.

• Partition Flow, on page 863. Use this flow for changes to the critical
timing path, or major constraint changes, such as adding area groups.

Incremental Flow for Xilinx Designs
The incremental flow is only available in the Synplify Premier tool. In this
flow, you use the results of the previous P&R run, and only run P&R incre-
mentally. This flow is similar to the SmartGuide flow (SmartGuide Global
Placement Flow, on page 863).

Do the following:

1. Start with a design that has been through synthesis and global
placement.

2. In the Synplify Premier UI, enable the Physical Synthesis option.

This flow is a physical synthesis flow, so you must have this option
turned on.

3. Update or make minor changes to the design.

4. Click Implementation Options, and enable Incremental Flow on the Device tab.

5. Set up place and route to run automatically after synthesis, and
resynthesize the design.

Alternatively, you can synthesize the design and run P&R separately.
The Xilinx tool uses the previous results and does an incremental place-
ment run, and then routes the design.

Working with Xilinx Incremental Flows Chapter 20: Running Post-Synthesis Operations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 863

SmartGuide Global Placement Flow
The SmartGuide flow is an incremental flow you can use in the Xilinx tool.
You can use this with both logic synthesis designs (Synplify Pro) as well as
physical synthesis designs. Use the SmartGuide option when you need to
make minor changes to a design, such as HDL changes to a small number of
modules (logic changes of approximately 10% or less), moving a pin, changing
an attribute, or changing a timing constraint. The SmartGuide flow is similar
to the incremental flow described in Incremental Flow for Xilinx Designs, on
page 862, but that flow is only available in the Synplify Premier tool.

The following procedure shows you how to use this flow with the synthesis
tools:

1. Do an initial synthesis run with placement and routing.

2. Set the SmartGuide option in the Xilinx software.

3. Rerun synthesis and P&R.

SmartGuide is enabled, so the tool does not redo global placement, but
uses the settings from the previous global placement run and only runs
incremental global placement. This flow compares the previous imple-
mentation to the current design and preserves any common compo-
nents. Modified components are incrementally re-implemented. For
complete details on SmartGuide, see the Xilinx documentation.

Partition Flow
Use the Partition flow if you make changes to the critical timing path, or if
you make major constraint changes, such as adding area groups. This flow
compares partitions (individual design modules based on RTL hierarchies) in
the previous and current implementations. It preserves partitions that are the
same in the two implementations, and re-implements any partitions that
have been resynthesized in the current implementation. It places and routes
the individual partitions.

The Xilinx partition feature uses a block-based flow to determine when incre-
mental place-and-route updates are needed. Use this flow for major design
changes; for minor changes, use the Smart Guide Incremental Flow
explained above.

LO

Chapter 20: Running Post-Synthesis Operations Working with Xilinx Incremental Flows

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
864 June 2009

The design partitions, or modules, are defined before you run synthesis.
Using the block-based flow, if design changes are required after running
synthesis and place and route, only the affected modules are resynthesized.
Subsequently, only resynthesized modules are re-implemented during place
and route. Partitions that have not changed are preserved from the previous
implementation. This feature saves a significant amount of time in that place
and route for the entire design does not need to be rerun. See the following for
topics details on this flow:

• Partition Flow Diagram, next

• Running Synthesis, and Place-and-Route in the Partition Flow, on
page 865

Working with Xilinx Incremental Flows Chapter 20: Running Post-Synthesis Operations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 865

Partition Flow Diagram

Running Synthesis, and Place-and-Route in the Partition Flow
1. If necessary, set the SYN_XILINX_PR_USE_XTCLSH environment variable

to 1.

This is the default in the latest releases of the synthesis tools, so you do
not have to set it. The 1 setting ensures that the tool generates the

Done

Partition FlowSet up Project

Run Synthesis

Define Compile Points

Make

Yes
No

changes to
constraints (major)

or critical
path?

Run ISE using
.tcl script

Re-run Synthesis

Re-run ISE using
.tcl script

LO

Chapter 20: Running Post-Synthesis Operations Working with Xilinx Incremental Flows

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
866 June 2009

run_ise.tcl script file after synthesis. For subsequent synthesis runs,
the tool recognizes the script file and does not overwrite it.

2. Set up the design.

– Set up the project file (.prj). See Setting Up Project Files, on
page 270for details.

– Define compile points using the SCOPE UI. For details, see Xilinx
Compile-point Synthesis Flow, on page 583 and Using Compile-point
Synthesis, on page 573.

The compile points are design module partitions, which you define
based on the RTL-level hierarchies. To define a compile point as a
partition using the SCOPE UI, on the Compile Points tab for the
required module select {locked, partition} from the Type field. Partitioning
the design provides a mechanism where only modified sections of the
design need be updated, thus saving time.

– Set up the rest of the design; set the desired switches and ensure that
the appropriate source, constraint and library files have been added
to the project.

3. Click Run to synthesize the design.

The synthesis tool generates an EDIF file where the compile points are
defined with "PARTITION" properties. Each compile point also includes a
time stamp for when the module was last synthesized. Later, the place
and route tool uses the time stamp as the basis for comparison to deter-
mine which modules need to be incrementally updated.

4. Make sure you set the system path variables for the Xilinx place-and-
route tool and run the P&R project .tcl script using the following
command:

xtclsh.exe

5. Perform the following tasks when ISE placement and routing completes.

– Check generated reports.

– Make any necessary major design changes to the source or constraint
files and place and route the design.

6. Go back to the synthesis tool and re-synthesize the modified design.

The synthesis tool only resynthesizes and optimizes the updated
modules.

Working with Xilinx Incremental Flows Chapter 20: Running Post-Synthesis Operations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 867

In the EDIF file generated for this synthesis run, the tool does not
change the timestamp of a compile point if it has not changed since the
previous run; it preserves the old timestamp. Updated modules get a
new timestamp.

7. Rerun the ISE .tcl script and place and route the design.

The Xilinx tool compares the compile point timestamps to the corre-
sponding timestamps from the previous run, and incrementally places
and routes only those blocks with updated timestamps. It leave the
other blocks untouched. The EDIF file also specifies whether an updated
compile point needs to be re-placed and re-routed, or only re-routed.
The default specifies incremental placement and routing.

LO

Chapter 20: Running Post-Synthesis Operations Working with the Identify RTL Debugger

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
868 June 2009

Working with the Identify RTL Debugger
The Synopsys Identify RTL Debugger is a dual-component system that is a
valuable part of the HDL design flow process. The system consists of the
Identify Instrumentor and Identify Debugger tools.

• The Identify Instrumentor allows you to select your design instrumenta-
tion at the HDL level and then create an on-chip hardware probe.

• The Identify Debugger interacts with the on-chip hardware probe and
lets you do live debugging of the design.

The combination of these tools allows you to probe your HDL design in the
target environment. The combined system allows you to debug your design
faster, easier, and more efficiently.

You can run Identify independently, but the Synplify, Synplify Pro, and
Synplify Premier synthesis tools have integrated the Identify Instrumentor
into the synthesis user interface. This section describes how to take
advantage of this integration and use the Identify Instrumentor:

• Launching from the Synplify Pro or Synplify Premier Tool, on page 868

• Launching from the Synplify Tool, on page 870

• Handling Problems with Launching Identify, on page 872

• Using the Identify Tool, on page 873

Launching from the Synplify Pro or Synplify Premier Tool
The integration of the synthesis tools with Identify varies, depending on
which tool you have. For the Synplify Pro and Synplify Premier tools, you
must create an Identify implementation in order to run the Identify Instru-
mentor. If you already have an Identify implementation, open it and use the
Identify tool as described in Using the Identify Tool, on page 873.

Do the following to add an Identify implementation:

1. In the synthesis interface, open the design you want to debug.

2. Do one of the following tasks to add an Identify implementation:

– With the project implementation selected, right-click and select New
Identify Implementation from the pop-up menu.

Working with the Identify RTL Debugger Chapter 20: Running Post-Synthesis Operations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 869

– Select Project->New Identify Implementation.

An Implementation Options dialog box appears where you can set the
options for your implementation. Note that the options apply only for
logic synthesis and not for physical synthesis. An Identify
implementation is created.

3. To run Identify Instrumentor, select the Launch Identify Instrumentor icon
() in the toolbar or select Run->Identify Instrumentor.

The Identify interface opens. You can now use the Identify tool as
described in Using the Identify Tool, on page 873 For complete details,
consult the Identify documentation.

If you run into problems while launching the Identify Instrumentor, refer to
Handling Problems with Launching Identify, on page 872.

LO

Chapter 20: Running Post-Synthesis Operations Working with the Identify RTL Debugger

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
870 June 2009

Launching from the Synplify Tool
The Synplify tool does not support multiple implementations. The following
procedures describe how to launch an Identify implementation from Synplify,
and how to modify an existing implementation.

Creating a New Identify Implementation in Synplify
1. Make sure that your PATH environment variable points to the Identify bin

directory.

2. Create or open a project in Synplify.

3. Right-click on the implementation and select New Identify Implementation
from the popup menu.

4. Set any implementation options and close the dialog box; dismiss the
multiple implementation warning.

5. Select Options->Configure Identify Launch to display this dialog box:

6. Fill out the details.

– Check the Identify installation. If the Use current Identify Installation field
entry in the dialog box is not correct, click the Locate Identify Installation

Working with the Identify RTL Debugger Chapter 20: Running Post-Synthesis Operations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 871

button and enter the path to the Identify executable
(identify_install/bin).

– Select the appropriate license option and click OK to launch the
Identify Instrumentor for the new implementation.

7. Instrument the design as required, save the instrumentation, and exit
the Identify Instrumentor. See Using the Identify Tool, on page 873 for an
overview, or the Identify documentation for details.

8. Synthesize the instrumented implementation (rev_n_identify) in Synplify
(the schematic will show the added IICE circuitry).

After the design has been synthesized, place and route your design.
Program the device, install the device in the target system, and complete
the JTAG cable interface. You can now run the Identify Debugger on the
instrumented design (designName.bsp) to verify correct operation.

Modifying or Re-instrumenting an Existing Design
To modify or re-instrument an existing design:

1. Load the project containing the Identify implementation into Synplify.

2. From the Synplify menu bar, select Run->Run TCL Script.

3. Navigate to the Synplify lib directory and run (open) the relaunch_identify.tcl
script to launch the Identify Instrumentor.

4. Re-instrument the design as required, save the instrumentation, and
exit the Identify Instrumentor.

5. Re-synthesize the instrumented implementation (rev_n_identify) in
Synplify.

After the design has been re-synthesized, place and route your design.
Program the device and reinstall the device in the target system. You can
now rerun the Identify Debugger on the instrumented design (design-
Name.bsp) to verify correct operation.

LO

Chapter 20: Running Post-Synthesis Operations Working with the Identify RTL Debugger

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
872 June 2009

Handling Problems with Launching Identify
If you have not installed Identify correctly, you might run into problems when
you try to launch it from the synthesis tools. The following describe some
situations:

• If the Launch Identify Instrumentor icon ()and the Run->Identify Instrumentor
menu command are inaccessible, you are either on an unsupported
platform or you are using a technology that does not support this
feature.

• If you have the Identify software installed but the synthesis application
cannot find it, select Options->Configure Identify Launch.

In the resulting dialog box, specify the correct location in the Locate
Identify Installation field. You can use the Browse button to open the Select
Identify Installation Directory dialog box and navigate to your current Identify
installation directory.

• If you have not installed the Identify software, select Options->Configure
Identify Launch, and select Install Identify. Follow the directions and install
the software before going through the procedure.

Working with the Identify RTL Debugger Chapter 20: Running Post-Synthesis Operations

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 873

Using the Identify Tool
The following is an overview of the process to use the Identify Instrumentor.
For detailed information about the tool, refer to the Identify RTL Debugger
documentation.

1. The Identify Instrumentor software interface opens, with an Identify
project automatically set up for the design to be instrumented and
debugged (IICE tab). The following figure shows the main project window.

2. Do the following in the Identify Instrumentor interface:

– Instrument the design. For details of using the Identify Instrumentor,
refer to the Identify RTL Debugger documentation.

– Save the instrumented design.

The Identify Instrumentor tool exports the instrumented design to the
synthesis software. It creates an instrumentation subdirectory under
your synthesis working directory called designName_instr, which
contains the following:

LO

Chapter 20: Running Post-Synthesis Operations Working with the Identify RTL Debugger

Synopsys FPGA Synthesis User Guide
874 June 2009

Synopsys, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: +1 408 215-6000, Fax: +1 408 222-068
www.solvnet.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology,
Certify, DesignWare, HDL Analyst, Identify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro,
Synthesis Constraints Optimization Environment, and VCS are registered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-perfor-
mance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and TotalRecall are trademarks of Synopsys, Inc. All other
names mentioned herein are trademarks or registered trademarks of their respective companies.

– A synthesis project file

– An instr_sources subdirectory for the instrumented HDL files

– Tcl scripts for loading the instrumented design

3. Return to the synthesis interface and view the instrumented design that
contains the debugging logic.

– In the synthesis interface, open the project file for the instrumented
design, which is in the instr_sources subdirectory listed in the
Implementations Results view for your original synthesis project.

– Synthesize the design.

– Open the RTL view to see the inserted debugging logic.

4. Place and route the instrumented design after synthesis.

5. Use the Identify Debugger tool to debug the instrumented design.

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 875

C H A P T E R 2 1

Process Optimization and Automation

This chapter covers topics that can help the advanced user improve produc-
tivity and inter operability with other tools. It includes the following:

• Using Batch Mode, on page 876

• Working with Tcl Scripts and Commands, on page 878

• Automating Flows with synhooks.tcl, on page 884

LO

Chapter 21: Process Optimization and Automation Using Batch Mode

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
876 June 2009

Using Batch Mode
Batch mode is a command-line mode in which you run scripts from the
command line. You might want to set up multiple synthesis runs with a
batch script. You can run in batch mode if you have a floating license, but
not with a node-locked license.

Batch scripts are in Tcl format. For more information about Tcl syntax and
commands, see Working with Tcl Scripts and Commands, on page 878.

This section describes the following operations:

• Running Batch Mode on a Project File, on page 876

• Running Batch Mode with a Tcl Script, on page 877

Running Batch Mode on a Project File
Use this procedure to run batch mode if you already have a project file set up.
You can also run batch mode from a Tcl script, as described in Running Batch
Mode with a Tcl Script, on page 877.

1. Make sure you have a project file (.prj) set up with the implementation
options. For more information about creating this Tcl file, see Creating a
Tcl Synthesis Script, on page 879.

2. From a command prompt, go to the directory where the project files are
located, and type one of the following, depending on which product you
are using:

synplify -batch project_file_name.prj
synplify_pro -batch project_file_name.prj
synplify_premier -batch project_file_name.prj
synplify_premier_dp -batch project_file_name.prj

The software runs synthesis in batch mode. Use absolute path names or
a variable instead of a relative path name.

The software returns the following codes after the batch run:

– 0 - ok

– 2 - error

– 3 and above - abnormal exit (but no details).

Using Batch Mode Chapter 21: Process Optimization and Automation

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 877

3. If there are errors in the source files, check the standard output for
messages. On Solaris/Linux systems, this is generally the monitor; on
Windows systems, it is the stdout.log file.

4. After synthesis, check the result_file.srr log file for error messages
about the run.

Running Batch Mode with a Tcl Script
The following procedure shows you how to create a Tcl batch script for
running synthesis. If you already have a project file set up, use the procedure
described in Running Batch Mode on a Project File, on page 876.

1. Create a Tcl batch script. See Creating a Tcl Synthesis Script, on
page 879 for details.

2. Save the file with a *.tcl extension to the directory that contains your
source files and other project files.

3. From a command prompt, go to the directory with the files and type the
following:

synplify -batch Tcl_script.tcl
synplify_pro -batch Tcl_script.tcl
synplify_premier -batch Tcl_script.tcl
synplify_premier_dp -batch project_file_name.prj

The software runs synthesis in batch mode. The synthesis (compilation
and mapping) status results and errors are written to the log file
result_file.srr for each implementation. The synthesis tool also
reports success and failure return codes.

4. Check for errors.

– For source file or Tcl script errors, check the standard output for
messages. On Solaris/Linux systems, this is generally the monitor in
addition to the stdout.log file; on Windows systems, it is the
stdout.log file.

– For synthesis run errors, check the result_file_name.srr log file.
The software uses the following error codes:

0 - ok
2 - error
3 and above - abnormal exit (but no details).

LO

Chapter 21: Process Optimization and Automation Working with Tcl Scripts and Commands

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
878 June 2009

Working with Tcl Scripts and Commands
The software uses extensions to the popular Tcl (Tool Command Language)
scripting language to control synthesis and for constraint files. See the
following for more information:

• Using Tcl Commands and Scripts, next

• Generating a Job Script, on page 879

• Creating a Tcl Synthesis Script, on page 879

• Using Tcl Variables to Try Different Clock Frequencies, on page 881

• Using Tcl Variables to Try Several Target Technologies, on page 882

• Running Bottom-up Synthesis with a Script, on page 883

You can also use synhooks Tcl scripts, as described in Automating Flows with
synhooks.tcl, on page 884.

Using Tcl Commands and Scripts
1. To get help on Tcl syntax, do any of the following:

– Refer to the online help (Help->Tcl Help) for general information about
Tcl syntax.

– Refer to the Reference Manual for information about the synthesis
commands.

– Type help * in the Tcl window for a list of all the Tcl synthesis
commands. The Tcl window is not available in Synplify.

– Type help commandName in the Tcl window to see the syntax for an
individual command.

2. To run a Tcl script, do the following:

– Create a Tcl script. Refer to Generating a Job Script, on page 879 and
Creating a Tcl Synthesis Script, on page 879.

– Run the Tcl script by either typing source Tcl_scriptfile in the Tcl
script window, or by selecting File->Run Tcl Script, selecting the Tcl file,
and clicking Open.

Working with Tcl Scripts and Commands Chapter 21: Process Optimization and Automation

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 879

The software runs the selected script by executing each command in
sequence. For more information about Tcl scripts, refer to the following
sections.

Generating a Job Script
You can record Tcl commands from the interface and use it to generate job
scripts.

1. In the Tcl script window, type recording -file logfile to write out a
Tcl log file.

2. Work through a synthesis session.

The software saves the commands from this session into a Tcl file that
you can use as a job script or as a starting point for creating other
Tcl files.

Creating a Tcl Synthesis Script
Tcl scripts are text files with a *.tcl extension. You can use the graphic user
interface to help you create a Tcl script. Interactive commands that you use
actually execute Tcl commands, which are displayed in the Tcl window as
they are run. You can copy the command text and paste it into a text file that
you build to run as a Tcl script. For example:

add_file prep2.v
set_option -technology STRATIX
set_option -part EP1SGX40D
set_option -package FC1020

project -run

The following procedure covers general guidelines for creating a synthesis
script.

1. Use a text file editor or select File->New, click the Tcl Script option, and type
a name for your Tcl script.

2. Start the script by specifying the project with the project -new command.
For an existing project, use project -load project.prj.

LO

Chapter 21: Process Optimization and Automation Working with Tcl Scripts and Commands

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
880 June 2009

3. Add files using the add_file command. The files are added to their
appropriate directories based on their file name extensions (see add_file,
on page 1200 in the Reference Manual). Make sure the top-level file is
last in the file list:

add_file statemach.vhd
add_file rotate.vhd
add_file memory.vhd
add_file top_level.vhd
add_file design.sdc

For information on constraints and vendor-specific attributes, see Using
a Text Editor for Constraint Files, on page 100 for details about
constraint files.

4. Set the design synthesis controls and the output:

– Use the set_option command for setting implementation options and
vendor-specific controls as needed. See the appropriate vendor
chapter in the Synplify Reference Manual for details.

– Set the output file information with project -result_file and project -log_file.

5. Set the file and run options:

– Save the project with a project -save command

– Run the project with a project -run command

– Open the RTL and Technology views:

open_file -rtl_view
open_file -technology_view

6. Check the syntax.

– Check case (Tcl commands are case-sensitive).

– Start all comments with a hash mark (#).

– Always use a forward slash (/) in directory and pathnames, even on
the Windows platform.

Working with Tcl Scripts and Commands Chapter 21: Process Optimization and Automation

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 881

Using Tcl Variables to Try Different Clock Frequencies
To create a single script for multiple synthesis runs with different clock
frequencies, you need to create a Tcl variable for the different settings you
want to try. For example, you might want to try different target technologies.

1. To create a variable, use this syntax:

set variable_name {
first_option_to_try
second_option_to_try
...}

2. Create a foreach loop that runs through each option in the list, using
the appropriate Tcl commands. The following example shows a variable
set up to synthesize a design with different frequencies. It also creates a
separate log file for each run.

The following code shows the complete script:

project -load design.prj
set try_these {

20.0
24.0
28.0
32.0
36.0
40.0

}

set try_freq {
85.0
90.0
92.0
95.0
97.0
100.0

)
foreach frequency $try_freq {

set_option -frequency $frequency
project -log_file $frequency.srr
project -run}

Tcl commands that set the
frequency, create separate log files
for each run, and run synthesis

Foreach loop

Set of frequencies
to try

LO

Chapter 21: Process Optimization and Automation Working with Tcl Scripts and Commands

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
882 June 2009

foreach frequency $try_these {
set_option -frequency $frequency
project -log_file $frequency.srr
project -run
open_file -edit_file $frequency.srr

}

Using Tcl Variables to Try Several Target Technologies
This technique used here to run multiple synthesis implementations with
different target technologies is similar to the one described in Using Tcl
Variables to Try Different Clock Frequencies, on page 881. As in that section,
you use a variable to define the target technologies you want to try.

1. Create a variable called try_these with a list of the technologies.

set try_these {

STRATIXII CYCLONEII VIRTEX2 # list of technologies
}

2. Add a foreach loop that creates a new implementation for each
technology and opens the RTL view for each implementation.

foreach technology $try_these {
impl -add
set_option -technology $technology
project -run -fg
open_file -rtl_view

}

The following code example shows the script:

Open a new project, set frequency, and add files.
project -new
set_option -frequency 33.3
add_file -verilog D:/test/simpletest/prep2_2.v

Create the Tcl variable to try different target technologies.
set try_these

STRATIXII CYCLONEII VIRTEX2 # list of technologies
}

Working with Tcl Scripts and Commands Chapter 21: Process Optimization and Automation

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 883

Loop through synthesis for each target technology.
foreach technology $try_these {

impl -add
set_option -technology $technology
project -run -fg
open_file -rtl_view

}

Running Bottom-up Synthesis with a Script
To run bottom-up synthesis, you create Tcl scripts for individual logic blocks,
and a script for the top level that reads the other Tcl scripts.

1. Create a Tcl script for each logic block. The Tcl script must synthesize
the block. See Creating a Tcl Synthesis Script, on page 879 for details.

2. Create a top-level script that reads the block scripts. Create the script
with the with the project -new command.

3. Add the top-level data:

– Add source and constraint files with the add_file command.

– Set the top-level options with the set_option command.

– Set the output file information with project -result_file and project -log_file.

– Save the project with a project -save command.

– Run the project with a project -run command.

4. Save the top-level script, and then run it using this syntax:

source block_script.tcl

When you run this command, the entire design is synthesized, begin-
ning with the lower-level logic blocks specified in the sourced files, and
then the top level.

LO

Chapter 21: Process Optimization and Automation Automating Flows with synhooks.tcl

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
884 June 2009

Automating Flows with synhooks.tcl
This procedure provides the advanced user with callbacks that let you
customize your design flow or integrate with other products. For example,
you might use the callbacks to send yourself email when a job is done (see
Automating Message Filtering with a Tcl Script, on page 607), or to automati-
cally copy files to another location after mapping. You can use the callback
functions to integrate with a version control system, or generate the files
needed to run formal verification with the Cadence Conformal tool. The
procedure is based on a file called synhooks.tcl, which contains the Tcl
callbacks.

1. Copy the synhooks.tcl file from the install_dir/examples directory to a new
location.

You must copy the file to a new location so that it does not get
overwritten by subsequent product installations and you can maintain
your customizations from version to version. For example, copy it to
C:/work/synhooks.tcl.

2. Define an environment variable called SYN_TCL_HOOKS, and point it to
the location of the synhooks.tcl file.

3. Open the synhooks.tcl file in a text editor, and edit the file so that the
commands reflect what you want to do. The default file contains
examples of the callbacks, which provide you with hooks at various
points of the design process.

– Customize the file by deleting the ones you do not need and by adding
your customized code to the callbacks you want to use. The following
table summarizes the various design phases where you can use the
callbacks and lists the corresponding functions. For details of the
syntax, refer to Tcl synhooks File Syntax, on page 1271 in the
Reference Manual.

Design Phase Tcl Callback Function

Project Setup Callbacks

Settings defaults for projects proc syn_on_set_project_template

Creating projects proc syn_on_new_project

Opening projects proc syn_on_open_project

Automating Flows with synhooks.tcl Chapter 21: Process Optimization and Automation

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 885

– Save the file.

As you synthesize your design, the software automatically executes the
function callbacks you defined at the appropriate points in the design
flow.

Example: proc syn_on_start_run
The following code example gets selected files from the project browser at the
start of a run:

Closing projects proc syn_on_close_project

Application Callbacks

Starting the application after
opening a project

proc syn_on_start_application

Exiting the application proc syn_on_exit_application

Run Callbacks

Starting a run. See Example:
proc syn_on_start_run, on
page 885.

proc syn_on_start_run

Ending a run proc syn_on_end_run

Key Assignment Callbacks

Setting an operation for Ctrl-
F8. See Example: proc
syn_on_press_ctrl_f8, on
page 886.

proc syn_on_press_ctrl_f8

Setting an operation for Ctrl-
F9

proc syn_on_press_ctrl_f9

Setting an operation for Ctrl-
F11

proc syn_on_press_ctrl_f11

Design Phase Tcl Callback Function

LO

Chapter 21: Process Optimization and Automation Automating Flows with synhooks.tcl

Synopsys FPGA Synthesis User Guide
886 June 2009

Synopsys, Inc.
600 West California Avenue, Sunnyvale, CA 94086 USA
Phone: +1 408 215-6000, Fax: +1 408 222-068
www.solvnet.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology,
Certify, DesignWare, HDL Analyst, Identify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro,
Synthesis Constraints Optimization Environment, and VCS are registered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-perfor-
mance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and TotalRecall are trademarks of Synopsys, Inc. All other
names mentioned herein are trademarks or registered trademarks of their respective companies.

proc syn_on_start_run {compile c:/work/prep2.prj rev_1} {
set sel_files [get_selected_files -browser]

while {[expr [llength $sel_files] > 0]} {
set file_name [lindex $sel_files 0]
puts $file_name
set sel_files [lrange $sel_files 1 end]

}
}

Example: proc syn_on_press_ctrl_f8
The following code example gets all the selected files from the project browser
and project directory when the Ctrl-F8 key combination is pressed:

proc syn_on_press_ctrl_f8 {} {
set sel_files [get_selected_files]

while {[expr [llength $sel_files] > 0]} {
set file_name [lindex $sel_files 0]
puts $file_name
set sel_files [lrange $sel_files 1 end]

}
}

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 887

Index

 See also RAMs
multi-port

Symbols
.acf file 106
.adc file 737
.bit file 204
.bmm file 204
.edf file 804
.lmf file 784
.lpf file 106, 796
.ndf file 804
.sdc file 213
.vhm file 828
.vqm file

Clearbox 175
_conv.prj file 261
_conv.sdc file 262

Numerics
3rd party vendor tools

invoking 838

A
Actel

ACTgen macros 761
I/O pad type 228
macro libraries 760
output netlist 836
pin numbers for bus ports 833

ACTgen macros 761
Adder/Subtractor

compiling with SYNCore 130
adders

SYNCore 130
wide. See wide adders/subtractors.

adjust pin view (Design Planner) 492
alspin

bus port pin numbers 833
Alt key

column editing 86
mapping 650

Altera
Apex design tips 765
Clearbox. See Clearbox
converting pin assignments to SDC 348
converting PIN files 348
design tips 764
EAB VHDL mapping example 768
EABs 767
ESBs 767
FLEX design tips 765
forward-annotation 106
grey box See grey box
I/O packing 774
instantiating LPMs as black boxes 417
LCELLs. See LCELLs.
LPM megafunction example (Verilog)

417
LPM megafunction example (VHDL) 419
mapping EABs, Verilog 767
multi-port RAMs 388
netlist 836
packing I/Os 774
physical synthesis flows 60
place-and-route option file 337
PLLs. See altplls
Quartus batch mode 781
Quartus integrated flow 779
Quartus interactive flow 780
RAMs 386
ROMs 765
shift registers 410
simulating LPMs 777
Stratix III LUTRAMs 389
Stratix RAM 379
Verilog LPM library 423

Altera APEX and APEX II (Design
Planner)

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
888 June 2009

tips for physical constraints 523
Altera MegaWizard

generating LPM files 417
Altera shift registers

report 412
Altera STRATIX (Design Planner)

additional tips 519
altera_implement_in_eab attribute 767
altera_implement_in_esb attribute 767
altpll

component declaration files 769
constraints 770
using 769

altshift_tap, set implmentation style 410
ALTSYNCRAM for LPMs 417
ALTSYNCRAM, Altera Stratix 380
analysis design constraint file (.adc) 737
analyzing netlists (Physical Analyst) 721
APEX

netlist 836
archiving projects 315
area estimation, Design Planner 488
area, optimizing 427
asterisk wildcard

Find command 640
attributes

adding 304
adding in constraint files 102
adding in SCOPE 308
adding in Verilog 307
adding in VHDL 305
altera_implement_in_eab 767
altera_implement_in_esb 767
collections 240
effects of retiming 437
for FSMs 369, 458
pipelining 431
syn_hier (on compile points) 568
VHDL package 305

audience for the document 26
auto constraints, using 251
Auto route cross probe insts command

713

B
B.E.S.T 654
back annotation

coreloc.sdc constraint file 353
place-and-route data 353

backslash
escaping dot wildcard in Find

command 640
in Find command (Physical Analyst) 706

batch mode 876
Behavior Extraction Synthesis

Technology. See B.E.S.T
bit slicing 543

legal primitives 544
bit-slicing

critical paths in regions 531
black boxes 358

adding constraints 362
adding constraints in SCOPE 365
adding constraints in Verilog 365
adding constraints in VHDL 363
EDIF naming consistency 367
EDK cores 206
encrypted Xilinx cores 207
for IP cores 804
gated clock attributes 471
instantiating in Verilog 358
instantiating in VHDL 360
internal startup blocks 367
pin attributes 366
prepared component method (Altera)

422
SOPC components 193
specifying timing information for Xilinx

cores 804
timing constraints 362
Xilinx physical synthesis 78

block mult
assigning to regions 539
viewing resources in Design Planner 539

block multipliers (Design Planner) 539
block RAM

assigning to regions 534
dual-port, mapping with registered

address 392
glue logic in 393
mapping dual port coding style 398

Index

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 889

mapping ROM (Xilinx) 398
mapping to single-output dual-port 398
mapping to single-port 396
single-port

mapping with registered address 391
using registered addresses 391
using registered output 393

block RAM (Synplify Premier) 534
block RAM regions (Design Planner)

assigning 536
creating 535

bookmarks
in source files 86
using in log files 598

bottom-up design and compile-point
synthesis 560

BRAMs (Synplify Premier) 534
breaking up large primitives (Synplify

Premier) 543
browsers 627
buffering

crontrolling 448
BUFG

for fanouts 449
BUFGDLL 822
BUFGMUX_1 inference 818
buses

INIT values for bits 811
RLOC values for bits 821

C
c_diff command, examples 243
c_intersect command, examples 243
c_list command

different from c_print 248
example 250
using 249

c_print command
different from c_list 248
using 249

c_symdiff command, examples 243
c_union command, examples 242
callback functions, customizing flow 884
carry chain DRC (Synplify Premier) 530

carry chains
inferring 788

case sensitivity
Find command (Tcl) 245

cells
enhancing display in Physical Analyst

691
chip regions (Design Planner) 510
Clearbox

adding instantiated file 174
implementing megafunctions with 165
inferring megafunctions 166
instantiating megafunctions 170
instantiating with netlist 173
SOPC components 193
using 165
using instantiated netlists in Quartus

175
clock buffers 822
clock constraints

edge-to-edge delay 220
false paths 235
setting 220

clock DLLs 822
clock domains

setting up 225
clock groups

effect on false path constraints 235
for global frequency clocks 222
Xilinx DCMs and DLLs 225

clock path skew (Synplify Premier) 610
clock pins (Design Planner) 498
clock skew (Synplify Premier) 610
clock skew example (Synplify Premier)

824, 825
clock trees 733
clocks

asymmetrical 223
defining 222
for DCMs and DLLs 224
for PLLs 224
frequency 223
gated. See gated clocks
gated. See gated clocks.
implicit false path 235
limited resources 225
overriding false paths 236

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
890 June 2009

collections
adding attributes to 240
adding objects 241
concatenating 241
constraints 240
copying 249
creating from common objects 242
creating from other collections 239
creating in SCOPE 238
creating in Tcl 241
crossprobing objects 239
definition 237
diffing 242
highlighting in HDL Analyst views 247
iterating through objects 250
listing objects 249
listing objects and properties 248
listing objects in a file 249
listing objects in columnar format 248
listing objects with c_list 248
special characters 244
Tcl window and SCOPE comparison 237
using Tcl expand command 246
using Tcl find command 244
viewing 247

column editing 86
commands

Auto route cross probe insts (Physical
Analyst) 713

Expand Path Backward 755
Expand Path Forward 753
Go to Location (Physical Analyst) 708
Highlight Visible Net Instances

(Physical Analyst) 725
Markers 709
Select Net Instances 725
Send Crossprobes when selecting

(Physical Analyst) 713
Signal Flow 696
slice_primitive 543

comments
source files 86

compile point types
hard 565
locked 565
locked,partition 567

compile points
advantages 563
child 563
constraints for forward-annotation 572

constraints, internal 572
creating constraint file 578
defining in constraint files 575
definition 562
feature summary 567
nesting 562
optimization 571
order of synthesis 571
parent 563
preserving with syn_hier 579
Quartus II Incremental Compilation 859
resynthesis 571
setting constraints 579
syn_hier 568
types 564
using syn_allowed_resources attribute

568
Xilinx incremental flows 866

compile points types
soft 564

compile-point flow
Xilinx 583

compile-point synthesis 560
and bottom-up flow 561
bottom-up flow 560
interface logic models 570

compile-point synthesis flow 573
compiling the design for initialization

574, 575
defining compile points 575
setting constraints 577
setting implementation options 574

compiler directives (Verilog)
specifying 300

Conformal 847
connectivity-based timing report 743
constants

extracting from VHDL source code 302
constraint file

coreloc.sdc 354
constraint files 98

See also SCOPE
Altera QSF 253
applying to a collection 240
black box 362
compile point 572
creating in a text editor 100
creating with SCOPE 212

Index

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 891

defining clocks 101
defining register delays 101
editing 215
effects of retiming 437
forward-annotating 105
opening 213
options 295
setting for compile points 579
specifying through points 232
types of 214
vendor-specific 105
when to use 98

constraints
Actel physical synthesis 763
altplls 770
checking 104
translating Altera QSF 253
translating with ucf2sdc_old 264
translating Xilinx contraints for logic

synthesis 255
translating Xilinx contraints for

physical synthesis 258
constraints (Actel)

checking 349
context

for object in filtered view 657
context window (Physical Analyst) 687
control panel

Physical Analyst view 684
CoreGen 804
coreloc.sdc 354
coreloc.sdc file 353
cores

incorporating Xilinx EDK cores 199
integrating subsytems as submodules

(Xilinx) 205
integrating subsytems as top level

modules (Xilinx) 204
cores, instantiating in Xilinx designs 804
counters

compiling with SYNCore 137
SYNCore 137

critical pahts
splitting between regions 527

critical paths 529
carry chains in regions 530
cascading cells in regions 530

delay 734
enable registers in regions 529
flat view 734
hierarchical view 734
islands 743
large muxes in regions 533
multiple paths in regions 533
pipelining in regions 532
slack time 734
splitting between regions 528
using -route 428
viewing 733
with bit-slicing in regions 531

critical paths (Design Planner)
assigning to regions 515

critical paths (Island Timing Analyst)
assigning to a region 516

critical paths (Physical Analyst) 750
tracing backward 755
tracing forward 753

critical paths (Synplify Premier)
usiing the island timing report 516

crossprobing 645
and retiming 437
collection objects 239
filtering text objects for 651
from FSM viewer 652
from log file 599
from message viewer 604
from text files 649
from text files to Physical Analyst 716
Hierarchy Browser 646
importance of encoding style 652
paths 650
Physical Analyst view 713
RTL view 647
Technology view 647
Technology view to Physical Analyst 719
Text Editor view 647
text file example 650
to FSM Viewer 652
to place-and-route file 623
Verilog file 647
VHDL file 647
View Cross Probing commands 713
within RTL and Technology views 646

crossprobing (Physical Analyst)
auto route crossprobing 719
RTL view 713, 717

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
892 June 2009

Technology view 713
crossprobing commands (Synplify

Premier)
Physical Analyst view 713

current level
expanding logic from net 661
expanding logic from pin 661
searching current level and below 637

custom folders
creating 279
hierarchy management 279

customization
callback functions 884

D
data block 145
data key 145
DCMs

defining clocks 224
default enum encoding 301
define_attribute 310
define_clock constraint 101
define_compile_point constraint 569
define_current_design constraint 569
define_false_paths constraint 101
define_input_delay constraint 101
define_multicycle_path constraint 101
define_output_delay constraint 101
define_reg_input_delay constraint 101
define_reg_output_delay constraint 101
design flow

customizing with callback functions 884
design guidelines 426
design hierarchy

viewing 655
design plan

options 295
Design Plan Editor view

preserving region resources 509
design plan file

creating 494
logic synthesis 39
physical synthesis 49, 494

Design Planner 488
assigning pins 495
creating chip regions 510
displaying IP core areas 510
guidelines 487
logic synthesis 39
opening 488
physical synthesis 49

design planning 488
design size

amount displayed on a sheet 624
design views

moving between views 623
DesignWare 107

Verilog function inferencing 108
VHDL component instantiation 109

detail placement
Xilinx physical synthesis 78

device options
See also implementation options

directives
adding 304
adding in Verilog 307
adding in VHDL 305
black box 363, 364
for FSMs 369
specifying for Verilog compiler 300
syn_state_machine 457
syn_tco 364

adding black box constraints 363
syn_tpd 364

adding black box constraints 363
syn_tsu 364

adding black box constraints 363
Dissolve Instances command

using 668
dissolving 668
DLLs

defining clocks 224
dot wildcard

Find command 640
drivers

preserving duplicates with syn_keep
440

selecting 664
DSP blocks (Design Planner) 540
dual-port RAMs

Index

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 893

 388
block RAMs with single registered

output, Xilinx 398
Stratix 381

E
EABs

VHDL mapping example 768
EABs, inferring 767
EDIF

structural, for Xilinx IP cores 804
synthesizing 826

EDIF files
reoptimizing with 826

Editing window 85
EDK

EDK hardware flow 200
edk2syn. See edk2syn
embedding procesors as subsystems

199
encrypted cores 207
flow 199
ISE flow 200
specifying cores as black boxes 206
specifying cores as white boxes 206
Synplify-EDK flow 199
synthesizing cores 200

EDK standalone hardware development
flow 209

EDK-ISE hardware development flow 208
EDN core 195
emacs text editor 90
Embedded development kit. See EDK
embedded processors

integrating subsystems as submodules
(Xilinx) 205

integrating subsystems as top level
modules (Xilinx) 204

embedded processors, Xilinx. See EDK
199

encoding styles
and crossprobing 652
default VHDL 301
FSM Compiler 455

encrypted IP objects (Physical Analyst)
identifying cells 711

encryptIP script
controlling output 151
encrypting IP 150
output methods 151

enhanced optimization
compared to fast synthesis 35
using 36

environment variables
PAR_BELDLYRPT 333
SYN_TCL_HOOKS 884

equivalence checking
VIF file 844

equivalency checking
handling failure 848

error messages
gated clock report 473

errors
definition 85
filtering 603
sorting 603
source files 84
Verilog 84
VHDL 84

ESBs, inferring 767
Expand command

connection logic 664
connections in Physical Analyst 727
pin and net logic 660
using 661

Expand command (Physical Analyst) 722
expand command (Tcl). See Tcl expand

command
Expand Inwards command

using 661
Expand Path Backward command 755
Expand Path Forward command 753
Expand Paths command

different from Isolate Paths 664
expand pin view (Design Planner) 491
Expand to Register/Port command

using 661
Expand to Register/Port command

(Physical Analyst) 722
expanding

connections 664
connections (Physical Analyst) 727

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
894 June 2009

pin and net logic 660
pin and net logic (Physical Analyst) 722

F
false paths

defining between clocks 235
I/O paths 236
impact of clock group assignments 235
overriding 236
ports 235
registers 235
setting constraints 235

fanout
replicating instances (Design Planner)

515
fanouts

buffering vs replication 448
hard limits 447
soft global limit 446
soft module-level limit 447
using syn_keep for replicaton 441
using syn_maxfan 446

fast synthesis
using 482, 483

feature comparison
FPGA tools 23

features
Synplify 23
Synplify Premier 23
Synplify Pro 23

FIFOs
compiling with SYNCore 114

files
.acf 106
.adc 737
.lpf 106, 796
.prf file 606
.sdc 213
altpll component declarations 769
filtered messages 607
fsm.info 456
log 596
message filter (prf) 606
output 836
rom.info 630
searching 312
statemachine.info 674
synhooks.tcl 884

Tcl 878
See also Tcl commands

Tcl batch script 877
Filter Schematic command, using 658
Filter Schematic icon, using 658
filtering 658

advantages over flattening 658
using to restrict search 637

filtering (Physical Analyst) 721
Find command

 637
browsing with 636
hierarchical search 638
long names 636
message viewer 603
Physical Analyst view 704
reading long names 639
search scope, effect of 640
search scope, setting 638
searching the mapped database 639
searching the output netlist 643
setting limit for results 639
using in RTL and Technology views 637
using wildcards 640
wildcard examples 642

Find command (Physical Analyst)
using Filter Search option 707
using wildcards 706

Find command (Tcl)
See also Tcl find command

finding information
information organization 27

finding objects
Physical Analyst view 704

Fix Gated Clocks option. See gated
clocks

Flatten Current Schematic command
transparent instances 666
using 666

Flatten Schematic command
using 666

flattening 665
See also dissolving
compared to filtering 658
hidden instances 667
transparent instances 666
using syn_hier 444

Index

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 895

FLEX netlist 836
floorplan file. See sfp file, design plan file
floorplan. See Design Planner
foreach command 250
forward annotation

frequency constraints in Xilinx 798
vendor-specific constraint files 105

forward-annotation
compile point constraints 572
constraints 795
Xilinx core files 198

frequency
clocks 223
defining for non-clock signals 224
internal clocks 223
setting global 294

from constraints
specifying 231

FSM Compiler
advantages 454
enabling 455

FSM encoding
user-defined 371
using syn_enum_encoding 371

FSM Explorer 453
running 459
when to use 453

FSM view
crossprobing from source file 649

FSM Viewer 670
crossprobing 652

fsm.info file 456
FSMs

See also FSM Compiler, FSM Explorer
attributes and directives 369
defining in Verilog 368
defining in VHDL 369
definition 367
optimizing with FSM Compiler 453
properties 674
state encodings 673
transition diagram 671
viewing 671

G
gated clocks

attributes for black boxes 471
conversion example 467
conversion report 472
conversion requirements 467
defining 226
error messages in report 473
examples 465
procedure for fixing 469
restrictions 475
Synplicity approach 464

generated-clock conversion 477
generics

extracting from VHDL source code 302
global comments

initializing Xilinx RAM 406
global optimization options 292
global placement

Xilinx physical synthesis 78
global range

defining 748
global sets/resets

Xilinx designs 801
glue logic

Altera Stratix RAM 380
Go to Location command 708

adding markers 710
graph-based physical synthesis

Altera 60
description 42
logic synthesis validation phase 43
physical synthesis phase 43
Xilinx 69

graph-based physical synthesis flow
Actel 52

grey box
netlist file 179

grey box flow
MegaCore with greybox netlist 179

grey boxes
using 175

greybox flow
MegaCore with IP package 181
NIOS II cores 186
SOPC cores 186

group range (Island Timing report)
defining 748

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
896 June 2009

GSR resources 787
GSR, Xilinx 800

H
HDL Analyst

See also RTL view, Technology view
critical paths 733
crossprobing 645
filtering schematics 658
Push/Pop mode 630, 633
traversing hierarchy with mouse

strokes 628
traversing hierarchy with Push/Pop

mode 630
using 654

HDL Analyst tool
deselecting objects 621
selecting/deselecting objects 620

HDL Analyst views
highlighting collections 247

help
information organization 27

hidden instances
consequences of saving 656
flattening 667
restricting search by hiding 637
specifying 656
status in other views 656

hierarchical design
expanding logic from nets 661
expanding logic from pins 661

hierarchical instances
dissolving 668
hiding. See hidden instances, Hide

Instances command
multiple sheets for internal logic 657
pin name display 659
viewing internal logic 656

hierarchical objects
pushing into with mouse stroke 629
traversing with Push/Pop mode 630

hierarchical search 637
hierarchy

flattening 666
netlist restructuring 331
traversing 627

hierarchy browser

clock trees 733
controlling display 623
crossprobing from 646
defined 627
finding objects 635
traversing hierarchy 627

hierarchy management (custom folders)
279

high fanout in regions 529
Highlight Visible Net Instances

command 725
hyper source

IP design hierarchy 91

I
I/O insertion 452, 794

VHDL manual (Xilinx) 817
I/O locations

assigning automatically (Xilinx) 812
manually assigning (Xilinx) 817

I/O pads
specifying I/O standards 228

I/O paths
false path constraint 236

I/O standards 228
I/Os

auto-constraining 252
constraining 227
packing in Altera designs 774
packing in Xilinx designs 807
preserving 453, 794
specifying pad type (Xilinx) 825
Verilog black boxes 358
VHDL black boxes 360

I/Os (Design Planner)
critical paths from pin-locked I/Os 515

Identify
prototyping design flow 80

implementation options 289
design plan file 295
device 289
global frequency 294
global optimization 292
netlist optimizations 330
part selection 289
specifying results 296

Index

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 897

implementations
copying 286
deleting 286
multiple. See multiple

implementations.
overwriting 286
renaming 286

include paths
updating older project files 277

incremental flows
partition (Xilinx) 863
SmartGuide 863

incremental flows (Xilinx) 862
incremental flow 862

incremental synthesis
locked,partition compile points 567

inference
BUFGMUX/BUFGMUX_1 818

INIT property
initializing Xilinx RAMs, Verilog 405
initializing Xilinx RAMs, VHDL 407
specifying with attributes 408

INITvalues
Xilinx registers 810

input constraints, setting 226
instances

preserving with syn_noprune 440
properties 617
properties of pins 617

instances (Physical Analyst)
adding markers 709
displaying instances 690

interactive Island Timing Analyst 747
ILM See interface logic models
interface logic models 570
IP

directory structure for package 155
encrypting with ReadyIP 143, 148
evaluating directly from the synthesis

tool 158
from EDK 199
package file list 155
packaging for evaluation 153
supplying vendor information 157
SYNCore adders 130
SYNCore counters 137
SYNCore subtractors 130

system-level models 157
IP core areas (Design Planner) 510
IP cores 804

Xilinx physical synthesis 78
IP design hierarchy

hyper source 91
IP vendors

encrypting IP 148
IPs

Altera 161
IP-XACT models 153
ISE

generating EDK cores 208
Island Timing Analyst 743

generating island timing report 745, 747
interactive 747
supported technologies 743

island timing report
defining group range and global range

748
Island Timing Analyst 747
using critical paths 516

islands
timing report 743

Islands/Paths Summary
crossprobing in HDL Analyst 745
reordering the columns 744
selecting islands or paths 745

Isolate Paths command
different from Expand Paths 664, 665

ispLEVER
forward-annotating constraints for 795

K
key assignments

customizing 885
key block 146
keywords

completing words in Text Editor 86

L
Lattice

constraint file 106
forward annotation 105

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
898 June 2009

I/O insertion 452
macro libraries 785
PICs 788

Lattice netlist 836
lcell primitive

Clearbox 165
LCELLs

mapping for area 783
mapping for performance 783
mapping logic to 781

libraries
translating Synopsys components 107
Xilinx post-synthesis simulation 828

location constraints
RLOC_ORIGIN 821
RLOCs with synthesis attribute 821
RLOCs with xc_attributes 819

log file
gated clock conversion report 472
gated clock error messages 473
physical synthesis 678

log files
checking FSM descriptions 460
checking information 596
crossprobing to Physical Analyst 716
pipelining description 432
retiming report 436
setting default display 596
shift register report (Altera) 412
state machine descriptons 455
viewing 596

Log Watch window 600
moving 600, 602
multiple implementations 286
resizing 600, 602

logic
expanding between objects 664
expanding from net 661
expanding from net (Physical Analyst)

725
expanding from pin 661, 722

logic preservation
syn_hier 444
syn_keep for nets 440
syn_keep for registers 440
syn_noprune 440
syn_preserve 440

logic synthesis

in Actel physical synthesis flow 56
in Altera physical synthesis flow 65
in physical synthesis flows 35
in Xilinx physical synthesis flow 74
translating UCF constraints 255
with design plan 39

logical folders
creating 279

LPM_RAM_DQ
VHDL example 422

LPMs
Altera megafunction example (Verilog)

417
Altera megafunction example (VHDL)

419
black box method simulation flow 777
comparison of Altera instantiation

methods 416
generics method, Cypress 421
in .vqm 417
including in physical synthesis 161
instantiating as black boxes 416
instantiating as black boxes (Altera) 417
instantiating with a Verilog library

(Altera methodology) 417
instantiating with a Verilog library

(Synplicity methodology) 423
instantiating with VHDL prepared

components 421
prepared components (Altera), example

421
using in Altera simulation flows 777
Verilog library simulation flow 778
VHDL prepared component simulation

flow 778
VHDL prepared components

instantiation example 421
LPMs, Altera 416
LUTRAMs, inferring 389

M
mac_mult primitive

Clearbox 165
mac_out primitive

Clearbox 165
macro libraries

Lattice 785
macro libraries (Xilinx) 798

Index

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 899

macros (Xilinx) 798
manhattan distance (Physical Analyst)

711
Map Logic to LCELLs option 781
mapping EABs

Verilog 767
markers (Physical Analyst)

adding 709
adding with Go to Location 710
deleting 710
finding objects with 708
measuring with 711
moving 710
navigating between 711
using 709

Markers command 709
Max netlist 836
Max+Plus II

configuring (FLEX, ACEX1K) 781
configuring (MAX) 784
configuring for area 783
configuring for speed 783

maximum parallel jobs 588
MegaCore

grey box flow with grey box netlist 179
greybox flow with IP package 181

megafunctions
altplls 769
grey boxes 175
including in physical synthesis 161
inferring Clearbox information 166
instantiating Clearbox 170
instantiating Clearbox with netlist 173
using Clearbox 178
using grey box netlist 179

Megawizard
altplls 769

memory usage
maximizing with HDL Analyst 670

Message viewer
filtering messages 604
keyboard shortcuts 603
saving filter expressions 606
searching 603
using 602
using the F3 key to search forward 603

using the Shift-F3 key to search
backward 603

messages
filtering 604
saving filter information from command

line 606
saving filter information from GUI 606
writing messages to file 607

mixed language files 95
restrictions 95

models
for DesignWare components 107

mouse strokes
pushing/popping objects 628

mouse strokes (Physical Analyst)
navigating between views 686

multicycle constraints
forward-annotating 795

multicycle paths
setting constraints 221

multiple implementations 285
running from project 286
running from workspace 288

multipliers
pipelining restriction 429

multipliers, pipelining 429
multi-port RAMs

See also dual-port RAMs
Altera Stratix 388

multiprocessing
maximum parallel jobs 588

multisheet schematics 621
for nested internal logic 657
searching just one sheet 637
transparent instances 622

N
name spaces

output netlist 643
technology view 638

navigating among design views 623
ncf file

cores 198
output physical constraints 228
using as input for logic design 256

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
900 June 2009

ncf files
translating to sdc 261

netlist restructure files
specifying 331

netlists
restructuring options 330

netlists (Physical Analyst)
analyzing 721

netlists for different vendors 836
nets

expanding logic from 661
preserving for probing with syn_probe

440
preserving with syn_keep 440
properties 617
selecting drivers 664

nets (Physical Analyst)
adding markers 709
expanding logic from 725
resetting the display 696
routing 694
selecting instances 725
signal flow 696
unfiltering for Find command 704

New property 619
NGC cores 195
NGO core 195
NIOS II, importing as greybox 186
non-secure core flow

synthesis 196
notes

filtering 603
sorting 603

notes, definition 85
nram primitive. See dual-port RAMs,

multi-port RAMs

O
objects

finding on current sheet 637
flagging by property 618
selecting/deselecting 620

objects (Physical Analyst)
finding 704
finding by location 708

overlapping 697
select overlapping 697
selecting 696

OpenIP 148
optimization

for area 427
for timing 428
generated clock 477
logic preservation. See logic

preservation.
mapper effort. See fast synthesis 428
preserving hierarchy 444
preserving objects 440
tips for 426

optimizing
enhanced logic optimizations 37

options file (place-and-route) 337, 340
OR 233
output constraints, setting 226
output files 836

specifying 296
output netlists

finding objects 643

P
p_nram primitive. See dual-port RAMs,

multi-port RAMs, nram primitive
package library, adding 272
pad types

industry standards 228
PAR_BELDLYRPT 333
parameters

extracting from Verilog source code 299
part selection options 289
partition flow (Xilinx)

diagram 865
partition flow, Xilinx 863
partitioning (Synplify Premier)

bit slicing 543
path constraints

false paths 235
pathnames

using wildcards for long names (Find)
639

Index

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 901

paths
crossprobing 650
tracing between objects 664
tracing from net 661
tracing from pin 661

paths (Physical Analyst)
tracing between objects 727
tracing from net 725
tracing from pin 722

pattern matching
Find command (Tcl) 245

pattern searching 312
PDF

cutting from 86
Physical Analyst

analyzing netlists 721
context window 687
control panel 684
crossprobing from text files 716
crossprobing RTL view 717
crossprobing to Technology view 719
displaying instances 690
displaying tooltips in Tcl window 703
identifying encrypted IP objects 711
opening 683
overlapping objects 697
properties 699

Physical Analyst view
adding markers 710
critical paths 750
crossprobing 713
displaying net signal flow 696
Expand commands 722
filtering 721
finding objects 704
Go to Location command 708
selecting objects 696
tool tips (Physical Analyst) 702
using markers 709
zoom selected objects 685

physical constraints
design plan-based physical synthesis

49
design-plan based logic synthesis 39
translating UCF constraints 258
using island timing report 516
Xilinx output file 228

physical constraints (Design Planner -
Altera)

Altera guidelines 519
physical constraints (Design Planner -

Xilinx)
Xilinx guidelines 523

physical coordinates
marking 709

physical synthesis
Altera 60
analyzing results 678
improve performance (Actel) 763
improve performance (Altera) 779, 827
running place-and-route 849
translating UCF constraints 258
using design plan file 494
with back annotation 353
with design plan file 49
Xilinx 69
Xilinx detail placement 78
Xilinx global placement 78
Xilinx routing 79

PICs 788
pin assignment (Design Planner) 495

assigning clock pins 498
crossprobing 504
temporary assigns 501

pin assignment tool (Design Planner) 491
pin assignments

converting to constraints 348
pin assignments (Design Planner)

temporary 501
pin loc constraint files

converting to SDC 348
pin locations

specifying (Xilinx) 812
pin names, displaying 659
pins

expanding logic from 661, 722
properties 617

pipelining
adding attribute 431
critical paths in regions 532
definition 429
multipliers 429
prerequisites 429
whole design 430

place-and-route
creating implementation 332

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
902 June 2009

customizing option file 337, 340
placement constraint file 353
with back annotation 353
with physical synthesis 849

place-and-route implementations 332
PLLs

defining clocks 224
ports

false path constraint 235
properties 617

POS interface
using 232

post-synthesis simulation, Xilinx 828
preferences

crossprobing to place-and-route file 623
displaying Hierarchy Browser 623
displaying labels 624
RTL and Technology views 623
SCOPE 217
sheet size (UI) 624

preplace.srm file 682
preserving region resources

Design Plan Editor view 509
primitives

pin name display 659
pushing into with mouse stroke 629
viewing internal hierarchy 655

primitives (Synplify Premier)
breaking up large 543

probes
adding in source code 461
definition 461
retiming 438

process-level hierarchy 542
processors, embedding with EDK 199
Product of Sums interface. See POS

interface
project command

archiving projects 315
copying projects 323
unarchiving projects 320

project file hierarchy 279
project files

adding files 274
adding source files 270
batch mode 876

creating 270
definition 270
deleting files from 274
opening 273
replacing files in 274
updating include paths 277
VHDL file order 273
VHDL library 272

projects
archiving 315
copying 323
restoring archives 320

properties
copying and pasting (Physical Analyst)

703
displaying with tooltip 617
encrypted IP cells (Physical Analyst) 711
finding objects with Tcl Find 245
reporting for collections 248
viewing for individual objects 617

Push/Pop mode
HDL Analyst 628
keyboard shortcut 630
using 628, 630

Q
qsf2sdc

translating constraints 253
Quartus

batch mode 781
integrated flow 779
interactive flow 780
using instantiated Clearbox netlist files

175
Quartus II

using synthesis results to run 779
Quartus II Incremental Compilation

diagram 858
Quartus II Incremental Compilation flow

857
Quartus II Incremental Synthesis

running 859
QUARTUS_ROOTDIR variable

inferring Clearbox megafunctions 167
instantiating Clearbox 170

question mark wildcard, Find command
640

Index

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 903

QuickLogic
pad placement 856

QuickLogic netlist 836

R
RAM inference

multi-port RAMs, Altera 388
Stratix dual-port 381

RAM resources
viewing in Design Planner 534

ram_block primitive
Clearbox 165

RAMs
Altera Stratix 379
compiling with SYNCore 119
dual-port, Stratix 381
initializing 400
initializing values (Xilinx) 404
mapping LUTRAMs 389
multi-port. See dual-port RAMs, multi-

port RAMs
RAMs, inferring 372

advantages 372
Altera EABs and ESBs 767
Altera Flex details 386
Xilinx block RAMs 391

ReadyIP
encryption-decryption flow 144

regions
assigning critical paths (Island Timing

Analyst) 516
assigning Xilinx block mults 539
assigning Xilinx block RAM 534
assigning Xilinx DSP 540
creating Xilinx block mult regions 539
creating Xilinx blockRAM 535
retiming 439
Xilinx critical paths 527

regions (Design Planner)
preserving logic and memory resources

509
replicating logic manually

instances
replicating (Design Planner) 515

register balancing. See retiming
register constraints, setting 221
register packing

See also syn_useioff attribute 807
Altera 774
Xilinx 807

registers
false path constraint 235
INIT value 810

relative placement. See RLOCs
replication

controlling 448
reports

gated clock conversion 472
shift registers, Altera 412

resource sharing 787
optimization technique 427
overriding option with syn_sharing 450
results example 450
using 450

resynthesis
compile points 571
forcing with Resynthesize All 571
forcing with Update Compile Point

Timing Data 571
retiming

effect on attributes and constraints 437
example 435
overview 433
probes 438
regions 439
report 436
simulation behavior 438

return codes 876
RLOC_ORIGINs

specifying 821
RLOCs 819, 821

specifying with synthesis attribute 821
specifying with xc attributes 819

ROM
block RAM mapping (Xilinx) 398

rom.info file 630
ROMs

compiling with SYNCore 125
inferencing in Altera designs 765
pipelining 429
viewing data table 630

-route constraint
physical synthesis 230

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
904 June 2009

-route option
Xilinx synthesis 230

routing
Xilinx physical synthesis 79

RTL view
See also HDL Analyst
analyzing clock trees 733
crossprobing collection objects 239
crossprobing description 645
crossprobing from 647
crossprobing from Text Editor 649
defined 615
description 614
filtering 658
finding objects with Find 637
finding objects with Hierarchy Browser

635
flattening hierarchy 666
highlighting collections 247
opening 616
selecting/deselecting objects 620
sequential shift components 411
setting preferences 623
state machine implementation 456
traversing hierarchy 627

S
schematics

multisheet. See multisheet schematics
page size 624
selecting/deselecting objects 620

SCOPE
adding attributes 308
adding probe insertion attribute 462
assigning Xilinx pin locations 813
case sensitivity for Verilog designs 245
collections compared to Tcl script

window 237
creating compile-point constraint file

578
defining compile points 575
drag and drop 215
editing operations 216
I/O pad type 228
keyboard shortcuts 216
multicycle paths 234
pipelining attribute 431
setting compile point constraints 579
setting constraints 212

setting display preferences 217
specifying RLOCs 819, 821
state machine attributes 369

scope of the document 26
sdc

converting from Xilinx ucf 261
search

browsing objects with the Find
command 636

browsing with the Hierarchy Browser
635

finding objects on current sheet 637
setting limit for results 639
setting scope 638
using the Find command in HDL

Analyst views 637
secure core flow

synthesis 196
See also search
Select Net Instances command (Physical

Analyst) 725
selecting objects (Physical Analyst) 696
Send Crossprobes when selecting

command 713
sequential shift components

Altshift_tap 410
mapping 410
SRL16 primitives 410
Verilog 415
VHDL 414

sequential shift components See shift
registers

set command
collections 249

set_option command 291
sfp file

creating 494
logic synthesis 39
physical synthesis 49

sheet connectors
navigating with 622

sheet size
setting number of objects 624

shift register lookup table. See
sequential shift components

shift registers

Index

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 905

inferring 410
Shift-F3 key

Message Viewer 603
Show Cell Interior option 655
Show Context command

different from Expand 657
using 657

signal flow (Physical Analyst) 696
displaying 696

Signal Flow command 696
signal pins (Physical Analyst)

displaying 693
simulation, effect of retiming 438
single-port RAMs

block RAM with registered output,
Xilinx 396

site columns
properties (Physical Analyst) 702

sites (Physical Analyst)
properties 702

slack
handling 756
setting margins 733

slice_primitive command 543
Slow property 619
SmartCompile (Xilinx) 862
SmartGuide 863
SOPC

specifying components as black boxes
193

specifying components as white boxes
193

SOPC Builder
components 191
importing embedded systems 186

sopc2syn
using 193

source code
adding pipelining attribute 431
commenting with synthesis on/off 302
crossprobing from Tcl window 652
defining FSMs 367
fixing errors 87
opening automatically to crossprobe

648
optimizing 426

specifying RLOCs 819, 821
when to use for constraints 98

source files
See also Verilog, VHDL.
adding comments 86
adding files 270
checking 83
column editing 86
copying examples from PDF 86
creating 82
crossprobing 649
crossprobing to Physical Analyst 716
editing 85
editing operations 85
mixed language 95
specifying default encoding style 301
specifying top level file for mixed

language projects 96
specifying top level in Project view 273
specifying top-level file 301
state machine attributes 369
using bookmarks 86

special characters
Tcl collections 244

specifying levels 668
SRLs See shift registers
startup block (Xilinx) 800
state machines

See also FSM Compiler, FSM Explorer,
FSM viewer, FSMs.

attributes 369
descriptions in log file 455
implementation 456
parameter and ’define comparison 368

statemachine.info file 674
Stratix

dual-port rams 381
subsystems

EDK cores 203
SOPC components 193

subsystems, Xilinx
integrating as a top-level module 204
integrating as submodules 205

subtractors
SYNCore 130

syn_allow_retiming
using for retiming 434

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
906 June 2009

syn_allowed_resources
compile points 568

syn_black_box
instantiating LPMs (Altera) 417

syn_dspstyle attribute
inferring wide adders/subtractors 802

syn_edif_bit_format attribute 804
syn_edif_scalar_format attribute 804
syn_encoding attribute 370
syn_enum_encoding directive

FSM encoding 371
syn_force_pad attribute

using 452, 794
syn_forward_io_constraints attribute 105
syn_hier attribute

Altera Quartus II Incremental
Compilation flow 860

controlling flattening 444
preserving hierarchy 444
using with compile points 579

syn_insert_buffer attribute
BUFGMUX 818

syn_isclock
black box clock pins 366

syn_keep
inferring Altera shift registers 411
inferring Lattice PICs 789
replicating redundant logic 441

syn_keep attribute
preserving nets 440
preserving shared registers 440

syn_keep directive
effect on buffering 448

syn_loc attribute
Actel I/O placement for physical

synthesis 349
syn_macro

specifying encrypted IP as white box 152
white-boxing non-secure cores 197

syn_maxfan attribute
setting fanout limits 446

syn_noarrayports attribute
use with alspin 833

syn_noprune directive
inferring Altera shift registers 411

preserving instances 440
syn_pipeline attribute 431
syn_preserve

effect on buffering 448
preserving power-on for retiming 435
preserving registers with INIT values

810
syn_preserve directive

preserving FSMs from optimization 370
preserving logic 440

syn_probe attribute 461
inserting probes 461
preserving nets 440

syn_ramstyle attribute
glue logic for Altera Stratix RAMs 380
multi-port RAM inference 377
preventing glue logic (no_rw_check) 393

syn_reference_clock
defining non-clock signal frequencies

224
syn_reference_clock constraint 101
syn_replicate attribute

using buffering 449
syn_romstyle attribute

defining ROM style 765
syn_sharing directive

overriding default 450
syn_srlstyle attribute

altshift_tap 410
mapping sequential shift components

to registers 410
setting shift register style 410

syn_state_machine directive
using with value=0 457

SYN_TCL_HOOKS environment variable
884

syn_tco attribute
adding in SCOPE 365

syn_tco directive 364
adding black box constraints 363

syn_tpd attribute
adding in SCOPE 365

syn_tpd directive 364
adding black box constraints 363

syn_tsu attribute
adding in SCOPE 365

Index

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 907

syn_tsu directive 364
adding black box constraints 363

syn_use_carry_chain attribute
using 788

syn_useioff
preventing flops from moving during

retiming 435
syn_useioff attribute

inferring Altera shift registers 411
packing registers (Altera) 774
packing registers (Xilinx) 807

SYN_XILINX_GLOBAL_PLACE_OPT
environment variable 346

SYNCore
adder ports 136
Adder/Subtractor 130
adders 130
counter compiler 137
counters 137
FIFO compiler 114
RAM compiler 119
ROM compiler 125
subtractor ports 136
subtractors 130

synhooks
automating message filtering 607

synhooks.tcl file 884
Synplicity

product family 22
synplicity.ucf file

non-secure cores 198
relation to ncf file 228
secure cores 198

Synplify
features 23
overview 23

Synplify Premier
features 23
list of design flows 35
logic synthesis flows 35
overview 23
prototyping flow 80

Synplify Premier physical constraints
using island timing report 516

Synplify Pro
features 23
overview 23

prototyping flow 80
synplify UNIX command 27
synplify.ucf 262
synplify.vhd 828
synplify_premier UNIX command 27
synplify_premier_dp UNIX command 27
synplify_pro UNIX command 27
syntax

checking source files 84
syntax check 84
synthesis

Xilinx non-secure cores 196
Xilinx secure cores 196

synthesis check 84
synthesis_on/off

using 302
SystemDesigner

using with Xilinx IP 153

T
ta file

generating 736
tcl callbacks

customizing key assignments 885
Tcl commands

batch script 877
entering in SCOPE 221
running 878

Tcl expand command
crossprobing objects 239
usage tips 246
using in SCOPE 238

Tcl files 878
creating 879
for bottom-up synthesis 883
guidelines 99
naming conventions 99
recording from commands 879
synhooks.tcl 884
using variables 881
wildcards 100

Tcl find command
annotating properties 245
case sensitivity 245
crossprobing objects 239

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
908 June 2009

database differences 239
examples of filtering 246
pattern matching 245
Tcl window vs SCOPE 237
usage tips 244
using in SCOPE 238

Tcl Script window
crossprobing 652
message viewer 602

Tcl script window
collections compared to SCOPE 237

Tcl scripts
See Tcl files.

Tcl window
displaying tooltips (Physical Analyst)

703
Technology view

See also HDL Analyst
critical paths 733
crossprobing 645, 647
crossprobing collection objects 239
crossprobing from source file 649
filtering 658
finding objects 639
finding objects with Find 637
finding objects with Hierarchy Browser

635
flattening hierarchy 666
general description 614
highlighting collections 247
opening 616
selecting/deselecting objects 620
setting preferences 623
state machine implementation in 456
traversing hierarchy 627

temporary assigns (Design Planner) 501
drag and drop 501
empty 501
return assignment 501

text editor
built-in 85
external 90
using 85

Text Editor view
crossprobing 647

Text Editor window
colors 88
crossprobing 88

fonts 88
text files

crossprobing 649
The Synplicity Product Family 22
third-party vendor tools

invoking 838
through constraints 232

AND lists 233
OR lists 232

time stamp, checking on files 275
time stamps

Xilinx partition flow 866
timing

after logic synthesis 682
timing analysis 730

using stand-alone ta 736
timing analyst

modifying constraints using .adc file
737

using the stand-alone ta 736
timing constraints 101

define_compile_point 569
define_currrent_design 569
Xilinx output file 228

timing failures, handling 756
timing information

critical paths 734
timing optimization 428
timing report

connectivity-based 743
viewing 749

Island Timing Analyst 743
stand-alone (.ta) 736

timing reports
specifying format options 297

tips
memory usage 670

to constraints
specifying 231

tool tags
creating 838
definition 838

tool tips
Physical Analyst 702

tooltips (Physical Analyst)

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
909 June 2009

copying information from 703
displaying in Tcl window 703

top level
specifying 301

transparent instances
flattening 666
lower-level logic on multiple sheets 622

U
UCF constraints 255

input files 261
supported 263, 264
translating for logic synthesis 255
translating for physical synthesis 258

ucf file
translating with ucf2sdc_old 264
using as input for logic design 256

ucf file. See also synplicity.ucf
ucf2sdc.log file 261
ucf2sdc_old

translating Xilinx constraints 264
UINISIM library

simulation 828
UNISIM library 798
UNIX commands

synplify 27
synplify_premier 27
synplify_premier_dp 27
synplify_pro 27

unsupported.ucf 262

V
vendor-specific netlists 836
verification

using VIF file 844
Verification Interface Format (VIF) file.

See VIF file.
Verilog

‘define statements 300
Actel ACTgen macros 761
adding attributes and directives 307
adding probes 461
Altera LPM library 423
Altera LPM megafunction example 417
Altera PLLs 769

always block hierarchy 331
black boxes 358
black boxes, instantiating 358
case sensitivity for Tcl Find command

245
checking source files 83
choosing a compiler 299
clock DLLs 823
creating source files 82
crossprobing from HDL Analyst view

647
crossprobing to Physical Analyst 716
defining FSMs 368
defining state machines with parameter

and ’define 368
editing operations 85
extracting parameters 299
include paths, updating 277
inferring DesignWare functions 108
initializing RAMs 400
instantiating LPMs as black boxes

(Altera) 417
macro library (Xilinx) 798
mixed language files 95
RAM structures for inference 373
RLOCs 820
sequential shift components 415
specifying compiler directives 300
specifying top-level module 301
structural, for instantiated Clearbox

173
Verilog 2001

setting global option from the Project
view 299

setting option per file 299
Verilog macro libraries

Actel 760
Lattice 785

Verilog model (.vmd) 570
VHDL

Actel ACTgen macros 761
adding attributes and directives 305
adding probes 461
Altera LPM megafunction example 419
Altera PLLs 769
black boxes 360
black boxes, instantiating 360
case sensitivity for Tcl Find comand 245
checking source file 83
clock DLLs 823

Index

Synopsys FPGA Synthesis User Guide Copyright © 2009 Synopsys, Inc.
June 2009 910

constants 302
creating source files 82
crossprobing from HDL Analyst view

647
crossprobing to Physical Analyst 716
defining FSMs 369
DesignWare component instantiations

109
editing operations 85
extracting generics 302
initializing RAMs with variable

declarations 403
initializing with signal declarations 401
instantiating LPMs as black boxes

(Altera) 417
LPM instantiation example 421
macro libraries, Actel 760
macro library (Xilinx) 798
mixed language files 95
prepared components method of

instantiation 422
process hierarchy 331
RAM structures for inference 373
RLOCs 820
sequential shift components 414
specifying top-level entity 301
structural, for instantiated Clearbox

173
VHDL files

adding library 272
adding third-party package library 272
order in project file 273
ordering automatically 273

VHDL macro libraries
Lattice 786

vi text editor 90
VIF file

using 844
vif2conformal.tcl script 847
Virtex

block RAM. See also block RAM.
clock buffers 822
I/O buffers 825
netlist 837
PCI core 804

virtual clock, setting 220
vqm

inferred Clearbox 167
instantiated Clearbox 170

instantiated Clearbox with netlist 175

W
warning messages

definition 85
warnings

feedback muxes 428
filtering 603
handling 609
sorting 603

white boxes
defined for EDK flow 206
EDK cores 206
encrypted Xilinx cores 207
SOPC components 193
using syn_macro on non-secure cores

197
wide adders/subtractors

example 803
inferring 801
prerequisites for inference 802

wildcards
effect of search scope 640
Find command (Tcl) 245
message filter 605

wildcards (Find)
examples 642
how they work 640

wildcards (Physical Analyst)
in Find command 706

workspaces
creating 287
using 288

write modes, Virtex-II 394

X
xc_clockbuftype attribute

specifying 822
xc_fast attribute

for critical paths 797
xc_loc attribute

assigning locations in SCOPE 813
xc_map attribute

relative location 819
xc_padtype attribute

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
911 June 2009

specifying I/Os 825
xc_rloc attribute

specifying relative location 820
xc_uset attribute

grouping instances for relative
placement 820

using to group instances 820
xcf files

translating to sdc 261
XFLOW for cores 210
xflow script 340
Xilinx

block RAMs 391
clock buffers 822
converting PAD files 348
converting pin assignments to SDC 348
CoreGen 804
defining DCMs and DLLs 225
design guidelines 797
detail placement for physical synthesis

78
EDK cores 199
EDK standalone hardware flow 209
EDK. See EDK
EDK-ISE hardware flow 208
encrypted EDK cores 207
forward-annotation 106
generating EDK cores with ISE 208
global placement for physical synthesis

78
GSR 800
I/O buffers 825
I/O insertion, manual 817
I/O locations 812
I/O pad type 228
including cores for synthesis 196
incremental flow 862
INIT property 405
INIT property, VHDL 407
IP cores 195, 804
macro libraries 798
macros 798
netlist 837
non-secure core flow 196
packing registers 807
partition flow 863
physical synthesis flows 69
place-and-route option file 340
post-synthesis simulation 828

reoptimizing EDIF 826
routing for physical synthesis 79
secure core flow 196
shift registers 410
specifying pin location 812
startup blocks 800
synthesis constraint files 228
tips for optimizing 797
Virtex-II write modes 394

Xilinx block multipliers (Synplify
Premier) 539

Xilinx DSP blocks (Synplify Premier) 540
xtclsh flow 340

Z
zippering

guidelines 550, 551
partitioning (Synplify Premier) 550

zoom selected objects (Physical Analyst)
685

Copyright © 2009 Synopsys, Inc. Synopsys FPGA Synthesis User Guide
912 June 2009

	Synopsys FPGA Synthesis User Guide
	Disclaimer of Warranty
	Copyright Notice
	Trademarks
	Restricted Rights Legend

	Introduction
	The Synopsys FPGA Product Family
	The FPGA Synthesis Tools
	Synopsys FPGA Tool Features

	Scope of the Document
	The Document Set
	Audience

	Getting Started
	Starting the Software
	Getting Help
	Requesting Technical Support

	User Interface Overview

	FPGA Logic and Physical Synthesis Flows
	Logic Synthesis Design Flow
	Synplify Premier Synthesis Design Flows
	Logic Synthesis with Enhanced Optimization
	Design Plan-Based Logic Synthesis
	Graph-Based Physical Synthesis
	Graph-Based Physical Synthesis with Design Planner
	Design Plan-based Physical Synthesis

	Actel Physical Synthesis
	Set up the Actel Physical Synthesis Project
	Run Logic Synthesis for the Actel Physical Synthesis Flow
	Validate Logic Synthesis Results for Actel Physical Synthesis
	Set up Actel Physical Constraints
	Run Actel Physical Synthesis
	Analyze Results of Actel Physical Synthesis

	Altera Physical Synthesis
	Guidelines for Physical Synthesis in Altera Designs
	Set up the Altera Physical Synthesis Project
	Run Logic Synthesis for the Altera Physical Synthesis Flow
	Validate Logic Synthesis Results for Altera Physical Synthesis
	Run Altera Physical Synthesis
	Analyze Results of Altera Physical Synthesis

	Xilinx Physical Synthesis
	Set up the Xilinx Physical Synthesis Project
	Run Logic Synthesis for the Xilinx Physical Synthesis Flow
	Validate Logic Synthesis Results for Xilinx Physical Synthesis
	Run Xilinx Physical Synthesis
	Analyze Results of Xilinx Physical Synthesis
	Guidelines for Xilinx Timing Constraints for Physical Synthesis
	Using IP Cores in Xilinx Physical Synthesis Flows
	Placement and Routing Phases in Xilinx Physical Synthesis

	Prototyping Design Flow

	Preparing the Input
	Setting Up HDL Source Files
	Creating HDL Source Files
	Checking HDL Source Files
	Editing HDL Source Files with the Built-in Text�Editor
	Setting Editing Window Preferences
	Using an External Text Editor
	Using Hyper Source

	Using Mixed Language Source Files
	Working with Constraint Files
	When to Use Constraint Files over Source Code
	Tcl Syntax Guidelines for Constraint Files
	Using a Text Editor for Constraint Files
	Using Synopsys Design Compiler Constraints
	Checking Constraint Files
	Generating Constraint Files for Forward Annotation

	Using Input from Related Tools
	Converting Synopsys DesignWare Components
	Converting Verilog Library Components
	Converting VHDL Library Components

	Working with IP Input
	Generating IP with SYNCore
	Specifying FIFOs with SYNCore
	Specifying RAMs with SYNCore
	Specifying ROMs with SYNCore
	Specifying Adder/Subtractors with SYNCore
	Specifying Counters with SYNCore

	The ReadyIP Encryption Flow
	Overview of the Synopsys ReadyIP Flow
	Encryption and Decryption

	Working with Encrypted IP
	Encrypting Your IP
	Preparing the IP Package
	Evaluating Vendor IP

	Working with Altera IP
	Using Altera LPMs or Megafunctions in Synthesis
	Implementing Megafunctions with Clearbox Models
	Implementing Megafunctions with Grey Box Models
	Including Altera MegaCore IP Using an IP Package
	Including Altera Processor Cores Generated in SOPC Builder
	Working with SOPC Builder Components

	Working with Lattice IP
	Working with Xilinx IP
	Xilinx IP Cores
	Including Xilinx Cores for Logic and Physical Synthesis

	Including Xilinx EDK Cores
	The Synplify-EDK Design Flow
	Working with EDK Cores
	Xilinx Hardware Development Flows

	Specifying Constraints
	Using the SCOPE UI
	Creating a Constraint File Using the SCOPE Window
	Entering and Editing Constraints in the SCOPE Window
	Setting SCOPE Display Preferences

	Specifying Timing Constraints
	Entering Default Constraints
	Setting Clock and Path Constraints
	Defining Clocks
	Defining Input and Output Constraints
	Specifying Standard I/O Pad Types
	Specifying Xilinx Timing Constraints
	Using -route for Physical Synthesis in Xilinx Designs

	Specifying Timing Exceptions
	Defining From/To/Through Points for Timing Exceptions
	Defining Multi-cycle Paths
	Defining False Paths

	Using Collections
	Comparing Methods for Defining Collections
	Creating and Using Collections (SCOPE Window)
	Creating Collections (Tcl Commands)
	Using the Tcl Find Command to Define Collections
	Using the Expand Tcl Command to Define Collections
	Viewing and Manipulating Collections (Tcl Commands)

	Using Auto Constraints
	Translating Altera QSF Constraints
	Converting and Using Xilinx UCF Constraints
	Using Xilinx UCF Constraints in a Logic Synthesis Design
	Using Xilinx UCF Constraints in a Physical Synthesis Design
	Support for UCF Conversion
	Using the Legacy UCF2SDC Utility

	Setting up a Logic Synthesis Project
	Setting Up Project Files
	Creating a Project File
	Opening an Existing Project File
	Making Changes to a Project
	Setting Project View Display Preferences
	Updating Verilog Include Paths in Older Project Files

	Project File Hierarchy Management
	Creating Custom Folders
	Other Custom Folder Operations
	Other Custom File Operations

	Setting Up Implementations and Workspaces
	Working with Multiple Implementations
	Creating Workspaces
	Using Workspaces

	Setting Logic Synthesis Implementation Options
	Setting Device Options
	Setting Optimization Options
	Specifying Global Frequency and Constraint Files
	Specifying Result Options
	Specifying Timing Report Output
	Setting Verilog and VHDL Options

	Entering Attributes and Directives
	Specifying Attributes and Directives
	Specifying Attributes and Directives in VHDL
	Specifying Attributes and Directives in Verilog
	Specifying Attributes Using the SCOPE Editor
	Specifying Attributes in the Constraints File (.sdc)

	Searching Files
	Identifying the Files to Search
	Filtering the Files to Search
	Initiating the Search
	Search Results

	Archiving Files and Projects
	Archive a Project
	Un-Archive a Project
	Copy a Project

	Setting up a Physical Synthesis Project
	Setting up for Physical Synthesis
	Setting Options for Physical Synthesis
	Setting Synplify Premier Netlist Restructuring Optimizations
	Creating a Place and Route Implementation
	Specifying Altera Place-and-Route Options
	Specifying Xilinx Place-and-Route Options in a Tcl File
	Specifying Xilinx Place-and-Route Options in an .opt File
	Specifying Xilinx Global Placement Options

	Setting Constraints for Physical Synthesis
	Using Design Planner Floorplan Constraints
	Translating Pin Location Files
	Translating Actel I/O Constraints
	Setting Physical Synthesis Constraints for Altera

	Forward-Annotating Physical Synthesis Constraints
	Forward Annotating Altera Physical Constraints

	Backannotating Physical Synthesis Constraints
	Backannotating Place-and-Route Data
	Generating a Xilinx Coreloc Placement File

	Inferring High-Level Objects
	Defining Black Boxes for Synthesis
	Instantiating Black Boxes and I/Os in Verilog
	Instantiating Black Boxes and I/Os in VHDL
	Adding Black Box Timing Constraints
	Adding Other Black Box Attributes

	Defining State Machines for Synthesis
	Defining State Machines in Verilog
	Defining State Machines in VHDL
	Specifying FSMs with Attributes and Directives

	Inferring RAMs
	Inference Versus Instantiation
	Basic Guidelines for Coding RAMs
	Specifying RAM Implementation Styles
	Implementing Altera RAMs Automatically
	Implementing Xilinx RAMs Automatically
	Implementing Altera FLEX and APEX RAMs
	Implementing Altera Stratix Multi-Port RAMs
	Inferring Altera Stratix III LUTRAMs
	Inferring Xilinx Block RAMs Using Registered Addresses
	Inferring Xilinx Block RAMs Using Registered Output
	Mapping Xilinx ROM to Block RAM

	Initializing RAMs
	Initializing RAMs in Verilog
	Initializing RAMs in VHDL
	Initializing Xilinx RAM

	Inferring Shift Registers
	Working with LPMs
	Instantiating Altera LPMs as Black Boxes
	Instantiating Altera LPMs Using VHDL Prepared Components
	Instantiating Altera LPMs Using a Verilog Library

	Specifying Design-Level Optimizations
	Tips for Optimization
	General Optimization Tips
	Optimizing for Area
	Optimizing for Timing

	Pipelining
	Prerequisites for Pipelining
	Pipelining the Design

	Retiming
	Controlling Retiming
	Retiming Example
	Retiming Report
	How Retiming Works
	How Retiming Works With Synplify Premier Regions

	Preserving Objects from Optimization
	Using syn_keep for Preservation or Replication
	Controlling Hierarchy Flattening
	Preserving Hierarchy

	Optimizing Fanout
	Setting Fanout Limits
	Controlling Buffering and Replication

	Sharing Resources
	Inserting I/Os
	Optimizing State Machines
	Deciding when to Optimize State Machines
	Running the FSM Compiler
	Running the FSM Explorer

	Inserting Probes
	Specifying Probes in the Source Code
	Adding Probe Attributes Interactively

	Working with Gated Clocks
	Gated Clocks in Synopsys FPGA Designs
	Prerequisites for Gated Clock Conversion
	Synthesizing a Gated Clock Design
	Using Gated Clocks for Black Boxes
	Analyzing Gated Clock Conversion Reports
	Working with Gated Clock Error Messages
	Restrictions on Using Gated Clocks

	Optimizing Generated Clocks
	Generated-Clock Optimization Example
	Enabling Generated-Clock Optimization
	Conditions for Generated-Clock Optimization

	Fast Synthesis
	About Fast Synthesis
	Using Fast Synthesis
	Fast Synthesis and Other Synthesis Options

	Floorplanning with Design Planner
	Using Design Planner
	Starting Design Planner
	Copying Objects in the Design Planner Tool
	Controlling Pin Display in the Design Plan Editor
	Creating and Using a Design Plan File for Physical Synthesis

	Assigning Pins and Clocks
	Assigning Pins Interactively
	Importing Pin Assignments from Pin Assignment Files
	Assigning Clock Pins
	Modifying Pin Assignments
	Using Temporary Pin Assignments
	Viewing Assigned Pins in Different Views
	Viewing Pin Assignment Information

	Working with Regions
	Creating Regions
	Using Region Tunneling
	Moving and Sizing Regions
	Viewing Intellectual Property (IP) Core Areas
	Assigning Logic to Top-level Chip Regions
	Assigning Logic to Regions
	Replicating Logic Manually
	Assigning Critical Paths from Island Timing to a Region
	Checking Utilization

	Working with Altera Regions
	Creating Design Planner Regions for Altera Designs
	Assigning Logic to Altera Design Planner Regions

	Working with Xilinx Regions
	Creating Regions for Xilinx Designs

	Assigning Objects to Xilinx Regions
	Assigning Xilinx Critical Paths to Design Planner Regions
	Assigning Xilinx Block RAMs to Regions
	Assigning Xilinx Block Multipliers to Regions
	Assigning Xilinx DSP Blocks to Regions

	Using Process-Level Hierarchy
	Bit Slicing
	Using Bit Slicing
	Bit Slice Examples

	Zippering
	Zippering Guidelines
	Using Zippering
	Zippering Example

	Running Logical Compile Points
	Logical Compile-Point Synthesis
	Overview
	Traditional Bottom-up Design and Compile Points

	About Compile Points
	Nesting: Child and Parent Compile Points
	Advantages of Using Compile Points
	Compile Point Types
	Compile Point Feature Summary
	Using syn_hier with Compile Points
	Using syn_allowed_resources with Compile Points
	define_compile_point and define_current_design
	About Interface Logic Models (ILMs)

	Compile Point Synthesis
	Compile Point Optimization
	Forward-annotation of Compile-point Timing Constraints

	Using Compile-point Synthesis
	Synplify Pro and Synplify Premier Compile-point Flow

	Xilinx Compile-point Synthesis Flow
	Using Xilinx Compile-point Synthesis

	Using Multiprocessing
	Multiprocessing With Compile Points
	Setting Maximum Parallel Jobs
	License Utilization

	Synthesizing and Analyzing the Log File
	Synthesizing Your Design
	Running Logic Synthesis
	Running Physical Synthesis

	Checking Log Results
	Viewing the Log File
	Analyzing Results Using the Log File Reports
	Using the Log Watch Window

	Handling Messages
	Checking Results in the Message Viewer
	Filtering Messages in the Message Viewer
	Filtering Messages from the Command Line
	Automating Message Filtering with a Tcl Script
	Handling Warnings

	Validating Logic Synthesis for Physical Synthesis

	Analyzing with HDL Analyst and FSM Viewer
	Working in the Schematic Views
	Differentiating Between the Views
	Opening the Views
	Viewing Object Properties
	Selecting Objects in the RTL/Technology Views
	Working with Multisheet Schematics
	Moving Between Views in a Schematic Window
	Setting Schematic View Preferences
	Managing Windows

	Exploring Design Hierarchy
	Traversing Design Hierarchy with the Hierarchy Browser
	Exploring Object Hierarchy by Pushing/Popping
	Exploring Object Hierarchy of Transparent Instances

	Finding Objects
	Browsing to Find Objects
	Using Find for Hierarchical and Restricted Searches
	Using Wildcards with the Find Command
	Using Find to Search the Output Netlist

	Crossprobing
	Crossprobing within an RTL/Technology View
	Crossprobing from the RTL/Technology View
	Crossprobing from the Text Editor Window
	Crossprobing from the Tcl Script Window
	Crossprobing from the FSM Viewer

	Analyzing With the HDL�Analyst Tool
	Viewing Design Hierarchy and Context
	Filtering Schematics
	Expanding Pin and Net Logic
	Expanding and Viewing Connections
	Flattening Schematic Hierarchy
	Minimizing Memory Usage While Analyzing Designs

	Using the FSM Viewer

	Analyzing Designs in Physical Analyst
	Analyzing Physical Synthesis Results
	Analyzing Physical Synthesis Results Using Various Tools
	Comparing Performance Results
	Running Multiple Implementations
	Checking Altera Pre-Placement Physical Synthesis Results

	Using Physical Analyst
	Opening the Physical Analyst Interface
	Zooming in the Physical Analyst
	Moving Between Views in the Physical Analyst
	Using the Physical Analyst Context Window

	Displaying and Selecting Objects
	Setting Visibility for Physical Analyst Objects
	Displaying Instances and Sites in Physical Analyst
	Displaying Nets in Physical Analyst
	Selecting Objects in Physical Analyst

	Querying Physical Analyst Objects
	Viewing Properties in Physical Analyst
	Using Tool Tips to View Properties in Physical Analyst

	Finding Objects
	Using Find to Locate Physical Analyst Objects)
	Finding Physical Analyst Objects by Their Locations
	Using Markers to Find Physical Analyst Objects
	Identifying Encrypted IP Objects in Physical Analyst

	Crossprobing in Physical Analyst
	Crossprobing from the Physical Analyst View
	Crossprobing from a Text File to Physical Analyst
	Crossprobing from the RTL View to Physical Analyst
	Crossprobing from the Technology View to Physical Analyst

	Analyzing Netlists in Physical Analyst
	Filtering the Physical Analyst View
	Expanding Pin and Net Logic in Physical Analyst
	Expanding and Viewing Connections in Physical Analyst

	Analyzing Timing
	Analyzing Timing in Schematic Views
	Viewing Timing Information
	Annotating Timing Information in the Schematic Views
	Analyzing Clock Trees in the RTL View
	Viewing Critical Paths

	Using the Stand-alone Timing Analyst
	Entering Constraints into the .adc File

	Using the Island Timing Analyst
	Working in the Island Timing Analyst Interface
	Generating the Island Timing Report Automatically
	Generating the Island Timing Report Interactively
	Defining Group Range and Global Range for Island Timing
	Viewing the Island Timing Report

	Analyzing Timing with Physical Analyst
	Viewing Critical Paths in Physical Analyst
	Tracing Critical Paths Forward in Physical Analyst
	Tracing Critical Paths Backward in Physical Analyst

	Handling Negative Slack

	Optimizing for Specific Targets
	Optimizing Actel Designs
	Using Predefined Actel Black Boxes
	Using ACTGen Macros
	Working with Radhard Designs
	Improving Performance in Actel Physical Synthesis Designs

	Optimizing Altera Designs
	Design Tips for APEX and FLEX Designs
	Determining ROM Implementation
	Working with Altera EABs and ESBs
	Working with Altera PLLs
	Instantiating Special Buffers as Black Boxes in Altera Designs
	Specifying Altera I/O Locations
	Packing I/O Cell Registers in Altera Designs
	Specifying HardCopy and Stratix Companion Parts
	Specifying Core Voltage in Stratix III Designs
	Using LPMs in Simulation Flows
	Improving Altera Physical Synthesis Performance
	Working with Quartus II
	Configuring Max+Plus�II for FLEX and ACEX1K
	Configuring Max+Plus�II for MAX Designs

	Optimizing Lattice Designs
	Instantiating Lattice Macros
	Using Lattice GSR Resources
	Inferring Carry Chains in Lattice XPLD Devices
	Inferring Lattice PIC Latches
	Controlling I/O Insertion in Lattice Designs
	Forward-Annotating Lattice Constraints

	Optimizing Xilinx Designs
	Designing for Xilinx Architectures
	Specifying Xilinx Macros
	Specifying Global Sets/Resets and Startup Blocks
	Inferring Wide Adders
	Instantiating CoreGen Cores
	Instantiating Virtex PCI Cores
	Packing Registers for Xilinx I/Os
	Specifying Xilinx Register INIT Values
	Inserting Xilinx I/Os and Specifying Pin Locations
	Working with Xilinx Buffers
	Specifying RLOCs
	Specifying RLOCs and RLOC_ORIGINs with the synthesis Attribute
	Using Clock Buffers in Virtex Designs
	Working with Clock Skews in Xilinx Virtex-5 Physical Designs
	Instantiating Special I/O Standard Buffers for Virtex
	Reoptimizing With EDIF Files
	Improving Xilinx Physical Synthesis Performance
	Running Post-Synthesis Simulation
	Working with Xilinx Place-and-Route Software

	Working with Synthesis Output
	Passing Information to the P&R Tools
	Specifying Pin Locations
	Specifying Locations for Actel Bus Ports
	Specifying Macro and Register Placement
	Passing Technology Properties
	Specifying Padtype and Port Information

	Generating Vendor-Specific Output
	Targeting Output to Your Vendor
	Customizing Netlist Formats

	Invoking Third-Party Vendor Tools
	Configuring Tool Tags
	Invoking a Third-Party Tool

	Running Post-Synthesis Operations
	VIF Formal Verification Flow
	Overview of the VIF Flow
	Generating a VIF File
	Using a Tcl Script for VIF Conversion
	Handling Equivalency Check Failures

	Running Place-and-Route after Synthesis
	Simulating with the VCS Tool
	Resynthesizing with QuickLogic Information
	Quartus II Incremental Compilation
	Quartus II Incremental Compilation Flow

	Working with Xilinx Incremental Flows
	Incremental Flow for Xilinx Designs
	SmartGuide Global Placement Flow
	Partition Flow

	Working with the Identify RTL Debugger
	Launching from the Synplify Pro or Synplify Premier Tool
	Launching from the Synplify Tool
	Handling Problems with Launching Identify
	Using the Identify Tool

	Process Optimization and Automation
	Using Batch Mode
	Running Batch Mode on a Project File
	Running Batch Mode with a Tcl Script

	Working with Tcl Scripts and Commands
	Using Tcl Commands and Scripts
	Generating a Job Script
	Creating a Tcl Synthesis Script
	Using Tcl Variables to Try Different Clock Frequencies
	Using Tcl Variables to Try Several Target Technologies
	Running Bottom-up Synthesis with a Script

	Automating Flows with synhooks.tcl

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

