
Synplicity FPGA Synthesis
Synplify

®

, Synplify Pro
®

, Synplify
®

 Premier, and

Synplify
®

 Premier with Design Planner

User Guide
December 2005

Synplicity, Inc.
600 West California Avenue

Sunnyvale, CA 94086
(U.S.) +1 408 215-6000 direct

(U.S.) +1 408 222-0268 fax
www.synplicity.com

®

LO

Preface

ii Fpga User Guide, December 2005

Preface

Disclaimer of Warranty
Synplicity, Inc. makes no representations or warranties, either expressed or
implied, by or with respect to anything in this manual, and shall not be liable
for any implied warranties of merchantability or fitness for a particular
purpose of for any indirect, special or consequential damages.

Copyright Notice
Copyright © 1994-2005 Synplicity, Inc. All Rights Reserved.

Synplicity software products contain certain confidential information of
Synplicity, Inc. Use of this copyright notice is precautionary and does not
imply publication or disclosure. No part of this publication may be repro-
duced, transmitted, transcribed, stored in a retrieval system, or translated
into any language in any form by any means without the prior written
permission of Synplicity, Inc. While every precaution has been taken in the
preparation of this book, Synplicity, Inc. assumes no responsibility for errors
or omissions. This publication and the features described herein are subject
to change without notice.

Trademarks
Synplicity, the Synplicity “S” logo, Amplify, Amplify ASIC, Amplify FPGA,
Behavior Extracting Synthesis Technology, Certify, Embedded Synthesis,
Fortify, HDL Analyst, PowerTime, RealPower, SCOPE, Simply Better Results,
Simply Better Synthesis, Syndicated, Synplify, Synplify ASIC, Synplify Lite,
Synplify Pro, and Synthesis Constraint Optimization Environment are regis-
tered trademarks of Synplicity Inc. BEST, DST, Direct Synthesis Technology,
Identify, IICE, MultiPoint, Partition-Driven Synthesis, Physical Analyst,
Physical Optimizer, PowerPlanner, PowerRoute, Synplify IP, TOPS, and Total
Optimization Physical Synthesis are trademarks of Synplicity, Inc.

Verilog is a registered trademark of Cadence Design Systems, Inc. IBM and
PC are registered trademarks of International Business Machines Corpo-
ration. Microsoft is a registered trademark of Microsoft Corporation. Sun,
SPARC, Solaris, and SunOS are trademarks of Sun Microsystems, Inc. UNIX
is a registered trademark of X/Open Corporation.

All other product names mentioned herein are the trademarks or registered
trademarks of their respective owners.

Preface

Fpga User Guide, December 2005 iii

Restricted Rights Legend
Government Users: Use, reproduction, release, modification, or disclosure of
this commercial computer software, or of any related documentation of any
kind, is restricted in accordance with FAR 12.212 and DFARS 227.7202, and
further restricted by the Synplicity Software License Agreement. Synplicity,
Inc., 600 West California Avenue, Sunnyvale, CA 94086, U. S. A.

Printed in the U.S.A
December 2005

LO

Preface

iv Fpga User Guide, December 2005

Synplicity Software License Agreement

Important! READ CAREFULLY BEFORE PROCEEDING

BY INDICATING YOUR ACCEPTANCE OF THE TERMS OF THIS AGREEMENT, YOU (“LICENSEE”)
ARE REPRESENTING THAT YOU HAVE THE RIGHT AND AUTHORITY TO LEGALLY BIND YOUR-
SELF OR YOUR COMPANY, AS APPLICABLE, AND CONSENTING TO BE LEGALLY BOUND BY
ALL OF THE TERMS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO ALL THESE TERMS DO
NOT INSTALL OR USE THE SOFTWARE, AND RETURN THE SOFTWARE TO THE LOCATION OF
PURCHASE FOR A REFUND. This is a legal agreement governing use of the software program provided by
Synplicity, Inc. (“Synplicity”) to you (the “SOFTWARE”). The term “SOFTWARE” also includes related doc-
umentation (whether in print or electronic form), any authorization keys, authorization codes, and license files,
and any updates or upgrades of the SOFTWARE provided by Synplicity, but does not include certain “open
source” software licensed by third party licensors and made available to you by Synplicity under the terms of
such third party licensor’s license (such as software licensed under the General Public License (GPL)) (“Third
Party Software”). If Licensee is a participant in the University Program or has been granted an Evaluation
License or Subscription License, then some of the following terms and conditions may not apply (refer to the
sections entitled, respectively, Evaluation License and Subscription License, below).

License. Synplicity grants to Licensee a non-exclusive right to install the SOFTWARE and to use or authorize
use of the SOFTWARE by up to the number of nodes for which Licensee has a license and for which Licensee
has the security key(s) or authorization code(s) provided by Synplicity or its agents for the purpose of creating
and modifying Designs (as defined below). If Licensee has obtained the SOFTWARE under a node-locked
license, then a “node” refers to a specific machine, and the SOFTWARE may be installed only on the number
of “nodes” or machines authorized, must be used only on the machine(s) on which it is installed, and may be
accessed only by users who are physically present at that node or machine. A node-locked license may only be
used by one user at a time running one instance of the software at a time. If Licensee has obtained the SOFT-
WARE under a “floating” license, then a “node” refers to a concurrent user or session, and the SOFTWARE
may be used concurrently by up to the number of users or sessions indicated. All SOFTWARE must be used
within the country for which the systems were licensed and at Licensee's Site (contained within a one kilome-
ter radius); however, if Licensee has a floating license then remote use is permitted by employees who work at
the site but are temporarily telecommuting to that same site from less than 50 miles away (for example, an
employee who works at a home office on occasion), but the maximum number of concurrent sessions or nodes
still applies. In addition, Synplicity grants to Licensee a non-exclusive license to copy and distribute internally
the documentation portion of the SOFTWARE in support of its license to use the program portion of the
SOFTWARE. For purposes of this Agreement the “Licensee’s Site” means the location of the server on which
the SOFTWARE resides, or when a server is not required, the location of the client computer for which the
license was issued.

Preface

Fpga User Guide, December 2005 v

Evaluation License. If Licensee has obtained the SOFTWARE pursuant to an evaluation license, then, in
addition to all other terms and conditions herein, the following restrictions apply: (a) the license to the SOFT-
WARE terminates after 20 days (unless otherwise agreed to in writing by Synplicity); and (b) Licensee may
use the SOFTWARE only for the sole purpose of internal testing and evaluation to determine whether Licensee
wishes to license the SOFTWARE on a commercial basis. Licensee shall not use the SOFTWARE to design
any integrated circuits for production or pre-production purposes or any other commercial use including, but
not limited to, for the benefit of Licensee’s customers. If Licensee breaches any of the foregoing restrictions,
then Licensee shall pay to Synplicity a license fee equal to Synplicity’s perpetual list price plus maintenance
for the commercial version of the SOFTWARE.

Subscription (Time-Based) License. If Licensee has obtained a Subscription License to the SOFTWARE,
the, in addition to all other terms and conditions herein, the following restrictions apply: (a) Licensee is autho-
rized to use the SOFTWARE only for a limited time (which time is indicated on the quotation or in the pur-
chase confirmation documents); (b) Licensee’s right to use the SOFTWARE terminates on the date the
subscription term expires as set forth in the quotation or the purchase confirmation documents, unless Licensee
has renewed the license by paying the applicable fees.

Project Based License. If Licensee has obtained a Project-Based License to the SOFTWARE, in addition to
all other terms and conditions herein, the terms of Exhibit A will apply.

Copy Restrictions. This SOFTWARE is protected by United States copyright laws and international treaty
provisions and Licensee may copy the SOFTWARE only as follows: (i) to directly support authorized use
under the license, and (ii) in order to make a copy of the SOFTWARE for backup purposes. Copies must
include all copyright and trademark notices.

Use Restrictions. This SOFTWARE is licensed to Licensee for internal use only. Licensee shall not (and shall
not allow any third party to): (i) decompile, disassemble, reverse engineer or attempt to reconstruct, identify or
discover any source code, underlying ideas, underlying user interface techniques or algorithms of the SOFT-
WARE by any means whatever, or disclose any of the foregoing; (ii) provide, lease, lend, or use the SOFT-
WARE for timesharing or service bureau purposes, on an application service provider basis, or otherwise
circumvent the internal use restrictions; (iii) modify, incorporate into or with other software, or create a deriva-
tive work of any part of the SOFTWARE; (iv) disclose the results of any benchmarking of the SOFTWARE, or
use such results for its own competing software development activities, without the prior written permission of
Synplicity; or (v) attempt to circumvent any user limits, maximum gate count limits or other license, timing or
use restrictions that are built into the SOFTWARE.

Transfer Restrictions/No Assignment. The SOFTWARE may only be used under this license at the desig-
nated locations and designated equipment as set forth in the license grant above, and may not be moved to
other locations or equipment or otherwise transferred without the prior written consent of Synplicity. Any per-
mitted transfer of the SOFTWARE will require that Licensee executes a “Software Authorization Transfer
Agreement” provided by Synplicity. Further, Licensee shall not sublicense, or assign this Agreement or any
of the rights or licenses granted under this Agreement, without the prior written consent of Synplicity.

Security. Licensee agrees to take all appropriate measures to safeguard the SOFTWARE and prevent unautho-
rized access or use thereof. Suggested ways to accomplish this include: (i) implementation of firewalls and
other security applications, (ii) use of FLEXlm options file that restricts access to the SOFTWARE to identi-
fied users; (iii) maintaining and storing license information in paper format only; (iv) changing TCP port num-
bers every three (3) months; and (v) communicating to all authorized users that use of the SOFTWARE is

LO

Preface

vi Fpga User Guide, December 2005

subject to the restrictions set forth in this Agreement.

Ownership of the SOFTWARE. Synplicity retains all right, title, and interest in the SOFTWARE (including
all copies), and all worldwide intellectual property rights therein. Synplicity reserves all rights not expressly
granted to Licensee. This license is not a sale of the original SOFTWARE or of any copy.

Ownership of Design Techniques. “Design” means the representation of an electronic circuit or device(s),
derived or created by Licensee through the use of the SOFTWARE in its various formats, including, but not
limited to, equations, truth tables, schematic diagrams, textual descriptions, hardware description languages,
and netlists. “Design Techniques” means the data, circuit and logic elements, libraries, algorithms, search
strategies, rule bases, techniques and technical information incorporated in the SOFTWARE and employed in
the process of creating Designs. Synplicity retains all right, title and interest in and to Design Techniques
incorporated in the SOFTWARE, including all intellectual property rights embodied therein, provided that to
the extent any Design Techniques are included as part of or embedded within Licensee’s Designs, Synplicity
grants Licensee a personal, nonexclusive, nontransferable license to reproduce the Design Techniques and dis-
tribute such Design Techniques solely as incorporated into Licensee’s Designs and not on a standalone basis.
Additionally, Licensee acknowledges that Synplicity has an unrestricted, royalty-free right to incorporate any
Design Techniques disclosed by Licensee into its software, documentation and other products, and to subli-
cense third parties to use those incorporated design techniques.

Protection of Confidential Information. “Confidential Information” means (i) the SOFTWARE, in object
and source code form, and any related technology, idea, algorithm or information contained therein, including
without limitation Design Techniques, and any trade secrets related to any of the foregoing; (ii) either party's
product plans, Designs, costs, prices and names; non-published financial information; marketing plans; busi-
ness opportunities; personnel; research; development or know-how; (iii) any information designated by the
disclosing party as confidential in writing or, if disclosed orally, designated as confidential at the time of dis-
closure and reduced to writing and designated as confidential in writing within thirty (30) days; and (iv) the
terms and conditions of this Agreement; provided, however that “Confidential Information” will not include
information that: (a) is or becomes generally known or available by publication, commercial use or otherwise
through no fault of the receiving party; (b) is known and has been reduced to tangible form by the receiving
party at the time of disclosure and is not subject to restriction; (c) is independently developed by the receiving
party without use of the disclosing party's Confidential Information; (d) is lawfully obtained from a third party
who has the right to make such disclosure; and (e) is released for publication by the disclosing party in writing.

Each party will protect the other's Confidential Information from unauthorized dissemination and use with the
same degree of care that each such party uses to protect its own like information. Neither party will use the
other's Confidential Information for purposes other than those necessary to directly further the purposes of this
Agreement. Neither party will disclose to third parties the other's Confidential Information without the prior
written consent of the other party.

Third Party Software. Licensee understands and agrees that, although provided to Licensee by Synplicity,
Licensee’s use of each component library or module comprising the Third Party Software shall be governed by
the relevant terms and conditions of the third party’s license agreements.

Termination. Synplicity may terminate this Agreement immediately if Licensee breaches any provision,
including without limitation, failure by Licensee to implement adequate security measures as set forth above.
Upon notice of termination by Synplicity, all rights granted to Licensee under this Agreement will immedi-
ately terminate, and Licensee shall cease using the SOFTWARE and return or destroy all copies (and partial

Preface

Fpga User Guide, December 2005 vii

copies) of the SOFTWARE and documentation.

Limited Warranty and Disclaimer. Synplicity warrants that the program portion of the SOFTWARE will
perform substantially in accordance with the accompanying documentation for a period of 90 days from the
date of receipt. Synplicity’s entire liability and Licensee’s exclusive remedy for a breach of the preceding lim-
ited warranty shall be, at Synplicity’s option, either (a) return of the license fee, or (b) providing a fix, patch,
work-around, or replacement of the SOFTWARE. In either case, Licensee must return the SOFTWARE to
Synplicity with a copy of the purchase receipt or similar document. Replacements are warranted for the
remainder of the original warranty period or 30 days, whichever is longer. Some states/jurisdictions do not
allow limitations, so the above limitation may not apply. EXCEPT AS EXPRESSLY SET FORTH ABOVE,
NO OTHER WARRANTIES OR CONDITIONS, EITHER EXPRESS, IMPLIED, STATUTORY OR OTH-
ERWISE, ARE MADE BY SYNPLICITY OR ITS LICENSORS WITH RESPECT TO THE SOFTWARE
AND THE ACCOMPANYING DOCUMENTATION, AND SYNPLICITY EXPRESSLY DISCLAIMS ALL
WARRANTIES AND CONDITIONS NOT EXPRESSLY STATED HEREIN, INCLUDING BUT NOT LIM-
ITED TO THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY, NONINFRINGE-
MENT, AND FITNESS FOR A PARTICULAR PURPOSE. SYNPLICITY AND ITS LICENSORS DO NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET LICENSEE’S
REQUIREMENTS, BE UNINTERRUPTED OR ERROR FREE, OR THAT ALL DEFECTS IN THE PRO-
GRAM WILL BE CORRECTED. Licensee assumes the entire risk as to the results and performance of the
SOFTWARE. Some states/jurisdictions do not allow the exclusion of implied warranties, so the above exclu-
sion may not apply.

Limitation of Liability. IN NO EVENT SHALL SYNPLICITY OR ITS LICENSORS OR THEIR AGENTS
BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL OR INCIDENTAL DAMAGES
WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROF-
ITS, BUSINESS INTERRUPTIONS, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY
LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE, EVEN IF SYNPLIC-
ITY AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
FURTHER, IN NO EVENT SHALL SYNPLICITY’S LICENSORS BE LIABLE FOR ANY DIRECT DAM-
AGES ARISING OUT OF LICENSEE’S USE OF THE SOFTWARE. IN NO EVENT WILL SYNPLICITY
OR ITS LICENSORS BE LIABLE TO LICENSEE FOR DAMAGES IN AN AMOUNT GREATER THAN
THE FEES PAID FOR THE USE OF THE SOFTWARE. Some states/jurisdictions do not allow the limitation
or exclusion of incidental or consequential damages, so the above limitations or exclusions may not apply.

Intellectual Property Right Infringement. Synplicity will defend or, at its option, settle any claim or action
brought against Licensee to the extent it is based on a third party claim that the SOFTWARE as used within the
scope of this Agreement infringes or violates any US patent, copyright, trade secret or trademark of any third
party, and Synplicity will indemnify and hold Licensee harmless from and against any damages, costs and fees
reasonably incurred that are attributable to such claim or action; provided that Licensee provides Synplicity
with (i) prompt written notification of the claim or action; (ii) sole control and authority over the defense or
settlement thereof (including all negotiations); and (iii) at Synplicity’s expense, all available information,
assistance and authority to settle and/or defend any such claim or action. Synplicity’s obligations under this
subsection do not apply to the extent that (i) such claim or action would have been avoided but for modifica-
tions of the SOFTWARE, or portions thereof, other than modifications made by Synplicity after delivery to
Licensee; (ii) such claim or action would have been avoided but for the combination or use of the SOFT-
WARE, or portions thereof, with other products, processes or materials not supplied or specified in writing by
Synplicity; (iii) Licensee continues allegedly infringing activity after being notified thereof or after being
informed of modifications that would have avoided the alleged infringement; or (iv) Licensee’s use of the

LO

Preface

viii Fpga User Guide, December 2005

SOFTWARE is not strictly in accordance with the terms of this Agreement. Licensee will be liable for all dam-
ages, costs, expenses, settlements and attorneys’ fees related to any claim of infringement arising as a result of
(i)-(iv) above.

If the SOFTWARE becomes or, in the reasonable opinion of Synplicity is likely to become, the subject of an
infringement claim or action, Synplicity may, at Synplicity’s option and at no charge to Licensee, (a) obtain a
license so Licensee may continue use of the SOFTWARE; (b) modify the SOFTWARE to avoid the infringe-
ment; (c) replace the SOFTARE with a compatible, functionally equivalent, and non-infringing product, or (d)
refund to Licensee the amount paid for the SOFTWARE, as depreciated on a straight-line 5-year basis, or such
other shorter period applicable to Subscription Licenses.

THE FOREGOIN PROVISIONS OF THIS SECTION STATE THE ENTIRE AND SOLE LIABILITY AND
OBLIGATIONS OF SYNPLICTY, AND THE EXCLUSIVE REMEDY OF LICENSEE, WITH RESPECT
TO ANY ACTUAL OR ALLEGED INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS
BY THE SOFTWARE (INCLUDING DESIGN TECHNIQUES) AND DOCUMENTATION.

Export. Licensee warrants that it is not prohibited from receiving the SOFTWARE under U.S. export laws;
that it is not a national of a country subject to U.S. trade sanctions; that it will not use the SOFTWARE in a
location that is the subject of U.S. trade sanctions that would cover the SOFTWARE; and that to its knowledge
it is not on the U.S. Department of Commerce’s table of deny orders or otherwise prohibited from obtaining
goods of this sort from the United States.

Miscellaneous. This Agreement is the entire agreement between Licensee and Synplicity with respect to the
license to the SOFTWARE, and supersedes any previous oral or written communications or documents
(including, if you are obtaining an update, any agreement that may have been included with the initial version
of the Software). This Agreement is governed by the laws of the State of California, USA excluding its con-
flicts of laws principals. This Agreement will not be governed by the U. N. Convention on Contracts for the
International Sale of Goods and will not be governed by any statute based on or derived from the Uniform
Computer Information Transactions Act (UCITA). If any provision, or portion thereof, of this Agreement is
found to be invalid or unenforceable, it will be enforced to the extent permissible and the remainder of this
Agreement will remain in full force and effect. Failure to prosecute a party’s rights with respect to a default
hereunder will not constitute a waiver of the right to enforce rights with respect to the same or any other
breach.

Government Users. If the SOFTWARE is licensed to the United States government or any agency thereof,
then the SOFTWARE and any accompanying documentation will be deemed to be “commercial computer
software” and “commercial computer software documentation”, respectively, pursuant to DFAR Section
227.7202 and FAR Section 12.212, as applicable. Any use, reproduction, release, performance, display or dis-
closure of the SOFTWARE and accompanying documentation by the U.S. Government will be governed
solely by the terms of this Agreement and are prohibited except to the extent expressly permitted by the terms
of this Agreement.

June 2005

Fpga User Guide, December 2005 ix

Contents

Chapter 1: Introduction
The FPGA Synthesis Tools . 1-2

About the Synplify and Synplify Pro Software . 1-2
About the Synplify Premier Software . 1-3
Synplicity FPGA Tool Features . 1-4
Synplicity Product Family . 1-8

The Generic FPGA Design Flow . 1-8
HDL Design Entry . 1-9
Logic Optimization (Compilation) . 1-9
Technology Mapping . 1-10
Placement . 1-10
Routing . 1-10
FPGA Configuration . 1-10

Audience . 1-11

Scope of the Document . 1-11

Starting the Software . 1-12
Getting Started . 1-12
Getting Help . 1-13

User Interface Overview . 1-14

Design Flows . 1-16
Logic Synthesis Design Flow . 1-16
Prototyping Design Flow . 1-17
Physical Synthesis Design Flows . 1-17

Chapter 2: Project Setup
Setting Up HDL Source Files . 2-2

Creating HDL Source Files . 2-2
Checking HDL Source Files . 2-4
Editing HDL Source Files with the Built-in Text Editor 2-5

LO

Preface

x Fpga User Guide, December 2005

Using an External Text Editor . 2-8
Setting Editing Window Preferences . 2-9

Setting Up Project Files . 2-11
Creating a Project File . 2-11
Opening an Existing Project File . 2-14
Making Changes to a Project . 2-15
Using Mixed Language Source Files . 2-16
Setting Project View Display Preferences . 2-18
Updating Verilog Include Paths in Older Project Files 2-21

Setting Up Implementations and Workspaces . 2-22
Working with Multiple Implementations . 2-22
Creating Workspaces . 2-24
Using Workspaces . 2-25

Archiving Files and Projects . 2-26

Chapter 3: Constraints, Attributes, and Options
Setting Implementation Options . 3-2

Setting Device Options . 3-2
Setting Optimization Options . 3-5
Specifying Global Frequency and Constraint Files . 3-6
Specifying Result Options . 3-9
Specifying Timing Report Output . 3-10
Setting Verilog and VHDL Options . 3-11
Setting Synplify Premier Netlist Restructuring Optimizations 3-16

Setting Constraints in the SCOPE Window . 3-18
Using the SCOPE Window . 3-19
Entering and Editing Constraints in the SCOPE Window 3-21
Entering Default Constraints . 3-24
Setting Clock and Path Constraints . 3-26
Defining Clocks . 3-28
Defining Input and Output Constraints . 3-33
Defining Multicycle Paths . 3-34
Defining From/To/Through for Timing Exceptions . 3-35
Defining False Paths . 3-38
Specifying Standard I/O Pad Types . 3-40
Setting SCOPE Display Preferences . 3-41
Translating Xilinx UCF Constraints . 3-42
Converting Pin Location Constraint Files in the Synplify Premier Tool 3-43

Preface

Fpga User Guide, December 2005 xi

Using Auto Constraints . 3-45

Using Collections . 3-47
Comparing Methods for Defining Collections . 3-47
Creating and Using Collections (SCOPE Window) . 3-48
Creating Collections (Tcl Commands) . 3-51
Using the Tcl Find Command to Define Collections . 3-53
Using the Expand Tcl Command to Define Collections 3-55
Viewing and Manipulating Collections (Tcl Commands) 3-56

Working with Constraint Files . 3-60
When to Use Constraint Files over Source Code . 3-60
Tcl Syntax Guidelines for Constraint Files . 3-61
Using a Text Editor for Constraint Files . 3-62
Generating Constraint Files for Forward Annotation 3-64

Adding Attributes and Directives . 3-66
Adding Attributes and Directives in VHDL . 3-66
Adding Attributes and Directives in Verilog . 3-68
Adding Attributes in the SCOPE Window . 3-68
Adding Attributes with the SCOPE Wizard . 3-71
Adding Attributes to a Tcl Constraint File . 3-73
Adding Attributes From the RTL and Technology Views 3-74

Chapter 4: Result Analysis
Checking Log Results . 4-2

Viewing the Log File . 4-2
Analyzing Results Using the Log File Reports . 4-5
Using the Log Watch Window . 4-6

Handling Messages . 4-8
Checking Results in the Message Viewer . 4-8
Filtering Messages in the Message Viewer . 4-10
Filtering Messages from the Command Line . 4-13
Handling Warnings . 4-14
Automating Message Filtering with a synhooks Script 4-14

Basic Operations in the Schematic Views . 4-16
Differentiating Between the Views . 4-17
Opening the Views . 4-17
Analyzing Your Design Graphically . 4-19
Viewing Object Properties . 4-20
Selecting Objects in the RTL/Technology Views . 4-23
Working with Multisheet Schematics . 4-24
Moving Between Views in a Schematic Window . 4-26

LO

Preface

xii Fpga User Guide, December 2005

Setting Schematic View Preferences . 4-26
Managing Windows . 4-28

Exploring Design Hierarchy . 4-30
Traversing Design Hierarchy with the Hierarchy Browser 4-30
Exploring Object Hierarchy by Pushing/Popping . 4-31
Exploring Object Hierarchy of Transparent Instances 4-36

Finding Objects . 4-37
Browsing to Find Objects . 4-37
Using Find for Hierarchical and Restricted Searches 4-39
Using Wildcards with the Find Command . 4-42
Using Find to Search the Output Netlist . 4-45

Crossprobing . 4-48
Crossprobing Description . 4-48
Crossprobing within an RTL/Technology View . 4-49
Crossprobing from the RTL/Technology View . 4-49
Crossprobing from the Text Editor Window . 4-51
Crossprobing from the Tcl Script Window . 4-54
Crossprobing from the FSM Viewer . 4-54

Analyzing With the HDL Analyst Tool . 4-56
Viewing Design Hierarchy and Context . 4-56
Filtering Schematics . 4-60
Expanding Pin and Net Logic . 4-62
Expanding and Viewing Connections . 4-66
Flattening Schematic Hierarchy . 4-67
Minimizing Memory Usage While Analyzing Designs 4-72

Analyzing Timing . 4-73
Analyzing Clock Trees in the RTL View . 4-73
Viewing Critical Paths . 4-74
Analyzing Paths with the Timing Analyst . 4-76
Analyzing Paths with the Synplify Premier Timing Analyst 4-79
Handling Negative Slack . 4-81

The Island Timing Report . 4-83
Generating the Island Timing Report . 4-83
Automatic Island Timing Report . 4-84
Defining the Group Range and Global Range . 4-85
Interactive Island Timing Analyst . 4-86
Viewing the Island Timing Report . 4-87

Preface

Fpga User Guide, December 2005 xiii

The Island Timing Analyst . 4-88
Islands/Paths Control Panel . 4-89
Islands/Paths Summary View . 4-92
Islands/Paths Summary Management . 4-93
Islands/Paths Details View . 4-95

Island Timing Report Critical Paths . 4-98
Assigning Critical Paths to a Region . 4-98

Chapter 5: Physical Analyst
Synplify Premier Physical Analyst Tool . 5-2

Opening the Physical Analyst View . 5-4

Using the Physical Analyst Control Panel . 5-5
Setting Object Controls . 5-6
Setting Visibility Controls . 5-6

Using the Physical Analyst Device View . 5-8

Setting Object Display Options . 5-10
Displaying Instances . 5-10
Displaying Signal Pins . 5-10
Displaying Signal Flow for Selected Nets . 5-11
Routing Nets to Display . 5-12

Selecting Objects . 5-14
Selecting Multiple Nets . 5-15
Transcribing Object Selections . 5-16

Viewing Object Information . 5-17
Viewing Properties . 5-17
Using Tool Tips . 5-20
Using Mouse Strokes . 5-20
Using Keyboard Shortcuts . 5-21
Zooming in the Physical Analyst . 5-22

Finding Objects . 5-23
Finding Objects with the Find Command . 5-23
Finding Object Locations . 5-27
Using Markers . 5-29
Changing Color Schemes . 5-31
Configuring Enhanced Instance Display . 5-31

Crossprobing in Physical Analyst . 5-34

LO

Preface

xiv Fpga User Guide, December 2005

Analyzing Netlist with the Physical Analyst . 5-42
Expanding and Viewing Connections . 5-48

Analyzing Timing with the Physical Analyst . 5-51
Viewing Critical Paths . 5-51
Tracing Critical Paths Forward and Backwards . 5-54

Chapter 6: Design Optimization
Design Guidelines . 6-2

General Optimization Tips . 6-2
Area Optimization Tips . 6-3
Timing Optimization Settings . 6-4

Optimizing Results . 6-5
Sharing Resources . 6-5
Setting Fanout Limits . 6-7
Controlling Buffering and Replication . 6-8
Controlling Hierarchy Flattening . 6-10
Preserving Objects from Optimization . 6-10
Preserving Hierarchy . 6-12

Defining State Machines for Synthesis . 6-13
Defining State Machines in Verilog . 6-13
Defining State Machines in VHDL . 6-14
Specifying FSMs with Attributes and Directives . 6-15

Using the Symbolic FSM Compiler . 6-17
Choosing When to Use the FSM Compiler . 6-17
Running the FSM Compiler on the Whole Design . 6-18
Running the FSM Compiler on Individual FSMs . 6-20

Using FSM Explorer . 6-22
Deciding When to Use the FSM Explorer . 6-22
Running the FSM Explorer . 6-23

Using the FSM Viewer . 6-25

Defining Black Boxes for Synthesis . 6-30
Instantiating Black Boxes and I/Os in Verilog . 6-30
Instantiating Black Boxes and I/Os in VHDL . 6-32
Adding Black Box Timing Constraints . 6-34
Adding Other Black Box Attributes . 6-38

Pipelining . 6-40
Prerequisites for Pipelining . 6-40
Pipelining the Design . 6-41

Preface

Fpga User Guide, December 2005 xv

Retiming . 6-44
Controlling Retiming . 6-44
Retiming Example . 6-46
Retiming Report . 6-48
How Retiming Works . 6-48
How Retiming Works With Synplify Premier Regions 6-50

Inserting Probes . 6-50
Specifying Probes in the Source Code . 6-51
Adding Probe Attributes Interactively . 6-52

Inferring RAMs . 6-54
Inference vs. Instantiation . 6-54
Coding RAMs for Inference . 6-55
Specifying RAM Implementation Styles . 6-59
Implementing Altera RAMs Automatically . 6-61
Implementing Xilinx RAMs Automatically . 6-64
Implementing Altera RAMs: FLEX and APEX . 6-67
Implementing Altera RAMs: Stratix Multi-Port RAMs 6-69
Inferring Xilinx Block RAMs Using Registered Addresses 6-70
Inferring Xilinx Block RAMs Using Registered Output 6-73
Setting Xilinx RAM Initialization Values . 6-78
Mapping Xilinx ROM to Block RAM . 6-79

Inferring Shift Registers . 6-80
Shift Register Examples . 6-82

Forward Annotation of Initial Values . 6-86

Working with LPMs . 6-87
Instantiating LPMs as Black Boxes (Altera) . 6-88
Instantiating LPMs as Black Boxes (Cypress) . 6-92
Instantiating LPMs Using VHDL Prepared Components 6-94
Instantiating LPMs Using a Verilog Library (Altera) . 6-97

Working with Gated Clocks . 6-99
The Synplicity Approach to Gated Clocks . 6-99
Synthesizing a Gated Clock Design . 6-101
Prerequisites for Gated Clock Conversion . 6-103
Gated Clock Conversion Report . 6-105
Fix Gated Clock Error Messages . 6-106
Gated Clocks for Black Boxes . 6-108
Restrictions to Using Fix Gated Clocks . 6-110
Generated-Clock Optimization . 6-111

LO

Preface

xvi Fpga User Guide, December 2005

Chapter 7: Design Planning and Optimizations
Using the Design Planner . 7-2

Creating a Design Plan . 7-2
Cutting, Copying, and Pasting in the Design Planner 7-5

Pin Assignments . 7-6
Methods for Specifying Pin Assignments . 7-6
Specifying Pins Using the Design Plan Editor . 7-7
Implementing Pin Assignments . 7-11
Storing Temporary Pin Assignments . 7-14
Displaying Rats Nesting . 7-15
Pin Assignment Statistics . 7-16
Assigning Clock Pins . 7-17

Working with Regions . 7-19
Viewing Intellectual Property (IP) Core Areas . 7-19
Placing Regions . 7-20
Moving and Sizing Regions . 7-21
Replicating Logic Manually . 7-23
Assigning Register to Pin-Locked I/O Paths to Regions 7-24

Checking Synplify Premier Utilization . 7-25
Device Utilization . 7-25
Region Utilization . 7-25

Using Process-Level Hierarchy . 7-25

Bit Slicing . 7-26
About Bit Slicing . 7-26
Using Bit Slicing . 7-26
Bit Slice Examples . 7-29
Bit Slicing Guidelines . 7-32

Zippering . 7-33
Using Zippering . 7-33
Analyzing a Design for Zippering . 7-36
Zippering Example . 7-37
Zippering Guidelines . 7-41

Preface

Fpga User Guide, December 2005 xvii

Chapter 8: Vendor-Specific Optimizations
Passing Information to the P&R Tools . 8-2

Specifying Pin Locations . 8-2
Specifying Locations for Actel Bus Ports . 8-3
Specifying Macro and Register Placement . 8-3
Passing Technology Properties . 8-4
Specifying Padtype and Port Information . 8-5

Generating Vendor-Specific Output . 8-6
Targeting Output to Your Vendor . 8-6
Customizing Netlist Formats . 8-7

Working with Actel Designs . 8-8
Using Predefined Actel Black Boxes . 8-8
Using ACTGen Macros . 8-9
Working with Radhard Designs . 8-10

Working with Altera Designs . 8-11
APEX Design Tips . 8-12
FLEX Design Tips . 8-12
Determining ROM Implementation . 8-12
Working with Altera EABs and ESBs . 8-14
Working with Altera PLLs . 8-15
Implementing Megafunctions with Clearbox . 8-16
Packing I/O Cell Registers . 8-18
Using LPMs in Simulation Flows . 8-20
Working with Quartus II . 8-22

Working with Lattice Designs . 8-23
Instantiating Lattice Macros . 8-23
Using Lattice GSR Resources . 8-24
Inferring Carry Chains in Lattice XPLD Devices . 8-25
Controlling I/O Insertion in Lattice Designs . 8-25
Forward-Annotating Lattice ORCA Constraints . 8-26

Working with Xilinx Designs . 8-28
Designing for Xilinx Architectures . 8-28
Instantiating CoreGen Cores . 8-29
Instantiating Virtex PCI Cores . 8-30
Packing Registers for I/Os . 8-33
Controlling Placement with RLOCs . 8-35
Using Clock Buffers in Virtex Designs . 8-36
Instantiating Special I/O Standard Buffers for Virtex 8-38
Reoptimizing With EDIF Files . 8-39
Working with Xilinx Place-and-Route Software . 8-39

LO

Preface

xviii Fpga User Guide, December 2005

Chapter 9: Design Planning for Vendors
Design Planning with Altera Devices . 9-2

Stratix and Cyclone Devices . 9-2
Displaying Stratix Devices . 9-2
Creating Regions for Stratix Devices . 9-4

Design Planning with Xilinx Designs . 9-8
Displaying Xilinx Device Resources . 9-8
Creating Regions for Xilinx Designs . 9-12

Handling Xilinx Critical Paths (Design Planner) . 9-14
Splitting a Critical Path into Multiple Regions . 9-14
Creating Smaller Regions for Long Critical Paths . 9-15
Handling Critical Paths with High Fanout Nets . 9-15
Handling Critical Paths with Cascading Cells or Carry Chain Logic 9-17
Handling Critical Paths with Bit Slicing . 9-19
Handling Critical Paths with Pipelining . 9-20
Handling Designs with Multiple Critical Paths . 9-20
Handling Critical Paths with Large Multiplexers . 9-21

Handling Xilinx Black Boxes (Design Planner) . 9-22
Design Planning Xilinx Black Boxes . 9-22

Handling Xilinx Block RAMs (Design Planner) . 9-24
Creating Block RAM Regions . 9-25
Assigning to Block RAM Regions . 9-27

Handling Block Multipliers (Design Planner) . 9-30
Block Multiplier Support . 9-30
Creating Block Mult Regions . 9-30
Assigning to Block Mult Regions . 9-31
Region Utilization . 9-31

Handling DSP Blocks (Design Planner) . 9-32

Handling Xilinx IPs (Design Planner) . 9-35
Intrusive IP Flow . 9-35
Macro IP Flow . 9-37
Creating IP Region Constraints . 9-38

Preface

Fpga User Guide, December 2005 xix

Chapter 10: Design Flows and Process Optimization
Using Batch Mode . 10-2

Running Batch Mode on a Project File . 10-2
Running Batch Mode with a Tcl Script . 10-3

Working with Tcl Scripts and Commands . 10-4
Crossprobing from the Tcl Script Window . 10-4
Using Tcl Commands and Scripts . 10-4
Generating a Job Script . 10-5
Creating a Tcl Synthesis Script . 10-5
Using Tcl Variables to Try Different Clock Frequencies 10-7
Using Tcl Variables to Try Several Target Technologies 10-8
Running Bottom-up Synthesis with a Script . 10-9

Automating Flows with synhooks.tcl . 10-10

The VIF Formal Verification Flow . 10-13
Overview of the VIF Flow . 10-13
Generating a VIF File . 10-14
Using a Tcl Script for VIF Conversion . 10-16
Handling Equivalency Check Failures . 10-18

Protected Flow Support . 10-19
Using IP in a Design . 10-20

Running Place-and-Route After Synthesis . 10-21
Creating and Running P&R Projects . 10-21
Specifying Xilinx Place-and-Route Options . 10-23
Backannotating Place-and-Route Data . 10-25
Analyzing Physical Synthesis (Synplify Premier) . 10-26

MultiPoint Synthesis . 10-28
Traditional Bottom-up Design and MultiPoint Synthesis 10-28
The Synplify Pro MultiPoint Synthesis Flow . 10-29

The Altera LogicLock Flow . 10-39
Using Synplify Pro With the Altera LogicLock Flow 10-39
Using Synplify Premier With the Altera LogicLock Flow 10-43

The Xilinx MultiPoint Synthesis Flow . 10-48
Using Synplify Pro With Xilinx MultiPoint Synthesis 10-48

Using the Xilinx Modular Flow . 10-54
Overview of Modular Flow Design Stages . 10-54
Initial Design Budgeting . 10-55
Active Implementation . 10-58

LO

Preface

xx Fpga User Guide, December 2005

Final Assembly . 10-63
Design Files and Area Design Planning . 10-65

Integrating with Third-Party Software . 10-70
Resynthesizing with QuickLogic SpDE Information 10-70
Synopsys DesignWare Component Support . 10-71

Working with the Identify RTL Debugger . 10-72

Chapter 11: Synplify Premier Design Flow
Synplify Premier Physical Synthesis Flows . 11-2

Device Support for the Physical Synthesis Flows . 11-3

Graph-based Physical Synthesis . 11-4
Graph-based Physical Synthesis Design Flow . 11-4
Graph-based Physical Synthesis Tasks . 11-5
Graph-based Synthesis Flow Specifications . 11-6

Graph-based Physical Synthesis with a Design Plan Flow 11-7

Design Plan-based Physical
Synthesis Flow . 11-8
Design Planner Tasks . 11-9

Running Physical Synthesis . 11-9
Create the Project File . 11-10
Set Implementation Options . 11-11
Run Place-and-Route . 11-18
Synthesize the Design . 11-21
Analyze Results . 11-22
Running Multiple Implementations . 11-24

Fpga User Guide, December 2005 1-1

C H A P T E R 1

Introduction

This introduction to the Synplify®, Synplify Pro®, and Synplify® Premier
software describes the following:

• The FPGA Synthesis Tools, on page 1-2

• The Generic FPGA Design Flow, on page 1-8

• Audience, on page 1-11

• Scope of the Document, on page 1-11

• Starting the Software, on page 1-12

• User Interface Overview, on page 1-14

• Design Flows, on page 1-16

Throughout the documentation, features and procedures described apply to
all tools, unless specifically stated otherwise.

LO

Chapter 1: Introduction The FPGA Synthesis Tools

1-2 Fpga User Guide, December 2005

The FPGA Synthesis Tools
This section briefly discusses the following topics:

• About the Synplify and Synplify Pro Software, next

• About the Synplify Premier Software, on page 1-3

• Synplicity FPGA Tool Features, on page 1-4

• Synplicity Product Family, on page 1-8

About the Synplify and Synplify Pro Software
Synplify® and Synplify Pro® are logic synthesis tools for FPGAs (Field
Programmable Gate Arrays) and Complex PLDs (Programmable Logic
Devices), developed by Synplicity® of Sunnyvale, California. For input, the
software uses high-level designs written in Verilog and VHDL hardware
description languages (HDLs). Using proprietary Behavior Extracting
Synthesis Technology® (B.E.S.T.)® the tool converts the HDL into small,
high-performance, design netlists that are optimized for popular technology
vendors. Optionally, the software can write post-synthesis VHDL and Verilog
netlists that you can use to verify functionality through simulation.

 The Synplify Pro software offers a superset of the Synplify features. For a
comparison of the features, see Synplicity FPGA Tool Features, on page 1-4.
The software has the following built-in features:

• The HDL Analyst® tool, a graphical interface for analysis and
crossprobing. This feature is an option with the Synplify software, but is
standard with Synplify Pro.

• The Text Editor window, with a language-sensitive editor for writing and
editing HDL code.

• The SCOPE® (Synthesis Constraint Optimization Environment®) inter-
face, which uses a spreadsheet-like format to manage the timing
constraints and attributes in the design.

• A symbolic FSM Compiler, which performs advanced state machine
optimizations.

The FPGA Synthesis Tools Chapter 1: Introduction

Fpga User Guide, December 2005 1-3

• The Timing Analyst window, which allows you to generate timing
schematics and reports for specified paths for point-to-point timing
analysis. This feature is not available in Synplify.

• The FSM Explorer, which tries different state machine optimizations
before picking the best implementation. This feature is not available in
Synplify.

• The FSM viewer, which lets you view the transitions in detail. This
feature is not available in Synplify.

• A command line interface, from which you can run TCL scripts. This
feature is not available in Synplify.

About the Synplify Premier Software
The Synplify Premier tool offers a push-button, graph-based physical
synthesis approach improving overall device performance while simulta-
neously delivering tight correlation between pre-route timing estimates and
final post place-and-route results.

The Synplify Premier product supports the following flows:

• Graph-based physical synthesis—a fully automated flow for incremental
performance improvement producing a design with detailed placement.
Graph-based physical synthesis is currently available for Virtex-II Pro,
Virtex-4, and Spartan-3.

• Graph-based physical synthesis with a design plan—a graph-based
physical synthesis flow that is guided by a design plan. It also produces
a design with detailed placement. Graph-based physical synthesis with a
design plan is currently available for Virtex-II Pro, Virtex-4, and
Spartan-3. The Design Planner is a separately licensed option to the
Synplify Premier product.

• Design-plan based physical synthesis—an interactive flow that lets you
perform physical synthesis optimization using the Design Planner.
Design-plan based physical synthesis produces a design with coarse
placement. Design-plan based physical synthesis is available for Altera
Cyclone, Cyclone-II, Stratix, Stratix-GX, and Stratix-II and Xilinx Virtex,
Virtex-II, and Virtex-E. The Design Planner is a separately licensed
option to the Synplify Premier product.

LO

Chapter 1: Introduction The FPGA Synthesis Tools

1-4 Fpga User Guide, December 2005

• Prototyping— The Synplify Premier product supports a complete design
and debugging environment featuring the Identify product along with
automated HDL code translation for Synopsys® DesignWare® compo-
nents. Using the Synplify Premier prototyping solution, you can quickly
and automatically bring ASIC HDL code into high-capacity FPGAs, and
then debug it with real-time feedback from the FPGA. Because the
feedback from the debugger goes directly into the RTL code, the integra-
tion of logic synthesis lets you correct the code and retest it in the FPGA
in record time.

In addition to the features described in About the Synplify and Synplify Pro
Software, on page 1-2, the Synplify Premier tool features the following:

• Expanded HDL Analyst capabilities including support for physical
regions.

• Design Planner - This licensed option for Synplify Premier lets you run
interactive physical synthesis using a design plan. You assign physical
constraints in Design Planner by interactively dragging and dropping
RTL objects into regions of the device. This information along with the
normal timing constraints, enables the Synplify Premier tool to estimate
timing more accurately and use the estimates for additional optimiza-
tions. This produces a more highly optimized circuit in fewer iterations.

• Physical Optimizations - Physical optimization algorithms use physical
design characteristics like placement and interconnect delay to affect
the actual topology of the circuit. Design plans are used to control the
optimizations. The Synplify Premier tool also helps reduce the time
required to perform placement and routing, which is especially signifi-
cant as FPGA designs continue towards the trend of one million plus
gates.

• Physical Analysis Tools - These tools include the Physical Analyst and
the Island Timing Analyst.

Synplicity FPGA Tool Features
This table distinguishes between the Synplify Pro, Synplify, Synplify Premier,
and Synplify Premier with Design Planner products.

The FPGA Synthesis Tools Chapter 1: Introduction

Fpga User Guide, December 2005 1-5

Synplify Synplify
Pro

Synplify
Premier

Synplify
Premier

with
Design
Planner

Performance

Behavior Extracting Synthesis
Technology® (BEST™)

x x x x

Clearbox Support (selected Altera
architectures)

x x x

Coregen Support (selected Xilinx
architectures)

x x x

FSM Compiler x x x x

FSM Explorer x x x

Gated Clock Conversion x x x

Register Pipelining into
Multipliers/ROMs

x x x

Register Retiming x x x

Code Analysis

Timing Analyzer – Point-to-point
Report

x x x

HDL Analyst® Solution —
Graphical Design Analysis

Option x x x

FSM Viewer – View State
Transitions

x x x

Crossprobing – Cross-tool
Analysis

x x x

Probe Point Creation – Easy
Insertion of Debug Pins

x x x

Team Design/Design Environment

SCOPE® Spreadsheet x x x x

Advanced Project Management —
Workspaces

x x x

LO

Chapter 1: Introduction The FPGA Synthesis Tools

1-6 Fpga User Guide, December 2005

Multiple Implementations x x x

Log Watch Window — Fast
Implementation Comparison

x x x

Tcl Entry and Viewing Window x x x

Text Editor View x x x x

Mixed Language Design – VHDL
and Verilog

x x x

Modular Flow Support for Xilinx
Designs

x x x

MultiPoint™ Flow x x x

Batch Mode (Floating licenses
only)

x x x x

Verplex Formal Verification Flow x x
(Physical
Synthesis
Disbled)

Physical Design

Design Plan File x

Drag-and-Drop Logic from HDL
Analyst into Device Regions

x

Area Estimation and Region
Capacity

x

Pin Assignments x

Physical Synthesis Optimizations
•Bit Slicing
•Zippering
•Tunneling and other
boundary optimizations
•Replication

x

Synplify Synplify
Pro

Synplify
Premier

Synplify
Premier

with
Design
Planner

The FPGA Synthesis Tools Chapter 1: Introduction

Fpga User Guide, December 2005 1-7

Graph-based Physical Synthesis x x

Island Timing Analyst x x

Physical Analyst x x

Place-and-Route Implementation
Run From Project View

x x x

Prototyping

RTL debugging with Identify x

Automatic translation of
Synopsys® DesignWare®
components

x

Synplify Synplify
Pro

Synplify
Premier

Synplify
Premier

with
Design
Planner

LO

Chapter 1: Introduction The Generic FPGA Design Flow

1-8 Fpga User Guide, December 2005

Synplicity Product Family
The Synplicity products are based on core synthesis technology, and share a
common look and feel. The Fortify tools offer solutions to manage the power
network in your design. The following figure shows the Synplicity products.

The Generic FPGA Design Flow
The following figure contains a generic design flow showing the typical steps a
designer follows when implementing an FPGA. The shaded box shows the
steps you can accomplish with Synplify synthesis. This generic design flow
complements the specific design flow used for the tutorial.

Synplify® Certify®

FPGA ASICDSP

Synplify Pro®

Synplify®

Premier

Prototyping

RTL Debugger

Synplify ASIC®

Amplify
ASIC™ Families

Identify™

Synplify® DSP

DSP DesignFPGA Synthesis

Physical Synthesis
for FPGAs

ASIC RTL PrototypingASIC Synthesis

Physical Synthesis
for Structured ASIC

Design Planner

The Generic FPGA Design Flow Chapter 1: Introduction

Fpga User Guide, December 2005 1-9

The following sections describe each step more fully.

HDL Design Entry
The starting point for FPGA design is to specify the logic of the FPGA circuit to
be implemented. You can do this by drawing a schematic, writing an HDL
description, or specifying Boolean expressions.

For the Synplify flow, design entry is the step where you generate the input
for the tool. The input must be Verilog or VHDL descriptions. The software
provides you with an environment where you can write or edit HDL descrip-
tions.

Logic Optimization (Compilation)
This is the first stage of synthesis, in which the software restructures the
original network into a set of combinational functions. In the Synplify flow,
the combinational functions are represented as a Boolean network. At this
point in the design process, you modify the initial logic design to optimize the
area or speed of the final circuit, or both. The optimization is calculated from
the netlist and is independent of the target technology. It includes operations
like redundancy removal and common subexpression elimination.

HDL Design Entry

Logic Optimization

Technology Mapping

Routing

Placement

FPGA Configuration

Synplify Synthesis

LO

Chapter 1: Introduction The Generic FPGA Design Flow

1-10 Fpga User Guide, December 2005

Technology Mapping
Technology mapping is the second phase of optimization, in which the logic is
optimized to a specific technology. During this phase, the compiled design is
transformed into a circuit of optimized FPGA logic blocks. Depending on your
design priorities, you might want to focus on area optimization (minimizing
the total number of blocks), delay optimization (minimizing the number of
logic block stages in time-critical paths), or both.

The Synplify tool uses architecture-specific mapping techniques to map the
logic design. It has built-in tools to analyze critical paths, crossprobe, and
check the RTL view. The software generates netlists in formats appropriate
for the place-and-route tools that follow.

Placement
Placement is the first step of the physical design process. During placement,
the logic blocks are placed in an FPGA array. At this point, considerations
like the total interconnect length become important.

This is the point at which the Synplify software hands off control of the design
to another tool. However if you have the Synplify Premier, you can use the
results from an initial placement pass to further optimize your logic design.

Routing
Routing is the final step of the physical design process. At this stage, use the
place-and-route tool to connect the placed logic blocks by assigning wire
segments and choosing programmable switches.

FPGA Configuration
In this design phase, you configure the final FPGA chip and implement it.

Audience Chapter 1: Introduction

Fpga User Guide, December 2005 1-11

Audience
The Synplify, Synplify Pro, and Synplify Premier software tools are targeted
towards the FPGA system developer. It is assumed that you are knowledge-
able about the following:

• Design synthesis

• RTL

• FPGAs

• Verilog/VHDL

• Physical Synthesis

Scope of the Document
This user guide is part of a document set that is intended for use with the
other documents in the set. It concentrates on describing how to use the
Synplify software to accomplish typical tasks. This implies the following:

• The user guide only explains the options needed to do the typical tasks
described in the manual. It does not describe every available command
and option. For complete descriptions of all the command options and
syntax, refer to the User Interface Commands chapter in the Synplicity
FPGA Synthesis Reference Manual.

• The user guide contains task-based information. For a breakdown of
how information is organized, see Getting Help, on page 1-13.

LO

Chapter 1: Introduction Starting the Software

1-12 Fpga User Guide, December 2005

Starting the Software
This section shows you how to get started with the Synplify software. It
describes the following topics, but does not supersede the information in the
installation instructions about licensing and installation:

• Getting Started, on page 1-12

• Getting Help, on page 1-13

Getting Started
1. If you have not already done so, install the Synplify software according

to the installation instructions.

2. Start the software.

– If you are working on a Windows platform, select
Programs->Synplicity->product version from the Start button.

– If you are working on a UNIX platform, type the appropriate
command at the command line:

synplify

synplify_pro

synplify_premier

synplify_premier_dp

The command starts the synthesis tool, and opens the Project window. If
you have run the software before, the window displays the previous
project. For more information about the interface, see the User Interface
Overview chapter of the Reference Manual.

Starting the Software Chapter 1: Introduction

Fpga User Guide, December 2005 1-13

Getting Help
Before you call Synplicity Support, look through the documented information.
You can access the information online from the Help menu, or refer to the PDF
version. The following table shows you how the information is organized.

For help with... Refer to the...

Using software features Synplicity FPGA Synthesis User Guide

How to... Synplicity FPGA Synthesis User Guide,
application notes on the Synplicity support
web site

Flow information Synplicity FPGA Synthesis User Guide,
application notes on the Synplicity support
web site

Error messages Online help (select Help->Error Messages)

Licensing License configuration information for your
platform

Attributes and directives Synplicity FPGA Synthesis Reference Manual

Synthesis features Synplicity FPGA Synthesis Reference Manual

Language and syntax Synplicity FPGA Synthesis Reference Manual

Tcl syntax Online help (select Help->Tcl Help)

Tcl synthesis commands Synplicity FPGA Synthesis Reference Manual

Product updates Synplicity FPGA Synthesis Reference Manual
(Web menu commands)

LO

Chapter 1: Introduction User Interface Overview

1-14 Fpga User Guide, December 2005

User Interface Overview
The user interface (UI) consists of a main window, called the Project view, and
specialized windows or views for different tasks. For details about each of the
features, see the User Interface Commands chapter of the Synplicity FPGA
Synthesis Reference Manual. The Synplify Pro and Synplify Premier tools have
the same standard interface, while Synplify uses a different interface.

Synplify Pro and Synplify Premier Standard Interface

Tabs to access
views Log Watch Window

Status

Technical Resource
Center iconTcl Window

Button Panel Toolbars Project view Implementation Results view

User Interface Overview Chapter 1: Introduction

Fpga User Guide, December 2005 1-15

Synplify Interface
The following figure shows you the Synplify interface.

Implementation

Menus

Toolbars

Tab to access

Other options

 Project view
Buttons Status

Results view

Technical Resource
Center icon

Project view

LO

Chapter 1: Introduction Design Flows

1-16 Fpga User Guide, December 2005

Design Flows
This section provides an overview of the following flows:

• Logic Synthesis Design Flow, on page 1-16

• Prototyping Design Flow, on page 1-17

• Physical Synthesis Design Flows, on page 1-17

Logic Synthesis Design Flow
The following figure shows a logic synthesis design flow using Synplify,
Synplify Pro, and Synplify Premier synthesis software. For a design flow with
step-by-step instructions based on specific design data, download the tutorial
from the Synplicity website:
http://trc.synplicity.com/tutorials/index.html.

 Add Source Files

Set Constraints

Run the Software

Create Project

Analyze Results

Implement FPGA

Set Options

Fails requirements

Design Flows Chapter 1: Introduction

Fpga User Guide, December 2005 1-17

Prototyping Design Flow
The Synplify Premier software supports a complete design and verification
environment featuring the Identify product along with automated HDL code
translation.

Physical Synthesis Design Flows
Physical synthesis is performed using the Synplify Premier tool. There are
three physical synthesis flows:

• Graph-based Physical Synthesis, on page 1-18

• Graph-based Physical Synthesis with a Design Plan, on page 1-19

• Design Plan-based Physical Synthesis, on page 1-20

Identify Instrumentor

Synplify Premier

Single FPGA Prototype
Board plus

Identify Debugger

FPGA Place-and-Route

ASIC HDL

Design RTL Instrumentation

Optimized and
Mapped Netlist

Placed and
Routed Netlist

LO

Chapter 1: Introduction Design Flows

1-18 Fpga User Guide, December 2005

Graph-based Physical Synthesis
The following figure shows the Graph-based Physical Synthesis design flow,
which includes the Synplify Premier features and tools to run physical
synthesis. Note that this feature is currently applicable for Xilinx
Virtex-II Pro, Virtex-4, and Spartan-3 technologies only.

Physical Analyst

Island Timing Analyst

Design – Verilog
(.v) or VHDL (.vhd)

Timing Constraints
(.sdc)

Run Synplify Premier
(Physical Synthesis enabled)

Graph-based Physical Synthesis Flow

Analyze Results

Physical Synthesis

Initial Placement

Add Design Files

Set Implementation
Options

Create and Compile Project

Vendor Route

Design Flows Chapter 1: Introduction

Fpga User Guide, December 2005 1-19

Graph-based Physical Synthesis with a Design Plan
The Graph-based Physical Synthesis with a Design Plan flow for Virtex-II Pro,
Virtex-4, and Spartan-3 combines the graph-based push-button flow with
detailed placement along with physical optimization using the Design
Planner.

Design Plan
(.sfp)

Graph-based Physical Synthesis
 with a Design Plan Flow

Physical Analyst

Island Timing Analyst

Design – Verilog
(.v) or VHDL (.vhd)

Timing Constraints
(.sdc)

Run Synplify Premier
(Physical Synthesis enabled)

Analyze Results

Create and Compile Project

Vendor Route

Physical Synthesis

Initial Placement

Add Design Files

Set Implementation
Options

LO

Chapter 1: Introduction Design Flows

1-20 Fpga User Guide, December 2005

Design Plan-based Physical Synthesis
The following figure shows the Design-plan based physical synthesis flow
using the Design Planner option, which includes the Synplify Premier
features and tools to run physical synthesis. Note that this flow applies to
Altera Cyclone, Cyclone-II, Stratix, Stratix-GX, Stratix-II and Xilinx Virtex,
Virtex-II, and Virtex-E technologies.

Design Plan
(.sfp)

Design Plan-based
Physical Synthesis Flow

Physical Analyst

Island Timing Analyst

Design – Verilog
(.v) or VHDL (.vhd)

Timing Constraints
(.sdc)

Run Synplify Premier
(Physical Synthesis enabled)

Analyze Results

Design Plan-based

Add Design Files

Set Implementation
Options

Create and Compile Project

Vendor Place & Route

Physical Synthesis

with Backannotation

Fpga User Guide, December 2005 2-1

C H A P T E R 2

Project Setup

When you synthesize a design, you need to set up two kinds of files: HDL files
that describe your design, and project files to manage the design. This
chapter describes the procedures to set up these files and the project. It
covers the following:

• Setting Up HDL Source Files, on page 2-2

• Setting Up Project Files, on page 2-11

• Setting Up Implementations and Workspaces, on page 2-22

• Archiving Files and Projects, on page 2-26

LO

Chapter 2: Project Setup Setting Up HDL Source Files

2-2 Fpga User Guide, December 2005

Setting Up HDL Source Files
This section describes how to set up your source files; project file setup is
described in Setting Up Project Files, on page 2-11. Source files can be in
Verilog or VHDL. For information about structuring the files for synthesis,
refer to the Reference Manual. This section discusses the following topics:

• Creating HDL Source Files, next

• Checking HDL Source Files, on page 2-4

• Editing HDL Source Files with the Built-in Text Editor, on page 2-5

• Using an External Text Editor, on page 2-8

• Setting Editing Window Preferences, on page 2-9

Creating HDL Source Files
This section describes how to use the built-in text editor to create source
files, but does not go into details of what the files contain. For details of what
you can and cannot include, as well as vendor-specific information, see the
Reference Manual. If you already have source files, you can use the text editor
to check the syntax or edit the file (see Checking HDL Source Files, on
page 2-4 and Editing HDL Source Files with the Built-in Text Editor, on
page 2-5).

You can use Verilog or VHDL for your source files. The files have .v (Verilog)
or .vhd (VHDL) file extensions, respectively. With the Synplify Premier and
Synplify Pro products, you can use Verilog and VHDL files in the same
design. For information about using a mixture of Verilog and VHDL input
files, see Using Mixed Language Source Files, on page 2-16.

1. To create a new source file either click the HDL file icon () or do the
following:

– Select File->New or press Ctrl-n.

– In the New dialog box, select the kind of source file you want to create,
Verilog or VHDL. If you are using Verilog 2001 format, make sure to
enable the Use Verilog 2001 option before you run synthesis (Project-
>Implementation Options->Verilog tab).

Setting Up HDL Source Files Chapter 2: Project Setup

Fpga User Guide, December 2005 2-3

– Type a name and location for the file and Click OK.

A blank editing window opens with line numbers on the left. You can
name it now by pressing Ctrl-s and naming the file.

2. Type the source information in the window, or cut and paste it. See
Editing HDL Source Files with the Built-in Text Editor, on page 2-5 for
more information on working in the Editing window.

For the best synthesis results, check the Reference Manual and ensure
that you are using the available constructs and vendor-specific
attributes and directives effectively.

3. Save the file by selecting File->Save or the Save icon (). Use the correct
extension for the type of file you created (.v or .vhd).

Once you have created a source file, you can check that you have the
right syntax, as described in Checking HDL Source Files, on page 2-4.

LO

Chapter 2: Project Setup Setting Up HDL Source Files

2-4 Fpga User Guide, December 2005

Checking HDL Source Files
The software automatically checks your HDL source files when it compiles
them, but if you want to check your source code before synthesis, use the
following procedure. There are two kinds of checks you do in the synthesis
software: syntax and synthesis.

1. Select the source files you want to check.

– To check all the source files in a project, deselect all files in the
project list, and make sure that none of the files are open in an active
window. If you have an active source file, the software only checks the
active file.

– To check a single file, open the file with File->Open or double-click the
file in the Project window. If you have more than one file open and
want to check only one of them, put your cursor in the appropriate
file window to make sure that it is the active window.

2. To check the syntax, select Run->Syntax Check or press Shift+F7.

The software detects syntax errors such as incorrect keywords and
punctuation. It puts an exclamation mark next to files in the project list
that have errors or warnings, and lists the number of errors, warnings
or notes found in each file. If there are no errors, the following message
is displayed at the bottom of the log file:

Syntax check successful!

3. To run a synthesis check, select Run->Synthesis Check or press Shift+F8.

The software detects hardware-related errors such as incorrectly coded
flip-flops. It puts an exclamation mark next to files in the project list that
have errors or warnings, and lists the number of errors, warnings or
notes found in each file. If there are no errors, the following message is
displayed at the bottom of the log file:

Synthesis check successful!

4. Review the errors by opening the syntax.log file when prompted and use
Find to locate the error message (search for @E). Double-click on the 5-
character error code or click on the message text and push F1 to display
online error message help.

5. Locate the portion of code responsible for the error by double-clicking on
the message text in the syntax.log file. The Text Editor window opens the
appropriate source file and highlights the code that caused the error.

Setting Up HDL Source Files Chapter 2: Project Setup

Fpga User Guide, December 2005 2-5

6. Repeat steps 4 and 5 until all syntax and synthesis errors are corrected.

Messages can be categorized as errors, warnings, or notes. Review all
messages and resolve any errors. Warnings are less serious than errors, but
you must read through and understand them even if you do not resolve all of
them. Notes are informative and do not need to be resolved.

Editing HDL Source Files with the Built-in Text Editor
The built-in text editor makes it easy to create your HDL source code, view it,
or edit it when you need to fix errors. If you want to use an external text
editor, see Using an External Text Editor, on page 2-8.

1. Do one of the following to open a source file for viewing or editing:

– To automatically open the first file in the list with errors, press F5.

– To open a specific file, double-click the file in the Project window or
use File->Open (Ctrl-o) and specify the source file.

The Text Editor window opens and displays the source file. Lines are
numbered. Keywords are in blue, and comments in green. String values
are in red. If you want to change these colors, see Setting Editing Window
Preferences, on page 2-9.

2. To edit a file, type directly in the window.

This table summarizes common editing operations you might use. You
can also use the keyboard shortcuts instead of the commands.

LO

Chapter 2: Project Setup Setting Up HDL Source Files

2-6 Fpga User Guide, December 2005

3. To cut and paste a section of a PDF document, select the T-shaped Text
Select icon, highlight the text you need and copy and paste it into your
file. The Text Select icon lets you select parts of the document.

4. To create and work with bookmarks in your file, see the following table.

Bookmarks are a convenient way to navigate long files or to jump to
points in the code that you refer to often. You can use the icons in the
Edit toolbar for these operations. If you cannot see the Edit toolbar on the
far right of your window, resize some of the other toolbars.

To... Do...

Cut, copy, and paste;
undo, or redo an action

Select the command from the popup (hold down
the right mouse button) or Edit menu.

Go to a specific line Press Ctrl-g or select Edit->Go To, type the line
number, and click OK.

Find text Press Ctrl-f or select Edit ->Find. Type the text you
want to find, and click OK.

Replace text Press Ctrl-h or select Edit->Replace. Type the text
you want to find, and the text you want to replace
it with. Click OK.

Complete a keyword Type enough characters to uniquely identify the
keyword, and press Esc.

Indent text to the right Select the block, and press Tab.

Indent text to the left Select the block, and press Shift-Tab.

Change to upper case Select the text, and then select Edit->Advanced
->Uppercase or press Ctrl-Shift-u.

Change to lower case Select the text, and then select Edit->Advanced
->Lowercase or press Ctrl-u.

Add block comments Put the cursor at the beginning of the comment
text, and select Edit->Advanced->Comment Code or
press Alt-c.

Edit columns Press Alt, and use the left mouse button to select
the column. On some platforms, you have to use
the key to which the Alt functionality is mapped,
like the Meta or diamond key.

Setting Up HDL Source Files Chapter 2: Project Setup

Fpga User Guide, December 2005 2-7

5. To fix errors or review warnings in the source code, do the following:

– Open the HDL file with the error or warning by double-clicking the file
in the project list.

– Press F5 to go to the first error, warning, or note in the file. At the
bottom of the Editing window, you see the message text.

– To go to the next error, warning, or note, select Run->Next Error/Warning
or press F5. If there are no more messages in the file, you see the
message “No More Errors/Warnings/Notes” at the bottom of the
Editing window. Select Run->Next Error/Warning or press F5 to go to the
the error, warning, or note in the next file.

– To navigate back to a previous error, warning, or note, select Run-
>Previous Error/Warning or press Shift-F5.

6. To bring up error message help for a full description of the error,
warning, or note:

– Open the text-format log file (click View Log) and either double click on
the 5-character error code or click on the message text and press F1.

To... Do...

Insert a
bookmark

Click anywhere in the line you want to bookmark.
Select Edit->Toggle Bookmarks, press Ctrl-F2, or select the
first icon in the Edit toolbar.
The line number is highlighted to indicate that there is a
bookmark at the beginning of that line.

Delete a
bookmark

Click anywhere in the line with the bookmark.
Select Edit->Toggle Bookmarks, press Ctrl-F2, or select the
first icon in the Edit toolbar.
The line number is no longer highlighted after the
bookmark is deleted.

Delete all
bookmarks

Select Edit->Delete all Bookmarks, press Ctrl-Shift-F2, or
select the last icon in the Edit toolbar.
The line numbers are no longer highlighted after the
bookmarks are deleted.

Navigate a file
using
bookmarks

Use the Next Bookmark (F2) and Previous Bookmark (Shift-
F2) commands from the Edit menu or the corresponding
icons from the Edit toolbar to navigate to the bookmark
you want.

LO

Chapter 2: Project Setup Setting Up HDL Source Files

2-8 Fpga User Guide, December 2005

– Open the HTML log file (not available with the Synplify product) and
click on the 5-character error code.

– In the Tcl window (not available with the Synplify product), click the
Messages tab and click on the 5-character error code in the ID column.

7. To crossprobe from the source code window to other views, open the
view and select the piece of code. See Crossprobing from the Text Editor
Window, on page 4-51 for details.

8. When you have fixed all the errors, select File->Save or click the Save icon
to save the file.

Using an External Text Editor
You can use an external text editor like vi or emacs instead of the built-in text
editor. Do the following to enable an external text editor. For information
about using the built-in text editor, see Editing HDL Source Files with the
Built-in Text Editor, on page 2-5.

1. Select Options->Editor Options and turn on the External Editor option.

2. Select the external editor, using the method appropriate to your
operating system.

– If you are working on a PC platform, click the ...(Browse) button and
select the external text editor executable.

– From a UNIX or Linux platform for a text editor that creates its own
window, click the ... Browse button and select the external text editor
executable.

– From a UNIX platform for a text editor that does not create its own
window, do not use the ... Browse button. Instead type xterm -e
<editor>. The following figure shows VI specified as the external
editor.

Setting Up HDL Source Files Chapter 2: Project Setup

Fpga User Guide, December 2005 2-9

– From a Linux platform, for a text editor that does not create its own
window, do not use the ... Browse button. Instead, type gnome-
terminal -x <editor>. To use emacs for example, type gnome-
terminal -x emacs.

The software has been tested with the emacs and vi text editors.

3. Click OK.

Setting Editing Window Preferences
You can customize the fonts and colors used by the internal editor in the Text
Editing window.

1. Select Options->Editor Options, and select Internal Editor. Click Options.

2. Select the kind of file for which you want to set the preferences.

The Text Editing window can be used to set preferences for source files,
log files, Tcl files, constraint files, or other default files. The Editor Options
form opens.

3. This table shows you how to set some common syntax options from the
Editor Options form:

LO

Chapter 2: Project Setup Setting Up HDL Source Files

2-10 Fpga User Guide, December 2005

4. Click OK on the Editor Options form.

To... Do This on the Editor Options form...

Set syntax color
defaults

Click Syntax coloring.
On the Syntax Coloring form, check Use syntax coloring.
Set the colors you want for keywords, comments, quotes,
and default text by clicking Foreground and Background and
selecting colors from the palette.
Click OK.

Define comment
characters

Click Syntax coloring.
On the Syntax Coloring form, type the comment start
character(s) in the lower part of the form.
Type the comment end characters if necessary.
Click OK.

Make the
text editor
case-sensitive

Click Syntax coloring
On the Syntax Coloring form, check Case Sensitive.
Click OK.

Set fonts Click Fonts.
On the Font form, set the font and the size.
Click OK.

Set tabs Specify tab size.
Specify whether spaces or tabs are to be used to define tabs.
Set the display of a tab character.

Setting Up Project Files Chapter 2: Project Setup

Fpga User Guide, December 2005 2-11

Setting Up Project Files
For a specific example on setting up a project file, refer to the Synplify and
Synplify Pro tutorial. This section describes the following:

• Creating a Project File, next

• Opening an Existing Project File, on page 2-14

• Making Changes to a Project, on page 2-15

• Using Mixed Language Source Files, on page 2-16

• Setting Project View Display Preferences, on page 2-18

• Updating Verilog Include Paths in Older Project Files, on page 2-21

Creating a Project File
You must set up a project file for each project. A project contains the data
needed for a particular design: the list of source files, the synthesis results
file, and your device option settings. The following procedure shows you how
to set up a project file using individual commands.

1. Start by selecting one of the following: File->Build Project, File->Open Project,
or the P icon. Click New Project.

The Project window shows a new project. Click the Add File button, press
F4, or select the Project->Add Source File command. The Select Files to Add to
Project dialog box opens.

2. Add the source files to the project.

– Make sure the Look in field at the top of the form points to the right
directory. The files are listed in the box. If you do not see the files,
check that the Files of Type field is set to display the correct file type. If
you have mixed input files, follow the procedure described in Using
Mixed Language Source Files, on page 2-16.

LO

Chapter 2: Project Setup Setting Up Project Files

2-12 Fpga User Guide, December 2005

– To add all the files in the directory at once, click the Add All button on
the right side of the form. To add files individually, click on the file in
the list and then click the Add button, or double-click the file name.

You can add all the files in the directory and then remove the ones
you do not need with the Remove button.

If you are adding VHDL files, select the appropriate library from the
the VHDL Library popup menu. The library you select is applied to all
VHDL files when you click OK in the dialog box.

Your project window displays a new project file. If you click on the plus
sign next to the project and expand it, you see the following:

– A folder (two folders for mixed language designs) with the source files.
If your files are not in a folder under the project directory, you can set
this preference by selecting Options->Project View Options and checking
the View project files in folders box. This separates one kind of file from
another in the Project view by putting them in separate folders.

Setting Up Project Files Chapter 2: Project Setup

Fpga User Guide, December 2005 2-13

– The implementation, named rev_1 by default. Implementations are
revisions of your design within the context of the synthesis software,
and do not replace external source code control software and
processes. Multiple implementations let you modify device and
synthesis options to explore design options. You can have multiple
implementations in Synplify Premier and Synplify Pro, but not in
Synplify. Each implementation has its own synthesis and device
options and its own project-related files.

3. Add any libraries you need, using the method described in the previous
step to add the Verilog or VHDL library file.

– For vendor-specific libraries, add the appropriate library file to the
project.

To add a third-party VHDL package library, add the appropriate .vhd
file to the design, as described in step 2. Right click the file in the
Project view and select File Options, or select Project-> Set VHDL library.
Specify a library name that is compatible with the simulators. For
example, MYLIB. Make sure that this package library is before the top-
level design in the list of files in the Project view.

For information about setting Verilog and VHDL file options, see
Setting Verilog and VHDL Options, on page 3-11. You can also set
these file options later, before running synthesis.

For additional vendor-specific information about using vendor macro
libraries and black boxes, see Working with Actel Designs, on
page 8-8, Working with Altera Designs, on page 8-11, Working with
Lattice Designs, on page 8-23, and Working with Xilinx Designs, on
page 8-28.

LO

Chapter 2: Project Setup Setting Up Project Files

2-14 Fpga User Guide, December 2005

– For generic technology components, you can either add the Synplicity
technology-independent Verilog library (<install_dir>/lib/generic_
technology/gtech.v) to your design, or add your own generic component
library. Do not use both together as there may be conflicts.

4. Check file order in the Project view. File order is especially important for
VHDL files.

– For VHDL files, you can automatically order the files by selecting Run-
>Arrange VHDL Files. Alternatively, manually move the files in the
Project view. Package files must be first on the list because they are
compiled before they are used. If you have design blocks spread over
many files, make sure you have the following file order: the file
containing the entity must be first, followed by the architecture file, and
finally the file with the configuration.

– In the Project view, check that the last file in the Project view is the
top-level source file. Alternatively, you can specify the top-level file
when you set the device options.

5. Select File->Save, type a name for the project, and click Save. The Project
window reflects your changes.

6. To close a project file, select the Close Project button or File->Close Project.

Opening an Existing Project File
There are two ways to open a project file: the Open Project and the generic File-
>Open command.

1. If the project you want to open is one you worked on recently, you can
select it directly: File->Recent Projects-> projectName.

2. Use one of the following methods to open any project file:

Setting Up Project Files Chapter 2: Project Setup

Fpga User Guide, December 2005 2-15

The project opens in the Project window.

Making Changes to a Project
Typically, you might have to add, delete, or replace files.

1. To add source or constraint files to a project, select the Add Files button
or Project->Add Source File to open the Select Files to Add to Project dialog box.
See Creating a Project File, on page 2-11 for details.

2. To delete a file from a project, click the file in the Project window, and
press the Delete key.

3. To replace a file in a project,

– Select the file you want to change in the Project window.

– Click the Change File button, or select Project->Change File.

– In the Source File dialog box that opens, set Look In to the directory
where the new file is located. The new file must be of the same type as
the file you want to replace.

– If you do not see your file listed, select the type of file you need from
the Files of Type field.

– Double-click the file. The new file replaces the old one in the project
list.

Open Project Command File->Open Command

Select File->Open Project, click the
Open Project button on the left side of
the Project window (Synplify Pro and
Synplify Premier only), or click the
P icon.
To open a recent project, double-
click it from the list of recent
projects.
Otherwise, click the Existing Project
button to open the Open dialog box
and select the project.

Select File->Open.
Specify the correct directory in the
Look In: field.
Set File of Type to Project Files (*.prj).
The box lists the project files.
Double-click on the project you want
to open.

LO

Chapter 2: Project Setup Setting Up Project Files

2-16 Fpga User Guide, December 2005

4. To specify how project files are saved in the project, right click on a file
in the Project view and select File Options. Set the Save File option to either
Relative to Project or Absolute Path.

5. To check the time stamp on a file, right click on a file in the Project view
and select File Options. Check the time that the file was last modified.
Click OK.

Using Mixed Language Source Files
With the Synplify Pro and Synplify Premier software, you can use a mixture of
VHDL and Verilog input files in your project. For examples of the VHDL and
Verilog files, see the Reference Manual. You cannot use Verilog and VHDL
files together in the same design with the Synplify tool.

1. Remember these restrictions and set up the mixed language design files
accordingly:

– You can not use defparams across languages.

– Verilog does not support unconstrained VHDL ports

2. If you want to organize the Verilog and VHDL files in different folders,
select Options->Project View Options and toggle on the View Project Files in
Folders option.

When you add the files to the project, the Verilog and VHDL files are in
separate folders in the Project view.

3. When you open a project or create a new one, add the Verilog and VHDL
files as follows:

– Select the Project->Add Source File command or click the Add File button.

– On the form, set Files of Type to HDL Files (*.vhd, *.vhdl, *.v).

– Select the Verilog and VHDL files you want and add them to your
project. Click OK. For details about adding files to a project, see
Making Changes to a Project, on page 2-15.

Setting Up Project Files Chapter 2: Project Setup

Fpga User Guide, December 2005 2-17

The files you added are displayed in the Project view. This figure shows
the files arranged in separate folders.

4. When you set device options (Impl Options button), specify the top-level
module. For more information about setting device options, see Setting
Implementation Options, on page 3-2.

– If the top-level module is Verilog, click the Verilog tab and type the
name of the top-level module.

– If the top-level module is VHDL, click the VHDL tab and type the name
of the top-level entity. If the top-level module is not located in the
default work library, you must specify the library where the compiler
can find the module. For information on how to do this, see VHDL
Panel, on page 3-47.

LO

Chapter 2: Project Setup Setting Up Project Files

2-18 Fpga User Guide, December 2005

You must explicitly specify the top-level module, because it is the
starting point from which the mapper generates a merged netlist.

5. Select the Implementation Results tab on the same form and select one
output HDL format for the output files generated by the software. For
more information about setting device options, see Setting
Implementation Options, on page 3-2.

– For a Verilog output netlist, select Write Verilog Netlist.

– For a VHDL output netlist, select Write VHDL Netlist.

– Set any other device options and click OK.

You can now synthesize your design. The software reads in the mixed
formats of the source files and generates a single .srs file that is used
for synthesis.

Setting Project View Display Preferences
You can customize the organization and display of project files.

1. Select Options->Project View Options.

Setting Up Project Files Chapter 2: Project Setup

Fpga User Guide, December 2005 2-19

The Project View Options form opens. Available options vary, depending on
the tool. The Synplify Premier and Synplify Pro options are the same.

2. To organize different kinds of input files in separate folders, check View
Project Files in Folders.

Checking this option creates separate folders in the Project view for
constraint files and source files.

Synplify Pro and Synplify Premier OptionsSynplify Options

LO

Chapter 2: Project Setup Setting Up Project Files

2-20 Fpga User Guide, December 2005

3. Control file display with the following:

– Automatically display all the files, by checking Show Project Library. If
this is unchecked, the Project view does not display files until you
click on the plus symbol and expand the files in a folder.

– Check one of the boxes in the Project File Name Display section of the
form to determine how filenames are displayed. You can display just
the filename, the relative path, or the absolute path.

4. To open more than one implementation in the same Project view, check
Allow Multiple Projects to be Opened. You can only use multiple
implementations with the Synplify Pro and Synplify Premier tools.

5. Control the output file display with the following:

– Check the Show all Files in Results Directory box to display all the output
files generated after synthesis.

– Change output file organization by clicking in one of the header bars
in the Implementation Results view. You can group the files by type
or sort them according to the date they were last modified.

6. To view file information, select the file in the Project view, right-click,
and select File Options. For example, you can check the date a file was
modified.

Project 2

Project 1

Setting Up Project Files Chapter 2: Project Setup

Fpga User Guide, December 2005 2-21

Updating Verilog Include Paths in Older Project Files
If you have a project file created with an older version of the software (prior to
8.1), the Verilog include paths in this file are relative to the results dir or the
source file with the `include statements. In releases after 8.1, the project file
include paths are relative to the project file only. The GUI in the more recent
releases do not automatically upgrade the older .prj files to conform to the
newer rules. To upgrade and use the old project file, do one of the following:

• Manually edit the .prj file in a text editor and add the following on the
line before each set_option -include_path:

 set_option -project_relative_includes 1

• Start a new project with a newer version of the software and delete the
old project. This will make the new .prj file obey the new rule where
includes are relative to the .prj file.

LO

Chapter 2: Project Setup Setting Up Implementations and Workspaces

2-22 Fpga User Guide, December 2005

Setting Up Implementations and
Workspaces

Workspaces and implementations are extensions of the project metaphor
used in the Synplify Pro and Synplify Premier synthesis software. The
Synplify software does not support multiple implementations or workspaces.

This section describes the following:

• Working with Multiple Implementations, next

• Creating Workspaces, on page 2-24

• Using Workspaces, on page 2-25

Working with Multiple Implementations
The Synplify Premier and Synplify Pro tools let you create multiple implemen-
tations of the same design and then compare results. This lets you experi-
ment with different settings for the same design. Implementations are
revisions of your design within the context of the synthesis software, and do
not replace external source code control software and processes.

1. Click the New Impl button or select Project->New Implementation and set new
device options (Device tab), new options (Options tab), or a new constraint
file (Constraints tab).

The software creates another implementation in the project view. The
new implementation has the same name as the previous one, but with a
different number suffix. The following figure shows two implementa-
tions, rev1 and rev2, with the current implementation indicated by an
arrow.

The new implementation uses the same source code files, but different
device options and constraints. It copies some files from the previous
implementation: the .tlg log file, the .srs RTL netlist file, and the

Setting Up Implementations and Workspaces Chapter 2: Project Setup

Fpga User Guide, December 2005 2-23

<design>_fsm.sdc file generated by FSM Explorer. The software keeps a
repeatable history of the synthesis runs.

2. Run synthesis again with the new settings.

– To run the current implementation only, click Run.

– To run all the implementations in a project, select Run->Run All
Implementations.

You can use multiple implementations to try a different part or experi-
ment with a different frequency. See Setting Implementation Options, on
page 3-2 for information about setting options.

The Project view shows the new implementation. A green arrow marks
the current implementation in the Project view. The output files gener-
ated for this implementation are shown in the Implementation Results
view on the right. The Log Watch Window monitors the current imple-
mentation. If you configured it to watch all implementations, it automat-
ically adds the current implementation to the window.

3. Compare the results.

– Use the Log watch window to compare selected criteria. Make sure to
set the implementations you want to compare with the Configure Watch
command. See Using the Log Watch Window, on page 4-6 for details.

– To compare details, compare the log file results.

4. To rename an implementation, click the right mouse button on the
implementation name in the project view, select Change Implementation
Name from the popup menu, and type a new name.

5. To copy an implementation, click the right mouse button on the
implementation name in the project view, select Copy Implementation from
the popup menu, and type a new name for the copy.

6. To delete an implementation, click the right mouse button on the
implementation name in the project view, and select Remove
Implementation from the popup menu.

LO

Chapter 2: Project Setup Setting Up Implementations and Workspaces

2-24 Fpga User Guide, December 2005

Creating Workspaces
The Synplify Premier and Synplify Pro tools let you group projects together
into workspaces. A workspace is like a container for a number of projects.

1. To create a new workspace, select File->New Workspace or right-click in
the Project view and select Build Workspace.

2. In the dialog box,

– Select the project files (.prj) of the projects you want to add to the
workspace.

– Name the workspace and click OK.

The Project view displays the workspace and the associated projects
under it. The workspace file is also a .prj file.

3. To open more than one project in the same Project view, check Allow
Multiple Projects to be Opened. After you set up the new project, you can see
it in the Project view.

Project 2

Project 1

Setting Up Implementations and Workspaces Chapter 2: Project Setup

Fpga User Guide, December 2005 2-25

Using Workspaces
You can use your workspace to simplify your work flow. For example, you can
set up dependencies between projects in the same workspace.The Synplify
software does not support workspaces.

1. To add a project to a workspace, right-click the workspace and select
Insert Project. Select the project file you want to add, and click OK.

2. To remove a project from a workspace, right-click on the project and
select Remove Project from Workspace.

3. To synthesize a single project in a workspace, click Run.

The software synthesizes the current project.

4. To run all the projects in a workspace, do the following:

– If you have multiple implementations within a project, check that the
correct implementation is active. To make an implementation active,
click on the implementation in the Project view.

– Select the workspace in the Project view, right-click, and select Run all
Projects.

The software synthesizes the active implementations of all the projects in
the workspace.

LO

Chapter 2: Project Setup Archiving Files and Projects

2-26 Fpga User Guide, December 2005

Archiving Files and Projects
The archive utility provides a way to archive, extract, or copy your design
projects. An archive file is in Synplicity proprietary format and is saved to a
file name using the .sar extension.

The archive utility is available through the Project menu in the GUI, or by
using the project Tcl command. This document provides a description of how
to use the utility.

Topics include:

• Archive a Project, on page 2-26

• Extracting Design Files from an Archive, on page 2-31

• Copy a Project, on page 2-34

• Command Syntax, on page 2-37

Archive a Project
Use the archive utility to store the files for a design project into a single
archive file in Synplicity Proprietary Format (.sar). You can archive an entire
project or selected files from the project.

If you want to create a copy of a project without archiving the files, see Copy a
Project, on page 2-34.

Here are the steps to create an archive:

1. In the GUI (Project view), select Project->Archive Project.

This command does the following:

– Automatically runs a syntax check on the active project (Run->Syntax
Check command). This is done to ensure that a complete list of project
files is generated. For example, in a case where you use Verilog
include files in your project, a complete list of Verilog files will be
included. Syntax check is automatically run for each implementation
in the project to ensure the file list is complete for each
implementation as well.

– Displays the Synplicity Archive Utility wizard.

Archiving Files and Projects Chapter 2: Project Setup

Fpga User Guide, December 2005 2-27

2. The wizard displays the following information:

– Name of the design project to archive.

– Top-level directory where the project (.prj) is located. This is
considered the root directory.

– Pathname of the archive file. This is considered the destination file.

3. Choose the Archive Style:

– Enable Create a fully self-contained copy to archive all project files
including project input files and result files. If the project contains
more than one implementation, choose to archive only the active
implementation, or all implementations in the project.

– Enable Customized file list to archive only the project files that you
select.

– Enable Local copy for internal network to archive project input files only,
no result files and no remote reference files outside the root directory
will be included.

LO

Chapter 2: Project Setup Archiving Files and Projects

2-28 Fpga User Guide, December 2005

4. If you enabled Customized file list, complete the next step,
Otherwise, go to Step 7.

5. Under Project File List, select the file list origin for your archive:

– Source Files – Includes all HDL files in the archive.

– SRS – Includes all .srs files (RTL schematics) in the archive. (Same as
add_file -syn).

– Use the Add Extra Files button to include additional files in the project.

6. Select the files to include in the archive by clicking on the check boxes
next to the filenames.

7. Click Next.

Archiving Files and Projects Chapter 2: Project Setup

Fpga User Guide, December 2005 2-29

This summary displays all the files in the archive and also shows the full
uncompressed file size. Actual size is smaller after the archive. There are
no duplicate files.

Note: For Local copy for internal network archives, only the input files are
listed.

8. Use the Back button to correct directory or file information and/or follow-
up on any missing files, as appropriate.

9. Verify that the current archive contains the files that you want, then
click Archive.

This creates the project archive .sar file and displays the following
prompt:

LO

Chapter 2: Project Setup Archiving Files and Projects

2-30 Fpga User Guide, December 2005

10. Click Done if you are finished.

Otherwise, you can send the archived file to another site, for example,
you can send the design project to the Synplicity FTP site. To do this:

11. Click FTP Archive File.

12. Fill in the following information:

– Your email address. This email address, plus a date and time stamp
are prepended to the .sar file name to uniquely identify your
archive file.

– Details on the FTP site destination, including username and
password for sending to sites other than Synplicity.

13. Click Transfer.

This completes the archive transfer. The Status field in the dialog box
displays the transfer results.

Archiving Files and Projects Chapter 2: Project Setup

Fpga User Guide, December 2005 2-31

Extracting Design Files from an Archive
Use this utility to extract design project files from an archive file (.sar).

Here are the steps:

1. In the GUI (Project view), select Project->Un-Archive Project.

This displays the Synplicity Un-Archive Utility wizard.

2. In the wizard, enter the following:

– Name of the .sar file containing the project files.

– Name of project to extract (un-archive). This field is automatically
extracted from the.sar file and cannot be changed.

– Pathname of directory in which to write the project files (destination).

3. Click Next.

LO

Chapter 2: Project Setup Archiving Files and Projects

2-32 Fpga User Guide, December 2005

4. Make sure all the files that you want to extract are checked and
references to these files are resolved.

– If there are files in the list that you do not want to include when the
project is extracted, unchecked the box next to the file. The un-
checked files will be commented out in the project file (.prj) when
project files are extracted.

– If you need to resolve a file in the project before extracting, click the
Resolve button and fill out the dialog box.

– If you want to replace a file in the project, click the Change button and
fill out the dialog box.

The Replace directory with field specifies the new location of the project files
you want to use:

Archiving Files and Projects Chapter 2: Project Setup

Fpga User Guide, December 2005 2-33

– Replace – replaces only the specified file (Filename field) in the project.

– Replace Unresolved – replaces any unresolved files in the project, with
files of the same name from the Replace directory.

– Replace All – replaces all files in the archived project with files of the
same name from the Replace directory.

– To undo replace-file references, clear the Replace directory with field,
then click Replace. This causes the utility to point back to the Original
Directory.

5. Click Next and verify that the project files you want are displayed in the
Un-Archive Summary.

6. If you want to load this project in the UI after files are extracted, enable
the Load project into Synplicity after un-archiving option.

7. Click Un-Archive.

A message dialog box is displayed while the files are being extracted.

8. If the destination directory already contains project files with the same
name as the files you are extracting, you are prompted so that the
existing files can be overwritten by the extracted files.

LO

Chapter 2: Project Setup Archiving Files and Projects

2-34 Fpga User Guide, December 2005

Copy a Project
Use this utility to create a copy of a design project. You can copy an entire
project, or selected files from the project.

If you want to create an archive of the project where the project is stored in a
single archive file, see Archive a Project, on page 2-26.

Here are the steps to create a copy of a design project:

1. From the GUI (Project view), select Project->Copy Project.

This command does the following:

– Automatically runs a syntax check on the active project (Run->Syntax
Check command) to ensure that a complete list of project files is
generated. This is done in case you use Verilog include files in your
project. This syntax check is automatically run for each
implementation in the project to ensure the file list is complete for
each implementation as well.

– Displays the Synplicity Copy Utility wizard.

Archiving Files and Projects Chapter 2: Project Setup

Fpga User Guide, December 2005 2-35

2. The wizard displays:

– Name of selected design project to copy.

– Top-level directory where the project is located.

– Destination directory in which to copy files.

3. Choose the Copy Style:

– Enable Create a fully self-contained copy to copy all project files including
project input files and result files. If the project contains more than
one implementation, choose to copy only the active implementation or
all implementations in the project.

– Enable Local copy for internal network to copy project input files only, no
result files will be included.

– Enable Customized file list to copy only the project files that you select.

4. If you enable Customized file list, complete the next step, otherwise, go to
Step 7.

5. Under Project File List, select the file list origin for your archive:

– Source Files – Includes all HDL files in the archive.

LO

Chapter 2: Project Setup Archiving Files and Projects

2-36 Fpga User Guide, December 2005

– SRS – Includes all .srs files (RTL schematics) in the archive. (Same as
add_file -syn).

– Use the Add Extra Files button to include additional files in the project.

6. Select the files to include in the archive by clicking on the check boxes
next to the filenames.

7. Click Next.

8. Verify the copy information.

9. Enter a destination directory. If the directory does not exist it will be
created.

10. Click Copy to create the project copy.

Archiving Files and Projects Chapter 2: Project Setup

Fpga User Guide, December 2005 2-37

Command Syntax
The Tcl command syntax for archiving projects and files is as follows:

• project -archive

• project -copy

• project -unarchive

For a complete description of the project Tcl command options for archiving,
see project, on page 5-14.

LO

Chapter 2: Project Setup Archiving Files and Projects

2-38 Fpga User Guide, December 2005

Fpga User Guide, December 2005 3-1

C H A P T E R 3

Constraints, Attributes, and
Options

This chapter describes the typical options you set when working through the
synthesis design flow. It covers the following:

• Setting Implementation Options, on page 3-2

• Setting Constraints in the SCOPE Window, on page 3-18

• Using Auto Constraints, on page 3-45

• Using Collections, on page 3-47

• Working with Constraint Files, on page 3-60

• Adding Attributes and Directives, on page 3-66

LO

Chapter 3: Constraints, Attributes, and Options Setting Implementation Options

3-2 Fpga User Guide, December 2005

Setting Implementation Options
You can set global options for your synthesis implementations, some of them
technology-specific. This section describes how to set global options like
device, optimization, and file options with the Implementation Options command.
For information about setting constraints for the implementation, see Setting
Constraints in the SCOPE Window, on page 3-18. For information about
overriding global settings with individual attributes or directives, see Adding
Attributes and Directives, on page 3-66.

This section discusses the following topics:

• Setting Device Options, next

• Setting Optimization Options, on page 3-5

• Specifying Global Frequency and Constraint Files, on page 3-6

• Specifying Result Options, on page 3-9

• Specifying Timing Report Output, on page 3-10

• Setting Verilog and VHDL Options, on page 3-11

• Setting Synplify Premier Netlist Restructuring Optimizations, on
page 3-16

Setting Device Options
Device options are part of the global options you can set for the synthesis
run. They include the part selection (technology, part and speed grade) and
implementation options (I/O insertion and fanouts). The options and the
implementation of these options can vary from technology to technology, so
check the vendor chapters of the Reference Manual for information about
your vendor options.

1. Open the Options for Implementation form by clicking the Impl Options button
or selecting Project->Implementation Options, and click the Device tab at the
top if it is not already selected.

2. Select the technology, part, package, and speed. Available options vary,
depending on the technology you choose. Also, the Synplify Premier

Setting Implementation Options Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-3

software does not support as many technologies as the Synplify and
Synplify Pro tools do.

3. Set the device mapping options. The options vary, depending on the
technology you choose.

– If you are unsure of what an option means, click on the option to see
a description in the box below. For full descriptions of the options,
click F1 or refer to the appropriate vendor chapter in the Reference
Manual.

– To set an option, type in the value or check the box to enable it.

For more information about setting fanout limits, pipelining, and
retiming, see Setting Fanout Limits, on page 6-7, Pipelining, on
page 6-40, and Retiming, on page 6-44, respectively. For details about
other vendor-specific options, refer to the appropriate vendor chapter
and technology family in the Reference Manual. Note that the Synplify
tool does not support all these optimization options.

LO

Chapter 3: Constraints, Attributes, and Options Setting Implementation Options

3-4 Fpga User Guide, December 2005

4. Set other implementation options as needed (see Setting Implementation
Options, on page 3-2 for a list of choices). Click OK.

5. Click the Run button to synthesize the design.

The software compiles and maps the design using the options you set.

6. To set device options with a script, use the set_option Tcl command.

The following table contains an alphabetical list of the device options on
the form mapped to the equivalent Tcl commands. Because the options
are technology-based, all the options will not apply to your design. All
commands begin with set_option, followed by the syntax in the column as
shown. Check the Reference Manual for the most comprehensive list of
options for your vendor.

The following table shows typical device options.

Option Tcl Command (set_option...)

Area delay percent
(Altera, Lattice, Xilinx)

-area_delay_percent
net_percentage

Cliquing (Altera) -cliquing {true|false}

Disable I/O insertion -disable_io_insertion
{true|false}

Fan-in limit (Altera, Lattice) -fanin_limit max_fanin

Fanout guide (Actel, Atmel, Xilinx) -fanout_guide fanout_value

Fanout limit -fanout_limit limit

Fanout limit (hard) (Actel) -maxfan_hard {true|false}

Force GSR usage (Lattice, Xilinx) -force_gsr {true|false}

Map logic (Altera, Lattice, Xilinx) -map_logic {true|false}

Maximum terms/macrocell
(Lattice, Xilinx)

-max_terms_per_macrocell
max_terms

Package -package pkg_name

Part -part part_name

Soft buffers (Altera) -soft_buffers {true|false}

Setting Implementation Options Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-5

Setting Optimization Options
Optimization options are part of the global options you can set for the imple-
mentation. This section tells you how to set options like frequency and global
optimization options like resource sharing. You can also set some of these
options with the appropriate buttons on the UI.

1. Open the Options for Implementation form by clicking the Impl Options
button or selecting Project->Implementation Options, and click the Options tab
at the top.

2. Click the optimization options you want, either on the form or in the
Project view. Your choices vary, depending on the technology. If an
option is not available for your technology, it is grayed out. Setting the
option in one place automatically updates it in the other. The Synplify
software does not support all the options shown below.

Speed -speed_grade speed_grade

Technology -technology keyword

Option Tcl Command (set_option...)

Implementation Options->OptionsProject View

Optimization Options

LO

Chapter 3: Constraints, Attributes, and Options Setting Implementation Options

3-6 Fpga User Guide, December 2005

For details about using these optimizations refer to the following
sections:

The equivalent Tcl set_option command options are -frequency, -frequency
auto, -resource_sharing, -use_fsm_explorer, -pipe, -retiming and
-symbolic_fsm_compiler.

3. Set other implementation options as needed (see Setting Implementation
Options, on page 3-2 for a list of choices). Click OK.

4. Click the Run button to run synthesis.

The software compiles and maps the design using the options you set.

Specifying Global Frequency and Constraint Files
This procedure tells you how to set the global frequency and specify the
constraint files for the implementation.

1. To set a global frequency, do one of the following:

– Type a global frequency in the Project view.

– Open the Options for Implementation form by clicking the Impl Options
button or selecting Project->Implementation Options, and click the
Constraints tab.

The equivalent Tcl set_option commands is -frequency frequency_value.

FSM Compiler Using the Symbolic FSM Compiler, on page 6-17

FSM Explorer Using FSM Explorer, on page 6-22

Resource Sharing Sharing Resources, on page 6-5

Pipelining Pipelining, on page 6-40

Retiming Retiming, on page 6-44

Annotated
Properties for
Analyst

Annotates the design with generic non-timing instance
properties (.sap) and timing properties (.tap). These
properties are then viewable in the RTL View and Design
Planner, as well as used to create collections using TCL
Find. See Object Properties, on page 5-54 and Annotated
Timing Information, on page 6-34 for more information.

Setting Implementation Options Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-7

You can override the global frequency with local constraints, as
described in Setting Constraints in the SCOPE Window, on page 3-18. In
the Synplify Pro tool, you can automatically generate clock constraints
for your design instead of setting a global frequency. See Using Auto
Constraints, on page 3-45 for details.

2. To specify constraint files for an implementation, do one of the following:

– Select Project->Implementation Options->Constraints. Check the constraint
(.sdc) files you want to use in the project.

– With the implementation you want to use selected, click Add File in the
Project view, and add the constraint files you need.

To create constraint files, see Setting Constraints in the SCOPE Window,
on page 3-18.

3. To remove constraint files from an implementation, do one of the
following:

– Select Project->Implementation Options->Constraints. Click off the checkbox
next to the file name.

Implementation Options->Constraints

Project View

Global Frequency and Constraints

LO

Chapter 3: Constraints, Attributes, and Options Setting Implementation Options

3-8 Fpga User Guide, December 2005

– In the Project view, right-click the constraint file to be removed and
select Remove from Project.

This removes the constraint file from the implementation, but does not
delete it.

4. To specify or remove a Synplify Premier design plan (.sfp), use the
techniques described in steps 2 and 3, or do the following:

– Select Project->Implementation Options->Synplify Premier. Check the box
next to the file you want.

– To delete a file, disable the check box next to the file name on the
Design Planning tab.

When the implementation is synthesized, the Synplify Premier tool uses
the region assignments in this file for the second phase of optimization
to perform physical synthesis.

5. Set other implementation options as needed (see Setting Implementation
Options, on page 3-2 for a list of choices). Click OK.

When you synthesize the design, the software compiles and maps the
design using the options you set.

Setting Implementation Options Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-9

Specifying Result Options
This section shows you how to specify criteria for the output of the synthesis
run.

1. Open the Options for Implementation form by clicking the Impl Options button
or selecting Project->Implementation Options, and click the Implementation
Results tab at the top.

2. Specify the output files you want to generate.

– To generate mapped netlist files, click Write Mapped Verilog Netlist or Write
Mapped VHDL Netlist.

– To generate a vendor-specific constraint file for forward annotation,
click Write Vendor Constraint File. See Generating Constraint Files for
Forward Annotation, on page 3-64 for more information.

3. Set the directory to which you want to write the results.

4. Set the format for the output file. The equivalent Tcl command for
scripting is project -result_format format.

You might also want to set attributes to control name-mapping. For
details, refer to the appropriate vendor chapter in the Reference Manual.

For certain Altera technologies (see Targeting Output to Your Vendor, on
page 8-6), the .vqm result format allows you to also select the version of
Quartus II you are using from the pop-up menu.

LO

Chapter 3: Constraints, Attributes, and Options Setting Implementation Options

3-10 Fpga User Guide, December 2005

5. Set other implementation options as needed (see Setting Implementation
Options, on page 3-2 for a list of choices). Click OK.

When you synthesize the design, the software compiles and maps the
design using the options you set.

Specifying Timing Report Output
You can determine how much is reported in the timing report by setting the
following options.

In the Synplify Premier tool, you can also use this tab to generate hierar-
chical-based island timing reports for certain technologies like Xilinx Virtex-
II, Virtex-II Pro, Virtex-4, Spartan-3, and Altera Stratix technologies. For
more information about generating island timing reports, see Generating the
Island Timing Report, on page 4-83.

1. Selecting Project->Implementation Options, and click the Timing Report tab.

2. Set the number of critical paths you want the software to report.

3. Specify the number of start and end points you want to see reported in
the critical path sections.

4. Set other implementation options as needed (see Setting Implementation
Options, on page 3-2 for a list of choices). Click OK.

Setting Implementation Options Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-11

When you synthesize the design, the software compiles and maps the
design using the options you set.

Setting Verilog and VHDL Options
When you set up the Verilog and VHDL source files in your project, you can
also specify certain compiler options.

Setting Verilog File Options
You set Verilog file options by selecting either Project->Implementation Options-
>Verilog, or Options->Configure Verilog Compiler. For information about creating
always block hierarchy for Synplify Premier, see Setting Synplify Premier Netlist
Restructuring Optimizations, on page 3-16.

1. Specify the Verilog format to use.

– To set the compiler globally for all the files in the project, select Project-
>Implementation Options->Verilog. If you are using Verilog 2001, check the
Reference Manual for supported constructs.

– To specify the Verilog compiler on a per file basis, select the file in the
Project view. Right-click and select File Options. Select the appropriate
compiler. The default is Verilog 2001.

LO

Chapter 3: Constraints, Attributes, and Options Setting Implementation Options

3-12 Fpga User Guide, December 2005

2. Specify the top-level module if you did not already do this in the Project
view.

3. To extract parameters from the source code, do the following:

– Click Extract Parameters.

– To override the default, enter a new value for a parameter.

The software uses the new value for the current implementation only.

Note: Parameter extraction is not supported for mixed designs.

4. Type in the directive in Compiler Directives, using spaces to separate the
statements.

You can type in directives you would normally enter with ‘ifdef and
‘define statements in the code. For example, size=32 test_impl results
in the software writing the following statements to the project file:

set_option -hdl_define -set SIZE=32 TEST_IMPL

Setting Implementation Options Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-13

5. In the Include Path Order, specify the search paths for the include
commands for the Verilog files that are in your project. Use the buttons
in the upper right corner of the box to add, delete, or reorder the paths.

6. In the Library Directories, specify the path to the directory which
contains the library files for your project. Use the buttons in the upper
right corner of the box to add, delete, or reorder the paths.

7. Set other implementation options as needed (see Setting Implementation
Options, on page 3-2 for a list of choices). Click OK.

When you synthesize the design, the software compiles and maps the
design using the options you set.

Setting VHDL File Options
You set VHDL file options by selecting either Project->Implementation Options-
>VHDL, or Options->Configure VHDL Compiler.

Move upInsert (new)

Delete

Move down

LO

Chapter 3: Constraints, Attributes, and Options Setting Implementation Options

3-14 Fpga User Guide, December 2005

For VHDL source, you can specify the options described below. For informa-
tion about creating process hierarchy for Synplify Premier, see Setting Synplify
Premier Netlist Restructuring Optimizations, on page 3-16.

1. Specify the top-level module if you did not already do this in the Project
view. If the top-level module is not located in the default work library, you
must specify the library where the compiler can find the module. For
information on how to do this, see VHDL Panel, on page 3-47.

You can also use this option for mixed language designs or when you
want to specify a module that is not the actual top-level entity for HDL
Analyst displaying and debugging in the schematic views.

2. For user-defined state machine encoding, do the following:

– Specify the kind of encoding you want to use.

– Disable the FSM compiler.

When you synthesize the design, the software uses the compiler direc-
tives you set here to encode the state machines and does not run the
FSM compiler, which would override the compiler directives. Alterna-
tively, you can define state machines with the syn_encoding attribute, as
described in Defining State Machines in VHDL, on page 6-14.

3. To extract generics from the source code, do this:

– Click Extract Generic Constants.

– To override the default, enter a new value for a generic.

Setting Implementation Options Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-15

The software uses the new value for the current implementation only.
Note that you cannot extract generics if you have a mixed language
design.

Note: Generic constraint extraction is not supported for mixed designs.

4. To push tristates across process/block boundaries, check that Push
Tristates is enabled. For details, see Push Tristates Option, on page 3-51 in
the Reference Manual.

5. Determine the interpretation of the synthesis_on and synthesis_off directives:

– To make the compiler to treat synthesis_on and synthesis_off directives like
translate_on/translate_off, enable the Synthesis On/Off Implemented as Translate
On/Off option.

– To ignore the synthesis_on and synthesis_off directives, make sure that
this option is not checked. See translate_off/translate_on Directive, on
page 8-218 in the Reference Manual for more information.

6. Set other implementation options as needed (see Setting Implementation
Options, on page 3-2 for a list of choices). Click OK.

When you synthesize the design, the software compiles and maps the
design using the options you set.

LO

Chapter 3: Constraints, Attributes, and Options Setting Implementation Options

3-16 Fpga User Guide, December 2005

Setting Synplify Premier Netlist Restructuring
Optimizations

You can only set netlist restructuring options in the Synplify Premier tool. To
do so, select Project->Implementation Options, and click on the Netlist Restructure
tab.

1. To reduce the number of ports, eliminate feedthrough ports by enabling
Feedthrough Optimization. This can improve routability in the place-and-
route tool.

2. To reduce area, enable Constant Propagation.

Where possible, this option eliminates the logic used when constant
inputs to logic cause their outputs to be constant. It is sometimes
possible to eliminate this type of logic altogether during optimization.

3. To provide more granularity for applying a design plan to large modules
at the always block or process level, enable Create Always/Process Level
Hierarchy.

Currently a design plan can be applied to either modules or to individual
gates, registers, and so on. For a module that is too large to fit in a row
or defined region, you might need an extra level of granularity which is
not as detailed as a gate-level description. This option creates an
additional, intermediate level of hierarchy to which you can apply a
design plan.

For example, in Verilog, the always block becomes a module with the
signals in the sensitivity list becoming inputs of the module and the

Setting Implementation Options Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-17

signals that get their values set becoming outputs of the modules.
Similarly, in VHDL, a process becomes a module. You might find that it is
easier to apply a design plan to these always blocks/processes.

4. To group Altera Stratix MAC configurations together into one MAC block,
enable Create MAC Hierarchy.

5. To add or delete netlist restructure files, such as the files created for bit-
slicing or zippering, do the following:

– On the Project->Implementation Options->Netlist Restructuring tab, check the
box next to the file you want to add.

– To remove a file, disable the check box next to the file name.

You can add or delete the files from the Project view. When the imple-
mentation is synthesized, the Synplify Premier tool uses the specified
netlist restructure files for physical synthesis.

6. Set other implementation options as needed (see Setting Implementation
Options, on page 3-2 for a list of choices). Click OK.

LO

Chapter 3: Constraints, Attributes, and Options Setting Constraints in the SCOPE Window

3-18 Fpga User Guide, December 2005

Setting Constraints in the SCOPE Window
You can use a text editor to create a constraint file as described in Working
with Constraint Files, on page 3-60, but it is easier to use the SCOPE
(Synthesis Constraint Optimization Environment) window, which provides a
spreadsheet-like interface for entering constraints. The SCOPE interface is
good for editing most constraints, but there are some constraints (like black
box constraints) which can only be entered as directives in the source files. If
you want to use a text editor to edit a constraint file, close the SCOPE window
before editing the file, or you will overwrite results.

This section describes the following:

• Using the SCOPE Window, next

• Entering and Editing Constraints in the SCOPE Window, on page 3-21

• Entering Default Constraints, on page 3-24

• Setting Clock and Path Constraints, on page 3-26

• Defining Clocks, on page 3-28

• Defining Input and Output Constraints, on page 3-33

• Defining Multicycle Paths, on page 3-34

• Defining From/To/Through for Timing Exceptions, on page 3-35

• Defining False Paths, on page 3-38

• Specifying Standard I/O Pad Types, on page 3-40

• Setting SCOPE Display Preferences, on page 3-41

• Translating Xilinx UCF Constraints, on page 3-42

• Converting Pin Location Constraint Files in the Synplify Premier Tool, on
page 3-43

You can also use the SCOPE window to do the following:

• Add attributes. See Adding Attributes in the SCOPE Window, on
page 3-68.

• Create collections and apply constraints to them. See Creating and
Using Collections (SCOPE Window), on page 3-48.

Setting Constraints in the SCOPE Window Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-19

Using the SCOPE Window
The following procedure shows you how to open the SCOPE window to
generate constraint files. For details about generating constraint files for
compile point modules (in the Synplify Premier and Synplify Pro tools), see
MultiPoint Synthesis, on page 10-28.

1. To create a new constraint file, follow these steps:

– Compile the design (F7). If you do not compile the design, you can still
use the SCOPE window, but the software does not automatically
initialize the clocks and I/O ports. You have to type in entries
manually because the software has no knowledge of the design.

– Open the SCOPE window by clicking the SCOPE icon in the toolbar
(), pressing Ctrl-n, or selecting File -> New. If you use one of the latter
two methods, select Constraint File (SCOPE) as the type of file to open.
This opens the Initialize New Constraint File dialog box.

LO

Chapter 3: Constraints, Attributes, and Options Setting Constraints in the SCOPE Window

3-20 Fpga User Guide, December 2005

– Optionally, select the constraints to be initialized and click OK. If you

started with a compiled design, setting these options automatically
initializes the Clock and Inputs/Outputs tabs with the appropriate
signals.

An empty SCOPE spreadsheet window opens. The tabs along the bottom
of the SCOPE window list the different kinds of constraints you can add.
For each kind of constraint, the columns contain specific data.

You can now enter constraints directly or with the wizard. Refer to
Entering and Editing Constraints in the SCOPE Window, on page 3-21 or
Entering Default Constraints, on page 3-24.

2. To open an existing file, do one of the following:

– Double-click the file from the project window.

– Press Ctrl-o or select File->Open. In the dialog box, set the kind of file
you want to open to Constraint Files (SCOPE) (*.sdc), and double-click to
select the file from the list.

File->New Ctrl-n

Setting Constraints in the SCOPE Window Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-21

The SCOPE window opens with the file you specified. For details about
editing the file, see Entering and Editing Constraints in the SCOPE
Window, on page 3-21. If you want to edit the Tcl file directly, see
Working with Constraint Files, on page 3-60.

Entering and Editing Constraints in the SCOPE Window
For manual constraints, the direct method is best suited for editing and
entering individual constraints. If you are setting many constraints or
defaults, use the wizard, as described in Entering Default Constraints, on
page 3-24. You can use the wizard to enter default constraints, and then use
the direct method to modify, add, or delete constraints.

The Synplify Pro tool also lets you add constraints automatically. For infor-
mation about auto constraints, see Using Auto Constraints, on page 3-45.

1. Click the appropriate tab at the bottom of the window to enter the kind
of constraint you want to create:

To define... Click...

Clock frequency for a clock signal output of clock divider logic
A specific clock frequency that overrides the global frequency

Clocks

Edge-to-edge clock delay that overrides the automatically
calculated delay.

Clock to
Clock

Constraints for a group of objects you have defined as a
collection with the Tcl command. For details, see Creating and
Using Collections (SCOPE Window), on page 3-48.

Collections

Input/output delays that model your FPGA input/output
interface with the outside environment

Inputs/
Outputs

Delay constraints for paths feeding into/out of registers Registers

Paths that require multiple clock cycles Multicycle
paths

Paths to ignore for timing analysis (false paths) False Paths

Maximum delay for paths Max Delay
Paths

Attributes, like syn_reference_clock, that were not entered
in the source files

Attributes

LO

Chapter 3: Constraints, Attributes, and Options Setting Constraints in the SCOPE Window

3-22 Fpga User Guide, December 2005

The SCOPE window displays columns appropriate to the kind of
constraint you picked. You can now enter constraints using the wizard,
or work directly in the SCOPE window.

2. Enter or edit constraints as follows:

– For attribute cells in the spreadsheet, click in the cell and select from
the pulldown list of available choices.

– For object cells in the spreadsheet, click in the cell and select from
the pulldown list. When you select from the list, the objects
automatically have the proper prefixes in the SCOPE window.

Alternatively, you can drag and drop an object from an HDL Analyst
view into the cell, or type in a name. If you drag a bus, the software
enters the whole bus (busA). To enter busA[3:0], select the appropriate
bus bits before you drag and drop them. If you drag and drop or type
a name, make sure that the object has the proper prefix:

I/O standards for certain technologies of the Actel, Altera, and
Xilinx devices for any port in the I/O Standard panel of the
SCOPE window.

I/O Standard

Compile points in a top-level constraint file. See MultiPoint
Synthesis, on page 10-28 for more information about compile
points. (The Synplify tool does not support this flow.)

Compile
Points

Place and route tool constraints
Other constraints not used for synthesis, but which are passed
to other tools. For example, multiple clock cycles from a
register or input pin to a register or output pin

Other

Prefix Description

v: view object (for a module)

i: instance

p: port

b: bit slice of a port

n: internal net

To define... Click...

Setting Constraints in the SCOPE Window Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-23

– For cells with values, type in the value or select from the pulldown
list.

– Click the check box in the Enabled column to enable the constraint or
attribute.

– Make sure you have entered all the essential information for that
constraint. Scroll horizontally to check. For example, to set a clock
constraint in the Clocks tab, you must fill out Enabled, Clock, Frequency
or Period, and Clock Group. The other columns are optional. For details
about setting different kinds of constraints, go to the appropriate
section listed in Setting Constraints in the SCOPE Window, on
page 3-18.

3. For common editing operations, refer to this table:

4. Save the file by clicking the Save icon and naming the file.

The software creates a TCL constraint file (.sdc). See Working with
Constraint Files, on page 3-60 for information about the commands in
this file.

5. To apply the constraints to your design, you must add the file to the
project now or later.

– Add it immediately by clicking Yes in the prompt box that opens after
you save the constraint file.

– Add it later, following the procedure for adding a file described in
Making Changes to a Project, on page 2-15.

To... Do...

Cut, copy, paste,
undo, or redo

Select the command from the popup (hold down the
right mouse button to get the popup) or from the
Edit menu.

Copy the same value
down a column

Select Fill Down (Ctrl-d) from the Edit or popup
menus.

Insert or delete rows Select Insert Row or Delete Rows from the Edit or
popup menus.

Find text Select Find from the Edit or popup menus. Type the
text you want to find, and click OK.

LO

Chapter 3: Constraints, Attributes, and Options Setting Constraints in the SCOPE Window

3-24 Fpga User Guide, December 2005

Entering Default Constraints
The wizard is best for entering a number of constraints or for setting defaults
manually. To edit or set individual constraints, or create constraints in the
Other tab, work directly in the SCOPE window (Setting Clock and Path
Constraints, on page 3-26). For auto constraints in Synplify Pro, see Using
Auto Constraints, on page 3-45. The following procedure shows you two
methods to enter defaults. The quick method, in step 1, is only appropriate
for certain kinds of constraints. The rest of the steps show you how to use the
wizard to enter other SCOPE constraints.

1. To quickly generate defaults in the Clocks or Inputs/Outputs tabs without
the wizard, follow these steps. This method does not work for other
constraints.

– Click on the Clocks or Inputs/Outputs tabs, and select Edit->Insert Quick. A
new row is inserted at the top of the spreadsheet.

– Select the objects you want from the list.

– Enter the values you want, and enable the constraint.

– Save the constraint file and add it to the project.

2. To generate defaults with the wizard, follow the rest of these steps.
Select a tab in the SCOPE window and then select Edit->Insert Wizard or
press Ctrl-w to start the wizard.

Setting Constraints in the SCOPE Window Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-25

The wizard guides you through two dialog boxes, which vary slightly
depending on the kind of constraints you want to set.

3. In the first dialog box, select the design objects to which you want to
attach the constraints.

– Move objects to the selected list by either using wildcards, or
highlighting objects in the unselected list and using the arrow
buttons to move them. If there are no objects in the Unselected box,
disable the Exclude Duplicates option.

– Click Next.

4. In the second dialog box, set defaults for the selected objects.

– Enable or disable the constraints.

– Set the default value.

– Click Finish.

LO

Chapter 3: Constraints, Attributes, and Options Setting Constraints in the SCOPE Window

3-26 Fpga User Guide, December 2005

When you are done, the constraints appear in the SCOPE window. To
modify or add to them, do so directly in the SCOPE window (refer to
Entering and Editing Constraints in the SCOPE Window, on page 3-21).

5. To apply the constraints, add the file to the project according to the
procedure described in Making Changes to a Project, on page 2-15. The
constraints file has a .sdc extension. See Working with Constraint Files,
on page 3-60 for more information about constraint files.

Setting Clock and Path Constraints
The following table summarizes how to set different clock and path
constraints from the SCOPE window. For information about setting compile
point constraints or attributes, see MultiPoint Synthesis, on page 10-28 for
more information about compile points and Adding Attributes in the SCOPE
Window, on page 3-68. For information about setting default constraints, see
Entering Default Constraints, on page 3-24.

Setting Constraints in the SCOPE Window Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-27

To define... Pane Do this to set the constraint...

Clocks Clock Select the clock (Clock).
Type a frequency value (Frequency) or a period (Period).
Change the default Duty Cycle or set Rise/Fall At, if
needed.
Change the default clock group, if needed
Check the Enabled box.
See Defining Clocks, on page 3-28 for information
about clock attributes.

Virtual
clocks

Clock Set the clock constraints as described for clocks, above.
Check the Virtual Clock box.

Route delay Clock
Inputs/
Outputs
Registers

Specify the route delay in nanoseconds. Refer to
Defining Clocks, on page 3-28, Defining Input and
Output Constraints, on page 3-33 and the Register
Delays section of this table details.

Edge-to-edge
clock delay

Clock to
Clock

Select the starting edge for the delay constraint (From
Clock Edge).
Select the ending edge for the constraint (To Clock
Edge).
Enter a delay value.
Mark the Enabled check box.

Input/output
delays

Inputs/
Outputs

See Defining Input and Output Constraints, on
page 3-33 for information about setting I/O
constraints.

Register
delays

Registers Select the register (Register).
Select the type of delay, input or output (Type).
Type a delay value (Value).
Check the Enabled box.
If you do not meet timing goals after place-and-route,
adjust the clock constraint as follows:
• In the Route column for the constraint, specify the

actual route delay (in nanoseconds), as obtained from
the place-and-route results. Adding this constraint is
equivalent to putting a register delay on that input
register.

• Resynthesize your design.

LO

Chapter 3: Constraints, Attributes, and Options Setting Constraints in the SCOPE Window

3-28 Fpga User Guide, December 2005

Defining Clocks
Clock frequency is the most important timing constraint, and must be set
accurately. If you are planning to auto constrain your design (Using Auto
Constraints, on page 3-45), do not define any clocks. The following proce-
dures show you how to define clock frequency (Defining Clock Frequency, on
page 3-29) and set other clock constraints that affect timing, like clock
groups (Defining Other Clock Requirements, on page 3-32).

Maximum
path delay

Max Path
Delay

Select the port or register (From/Through). See Defining
From/To/Through for Timing Exceptions, on page 3-35
for more information.
Select another port or register if needed (To/Through).
Set the delay value (Max Delay).
Check the Enabled box.

Multicycle
paths

Multicycle
Paths

See Defining Multicycle Paths, on page 3-34.

False paths False Paths
Clock to
Clock

See Defining False Paths, on page 3-38 for details.

Global
attributes

Attributes Set Object Type to <global>.
Select the object (Object).
Set the attribute (Attribute) and its value (Value).
Check the Enabled box.

Attributes Attributes Do either of the following:
• Select the type of object (Object Type).

Select the object (Object).
Set the attribute (Attribute) and its value (Value).
Check the Enabled box.

• Set the attribute (Attribute) and its value (Value).
Select the object (Object).
Check the Enabled box.

Other Other Type the TCL command for the constraint (Command).
Enter the arguments for the command (Arguments).
Check the Enabled box.

To define... Pane Do this to set the constraint...

Setting Constraints in the SCOPE Window Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-29

Defining Clock Frequency
This section shows you how to define clock frequency either through the GUI
or in a constraint file. See Defining Other Clock Requirements, on page 3-32 for
other clock constraints. If you want to use auto constraints (Synplify Pro
only), do not define your clocks.

1. Define a realistic global frequency for the entire design, either in the
Project view or the Constraints tab of the Implementation Options dialog box.

This target frequency applies to all clocks that do not have specified
clock frequencies. If you do not specify any value, a default value of 1
MHz (or 1000 ns clock period) applies to all timing paths whenever the
clock associated with both start and end points of the path is not speci-
fied. Each clock that uses the global frequency is assigned to its own
clock group. See Defining Other Clock Requirements, on page 3-32 for
more information about clock group settings.

The global frequency also applies to any purely combinatorial paths. The
following figure shows how the software determines constraints for
specified and unspecified start or end clocks on a path:

If clkA is... And clkB is... The effect for logic C is...

Undefined Defined The path is constrained by a full cycle of clkB.

Defined Undefined The path is constrained by a full cycle of clkA.

Defined Defined For related clocks in the same clock group, the
relationship between clocks is calculated; all other
paths between the clocks are treated as false paths.

Undefined Undefined The global frequency value is used to constrain path.
(Default is 1 MHz or period of 1000 ns.) All global
frequency clocks are assigned to the same group.

BA

clkA clkB

Logic
C

LO

Chapter 3: Constraints, Attributes, and Options Setting Constraints in the SCOPE Window

3-30 Fpga User Guide, December 2005

2. Define frequency for individual clocks on the Clocks tab of the SCOPE
window (define_clock constraint).

– Specify the frequency as either a frequency in the Frequency column (-
freq Tcl option) or a time period in the Period column (-period Tcl option).
When you enter a value in one column, the other is calculated
automatically.

– For asymmetrical clocks, specify values in the Rise At (-rise) and Fall At
(-fall) columns. The software automatically calculates and fills out the
Duty Cycle value.

The software infers all clocks, whether declared or undeclared, by
tracing the clock pins of the flip-flops. However, it is recommended that
you specify frequencies for all the clocks in your design. The defined
frequency overrides the global frequency. Any undefined clocks default
to the global frequency.

3. Define internal clock frequencies (clocks generated internally) on the
SCOPE Clocks tab (define_clock constraint). Apply the constraint
according to the source of the internal clock.

4. For signals other than clocks, define frequencies with the
syn_reference_clock attribute. You can add this attribute on the SCOPE
Attributes tab.

You might need to do this if your design uses an enable signal as a
clocking signal because of limited clocking resources. If the enable is
slower than the clock, defining the enable frequency separately instead
slowing down the clock frequency ensures more accuracy. If you slow
down the clock frequency, it affects all other registers driven by the
clock, and can result in longer run times as the tool tries to optimize a
non-critical path.

Source Add SCOPE constraint/define_clock to...

Register Register.

Instance, like a PLL
or clock DLL

Instance. If the instance has more than one clock
output, apply the clock constraints to each of the
output nets, making sure to use the n: prefix (to
signify a net) in the SCOPE table.

Combinatorial logic Net. Make sure to use the n: prefix in the SCOPE
interface.

Setting Constraints in the SCOPE Window Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-31

Define this attribute as follows:

– Define a dummy clock on the Clocks tab (define_clock constraint).

– Add the syn_reference_clock attribute (Attributes tab) to the affected
registers to apply the clock. In the constraint file, you can use the Find
command to find all registers enabled by a particular signal and then
apply the attribute:

define_clock -virtual dummy -period 40.0
define_attribute {find -reg -enable en40}

syn_reference_clock dummy

5. For Altera PLLs and Xilinx DCMs and DLLs, define the clock at the
primary inputs.

– For Altera PLLs, you must define the input frequency, because the
synthesis software does not use the input value you specified in the
Megawizard software. The synthesis tool assigns all the PLL outputs
to the same clock group. It forward-annotates the PLL inputs.

– If needed, use the Xilinx properties directly to define the DCMs and
DLLs. The synthesis software assigns defined DCMs and DLLs to the
same clock group, because it considers these clocks to be related. It
forward-annotates the DLL/DCM inputs. The following shows some
examples of the properties you can specify

6. After synthesis, check the Performance Summary section of the log file for a
list of all the defined and inferred clocks in the design.

7. If you do not meet timing goals after place-and-route, adjust the clock
constraint as follows:

– Open the SCOPE window with the clock constraint.

– In the Route column for the constraint, specify the actual route delay
(in nanoseconds), as obtained from the place-and-route results.
Adding this constraint is equivalent to putting a register delay on all
the input registers for that clock.

– Resynthesize your design.

DLLs Phase shift and frequency multiplication properties like
duty_cycle_correction and clkdv_divide

DCMs DCM properties like clkfx_multiply and clkfx_divide

LO

Chapter 3: Constraints, Attributes, and Options Setting Constraints in the SCOPE Window

3-32 Fpga User Guide, December 2005

Defining Other Clock Requirements
Besides clock frequency (described in Defining Clock Frequency, on
page 3-29), you can also set other clock requirements, as follows:

1. If you have limited clock resources, define clocks that do not need a
clock buffer by attaching the syn_noclockbuf attribute to an individual
port, or the entire module/architecture.

2. Define the relationship between clocks by setting clock domains. By
default, each clock is in a separate clock group named default_clkgroup<n>
with a sequential number suffix. All inferred and other clocks that use
the global frequency are in the same clock group.

– On the SCOPE Clocks tab, group related clocks by putting them into
the same clock group. Use the Clock Group field to assign all related
clocks to the same clock group.

– Make sure that unrelated clocks are in different clock groups. If you
do not, the software calculates timing paths between unrelated clocks
in the same clock group, instead of treating them as false paths.

The software does not check design rules, so it is best to define the
relationship between clocks as completely as possible.

3. Define all gated clocks with the define_clock constraint.

Avoid using gated clocks to eliminate clock skew. If possible, move the
logic to the data pin instead of using gated clocks. If you do use gated
clocks, you must define them explicitly, because the software does not
propagate the frequency of clock ports to gated clocks.

To define a gated clock, attach the define_clock constraint to the clock
source, as described above for internal clocks. To attach the constraint
to a keepbuf (a keepbuf is a placeholder instance for clocks generated from
combinatorial logic), do the following:

– Attach the syn_keep attribute to the gated clock to ensure that it
retains the same name through changes to the RTL code.

– Attach the define_clock constraint to the keepbuf generated for the gated
clock.

4. Specify edge-to-edge clock delays on the Clock to Clock tab
(define_clock_delay).

Setting Constraints in the SCOPE Window Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-33

5. After synthesis, check the Performance Summary section of the log file for a
list of all the defined and inferred clocks in the design.

Defining Input and Output Constraints
In addition to setting I/O delays in the SCOPE window as described in Setting
Clock and Path Constraints, on page 3-26, you can also set the Use clock period
for unconstrained IO option.

1. Open the SCOPE window, click Inputs/Outputs, and select the port
(Port).You can set the constraint for

– All inputs and outputs (globally in the top-level netlist)

– For a whole bus

– For single bits

You can specify multiple constraints for the same port. The software
applies all the constraints; the tightest constraint determines the worst
slack. If there are multiple constraints from different levels, the most
specific overrides the more global. For example, if there are two bit
constraints and two port constraints, the two bit constraints override the
two port constraints for that bit. The other bits get the two port
constraints.

2. Specify the constraint value in the SCOPE window:

– Select the type of delay: input or output (Type).

– Type a delay value (Value).

– Check the Enabled box, and save the constraint file in the project.

Make sure to specify explicit constraints for each I/O path you want to
constrain.

3. To determine how the I/O constraints are used during synthesis, do the
following:

– Select Project->Implementation Options, and click Constraints.

– To use only the explicitly defined constraints, enable Use clock period for
unconstrained IO.

LO

Chapter 3: Constraints, Attributes, and Options Setting Constraints in the SCOPE Window

3-34 Fpga User Guide, December 2005

– To synthesize with all the constraints, using the clock period for all
I/O paths that do not have an explicit constraint, disable Use clock
period for unconstrained IO.

– Synthesize the design. When you forward-annotate the constraints,
the constraints used for synthesis are forward-annotated.

4. If you do not meet timing goals after place-and-route and you need to
adjust the input constraints, do the following:

– Open the SCOPE window with the input constraint.

– In the Route column for the input constraint, specify the actual route
delay in nanoseconds, as obtained from the place-and-route results.
Adding this constraint is equivalent to putting a register delay on the
input register.

– Resynthesize your design.

Defining Multicycle Paths
To define a multicycle path constraint, use the Tcl define_multicycle_path
command, or select the SCOPE Multicycle tab and do the following;

1. Select a port or register in the From or To columns, or a net in the Through
column. You must set at least one From, To, or Through point. You can use
a combination of these points. See Defining From/To/Through for Timing
Exceptions, on page 3-35 for more information.

2. Select another port or register if needed (From/To/Through).

3. Type the number of clock cycles (Cycles).

4. Specify the clock period to use for the constraint by going to the Start/End
column, and selecting either Start or End.

If you do not explicitly specify this, the software uses the end clock
period. The constraint is now calculated as follows, where the
clock_distance is the shortest distance between the triggering edges of the
start and end clocks. The reference_clock_period is either the start clock
period or the end clock period, depending on what you specified.

multicycle_distance = clock_distance + (m-1) * reference_clock_period

5. Check the Enabled box.

Setting Constraints in the SCOPE Window Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-35

Defining From/To/Through for Timing Exceptions
For multicycle path, false path, and maximum path delay constraints, you
must define paths with a combination of From/To/Through points. The following
steps guide you through the details. You must specify at least one From, To, or
Through point.

1. In the From field, identify the starting point for the path. Use the
appropriate prefix for the object.

The starting point can be a register, top-level input or bidirectional port,
or black box. To specify multiple starting points, like all the bits of a bus,
enclose them in square brackets: A[0:15].

Where there are multiple constraints, the software uses the following
priority constraints:

– Bit constraints override bus constraints. Given a constraint From
A[0:15] to B, and a second From A[8] to B, only the second constraint
applies to paths starting from A[8]. The first constraint applies to
paths starting from A[0:7, 9:15].

– If the previous rule does not apply and there are multiple constraints,
the tightest constraint prevails. If there is a 3-cycle constraint From A
To B, and a 4-cycle constraint From A To B Through C, all paths starting
at A and ending at B (including paths that cross C) get a 3-cycle
constraint.

– If you specify multiple start points and multiple end points such as
From A[0:15] to B[0:15], the constraint applies from any start point to any
end point. In this example, the exception applies to all 16 * 16 = 256
combinations of start/end points.

2. In the To field, identify the ending point for the path. Use the appropriate
prefix for the object.

The ending point can be a register, top-level output or bidirectional port,
or black box. To specify multiple ending points, like all the bits of a bus,
enclose them in square brackets: B[0:15]. In the case of multiple
constraints, the priority rules described in the previous step apply.

3. For a single through point, you can either type in the net name (prefixed
by n:) or follow the steps below. The through point must be a net.

– Click in the Through field and click the arrow. This opens the Product of
Sums (POS) interface.

LO

Chapter 3: Constraints, Attributes, and Options Setting Constraints in the SCOPE Window

3-36 Fpga User Guide, December 2005

– Either type the net name with the n: prefix in the first cell or drag the
net from a HDL Analyst view into the cell.

– Click Save.

For example, if you specify n:net1, the constraint applies to any path
passing through net1.

4. To specify an OR when constraining a list of through points, you can type
the net names in the Through field (see the following figure}. Alternatively,
do the following

– Click in the Through field and click the arrow. This opens the Product of
Sums interface.

– Either type the first net name in a cell in a Prod row or drag the net
from a HDL Analyst view into the cell. Repeat this step along the
same row, adding other nets in the Sum columns. The nets in each
row form an OR list.

– Alternatively, select Along Row in the SCOPE POS interface. In an HDL
Analyst view, select all the nets you want in the list of through points.
Drag the selected nets and drop them into the POS interface. The tool
fills in the net names along the row. The nets in each row form an OR
list.

– Click Save.

The constraint works as an OR function and applies to any path passing
through any of the specified nets. In the example shown in the previous

Setting Constraints in the SCOPE Window Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-37

figure, the constraint applies to any path that passes through net1 or
net2.

5. To specify an AND when constraining a list of through points, type the
names in the Through field (see the following figure) or do the following:

– Open the Product of Sums interface (see previous step).

– Either type the first net name in the first cell in a Sum column or drag
the net from a HDL Analyst view into the cell. Repeat this step down
the same Sum column.

– Alternatively, select Down Column in the SCOPE POS interface. In an
HDL Analyst view, select all the nets you want in the list of through
points. Drag the selected nets and drop them into the POS interface.
The tool fills in the net names down the column.

The constraint works as an AND function and applies to any path
passing through all the specified nets. In the previous figure, the
constraint applies to any path that passes through net1 and net3.

6. To specify an AND/OR constraint for a list of through points, type the
names in the Through field (see the following figure) or do the following:

– Create multiple lists as described in the previous 2 steps.

– Click Save.

LO

Chapter 3: Constraints, Attributes, and Options Setting Constraints in the SCOPE Window

3-38 Fpga User Guide, December 2005

In this example, the synthesis tool applies the constraint to the paths
through all points in the lists as follows:

net1 AND net3
OR net1 AND net4
OR net2 AND net3
OR net2 AND net4

Defining False Paths
You define false paths by setting constraints explicitly on the False Paths tab
or implicitly on the Clock or Clock to Clock tabs. You can also define false paths
with the corresponding define_false_path, define_clock, and define_clock_delay Tcl
commands.

1. To define a false path between ports or registers, select the SCOPE False
Paths tab, and do the following:

– Select the port or register (From/To/Through). See Defining
From/To/Through for Timing Exceptions, on page 3-35 for more
information.

– Select another port or register if needed (From/ To/Through).

– Check the Enabled box.

Setting Constraints in the SCOPE Window Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-39

The software treats this is as an explicit false constraint and assigns it
the highest priority. Any other constraints on this path are ignored.

2. To define a false path between two clock edges, select the SCOPE Clock to
Clock tab, and do the following:

– Specify one clock as the starting clock edge (From Clock Edge).See
Defining From/To/Through for Timing Exceptions, on page 3-35 for
more information.

– Specify the other clock as the ending clock edge (To Clock Edge).

– Click in the Delay column, and select false.

– Mark the Enabled check box.

Use this technique to specify a false path between any two clocks,
regardless of whether their clock groups. This constraint can be
overridden by a maximum delay constraint on the same path.

3. To define a false path between two clocks, select the SCOPE Clocks tab,
and assign the clocks to different clock groups:

The software implicitly assumes a false path between clocks in different
clock groups. This false path constraint can be overridden by a
maximum path delay constraint, or with an explicit constraint as
described in the next step.

4. To override an implicit false path between any two clocks (see the
previous step), set an explicit constraint between the clocks by selecting
the SCOPE Clock to Clock tab, and doing the following:

– Specify the starting (From Clock Edge) and ending clock edges (To Clock
Edge) as described in step 2.

– Specify a value in the Delay column.

– Mark the Enabled check box.

The software treats this is as an explicit constraint. You can use this
method to constrain a path between any two clocks, regardless of
whether they belong to the same clock group.

5. To set an implicit false path on a path to/from an I/O port, select Project-
>Implementation Options->Constraints, and disable Use clock period for
unconstrained IO.

LO

Chapter 3: Constraints, Attributes, and Options Setting Constraints in the SCOPE Window

3-40 Fpga User Guide, December 2005

Specifying Standard I/O Pad Types
For certain Actel, Altera, and Xilinx technologies, you can specify a standard
I/O pad type to use in the design. The equivalent Tcl command is
define_io_standard.

1. Open the SCOPE window and go to the I/O Standard tab.

2. In the Port column, select the port. This determines the port type in the
Type column.

3. Enter an appropriate I/O pad type in the I/O Standard column. The
Description column shows a description of the I/O standard you selected.

For details of supported I/O standards for different vendors, refer to the
relevant section in the Reference Manual: Actel I/O Standards, on
page 7-40, Altera I/O Standards, on page 7-40, and Xilinx I/O
Standards, on page 7-42.

4. Where applicable, set other parameters like drive strength, slew rate,
and termination.

You cannot set these parameter values for industry I/O standards
whose parameters are defined by the standard.

The software stores the pad type specification and the parameter values
in the syn_padtype attribute. When you synthesize the design, the I/O
specifications are mapped to the appropriate I/O pads within the
technology.

Setting Constraints in the SCOPE Window Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-41

Setting SCOPE Display Preferences
You can set format and colors in the SCOPE window. The following table lists
some preferences and shows you how to set them.

To... Do this...

Set the appearance of
lines and buttons in
the SCOPE table

With a SCOPE window open, select View-> Properties.
Set the options you want on the Display Settings form.
Check the Save settings to profile option if you want to
settings to be the default.

Set fonts, colors, and
borders for a row

Select a SCOPE row.
Select Format -> Style.
On the Styles form, check Save as Default if you want the
new settings to be the default.
Select the category you want to change (Row Header or
Standard), and click Change.
Set the display options you want and click OK on both
forms.

Set fonts, colors, and
borders for a column

Select a SCOPE row.
Select Format -> Style.
On the Styles form, check Save as Default if you want the
new settings to be the default.
Select the category you want to change (Column Header or
Standard), and click Change.
Set the display options you want and click OK on both
forms.

Set fonts, colors, and
borders for a single
cell

Select a SCOPE cell.
Select Format -> Cells.
Set the display options you want and click OK.

Align text in columns
and rows

Select a column or row in the SCOPE window.
Select Format -> Align.
Click the alignment you want and click OK.

Size columns/rows to
text

Select a column or row in the SCOPE window.
Select Format -> Resize Rows or Format -> Resize Columns.

Hide/show cells Select a SCOPE cell.
Select Format -> Cover Cells to hide a cell.
Select Format -> Remove Covering to show a hidden cell.

LO

Chapter 3: Constraints, Attributes, and Options Setting Constraints in the SCOPE Window

3-42 Fpga User Guide, December 2005

Translating Xilinx UCF Constraints
If you have a Xilinx UCF file with timing constraints or pad constraints, you
can translate these constraints to the sdc format and use them to drive
synthesis.

1. Make sure the UCF file has a .ucf extension.

2. From the command line, run the translator on the UCF file.

The translator is in the bin directory: <install_dir>/bin/edf2srs.exe. Use the
following syntax:

edf2srs -osyn <sdc_file> –ucf <ucf_file>

The translator generates a constraint file in the .sdc format, which
contains the timing-related constraints from the UCF file that are
relevant to synthesis. It ignores the other backend constraints in the
UCF file. The following table shows the UCF constraints that can be
translated:

3. Use the generated .sdc file to drive synthesis.

Supported on INST, NET, PIN, SET Supported on NET

AREA_GROUP PHASE_SHIFT
BLKNM REG
BUFG RLOC
DRIVE RLOC_ORIGIN
FAST SLEW
HBLKNM SLOW
HU_SET STARTUP_WAIT
IOB TIMEGRP
IOBDELAY TIMESPEC
IOSTANDARD TNM
KEEP_HIERARCHY TNM_NET
LOC TPSYNC
MAP TPTHRU
OPT_EFFORT U_SET
OPTIMIZE USE_RLOC
PERIOD XBLKNM

COLLAPSE
MAXDELAY
MAXSKEW
OPEN_DRAIN
PULLDOWN
PULLUP
USELOWSKEWLINES
WIREAND

Setting Constraints in the SCOPE Window Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-43

Converting Pin Location Constraint Files in the Synplify
Premier Tool

You can automatically convert place-and-route pin loc constraint files to
SCOPE constraint files (.sdc) using Run->Translate Constraints. The following
subsections provide information on how to translate these files for Altera and
Xilinx, respectively.

Altera PIN File
To translate a .pin file to an .sdc file:

1. Select Run ->Translate Constraints.

2. Enter the .pin file you want to translate and the name of the .sdc pin loc
constraint file you wish to create.

Figure 3-1: .pin File to .sdc File

3. Click on Add to Project, as appropriate, then click OK.

Xilinx PAD File
To translate a .pad file to a .sdc file:

1. Select Run ->Translate Constraints.

2. Enter the .pad file you want to translate and the name of the .sdc pin loc
constraint file you wish to create.

LO

Chapter 3: Constraints, Attributes, and Options Setting Constraints in the SCOPE Window

3-44 Fpga User Guide, December 2005

Figure 3-2: .pad File to .sdc File

3. Click on Add to Project, as appropriate, then click OK.

Using Auto Constraints Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-45

Using Auto Constraints
Auto constraining is available for certain technologies in both Synplify Pro
and Synplify Premier, however, the Physical Synthesis option must be disabled
in the Synplify Premier tool. You can synthesize with automatic constraints
as a first step to get an idea of what you can achieve. Automatic constraints
generate the fastest design implementation, so they force the timing engine to
work harder. Based on the results from auto-constraining, you can refine the
constraints manually later. For an explanation of how auto constraints work,
see Auto Constraints, on page 7-4 in the Reference Manual.

1. To automatically constrain your design, first do the following:

– Set your device to a technology that supports auto-constraining. With
supported technologies, the Auto Constrain button under Frequency in
the Project view is available.

– Do not define any clocks. If you define clocks using the SCOPE
window or a constraint file, or set the frequency in the Project view,
the software uses the user-defined define_clock constraints instead of
auto constraints.

– Make sure any multicycle or false path constraints are specified on
registers.

2. Enable the Auto Constrain button on the left side of the Project view.
Alternatively, select Project->Implementation Options->Constraints, and enable
the Auto Constrain option there.

LO

Chapter 3: Constraints, Attributes, and Options Using Auto Constraints

3-46 Fpga User Guide, December 2005

3. If you want to auto constrain I/O paths, select Project->Implementation
Options->Constraints and enable Use Clock Period for Unconstrained IO.

If you do not enable this option, the software only auto constrains flop-
to-flop paths. Even when the software auto constrains the I/O paths, it
does not generate these constraints for forward-annotation.

4. Synthesize the design.

The software puts each clock in a separate clock group and adjusts the
timing of each clock individually. At different points during synthesis it
adjusts the clock period of each clock to be a target percentage of the
current clock period, usually 15% - 25%.

After the clocks, the timing engine constrains I/O paths by setting the
default combinational path delay for each I/O path to be one clock
period.

The software writes out the generated constraints in a file called
AutoConstraint_<design_name>.sdc in the run directory. It also
forward-annotates these constraints to the place-and-route tools.

5. Check the results in AutoConstraint_<design_name>.sdc and the log
file. To open the .sdc file as a text file, right-click the file in the
Implementation Results view and select Open as Text.

The flop-to-flop constraints use syntax like the following:

define_clock -name {b:leon|clk} -period 13.327 -clockgroup
Autoconstr_clkgroup_0 -rise 0.000 -fall 6.664 -route 0.000

6. You can now add the generated .sdc file to the project and rerun
synthesis with these constraints.

Using Collections Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-47

Using Collections
A collection is a group of objects. It can consist of just one object, or of other
collections. You can set the same constraint for multiple objects if you group
them together in a collection. You can either define collections in the SCOPE
window or type the commands in the Tcl script window. The Synplify tool
does not support collections.

• Comparing Methods for Defining Collections, next

• Creating and Using Collections (SCOPE Window), on page 3-48

• Creating Collections (Tcl Commands), on page 3-51

• Using the Tcl Find Command to Define Collections, on page 3-53

• Using the Expand Tcl Command to Define Collections, on page 3-55

• Viewing and Manipulating Collections (Tcl Commands), on page 3-56

Comparing Methods for Defining Collections
The find and expand Tcl commands that are used to define collections in the
Synplify Premier and Synplify Pro software can either be entered in the Tcl
script window or in the SCOPE window. It is recommended that you use the
SCOPE interface for two reasons:

• When you use the SCOPE interface, the software uses the top-level
database to find objects, which is a good practice. The Tcl window
commands are based on the current Analyst view. If you use the Tcl
script window to type in a command after mapping, the search is based
on the mapped database, which could have instances that have been
renamed, replicated, or removed.

Similarly, the current Analyst view could be a lower-level view. In the
design shown above, if you push down into B, and then type find -hier
a* in the Tcl window, the command finds a3 and a4. However if you cut

a2

Top B

a1

a3a4

LO

Chapter 3: Constraints, Attributes, and Options Using Collections

3-48 Fpga User Guide, December 2005

and paste the same command into the SCOPE Collections tab, your
results would include a1, a2, a3, and a4, because the SCOPE interface
uses the top-level database and searches the entire hierarchy.

• If you use the Tcl script window, you have to redefine the collection the
next time you open the project. When you define a collection in the
SCOPE window, the software saves the information in the constraint file
for the project.

• You cannot apply constraints to collections defined in the Tcl script
window, but you can apply constraints and attributes to SCOPE collec-
tions.

Creating and Using Collections (SCOPE Window)
The following procedure shows you how to define collections in the Synplify
Pro or Synplify Premier SCOPE window. You can also type the commands
directly in the Tcl script window (Creating Collections (Tcl Commands), on
page 3-51). See Comparing Methods for Defining Collections, on page 3-47 for
a comparison of the two methods.

1. Define a collection by doing the following:

– Open the SCOPE window and click the Collections tab.

– In the Collection Name column, type a name for the collection. This is
equivalent to defining the collection with the set command, as
described in Creating Collections (Tcl Commands), on page 3-51.

– In the Commands column, select find or expand. For tips on using these
commands, see Using the Tcl Find Command to Define Collections, on
page 3-53 and Using the Expand Tcl Command to Define Collections,
on page 3-55. For complete syntax details, see the Reference Manual.

Using Collections Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-49

If you cut and paste a Tcl Find command from the Tcl window into the
SCOPE Collections tab, remember that the SCOPE interface works on
the top-level database, while the Find command in the Tcl window
works on the current level displayed in the Analyst view. See
Comparing Methods for Defining Collections, on page 3-47.

– In the Command Arguments column, type only the arguments to the
command you set in the Commands column, so that you locate the
objects you want. Do not repeat the command itself. For details of the
syntax, see the Reference Manual. Objects in a collection do not have
to be of the same type. The collections defined above do the following:

The collections you define appear in the SCOPE pull-down object
lists, so you can use them to define constraints.

– To crossprobe the objects selected by the find and expand commands,
click Select in the Select in Analyst column. The schematic views
highlight the objects located by these commands. For other viewing
operations, see Viewing and Manipulating Collections (Tcl Commands),
on page 3-56.

2. To create a collection that is made up of other collections, do this:

– Define the collections as described in the previous step. These
collections must be defined before you can concatenate them or add
them together in a new collection.

– To concatenate collections or add to collections, type a name for the
new collection in the Collection Name column. Set Commands to one of
the operator commands like c_union or c_diff. Type the appropriate
arguments in Command Arguments. See Creating Collections (Tcl
Commands), on page 3-51 for a list of available commands and the
Reference Manual for the complete syntax.

– Click Run Commands. The software runs through the commands in
sequence, so you must first define collections before doing any group
or comparative operations.

Collection Finds...

find_all All components in the module endpMux

find_reg All registers in the module endpMux

find_comb All combinatorial components under endpMux

LO

Chapter 3: Constraints, Attributes, and Options Using Collections

3-50 Fpga User Guide, December 2005

The software saves the information in the constraint file for the project.

3. To apply constraints to a collection do the following:

– Define a collection as described in the previous steps.

– Go to the appropriate SCOPE tab and specify the collection name
where you would normally specify the object name. Collections
defined in the SCOPE interface are available from the pull-down
object lists. The following figure shows the collections defined in step
1 available for setting a false path constraint.

– Specify the rest of the constraint as usual. The software applies the
constraint to all the objects in the collection. See examples of
constraints in Example: Attribute Attached to a Collection, on
page 3-50.

Example: Attribute Attached to a Collection
The following example shows the xc_area_group attribute applied to $find_reg,
which results in all the registers in this collection being placed in the same
region. Check the .srr file, the netlist, and if you are using Synplify Premier,
the Design Planner view to see that the attribute is honored.

Using Collections Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-51

Creating Collections (Tcl Commands)
This section describes how to type in and use the Tcl collection commands
instead of the SCOPE window (Creating and Using Collections (SCOPE
Window), on page 3-48). Although you can type these commands in the Tcl
window (Synplify Premier and Synplify Pro) or put them in a Tcl script, it is
recommended that you use the SCOPE window, for the reasons described in
Comparing Methods for Defining Collections, on page 3-47.

For details of the syntax for the commands described here, refer to Tcl Collec-
tion Commands, on page 5-39 in the Reference Manual.

1. To create a collection, name it with the set command and assign it to a
variable.

A collection can consist of individual objects, Tcl lists (which can have
single elements as arguments), or other collections. Use the Tcl find and
expand commands to locate objects for the collection (see Using the Tcl
Find Command to Define Collections, on page 3-53 and Using the Expand
Tcl Command to Define Collections, on page 3-55). The following example
creates a collection called my_collection which consists of all the modules
(views) found by the find command.

set my_collection [find -view {*}]

2. To create collections derived from other collections, do the following:

– Define a new variable for the collection.

– Create the collection with one of the operator commands from this
table:

To... Use this command...

Add objects to a collection c_union. See Examples: c_union
Command, on page 3-52

Concatenate collections c_union. See Examples: c_union
Command, on page 3-52.

Create a collection from the
differences between collections

c_diff. See Examples: c_diff Command, on
page 3-52.

Create a collection from common
objects in collections

c_intersect. See Examples: c_intersect
Command, on page 3-52.

Find objects that belong to just
one collection

c_symdiff. See Examples: c_symdiff
Command, on page 3-53.

LO

Chapter 3: Constraints, Attributes, and Options Using Collections

3-52 Fpga User Guide, December 2005

You can now do various operations on the objects in the collection (see
Viewing and Manipulating Collections (Tcl Commands), on page 3-56),
but you cannot apply constraints to the collection.

Examples: c_union Command
This example adds the reg3 instance to collection1, which contains reg1 and
reg2 and names the new collection sumCollection.

set sumCollection [c_union collection1 {i:reg3}]
c_list $sumCollection

{“i:reg1” “i:reg2” “i:reg3}

If you added reg2 and reg3 with the c_union command, the command removes
the redundant instances (reg2) so that the new collection would still consist of
reg1, reg2, and reg3.

This example concatenates collection1and collection2 and names the new
collection combined_collection:

set combined_collection [c_union $collection1 $collection2]

Examples: c_diff Command
This example compares a list to a collection (collection1) and creates a new
collection called subCollection from the list of differences:

set collection1 {i:reg1 i:reg2}
set subCollection [c_diff collection1 {i:reg1}]
c_print $subCollection

“i:reg2”

You can also use the command to compare two collections:

set reducedCollection [c_diff $collection1 $collection2]

Examples: c_intersect Command
This example compares a list to a collection (collection1) and creates a new
collection called interCollection from the objects that are common:

set collection1 {i:reg1 i:reg2}
set interCollection [c_intersect collection1 {i:reg1 i:reg3}]
c_print $interCollection

“i:reg1”

Using Collections Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-53

You can also use the command to compare two collections:

set common_collection [c_intersect $collection1 $collection2]

Examples: c_symdiff Command
This example compares a list to a collection (collection1) and creates a new
collection called diffCollection from the objects that are different. In this case,
reg1 is excluded from the new collection because it is in the list and collection1.

set collection1 {i:reg1 i:reg2}
set diffCollection [c_symdiff collection1 {i:reg1 i:reg3}]
c_list $diffCollection

{“i:reg2” “i:reg3”}

You can also use the command to compare two collections:

set symdiff_collection [c_symdiff $collection1 $collection2]

Using the Tcl Find Command to Define Collections
It is recommended that you use the SCOPE window rather than the Tcl
window described here to specify the find command, for the reasons described
in Comparing Methods for Defining Collections, on page 3-47.

The Tcl find command returns a collection of objects. If you want to create a
collection of connectivity-based objects, use the Tcl expand command instead
of find (Using the Expand Tcl Command to Define Collections, on page 3-55).
This section lists some tips for using the Tcl find command.

1. Tcl find always searches at the top-level of your design, irregardless of
the current Analyst view.

2. Create a collection by typing the find command and assigning the results
to a variable. The following example finds all instances with a primitive
type DFF and assigns the collection to the variable $result:

set result [find -hier -inst {*} -filter @ view == FDE]

The result is a random number like s:49078472, which is the collection of
objects found. For a list of some useful find commands, see Examples:
Useful Find Commands, on page 3-55.

LO

Chapter 3: Constraints, Attributes, and Options Using Collections

3-54 Fpga User Guide, December 2005

3. The following table lists some usage tips for specifying the find command.
For the full details of the syntax, refer to Tcl find Command, on
page 5-48 of the Reference Manual.

Case rules Use the case rules for the language from which the
object was generated:
• VHDL: case-insensitive
• Verilog: case-sensitive. Make sure that the object

name you type in the SCOPE window matches the
Verilog name.

For Synplify Pro and Synplify Premier mixed language
designs, use the case rules for the parent module.
This example finds any object in the current view that
starts with either a or A:

find {a*} -nocase

Pattern matching You have two choices:
• Specify the -regexp argument, and then use regular

expressions for pattern matching.
• Do not specify -regexp, and use only the * and ?

wildcards for pattern matching.

Restricting search by
type of object

Use the -object_type argument. The following
command finds all nets that contain syn.

find -net {*syn*}

Restricting search to
hierarchical levels
below the current view

Use the -hier argument. The following example finds
all objects below the current view that begin with a:

find {a*} -hier

Restricting search by
object property

• Select Project->Implementation Options. On the
Options tab, enable Annotated Properties for Analyst.

• Compile or synthesize the design. After the compile
stage, the tool annotates the design with properties
like clock pins. You can find objects based on these
annotated properties.

• Use the -filter argument to the find command. The
following example finds any register in the current
view that is clocked by myclk.

find -seq {*} -filter {@clock==myclk}
find -seq {*} -clock myclk

Using Collections Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-55

4. Once you have defined the collection, you can view the objects in the
collection, using one of the following methods, which are described in
more detail in Viewing and Manipulating Collections (Tcl Commands), on
page 3-56:

– Select the collection in an HDL Analyst view (select).

– Print the collection using the -print option to the find command.

– Print the collection without carriage returns or properties (c_list).

– Print collection in columns, with optional properties (c_print).

5. To manipulate the objects in the collection, use the commands described
in Viewing and Manipulating Collections (Tcl Commands), on page 3-56.

Examples: Useful Find Commands

Using the Expand Tcl Command to Define Collections
The Tcl expand command returns a collection of objects that are logically
connected between the specified expansion points. This section contains tips
on using the Tcl expand command to generate a collection of objects that are
related by their connectivity. For the syntax details, refer to Tcl expand
Command, on page 5-45 in the Reference Manual.

• Specify at least one from, to, or through point as the starting point for
the command. You can use any combination of these points. The
following example expands the cone of logic between reg1 and reg2.

expand -from {i:reg1} -to {i:reg2}

To find... Use a command like this example...

Instances by slack value set result [find –hier –inst {*} –filter @slack <= {-1.000}]

Instance within a slack
range

set result [find –hier –inst {*} –filter @slack <= {-1.000} &&
@slack >= {+1.000}]

Pins by fanin/fanout value set result [find –hier –inst {*.D} –filter @fanin <= {50}]

Sequential components by
primitive type

set result [find –hier –seq {*} –filter @view=={ FDRSE}

LO

Chapter 3: Constraints, Attributes, and Options Using Collections

3-56 Fpga User Guide, December 2005

If you only specify a through point, the expansion stops at sequential
elements. The following example finds all elements in the transitive
fanout and transitive fanin of a clock-enable net:

expand -thru {n:cen}

• To specify the hierarchical scope of the expansion, use the -hier
argument. If you do not specify this argument, the command only works
on the current view. The following example expands the cone of logic to
reg1, including instances below the current level:

expand -hier -to {i:reg1}

If you only specify a through point, you can use the -level argument to
specify the number of levels of expansion. The following example finds
all elements in the transitive fanout and transitive fanin of a clock-
enable net across one level of hierarchy:

expand -thru {n:cen} -level 1

• To restrict the search by type of object, use the -object_type argument.
The following command finds all pins driven by the specified pin.

expand -pin -from {t:i_and3.z}

• To print a list of the objects found, either use the -print argument to the
find command, or use the c_print or c_list commands (see Creating Collec-
tions (Tcl Commands), on page 3-51).

Viewing and Manipulating Collections (Tcl Commands)
The following section describes various operations you can do on the collec-
tions you defined. For full details of the syntax, see Tcl Collection Commands,
on page 5-39 in the Reference Manual.

1. To view the objects in a collection, use one of the methods described in
subsequent steps:

– Select the collection in an HDL Analyst view (step 2).

– Print the collection without carriage returns or properties (step 3).

– Print the collection in columns (step 4).

– Print the collection in columns with properties (step 5).

Using Collections Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-57

2. To select the collection in an HDL Analyst view, type select <collection>.

For example, select $result highlights all the objects in the $result collec-
tion.

3. To print a simple list of the objects in the collection, uses the c_list
command, which prints a list like the following:

{i:EP0RxFifo.u_fifo.dataOut[0]} {i:EP0RxFifo.u_fifo.dataOut[1]}
{i:EP0RxFifo.u_fifo.dataOut[2]} ...

The c_list command prints the collection without carriage returns or
properties. Use this command when you want to perform subsequent Tcl
commands on the list. See Example: c_list Command, on page 3-59.

4. To print a list of the collection objects in column format, use the c_print
command. For example, c_print $result prints the objects like this:

{i:EP0RxFifo.u_fifo.dataOut[0]}
{i:EP0RxFifo.u_fifo.dataOut[1]}
{i:EP0RxFifo.u_fifo.dataOut[2]}
{i:EP0RxFifo.u_fifo.dataOut[3]}
{i:EP0RxFifo.u_fifo.dataOut[4]}
{i:EP0RxFifo.u_fifo.dataOut[5]}

5. To print a list of the collection objects and their properties in column
format, use the c_print command as follows:

– Annotate the design with a full list of properties by selecting Project-
>Implementation Options, going to the Options tab, and enabling Annotated
Properties for Analyst. Synthesize the design. If you do not enable the
annotation option, properties like clock pins will not be annotated as
properties.

– Check the properties available by right-clicking on the object in the
HDL Analyst view and selecting Properties from the popup menu. You
see a window with a list of the properties that can be reported.

– In the Tcl window, type the c_print command with the -prop option. For
example, typing c_print -prop slack -prop view -prop clock $result lists the
objects in the $result collection, and their slack, view and clock
properties.

Object Name slack view clock
{i:EP0RxFifo.u_fifo.dataOut[0]} 0.3223 "FDE" clk
{i:EP0RxFifo.u_fifo.dataOut[1]} 0.3223 "FDE" clk
{i:EP0RxFifo.u_fifo.dataOut[2]} 0.3223 "FDE" clk
{i:EP0RxFifo.u_fifo.dataOut[3]} 0.3223 "FDE" clk
{i:EP0RxFifo.u_fifo.dataOut[4]} 0.3223 "FDE" clk

LO

Chapter 3: Constraints, Attributes, and Options Using Collections

3-58 Fpga User Guide, December 2005

{i:EP0RxFifo.u_fifo.dataOut[5]} 0.3223 "FDE" clk
{i:EP0RxFifo.u_fifo.dataOut[6]} 0.3223 "FDE" clk
{i:EP0RxFifo.u_fifo.dataOut[7]} 0.3223 "FDE" clk
{i:EP0TxFifo.u_fifo.dataOut[0]} 0.1114 "FDE" clk
{i:EP0TxFifo.u_fifo.dataOut[1]} 0.1114 "FDE" clk

– To print out the results to a file, use the c_print command with the -file
option. For example, c_print -prop slack -prop view -prop clock $result -file
results.txt writes out the objects and properties listed above to a file
called results.txt. When you open this file, you see the information in a
spreadsheet format.

6. You can do a number of operations on a collection, as listed in the
following table. For details of the syntax, see Tcl Collection Commands,
on page 5-39 in the Reference Manual.

To... Do this...

Copy a collection Create a new variable for the copy and copy the original
collection to it with the set command. When you make
changes to the original, it does not affect the copy, and
vice versa.

set my_collection_copy $my_collection

List the objects in a
collection

Use the c_print command to view the objects in a
collection, and optionally their properties, in column
format:

“v:top”
“v:block_a”
“v:block_b”

Alternatively, you can use the -print option to an
operation command to list the objects.

Generate a Tcl list
of the objects in a
collection

Use the c_list command to view a collection or to convert
a collection into a Tcl list. You can manipulate a Tcl list
with standard Tcl commands. In addition, the Tcl
collection commands work on Tcl lists.
This is an example of c_list results:

{“v:top” “v:block_a” “v:block_b”}
Alternatively, you can use the -print option to an
operation command to list the objects.

Iterate through a
collection

Use the c_foreach command. This example iterates
through all the objects in the collection:
c_foreach port [find -port *] {
define_false_path -from $port

Using Collections Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-59

Example: c_list Command
The following provides a practical example of how to use the c_list command.
This example first finds all the CE pins with a negative slack that is less than
0.5 ns and groups them in a collection:

set get_components_list [c_list [find -hier -pin {*.CE} -filter
@slack < {0.5}]]

The c_list command returns a list:

{t:EP0RxFifo.u_fifo.dataOut[0].CE} {t:EP0RxFifo.u_fifo.dataOut[1].CE}
{t:EP0RxFifo.u_fifo.dataOut[2].CE} ..

You can use the list to find the terminal (pin) owner:

proc terminal_to_owner_instance {terminal_name terminal_type} {
regsub -all $terminal_type$ $terminal_name {} suffix
regsub -all {^t:} $suffix {i:} prefix
return $prefix
}

foreach get_component $get_components_list {
append owner [terminal_to_owner_instance $get_component {.CE}]

" "
}

puts "terminal owner is $owner"

This returns the following, which shows that the terminal (pin) has been
converted to the owning instance:

terminal owner is i:EP0RxFifo.u_fifo.dataOut[0]
i:EP0RxFifo.u_fifo.dataOut[1] i:EP0RxFifo.u_fifo.dataOut[2]

LO

Chapter 3: Constraints, Attributes, and Options Working with Constraint Files

3-60 Fpga User Guide, December 2005

Working with Constraint Files
Constraint files are text files that are automatically generated by the SCOPE
interface (see Setting Constraints in the SCOPE Window, on page 3-18), or
which you create manually with a text editor. They contain Tcl commands or
attributes that constrain the synthesis run. Alternatively, you can set
constraints in the source code, but it is not the preferred method.

This section contains information about

• When to Use Constraint Files over Source Code, next

• Tcl Syntax Guidelines for Constraint Files, on page 3-61

• Using a Text Editor for Constraint Files, on page 3-62

• Generating Constraint Files for Forward Annotation, on page 3-64

When to Use Constraint Files over Source Code
You can add constraints in constraint files (generated by SCOPE interface or
entered in a text editor) or in the source code. In general, it is better to use
constraint files, because you do not have to recompile for the constraints to
take effect. It also makes your source code more portable.

However, if you have black box timing constraints like syn_tco, syn_tpd, and
syn_tsu, you must enter them as directives in the source code. Unlike
attributes, directives can only be added to the source code, not to constraint
files. See Adding Attributes and Directives, on page 3-66 for more information
on adding directives to source code.

Working with Constraint Files Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-61

Tcl Syntax Guidelines for Constraint Files
This section covers general guidelines for using Tcl for constraint files:

• Pay attention to case, because Tcl is case-sensitive.

• Remember these rules when naming objects:

– Make sure that object names match the names in the HDL code.

– Enclose all instance and port names with curly braces { }.

– Do not use spaces in names.

– Use periods as separators in hierarchical names

– In Verilog modules, use the following syntax for instance, port, and
net names, where cell is the name of the design entity, prefix is a
prefix to identify objects with the same name, and object_name is an
instance path with periods as separators:

v:cell[prefix:]object_name

– Use the following syntax for instance, port, and net names in VHDL
modules, where v: identifies it as a view object, lib is the name of the
library, cell is the name of the design entity, view is a name for the
architecture, prefix is a prefix to identify objects with the same
name, and object_name is an instance path with periods as
separators. You only need view if there is more than one architecture
for the design. See the preceding table for the prefixes for different
objects.

v:cell[.view] [prefix:]object_name

• Use the * and ? wildcards to match names. The asterisk matches any
number of characters, and the question mark matches a single
character. These characters do not match periods that are used as

Prefix (Lower-case) Object

i: Instance names

p: Port names (entire port)

b: Bit slice of a port

n: Net names

LO

Chapter 3: Constraints, Attributes, and Options Working with Constraint Files

3-62 Fpga User Guide, December 2005

hierarchy separators. For example, you can use the following to identify
all bits of the statereg instance in the statemod module:

statemod | i: statereg[*]

Using a Text Editor for Constraint Files
This section shows you how to manually create a Tcl constraint file. The
software automatically creates this file if you use the SCOPE interface to
enter the constraints. The Tcl constraint file only contains general timing
constraints. Black box constraints must be entered in the source code. For
details of the Tcl commands, refer to the Reference Manual. For additional
information, see When to Use Constraint Files over Source Code, on page 3-60.

1. Open a file for editing.

– Make sure you have closed the SCOPE window, or you could
overwrite previous constraints.

– To create a new file, select File->New, and select the Constraint File
(SCOPE) option. Type a name for the file and click OK.

– To edit an existing file, select File->Open, set the Files of Type filter to
Constraint Files (.sdc) and open the file you want.

2. Follow the syntax guidelines in Tcl Syntax Guidelines for Constraint Files,
on page 3-61.

3. Enter the timing constraints you need. For the syntax, see the Reference
Manual. If you have black box timing constraints, you must enter them
in the source code.

To define... Use...

Clock frequencies define_clock. See Defining Clocks, on
page 3-28 for additional information.

Clock frequency other than
the one implied by the
signal on the clock pin

syn_reference_clock (attribute). See Defining
Clocks, on page 3-28 for additional information

Clock domains with
asymmetric duty cycles

define_clock. See Defining Clocks, on
page 3-28 for additional information

Edge-to-edge clock delays define_clock_delay. See Defining Clocks,
on page 3-28 for additional information

Working with Constraint Files Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-63

The following code excerpt shows some typical Tcl constraints:

Override the default frequency for clk_fast and set it to run
at 66.0 MHz.

define_clock {clk_fast} -freq 66.0

Set a default input delay of 4 ns
define_input_delay -default 4.0

Except for the "sel" signal, which has an input delay of 8 ns
define_input_delay {sel} 8.0

The outputs have an off-chip delay of 3.0 ns
define_output_delay -default 3.0

Get better results on the critical path going to register
"inst3.q[0]” (in the memory) by adding 3 ns with -improve

define_reg_input_delay {inst3.q[0]} -improve 3.0

4. You can also add vendor-specific attributes in the constraint file using
define_attribute. See Adding Attributes to a Tcl Constraint File, on page 3-73
for more information.

Speed up paths feeding
into a register

define_reg_input_delay.

Speed up paths coming
from a register

define_reg_output_delay.

Input delays from outside
the FPGA

define_input_delay. See Defining Input and
Output Constraints, on page 3-33 for additional
information

Output delays from your
FPGA

define_output_delay. See Defining Input and
Output Constraints, on page 3-33 for additional
information

Paths with multiple clock
cycles

define_multicycle_path. See Defining
From/To/Through for Timing Exceptions, on
page 3-35 for additional information

False paths (certain
technologies)

define_false_path. See Defining False
Paths, on page 3-38 for additional information

Path delays define_path_delay. See Defining
From/To/Through for Timing Exceptions, on
page 3-35 for additional information

To define... Use...

LO

Chapter 3: Constraints, Attributes, and Options Working with Constraint Files

3-64 Fpga User Guide, December 2005

5. Save the file.

6. Add the file to the project as described in Making Changes to a Project,
on page 2-15, and run synthesis.

Generating Constraint Files for Forward Annotation
You can create certain vendor-specific constraint files, where the synthesis
constraints are mapped to the appropriate vendor constraints.

1. Set attributes to control forward annotation.

– To forward-annotate timing constraints for Actel eX, 54sxa,
Axcelerator, 500K, APA, and ProASIC3/3E families, set the clock
period, max delay, input delay, output delay, multiple-cycle paths,
and false paths in the SCOPE interface.

– To forward-annotate I/O constraints (define_input_delay and
define_output_delay) to the .tcl file for APEX designs or the .ncf file for
Xilinx designs, set syn_forward_io_constraints with a value of 1 on the top
level of the design or as a global attribute.

– To forward-annotate clocks for Xilinx DCMs and DLLs, define the
clock at the primary inputs and any Xilinx phase shift and frequency
multiplication properties you need. See Defining Other Clock
Requirements, on page 3-32 for details. The synthesis software
forward-annotates the DLL/DCM inputs.

– To forward-annotate clocks for Altera PLLs, define the input
frequency value. See Defining Other Clock Requirements, on page 3-32
for details. The synthesis software forward-annotates the PLL inputs.

– For some Lattice designs, set the -from and -to false path and
multicycle constraints on the Others tab of the SCOPE interface.

For details about these attributes, see the Reference Manual.

2. Select Project->Implementation Options, and check Write Vendor Constraints in
the Implementation Results tab.

Currently you can forward-annotate constraints for some vendors only.

3. Click OK and run synthesis.

The software converts the synthesis define_input_delay, define_output_delay,
define_clock, define_multicycle_path, define_false_path, define_max_delay, and

Working with Constraint Files Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-65

global frequency constraints into corresponding commands in the
*.acf file for Altera, the *.lp file for Lattice, the filename_sdc.sdc file
for Actel, and the *.ncf file for Xilinx. See the Reference Manual for
details about forward annotation.

4. For Lattice Orca designs, you must copy the constraints into the .prf
file.

– Open the ispLEVER place-and-route tool, and run the Map stage. This
creates a .prf file.

– Copy the .lp file created by the Synplicity software and paste it at the
end of the .prf file. Do not overwrite the .prf file.

LO

Chapter 3: Constraints, Attributes, and Options Adding Attributes and Directives

3-66 Fpga User Guide, December 2005

Adding Attributes and Directives
Attributes and directives are pieces of information that you attach to design
objects to control the way in which your design is analyzed, optimized, and
mapped. Attributes control mapping optimizations and directives control
compiler optimizations. Because of this difference, you must specify direc-
tives in the source code. Attributes can be added from the SCOPE and HDL
Analyst windows as well as in the source code. For further details, refer to
these subtopics:

• Adding Attributes and Directives in VHDL, next

• Adding Attributes and Directives in Verilog, on page 3-68

• Adding Attributes in the SCOPE Window, on page 3-68

• Adding Attributes with the SCOPE Wizard, on page 3-71

• Adding Attributes to a Tcl Constraint File, on page 3-73

• Adding Attributes From the RTL and Technology Views, on page 3-74

Adding Attributes and Directives in VHDL
You can use other methods to add attributes to objects, as listed in Adding
Attributes and Directives, on page 3-66. However, you can specify directives
only in the Verilog or VHDL source code. There are two ways of defining
attributes and directives in VHDL:

• Using the predefined attributes package

• Declaring the attribute each time it is used

Using the Predefined VHDL Attributes Package
The advantage to using the predefined package is that you avoid redefining
the attributes and directives each time you include them in source code. The
disadvantage is that your source code is less portable. The attributes package
is located in product_installation_dir/lib/vhd/synattr.vhd.

Adding Attributes and Directives Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-67

1. To use the predefined attributes package included in the software
library, add these lines to the syntax:

library synplify;
use synplify.attributes.all;

2. Add the attribute or directive you want after the design unit declaration.

<declarations>;
attribute <att_name> of <object_name>:<object_kind> is <value>;

For example:

entity simpledff is
port(q: out bit_vector(7 downto 0);

 d : in bit_vector(7 downto 0);
clk : in bit);

attribute syn_noclockbuf of clk :signal is true;

Fordetails of the syntax conventions, see VHDL Attribute and Directive
Syntax, on page 10-91 in the Reference Manual.

3. Add the source file to the project.

Declaring VHDL Attributes and Directives
If you do not use the attributes package, you must redefine the attributes
each time you include them in source code.

1. Every time you use an attribute or directive, define it immediately after
the design unit declarations as follows:

<design_unit_declaration>;
attribute <att_name> : <data_type>;
attribute <att_name> of <object_name>:<object_kind> is <value>;

For example:

entity simpledff is
port(q: out bit_vector(7 downto 0);

 d : in bit_vector(7 downto 0);
clk : in bit);

attribute syn_noclockbuf : boolean;
attribute syn_noclockbuf of clk :signal is true;

2. Add the source file to the project.

LO

Chapter 3: Constraints, Attributes, and Options Adding Attributes and Directives

3-68 Fpga User Guide, December 2005

Adding Attributes and Directives in Verilog
You can use other methods to add attributes to objects, as described in
Adding Attributes and Directives, on page 3-66. However, you can specify
directives only in the Verilog or VHDL source code.

Verilog does not have predefined synthesis attributes and directives, so you
must add them as comments. Note that the attribute or directive name is
preceded by the keyword synthesis.

1. To add an attribute or directive in Verilog, use Verilog line or block
comment (C-style) syntax directly following the design object. Block
comments must precede the semicolon, if there is one.

For details of the synatx rules, see Verilog Attribute and Directive Syntax,
on page 9-78 in the Reference Manual. The following are examples:

module fifo(out, in) /* synthesis syn_hier = “firm“ */;

module b_box(out, in); // synthesis syn_black_box //

2. To attach multiple attributes or directives to the same object, separate
the attributes with white spaces, but do not repeat the synthesis keyword.
Do not use commas. For example:

case state /* synthesis full_case parallel_case */;

Adding Attributes in the SCOPE Window
The SCOPE window provides an easy-to-use interface to add any attribute.
You cannot use it for adding directives, because they must be added to the
source files. (See Adding Attributes and Directives in VHDL, on page 3-66 or
Adding Attributes and Directives in Verilog, on page 3-68).

1. Start with a compiled design and open the SCOPE window. To add the
attributes to an existing constraint file, open the SCOPE window by
clicking on the existing file in the Project view. To add the attributes to a

Verilog Block Comment Syntax Verilog Line Comment Syntax

/* synthesis <att_name> = <value> */
/* synthesis <dir_name> = <value> */

// synthesis <att_name> = <value>
// synthesis <dir_name> = <value>

Adding Attributes and Directives Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-69

new file, click the SCOPE icon and click Initialize to open the SCOPE
window.

2. Click the Attributes tab at the bottom of the SCOPE window.

You can either select the object first (step 3) or the attribute first (step 4).

3. To specify the object, do one of the following in the Object column. If you
already specified the attribute, the Object column lists only valid object
choices for that attribute.

– Drag the object to which you want to attach the attribute from the
RTL or Technology views to the Object column in the SCOPE window.

– Select the type of object in the Object Filter column, and then select an
object from the list of choices in the Object column.

– Type the name of the object in the Object column. If you do not know
the name, use the Find command or the Object Filter column.

If you specified the object first, you can now specify the attribute. The
list shows only the valid attributes for the type of object you selected.

4. Specify the attribute by holding down the mouse button in the Attribute
column and selecting an attribute from the list. To specify a group of
attributes, use the wizard, as described in Adding Attributes with the
SCOPE Wizard, on page 3-71.

If you selected the object first, the choices available are determined by
the selected object and the technology you are using. If you selected the
attribute first, the available choices are determined by the technology.

When you select an attribute, the SCOPE window tells you the kind of
value you must enter for that attribute and provides a brief description
of the attribute. If you selected the attribute first, make sure to go back
and specify the object.

LO

Chapter 3: Constraints, Attributes, and Options Adding Attributes and Directives

3-70 Fpga User Guide, December 2005

5. Fill out the value. Hold down the mouse button in the Value column, and
select from the list. You can also type in a value.

If you manually type an attribute the software does not recognize, or
select an incompatible attribute/object combination, the attribute cell is
shaded in red.

6. Save the file.

7. Add it to the project, if it is not already in the project.

– Choose Project -> Implementation Options.

– Go to the Options/Constraints panel and check that the file is selected. If
you have more than one constraint file, select all those that apply to
the implementation.

The software saves the SCOPE information in a Tcl constraint file, using
define_attribute statements. When you synthesize the design, the
software reads the constraint file and applies the attributes.

Adding Attributes and Directives Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-71

Adding Attributes with the SCOPE Wizard
The SCOPE attribute wizard provides an easy interface for assigning
attributes to design objects. It is most useful for assigning (or unassigning)
the same attribute value to several objects at once. It provides a convenient
way to enable, disable, and re-enable multiple identical attribute assign-
ments. One common use is to assigning default attribute values. Use the
following procedure.

1. Right-click in the SCOPE spreadsheet Attributes panel, then choose Insert
Wizard from the popup menu (or from the Edit menubar menu).

A dialog box opens.

2. Choose an attribute from the Selection Options pulldown list. The selected
attribute determines the object choices available in the Unselected list. (If
you do not see a list, disable Exclude Duplicates.)

3. Select the objects you want.

– Select the objects, either with the mouse in the Unselected box, or by
using wildcards in the Select Wildcards (*?) field. The objects are
highlighted in the Unselected box.

– Move them to the Selected list by clicking the right arrow (->).
Alternatively, select an object and double-click to move it to the
Selected list.

– Click Next to go to the second dialog box.

LO

Chapter 3: Constraints, Attributes, and Options Adding Attributes and Directives

3-72 Fpga User Guide, December 2005

4. In the second dialog box, do the following:

– Set the value of the attribute, which applies to all the selected objects.

– Enable the attribute to apply the value; disable it to remove the
attribute.

– Click Finish. The attribute is set in the SCOPE spreadsheet and saved
in the constraint file. The SCOPE spreadsheet reflects your choices.

Step 1

Step 2

Adding Attributes and Directives Chapter 3: Constraints, Attributes, and Options

Fpga User Guide, December 2005 3-73

Adding Attributes to a Tcl Constraint File
When you add attributes through the SCOPE window (Adding Attributes in
the SCOPE Window, on page 3-68 and Adding Attributes with the SCOPE
Wizard, on page 3-71), the attributes are automatically added to the
constraint file using the Tcl define_attribute syntax. The following procedure
explains how to add attributes manually to a Tcl constraint file. For informa-
tion about editing the constraints in a constraint file, see Using a Text Editor
for Constraint Files, on page 3-62.

1. In the constraint file, add the attribute and value you want, using the
following define_attribute syntax.

define_attribute {object_name} attribute_name value

Check the descriptions of individual attributes in the Reference Manual
for the exact values and syntax of the attribute.

The following code excerpt shows some attributes set in a constraint file.
Some of the attributes are specific to Xilinx designs:

Assign a location for scalar port "sel".
define_attribute {sel} xc_loc "P139"

Assign a pad location to all bits of a bus.
define_attribute {b[7:0]} xc_loc "P14, P12, P11, P5, P21,

P18, P16, P15"

Assign a fast output type to the pad.
define_attribute {a[5]} xc_fast 1

Use a regular buffer instead of a clock buffer for clock "clk_slow".
define_attribute {clk_slow} syn_noclockbuf 1

Relax timing by not buffering "clk_slow", because it is the slow clock
Set the maximum fanout to 10000.

define_attribute {clk_slow} syn_maxfan 10000

LO

Chapter 3: Constraints, Attributes, and Options Adding Attributes and Directives

3-74 Fpga User Guide, December 2005

Adding Attributes From the RTL and Technology Views
You can add attributes to instances, nets, or ports in the RTL or Technology
windows.

1. If you already have a constraint file but you want to use a new one for
the attributes, create a file first, and add it to the project. If you are
using an existing constraint file, go to the next step.

2. Select an instance, net, or port in an RTL or Technology view.

You can only select a single object. The instance must be a primitive or a
module.

3. Right-click and select SCOPE->Edit Attributes from the popup menu.

If the command is grayed out, you have selected an invalid object.

If you do not have a constraint file, the software asks you if you want to
create one. If you select OK, the software automatically creates a
constraint file and adds it to the project file. If you have a constraint file,
the software opens and minimizes it. If there are multiple constraint
files, you are prompted to choose one from a list.

Then, an attribute editing dialog box opens.

4. Specify the attribute and the value in the box. The bottom left of the
form shows a short description of the selected attribute and lists the
type of value required.

5. Click OK.

The software writes the attribute to the constraint file.

Fpga User Guide, December 2005 4-1

C H A P T E R 4

Result Analysis

This chapter describes typical analysis tasks. It describes graphical analysis
with the HDL Analyst tool as well as interpretation of the text log file. It covers
the following:

• Checking Log Results, on page 4-2

• Handling Messages, on page 4-8

• Basic Operations in the Schematic Views, on page 4-16

• Exploring Design Hierarchy, on page 4-30

• Finding Objects, on page 4-37

• Crossprobing, on page 4-48

• Analyzing With the HDL Analyst Tool, on page 4-56

• Analyzing Timing, on page 4-73

• The Island Timing Report, on page 4-83

• The Island Timing Analyst, on page 4-88

• Island Timing Report Critical Paths, on page 4-98

For information about using the Synplify Premier Physical Analyst, see
Chapter 5, Physical Analyst.

LO

Chapter 4: Result Analysis Checking Log Results

4-2 Fpga User Guide, December 2005

Checking Log Results
You can check the log file for information about the synthesis run. In
addition, the Synplify Pro and Synplify Premier interfaces have a Tcl Script
window, that echoes each command as it is run. The following describe
different ways to check the results of your run:

• Viewing the Log File, next

• Analyzing Results Using the Log File Reports, on page 4-5

• Using the Log Watch Window, on page 4-6

Viewing the Log File
The log file contains the most comprehensive results and information about a
synthesis run. The default log file is in HTML format, but there is a text
version available too.

For Synplify Pro or Synplify Premier users who just want to check a few
critical performance criteria, it is easier to use the Log Watch window
(seeUsing the Log Watch Window, on page 4-6) instead of the log file. For
details, read through the log file.

1. To view the log file, do one of the following:

– To view the log file in the default HTML format, select View->Log File or
click the View Log button in the Project window. You see the log file in
HTML format. Alternatively you can double-click the
designName_srr.htm file in the Implementation Results view to open the
HTML log file.

– To see a text version of the log file, double-click the designName.srr file
in the Implementation Results view. A Text Editor window opens with the
log file.

Alternatively, you can set the default to show the text file version
instead of the HTML version. Select Options->Project View Options, and
toggle off the View log file in HTML option.

The log file lists the compiled files, details of the synthesis run, color-
coded errors, warnings and notes, and a number of reports. For infor-

Checking Log Results Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-3

mation about the reports, see Analyzing Results Using the Log File
Reports, on page 4-5.

2. To navigate in the log file, use the following techniques:

– Use the scroll bars.

– Use the Find command as described in the next step.

– In the HTML file, click the appropriate header to jump to that point in
the log file. For example, you can jump to the Starting Points with Worst
Slack section.

3. To find information in the log file, select Edit->Find or press Ctrl-f. Fill out
the criteria in the form and click OK.

For general information about working in an Editing window, including
adding bookmarks, see Editing HDL Source Files with the Built-in
Text Editor, on page 2-5.

Log File (Text)

Log File (HTML)

LO

Chapter 4: Result Analysis Checking Log Results

4-4 Fpga User Guide, December 2005

The areas of the log file that are most important are the warning
messages and the timing report. The log file includes a timing report
that lists the most critical paths. The Synplify Pro and Synplify Premier
products also let you generate a report for a path between any two desig-
nated points, see Analyzing Paths with the Timing Analyst, on page 4-76.
The following table lists places in the log file you can use when searching
for information.

4. Resolve any errors and check all warnings.

You must fix errors, because you cannot synthesize a design with errors.
Check the warnings and make sure you understand them. See Checking
Results in the Message Viewer, on page 4-8 for information. Notes are
informational and usually can be ignored. For details about
crossprobing and fixing errors, see Handling Warnings, on page 4-14,
Editing HDL Source Files with the Built-in Text Editor, on page 2-5, and
Crossprobing from the Text Editor Window, on page 4-51.

5. If you are trying to find and resolve warnings, you can bookmark them
as shown in this procedure:

– Select Edit->Find or press Ctrl-f.

– Type @W as the criteria on the Find form and click Mark All. The
software inserts bookmarks at every line with a warning. You can
now page through the file from bookmark to bookmark using the
commands in the Edit menu or the icons in the Edit toolbar. For more

To find... Search for...

Notes @N or look for blue text

Warnings and errors @W and @E, or look for
purple and red text
respectively

Performance summary Performance Summary

The beginning of the timing report START TIMING REPORT

Detailed information about slack times,
constraints, arrival times, etc.

Interface Information

Resource usage Resource Usage Report

Gated clock conversions Gated clock report

Checking Log Results Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-5

information on using bookmarks, see Editing HDL Source Files with
the Built-in Text Editor, on page 2-5.

6. To crossprobe from the log file to the source code, click on the file name
in the HTML log file or double-click on the warning text (not the ID code)
in the ASCII text log file.

Analyzing Results Using the Log File Reports
The log file contains technology-appropriate reports like timing reports,
resource usage reports, and net buffering reports, in addition to any notes,
errors, and warning messages.

1. To analyze timing results,

– View the Timing Report by going to the Performance Summary section of
the log file.

– Check the slack times. See Handling Negative Slack, on page 4-81 for
details.

– Check the detailed information for the critical paths, including the
setup requirements at the end of the detailed critical path description.
You can crossprobe and view the information graphically and
determine how to improve the timing.

– In the HTML log file, click the link to open up the HDL Analyst view
for the path with the worst slack.

To generate Synplify Premier or Synplify Pro timing information about a
path between any two designated points, see Analyzing Paths with the
Timing Analyst, on page 4-76. For information about the Synplify
Premier island-based timing report, see Basic Operations in the
Schematic Views, on page 4-16.

2. To check buffers,

– Check the report by going to the Net Buffering Report section of the log
file.

– Check the number of buffers or registers added or replicated and
determine whether this fits into your design optimization strategy.

3. To check logic resources,

– Go to the Resource Usage Report section at the end of the log file.

LO

Chapter 4: Result Analysis Checking Log Results

4-6 Fpga User Guide, December 2005

– Check the number and types of components used to determine if you
have used too much of your resources.

Using the Log Watch Window
The Synplify Pro and Synplify Premier Log Watch window provides a more
convenient viewing mechanism than the log file for quickly checking key
performance criteria or comparing results from different runs. Its limitation is
that it only displays certain criteria. If you need details, use the log file, as
described in Viewing the Log File, on page 4-2.

1. Open the Log Watch window, if needed, by checking View->Log Watch
Window.

If you open an existing project, the Log Watch window shows the param-
eters set the last time you opened the window.

2. If you need a larger window, either resize the window or move the Log
Watch window as described below.

– Hold down Ctrl or Shift, click on the window, and move it to a position
you want. This makes the Log Watch window an independent
window, separate from the Project view.

– To move the window to another position within the Project view, right-
click in the window border and select Float in Main Window. Then move
the window to the position you want, as described above.

See Log Watch Window, on page 2-6 in the Reference Manual for infor-
mation about the popup menu commands.

3. Select the log parameter you want to monitor by clicking on a line and
selecting a parameter from the resulting popup menu.

The software automatically fills in the appropriate value from the last
synthesis run. You can check the clock requested and estimated

Checking Log Results Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-7

frequencies, the clock requested and estimated periods, the slack, and
some resource usage criteria.

4. To compare the results of two or more synthesis runs, do the following:

– If needed, resize or move the window as described above.

– Click the right mouse button in the window and select Configure Watch
from the popup.

– Click Watch Selected Implementations and either check the
implementations you want to compare or click Watch All Implementations.
Click OK. The Log Watch window now shows a column for each
implementation you selected.

– In the Log Watch window, set the parameters you want to compare.

The software shows the values for the selected implementations side by
side. For more information about multiple implementations, see Design
Guidelines, on page 6-2.

LO

Chapter 4: Result Analysis Handling Messages

4-8 Fpga User Guide, December 2005

Handling Messages
This section describes how to work with the error messages, notes, and
warnings that result after a run. See the following for details:

• Checking Results in the Message Viewer, next

• Filtering Messages in the Message Viewer, on page 4-10

• Filtering Messages from the Command Line, on page 4-13

• Handling Warnings, on page 4-14

• Automating Message Filtering with a synhooks Script, on page 4-14

Checking Results in the Message Viewer
The Tcl Script window, a Synplify Pro and Synplify Premier feature, includes
a message viewer. By default, the Tcl window is in the lower left corner of the
main window. This procedure shows you how to check results in the message
viewer.

1. If you need a larger window, either resize the window or move the Tcl
window. Click in the window border and move it to a position you want.
You can float it outside the main window or move it to another position
within the main window.

2. Click the Messages tab to open the message viewer.

The window lists the errors, warnings, and notes in a spreadsheet
format. See Message Viewer, on page 2-11 in the Reference Manual for a
full description of the window.

Handling Messages Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-9

3. To reduce the clutter in the window and make messages easier to find
and understand, use the following techniques:

– Use the color cues. For example, when you have multiple synthesis
runs, messages that have not changed from the previous run are in
black; new messages are in red.

– Enable the Group Common IDs option in the upper right. This option
groups all messages with the same ID and puts a plus symbol next to
the ID. You can click the plus sign to expand grouped messages and
see individual messages.

There are two types of message groups:

- The same warning or note ID appears in multiple source files
indicated by a dash in the source files column.

- Multiple warnings or notes in the same line of source code indicated
by a bracketed number.

– Sort the messages. To sort by a column header, click that column
heading. For example, click Type to sort the messages by type. For
example, you can use this to organize the messages and work
through the warnings before you look at the notes.

– To find a particular message, type text in the Find field. The tool finds
the next occurrence. You can also click the F3 key to search forward,
and the Shift-F3 key combination to search backwards.

LO

Chapter 4: Result Analysis Handling Messages

4-10 Fpga User Guide, December 2005

4. To filter the messages, use the procedure described in Filtering
Messages in the Message Viewer, on page 4-10. Crossprobe errors from
the message window:

– If you need more information about how to handle a particular
message, click the message ID in the ID column. This opens the
documentation for that message.

– To open the corresponding source code file, click the link in the Source
Location column. Correct any errors and rerun synthesis. For
warnings, see Handling Warnings, on page 4-14.

– To view the message in the context of the log file, click the link in the
Log Location column.

Filtering Messages in the Message Viewer
The Message viewer lists all the notes, warnings, and errors. It is not available
with the Synplify tool. The following procedure shows you how to filter out the
unwanted messages from the display, instead of just sorting it as described in
Checking Results in the Message Viewer, on page 4-8. For the command line
equivalent of this procedure, see Filtering Messages from the Command Line,
on page 4-13.

1. Open the message viewer by clicking the Messages tab in the Tcl window.

2. Click Filter in the message window.

The Warning Filter spreadsheet opens, where you can set up filtering
expressions. Each line is one filter expression.

Handling Messages Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-11

3. Set your display preferences.

– To hide your filtered choices from the list of messages, click Hide Filter
Matches in the Warning Filter window.

– To display your filtered choices, click Show Filter Matches.

4. Set the filtering criteria.

– Set the columns to reflect the criteria you want to filter. You can
either select from the pull-down menus or type your criteria. If you
have multiple synthesis runs, the pull-down menu might contain
selections that are not relevant to your design.

The first line in the following example sets the criteria to show all
warnings (Type column) with message ID FA188 (ID). The second set of
criteria displays all notes that begin with MF.

– Use multiple fields and operators to refine filtering. You can use
wildcards in the field, as in line 2 of the example. Wildcards are case-
sensitive and space-sensitive. You can also use ! as a negative
operator. For example, if you set the ID in line 2 to !MF*, the message
list would show all notes except those that begin with MF.

LO

Chapter 4: Result Analysis Handling Messages

4-12 Fpga User Guide, December 2005

– Click Apply when you have finished setting the criteria. This
automatically enables the Apply Filter button in the messages window,
and the list of messages is updated to match the criteria.

The synthesis tool interprets the criteria on each line in the Warning
Filter window as a set of AND operations (Warning and FA188), and the
lines as a set of OR operations (Warning and FA188 or Note and MF*).

– To close the Warning Filter window, click Close.

5. To save your message filters and reuse them, do the following:

– Save the project. The synthesis tool generates a Tcl file called
projectName.pfl (Project Filter Log) in the same location as the main
project file. The following is an example of the information in this file:

log_filter -hide_matches
log_filter -field type==Warning

-field message==*Una*
-field source_loc==sendpacket.v
-field log_loc==usbHostSlave.srr
-field report=="Compiler Report"

log_filter -field type==Note
log_filter -field id==BN132
log_filter -field id==CL169
log_filter -field message=="Input *"
log_filter -field report=="Compiler Report"

– When you want to reuse the filters, source the projectName.pfl file.

You can also include this file in a synhooks Tcl script to automate your
process.

Handling Messages Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-13

Filtering Messages from the Command Line
The following procedure shows you how to use Tcl commands to filter out
unwanted messages. If you want to use the GUI, see Filtering Messages in the
Message Viewer, on page 4-10. Message filtering is not available with the
Synplify tool.

1. Type your filter expressions in the Tcl window using the log_filter
command. For details of the syntax, see log_filter Tcl Command, on
page 5-60 in the Reference Manual.

For example, to hide all the notes and print only errors and warnings,
type the following:

log_filter –enable
log_filter –hide_matches
log_filter –field type==Note

2. To save and reuse the filter commands, do the following:

– Type the log_filter commands in a Tcl file.

– Source the file when you want to reuse the filters you set up.

3. To print the results of the log_filter commands to a file, add the log_report
command at the end of a list of log_filter commands.

log_report -print filteredMsg.txt

This command prints the results of the preceding log_filter commands to
the specified text file, and puts the file in the same directory as the main
project file. The file contains the filtered messages, for example:

@N MF138 Rom slaveControlSel_1 mapped in logic. Mapper Report
wishbonebi.v (156) usbHostSlave.srr (819) 05:22:06 Mon Oct 18

@N(2) MO106 Found ROM, 'slaveControlSel_1', 15 words by 1 bits
Mapper Report wishbonebi.v (156) usbHostSlave.srr (820) 05:22:06
Mon Oct 18

@N MO106 Found ROM, 'slaveControlSel_1', 15 words by 1 bits Mapper
Report wishbonebi.v (156) usbHostSlave.srr (820) 05:22:06 Mon
Oct 18

@N MF138 Rom hostControlSel_1 mapped in logic. Mapper Report
wishbonebi.v (156) usbHostSlave.srr (821) 05:22:06 Mon Oct 18

@N MO106 Found ROM, 'hostControlSel_1', 15 words by 1 bits Mapper
Report wishbonebi.v (156) usbHostSlave.srr (822) 05:22:06 Mon
Oct 18

@N Synthesizing module writeUSBWireData Compiler Report
writeusbwiredata.v (59) usbHostSlave.srr (704) 05:22:06 Mon Oct 18

LO

Chapter 4: Result Analysis Handling Messages

4-14 Fpga User Guide, December 2005

Handling Warnings
If you get warnings (@W prefix) after a synthesis run, do the following:

• Read the warning message and decide if it is something you need to act
on, or whether you can ignore it.

• If the message is not self-explanatory or if you are unsure about how to
handle the error, click the message ID in either the message window or
HTML log file or double click the message ID in the ASCII text log file.
These actions take you to online information about the condition that
generated the warning.

Automating Message Filtering with a synhooks Script
The following example shows you how to use a synhooks Tcl script to automat-
ically load a message filter file when a project opens and to send email with
the messages after a run.

1. Create a message filter file like the following. (See Filtering Messages in
the Message Viewer, on page 4-10 or Filtering Messages from the
Command Line, on page 4-13 for details about creating this file.)

log_filter -clear
log_filter -hide_matches
log_filter -field report=="VIRTEX2P MAPPER"
log_filter -field type==NOTE
log_filter -field message=="Input *"
log_filter -field message=="Pruning *"
puts "DONE!"

2. Copy the synhooks.tcl file and set the environment variable as described
in Automating Flows with synhooks.tcl, on page 10-10.

3. Edit the synhooks.tcl file so that it reads like the following example. For
syntax details, see Tcl synhooks File Syntax, on page 5-58 in the
Reference Manual.

– The following loads the message filter file when the project is opened.
Specify the name of the message filter file you created in step 1. Note
that you must source the file.

Handling Messages Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-15

proc syn_on_open_project {project_path} {
set filter filterFilename
puts "FILTER $filter IS BEING APPLIED"
source d:/tcl/filters/$filterFilename
}

– Add the following to print messages to a file after synthesis is done:

proc syn_on_end_run {runName run_dir implName} {
set warningFileName "messageFilename"

if {$runName == "synthesis"} {
puts "Mapper Done!"
log_report -print $warningFileName

set f [open [lindex $warningFileName] r]
set msg ""
while {[gets $f warningLine]>=0} {

puts $warningLine
append msg $warningLine\n
}

close $f

– Continue by specifying that the messages be sent in email. You can
obtain the smtp email packages off the web.

source "d:/tcl/smtp_setup.tcl"
proc send_simple_message {recipient email_server subject body}{

set token [mime::initialize -canonical text/plain -string
$body]

mime::setheader $token Subject $subject
smtp::sendmessage $token -recipients $recipient -servers

$email_server
mime::finalize $token

}
puts "Sending email..."

send_simple_message {address1,address2}
yourEmailServer subjectText> emailText
}

}

When the script runs, an email with all the warnings from the synthesis
run is automatically sent to the specified email addresses.

LO

Chapter 4: Result Analysis Basic Operations in the Schematic Views

4-16 Fpga User Guide, December 2005

Basic Operations in the Schematic Views
The RTL and Technology views are schematic views used to graphically
analyze your design. In the Synplify product, these views are part of the
optional HDL Analyst package. The RTL view is available after a design is
compiled; the Technology view is available after a designed has been synthe-
sized and contains technology-specific primitives. In the Synplify Premier
product, a RTL Floorplan view is available after a floorplan has been created
with physical constraint regions and synthesized for the device.

For detailed descriptions of these views, see Chapter 2 of the Reference
Manual. This section describes basic procedures you use in the RTL and
Technology views. The information is organized into these topics:

• Differentiating Between the Views, next

• Opening the Views, on page 4-17

• Analyzing Your Design Graphically, on page 4-19

• Viewing Object Properties, on page 4-20

• Selecting Objects in the RTL/Technology Views, on page 4-23

• Working with Multisheet Schematics, on page 4-24

• Moving Between Views in a Schematic Window, on page 4-26

• Setting Schematic View Preferences, on page 4-26

• Managing Windows, on page 4-28

For information on specific tasks like analyzing critical paths, see the
following sections:

• Exploring Object Hierarchy by Pushing/Popping, on page 4-31

• Exploring Object Hierarchy of Transparent Instances, on page 4-36

• Browsing to Find Objects, on page 4-37

• Crossprobing, on page 4-48

• Analyzing With the HDL Analyst Tool, on page 4-56

• Analyzing Timing, on page 4-73

Basic Operations in the Schematic Views Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-17

Differentiating Between the Views
• The difference between the RTL and Technology views is that the RTL

view is the view generated after compilation, while the Technology view is
the view generated after mapping. The RTL view displays your design as
a high-level, technology-independent schematic. At this high level of
abstraction, the design is represented with technology-independent
components like variable-width adders, registers, large muxes, state
machines, and so on. This view corresponds to the .srs netlist file gener-
ated by the software in the Synplicity proprietary format. For a detailed
description, see Chapter 2 of the Reference Manual.

• The Technology view contains technology-specific primitives. It shows
low-level, vendor-specific components such as look-up tables, cascade
and carry chains, muxes, and flip-flops, which can vary with the vendor
and the technology. This view corresponds to the .srm netlist file, gener-
ated by the software in the Synplicity proprietary format. For a detailed
description, see Chapter 2 of the Reference Manual.

• The Synplify Premier RTL Floorplan view displays a floorplan schematic
that includes all the logic assigned to any physical constraint regions
created on the device, as well as, all other logic of the design. This view
uses the same high-level abstraction and technology-independent
components of the RTL view.

Opening the Views
The procedure for opening an RTL or Technology view is similar; the main
difference is the design stage at which these views are available.

LO

Chapter 4: Result Analysis Basic Operations in the Schematic Views

4-18 Fpga User Guide, December 2005

All RTL and Technology views have the schematic on the right and a pane on
the left that contains a hierarchical list of the objects in the design. This pane
is called the Hierarchy Browser. The bar at the top of the window contains the
name of the view, the kind of view, hierarchical level, and the number of
sheets in the schematic. See Hierarchy Browser, on page 2-18 in the Refer-
ence Manual for a description of the Hierarchy Browser.

To open an RTL
view...

Start with a compiled design.
To open a hierarchical RTL view, do one of the following:

• Select HDL Analyst->RTL->Hierarchical View.
• Click the RTL View icon () (a plus sign inside a circle).
• Double-click the .srs file in the Implementation Results view.

To open a flattened RTL view, select HDL Analyst->RTL-
>Flattened View.

To open a
Technology
view...

Start with a mapped (synthesized) design.
To open a hierarchical Technology view, do one of the following:

• Select HDL Analyst ->Technology->Hierarchical View.
• Click the Technology View icon (NAND gate icon).
• Double-click the .srm file in the Implementation Results view.

To open a flattened Technology view, select HDL Analyst->
Technology->Flattened View.

To open a
Floorplan view

Start with a synthesized design that has been floorplanned with
physical constraint regions.

To open a RTL Floorplan view:
• Select HDL Analyst->RTL->Floorplanned View.
• Double-click the partitioned netlist (.srp) file from the

Implementation Results view.

Basic Operations in the Schematic Views Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-19

Analyzing Your Design Graphically
By using BEST® (Behavior Extraction Synthesis Technology) in the RTL view,
the software keeps a high-level of abstraction and makes the RTL view easy to
view and debug. High-level structures like RAMs, ROMs, operators, and FSMs
are kept as abstractions in this view instead of being converted to gates. You
can examine the high-level structure, or push into a component and view the
gate-level structure.

In the Technology view, the software uses module generators to implement
the high-level structures from the RTL view using technology-specific
resources.

Technology View

RTL View

LO

Chapter 4: Result Analysis Basic Operations in the Schematic Views

4-20 Fpga User Guide, December 2005

To analyze information, compare the current view with the information in the
RTL/Technology view, the log file, the FSM view, and the source code.
Synplify users do not have access to the FSM view. You can use techniques
like crossprobing, flattening, and filtering to isolate and examine the compo-
nents. The following table points you to where you can find more information
about some analysis techniques.

Viewing Object Properties
There are a few ways in which you can view the properties of objects.

1. To temporarily display the properties of a particular object, hold the
cursor over the object. A tooltip temporarily displays the information. at
the cursor and in the status bar at the bottom of the tool window.

2. Select the object, right-click, and select Properties. The properties and
their values are displayed in a table.

If you select an instance, you can view the properties of the associated
pins by selecting the pin from the list . Similarly, if you select a port, you
can view the properties on individual bits.

For Information About See...

Crossprobing Crossprobing, on page 4-48

Analyzing logic Analyzing With the HDL Analyst Tool, on page 4-56

Isolating or filtering
logic

Filtering Schematics, on page 4-60

Expanding filtered logic Expanding Pin and Net Logic, on page 4-62 and
Expanding and Viewing Connections, on page 4-66

Flattening Flattening Schematic Hierarchy, on page 4-67

Analyzing timing Analyzing Timing, on page 4-73

Basic Operations in the Schematic Views Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-21

3. To flag objects by property, do the following with an open
RTL/Technology view:

– Set the properties you want to see by selecting Options->HDL Analyst
Options->Visual Properties, and selecting the properties from the
pulldown list. Some properties are only available in certain views.

– Close the HDL Analyst Options dialog box.

Set this field to the pin
name to see pin properties

LO

Chapter 4: Result Analysis Basic Operations in the Schematic Views

4-22 Fpga User Guide, December 2005

– Enable View->Visual Properties. If you do not enable this, the software
does not display the property flags in the schematics. The HDL
Analyst annotates all objects in the current view that have the
specified property with a rectangular flag that contains the property
name and value. The software uses different colors for different
properties, so you can enable and view many properties at the same
time.

Example: Slow and New Properties
You can view objects with the slow property when you are analyzing your
critical path. All objects with this property do not meet the timing criteria.
The following figure shows a filtered view of a critical path, with slow instances
flagged in blue.

When you are working with filtered views, you can use the New property to
quickly identify objects that have been added to the current schematic with
commands like Expand. You can step through successive filtered views to
determine what was added at each step. This can be useful when you are
debugging your design.

The following figure expands one of the pins from the previous filtered view.
The new instance added to the view has two flags: new and slow.

Slow property

Basic Operations in the Schematic Views Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-23

Selecting Objects in the RTL/Technology Views
For mouse selection, standard object selection rules apply: In selection mode,
the pointer is shaped like a crosshair.

To select... Do this...

Single objects Click on the object in the RTL or Technology schematic, or click
the object name in the Hierarchy Browser.

Multiple
objects

Use one of these methods:
• Draw a rectangle around the objects.
• Select an object, press Ctrl, and click other objects you want to

select.
• Select multiple objects in the Hierarchy Browser. See

Browsing With the Hierarchy Browser, on page 4-37.
• Use Find to select the objects you want. See Using Find for

Hierarchical and Restricted Searches, on page 4-39.

Objects by type
(instances,
ports, nets)

Use Edit->Find to select the objects (see Browsing With the Find
Command, on page 4-38), or use the Hierarchy Browser,
which lists objects by type.

LO

Chapter 4: Result Analysis Basic Operations in the Schematic Views

4-24 Fpga User Guide, December 2005

The HDL Analyst view highlights selected objects in red. If the object you
select is on another sheet of the schematic, the schematic tracks to the
appropriate sheet. If you have other windows open, the selected object is
highlighted in the other windows as well (crossprobing), but the other
windows do not track to the correct sheet. Selected nets that span different
hierarchical levels are highlighted on all the levels. See Crossprobing, on
page 4-48 for more information about crossprobing.

Some commands affect selection by adding to the selected set of objects: the
Expand commands, the Select All commands, and the Select Net Driver and Select
Net Instances commands.

Working with Multisheet Schematics
The title bar of the RTL or Technology view indicates the number of sheets in
that schematic. In a multisheet schematic, nets that span multiple sheets are
indicated by sheet connector symbols, which you can use for navigation.

1. To reduce the number of sheets in a schematic, select Options->HDL
Analyst Options and increase the values set for Sheet Size Options - Instances
and Sheet Size Options - Filtered Instances. To display fewer objects per sheet
(increase the number of sheets), increase the values.

These options set a limit on the number of objects displayed on an unfil-
tered and filtered schematic sheet, respectively. A low Filtered Instances
value can cause lower-level logic inside a transparent instance to be
displayed on a separate sheet. The sheet numbers are indicated inside
the empty transparent instance.

All objects of a
certain type
(instances,
ports, nets)

To select all objects of a certain type, do either of the following:
• Right-click and choose the appropriate command from the

Select All Schematic/Current Sheet popup menus.
• Select the objects in the Hierarchy Browser.

No objects
(deselect all
currently
selected
objects)

Click the left mouse button in a blank area of the schematic
or click the right mouse button to bring up the pop-up menu
and choose Unselect All. Deselected objects are no longer
highlighted.

To select... Do this...

Basic Operations in the Schematic Views Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-25

2. To navigate through a multisheet schematic, refer to this table. It
summarizes common operations and ways to navigate.

To view... Use one of these methods...

Next sheet or
previous sheet

Select View->Next/Previous Sheet.
Press the right mouse button and draw a horizontal mouse
stroke (left to right for next sheet, right to left for previous
sheet).
Click the icons: Next Sheet () or Previous Sheet ()
Press Shift-right arrow (Next Sheet) or Shift-left arrow (Previous
sheet).
Navigate with View->Back and View ->Forward if the
next/previous sheets are part of the display history.

A specific sheet
number

Select View->View Sheets and select the sheet.
Click the right mouse button, select View Sheets from the
popup menu, and then select the sheet you want.
Press Ctrl-g and select the sheet you want.

Lower-level logic
of a transparent
instance on
separate sheets

Check the sheet numbers indicated inside the empty
transparent instance. Use the sheet navigation commands
like Next Sheet or View Sheets to move to the sheet you need.

All objects of a
certain type

To highlight all the objects of the same type in the schematic,
right-click and select the appropriate command from the
Select All Schematic popup menu.
To highlight all the objects of the same type on the current
sheet, right-click and select the appropriate command from
the Select All Sheet popup menu.

Selected items
only

Filter the schematic as described in Filtering Schematics, on
page 4-60.

A net across
sheets

If there are no sheet numbers displayed in a hexagon at the
end of the sheet connector, select Options ->HDL Analyst
Options and enable Show Sheet Connector Index. Right-click
the sheet connector and select the sheet number from the
popup as shown in the following figure.

LO

Chapter 4: Result Analysis Basic Operations in the Schematic Views

4-26 Fpga User Guide, December 2005

Moving Between Views in a Schematic Window
When you filter or expand your design, you move through a number of
different design views in the same schematic window. For example, you might
start with a view of the entire design, zoom in on an area, then filter an object,
and finally expand a connection in the filtered view, for a total of four views.

1. To move back to the previous view, click the Back icon or draw the
appropriate mouse stroke.

The software displays the last view, including the zoom factor. This does
not work in a newly generated view (for example, after flattening)
because there is no history.

2. To move forward again, click the Forward icon or draw the appropriate
mouse stroke.

The software displays the next view in the display history.

Setting Schematic View Preferences
You can set various preferences for the RTL and Technology views from the
user interface.

1. Select Options->HDL Analyst Options. For a description of all the options on
this form, see HDL Analyst Options Command, on page 3-99 in the
Reference Manual.

2. The following table details some common operations:

Sheet Connector Symbol

Sheet connector with multisheet popup menuConnected sheet numbers

Basic Operations in the Schematic Views Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-27

Some of these options do not take effect in the current view, but are
visible in the next schematic view you open.

3. To view hierarchy within a cell, enable the General->Show Cell Interiors
option.

4. To control the display of labels, first enable the Text->Show Text option,
and then enable the Label Options you want. The following figure
illustrates the label that each option controls.

To... Do this...

Display the Hierarchy
Browser

Enable Show Hierarchy Browser (General
tab).

Control crossprobing from an
object to a P&R text file

Enable Enhanced Text Crossprobing.
(General tab)

Determine the number of
objects displayed on a sheet.

Set the value with Maximum Instances on
the Sheet Size tab. Increase the value to
display more objects per sheet.

Determine the number of
objects displayed on a sheet in
a filtered view.

Set the value with Maximum Filtered
Instances on the Sheet Size tab. Increase
the number to display more objects per
sheet. You cannot set this option to a value
less than the Maximum Instances value.

Show Cell Interior off Show Cell Interior on

LO

Chapter 4: Result Analysis Basic Operations in the Schematic Views

4-28 Fpga User Guide, December 2005

For a more detailed information about some of these options, see
Schematic Display, on page 6-9 in the Reference Manual.

5. Click OK on the HDL Analyst Options form.

The software writes the preferences you set to the .ini file, and they
remain in effect until you change them.

Managing Windows
As you work on a project, you open different windows. For example, you
might have two Technology views, an RTL view, and a source code window
open. The following guidelines help you manage the different windows you
have open. For information about cycling through the display history in a
single schematic, see Moving Between Views in a Schematic Window, on
page 4-26.

1. Toggle on View->Workbook Mode.

Below the Project view, you see tabs like the following for each open
view. The tab for the current view is on top. The symbols in front of the
view name on the tab help identify the kind of view.

Show

Show Symbol Name

Show Pin Name
Show Conn Name

Show Port Name

Basic Operations in the Schematic Views Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-29

2. To bring an open view to the front, if the window is not visible, click its
tab. If part of the window is visible, click in any part of the window.

If you previously minimized the view, it will be in minimized form.
Double-click the minimized view to open it.

3. To bring the next view to the front, click Ctrl-F6 in that window.

4. Order the display of open views with the commands from the Window
menu. You can cascade the views (stack them, slightly offset), or tile
them horizontally or vertically.

5. To close a view, press Ctrl-F4 in that window or select File->Close.

LO

Chapter 4: Result Analysis Exploring Design Hierarchy

4-30 Fpga User Guide, December 2005

Exploring Design Hierarchy
Schematics generally have a certain amount of design hierarchy. You can
move between hierarchical levels using the Hierarchy Browser or Push/Pop
mode. For additional information, see Analyzing With the HDL Analyst Tool,
on page 4-56. The topics include:

• Traversing Design Hierarchy with the Hierarchy Browser, on page 4-30

• Exploring Object Hierarchy by Pushing/Popping, on page 4-31

• Exploring Object Hierarchy of Transparent Instances, on page 4-36

Traversing Design Hierarchy with the Hierarchy
Browser

The Hierarchy Browser is the list of objects on the left side of the RTL and
Technology views. It is best used to get an overview, or when you need to
browse and find an object. If you want to move between design levels of a
particular object, Push/Pop mode is more direct. Refer to Exploring Object
Hierarchy by Pushing/Popping, on page 4-31 for details.

The hierarchy browser allows you to traverse and select the following:

• Instances and submodules

• Ports

• Internal nets

• Clock trees (in an RTL view)

The browser lists the objects by type. A plus sign in a square icon indicates
that there is hierarchy under that object and a minus sign indicates that the
design hierarchy has been expanded. To see lower-level hierarchy, click on
the plus sign for the object. To ascend the hierarchy, click on the minus sign.

Exploring Design Hierarchy Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-31

Refer to Hierarchy Browser Symbols, on page 2-19 in the Reference Manual
for an explanation of the symbols.

Exploring Object Hierarchy by Pushing/Popping
To view the internal hierarchy of a specific object, it is best to use Push/Pop
mode or examine transparent instances, instead of using the Hierarchy
Browser described in Traversing Design Hierarchy with the Hierarchy
Browser, on page 4-30. You can access Push/Pop mode with the Push/Pop
Hierarchy icon, the Push/Pop Hierarchy command, or mouse strokes.

When combined with other commands like filtering and expansion
commands, Push/Pop mode can be a very powerful tool for isolating and
analyzing logic. See Filtering Schematics, on page 4-60, Expanding Pin and Net
Logic, on page 4-62, and Expanding and Viewing Connections, on page 4-66
for details about filtering and expansion. See the following sections for infor-
mation about pushing down and popping up in hierarchical design objects:

– Pushing into Objects, next

– Popping up a Hierarchical Level, on page 4-35

No lower hierarchy; click
to collapse the list.

Click to expand and see
lower-level hierarchy

LO

Chapter 4: Result Analysis Exploring Design Hierarchy

4-32 Fpga User Guide, December 2005

Pushing into Objects
In the schematic views, you can push into objects and view the lower-level
hierarchy. You can use a mouse stroke, the command, or the icon to push
into objects:

1. To move down a level (push into an object) with a mouse stroke, put
your cursor near the top of the object, hold down the right mouse
button, and draw a vertical stroke from top to bottom. You can push
into the following objects; see step 3 for examples of pushing into
different types of objects.

– Hierarchical instances. They can be displayed as pale yellow boxes
(opaque instances) or hollow boxes with internal logic displayed
(transparent instances). You cannot push into a hierarchical instance
that is hidden with the Hide Instance command (internal logic is
hidden).

– Technology-specific primitives. The primitives are listed in the
Hierarchy Browser in the Technology view, under Instances - Primitives.

– Inferred ROMs and state machines.

The remaining steps show you how to use the icon or command to push
into an object.

Hierarchical object Press right mouse button and draw downward
to push into an object

Exploring Design Hierarchy Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-33

2. Enable Push/Pop mode by doing one of the following:

– Select View->Push/Pop Hierarchy.

– Right-click in the Technology view and select Push/Pop Hierarchy from
the popup menu.

– Click the Push/Pop Hierarchy icon () in the toolbar (two arrows
pointing up and down).

– Press F2.

The cursor changes to an arrow. The direction of the arrow indicates the
underlying hierarchy, as shown in the following figure. The status bar at
the bottom of the window reports information about the objects over
which you move your cursor.

3. To push (descend) into an object, click on the hierarchical object. For a
transparent instance, you must click on the pale yellow border. The
following figure shows the result of pushing into a ROM.

When you descend into a ROM, you can push into it one more time to
see the ROM data table. The information is in a view-only text file called
rom.info.

LO

Chapter 4: Result Analysis Exploring Design Hierarchy

4-34 Fpga User Guide, December 2005

Similarly, you can push into a state machine. (Synplify users cannot

push into state machines.) When you push into an FSM from the RTL
view, you open the FSM viewer where you can graphically view the
transitions. For more information, see Using the FSM Viewer, on
page 6-25. If you push into a state machine from the Technology view,
you see the underlying logic.

Exploring Design Hierarchy Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-35

Popping up a Hierarchical Level
1. To move up a level (pop up a level), put your cursor anywhere in the

design, hold down the right mouse button, and draw a vertical mouse
stroke, moving from the bottom upwards.

The software moves up a level, and displays the next level of hierarchy.

2. To pop (ascend) a level using the commands or icon, do the following:

– Select the command or icon if you are not already in Push/Pop mode.
See Pushing into Objects, on page 4-32for details.

– Move your cursor to a blank area and click.

3. To exit Push/Pop mode, do one of the following:

– Click the right mouse button in a blank area of the view.

– Deselect View->Push/Pop Hierarchy.

– Deselect the Push/Pop Hierarchy icon.

– Press F2.

Press the right mouse button
and draw an upward stroke to
pop up a level

LO

Chapter 4: Result Analysis Exploring Design Hierarchy

4-36 Fpga User Guide, December 2005

Exploring Object Hierarchy of Transparent Instances
Examining a transparent instance is one way of exploring the design
hierarchy of an object. The following table compares this method with
pushing (described in Exploring Object Hierarchy by Pushing/Popping, on
page 4-31).

Pushing Transparent Instance

User
control

You initiate the operation
through the command or
icon.

You have no direct control; the
transparent instance is automatically
generated by some commands that result
in a filtered view.

Design
context

Context lost; the lower-
level logic is shown in a
separate view

Context maintained; lower-level logic is
displayed inside a hollow yellow box at
the hierarchical level of the parent.

Finding Objects Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-37

Finding Objects
In the schematic views, you can use the Hierarchy Browser or the Find
command to find objects, as explained in these sections:

• Browsing to Find Objects, next

• Using Find for Hierarchical and Restricted Searches, on page 4-39

• Using Wildcards with the Find Command, on page 4-42

• Using Find to Search the Output Netlist, on page 4-45

For infomation about the Tcl Find command, which you use to locate objects,
and create collections, see Tcl find Command, on page 5-48.

Browsing to Find Objects
You can always zoom in to find an object in the RTL and Technology
schematics. The following procedure shows you how to browse through
design objects and find an object at any level of the design hierarchy. You can
use the Hierarchy Browser or the Find command to do this. If you are familiar
with the design hierarchy, the Hierarchy Browser can be the quickest method
to locate an object. The Find command is best used to graphically browse and
locate the object you want.

Browsing With the Hierarchy Browser
1. In the Hierarchy Browser, click the name of the net, port, or instance

you want to select.

The object is highlighted in the schematic.

2. To select a range of objects, select the first object in the range. Then,
scroll to display the last object in the range. Press and hold the Shift key
while clicking the last object in the range.

The software selects and highlights all the objects in the range.

3. If the object is on a lower hierarchical level, do either of the following:

– Expand the appropriate higher-level object by clicking the plus
symbol next to it, and then select the object you want.

LO

Chapter 4: Result Analysis Finding Objects

4-38 Fpga User Guide, December 2005

– Push down into the higher-level object, and then select the object
from the Hierarchy Browser.

The selected object is highlighted in the schematic. The following
example shows how moving down the object hierarchy and selecting an
object causes the schematic to move to the sheet and level that contains
the selected object.

4. To select all objects of the same type, select them from the Hierarchy
Browser. For example, you can find all the nets in your design.

Browsing With the Find Command
1. In a schematic view, select HDL Analyst->Find or press Ctrl-f to open the

Object Query dialog box.

2. Do the following in the dialog box:

– Select objects in the selection box on the left. You can select all the
objects or a smaller set of objects to browse. If length makes it hard to
read a name, click the name in the list to cause the software to
display the entire name in the field at the bottom of the dialog box.

Expand Instances
and select an
object on a lower
hierarchical level.

Schematic pushes
down to the correct
level to show the
selected object.

Finding Objects Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-39

– Click the arrow to move the selected objects over to the box on the
right.

The software highlights the selected objects.

3. In the Object Query dialog box, click on an object in the box on the right.

The software tracks to the schematic page with that object.

Using Find for Hierarchical and Restricted Searches
You can always zoom in to find an object in the RTL and Technology
schematics or use the Hierarchy Browser (see Browsing to Find Objects, on
page 4-37). This procedure shows you how to use the Find command to do
hierarchical object searches or restrict the search to the current level or the
current level and its underlying hierarchy.

1. If needed, restrict the range of the search by filtering the view, hiding
instances, or both. See Viewing Design Hierarchy and Context, on
page 4-56 and Filtering Schematics, on page 4-60 for details. With a
filtered view, the software only searches the filtered instances, unless
you set the scope of the search to Entire Design, as described below, in
which case Find searches the entire design. Hidden instances and their
hierarchy are excluded from the search. When you have finished the
search, use the Unhide Instances command to make the hierarchy visible.

You can use the filtering technique to restrict your search to just one
schematic sheet. Select all the objects on one sheet and filter the view.
Continue with the procedure.

2. Select HDL Analyst->Find or press Ctrl-f to open the Object Query dialog box.
Reposition the dialog box so you can see both your schematic and the
dialog box.

LO

Chapter 4: Result Analysis Finding Objects

4-40 Fpga User Guide, December 2005

3. Select the tab for the type of object. The Unhighlighted box on the left lists
all objects of that type (instances, symbols, nets, or ports).

For fastest results, search by Instances rather than Nets. When you select
Nets, the software loads the whole design, which could take some time.

4. Click one of these buttons to set the hierarchical range for the search:
Entire Design, Current Level & Below, or Current Level Only, depending on the
hierarchical level of the design to which you want to restrict your search.

The range setting is especially important when you use wildcards. See
Effect of Search Range on Wildcard Searches, on page 4-42 for details.
Current Level Only or Current Level & Below are useful for searching filtered
schematics or critical path schematics.

Use Entire Design to hierarchically search the whole design. For large
hierarchical designs, reduce the scope of the search by using the
techniques described in the first step.

The Unhighlighted box shows available objects within the scope you set.
Objects are listed in alphabetical order, not hierarchical order.

5. To search for objects in the mapped database or the output netlist, set
the Name Space option.

The name of an object might be changed because of synthesis optimiza-
tions or to match the place-and-route tool conventions, so that the

Finding Objects Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-41

object name may no longer match the name in the original netlist.
Setting the Name Space option ensures that the Find command searches
the correct database for the object. For example, if you set this option to
Tech View, the tool searches the mapped database (.srm) for the object
name you specify. For information about using this feature to find
objects from an output netlist, see Using Find to Search the Output
Netlist, on page 4-45.

6. Do the following to select objects from the list. To use wildcards in the
selection, see the next step.

– Click on the objects you want from the list. If length makes it hard to
read a name, click the name in the list to cause the software to
display the entire name in the field at the bottom of the dialog box.

– Click Find 200 or Find All. The former finds the first 200 matches, and
then you can click the button again to find the next 200.

– Click the right arrow to move the objects into the box on the right, or
double-click individual names.

The schematic displays highlighted objects in red.

7. Do the following to select objects using patterns or wildcards.

– Type a pattern in the Highlight Wildcard field. See Using Wildcards with
the Find Command, on page 4-42 for a detailed discussion of
wildcards.

The Unhighlighted list shows the objects that match the wildcard
criteria. If length makes it hard to read a name, click the name in the
list to cause the software to display the entire name in the field at the
bottom of the form.

– Click the right arrow to move the selections to the box on the right, or
double-click individual names. The schematic displays highlighted
objects in red.

You can use wildcards to avoid typing long pathnames. Start with a
general pattern, and then make it more specific. The following example
browses and uses wildcards successively to narrow the search.

Find all instances three levels down *.*.*

Narrow search to find instances that begin with i_ i_*.*.*

Narrow search to find instances that begin with un2 after
the second hierarchy separator

i_*.*.un2
*

LO

Chapter 4: Result Analysis Finding Objects

4-42 Fpga User Guide, December 2005

8. You can leave the dialog box open to do successive Find operations. Click
OK or Cancel to close the dialog box when you are done.

For detailed information about the Find command and the Object Query
dialog box, see Find Command (HDL Analyst), on page 3-17 of the Reference
Manual.

Using Wildcards with the Find Command
Use the following wildcards when you search the schematics:

Effect of Search Range on Wildcard Searches
The asterisk and question mark do not cross hierarchical boundaries.
However, the scope of the search determines the starting points for the
searches, and this might make it appear as if the wildcards cross hierarchical
boundaries in some cases. If you are at 2A in the following figure and the
scope of the search is set to Current Level and Below, separate searches start at
2A, 3A1, and 3A2. Each search does not cross hierarchical boundaries. If the
scope of the search is Entire Design, the wildcard searches run from each

* The asterisk matches any sequence of characters.

? The question mark matches any single character.

. The dot explicitly matches a hierarchy separator, so type one dot for each
level of hierarchy. To use the dot as a pattern and not a hierarchy separator,
type a backslash before the dot: \.

Finding Objects Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-43

hierarchical point (1, 2A, 2B, 3A1, 3A2, 3B1, 3B2, and 3B3). The result of an
asterisk search (*) with Entire Design is a list of all matches in the design,
regardless of the current level.

See Wildcard Search Examples, on page 4-44 for examples.

How a Wildcard Search Works
1. The starting point of a wildcard search depends on the range set for the

search.

2. The software applies the wildcard pattern to all applicable objects within
the range. For Current Level and Current Level and Below, the current level
determines the starting point.

Dots match hierarchy separators, unless you use the backslash escape
character in front of the dot (\.). Hierarchical search patterns with a dot
(like *.*) are repeated at each level included in the scope. See Effect of

Entire
Design

Starts at top level and uses the pattern to search from that
level. It then moves to any child levels below the top level and
searches them. The software repeats the search pattern at
each hierarchical point in the design until it searches the
entire design.

Current
Level

Starts at the current hierarchical level and searches that
level only. A search started at 2A only covers 2A.

Current
Level and
Below

Starts at the current hierarchical level and searches that
level. It then moves to any child levels below the starting
point and conducts separate searches from each of these
starting points.

2A

1

2B

3B33B23B13A23A1

Entire Design

Current
Level and
Below

Current
Level

LO

Chapter 4: Result Analysis Finding Objects

4-44 Fpga User Guide, December 2005

Search Range on Wildcard Searches, on page 4-42 and Wildcard Search
Examples, on page 4-44 for details and examples, respectively. If you
use the *.* pattern with Current Level, the software matches non-hierar-
chical names at the current level that include a dot.

Wildcard Search Examples
The figure shows a design with three hierarchical levels, and the table shows
the results of some searches on this design.

Scope Pattern Starting
Point

Finds Matches in...

Entire
Design

* 3A1 1, 2A, 2B, 3A1, 3A2, 3B1, 3B2, and 3B3 (* at all levels)

. 2B 2A and 2B (*.* from 1)
3A1, 3A2, 3B1, 3B2, and 3B3 (*.* from 2A and 2B)
No matches in 1 (because of the hierarchical
dot), unless a name includes a non-hierarchical
dot.

Current
Level

* 1 1 only (no hierarchical boundary crossing)

. 2B 2B only. No search of lower levels even though
the dot is specified, because the scope is Current
Level. No matches, unless a 2B name includes
a non-hierarchical dot.

2A

1

2B

3B33B23B13A23A1

Finding Objects Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-45

Using Find to Search the Output Netlist
When the synthesis tool creates an output netlist like a .vqm or .edf file, some
names are optimized for use in the P&R tool. When you debug your design for
place and route looking for a particular object, use the Name Space option in
the Object Query dialog box to locate the optimized names in the output netlist.
The following procedure shows you how to locate an object, highlight and
filter it in the Technology view, and crossprobe to the source code for editing.

1. Select the output netlist file option in the Implementations Results tab of the
Options for Implementations dialog box.

2. After you synthesize your design, open your output netlist file and select
the name of the object you want to find.

Current
Level
and
Below

* 2A 2A only (no hierarchical boundary crossing)

. 1 2A and 2B (*.* from 1)
3A1, 3A2, 3B1, 3B2, and 3B3 (*.* from 2A and 2B)
No matches from 1, because the dot is
specified.

. 2B 3B1, 3B2, and 3B3 (*.* from 2B)

. 3A2 No matches (no hierarchy below 3A2)

..* 1 3A1, 3A2, 3B1, 3B2, and 3B3 (*.*.* from 1)
Search ends because there is no hierarchy two
levels below 2A and 2B.

Scope Pattern Starting
Point

Finds Matches in...

LO

Chapter 4: Result Analysis Finding Objects

4-46 Fpga User Guide, December 2005

3. Copy the name and open a Technology view.

4. In the Technology view, press Ctrl-f or select Edit->Find to open the Object
Query dialog box and do the following:

– Paste the object name you copied into the Highlight Search field.

– Set the Name Space option to Netlist and click Find All.

Copy Name

Search by Tech View Search by Netlist

Finding Objects Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-47

If you leave the Name Space option set to the default of Tech View, the
tool does not find the name because it is searching the mapped
database instead of the output netlist.

– Double click the name to move it into the Highlighted field and close the
dialog box.

In the Technology view, the name is highlighted in the schematic.

5. Select HDL Analyst->Filter Schematic to view only the highlighted portion of
the schematic.

The tooltip shows the equivalent name in the Technology view.

compare_output_NE0(C_0)
slow

Alias: compare_output_NE0_cZ

Filtered View

LO

Chapter 4: Result Analysis Crossprobing

4-48 Fpga User Guide, December 2005

6. Double click on the filtered schematic to crossprobe to the
corresponding code in the HDL file.

Crossprobing
This section describes how to crossprobe from different views. It includes the
following:

• Crossprobing Description, on page 4-48, next

• Crossprobing within an RTL/Technology View, on page 4-49

• Crossprobing from the RTL/Technology View, on page 4-49

• Crossprobing from the Text Editor Window, on page 4-51

• Crossprobing from the Tcl Script Window, on page 4-54

• Crossprobing from the FSM Viewer, on page 4-54

Crossprobing Description
Crossprobing is the process of selecting an object in one view and having the
object or the corresponding logic automatically highlighted in other views.
Highlighting a line of text, for example, highlights the corresponding logic in
the schematic views. Crossprobing helps you visualize where coding changes
or timing constraints might help to reduce area or improve performance.

You can crossprobe between the RTL view, Technology view, the FSM Viewer
(not available in the Synplify product), the log file, the source files, and some
external text files from place-and-route tools. However, not all objects or
source code crossprobe to other views, because some source code and RTL
view logic is optimized away during the compilation or mapping processes.

For further details, see Crossprobing, on page 4-48 of the Reference Manual.

Crossprobing Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-49

Crossprobing within an RTL/Technology View
Selecting an object name in the Hierarchy Browser highlights the object in the
schematic, and vice versa.

In this example, when you select the DECODE module in the Hierarchy
Browser, the DECODE module is automatically selected in the RTL view.

Crossprobing from the RTL/Technology View
1. To crossprobe from an RTL or Technology views to other open views,

select the object by clicking on it.

Selected Object Highlighted Object

Instance in schematic (single-click) Module icon in Hierarchy
Browser

Net in schematic Net icon in Hierarchy Browser

Port in schematic Port icon in Hierarchy Browser

Logic icon in Hierarchy Browser Instance in schematic

Net icon in Hierarchy Browser Net in schematic

Port icon in Hierarchy Browser Port in schematic

LO

Chapter 4: Result Analysis Crossprobing

4-50 Fpga User Guide, December 2005

The software automatically highlights the object in all open views. If the
open view is a schematic, the software highlights the object in the
Hierarchy Browser on the left as well as in the schematic. If the
highlighted object is on another sheet of a multi-sheet schematic, the
view does not automatically track to the page. If the crossprobed object
is inside a hidden instance, the hidden instance is highlighted in the
schematic.

If the open view is a source file, the software tracks to the appropriate
code and highlights it. The following figure shows crossprobing between
the RTL, Technology, and Text Editor (source code) views.

2. To crossprobe from the RTL or Technology view to the source file when
the source file is not open, double-click on the object in the RTL or
Technology view.

Double-clicking automatically opens the appropriate source code file
and highlights the appropriate code. For example, if you double-click an
object in a Technology view, the HDL Analyst tool automatically opens

Text Editor

RTL View

Technology View

Crossprobing Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-51

an editor window with the source code and highlights the code that
contains the selected register.

The following table summarizes the crossprobing capability from the RTL or
Technology view.

Crossprobing from the Text Editor Window
To crossprobe from a source code window or from the log file to an RTL,
Technology, or FSM view, use this procedure. You can use this method to
crossprobe from any text file with objects that have the same instance names
as in the synthesis software. For example, you can crossprobe from place-
and-route files. See Example of Crossprobing a Path from a Text File, on
page 4-52 for a practical example of how to use crossprobing.

1. Open the RTL, FSM, or Technology view to which you want to
crossprobe. The FSM view is not a Synplify feature.

2. To crossprobe from an error, warning, or note in the html log file, click
on the file name to open the corresponding source code in another Text

From To Procedure

RTL Source code Double-click an object. If the source code file is not
open, the software opens the Text Editor window
to the appropriate section of code. If the source file
is already open, the software scrolls to the correct
section of the code and highlights it.

RTL Technology The Technology view must be open. Click the
object to highlight and crossprobe.

RTL FSM Viewer
(not in
Synplify)

The FSM view must be open. The state machine
must be coded with a onehot encoding style. Click
the FSM to highlight and crossprobe.

Technology Source code If the source code file is already, open, the software
scrolls to the correct section of the code and
highlights it.
If the source code file is not open, double-click an
object in the Technology view to open the source
code file.

Technology RTL The RTL view must be open. Click the object to
highlight and crossprobe.

LO

Chapter 4: Result Analysis Crossprobing

4-52 Fpga User Guide, December 2005

Editor window; to crossprobe from a text log file, double-click on the text
of the error, warning, or note.

3. To crossprobe from a third-party text file (not source code or a log file),
select Options->HDL Analyst Options->General, and enable Enhanced text
crossprobing.

4. Select the appropriate portion of text in the Text Editor window. In some
cases, it may be necessary to select an entire block of text to crossprobe.

The software highlights the objects corresponding to the selected code in
all the open windows. For example, if you select a state name in the
code, it highlights the state in the FSM viewer. If an object is on another
schematic sheet or on another hierarchical level, the highlighting might
not be obvious. If you filter the RTL or schematic view (right-click in the
source code window with the selected text and select Filter Schematic from
the popup menu), you can isolate the highlighted objects for easy
viewing.

Example of Crossprobing a Path from a Text File
This example selects a path in a log file and crossprobes it in the Technology
view. You can use the same technique to crossprobe from other text files like
place-and-route files, as long as the instance names in the text file match the
instance names in the synthesis tool.

1. Open the log file, the RTL, and Technology views.

2. Select the path objects in the log file.

– Select the column by pressing Alt and dragging the cursor to the end
of the column. On UNIX and Linux platforms, use the key to which
the Alt function is mapped; this is usually the Meta or Diamond key for
UNIX or the Ctrl-Alt key combination for Linux.

– To select all the objects in the path, right-click and choose Select All
from the popup menu. Alternatively, you can select certain objects
only, as described next.

The software selects the objects in the column, and highlights the path
in the open RTL and Technology views.

Crossprobing Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-53

– To further filter the objects in the path, right-click and choose Select
From from the popup menu.On the form, check the objects you want,
and click OK. The corresponding objects are highlighted.

Text Editor

Technology View

LO

Chapter 4: Result Analysis Crossprobing

4-54 Fpga User Guide, December 2005

3. To isolate and view only the selected objects, do this in the Technology
view: press F12, or right-click and select the Filter Schematic command
from the popup menu.

You see just the selected objects.

Crossprobing from the Tcl Script Window
Crossprobing from the Tcl script window is useful for debugging error
messages. You cannot do this with the Synplify product, because it does not
have the Tcl window feature.

To crossprobe from the Tcl Script window to the source code, double-click a
line in the Tcl window. To crossprobe a warning or error, first click the
Messages tab and then double-click the warning or error. The software opens
the relevant source code file and highlights the corresponding code.

Crossprobing from the FSM Viewer
You can crossprobe to the FSM Viewer if you have the FSM view open. You
can crossprobe from an RTL, Technology, or source code window. The
Synplify software does not support the FSM viewer.

To crossprobe from the FSM Viewer, do the following:

1. Open the view to which you want to crossprobe: RTL/Technology view,
or the source code file.

2. Do the following in the open FSM view:

Crossprobing Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-55

– For FSMs with a onehot encoding style, click the state bubbles in the
bubble diagram or the states in the FSM transition table.

– For all other FSMs, click the states in the bubble diagram. You
cannot use the transition table because with these encoding styles,
the number of registers in the RTL or Technology views do not match
the number of registers in the FSM Viewer.

The software highlights the corresponding code or object in the open
views. You can only crossprobe from a state in the FSM table if you used
a onehot encoding style.

LO

Chapter 4: Result Analysis Analyzing With the HDL Analyst Tool

4-56 Fpga User Guide, December 2005

Analyzing With the HDL Analyst Tool
The HDL Analyst tool is a graphical productivity tool that helps you visualize
your synthesis results, and improve device performance and area results. The
hierarchical RTL-level and technology-primitive level schematics let you
graphically view and analyze your design, as described in subsequent
sections. See the following for more information:

• Viewing Design Hierarchy and Context, next

• Filtering Schematics, on page 4-60

• Expanding Pin and Net Logic, on page 4-62

• Expanding and Viewing Connections, on page 4-66

The HDL Analyst views also let you analyze timing and crossprobe, and these
operations are described in other sections: Basic Operations in the Schematic
Views, on page 4-16, Exploring Design Hierarchy, on page 4-30, Finding
Objects, on page 4-37, Crossprobing, on page 4-48, and Analyzing Timing, on
page 4-73.

Viewing Design Hierarchy and Context
Most large designs are hierarchical, so the synthesis software provides tools
that help you view hierarchy details or put the details in context. Alterna-
tively, you can browse and navigate hierarchy with Push/Pop mode, or flatten
the design to view internal hierarchy.

This section describes how to use interactive hierarchical viewing operations
to better analyze your design. Automatic hierarchy viewing operations that
are built into other commands are described in the context in which they
appear. For example, Viewing Critical Paths, on page 4-74 describes how the
software automatically traces a critical path through different hierarchical
levels using hollow boxes with nested internal logic (transparent instances) to
indicate levels in hierarchical instances.

1. To view the internal logic of primitives in your design, do either of the
following:

– To view the logic of an individual primitive, push into it. This
generates a new schematic view with the internal details. Click the
Back icon to return to the previous view.

Analyzing With the HDL Analyst Tool Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-57

– To view the logic of all primitives in the design, select Options->HDL
Analyst Options->General, and enable Show Cell Interior. This command lets
you see internal logic in context, by adding the internal details to the
current schematic view and all subsequent views. If the view is too
cluttered with this option on, filter the view (see Filtering Schematics,
on page 4-60) or push into the primitive. Click the Back icon to return
to the previous view after filtering or pushing into the object.

The following figure compares these two methods:

2. To hide selected hierarchy, select the instance whose hierarchy you want
to exclude, and then select Hide Instances from the HDL Analyst menu or the
right-click popup menu in the schematic view.

You can hide opaque (solid yellow) or transparent (hollow) instances. The
software marks hidden instances with an H in the lower left. Hidden
instances are like black boxes; their hierarchy is excluded from filtering,
expanding, dissolving, or searching in the current window, although
they can be crossprobed. An instance is only hidden in the current view

Result of pushing into a primitive (new view
of lower-level logic) Result of enabling Show Cell Interior

option (same view with internal logic)

LO

Chapter 4: Result Analysis Analyzing With the HDL Analyst Tool

4-58 Fpga User Guide, December 2005

window; other view windows are not affected. Temporarily hiding unnec-
essary hierarchy focuses analysis and saves time in large designs.

Before you save a design with hidden instances, select Unhide Instances
from the HDL Analyst menu or the right-click popup menu and make the
hidden internal hierarchy accessible again. Otherwise, the hidden
instances are saved as black boxes, without their internal logic.
Conversely, you can use this feature to reduce the scope of analysis in a
large design by hiding instances you do not need, saving the reduced
design to a new name, and then analyzing it.

3. To view the internal logic of a hierarchical instance, you can push into
the instance, dissolve the selected instance with the Dissolve Instances
command, or flatten the design. You cannot use these methods to view
the internal logic of a hidden instance.

‘H’ indicates a
hidden instance

Analyzing With the HDL Analyst Tool Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-59

4. If the result of filtering or dissolving is a hollow box with no internal
logic, try either of the following, as appropriate, to view the internal
hierarchy:

– Select Options->HDL Analyst Options->Sheet Size and increase the value of
Maximum Filtered Instances. Use this option if the view is not too
cluttered.

– Use the sheet navigation commands to go to the sheets indicated in
the hollow box.

If there is too much internal logic to display in the current view, the
software puts the internal hierarchy on separate schematic sheets. It
displays a hollow box with no internal logic and indicates the schematic
sheets that contain the internal logic.

5. To view the design context of an instance in a filtered view, select the
instance, right-click, and select Show Context from the popup menu.

The software displays an unfiltered view of the hierarchical level that
contains the selected object, with the instance highlighted. This is useful
when you have to go back and forth between different views during
analysis. The context differs from the Expand commands, which show
connections. To return to the original filtered view, click Back.

Pushing
into an
instance

Generates a view that shows only the internal logic. You do
not see the internal hierarchy in context. To return to the
previous view, click Back. See Exploring Object Hierarchy by
Pushing/Popping, on page 4-31 for details.

Flattening
the entire
design

Opens a new view where the entire design is flattened, except
for hidden hierarchy. Large flattened designs can be
overwhelming. See Flattening Schematic Hierarchy, on
page 4-67 for details about flattening designs.
Because this is a new view, you cannot use Back to return to
the previous view. To return to the top-level unflattened
schematic, right-click in the view and select Unflatten
Schematic.

Flattening
an
instance by
dissolving

Generates a view where the hierarchy of the selected
instances is flattened, but the rest of the design is unaffected.
This provides context. See Flattening Schematic Hierarchy,
on page 4-67 for details about dissolving instances.

LO

Chapter 4: Result Analysis Analyzing With the HDL Analyst Tool

4-60 Fpga User Guide, December 2005

Filtering Schematics
Filtering is a useful first step in analysis, because it focuses analysis on the
relevant parts of the design. Some commands, like the Expand commands,
automatically generate filtered views; this procedure only discusses manual
filtering, where you use the Filter Schematic command to isolate selected
objects. See Chapter 3 of the Reference Manual for details about these
commands.

This table lists the advantages of using filtering over flattening:

1. Select the objects that you want to isolate. For example, you can select
two connected objects.

If you filter a hidden instance, the software does not display its internal
hierarchy when you filter the design. The following example illustrates
this.

2. Select the Filter Schematic command, using one of these methods:

– Select Filter Schematic from the HDL Analyst menu or the right-click
popup menu.

Filter Schematic Command Flatten Commands

Loads part of the design; better
memory usage

Loads entire design

Combine filtering with
Push/Pop mode, and history
buttons (Back and Forward) to
move freely between hierarchical
levels

Must use Unflatten Schematic to return to top
level, and flatten the design again to see lower
levels. Cannot return to previous view if the
previous view is not the top-level view.

Analyzing With the HDL Analyst Tool Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-61

– Click the Filter Schematic icon (buffer gate) ().

– Press F12.

– Press the right mouse button and draw a narrow V-shaped mouse
stroke in the schematic window. See Help->Mouse Stroke Tutor for
details.

The software filters the design and displays the selected objects in a
filtered view. The title bar indicates that it is a filtered view. Hidden
instances have an H in the lower left. The view displays other hierar-
chical instances as hollow boxes with nested internal logic (transparent
instances). For descriptions of filtered views and transparent instances,
see Filtered and Unfiltered Schematic Views, on page 6-2 and Trans-
parent and Opaque Display of Hierarchical Instances, on page 6-7 in the
Reference Manual. If the transparent instance does not display internal
logic, use one of the alternatives described in Viewing Design Hierarchy
and Context, on page 4-56, step 4.

3. If the filtered view does not display the pin names of technology
primitives and transparent instances that you want to see, do the
following:

– Select Options->HDL Analyst Options->Text and enable Show Pin Name.

– To temporarily display a pin name, move the cursor over the pin. The
name is displayed as long as the cursor remains over the pin.
Alternatively, select a pin. The software displays the pin name until

Filtered view

LO

Chapter 4: Result Analysis Analyzing With the HDL Analyst Tool

4-62 Fpga User Guide, December 2005

you make another selection. Either of these options can be applied to
individual pins. Use them to view just the pin names you need and
keep design clutter to a minimum.

– To see all the hierarchical pins, select the instance, right-click, and
select Show All Hier Pins.

You can now analyze the problem, and do operations like the following:

4. To return to the previous schematic view, click the Back icon. If you
flattened the hierarchy, right-click and select Unflatten Schematic to return
to the top-level unflattened view.

For additional information about filtering schematics, see Filtering
Schematics, on page 4-60 and Flattening Schematic Hierarchy, on page 4-67
of the Reference Manual.

Expanding Pin and Net Logic
When you are working in a filtered view, you might need to include more logic
in your selected set to debug your design. This section describes commands
that expand logic fanning out from pins or nets; to expand paths, see
Expanding and Viewing Connections, on page 4-66.

Use the Expand commands with the Filter Schematic, Hide Instances, and Flatten
commands to isolate just the logic that you want to examine. Filtering
isolates logic, flattening removes hierarchy, and hiding instances prevents
their internal hierarchy from being expanded. See Filtering Schematics, on
page 4-60 and Flattening Schematic Hierarchy, on page 4-67 for details.

Trace paths, build up
logic

See Expanding Pin and Net Logic, on
page 4-62 and Expanding and Viewing
Connections, on page 4-66

Filter further Select objects and filter again

Find objects See Finding Objects, on page 4-37

Flatten, or hide and
flatten

See Flattening Schematic Hierarchy, on
page 4-67. You can hide transparent or opaque
instances.

Crossprobe from filtered
view

See Crossprobing from the RTL/Technology
View, on page 4-49

Analyzing With the HDL Analyst Tool Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-63

1. To expand logic from a pin hierarchically across boundaries, use the
following commands.

The software expands the logic as specified, working on the current level
and below or working up the hierarchy, crossing hierarchical boundaries
as needed. Hierarchical levels are shown nested in hollow bounding
boxes. The internal hierarchy of hidden instances is not displayed.

For descriptions of the Expand commands, see HDL Analyst Menu, on
page 3-69 of the Reference Manual.

2. To expand logic from a pin at the current level only, do the following:

– Select a pin, and go to the HDL Analyst->Current Level menu or the right-
click popup menu->Current Level.

– Select Expand or Expand to Register/Ports. The commands work as
described in the previous step, but they do not cross hierarchical
boundaries.

3. To expand logic from a net, use the commands shown in the following
table.

– To expand at the current level and below, select the commands from
the HDL Analyst->Hierarchical menu or the right-click popup menu.

– To expand at the current level only, select the commands from the
HDL Analyst->Current Level menu or the right-click popup menu->Current
Level.

To... Do this (HDL Analyst->Hierarchical/Popup menu)...

See all cells
connected to a pin

Select a pin and select Expand. See Expanding
Filtered Logic Example, on page 4-64.

See all cells that are
connected to a pin,
up to the next
register

Select a pin and select Expand to Register/Port. See
Expanding Filtered Logic to Register/Port
Example, on page 4-65.

See internal cells
connected to a pin

Select a pin and select Expand Inwards. The
software filters the schematic and displays the
internal cells closest to the port. See Expanding
Inwards Example, on page 4-65.

LO

Chapter 4: Result Analysis Analyzing With the HDL Analyst Tool

4-64 Fpga User Guide, December 2005

Expanding Filtered Logic Example

To... Do this...

Select the driver of
a net

Select a net and select Select Net Driver. The result is a
filtered view with the net driver selected (Selecting the Net
Driver Example, on page 4-66).

Trace the driver,
across sheets if
needed

Select a net and select Go to Net Driver. The software
shows a view that includes the net driver.

Select all instances
on a net

Select a net and select Select Net Instances. You see a
filtered view of all instances connected to the selected
net.

Analyzing With the HDL Analyst Tool Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-65

Expanding Filtered Logic to Register/Port Example

Expanding Inwards Example

LO

Chapter 4: Result Analysis Analyzing With the HDL Analyst Tool

4-66 Fpga User Guide, December 2005

Selecting the Net Driver Example

Expanding and Viewing Connections
This section describes commands that expand logic between two or more
objects; to expand logic out from a net or pin, see Expanding Pin and Net
Logic, on page 4-62. You can also isolate the critical path or use the Timing
Analyst to generate a schematic for a path between objects, as described in
Analyzing Timing, on page 4-73.

Use the following path commands with the Filter Schematic and Hide Instances
commands to isolate just the logic that you want to examine. The two
techniques described here differ: Expand Paths expands connections between
selected objects, while Isolate Paths pares down the current view to only
display connections to and from the selected instance.

For detailed descriptions of the commands mentioned here, see Commands
That Result in Filtered Schematics, on page 6-28 in the Reference Manual.

1. To expand and view connections between selected objects, do the
following:

– Select two or more points.

– To expand the logic at the current level only, select HDL Analyst->
Current Level->Expand Paths or popup menu->Current Level Expand Paths.

– To expand the logic at the current level and below, select HDL Analyst->
Hierarchical->Expand Paths or popup menu->Expand Paths.

Analyzing With the HDL Analyst Tool Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-67

2. To view connections from all pins of a selected instance, right-click and
select Isolate Paths from the popup menu.

Unlike the Expand Paths command, the connections are based on the
schematic used as the starting point; the software does not add any
objects that were not in the starting schematic.

Flattening Schematic Hierarchy
Flattening removes hierarchy so you can view the logic without hierarchical
levels. In most cases, you do not have to flatten your hierarchical schematic
to debug and analyze your design, because you can use a combination of

Starting Point The Filtered View Traces Paths (Forward and Back) From All
Pins of the Selected Instance...

Filtered view Traces through all sheets of the filtered view, up to the next
port, register, hierarchical instance, or black box.

Unfiltered
view

Traces paths on the current schematic sheet only, up to the
next port, register, hierarchical instance, or black box.

LO

Chapter 4: Result Analysis Analyzing With the HDL Analyst Tool

4-68 Fpga User Guide, December 2005

filtering, Push/Pop mode, and expanding to view logic at different levels.
However, if you must flatten the design, use the following techniques., which
include flattening, dissolving, and hiding instances.

1. To flatten an entire design down to logic cells, use one of the following
commands:

– For an RTL view, select HDL Analyst->RTL->Flattened View. This flattens
the design to generic logic cells.

– For a Technology view, select Flattened View or Flattened to Gates View
from the HDL Analyst->Technology menu. Use the former command to
flatten the design to the technology primitive level, and the latter
command to flatten it further to the equivalent Boolean logic.

The software flattens the top-level design and displays it in a new
window. To return to the top-level design, right-click and select Unflatten
Schematic.

Unless you really require the entire design to be flattened, use Push/Pop
mode and the filtering commands (Filtering Schematics, on page 4-60) to
view the hierarchy. Alternatively, you can use one of the selective
flattening techniques described in subsequent steps.

2. To selectively flatten transparent instances when you analyze critical
paths or use the Expand commands, select Flatten Current Schematic from
the HDL Analyst menu, or select Flatten Schematic from the right-click
popup menu.

The software generates a new view of the current schematic in the same
window, with all transparent instances at the current level and below
flattened. RTL schematics are flattened down to generic logic cells and
Technology views down to technology primitives. To control the number
of hierarchical levels that are flattened, use the Dissolve Instances
command described in step 4.

If your view only contains hidden hierarchical instances or pale yellow
(opaque) hierarchical instances, nothing is flattened. If you flatten an
unfiltered (usually the top-level design) view, the software flattens all
hierarchical instances (transparent and opaque) at the current level and
below. The following figure shows flattened transparent instances.

Analyzing With the HDL Analyst Tool Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-69

Because the flattened view is a new view, you cannot use Back to return
to the unflattened view or the views before it. Use Unflatten Schematic to
return to the unflattened top-level view.

3. To selectively flatten the design by hiding instances, select hierarchical
instances whose hierarchy you do not want to flatten, right-click, and
select Hide Instances. Then flatten the hierarchy using one of the Flatten
commands described above.

Use this technique if you want to flatten most of your design. If you want
to flatten only part of your design, use the approach described in the
next step.

When you hide instances, the software generates a new view where the
hidden instances are not flattened, but marked with an H in the lower
left corner. The rest of the design is flattened. If unhidden hierarchical
instances are not flattened by this procedure, use the Flattened View or
Flattened to Gates View commands described in step 1 instead of the Flatten

Flatten Schematic
flattens unhidden
transparent instance.

Hidden transparent
instance is not
flattened.

Flatten Schematic
flattens unhidden
transparent instance.

Opaque hierarchical
instance is unaffected.

LO

Chapter 4: Result Analysis Analyzing With the HDL Analyst Tool

4-70 Fpga User Guide, December 2005

Current Schematic command described in step 2, which only flattens trans-
parent instances in filtered views.

You can select the hidden instances, right-click, and select Unhide
Instances to make their hierarchy accessible again. To return to the
unflattened top-level view, right-click in the schematic and select
Unflatten Schematic.

4. To selectively flatten some hierarchical instances in your design by
dissolving them, do the following:

– If you want to flatten more than one level, select Options->HDL Analyst
Options and change the value of Dissolve Levels. If you want to flatten
just one level, leave the default setting.

– Select the instances to be flattened.

– Right-click and select Dissolve Instances.

The results differ slightly, depending on the kind of view from which you
dissolve instances.

Starting View Software Generates a...

Filtered Filtered view with the internal logic of dissolved instances
displayed within hollow bounding boxes (transparent
instances), and the hierarchy of the rest of the design
unchanged. If the transparent instance does not display
internal logic, use one of the alternatives described in
step 4 of Viewing Design Hierarchy and Context, on
page 4-56. Use the Back button to return to the undissolved
view.

Unfiltered New, flattened view with the dissolved instances flattened in
place (no nesting) to Boolean logic, and the hierarchy of the
rest of the design unchanged. Select Unflatten Schematic to
return to the top-level unflattened view. You cannot use the
Back button to return to previous views because this is a
new view.

Analyzing With the HDL Analyst Tool Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-71

The following figure illustrates this.

Use this technique if you only want to flatten part of your design while
retaining the hierarchical context. If you want to flatten most of the
design, use the technique described in the previous step. Instead of
dissolving instances, you can use a combination of the filtering
commands and Push/Pop mode.

Dissolved logic for prgmcntr, shown nested when you start from a filtered view.

Dissolved logic for prgmcntr, shown flattened in context when you start from an unfiltered view.

LO

Chapter 4: Result Analysis Analyzing With the HDL Analyst Tool

4-72 Fpga User Guide, December 2005

Minimizing Memory Usage While Analyzing Designs
When working with large hierarchical designs, use the following techniques
to use memory resources efficiently.

• Before you do any analysis operations such as searching, flattening,
expanding, or pushing/popping, hide (HDL Analyst->Hide Instances) the
hierarchical instances you do not need. This saves memory resources,
because the software does not load the hierarchy of the hidden
instances.

• Temporarily divide your design into smaller working files. Before you do
any analysis, hide the instances you do not need. Save the design. The
.srs and .srm files generated are smaller because the software does not
save the hidden hierarchy. Close any open HDL Analyst windows to free
all memory from the large design. In the Implementation Results view,
double-click one of the smaller files to open the RTL or Technology
schematic. Analyze the design using the smaller, working schematics.

• Filter your design instead of flattening it. If you must flatten your design,
hide the instances whose hierarchy you do not need before flattening, or
use the Dissolve Instances command. See Flattening Schematic Hierarchy,
on page 4-67 for details. For more information on the Expand Paths and
Isolate Paths commands, see RTL View and Technology View Popup Menu
Commands, on page 3-129 of the Reference Manual.

• When searching your design, search by instance rather than by net.
Searching by net loads the entire design, which uses memory.

• Limit the scope of a search by hiding instances you do not need to
analyze. You can limit the scope further by filtering the schematic in
addition to hiding the instances you do not want to search.

Analyzing Timing Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-73

Analyzing Timing
You can use the Timing Analyst and HDL Analyst functionality to analyze
timing. This section describes the following:

• Analyzing Clock Trees in the RTL View, next

• Viewing Critical Paths, on page 4-74

• Analyzing Paths with the Timing Analyst, on page 4-76

• Analyzing Paths with the Synplify Premier Timing Analyst, on page 4-79

• Handling Negative Slack, on page 4-81

Synplify Premier users can also use island timing reports for analysis, as
described in The Island Timing Report, on page 4-83.

Analyzing Clock Trees in the RTL View
To analyze clock trees in the RTL view:

1. In the Hierarchy Browser, expand Clock Tree, select all the clocks, and
filter the design.

The Hierarchy Browser lists all clocks and the instances that drive them
under Clock Tree. The filtered view shows the selected objects.

2. If necessary, use the filter and expand commands to trace clock
connections back to the ports and check them.

For details about the commands for filtering and expanding paths, see
Filtering Schematics, on page 4-60, Expanding Pin and Net Logic, on
page 4-62 and Expanding and Viewing Connections, on page 4-66. For
more information on filtering schematics, see HDL Analyst Menu:
Filtering and Flattening Commands, on page 3-73 of the Reference
Manual.

3. Check that your defined clock constraints cover the objects in the
design.

If you do not define your clock constraints accurately, you might not get
the best possible synthesis optimizations.

LO

Chapter 4: Result Analysis Analyzing Timing

4-74 Fpga User Guide, December 2005

Viewing Critical Paths
The HDL Analyst tool makes it simple to find and examine critical paths and
the relevant source code. The following procedure shows you how to filter and
analyze a critical path. You can also use the procedure described in
Analyzing Paths with the Timing Analyst, on page 4-76 and Analyzing Paths
with the Synplify Premier Timing Analyst, on page 4-79 to view this and other
paths.

1. If needed, set the slack time for your design.

– Select HDL Analyst->Set Slack Margin.

– To view only instances with the worst-case slack time, enter a zero.

– To set a slack margin range, type a value for the slack margin, and
click OK. The software gets a range by subtracting this number from
the slack time, and the Technology view displays instances within
this range. For example, if your slack time is -10 ns, and you set a
slack margin of 4 ns, the command displays all instances with slack
times between -6 ns and -10 ns. If your slack margin is 6 ns, you see
all instances with slack times between -4 ns and -10 ns.

2. Display the critical path using one of the following methods. The
Technology view displays a hierarchical view that highlights the
instances and nets in the most critical path of your design.

– To generate a hierarchical view of the critical path, click the Show
Critical Path icon (stopwatch icon), select HDL Analyst->Technology-
>Hierarchical Critical Path, or select the command from the popup menu.
This is a filtered view in the same window, with hierarchical logic
shown in transparent instances. History commands apply, so you
can return to the previous view by clicking Back.

– To flatten the hierarchical critical path described above, right-click
and select Flatten Schematic. The software generates a new view in the
current window, and flattens only the transparent instances needed
to show the critical path; the rest of the design remains hierarchical.
Click Back to go the top-level design.

– To generate a flattened critical path in a new window, select HDL
Analyst->Technology->Flattened Critical Path. This command uses more
memory because it flattens the entire design and generates a new
view for the flattened critical path in a new window. Click Back in this
window to go to the flattened top-level design or to return to the
previous window.

Analyzing Timing Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-75

3. Use the timing numbers displayed above each instance to analyze the
path. If no numbers are displayed, enable HDL Analyst->Show Timing
Information. Interpret the numbers as follows:

4. View instances in the critical path that have less than the worst-case
slack time. For additional information on handling slack times, see
Handling Negative Slack, on page 4-81.

If necessary change the slack margin and regenerate the critical path.

5. Crossprobe and check the RTL view and source code. Analyze the code
and the schematic to determine how to address the problem. You can
add more constraints or make code changes.

Flattened Critical Path

Hierarchical Critical Path

8.8, 1.2

Delay
For combinational logic, it is the cumulative delay to
the output of the instance, including the net delay of
the output. For flip-flops, it is the portion of the path
delay attributed to the flip-flop. The delay can be
associated with either the input path or output path,
whichever is worse, because the flip-flop is the end of
one path and the start of another.

Slack time
Slack of the worst path that
goes through the instance. A
negative value indicates that
timing has not been met.

LO

Chapter 4: Result Analysis Analyzing Timing

4-76 Fpga User Guide, December 2005

6. Click the Back icon to return to the previous view. If you flattened your
design during analysis, select Unflatten Schematic to return to the top-level
design.

There is no need to regenerate the critical path, unless you flattened
your design during analysis or changed the slack margin. When you
flatten your design, the view is regenerated so the history commands do
not apply and you must click the Critical Path icon again to see the critical
path view.

7. Rerun synthesis, and check your results.

If you have fixed the path, the window displays the next most critical
path when you click the icon.

Repeat this procedure and fix the design for the remaining critical paths.
When you are within 5-10 percent of your desired results, place and
route your design to see if you meet your goal. If so, you are done. If your
vendor provides timing-driven place and route, you might improve your
results further by adding timing constraints to place and route.

Analyzing Paths with the Timing Analyst
The Synplify Pro and Synplify Premier Timing Analyst is an analysis tool that
lets you analyze the timing between any two points in applicable Actel, Altera
and Xilinx technologies, without resynthesizing your design. You can use this
tool for any path, but for critical paths it is easier to use the procedure
described in Viewing Critical Paths, on page 4-74. The following procedure
describes how to use the Timing Analyst; see Analyzing Paths with the
Synplify Premier Timing Analyst, on page 4-79 for information about the
Synplify Premier tool.

1. Open a Technology view. You can only analyze paths in a mapped design.

2. Select instances from the schematic or use Find to find and select start
and end registers or ports. You can filter or expand your design to find
start and end points at different levels of hierarchy.

3. Open the Timing Analyst window by clicking the icon or by selecting
HDL Analyst->Timing Analyst.

The Timing Analyst window opens with the selected start and end points
in the box on the left side. If you did not select start and end points, it
shows all the signal names. For detailed descriptions of the options in

Analyzing Timing Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-77

this window, see Timing Analyst Command, on page 3-80 in the Refer-
ence Manual.

4. Select the objects and move them into the start and end point boxes
using the appropriate arrows.

5. Click Generate.

The software generates and opens a timing report and a timing view
schematic. The timing report (.ta file in the Implementation Results
view) contains from-to information for just the path you specified, and is
different from the timing report for the entire design that is in the log file.
The timing view schematic (_ta.srm) is a filtered Technology view that
shows the path between the start and end points You cannot generate a
critical path or use the Timing Analyst from this view. If you close the
report and schematic windows, reopen them by selecting the .ta (timing
report) and name_ta.srm (Timing view) files from the Implementation
Results view.

6. View the results.

The following figure shows a timing view for a path; the file excerpt that
follows shows associated details from the timing report.

Use arrows to move
objects and specify
start and end points

LO

Chapter 4: Result Analysis Analyzing Timing

4-78 Fpga User Guide, December 2005

7. Use the HDL analyst commands described in Analyzing With the
HDL Analyst Tool, on page 4-56 to analyze the path.

Analyzing Timing Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-79

Analyzing Paths with the Synplify Premier Timing
Analyst

The Timing Analyst feature is available for Altera and Xilinx technologies.
This feature allows you to do point-to-point timing analysis without resyn-
thesizing your design. You can use this tool to generate a custom timing
report for any user-specified path.

A timing report can be generated by the timing analyst at various times
after the design has been mapped, and based on the type of Synplify
Premier process flow implemented. You can request a timing report after
creating an implementation:

• Without a design plan

• With a deisgn plan

• With a design plan and fully placed regions enabled

Applicable timing information is used for each type of implementation. For
some implementations, exact placement and net delay information is
included in the calculations resulting in more accurate timing reports.

Creating the Timing Report
To generate a timing report, do the following:

1. Open a Technology view. You can only analyze paths in a mapped
design.

2. Select instances from the schematic or use the Find command to find and
select start and end registers or ports. You can also filter or expand your
design to find start and end points at different levels of hierarchy.

3. Open the Timing Analyst window by clicking the icon or by
selecting HDL Analyst->Timing Analyst from the popup menu.

4. Select the objects and move them into the start and end point boxes
using the appropriate arrows.

LO

Chapter 4: Result Analysis Analyzing Timing

4-80 Fpga User Guide, December 2005

You can specify any of the following: From points, To points, or From and
To points.

5. Click Generate.

The software generates and opens a timing report and a Timing view
schematic. The timing report (.ta file) contains from-to information
for just the path you specified, and is different from the timing report
for the entire design that is in the log file. The timing view is a filtered
Technology view that shows the path between the start and end
points. By default, the software filters Sequential Instances, Input Ports,
and Output Ports. You can also enter a limit for the number of paths to
display.

View timing
report

Generate a
timing report
and schematic

Use arrow buttons to move
objects to From/To points.

Save last
settings

Analyzing Timing Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-81

6. View the results.

By default, the software opens the .ta timing report file and the
Timing view for the path. If you close these windows, reopen them by
selecting the .ta (timing report) and .srm (Timing view) files from the
Implementation Results view. See Timing Report, on page 7-71 in the
Reference Manual.

7. Use the HDL analyst commands to analyze the path.

Handling Negative Slack
Positive slack time values (greater than or equal to 0 ns) are good, while
negative slack time values (less than 0 ns) indicate the design has not met
timing requirements. The negative slack value indicates the amount by which
the timing is off because of delays in the critical paths of your design.

The following procedure shows you how to add constraints to correct negative
slack values. Timing constraints can improve your design by 10% to 20%.

1. Display the critical path in a filtered Technology view.

Select/Deselect
Checkbox

LO

Chapter 4: Result Analysis Analyzing Timing

4-82 Fpga User Guide, December 2005

– For a hierarchical critical path, either click the Critical Path icon, select
HDL Analyst->Show Critical Path, or select HDL Analyst->Technology->
Hierarchical Critical Path.

– For a flat path, select HDL Analyst->Technology->Flattened Critical Path.

2. Analyze the critical path.

– Check the end points of the path. The start point can be a primary
input or a flip-flop. The end point can be a primary output or a flip-
flop.

– Examine the instances. Use the commands described in Filtering
Schematics, on page 4-60, Expanding Pin and Net Logic, on
page 4-62, and Expanding and Viewing Connections, on page 4-66.
For more information on filtering schematics, see Filtering
Schematics, on page 4-60.

3. Determine whether there is a timing exception, like a false or multicycle
path. If this is the cause of the negative slack, set the appropriate timing
constraint.

If there are fewer start points, pick a start point to add the constraint. If
there are fewer end points, add the constraint to an end point.

4. If your design does not meet timing by 20% or more, you may need to
make structural changes. You could do this by

– Enabling options like pipelining (Pipelining, on page 6-40), retiming
(Retiming, on page 6-44), FSM exploration (Using FSM Explorer, on
page 6-22), or resource sharing. The Synplify product does not
support pipelining, retiming, and FSM exploration.

– Modifying the source code.

5. Rerun synthesis and check your results.

The Island Timing Report Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-83

The Island Timing Report
After you synthesize a design, you can generate a timing report that contains
a hierarchical display for groups of connected critical paths called islands.
This timing report can be generated for certain target Xilinx and Altera
technologies. The island timing report is useful for creating a design plan and
analyzing critical paths (routing vs. logic delay), because it identifies which
instances or pins belong to multiple paths and how the critical paths in an
island group are connected together. Critical paths with a large percentage of
total route delay typically have better improvements with design planning.
For details about the information in this report, see Synplify Premier Island
Timing Report, on page 7-76 in the Reference Manual. The topics in this
section include:

• Generating the Island Timing Report, on page 4-83

• Automatic Island Timing Report, on page 4-84

• Defining the Group Range and Global Range, on page 4-85

• Interactive Island Timing Analyst, on page 4-86

• Viewing the Island Timing Report, on page 4-87

Generating the Island Timing Report
In the applicable Xilinx (Virtex-II, Virtex-II Pro, Virtex-4, and Spartan-3) and
Altera (Stratix, Stratix GX, Stratix II, Cyclone, and Cyclone II) technologies,
you can either automatically generate the Island Timing Report during the
mapper phase or interactively use the Island Timing Analyst after running
physical synthesis. See the following sections:

• Automatic Island Timing Report, on page 4-84

• Defining the Group Range and Global Range, on page 4-85

• Interactive Island Timing Analyst, on page 4-86

• Viewing the Island Timing Report, on page 4-87

LO

Chapter 4: Result Analysis The Island Timing Report

4-84 Fpga User Guide, December 2005

Automatic Island Timing Report
Use the following process to automatically generate the hierarchical-based
island timing report during the mapper phase.

1. Select the Timing Report tab of the Implementation Options panel and in the
Island Timing Report section of this pane, check the Generate Island Report
switch to enable this option. A timing report can be generated only for
devices with this switch.

2. Then you must select a value for the following:

– Paths per Island — specify the number of paths to report for each
island.

– Group Range (ns) — specify a group range in nano seconds from the
worst case slack of the island to determine the critical paths for each
island.

– Global Range (ns) — specify a global range in nano seconds from the
worst case slack of the design to determine the number of islands
displayed in the timing report.

3. After you have set all the implementation option settings, click OK and
close the dialog box.

The Island Timing Report Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-85

4. When you are ready to synthesize your design, select Run->Synthesize in
the Project view or simply click on the Run button.

After synthesis completes, the log file (.srr) displays the following
message:

@N|Hierarchical island-based critical path report is located in
C:\path_directory\design_name.tah

The timing report file (.tah) is listed in the Implementation Results view of
your project.

See Viewing the Island Timing Report, on page 4-87 for further informa-
tion.

Defining the Group Range and Global Range
Global Range specifies the lower bound (or water level) for the timing report.
The Group Range value specifies the range from the worst case slack, and thus
determines the instances that are reported for each individual island.

Example
The following table shows how different settings affect what is reported:

The following graphically shows how the island report lists all islands in the
design that fall within the range from -3 to -1 (global range). For each island,
it reports instances whose slack is within 1 ns of the worst-case slack for that
island (group range).

Worst Case
Slack

 -3
ns

Global Range 2
ns

As the worst case slack is -3 ns, setting the global
range to 2 causes the water level to be -1 ns (-3 + 2).
The island report will not contain instances with a
slack that exceeds (is more positive) than -1.

Group Range 1
ns

This specifies a range from the worst case slack for an
island; the software reports all island instances that
fall within this range. If the worst-case slack for an
island is -3 ns, the report for that island will contain
instances with slack in the range of -3ns to -2 ns (-3
+1).

LO

Chapter 4: Result Analysis The Island Timing Report

4-86 Fpga User Guide, December 2005

Interactive Island Timing Analyst
Use the following process to interactively generate the island report from the
Island Timing Analyst.

1. Select the Timing Report tab of the Implementation Options panel and in the
Island Timing Report section of this pane, check that the Generate Island
Report switch is disabled. Otherwise, the Island Timing Analyst will
display the report generated with the values used from this pane.

2. Then synthesize your design by either selecting Run->Synthesize in the
Project view or simply clicking on the Run button.

3. Invoke the Island Timing Analyst by either clicking on the Island Timing
Analyst icon () or selecting HDL Analyst->Island Timing Analyst from the
menu.

4. Then you must specify values for group range, global range, and
maximum paths per islands from the Islands/Paths Control panel. See
Defining the Group Range and Global Range, on page 4-85.

5. Click on the Generate Report button from the Islands/Paths Control
panel.

Island 1

Island 2
Island 3

-3

-2

-1

0

Group range = 1

Water Level

Slack (ns)

Other path

Worst case slack

The Island Timing Report Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-87

See Viewing the Island Timing Report, on page 4-87 for more detailed
information.

Viewing the Island Timing Report
The timing report lists the islands with their worst paths displayed based on
the number of paths you requested for the island. For each path, the logic
elements and nets and net delays are displayed in an ordered from-to list.

1. To view the hierarchical-based island timing report file, you must first
select Options->Project View Options and enable the Show all files in results
directory check box.

2. To view the timing report, either

– Double-click the .tah file.

– Select the .tah file, right-click and select Open as Text from the popup
menu.

LO

Chapter 4: Result Analysis The Island Timing Analyst

4-88 Fpga User Guide, December 2005

3. To find information in the timing file, select Edit -> Find or press Ctrl-f. Fill
out the criteria in the form and click OK.

To view the island timing report interactively from the Island Timing
Analyst tool, see Islands/Paths Summary View, on page 4-92 and
Islands/Paths Details View, on page 4-95. See Island Timing Report
Critical Paths, on page 4-98 for details about how to use the critical path
timing information in this file or the tool for QoR improvements with
physical synthesis.

The Island Timing Analyst
The following topics describe the Timing Analyst and its usage:

• Islands/Paths Control Panel, on page 4-89

• Islands/Paths Summary View, on page 4-92

• Islands/Paths Summary Management, on page 4-93

• Islands/Paths Details View, on page 4-95

Use the Island Timing Analyst to generate and display the Islands/Paths
Summary and Details reports. You can also cross probe these critical paths
to the HDL Analyst view. The Island Timing Analyst contains the following:

• Islands/Paths Control Panel — use to set values for Global Range, Group
Range, and Max Paths/Island and generate the island timing report.

• Islands/Paths Summary View— displays a spread-sheet window that
contains all islands and their associated critical paths within the ranges
specified for generating the island timing report.

• Islands/Paths Details View — displays detail information for islands or
paths selected from the Islands/Paths Summary report within this window.

Refer to the following sections for more information about the:

• Islands/Paths Control Panel, on page 4-89

• Islands/Paths Summary View, on page 4-92

• Islands/Paths Summary Management, on page 4-93

The Island Timing Analyst Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-89

• Islands/Paths Details View, on page 4-95

The following figure shows the UI for the Island Timing Analyst.

Islands/Paths Control Panel
The Islands/Paths control panel is displayed by default. You can toggle the
display to show or hide this panel in the Island Timing Analyst by:

• Clicking on the Controls icon ().

• Using the keyboard shortcut key Ctrl-p.

• Right-click and select Controls from the popup menu.

Islands/Paths Summary Report

Islands/Paths Details ReportIslands/Paths Control Panel

LO

Chapter 4: Result Analysis The Island Timing Analyst

4-90 Fpga User Guide, December 2005

Note that the Line Up command is currently not applicable in the Island
Timing Analyst.

Use the Islands/Paths control panel to generate an island timing report. To
do this:

1. You must specify the following parameters either manually in their
appropriate parameter fields, or else using the slider controls on the
control panel.

– Global Range (ns) — specify a global range in nano seconds from the
worst case slack of the design to determine the number of islands
displayed in the timing report. Type the range value in the parameter
field or use the slider control.

Only the islands above this global slack range (water level) are
displayed in the island report.

– Group Range (ns) — specify a group range in nano seconds from the
worst case slack of the island to determine the critical paths for each
island. Type the range value in the parameter field or use the slider
control.

Only the paths within this group slack range for an island are
displayed in the island report.

– Max Paths/Island — specify the number of paths to report for each
island. Type the number of paths in the parameter field or use the
up/down scroll option located on the right side of the parameter box.

If the number of paths which do not meet the specified slack for an
island exceeds the maximum number of paths specified, then the
most critical paths within this limit are displayed in the island timing
report.

2. Then click on the Generate Report button.

You can interactively change the values used to generate the timing
report. These changes are reflected in the Island Timing Analyst tool
immediately after you click on the Generate Report button.

For more details about the Island Timing Report, see The Island Timing
Report, on page 4-83.

The Island Timing Analyst Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-91

The following figure shows the UI for the Islands/Paths control panel.

To dock the control panel in the Island Timing Analyst to another location in
the view, double-click on the top edge of the control panel where the pointer
() appears. To reposition, double-click on the header in the control panel.
You can also move and then resize this window by selecting and dragging its
edges.

Group Range Slider and Tooltip

Global Range Slider

Global Range Field

Group Range Field

Max Paths/Island

Generate Report Button

and Tooltip

LO

Chapter 4: Result Analysis The Island Timing Analyst

4-92 Fpga User Guide, December 2005

The figure below shows the Islands/Paths control panel floating in the view.

Islands/Paths Summary View
The Islands/Paths Summary is displayed after you generate the island
report. The island report is a spread-sheet that contains rows for all hierar-
chical islands and their critical paths and columns that contain data and
calculations for these critical paths. The island rows can be expanded (+) or
collapsed (-) to show or hide all the critical paths for the specified island.

The columns consist of the following:

• Island/Path name

• Slack

• Clock domain

• Path start point (source)

• Path end point (destination)

The Island Timing Analyst Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-93

• End domain

• Total path delay

• Path required time

• Logic delay

• Max time allowed for route delay

• Route delay

The following figure show the UI for the Islands/Paths Summary. You must
scroll to see all the column information for the critical paths.

You can choose to group by islands or display all the paths at a flat level. To
toggle between these two display modes:

• Click on the Show Islands icon ().

• Use the keyboard shortcut key Ctrl-i.

Islands/Paths Summary Management
In the Islands/Paths Summary view, you can also do the following:

• Sort Columns

• Reorder the Columns

LO

Chapter 4: Result Analysis The Island Timing Analyst

4-94 Fpga User Guide, December 2005

• Select Islands or Critical Paths

• Crossprobe to the HDL Analyst

Sort Columns
You can sort columns in ascending and descending order. To do this, click on
the column header. When sorting several columns, the most recent column
clicked will be the most significant column and the first column clicked
becomes the least significant column in the summary display. Islands are
sorted separately, unless you choose to display all paths at a flat level.

Reorder the Columns
To reorder the columns, drag and drop from the column header to the new
location.

Select Islands or Critical Paths
To select islands or critical paths, use the left-mouse button to select either
islands or paths in the display. To select multiple islands or paths use either
the Shift or Ctrl key with the left-mouse button.

Crossprobe to the HDL Analyst
To crossprobe to the HDL Analyst view, do the following:

• Make sure to open the HDL Analyst flattened Technology view first. If
you are going use the RTL view, make sure open the Technology view
also.

• Then select islands or critical paths from the Islands/Paths Summary
display.

• Click on the Cross Probe button.

• You can then filter critical paths in the HDL Analyst view.

• Use crossprobing from the HDL Analyst view, to see timing data in the
Technology view.

Note that when you choose to group by islands, simply select the island to
crossprobe the entire island which includes all its paths in the HDL Analyst
view.

The Island Timing Analyst Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-95

Islands/Paths Details View
The Islands/Paths Details timing report reformats and displays additional
information for the islands and critical paths selected from the Islands/Paths
Summary report. Critical paths are generated by specifying the sequential
elements on the islands as from and to instances. The island critical paths
contain the following levels of hierarchy:

• Path properties display information, such as, worst case slack, number
of logic levels, start points, and end points. At the end of the timing
report for each path, the total path delay (propagation time + setup time)
is computed as a ratio of the logic and the routing.

• Logic elements and nets include the following: cell logic element or net,
pin name, pin direction, delay, arrival time, and number of fanouts, if
applicable.

For more information about the contents of the Island Timing Report, see
Synplify Premier Island Timing Report, on page 7-76 in the Reference Manual.

To dock the Islands/Paths Details view in the Island Timing Analyst to
another location in the view, double-click on the left edge of the window where
the pointer () appears. To reposition, double-click on the header in the
Islands/Paths Details view. You can also move and then resize this window
by selecting and dragging its edges. See the following figures:

LO

Chapter 4: Result Analysis The Island Timing Analyst

4-96 Fpga User Guide, December 2005

The Island Timing Analyst Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-97

Use the Details button to hide or show the Islands/Paths Details report. When
multiple islands or paths are selected from the Islands/Paths Summary
report, you can:

• Use the arrow keys to scroll to the desired island or critical path in the
timing report.

• Select and copy island and critical path information from this window to
a log file. To do this, click on the save icon () and then add this log file
to your project. You can also right-click and select Select All (Ctrl-a), then
Copy (Ctrl-c) from the popup menu to a log file.

• Crossprobe to the HDL Analyst view. To do this, click on the Cross Probe
button.

Save IconScroll Buttons

LO

Chapter 4: Result Analysis Island Timing Report Critical Paths

4-98 Fpga User Guide, December 2005

Island Timing Report Critical Paths
Critical paths in the Synplify Premier island timing report are determined
based on a pre-defined range from the worst case slack of the island.

Assigning Critical Paths to a Region
The following procedure explains how to assign island critical paths to a
region:

1. Synthesize (compile and map) the design.

2. Create a new implementation for the project, which includes a design
plan.

3. Click on the New Design Plan icon button () to open the Design Planner
view.

4. Open the flattened RTL view.

5. Open the hierarchical-based island timing report file (.tah) or use the
Island Timing Analyst. Make sure that the start and end points in this
report match start and end points in the place-and-route timing report.

6. Press the Alt key and select the RTL start and end points from the island
timing report file (.tah) or use the Island Timing Analyst. Then, do either
of the following:

– When all the start and end points are selected, right-click and press
Filter Analyst from the popup menu in the .tah file.

– Click on the Cross Probe button in the Island Timing Analyst and filter
these selected gates in the flattened RTL view. Currently, for
crossprobing to work properly in the Island Timing Analyst, open the
flattened Technology view also.

7. Right-click and select Expand Paths from the popup menu in the flattened
RTL view.

8. Either right-click and select Assign to->region_name or drag-and-drop the
selected expanded paths to the region in the Design Plan Editor of the
Design Planner view.

Island Timing Report Critical Paths Chapter 4: Result Analysis

Fpga User Guide, December 2005 4-99

9. Run estimation for any design plans created.

10. Save these assignments to the Synplify Premier design plan file (.sfp).

Run synthesis for this implementation with a design plan.

LO

Chapter 4: Result Analysis Island Timing Report Critical Paths

4-100 Fpga User Guide, December 2005

Fpga User Guide, December 2005 5-1

C H A P T E R 5

Physical Analyst

This document describes typical analysis tasks using graphical analysis with
the Physical Analyst tool. It covers the following:

• Synplify Premier Physical Analyst Tool, on page 5-2

• Opening the Physical Analyst View, on page 5-4

• Using the Physical Analyst Control Panel, on page 5-5

• Using the Physical Analyst Device View, on page 5-8

• Setting Object Display Options, on page 5-10

• Selecting Objects, on page 5-14

• Viewing Object Information, on page 5-17

• Finding Objects, on page 5-23

• Crossprobing in Physical Analyst, on page 5-34

• Analyzing Timing with the Physical Analyst, on page 5-51

LO

Chapter 5: Physical Analyst Synplify Premier Physical Analyst Tool

5-2 Fpga User Guide, December 2005

Synplify Premier Physical Analyst Tool
The Physical Analyst tool provides a visual display of the placement and
global routing of the design after running place and route with backanno-
tation.

The Physical Analyst is available in each of the Synplify Premier flows with
the following criteria:

• Graph-based Physical Synthesis—Physical Synthesis is enabled without
a Design Plan or place-and-route implementation. The tool automati-
cally performs placement with backannotation during the physical
synthesis run. For Xilinx Virtex-II Pro, Virtex-4, and Spartan-3.

• Graph-based Physical Synthesis with a Design Plan—Physical Synthesis
is enabled with a Design Plan, but without a place-and route-implemen-
tation. The tool automatically performs placement with backannotation
during the physical synthesis run. For Xilinx Virtex-II Pro, Virtex-4, and
Spartan-3.

• Design-plan based Physical Synthesis—Physical Synthesis is enabled
with a Design Plan and a place-and-route implementation created with
backannotation enabled. For Altera Cyclone, Cyclone-II, Stratix,
Stratix-GX, Stratix-II, and Xilinx Virtex-II.

The Physical Analyst includes the following capabilities:

• Display placement information such as cell locations and signal pins.

• Analyze netlists using various commands, such as filter, show critical
path, or route all nets.

• Query object and properties of instances and nets.

• Cross probe between the Synplify Premier Physical Analyst and either
the HDL Analyst or the source code text file.

This section describes basic procedures you use in the Physical Analyst view.
The information is organized into these topics:

• Opening the Physical Analyst View, on page 5-4

• Using the Physical Analyst Control Panel, on page 5-5

The Physical Analyst view uses the following input files:

Synplify Premier Physical Analyst Tool Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-3

• All appropriate .lef files providing physical cell library information for
the various devices

• All appropriate .def files defined for the device floorplan

• .srm file for the netlist and instance placement

LO

Chapter 5: Physical Analyst Opening the Physical Analyst View

5-4 Fpga User Guide, December 2005

Opening the Physical Analyst View
Open the Physical Analyst view in any of the following ways:

• Click on the Physical Analyst icon () from the Physical Analyst
toolbar.

• Select HDL Analyst->Physical Analyst in the Project view.

• Select the .srm file, then right-click and select Open Using Physical Analyst
from the popup menu.

The Physical Analyst view is capable of showing instances and nets. The
objects displayed are controlled by the Objects pane of the control panel (see
Using the Physical Analyst Control Panel on page 5-5). The following figure
shows the initial Physical Analyst default view for a Xilinx Virtex2p device.

Using the Physical Analyst Control Panel Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-5

Using the Physical Analyst Control Panel
The Physical Analyst control panel is an embedded pane displayed on the left
side of the Physical Analyst view. The Objects pane is displayed from the tab
across the bottom of the control panel. If the control panel is not present, do
one of the following to display it:

• Click on the Physical Analyst Control Panel icon () in the Physical
Analyst toolbar.

• Select Options->Physical Analyst Control Panel from the menu in this view.

• Use the keyboard shortcut key Ctrl-k.

Control Panel Device

LO

Chapter 5: Physical Analyst Using the Physical Analyst Control Panel

5-6 Fpga User Guide, December 2005

The control panel includes the Objects tab along the bottom of the pane that
contains controls for displaying or hiding objects in the view. You can change
the width of the panel by selecting the right side of the pane and dragging it to
the desired size.

To close the Physical Analyst control panel:

• Click on the Physical Analyst Control Panel icon () from the Physical
Analyst toolbar.

• Select Options->Physical Analyst Control Panel from the menu in this view.

• Toggle off the display using the keyboard shortcut key Ctrl-k.

• Right-click in the control panel pane and select Hide from the popup
menu.

Setting Object Controls
Use the Objects pane of the control panel to set the options for objects you
want displayed in the Physical Analyst view. The control panel provides one-
click access to the following frequently used commands:

• Object visibility for instances, nets, and sites

• Object selectability for instances, nets, and sites

• Controls for net pruning, signal flow display, and for the display of
instance signal pins in the view

Setting Visibility Controls
Object visibility is determined through the control panel’s Objects pane. Selec-
tions on this pane determine which and how objects are displayed in the
Physical Analyst view.

By selecting the appropriate boxes, you can make objects both visible and
selectable. For example, if you make instances visible by selecting the Vis box
in the Instances section but you do not enable the Sel box, the Physical Analyst
view displays the core cell instances within the design, but you are unable to
select them. Also, making instances visible makes the cell boundaries visible
and making the instances selectable provides more detailed tool tips. This

Using the Physical Analyst Control Panel Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-7

configuration is useful when you are analyzing the critical path. You might
want to view all nets and instances along the critical path, and have the nets
only visible but not selectable.

• Instances – instances can be made visible or visible and selectable in the
device view. Cell instances (Core) are drawn at their placement location
and orientation. Unplaced instances are not drawn, but can be located
using the Find command. For more information about instances, see
Displaying Instances on page 5-10.

• Instance Display – signal pins for core instances can be shown or not
shown.

• Nets – nets are routed on demand using the command View->Route All
Nets. Nets are routed on one metal layer displaying their point-to-point
connections from output pins to input pins. Once nets are routed, you
can make the nets visible or visible and selectable. Signal Flow adds direc-
tional arrows to nets, and Pruned Signals disables the display of signals
that are unconnected.

• Sites – as defined in the vendor-specific cell library files. Sites can only
be visible or hidden. Use tool tips to display the site row number and its
boundaries (Instances must not be selectable).

Signal nets visible but not selectable

Instances visible and selectable

Make instance internals visible

Nets visible and selectable

Don’t show signal flow
Show pruned signals
Sites visible

Don’t show internal signal pins

LO

Chapter 5: Physical Analyst Using the Physical Analyst Device View

5-8 Fpga User Guide, December 2005

Using the Physical Analyst Device View
The device view shows cell placement and connectivity. The device view
displays

• Device and cell boundaries

• Placement site rows

• Nets

The following figures provide some examples.

Cell Display (Xilinx Device)

Site Rows

Core (CLB) Cell

Using the Physical Analyst Device View Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-9

Net Display (Route All Nets)

The Physical Analyst view is used to graphically analyze your design. To help
you do this, use the information organized into the following topics:

• Setting Object Display Options, on page 5-10

• Selecting Objects, on page 5-14

• Viewing Object Information, on page 5-17

• Finding Objects, on page 5-23

• Crossprobing in Physical Analyst, on page 5-34

• Analyzing Timing with the Physical Analyst, on page 5-51

LO

Chapter 5: Physical Analyst Setting Object Display Options

5-10 Fpga User Guide, December 2005

Setting Object Display Options
This section explains how to display objects for the following:

• Displaying Instances, on page 5-10

• Displaying Signal Pins, on page 5-10

• Displaying Signal Flow for Selected Nets, on page 5-11

• Routing Nets to Display, on page 5-12

Displaying Instances
To display instances in the Physical Analyst view, first make instances visible
by setting the Vis option for objects from the Objects pane of the control panel.
Instances that have physical placement information are shown. Instance
features include:

• Instance bounds

• Instance locations

• Signal pins

Displaying Signal Pins
Instances are not displayed with signal pins by default. To view signal pins
for instances, enable the Signal Pins box on the Objects pane of the control
panel.

Setting Object Display Options Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-11

Displaying Signal Flow for Selected Nets
To display the signal flow of nets in the Physical Analyst view, first make nets
visible and selectable. To display the signal flow of nets, right-click and select
Signal Flow from the popup menu or control panel.

When you select a net, the net is displayed with arrows showing the direction
of its signal flow. The Signal Flow option is useful when you display the critical
path. You can follow the arrows and lines along the critical path from the
start point to the end point.

Whether or not the Signal Flow option is enabled, place the cursor over a net to
show the predominant direction of its signal flow (right, left, up, or down).

Signal Pins (Inputs)

Signal Pins (Outputs)

LO

Chapter 5: Physical Analyst Setting Object Display Options

5-12 Fpga User Guide, December 2005

Routing Nets to Display
Nets are routed from output pins to input pins and are shown with their
corresponding point-to-point connections on one layer of the device in the
Physical Analyst view. Nets are routed in the following ways:

• On demand using netlist commands such as Expand or Show Critical Path.
For more netlist commands, see Analyzing Netlist with the Physical
Analyst on page 5-42.

• By selecting View->Route All Nets from the menu option. After the nets are
routed, this command is grayed out on the menu.

When nets are routed, they are connected to their selective instances.
Because of the long load time and the limited visibility when nets are super-
imposed on the view, net routes are not displayed by default. To enable the
display of nets, you must explicitly unfilter (show) the nets or use the find
command as an example.

Net ALUA[1]
 Fanout=13

Connects to SIGNAL PIN I1 (input) (INST UC_ALU_LONGQ_2)
Signal flows right

Critical Path Start

Setting Object Display Options Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-13

Nets also have a Pruning option. When enabled, a net segment with an end
connecting only to an invisible instance (for example because of filtering) is
drawn in a diminished color.

To reset the original view to hide all nets in the display, select Unfilter->Show All
Instances, Hide All Nets from the popup menu or click the Reset filter icon () on
the Physical Analyst toolbar.

LO

Chapter 5: Physical Analyst Selecting Objects

5-14 Fpga User Guide, December 2005

Selecting Objects
This section describes how to select objects, as well as implement the
following:

• Selecting Multiple Nets, on page 5-15

• Transcribing Object Selections, on page 5-16

To select an object you must first enable the object to be selectable, and then
you can click on the object. To select multiple objects, use one of these
methods.

• Draw a rectangle around the objects.

• Select an object, press Ctrl, and click other objects you want to select.
You can also deselect from the list of currently selected objects while
holding the Ctrl key.

• Position the cursor over an object and click the right mouse button; the
object is automatically selected in the view. To preserve a prior selection,
hold the Ctrl key and press the right mouse button.

• Right-click and choose one of the following from the popup menu:

– Select->All Instances and Nets

– Select->All Instances

– Select->All Nets

– Select->Deselect All

• Use Find to select the objects you want. You can also use the Find
command to select a subset of objects of a particular type (instances,
symbols, nets, or ports). See Finding Objects with the Find Command on
page 5-23.

• Go directly to a coordinate pair location. For example, use the Go to
Location command to specify an object location in microns. See Finding
Object Locations on page 5-27.

The selected objects are highlighted in the Physical Analyst view. If you have
other windows open, the selected object is highlighted in the other windows
as well (if cross probing is enabled). An exception occurs when you want to
cross probe on demand, then you must disable the View->CrossProbing->Send
Crossprobes when selecting option. Some commands might affect selection of
objects: for example, the Filter or Unfilter commands.

Selecting Objects Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-15

You can enable or disable a class of objects to be selected. For example, you
may wish to display nets but not have them selectable. You can only display
site rows; they are not selectable.

Selecting Multiple Nets
When you click on objects that overlap, such as nets or instances, the
software cannot always detect which objects should be selected in the
Physical Analyst view. As you move the cursor over objects, a special cursor
indicates that you need to resolve the selection. When you click the cursor at
that location, the Resolve Selection dialog box pops up in the display.

On the Resolve Selection dialog box, you can choose to

• Display selected net or cell instance

• Select all nets or cell instances in question

• Clear selection of all nets or cell instances

LO

Chapter 5: Physical Analyst Selecting Objects

5-16 Fpga User Guide, December 2005

Transcribing Object Selections
The Selection Transcription command allows you to select an object in the
Physical Analyst view, then display the object’s tool tip information in the TCL
window. To enable or disable this command, either:

• Right-click in the Physical Analyst view and select Selection Transcription
from the popup menu.

• Select the View->Selection Transcription menu option.

The Selection Transcription command is enabled by default. Transcription only
occurs when a single object is selected. Do not use transcription with area
selections or when objects are selected using other commands such as Expand
or Find. The following figure shows an example of an object selected on the
device and its tool tip information displayed in the TCL window.

You can also use the information from the TCL window display to copy and
paste into other windows or files such as SCOPE, the Find Object dialog box, or
a text file.

TCL Window

Core Cell mem_add_fast[2]

Viewing Object Information Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-17

Viewing Object Information
The following Physical Analyst tools can help you use the viewer efficiently:

• Viewing Properties, on page 5-17

• Using Tool Tips, on page 5-20

• Using Mouse Strokes, on page 5-20

• Using Keyboard Shortcuts, on page 5-21

• Zooming in the Physical Analyst, on page 5-22

Viewing Properties
You can view properties for the device design and for selected objects
displayed in the view. See:

• Viewing Physical Analyst Properties, on page 5-18

• Viewing Object Properties, on page 5-19

LO

Chapter 5: Physical Analyst Viewing Object Information

5-18 Fpga User Guide, December 2005

Viewing Physical Analyst Properties
Design and device property information is available from the Physical Analyst
view. To display the Physical Analyst Properties dialog box, right click anywhere
in the view and select Physical Analyst Properties at the bottom of the popup
menu.

The dialog box includes the following read-only pane:

• Design – includes the design name and number of instances, unplaced
instances, routed nets in the design, and location of the netlist and
floorplan (.def) files.

Viewing Object Information Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-19

Viewing Object Properties
You can display properties for a selected object from the corresponding
Properties dialog box. For example, depending on the type of object currently
selected, right-click and select one of the following property dialog boxes from
the popup menu:

• Core Cell Properties for information about instances including instance
name, type, pins, placement location, device-specific location, delay,
slack, clock signal, and if the instance is included in the critical path.

• Net Properties for information about nets including net name, logical nets,
pin count, fanout, if the net is globally routed, and if the net is a clock.

The following example shows the properties for a core cell that is selected in
the Physical Analyst view.

LO

Chapter 5: Physical Analyst Viewing Object Information

5-20 Fpga User Guide, December 2005

Using Tool Tips
As you move the mouse over the viewer, tool tips are displayed for the various
features and objects, as well as signal nets. The status bar provides coordi-
nates of the objects in microns. There are also tool tips for Toolbar icons and
various check boxes and fields on the Control Panel.

Using Mouse Strokes
The software supports predefined mouse strokes as shortcuts to common
commands. Mouse strokes can be used in Physical Analyst windows for
operations like zooming and displaying the previous or next view.

Floorplan site column

Floorplan site
bounds=(1440.00,1540.00) ~ (1445.00,1740.00)
orien=N (0)
site BRAM (Core)

Site row 21
bounds=(1260.00,72.00)~(176.00,3384.00)
orien=N(0)
site CLB (Core)

Floorplan site
bounds=(1440.00,1540.00) ~ (1445.00,1740.00)
orien=N (0)
site BRAM (Core)

Floorplan site
bounds=(1470.00,1540.00)~(1475.00,1740.00)
orien=N(0)
site BMULT (Core)

Core Cell UC_ALU.LONGQ[5]
Type=LUT4_E2AA
Inputs=4
Outputs=1
Location=(1656.00,1503.00)
Device Location=SLICE_X47Y66
Delay=1.9900
Slack=0.5806bounds=(1260.00,72.00)~(176.00,3384.00)

Viewing Object Information Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-21

1. To view the current list of mouse stroke operations, select Help->Mouse
Stroke Tutor. Select the operation from the list on the left and the
corresponding mouse stroke is drawn on the right.

2. In a Physical Analyst window, hold down the right mouse button and
draw the mouse stroke.

Some mouse strokes only apply to HDL Analyst commands such as push and
pop hierarchy. These mouse strokes are ignored while using the Physical
Analyst viewer.

Moving Between Views in a Window
When you filter or expand your design, you move through a number of
different design views in the same window. For example, you might start with
a view of the entire design, zoom in on an area and filter an object, and finally
expand a connection in the filtered view, for a total of three views.

1. To move back to the previous view, click the Back icon or draw the
appropriate mouse stroke.

The software displays the last view, including the zoom factor. This does
not work in a newly generated view because there is no history.

2. To move forward again, click the Forward icon or draw the appropriate
mouse stroke.

The software displays the next view in the display history.

Using Keyboard Shortcuts
Keyboard shortcuts are key sequences that you type in order to run a
command. Menus list keyboard shortcuts next to the corresponding
commands. For example, to display the Physical Analyst control panel, you

LO

Chapter 5: Physical Analyst Viewing Object Information

5-22 Fpga User Guide, December 2005

can press and hold the Ctrl key and the letter K, instead of using the menu
command Options->Physical Analyst Control Panel as shown in the following
example.

Zooming in the Physical Analyst
Since the objects displayed in the Physical Analyst full view appear very
small, a handy command to use is Zoom Selected. After selecting one or more
objects in the Physical Analyst view, you can access this command by

• Clicking the Zoom Selected () icon.

• Right-click and selecting Zoom Selected from the popup menu.

• Using the following mouse stroke. See Using Mouse Strokes on
page 5-20.

The object or objects selected are centered in the view.

When objects are not selected, the Zoom Selected command is disabled; you
can use any of the following global zoom commands to change the display:

• View->Zoom In from the menu or the Zoom In ()icon.

• View->Zoom Out from the menu or the Zoom Out ()icon.

• View->Full View from the menu or the Full View () icon.

Finding Objects Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-23

• View->Normal View from the menu or the Normal View () icon.

• Appropriate mouse strokes.

For a description of the zoom options, see View Menu on page 3-22 in the
Reference Manual. For a description of the mouse strokes, see Help->Mouse
Stroke Tutor.

Finding Objects
To find and display objects in the Physical Analyst view, use the following
options:

• Finding Objects with the Find Command, on page 5-23

• Finding Object Locations, on page 5-27

• Using Markers, on page 5-29

• Changing Color Schemes, on page 5-31

• Configuring Enhanced Instance Display, on page 5-31

Finding Objects with the Find Command
This procedure shows you how to use the Find command to do a search on the
entire design. The view displayed is flat, although the hierarchy of instance
names is retained.

1. In the Physical Analyst view, right-click and select Find from the popup
menu or press Ctrl-f to open the Find Object dialog box. Move the dialog box
so you can see both the view and the dialog box.

LO

Chapter 5: Physical Analyst Finding Objects

5-24 Fpga User Guide, December 2005

Note: You can also bring up the Find Object dialog box by selecting
Edit->Find from the menu or by clicking the Find (binoculars) icon
in the tool bar

2. Select the tab (at the top of the dialog box) for the type of object. The
Unhighlighted box on the left will list objects of the selected type
(instances, symbols, nets, or ports).

Note: The Find command does not include physical instances in its
search.

3. You can choose to restrict your search for the design in the following
ways:

– search for objects that you select from the list, go to step 4.

Finding Objects Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-25

– use Search by Name, which filters the design depending on the name
you specify in this field, go to step 5.

– use Filter Search, which filters the design depending on the type of filter
you choose from the pull-down list, go to step 6.

The Unhighlighted box shows available objects within the scope you set
when you click Find 200 or Find All. Objects are listed in alphabetical order.

4. Do the following to select objects from the list. To use wildcards in your
selection, see the next step.

– Click First 200 or Find All. The former finds the first 200 matches, and
then you can click the button again to find the next 200.

– Click on the objects you want from the list. If the object name exceeds
the width of the Unhighlighted box, click the entry in the list to display
the entire name in the field below the Unhighlighted box.

– Click the right arrow to move the objects into the Highlighted box on the
right, or double-click individual names.

Objects transferred to the Highlighted box are automatically highlighted in
the view.

5. Do the following to select objects using patterns or wildcards.

– Type a pattern in the Search By Name field. When you use wildcards
between hierarchies, all pattern matching is displayed from the top
level to the lowest level hierarchy, inclusively. See Using Wildcards
with the Find Command on page 5-26 for a detailed discussion of
wildcards.

– Click First 200 or Find All. The former finds the first 200 matches, and
then you can click the button again to find the next 200.

The Unhighlighted list shows the objects that match the wildcard
criteria. If the object name exceeds the width of the Unhighlighted box,
click the entry in the list to display the entire name in the field below
the Unhighlighted box.

– Click the right arrow to transfer the selections to the Highlighted box on
the right, or double-click individual names. The objects are
automatically highlighted in the view.

You can use wildcards to avoid typing long path names. Start with a
general pattern, and then make it more specific.

LO

Chapter 5: Physical Analyst Finding Objects

5-26 Fpga User Guide, December 2005

6. Do the following to select objects by choosing a type of search to filter.

– Select the type of filter search you want to perform from the pull-
down list. See Using Filter Search With the Find Command on
page 5-26 for a complete list of selection options.

– Click First 200 or Find All. The former finds the first 200 matches, and
then you can click the button again to find the next 200.

– Click the right arrow to move the selected objects into the Highlighted
box on the right, or double-click individual names.

For large designs, reduce the scope of the search using this technique.

You can leave the dialog box open to do successive Find operations. Close the
dialog box when you are done.

Using Wildcards with the Find Command
Use the following wildcards when you search the design:

Using Filter Search With the Find Command
Use the Filter Search option on the Find Object dialog box to limit the scope of the
search for your design. You can choose a search subcategory from a drop-
down selection list for any of the object types. See Chapter 3, User Interface
Commands of the Reference Manual for more information about filtering
design objects in the Physical Analyst view using the Find command.

Unfiltering Nets
To enable the display of nets, you must explicitly unfilter (show) the nets that
you want to display using the find command. To filter all nets:

1. Open the Find Object dialog box.

2. Select the Nets tab at the top of the dialog box.

* The asterisk matches any sequence of characters.

? The question mark matches any single character.

. The dot (period) explicitly matches a hierarchy separator, so type one dot for
each level of hierarchy. To use the dot as a pattern and not as a hierarchy
separator, type a backslash (\) before the dot.

Finding Objects Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-27

3. Click the Find All button.

Finding Object Locations
The Go to Location command allows you to specify a coordinate pair location or
location of an object, and then zoom in on this location if requested. After
selecting this location, a description of the object is displayed in the dialog
box window, if applicable. A running history is kept of the selected locations
and the markers created.

The Go to Location option is useful when you want to analyze a particular
instance from the log file (.srr) or timing analyst file (.ta). Simply use the
location of the instance from any of these files, then this instance can be
easily located and displayed in the Physical Analyst view.

Note: Note, the unit of measurement used in the .srr and .ta files is
microns, but the .def file uses database units. Use the UNITS
DISTANCE MICRONS factor from the .def file to convert database
units to microns.

Specifying Location of an Object
This procedure shows you how to use the Go to Location command to search for
objects, for example instances.

1. In the Physical Analyst view, you can access the Go to Location command
by using one of the following:

– Right-click and select Go to Location from the popup menu

– Ctrl-g shortcut key

– Select View->Go to Location from the menu bar

The command displays the Goto Location dialog box.

LO

Chapter 5: Physical Analyst Finding Objects

5-28 Fpga User Guide, December 2005

2. Enter a coordinate pair (X and Y) location value in microns. To do this:

– You can simply type a coordinate pair in the field.

The syntax is very flexible, providing various ways to separate
coordinates. You can use a space, or one of the following punctuation
marks: a comma (,), semi-colon (;), or colon (:). Optionally, the
coordinate pair location can be enclosed in parentheses.

– You can also copy and paste a coordinate pair location from a log file
(.srr) to the Go to Location dialog box.

You must first copy (Edit->Copy or Ctrl-c) a coordinate pair location
from the log file, then open the Go to Location dialog box in the Physical
Analyst view and paste (Edit->Paste or Ctrl-v) this coordinate pair in to
the field.

Note that the unit of measurement used in the .def file is database
units.

If a history of location pairs exist, you can highlight a selection to reuse
these values. Selecting a coordinate pair automatically updates the X
and Y coordinate fields.

3. You can create a marker at the coordinate pair location. To do this:

– Check the Create Marker box in the dialog box.

Finding Objects Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-29

– Use the default marker name (GotoMarkern) or specify a name.

A marker symbol () appears in the Physical Analyst view at the
location specified. A tool tip can be displayed over the marker that shows
the marker name and its X and Y coordinates.

If a history of markers exists, you can highlight a selection to reuse the
marker. Selecting a marker automatically updates the X and Y coordi-
nate fields.

4. Select a zoom mode and then click OK. You can choose one of the
following zoom modes:

– Scroll – centers the specified location without zooming

– Zoom to Object – similar to selecting an object and using Zoom Selected

– Zoom Normal – similar to using the Zoom 100% () icon

Using Markers
Markers are bookmarks for physical coordinates in the Physical Analyst view.
Markers can be:

• Added

• Moved

• Deleted

When multiple markers are defined, you can move from marker to marker as
well as measure the distance from a marker or between any two markers.

Markers are useful when you want to analyze floorplan placement in the
Physical Analyst view. You can find an object, such as an instance, then
create a marker on this instance.

Adding Markers
To create a marker, right-click and select Markers->Add marker from the popup
menu or use the Ctrl-m shortcut key. When a marker is created at an instance
or net location, the marker takes on the object’s name. Otherwise, markers
are identified as Marker1, Marker2, and so on. A tool tip can be displayed over a
marker to show its name and X and Y coordinates.

LO

Chapter 5: Physical Analyst Finding Objects

5-30 Fpga User Guide, December 2005

Markers can also be added using the Go to Location command. See Finding
Objects with the Find Command on page 5-23.

Moving Markers
When you select a marker symbol (), its dotted drag outline appears. To
move a marker, press and hold the left-mouse button while dragging the
marker to its new location and then release the mouse button.

Deleting Markers
To delete a marker, highlight the marker then right-click and select
Markers->Remove Selected from the popup menu or use the Del key. To delete all
markers, right-click and select Markers->Remove All from the popup menu.

Measuring Distances
You can measure the distance from a selected marker to a cursor location.
The manhattan (X+Y) distance, calculated in microns, from the marker to the
cursor and the X and Y coordinates of the cursor are displayed in the status
bar at the bottom of the Physical Analyst view. If you select two markers, the

Finding Objects Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-31

distance between the two markers is calculated and displayed in the status
bar. If you select more than two markers, the distance measurement is
ignored.

To advance to a next or previous marker, right-click and select either
Markers->Go to Next or Markers->Go to Previous from the popup menu or use the
F2 and Shift+F2 keys, respectively. Markers are selected in the order they were
created, either forward or reverse. If the view is zoomed, the selected marker
is centered in the view.

Changing Color Schemes
Currently, only one standard color scheme can be displayed in the Physical
Analyst view. To display this dialog box, select Options->Physical Analyst Color
Schemes from the menu.

Configuring Enhanced Instance Display
The enhanced display mode, when enabled, causes core cells to be drawn as
diamonds of fixed size regardless of zoom level. Selecting View->Configure
Enhanced Instance Display in an active Physical Analyst view brings up the
Enhanced Instance Display dialog box which is used to set the enhanced display
parameters.

LO

Chapter 5: Physical Analyst Finding Objects

5-32 Fpga User Guide, December 2005

The following figure shows how enhanced instances are displayed in the
Physical Analyst view.

Option Description

Enhance Instance
Shape for Better
Visibility

Enables enhanced instance display when checked (same
as selecting Enhance in the Inst. Display section of the
Objects pane).

Visible Instance Limit
for Enhancement

Sets the maximum number of visible core cells that can be
displayed in enhanced instance display mode.

Enhancement Size
(pixels)

Sets the size (in pixels) of the instance; instances are
drawn as diamonds to differentiate them from normal cell
shapes.

Minimum Size for
Normal Draw (pixels)

Sets the minimum size of an average core cell when the
cell is drawn in normal mode and not enhanced

Finding Objects Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-33

LO

Chapter 5: Physical Analyst Crossprobing in Physical Analyst

5-34 Fpga User Guide, December 2005

Crossprobing in Physical Analyst
Crossprobing is the process of selecting an object in one view and having the
object or the corresponding logic automatically highlighted in other views.
The Physical Analyst responds to cross probes depending on the options
enabled through the View->Cross Probing menu bar. The following options are
enabled by default:

• Send Crossprobes when selecting

• Cross Probing from RTL Analyst

• Cross Probing from Tech Analyst

• Cross Probing to HDL Source

• Auto route cross probe insts

The Physical Analyst responds to incoming cross probes as well as sending
out cross probes in response to selections. For efficiency reasons, you may
want to send cross probes from the Physical Analyst only on demand by
disabling the Send Crossprobes when selecting option. To automatically send
cross probes from the Physical Analyst tool, the Send Crossprobes when selecting
option must be enabled. To automatically route cross-probed instances,
enable the Auto route cross probe insts option.

Crossprobing works in conjunction with filtering. If an object is filtered
(hidden) and a cross probe message is received, the object is unfiltered (in a
new filter state). For example, you can filter all objects, then select objects in
the HDL Analyst view. As objects are selected, they become visible and
highlighted in the Physical Analyst view. You can select objects in an HDL
Analyst view using the graphic view, hierarchy browser, or the Object Query
dialog box.

Crossprobing in Physical Analyst Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-35

The following table summarizes the cross probing capabilities to and from the
Physical Analyst view.

From To Procedure

Physical Analyst Source
code

Double-click an instance. If the source code file is
not open, a Text Editor window is opened to the
appropriate section of code (for example, modules
or instances). If the source file is already open, the
software scrolls to the correct section of the code
and highlights it.

Text File Physical
Analyst

The Physical Analyst view must be open. Highlight
the appropriate portion of text (for example,
hierarchical instance name or instance name) in
the text editor. In some cases, you may have to
select the entire block of text to cross probe. From
the log file, right click and select Select in Analyst
or, to show only the object selected, click the Filter
on Selected Gates icon in the menu bar after
highlighting the text (use the Reset filter icon to
redisplay the unfiltered objects).

RTL Analyst Physical
Analyst

The Physical Analyst view must be open. Click the
object (instance or macro) to highlight and
crossprobe.
Usage Note:
• To cross probe from the RTL Analyst view to the

Physical Analyst view, you must enable the
Cross Probing from RTL Analyst option.

• You can cross probe hierarchical objects in the
RTL view to the set of objects for which the
hierarchy is synthesized in the Physical Analyst
view. You cannot cross probe primitives in the
RTL view which do not have a counterpart in the
mapped netlist.

LO

Chapter 5: Physical Analyst Crossprobing in Physical Analyst

5-36 Fpga User Guide, December 2005

Crossprobing from a Text File
Instances from a text file, such as the HDL source code (Verilog/VHDL) or log
file (.srr) can be highlighted in the Physical Analyst. Make sure the Physical
Analyst view is already open.

1. Select the instances to highlight them from a text file, such as the log
file.

2. Then right-click and select Select in Analyst from the popup menu in this
file.

Physical Analyst RTL
Analyst

The RTL Analyst view must be open. Click the
object to highlight and cross probe.
Usage Note:
• To automatically cross probe from the Physical

Analyst view to the RTL Analyst view, you must
enable the Send crossprobes when selecting option.

• To cross probe only on demand, you must
disable the Send cross probes when selecting
option. Click the object to highlight, then right-
click and select Crossprobe Selected from the
popup menu.

Technology
Analyst

Physical
Analyst

The Physical Analyst view must be open. Click the
object to highlight and cross probe.
Usage Note:
To cross probe from the Technology Analyst view
to the Physical Analyst view, you must enable the
Cross Probing from Tech Analyst option.

Physical Analyst Technology
Analyst

The Technology Analyst view must be open. Click
the object to highlight and cross probe.
Usage Note:
• To automatically cross probe from the Physical

Analyst view to the Technology Analyst view,
you must enable the Send crossprobes when
selecting option.

• To cross probe only on demand, you must
disable the Send cross probes when selecting
option. Click the object to highlight, then right-
click and select Crossprobe Selected from the
popup menu.

From To Procedure

Crossprobing in Physical Analyst Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-37

3. Check the Physical Analyst view. Selected instances are highlighted in
this view.

Crossprobing from the RTL View
When the mapped netlist (SRM) contains information relating mapped
instances to RTL instances (RTL name field), instances will be highlighted in
the Physical Analyst in response to the selection of modules or primitives in
the RTL view. In the case of a module, all mapped objects with physical infor-
mation implementing the module are highlighted. See the following example.

Physical Analyst View

Log File

LO

Chapter 5: Physical Analyst Crossprobing in Physical Analyst

5-38 Fpga User Guide, December 2005

Crossprobing from the Technology View
Each instance in the Physical Analyst has its counterpart in the Technology
view. When selecting an instance in the Technology view that is a placed
primitive in the Physical Analyst, the instance in the Physical Analyst is also
highlighted. This is similar to crossprobing from the RTL view.

HDL Analyst View

Core cell va_start_byte_add[8:0] View
Physical Analyst

Crossprobing in Physical Analyst Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-39

Crossprobing from the Physical Analyst View on Demand
For very large designs, you might want to cross probe from the Physical
Analyst view to the RTL or Technology view only at your request. To cross
probe on demand:

1. The View->Cross Probing->Send Crossprobes when selecting option must be
disabled. If the Send Crossprobes when selecting option is enabled (the
default), cross probing from the Physical Analyst view occurs
automatically.

The RTL or Technology view must already be open.

2. Click on the object(s) to highlight from the Physical Analyst view.

3. Right-click and select Crossprobe Selected from the popup menu. The
corresponding object(s) will be highlighted in the RTL or Technology
view.

LO

Chapter 5: Physical Analyst Crossprobing in Physical Analyst

5-40 Fpga User Guide, December 2005

Crossprobing in Physical Analyst Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-41

Auto Route Crossprobing
If you want to automatically route cross-probed instances, enable the
View->Cross Probing->Auto route cross probe insts option (the option is enabled by
default). The following example shows cross probing from the Technology view
to the Physical Analyst view with the Auto route cross probe insts option enabled.

Technology View

Physical Analyst View

LO

Chapter 5: Physical Analyst Analyzing Netlist with the Physical Analyst

5-42 Fpga User Guide, December 2005

Analyzing Netlist with the Physical Analyst
There are a number of commands to use for analyzing the netlist that
generally involve tracing logic. These commands are available from the right-
click popup menus in the Physical Analyst view.

Different commands are available, depending on what is currently selected
and whether you right-click an object or the background. If one or more
objects are selected and you right-click in the view background, the menu
includes global commands as well as selection-specific commands for the
selected objects. See Chapter 3, User Interface Commands of the Reference
Manual for a complete list of View menu and Physical Analyst popup menu
commands.

Filtering the View
Filtering is a useful first step in analysis, because it focuses analysis on the
relevant parts of the design. Some commands, like the Expand Paths
commands, automatically generate filtered views; this procedure only
discusses manual filtering, where you use the Filter command to isolate
selected objects.

1. Select the objects that you want to isolate.

2. Select the filter command, using one of these methods:

– Select Filter->Show Selected from the Physical Analyst View menu or
from the right-click popup menu.

– Click the Filter on Selected Gates icon ().

– Press Alt and draw a narrow V-shaped mouse stroke in the schematic
window. See Help->Mouse Stroke Tutor for details.

The software filters the design and displays the selected objects in a
filtered view. You can now analyze the objects and perform operations
such as:

– Trace paths, build up logic

– Filter further

– Find objects

– Hide objects

– Cross probe from a filtered state

Analyzing Netlist with the Physical Analyst Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-43

3. To return to the previous schematic view, click the Back () icon.

Expanding Pin and Net Logic
When you are working in a filtered view, you might need to include more logic
in your selected set to analyze your design. This section describes commands
that expand logic fanning out from pins or nets; to expand paths, see
Expanding and Viewing Connections on page 5-48.

Use the Expand commands with the Filter and Nets->Visible commands to isolate
and connect the logic that you want to examine.

1. To expand logic from a pin, use the following commands.

To... Do this (Physical Analyst Popup menu)...

see all cells connected
to a pin

Select a pin from the cell instance and select
Expand->Selected Pins. See Expanding Logic
Example on page 5-44.
Usage Note:
You can also select to expand from output pins,
input pins, or all pins.

see all cells that are
connected to a pin,
up to the next
register/port

Select a pin from the cell instance and select Expand
to Register/Port->Selected Pins. See Expanding Logic
to Register/Port Example on page 5-45.
Usage Note:
You can also select to expand to register/port from
output pins, input pins, or all pins.

LO

Chapter 5: Physical Analyst Analyzing Netlist with the Physical Analyst

5-44 Fpga User Guide, December 2005

Expanding Logic Example

Analyzing Netlist with the Physical Analyst Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-45

Expanding Logic to Register/Port Example

LO

Chapter 5: Physical Analyst Analyzing Netlist with the Physical Analyst

5-46 Fpga User Guide, December 2005

2. To expand logic from a net, use the commands shown in the following
table.

Selecting all Instances of a Net Example
The following example shows the critical path for a design in the Physical
Analyst view.

1. The critical path is filtered.

2. A net on the critical path is selected.

3. Then right-click and select Select Net Instances->All Pins, for example.

To... Do this...

select all instances on
a net

Select a net and select Select Net Instances->All Pins.
The software shows an unfiltered view that includes
all the instances connected to the net along the
signal path.
Usage Note:
You can also select to show output pins or input
pins.

highlight all visible
instances on a net

Select a net and select Highlight Visible Net Instances-
>All Pins. You see a filtered view of all instances
connected to the selected net along the signal path.
Usage Note:
You can also select to show output pins or input
pins.

select net driver Select a net and select Select Net Driver. Shows an
unfiltered view that includes the driver of the net.

go to net driver Select a net and select Go to Net Driver. Shows and
scrolls to the driver of the net.

Analyzing Netlist with the Physical Analyst Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-47

LO

Chapter 5: Physical Analyst Analyzing Netlist with the Physical Analyst

5-48 Fpga User Guide, December 2005

Expanding and Viewing Connections
This section describes commands that expand logic between two or more
objects; to expand logic out from a net or pin, see Expanding Pin and Net Logic
on page 5-43. You can also isolate the critical path or use the Timing Analyst
to generate a schematic for a path between objects, as described in Analyzing
Timing with the Physical Analyst on page 5-51.

Use the following path commands with the Filter and Nets->Visible commands to
isolate and connect the logic that you want to examine.

To expand and view connections between selected objects, do the following:

1. Select two or more objects.

2. To expand the logic, select Expand Paths->All Pins from the popup menu.
Alternatively, you can select to expand from selected pins.

Analyzing Netlist with the Physical Analyst Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-49

Expanding Paths Example

LO

Chapter 5: Physical Analyst Analyzing Netlist with the Physical Analyst

5-50 Fpga User Guide, December 2005

Analyzing Timing with the Physical Analyst Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-51

Analyzing Timing with the Physical Analyst
You can use the Physical Analyst functionality to analyze timing. This section
describes how to view and use the critical path for further physical synthesis.

• Viewing Critical Paths, on page 5-51

• Tracing Critical Paths Forward and Backwards, on page 5-54

Viewing Critical Paths
The Physical Analyst tool makes it easy to find and examine critical paths and
the relevant logic in the HDL Analyst schematic view. Make sure the HDL
Analyst view is open, for example, by selecting HDL Analyst->Technology-
>Flattened View or HDL Analyst->RTL->Flattened View. The following procedure
shows you how to filter and analyze a critical path.

1. To generate a view of the critical path with the Physical Analyst tool,
click the Show Critical Path icon (stopwatch icon () or select the
command from the popup menu. To zoom in on the critical path, right-
click and select Zoom Selected from the popup menu.

LO

Chapter 5: Physical Analyst Analyzing Timing with the Physical Analyst

5-52 Fpga User Guide, December 2005

2. Check the Technology view. Click the Filter on Selected Gates icon () to
display the critical path.

3. You can also cross probe the critical path from the flattened Technology
view to the Physical Analyst view by clicking on the Show Critical Path icon
(). Then, right-click and select Select All Schematic->Instances. Make sure
the Physical Analyst view is open.

4. Check the Physical Analyst view. Critical path instances and nets
should be highlighted in this view. See the figure in step 1.

Analyzing Timing with the Physical Analyst Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-53

5. In the HDL Analyst view that is already open, click on the Filter on Selected
Gates icon (). Only the instances and nets belonging to the critical
timing path are displayed, as shown below.

6. In the HDL Analyst view, right-click and select Expand Paths from the
popup menu. Then, you can drag-and-drop this logic into a region on
the device design plan (.sfp) file for further physical synthesis.

LO

Chapter 5: Physical Analyst Analyzing Timing with the Physical Analyst

5-54 Fpga User Guide, December 2005

Tracing Critical Paths Forward and Backwards
The Physical Analyst tool also provides the capability to trace a critical path
from its starting point to its ending point. You can trace the critical path
forward or backwards, either starting from the instance containing the
critical start point or starting from the instance containing the critical end
point, respectively.

Trace Critical Paths Forward
The following procedure shows you how to trace a critical path forwards.

1. To trace a critical path forwards, either:

– Right-click and select Critical Path->Expand Path Forward from the popup
menu

– Use the F3 shortcut key

The instance containing the critical path start point is displayed and
highlighted. Move the cursor over the instance to display a tool tip that
specifies its name and identifies this as the critical start point.

Analyzing Timing with the Physical Analyst Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-55

Note: You can also use the Filter Search option of the Find command to
locate the Critical path start point. The cell location of the critical
path start point is displayed with the color green in the Physical
Analyst view.

2. Use one of the critical path forward commands described in step 1 to
continue to trace the net to the next instance in its path.

The next instance containing the critical path and input ports that feed
into the path are displayed and highlighted and shown connected to the
critical path start point.

LO

Chapter 5: Physical Analyst Analyzing Timing with the Physical Analyst

5-56 Fpga User Guide, December 2005

3. Continue using the critical path forward command until you reach the
end point. The following figure shows you how the critical path is finally
displayed.

(Critical End)

(Critical Start)

Analyzing Timing with the Physical Analyst Chapter 5: Physical Analyst

Fpga User Guide, December 2005 5-57

Trace Critical Paths Backwards
The following procedure shows you how to trace a critical path backwards.
See the figures in Trace Critical Paths Forward on page 5-54, which also apply
to this procedure.

1. To trace a critical path backwards, either:

– Right-click and select Critical Path->Expand Path Backward from the popup
menu

– Use the Shift+F3 shortcut key

The instance containing the critical path end point is displayed and
highlighted. Move the cursor over the instance to display a tool tip that
specifies its name and identifies this as the critical end point.

LO

Chapter 5: Physical Analyst Analyzing Timing with the Physical Analyst

5-58 Fpga User Guide, December 2005

Note: You can also use the Filter Search option of the Find command to
locate the Critical path end point. The cell location of the critical
path end point is displayed with the color red in the Physical
Analyst view.

2. Use one of the critical path backward commands described in step 1 to
continue to trace the net to the next instance in its path.

The next instance containing the critical path and output ports that feed
into the path are displayed and highlighted and shown connected to the
critical path end point.

3. Continue using the Critical Path->Expand Path Backward command until you
reach the start point. See the figure in step 3 of Trace Critical Paths
Forward on page 5-54 to show you how the critical path is finally
displayed.

Fpga User Guide, December 2005 6-1

C H A P T E R 6

Design Optimization

This chapter covers techniques for optimizing your design using built-in tools
or attributes. For vendor-specific optimizations, see Chapter 8, Vendor-
Specific Optimizations.

It describes the following:

• Design Guidelines, on page 6-2

• Optimizing Results, on page 6-5

• Defining State Machines for Synthesis, on page 6-13

• Using the Symbolic FSM Compiler, on page 6-17

• Using FSM Explorer, on page 6-22

• Using the FSM Viewer, on page 6-25

• Defining Black Boxes for Synthesis, on page 6-30

• Pipelining, on page 6-40

• Retiming, on page 6-44

• Inserting Probes, on page 6-50

• Inferring RAMs, on page 6-54

• Inferring Shift Registers, on page 6-80

• Forward Annotation of Initial Values

• Working with LPMs, on page 6-87

• Working with Gated Clocks, on page 6-99

LO

Chapter 6: Design Optimization Design Guidelines

6-2 Fpga User Guide, December 2005

Design Guidelines
The software automatically makes efficient tradeoffs to achieve the best
results. However, you can optimize your results by using the appropriate
control parameters. This section describes general design guidelines for
optimization. The topics have been categorized as follows:

• General Optimization Tips, next

• Area Optimization Tips, on page 6-3

• Timing Optimization Settings, on page 6-4

General Optimization Tips
This section contains general optimization tips that are not directly area or
timing-related. For area optimization tips, see Area Optimization Tips, on
page 6-3. For timing optimization, see Timing Optimization Settings, on
page 6-4.

• In your source code, remove any unnecessary priority structures in
timing-critical designs. For example, use CASE statements instead of
nested IF-THEN-ELSE statements for priority-independent logic.

• If your design includes safe state machines, use the syn_encoding
attribute with a value of safe. This ensures that the synthesized state
machines never lock in an illegal state.

• For FSMs coded in VHDL using enumerated types, use the same
encoding style (syn_enum_encoding attribute value) on both the state
machine enumerated type and the state signal. This ensures that there
are no discrepancies in the type of encoding to negatively affect the final
circuit.

• Make sure that the source code supports inferencing or instantiation by
using architecture-specific resources like memory blocks.

• Some designs benefit from hierarchical optimization techniques. To
enable hierarchical optimization on your design, set the syn_hier
attribute to firm.

• For accurate results with timing-driven synthesis, explicitly define clock
frequencies with a constraint, instead of using a global clock frequency.

Design Guidelines Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-3

Area Optimization Tips
This section contains information on optimizing to reduce area. Optimizing
for area often means larger delays, and you will have to weigh your perfor-
mance needs against your area needs to determine what works best for your
design. For tips on optimizing for performance, see Timing Optimization
Settings, on page 6-4. General optimization tips are in General Optimization
Tips, on page 6-2.

• Increase the fanout limit when you set the implementation options. A
higher limit means less replicated logic and fewer buffers inserted during
synthesis, and a consequently smaller area. In addition, as P&R tools
typically buffer high fanout nets, there is no need for excessive buffering
during synthesis. See Setting Fanout Limits, on page 6-7 for more infor-
mation.

• Check the Resource Sharing option when you set implementation options.
With this option checked, the software shares hardware resources like
adders, multipliers, and counters wherever possible, and minimizes
area.See Sharing Resources, on page 6-5 for details.

• For designs with large FSMs, use the gray or sequential encoding styles,
because they typically use the least area. For details, see Specifying
FSMs with Attributes and Directives, on page 6-15.

• If you are mapping into a CPLD and do not meet area requirements, set
the default encoding style for FSMs to sequential instead of onehot. For
details, see Specifying FSMs with Attributes and Directives, on page 6-15.

• For small CPLD designs (less than 20K gates), you might improve area
by using the syn_hier attribute with a value of flatten. When specified, the
software optimizes across hierarchical boundaries and creates smaller
designs.

LO

Chapter 6: Design Optimization Design Guidelines

6-4 Fpga User Guide, December 2005

Timing Optimization Settings
This section contains information on optimizing to meet timing requirements.
Optimizing for timing is often at the expense of area, and you will have to
balance the two to determine what works best for your design. For tips on
optimizing for area, see Area Optimization Tips, on page 6-3. General optimi-
zation tips are in General Optimization Tips, on page 6-2.

• Use realistic design constraints, about 10 - 15% of the real goal. Over
constraining your design can be counter-productive because you can get
poor implementations. Use clock, false path, and multicycle path
constraints to make the constraints realistic.

• Select a balanced fanout constraint. A large constraint creates nets with
large fanouts, and a low fanout constraint results in replicated logic. See
Setting Fanout Limits, on page 6-7 for information about setting limits.

• If the critical path goes through arithmetic components, try disabling
Resource Sharing. You can get faster times at the expense of increased
area, but use this technique carefully. Adding too many resources can
cause longer delays and defeat your purpose.

• If the P&R and synthesis tools report different critical paths, use a
timing constraint with the -route option. With this option, the software
adds route delay to its calculations when trying to meet the clock
frequency goal. Use realistic values for the constraints.

• For FSMs, use the onehot encoding style, because it is often the fastest
implementation. If a large output decoder follows an FSM, gray or
sequential encoding could be faster.

• For designs with black boxes, characterize the timing models accurately,
using the syn_tpd, syn_tco, and syn_tso directives.

• If you saw warnings about feedback muxes being created for signals
when you compiled your source code, make sure to assign set/resets for
the signals. This improves performance by eliminating the extra mux
delay on the input of the register.

• Make sure that you pass your timing constraints to the place-and-route
tools, so that they can use the constraints to optimize timing.

Optimizing Results Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-5

Optimizing Results
You can optimize your results with attributes and directives, some of which
are specific to the technology you are using. Similarly, you can use specify
objects or hierarchy that you want to preserve during synthesis. For a
complete list of all the directives and attributes, see the Reference Manual.
This section describes the following:

• Sharing Resources, next

• Setting Fanout Limits, on page 6-7

• Controlling Buffering and Replication, on page 6-8

• Controlling Hierarchy Flattening, on page 6-10

• Preserving Objects from Optimization, on page 6-10

• Preserving Hierarchy, on page 6-12

Sharing Resources
One of the ways you can optimize area is to use resource sharing. With
resource sharing, the software uses the same arithmetic operators for
mutually exclusive statements; for example, with the branches of a case
statement. Conversely, you can improve timing by disabling resource sharing,
but at the expense of increased area.

1. Specify resource sharing globally for the whole design with one of the methods
below. Enable the option to improve area; disable it to improve timing.

– Select Project->Implementation Options->Options, and enable or disable
Resource Sharing. Alternatively, enable Resource Sharing in the Project
view.

– Apply the syn_sharing directive to the top-level module or architecture
in the source code. See syn_sharing Directive, on page 8-181 of the
Reference Manual for syntax examples.

Verilog module top(out, in, clk_in) /* synthesis syn_sharing = “on” */;

VHDL architecture rtl of top is
attribute syn_sharing : string;
attribute syn_sharing of rtl : architecture is “off”;

LO

Chapter 6: Design Optimization Optimizing Results

6-6 Fpga User Guide, December 2005

You cannot specify syn_sharing from the SCOPE interface, because it is a
compiler directive.

2. To specify resource sharing on an individual basis, or to override the
global setting, specify the syn_sharing attribute for the lower-level
module/architecture, using the syntax described in the previous step.

Multiple adders with syn_sharing off.

Shared adder resource with syn_sharing on.

Optimizing Results Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-7

Setting Fanout Limits
Optimization affects net fanout. If your design has critical nets with high
fanout, you can set fanout limits. You can only do this in certain technologies.
For details specific to individual technologies, see the Reference Manual.

1. To set a global fanout limit for the whole design, do either of the
following:

– Select Project-> Implementation Options->Device and type a value for the
Fanout Guide option.

– Apply the syn_maxfan attribute to the top-level view or module.

The value sets the number of fanouts for a given driver, and affects all
the nets in the design. The defaults vary, depending on the technology.
Select a balanced fanout value. A large constraint creates nets with large
fanouts, and a low fanout constraint results in replicated or buffered
logic. Both extremes affect routing and design performance. The right
value depends on your design. The same value of 32 might result in
fanouts of 11 or 12 and large delays on the critical path in one design or
in excessive replication in another design.

The software uses the value as a soft limit, or a guide. It traverses the
inverters and buffers to identify the fanout, and tries to ensure that all
fanouts are under the limit by replicating or buffering where needed (see
Controlling Buffering and Replication, on page 6-8 for details). However,
the synthesis tool does not respect the fanout limit absolutely; it ignores
the limit if the limit imposes constraints that interfere with optimization.

2. For certain Actel technologies, you can set a global hard fanout limit by
doing the following:

– Select Project-> Implementation Options->Device and type a value for the
Fanout Guide option, as described in the previous step.

– On the same tab, check the Hard Fanout Limit option.

This makes the specified value a global hard fanout limit for the design.

3. To override the global fanout guideline and set a soft fanout limit at a
lower level, set the syn_maxfan attribute on modules, views, or non-
primitive instances.

These limits override the more global limits for that object (including a
global hard limit in Actel technologies). However, these limits still

LO

Chapter 6: Design Optimization Optimizing Results

6-8 Fpga User Guide, December 2005

function as soft limits, and are replicated or buffered, as described in
Controlling Buffering and Replication, on page 6-8.

4. To set a hard or absolute limit, set the syn_maxfan attribute on a port,
net, register, or primitive instance.

Fanouts that exceed the hard limit are buffered or replicated, as
described in Controlling Buffering and Replication, on page 6-8p.

5. To preserve net drivers from being optimized, attach the syn_keep or
syn_preserve attributes.

For example, the software does not traverse a syn_keep buffer (inserted
as a result of the attribute), and does not optimize it. However, the
software can optimize implicit buffers created as a result of other opera-
tions; for example, it does not respect an implicit buffer created as a
result of syn_direct_enable.

6. Check the results of buffering and replication in

– The log file (click View Log). The log file reports the number of buffered
and replicated objects and the number of segments created for the
net.

– The HDL Analyst views. The software might not follow DRC rules
when buffering or replicating objects, or when obeying hard fanout
limits.

Controlling Buffering and Replication
To honor fanout limits (see Setting Fanout Limits, on page 6-7) and reduce
fanout, the software either replicates components or adds buffers. The
software reduces fanout on input ports through buffering and reduces fanout
on nets driven by registers or combinatorial logic through replication. The
software first tries replication, replicating the net driver and splitting the net

Attribute specified on... Effect

Module or view Soft limit for the module; overrides the global setting.

Non-primitive instance Soft limit; overrides global and module settings

Clock nets or
asynchronous control nets

Soft limit.

Optimizing Results Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-9

into segments. This increases the number of register bits in the design. When
replication is not possible, the software buffers the signals. Buffering is more
expensive in terms of intrinsic delay and resource consumption. The following
table summarizes the behavior.

You can control whether high fanout nets are buffered or replicated, using the
techniques described here:

• To use buffering instead of replication, set syn_replicate with a value of 0
globally, or on modules or registers. The syn_replicate attribute prevents
replication, so that the software uses buffering to satisfy the fanout limit.
For example, you can prevent replication between clock boundaries for a
register that is clocked by clk1 but whose fanin cone is driven by clk2,
even though clk2 is an unrelated clock in another clock group.

• To specify that high-fanout clock ports should not be buffered, set
syn_noclockbuf globally, or on individual input ports. Use this if you want
to save clock buffer resources for nets with lower fanouts but tighter
constraints.

• In Xilinx designs, you can handle extremely large clock fanout nets by
inserting a global buffer (BUFG) in your design. A global buffer reduces
delay for a large fanout net and can free up routing resources for other
signals.

• Turn off buffering and replication entirely, by setting syn_maxfan to a very
high number, like 1000.

Replicates When... Creates Buffers When...

syn_maxfan is set on
a register output

syn_maxfan is set on input ports in Altera Apex, Actel
ProASIC (500K), ProASIC PLUS (PA) and ProASIC3/3E,
and QuickLogic pASIC3 designs

syn_replicate is 1 syn_replicate is 0.
Note that the syn_replicate attribute must be used in
conjunction with the syn_maxfan attribute for Actel
families. The syn_replicate attribute is used only to turn
off the replication.

syn_maxfan is set on a port/net that is driven by a port or
I/O pad

The net driver has a syn_keep or syn_preserve attribute

The net driver is not a primitive gate or register

LO

Chapter 6: Design Optimization Optimizing Results

6-10 Fpga User Guide, December 2005

Controlling Hierarchy Flattening
Optimization flattens hierarchy. To control the flattening, use the syn_hier
attribute as described here. You can also use the attribute to prevent
flattening, as described in Preserving Hierarchy, on page 6-12.

1. Attach the syn_hier attribute to the module or architecture you want to
preserve. You can also add the attribute in SCOPE. If you use SCOPE to
enter the attribute, make sure to use the v: syntax.

2. Set the attribute value:

The software flattens the design as directed. If there is a lower-level
syn_hier attribute, it takes precedence over a higher-level one.

Preserving Objects from Optimization
Synthesis can collapse or remove nets during optimization. If you want to
retain a net for simulation, probing, or for a different synthesis implementa-
tion, you must specify this with an attribute. Similarly, the software removes
duplicate registers or instances with unused output. If you want to preserve
this logic for simulation or analysis, you must use an attribute. The following
table lists the attributes to use in each situation. For details about the
attributes and their syntax, see the Reference Manual.

To... Value...

Flatten all levels below, but not the current level flatten

Remove the current level of hierarchy without affecting
the lower levels

remove

Remove the current level of hierarchy and the lower levels flatten, remove

Flatten the current level (if needed for optimization) soft

Optimizing Results Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-11

To Preserve... Attach... Result

Nets syn_keep on wire or reg
(Verilog), or signal (VHDL).
For Actel designs (except
500K and PA), use
alspreserve as well as
syn_keep.

Keeps net for simulation, a different
synthesis implementation, or for
passing to the place-and-route tool.

Nets for probing syn_probe on wire or reg
(Verilog), or signal (VHDL)

Preserves internal net for probing.
This attribute is only applicable to
the Synplify Pro and Synplify
Premier software.

Shared registers syn_keep on input wire or
signal of shared registers

Preserves duplicate driver cells,
prevents sharing

Sequential
components

syn_preserve on reg or
module (Verilog), signal or
architecture (VHDL)

Preserves logic of constant-driven
registers, keeps registers for
simulation, prevents sharing

FSMs syn_preserve on reg or
module (Verilog), signal
(VHDL)

Prevents the output port or internal
signal that holds the value of the
state register from being optimized

Instantiated
components

 syn_noprune on module or
component (Verilog),
architecture or instance
(VHDL)

Keeps instance for analysis,
preserves instances with unused
outputs

LO

Chapter 6: Design Optimization Optimizing Results

6-12 Fpga User Guide, December 2005

Preserving Hierarchy
The synthesis process includes cross-boundary optimizations that can flatten
hierarchy. To override these optimizations, use the syn_hier attribute as
described here. You can also use this attribute to direct the flattening process
as described in Controlling Hierarchy Flattening, on page 6-10.

1. Attach the syn_hier attribute to the module or architecture you want to
preserve. You can also add the attribute in SCOPE. If you use SCOPE to
enter the attribute, make sure to use the v: syntax.

2. Set the attribute value:

The software flattens the design as directed. If there is a lower-level
syn_hier attribute, it takes precedence over a higher-level one.

To... Value...

Preserve the interface but allow cell packing across the
boundary

firm

Preserve the interface with no exceptions (Actel, Altera, and
Xilinx only)

hard

Preserve the interface and contents with no exceptions (Actel
(except PA, 500K, and ProASIC3/3E), Altera, Lattice, and
QuickLogic only)

macro

Flatten lower levels but preserve the interface of the specified
design unit

flatten, firm

Defining State Machines for Synthesis Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-13

Defining State Machines for Synthesis
A finite state machine (FSM) is a piece of hardware that advances from state
to state at a clock edge. The synthesis software recognizes and extracts the
state machines from the HDL source code. For guidelines on setting up the
source code, see the following:

• Defining State Machines in Verilog, next

• Defining State Machines in VHDL, on page 6-14

• Specifying FSMs with Attributes and Directives, on page 6-15

For information about the attributes used to define state machines, see
Running the FSM Compiler on Individual FSMs, on page 6-20.

Defining State Machines in Verilog
The synthesis software recognizes and automatically extracts state machines
from the Verilog source code if you follow these coding guidelines. The
software attaches the syn_state_machine attribute to each extracted FSM.

For alternative ways to define state machines, see Defining State Machines in
VHDL, on page 6-14 and Specifying FSMs with Attributes and Directives, on
page 6-15.

• In Verilog, model the state machine with case, casex, or casez state-
ments in always blocks. Check the current state to advance to the next
state and then set output values. Do not use if statements.

• Always use a default assignment as the last assignment in the case
statement, and set the state variable to ‘bx. This is a “don’t care” state-
ment and ensures that the software can remove unnecessary decoding
and gates.

• Make sure the state machines have a synchronous or asynchronous
reset to set the hardware to a valid state after power-up, or to reset the
hardware when you are operating.

LO

Chapter 6: Design Optimization Defining State Machines for Synthesis

6-14 Fpga User Guide, December 2005

• Use explicit state values for states using parameter or ‘define state-
ments. This is an example of a parameter statement that sets the
current state to 2’h2:

parameter state1 = 2’h1, state2 = 2’h2;
...
current_state = state2;

This example shows how to set the current state value with ‘define
statements:

‘define state1 2’h1
‘define state2 2’h2
...
current_state = ‘state2;

Defining State Machines in VHDL
The synthesis software recognizes and automatically extracts state machines
from the VHDL source code if you follow coding guidelines. For alternative
ways to define state machines, see Defining State Machines in Verilog, on
page 6-13 and Specifying FSMs with Attributes and Directives, on page 6-15.

The following are VHDL guidelines for coding. The software attaches the
syn_state_machine attribute to each extracted FSM.

• Use CASE statements to check the current state at the clock edge,
advance to the next state, and set output values. You can also use IF-
THEN-ELSE statements, but CASE statements are preferable.

• If you do not cover all possible cases explicitly, include a WHEN OTHERS
assignment as the last assignment of the CASE statement, and set the
state vector to some valid state.

• If you create implicit state machines with multiple WAIT statements, the
software does not recognize them as state machines.

• Make sure the state machines have a synchronous or asynchronous
reset to set the hardware to a valid state after power-up, or to reset the
hardware when you are operating.

• To choose an encoding style, attach the syn_encoding attribute to the
enumerated type. The software automatically encodes your state
machine with the style you specified.

Defining State Machines for Synthesis Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-15

Specifying FSMs with Attributes and Directives
If your design has state machines, the software can extract them automati-
cally with the FSM Compiler (see Using the Symbolic FSM Compiler, on
page 6-17), or you can manually specify attributes to define the state
machines. You attach the attributes to the state registers. For detailed infor-
mation about the attributes and their syntax, see the Reference Manual.

The following steps show you how to use attributes to define FSMs for extrac-
tion. For alternative ways to define state machines, see Defining State
Machines in Verilog, on page 6-13 and Defining State Machines in VHDL, on
page 6-14.

1. To determine how state machines are extracted, set attributes in the
source code as shown in the following table:

For information about how to add attributes, see Adding Attributes and
Directives, on page 3-66.

2. To determine the encoding style used for the state machine, set the
syn_encoding attribute in the source code or in the SCOPE window. For
VHDL users there are alternative methods, described in the next step.

The FSM Compiler and the FSM Explorer honor this setting. The
different values for this attribute are briefly described here:

To... Attribute

Specify a state machine for extraction and
optimization

syn_state_machine=1

Prevent state machines from being extracted
and optimized

syn_state_machine=0

Prevent the state machine from being
optimized away

syn_preserve=1

LO

Chapter 6: Design Optimization Defining State Machines for Synthesis

6-16 Fpga User Guide, December 2005

3. If you are using VHDL, you have two choices for defining encoding:

– Use syn_encoding as described above, and enable the FSM compiler.

– Use syn_enum_encoding to define the states (sequential, onehot, gray, and
safe) and disable the FSM compiler. If you do not disable the FSM
compiler, the syn_enum_encoding values are not implemented. This is
because the FSM compiler, a mapper operation, overrides
syn_enum_encoding, which is a compiler directive.

Use this method for user-defined FSM encoding. For example:

attribute syn_enum_encoding of state_type : type is "001 010 101";

Situation: If... syn_encoding Value Explanation

Area is important sequential One of the smallest encoding
styles.

Speed is
important

onehot Usually the fastest style and
suited to most FPGA styles.

Recovery from an
invalid state is
important

safe, with another
style. For example:
/* synthesis
syn_encoding =
“safe, onehot” */

Forces the state machine to
reset. For example, where an
alpha particle hit in a hostile
operating environment causes a
spontaneous register change,
you can use safe to reset the
state machine.

There are
<5 states

sequential Default encoding.

Large output
decoder follows
the FSM

sequential or
gray

Could be faster than onehot,
even though the value must be
decoded to determine the state.
For sequential, more than one bit
can change at a time; for gray,
only one bit changes at a time,
but more than one bit can be
hot.

There are a large
number of flip-
flops

onehot Fastest style, because each state
variable has one bit set, and
only one bit of the state register
changes at a time.

Using the Symbolic FSM Compiler Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-17

Using the Symbolic FSM Compiler
The Symbolic FSM Compiler is an advanced state machine optimizer, which
automatically recognizes state machines in your design and optimizes them.
Unlike other synthesis tools that treat state machines as regular logic, the
FSM Compiler extracts the state machines as symbolic graphs, and then
optimizes them by re-encoding the state representations and generating a
better logic optimization starting point for the state machines. The FSM
Explorer uses the state machines extracted by the FSM Compiler when it
explores different encoding styles. The FSM Explorer option is only available
in the Synplify Pro and Synplify Premier tools.

For more information, see the following:

• Choosing When to Use the FSM Compiler, on page 6-17, next

• Running the FSM Compiler on the Whole Design, on page 6-18

• Running the FSM Compiler on Individual FSMs, on page 6-20

• Specifying FSMs with Attributes and Directives, on page 6-15

Choosing When to Use the FSM Compiler
The FSM Compiler and the FSM Explorer are automatic tools for state
machines, but you can also specify FSMs manually with attributes. For more
information about the FSM Explorer and FSM attributes, see Using FSM
Explorer, on page 6-22, Adding Attributes and Directives, on page 3-66 and
Specifying FSMs with Attributes and Directives, on page 6-15.

Here are the main reasons to use the FSM Compiler:

• To generate better results for your state machines

The software uses optimization techniques that are specifically tuned for
FSMs, like reachability analysis for example. The FSM Compiler also lets
you convert an encoded state machine to another encoding style (to
improve speed and area utilization) without changing the source. For
example, you can use a onehot style to improve results.

• To debug the state machines

State machine description errors result in unreachable states, so if you
have errors, you will have fewer states. You can check whether your

LO

Chapter 6: Design Optimization Using the Symbolic FSM Compiler

6-18 Fpga User Guide, December 2005

source code describes your state machines correctly. You can also use
the FSM Viewer to see a high-level bubble diagram and crossprobe from
there. The FSM Viewer is only available in the Synplify Pro and Synplify
Premier tools. For information about the FSM Viewer, see Using the FSM
Viewer, on page 6-25.

• To run the FSM Explorer

The FSM Explorer is a tool that examines all the encoding styles before
selecting the best option, based on the state machine extraction done by
the FSM Compiler. If the FSM Compiler has not been run previously, the
Explorer automatically runs it. For more information about using the
FSM Explorer, see Using FSM Explorer, on page 6-22.

Running the FSM Compiler on the Whole Design
1. Enable the compiler by checking the Symbolic FSM Compiler box in one of

these places:

– The main panel on the left side of the project window

– The Options tab of the dialog box that comes up when you click the
New Impl or Impl Options buttons

2. To set a specific encoding style for a state machine, define the style with
the syn_encoding attribute, as described in Specifying FSMs with
Attributes and Directives, on page 6-15.

If you do not specify a style, the FSM Compiler picks an encoding style
based on the number of states.

3. Click Run to run synthesis.

The software automatically recognizes and extracts the state machines
in your design, and instantiates a state machine primitive in the netlist
for each FSM it extracts. It then optimizes all the state machines in the
design, using techniques like reachability analysis, next state logic
optimization, state machine re-encoding and proprietary optimization

Using the Symbolic FSM Compiler Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-19

algorithms. Unless you have specified encoding styles, it automatically
selects the encoding style based on the number of states.

In the log file, the FSM Compiler writes a report that includes a descrip-
tion of each state machine extracted and the set of reachable states for
each state machine.

4. Select View->View Log File and check the log file for descriptions of the
state machines and the set of reachable states for each one. You see text
like the following:

Extracted state machine for register cur_state
State machine has 7 reachable states with original encodings of:

0000001
0000010
0000100
0001000
0010000
0100000
1000000

....
original code -> new code

0000001 -> 0000001
0000010 -> 0000010
0000100 -> 0000100
0001000 -> 0001000
0010000 -> 0010000
0100000 -> 0100000
1000000 -> 1000000

5. Check the state machine implementation in the RTL and Technology
views and in the FSM viewer.

– In the RTL view you see the FSM primitive with one output for each
state.

– In the Technology view, you see a level of hierarchy that contains the
FSM, with the registers and logic that implement the final encoding.

Number of States Encoding Style

Up to 4 sequential

5-24 onehot

> 24 gray

LO

Chapter 6: Design Optimization Using the Symbolic FSM Compiler

6-20 Fpga User Guide, December 2005

– In the FSM viewer you see a bubble diagram and mapping
information. For information about the FSM viewer, see Using the
FSM Viewer, on page 6-25.

– In the statemachine.info text file, you see the state transition
information.

Running the FSM Compiler on Individual FSMs
If you have state machines that you do not want automatically optimized by
the FSM Compiler, you can use one of these techniques, depending on the
number of FSMs to be optimized. You might want to exclude state machines
from automatic optimization because you want them implemented with a
specific encoding or because you do not want them extracted as state
machines. The following procedure shows you how to work with both cases.

1. If you have just a few state machines you do not want to optimize, do the
following:

– Enable the FSM Compiler by checking the box in the button panel of
the Project window.

– If you do not want to optimize the state machine, add the
syn_state_machine directive to the registers in the Verilog or VHDL
code. Set the value to 0. When synthesized, these registers are not
extracted as state machines.

– If you want to specify a particular encoding style for a state machine,
use the syn_encoding attribute, as described in Specifying FSMs with
Attributes and Directives, on page 6-15. When synthesized, these
registers have the specified encoding style.

– Run synthesis.

The software automatically recognizes and extracts all the state
machines, except the ones you marked. It optimizes the FSMs it

Verilog reg [3:0] curstate /* synthesis syn_state_machine=0 */ ;

VHDL signal curstate : state_type;
attribute syn_state_machine : boolean;
attribute syn_state_machine of curstate : signal is
false;v

Using the Symbolic FSM Compiler Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-21

extracted from the design, honoring the syn_encoding attribute. It writes
out a log file that contains a description of each state machine extracted,
and the set of reachable states for each FSM.

2. If you have many state machines you do not want optimized, do this:

– Disable the compiler by disabling the Symbolic FSM Compiler box in one
of these places: the main panel on the left side of the project window
or the Options tab of the dialog box that comes up when you click the
New Impl or Impl Options buttons. This disables the compiler from
optimizing any state machine in the design. You can now selectively
turn on the FSM compiler for individual FSMs.

– For state machines you want the FSM Compiler to optimize
automatically, add the syn_state_machine directive to the individual
state registers in the VHDL or Verilog code. Set the value to 1. When
synthesized, the FSM Compiler extracts these registers with the
default encoding styles according to the number of states.

– For state machines with specific encoding styles, set the encoding
style with the syn_encoding attribute, as described in Specifying FSMs
with Attributes and Directives, on page 6-15. When synthesized, these
registers have the specified encoding style.

– Run synthesis.

The software automatically recognizes and extracts only the state
machines you marked. It automatically assigns encoding styles to the
state machines with the syn_state_machine attribute, and honors the
encoding styles set with the syn_encoding attribute. It writes out a log file
that contains a description of each state machine extracted, and the set
of reachable states for each state machine.

3. Check the state machine in the log file, the RTL and technology views,
and the FSM viewer, which is not available to Synplify users. For
information about the FSM viewer, see Using the FSM Viewer, on
page 6-25.

Verilog reg [3:0] curstate /* synthesis syn_state_machine=1 */ ;

VHDL signal curstate : state_type;
attribute syn_state_machine : boolean;
attribute syn_state_machine of curstate : signal is true;

LO

Chapter 6: Design Optimization Using FSM Explorer

6-22 Fpga User Guide, December 2005

Using FSM Explorer
The FSM Explorer option is available only in the Synplify Pro and Synplify
Premier tools. The Symbolic FSM Explorer is a specialized state machine
optimizer that explores different encoding styles before selecting the best
style. It uses the FSM Compiler to recognize and extract state machines. If
the FSM Compiler has not been run, it runs it automatically. For information
about the FSM Compiler, see Using the Symbolic FSM Compiler, on page 6-17.

This section discusses the following subtopics:

• Deciding When to Use the FSM Explorer, next

• Running the FSM Explorer, on page 6-23

Deciding When to Use the FSM Explorer
The FSM Explorer and the FSM Compiler are automatic tools for encoding
state machines. Like the FSM Compiler, you use the FSM Explorer to
generate better results for your state machines. Unlike the FSM Compiler,
which picks an encoding style based on the number of states, the FSM
Explorer tries out different encoding styles and picks the best style for the
state machine based on overall design constraints. The trade-off is that the
FSM Explorer takes longer to run than the FSM Compiler.

In addition to the two automatic tools, you can always specify state machine
encoding manually with attributes. For more information about the
attributes, see Specifying FSMs with Attributes and Directives, on page 6-15.

Using FSM Explorer Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-23

Running the FSM Explorer
1. If you need to customize the extraction process, set attributes.

– Use syn_state_machine=0 to specify state machines you do not want to
extract and optimize.

– Use syn_encoding if you want to set a specific encoding style.

The FSM Compiler honors the syn_state_machine attribute when it
extracts state machines, and the FSM Explorer honors the syn_encoding
attribute when it sets encoding styles. See Specifying FSMs with
Attributes and Directives, on page 6-15 for details.

2. Enable the FSM Explorer by checking the FSM Explorer box in one of
these places:

– The main panel on the left side of the project window

– The Options tab of the dialog box that comes up when you click the
New Impl or Impl Options buttons.

If you have not checked the FSM Compiler option, checking the FSM
Explorer option automatically selects the FSM Compiler option.

3. Click Run to run synthesis.

The FSM Explorer uses the state machines extracted by the FSM
Compiler. If you have not run the FSM Compiler, the FSM Explorer
invokes the compiler automatically to extract the state machines,
instantiate state machine primitives, and optimize them. Then, the FSM
Explorer runs through each encoding style for each state machine that

Verilog reg [3:0] curstate /* synthesis state_machine */ ;

VHDL signal curstate : state_type;
attribute syn_state_machine : boolean;
attribute syn_state_machine of curstate : signal is true;

Verilog reg [3:0] curstate /* synthesis syn_encoding “gray”*/ ;

VHDL signal curstate : state_type;
attribute syn_encoding : string;
attribute syn_encoding of curstate : signal is true;

LO

Chapter 6: Design Optimization Using FSM Explorer

6-24 Fpga User Guide, December 2005

does not have a syn_encoding attribute and picks the best style. If you
have defined an encoding style with syn_encoding, it uses that style.

The FSM Compiler writes a description of each state machine extracted
and the set of reachable states for each state machine in the log file. The
FSM Explorer adds the selected encoding styles. The FSM Explorer also
generates a <design>_fsm.sdc file that contains the encodings and
which is used for mapping.

4. Select View->View Log File and check the log file for the descriptions. The
following extract shows the state machine and the reachable states as
well as the encoding style, gray, set by FSM Explorer.

Extracted state machine for register cur_state
State machine has 7 reachable states with original encodings of:

0000001
0000010
0000100
0001000
0010000
0100000
1000000

....
Adding property syn_encoding, value "gray", to instance
cur_state[6:0]
List of partitions to map:

view:work.Control(verilog)

Encoding state machine work.Control(verilog)-
cur_state_h.cur_state[6:0]
original code -> new code

0000001 -> 000
0000010 -> 001
0000100 -> 011
0001000 -> 010
0010000 -> 110
0100000 -> 111
1000000 -> 101

5. Check the state machine implementation in the RTL and Technology
views and in the FSM viewer.

For information about the FSM viewer, see Using the FSM Viewer, on
page 6-25.

Using the FSM Viewer Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-25

Using the FSM Viewer
The FSM Explorer option is available only in the Synplify Pro and Synplify
Premier tools. The FSM viewer displays state transition bubble diagrams for
FSMs in the design, along with additional information about the FSM. You
can use this viewer to view state machines implemented by
either the FSM Compiler or the FSM Explorer. For more information, see
Using the Symbolic FSM Compiler, on page 6-17 and Using FSM Explorer, on
page 6-22, respectively.

1. To start the FSM viewer, open the RTL view and either

– Select the FSM instance, click the right mouse button and select View
FSM from the popup menu.

– Push down into the FSM instance (Push/Pop icon).

The FSM viewer opens. The viewer consists of a transition bubble
diagram and a table for the encodings and transitions. If you used
Verilog to define the FSMs, the viewer displays binary values for the
state machines if you defined them with the ‘define keyword, and
actual names if you used the parameter keyword.

LO

Chapter 6: Design Optimization Using the FSM Viewer

6-26 Fpga User Guide, December 2005

2. The following table summarizes basic viewing operations.

This figure shows you the mapping information for a state machine. The
Transitions tab shows you simple equations for conditions for each state.
The RTL Encodings tab has a State column that shows the state names in
the source code, and a Registers column for the corresponding RTL
encoding. The Mapped Encoding tab shows the state names in the code
mapped to actual values.

To view... Do...

From and to states, and conditions
for each transition

Click the Transitions tab at the
bottom of the table.

The correspondence between the
states and the FSM registers in the
RTL view

Click the RTL Encoding tab.

The correspondence between the
states and the registers in the
Technology View

Click the Mapped Encodings tab
(available after synthesis).

Just the transition diagram without
the table

Select View->FSM table or click the
FSM Table icon. You might have to
scroll to the right to see it.

Using the FSM Viewer Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-27

3. To view just one selected state,

– Select the state by clicking on its bubble. The state is highlighted.

– Click the right mouse button and select the filtering criteria from the
popup menu: output, input, or any transition.

The transition diagram now shows only the filtered states you set. The
following figure shows filtered views for output and input transitions for
one state.

States and Conditions

Mapped Encoding RTL Encoding

LO

Chapter 6: Design Optimization Using the FSM Viewer

6-28 Fpga User Guide, December 2005

Similarly, you can check the relationship between two or more states by
selecting the states, filtering them, and checking their properties.

4. To view the properties for a state,

– Select the state.

– Click the right mouse button and select Properties from the popup
menu. A form shows you the properties for that state.

To view the properties for the entire state machine like encoding style,
number of states, and total number of transitions between states,
deselect any selected states, click the right mouse button outside the
diagram area, and select Properties from the popup menu.

5. To view the FSM description in text format, select the state machine in
the RTL view and View FSM Info File from the right mouse popup. This is
an example of the FSM Info File, statemachine.info.

State Machine: work.Control(verilog)-cur_state[6:0]
No selected encoding - Synplify will choose
Number of states: 7
Number of inputs: 4
Inputs:

0: Laplevel
1: Lap
2: Start
3: Reset
Clock: Clk

CountCont state filtered by output transitions

CountCont state filtered by input transitions

Using the FSM Viewer Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-29

Transitions: (input, start state, destination state)
-100 S0 S6
--10 S0 S2
---1 S0 S0
-00- S0 S0
--10 S1 S3
-100 S1 S2
-000 S1 S1
---1 S1 S0
--10 S2 S5
-000 S2 S2
-100 S2 S1
---1 S2 S0
-100 S3 S5
-000 S3 S3
--10 S3 S1
---1 S3 S0
-000 S4 S4
--1- S4 S0
-1-- S4 S0
---1 S4 S0
-000 S5 S5
-100 S5 S4
--10 S5 S2
---1 S5 S0
1--0 S6 S6
---1 S6 S0
0--- S6 S0

LO

Chapter 6: Design Optimization Defining Black Boxes for Synthesis

6-30 Fpga User Guide, December 2005

Defining Black Boxes for Synthesis
Black boxes are predefined components for which the interface is specified,
but whose internal architectural statements are ignored. They are used as
place holders for IP blocks, legacy designs, or a design under development.

This section discusses the following topics:

• Instantiating Black Boxes and I/Os in Verilog, next

• Instantiating Black Boxes and I/Os in VHDL, on page 6-32

• Adding Black Box Timing Constraints, on page 6-34

• Adding Other Black Box Attributes, on page 6-38

The Fix Gated Clocks option is only available in the Synplify Pro and Synplify
Premier tools. For information about using black boxes with the Fix Gated
Clocks option, see Working with Gated Clocks, on page 6-99.

Instantiating Black Boxes and I/Os in Verilog
Verilog black boxes for macros and I/Os come from two sources: commonly-
used or vendor-specific components that are predefined in Verilog macro
libraries, or black boxes that are defined in another input source like a
schematic. For information abut instantiating black boxes in VHDL, see
Instantiating Black Boxes and I/Os in VHDL, on page 6-32. Additional infor-
mation about black boxes can be found in Working with Gated Clocks, on
page 6-99, Instantiating CoreGen Cores, on page 8-29, and Instantiating
Virtex PCI Cores, on page 8-30. The Fix Gated Clocks option is only available in
the Synplify Pro and Synplify Premier tools.

The following process shows you how to instantiate both types as black
boxes. Refer to the Synplify_install_dir/examples directory for examples of
instantiations of low-level resources.

1. To instantiate a predefined Verilog module as a black box:

– Select the library file with the macro you need from the
Synplify_install_dir/lib/technology directory. Files are named
technology.v. Most vendor architectures provide macro libraries that
predefine the black boxes for primitives and macros.

Defining Black Boxes for Synthesis Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-31

– Make sure the library macro file is the first file in the source file list
for your project.

2. To instantiate a module that has been defined in another input source
as a black box:

– Create an empty macro that only contains ports and port directions.

– Put the syn_black_box synthesis directive just before the semicolon in
the module declaration.

module myram (out, in, addr, we) /* synthesis syn_black_box */;
output [15:0] out;
input [15:0] in;
input [4:0] addr;
input we;

endmodule

– Make an instance of the stub in your design.

– Compile the stub along with the module containing the instantiation
of the stub.

– To simulate with a Verilog simulator, you must have a functional
description of the black box. To make sure the synthesis software
ignores the functional description and treats it as a black box, use the
translate_off and translate_on constructs. For example:

module adder8(cout, sum, a, b, cin);
// Code that you want to synthesize
/* synthesis translate_off */
// Functional description.
/* synthesis translate_on */
// Other code that you want to synthesize.
endmodule

3. To instantiate a vendor-specific (black box) I/O that has been defined in
another input source:

– Create an empty macro that only contains ports and port directions.

– Put the syn_black_box synthesis directive just before the semicolon in
the module declaration.

– Specify the external pad pin with the black_box_pad_pin directive, as in
this example:

module BBDLHS(D,E,GIN,GOUT,PAD,Q)
/* synthesis syn_black_box black_box_pad_pin="PAD"

LO

Chapter 6: Design Optimization Defining Black Boxes for Synthesis

6-32 Fpga User Guide, December 2005

– Make an instance of the stub in your design.

– Compile the stub along with the module containing the instantiation
of the stub.

4. Add timing constraints and attributes as needed. See Adding Black Box
Timing Constraints, on page 6-34 and Adding Other Black Box Attributes,
on page 6-38.

5. After synthesis, merge the black box netlist and the synthesis results file
using the method specified by your vendor.

Instantiating Black Boxes and I/Os in VHDL
VHDL black boxes for macros and I/Os come from two sources: commonly-
used or vendor-specific components that are predefined in VHDL macro
libraries, or black boxes that are defined in another input source like a
schematic. For information abut instantiating black boxes in VHDL, see
Instantiating Black Boxes and I/Os in Verilog, on page 6-30.

The following process shows you how to instantiate both types as black
boxes. Refer to the Synplify_install_dir/examples directory for examples of
instantiations of low-level resources.

1. To instantiate a predefined VHDL macro (for a component or an I/O),

– Select the library file with the macro you need from the
Synplify_install_dir/lib/vendor directory. Files are named
family.vhd. Most vendor architectures provide macro libraries that
predefine the black boxes for primitives and macros.

– Add the appropriate library and use clauses to the beginning of your
design units that instantiate the macros.

library family ;
use family.components.all;

2. To create a black box for a component from another input source:

– Create a component declaration for the black box.

– Declare the syn_black_box attribute as a boolean attribute.

– Set the attribute to be true.

Defining Black Boxes for Synthesis Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-33

library synplify;
use synplify.attributes.all;
entity top is

port (clk, rst, en, data: in bit; q; out bit);
end top;

architecture structural of top is
component bbox

port(Q: out bit; D, C, CLR: in bit);
end component;

attribute syn_black_box of bbox: component is true;
...

– Instantiate the black box and connect the ports.

begin
my_bbox: my_bbox port map (

Q => q,
D => data_core,
C => clk,
CLR => rst);

– To simulate with a VHDL simulator, you must have the functional
description of a black box. To make sure the synthesis software
ignores the functional description and treats it as a black box, use the
translate_off and translate_on constructs. For example:

architecture behave of ram4 is
begin

synthesis translate_off
stimulus: process (clk, a, b)
-- Functional description

end process;
synthesis translate_on

-- Other source code you WANT synthesized

3. To create a vendor-specific (black box) I/O for an I/O defined in another
input source:

– Create a component declaration for the I/O.

– Declare the black_box_pad_pin attribute as a string attribute.

– Set the attribute value on the component to be the external pin name
for the pad.

library synplify;
use synplify.attributes.all;
...

LO

Chapter 6: Design Optimization Defining Black Boxes for Synthesis

6-34 Fpga User Guide, December 2005

component mybuf
port(O: out bit; I: in bit);

end component;
attribute black_box_pad_pin of mybuf: component is "I";

– Instantiate the pad and connect the signals.

begin
data_pad: mybuf port map (

O => data_core,
I => data);

4. Add timing constraints and attributes. See Adding Black Box Timing
Constraints, on page 6-34, Gated Clocks for Black Boxes, on page 6-108,
and Adding Other Black Box Attributes, on page 6-38. The Fix Gated Clocks
option is only available in the Synplify Pro and Synplify Premier tools.

Adding Black Box Timing Constraints
A black box does not provide the software with any information about
internal timing characteristics. You must characterize black box timing
accurately, because it can critically affect the overall timing of the design. To
do this, you add constraints in the source code or in the SCOPE interface.

You attach black box timing constraints to instances that have been defined
as black boxes. There are three black box timing constraints, syn_tpd, syn_tsu,
and syn_tco. There are additional attributes for black box pins and black
boxes with gated clocks; see Adding Other Black Box Attributes, on page 6-38
and Gated Clocks for Black Boxes, on page 6-108. The Fix Gated Clocks option
is only available in the Synplify Pro and Synplify Premier tools.

Black Box

D

syn_tpd

syn_tsu

syn_tco

Q

clk

Defining Black Boxes for Synthesis Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-35

1. Define the instance as a black box, as described in Instantiating Black
Boxes and I/Os in Verilog, on page 6-30 or Instantiating Black Boxes and
I/Os in VHDL, on page 6-32.

2. Determine the kind of constraint for the information you want to specify:

3. In VHDL, use the following syntax for the constraints.

– Use the predefined attributes package by adding this syntax

library synplify;
use synplify.attributes.all;

In VHDL, you must use the predefined attributes package. For each
directive, there are ten predeclared constraints in the attributes
package, from directive_name1 to directive_name10. If you need more
constraints, declare the additional constraints using integers greater
than 10. For example:

attribute syn_tco11 : string;
attribute syn_tco12 : string;

– Define the constraints in either of these ways:

The following table shows the appropriate syntax for att_value. See the
Reference Manual for complete syntax information.

To define... Use...

Propagation delay through the black box syn_tpd

Setup delay (relative to the clock) for input pins syn_tsu

Clock-to-output delay through the black box syn_tco

VHDL
syntax

attribute attribute_name<n> : "att_value"

Verilog-style
notation

attribute attribute_name<n> of bbox_name :
component is "att_value"

LO

Chapter 6: Design Optimization Defining Black Boxes for Synthesis

6-36 Fpga User Guide, December 2005

The following is an example of black box attributes, using VHDL
signal notation:

architecture top of top is
component rcf16x4z port(

ad0, ad1, ad2, ad3 : in std_logic;
di0, di1, di2, di3 : in std_logic;
wren, wpe : in std_logic;
tri : in std_logic;
do0, do1, do2 do3 : out std_logic;

end component

attribute syn_tpd1 of rcf16x4z : component is
"ad0,ad1,ad2,ad3 -> do0,do1,do2,do3 = 2.1";

attribute syn_tpd2 of rcf16x4z : component is
"tri -> do0,do1,do2,do3 = 2.0";

attribute syn_tsu1 of rcf16x4z : component is
"ad0,ad1,ad2,ad3 -> ck = 1.2";

attribute syn_tsu2 of rcf16x4z : component is
"wren,wpe,do0,do1,do2,do3 -> ck = 0.0";

4. In Verilog, add the directives as comments, as shown in the following
example. For explanations about the syntax, see the table in the
previous step or the Reference Manual.

module ram32x4 (z, d, addr, we, clk)
/* synthesis syn_black_box
syn_tpd1="addr[3:0]->z[3:0]=8.0"
syn_tsu1="addr[3:0]->clk=2.0"
syn_tsu2="we->clk=3.0" */;

output [3:0[z;

Attribute Value Syntax

syn_tsu<n> bundle -> [!]clock = value

syn_tco<n> [!]clock -> bundle = value

syn_tpd<n> bundle -> bundle = value

• <n> is a numerical suffix.
• bundle is a comma-separated list of buses and scalar signals, with no

intervening spaces. For example, A,B,C.
• ! indicates (optionally) a negative edge for a clock.
• value is in ns.

Defining Black Boxes for Synthesis Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-37

input [3:0] d;
input [3:0] addr;
input we;
input clk;
endmodule

5. To add black box attributes through the SCOPE interface, do the
following:

– Open the SCOPE spreadsheet and select the Attributes panel.

– In the Object column, select the name of the black-box module or
component declaration from the pull-down list. Manually prefix the
black box name with v: to apply the constraint to the view.

– In the Attribute column, type the name of the timing attribute, followed
by the numerical suffix, as shown in the following table. You cannot
select timing attributes from the pull-down list.

– In the Value column, type the appropriate value syntax, as shown in
the table in step 3.

– Save the constraint file, and add it to the project.

The resulting constraint file contains syntax like this:

define_attribute v:{blackbox_module} attribute<n> {att_value}

6. Synthesize the design, and check black box timing.

LO

Chapter 6: Design Optimization Defining Black Boxes for Synthesis

6-38 Fpga User Guide, December 2005

Adding Other Black Box Attributes
Besides black box timing constraints, you can also add other attributes to
define pin types on the black box or define gated clocks. You cannot use the
attributes for all technologies. Check the Reference Manual for details about
which technologies are supported. For information about black boxes with
gated clocks, see Gated Clocks for Black Boxes, on page 6-108. The Fix Gated
Clocks option is only available in the Synplify Pro and Synplify Premier tools.

1. To specify that a clock pin on the black box has access to global clock
routing resources, use syn_isclock.

Depending on the technology, different clock resources are inserted. In
Xilinx, the software inserts BUFG, for Actel it inserts CLKBUF, and for
QuickLogic, it inserts Q_CKPAD.

2. To specify that the software need not insert a pad for a black box pin,
use black_box_pad_pin.

Use this for technologies that automatically insert pad buffers for the
I/Os like Xilinx, some Altera families, Actel, Lattice, QuickLogic, and
some Lattice technologies.

3. To define a tristate pin so that you do not get a mixed driver error when
there is another tristate buffer driving the same net, use
black_box_tri_pins.

Pad

Clk

Clk buffer

syn_isclock

black_box_tri_pins

Black Box

black_box_pad_pin

Defining Black Boxes for Synthesis Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-39

4. To ensure consistency between synthesized black box netlist names and
the names generated by third party tools or IP cores, use the following
attributes (Xilinx only):

– syn_edif_bit_format

– syn_edif_scalar_format

5. To specify that a port on a black box is connected to an internal STARTUP
block in Xilinx XC4000architectures, use the xc_isgr directive.

Black Box

StartupR

R
xc_isgr

LO

Chapter 6: Design Optimization Pipelining

6-40 Fpga User Guide, December 2005

Pipelining
The pipelining feature is only available in the Synplify Pro and Synplify
Premier tools. Pipelining is the process of splitting logic into stages so that the
first stage can begin processing new inputs while the last stage is finishing
the previous inputs. This ensures better throughput and faster circuit perfor-
mance. If you are using selected Altera or Xilinx technologies, you can use or
the related technique of retiming to improve performance. See Retiming, on
page 6-44 for details.

For pipelining, The software splits the logic by moving registers into the
multiplier or ROM:

This section discusses the following pipelining topics:

• Prerequisites for Pipelining, next

• Pipelining the Design, on page 6-41

Prerequisites for Pipelining
The pipelining feature is only available in the Synplify Pro and Synplify
Premier tools.

• Currently, pipelining is only supported for certain Altera and Xilinx
technologies.

• In Xilinx Virtex designs, you can pipeline ROMs and multipliers. In
Altera designs, you can pipeline multipliers, but not ROMs.

• For Xilinx Virtex, Virtex-E, Virtex-II, Virtex-II Pro, and Virtex-4 devices,
you can only pipeline multipliers if the adjacent register has a SYNCHRO-
NOUS reset.

• ROMs to be pipelined must be at least 512 words. Anything below this
limit is too small.

• For Xilinx Virtex designs, you can push any kind of flip-flop into the
module, as long as all the flip-flops in the pipeline have the same clock,
the same set/reset signal or lack of it, and the same enable control or
lack of it. For Altera designs, you must have asynchronous set/resets if
you want to do pipelining.

Pipelining Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-41

Pipelining the Design
The following procedure shows you techniques for pipelining.

1. Make sure the design meets the criteria described in Prerequisites for
Pipelining, on page 6-40.

2. To enable pipelining for the whole design, check the Pipelining check box.
from the button panel in the Project window, or with the Project-
>Implementation Options command (Device tab). The option is only available
in the appropriate technologies.

Use this approach as a first pass to get a feel for which modules you can
pipeline. If you know exactly which registers you want to pipeline, add
the attribute to the registers in the source code or interactively using the
SCOPE interface.

3. To check whether individual registers are suitable for pipelining, do the
following:

– Open the RTL view of the design.

– Select the register and press F12 to filter the schematic view.

LO

Chapter 6: Design Optimization Pipelining

6-42 Fpga User Guide, December 2005

– In the new schematic view, select the output and type e (or select
Expand from the popup menu. Check that the register is suitable for
pipelining.

4. To enable pipelining on selected registers, use either of the following
techniques:

– Check the Pipelining checkbox and attach the syn_pipeline attribute with
a value of 0 or false to any registers you do not want the software to
move. This attribute specifies that the register cannot be moved for
pipelining.

– Do not check the Pipelining checkbox. Attach the syn_pipeline attribute
with a value of 1 or true to any registers you want the software to
consider for retiming. This attribute marks the register as one that
can be moved during retiming, but does not necessarily force it to be
moved during retiming.

The following are examples of the attribute:

SCOPE Interface:

Pipelining Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-43

Verilog Example:

reg [‘lefta:0] a_aux;
reg [‘leftb:0] b_aux;
reg [‘lefta+‘leftb+1:0] res /* synthesis syn_pipeline=1 */;
reg [‘lefta+‘leftb+1:0] res1;

VHDL Example:

architecture beh of onereg is
signal temp1, temp2, temp3,

std_logic_vector(31 downto 0);
attribute syn_pipeline : boolean;
attribute syn_pipeline of temp1 : signal is true;
attribute syn_pipeline of temp2 : signal is true;
attribute syn_pipeline of temp3 : signal is true;

5. Click Run.

The software looks for registers where all the flip-flops of the same row
have the same clock, no control signal, or the same unique control
signal, and pushes them inside the module. It attaches the syn_pipeline
attribute to all these registers. If there already is a syn_pipeline attribute
on a register, the software implements it.

6. Check the log file (*.srr). You can use the Find command for occurrences
of the word pipelining to find out which modules got pipelined.

The log file entries look like this:

@N:|Pipelining module res_out1
@N:|res_i is level 1 of the pipelined module res_out1
@N:|r is level 2 of the pipelined module res_out1

LO

Chapter 6: Design Optimization Retiming

6-44 Fpga User Guide, December 2005

Retiming
The retiming feature is only available in the Synplify Pro and Synplify Premier
tools. Retiming is a powerful technique for improving the timing performance
of sequential circuits without having to modify the source code. Retiming
automatically moves registers (register balancing) across combinatorial gates
or LUTs to improve timing while ensuring identical behavior as seen from the
primary inputs and outputs of the design. Retiming moves registers across
gates or LUTs, but does not change the number of registers in a cycle or path
from a primary input to a primary output. However, it can change the total
number of registers in a design.

The retiming algorithm retimes only edge-triggered registers. It does not
retime level-sensitive latches. Currently you can use retiming only for certain
Actel, Altera, and Xilinx families. The option is not available if it does not
apply to the family you are using.

These sections contain detailed information about using retiming.

• Controlling Retiming, next

• Retiming Example, on page 6-46

• Retiming Report, on page 6-48

• How Retiming Works, on page 6-48

Controlling Retiming
The following procedure shows you how to use retiming.

1. To enable retiming for the whole design, check the Retiming check box.

You can set the Retiming option from the button panel in the Project
window, or with the Project->Implementation Options command (Device tab).
The option is only available in certain technologies.

Retiming Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-45

For Altera and Xilinx designs, retiming is a superset of pipelining, so
when you select Retiming, you automatically select Pipelining. See
Pipelining, on page 6-40 for more information. For Actel designs,
retiming does not include pipelining.

Retiming works globally on the design, and moves edge-triggered regis-
ters as needed to balance timing.

2. To enable retiming on selected registers, use either of the following
techniques:

– Check the Retiming checkbox and attach the syn_allow_retiming attribute
with a value of 0 or false to any registers you do not want the software
to move. This attribute specifies that the register cannot be moved for
retiming. Refer to How Retiming Works, on page 6-48 for a list of the
components the retiming algorithm will move.

Set the retiming option in either place.

LO

Chapter 6: Design Optimization Retiming

6-46 Fpga User Guide, December 2005

– Do not check the Retiming checkbox. Attach the syn_allow_retiming
attribute with a value of 1 or true to any registers you want the
software to consider for retiming. You can do this in the SCOPE
interface or in the source code. This attribute marks the register as
one that can be moved during retiming, but does not necessarily force
it to be moved during retiming. If you apply the attribute to an FSM,
RAM or SRL that is decomposed into flip-flops and logic, the software
applies the attribute to all the resulting flip-flops

Retiming is a superset of pipelining; therefore adding syn_allow_retiming=1
on any registers implies syn_pipeline =1.

3. You can also fine-tune retiming using attributes:

– To preserve the power-on state of flops without sets or resets (FD or
FDE) during retiming, set syn_preserve=1 or syn_allow_retiming=0 on
these flops.

– To force flops to be packed in I/O pads, set syn_useioff=1 as a global
attribute. This will prevent the flops from being moved during
retiming.

4. Set other options for the run. Retiming might affect some constraints
and attributes. See How Retiming Works, on page 6-48 for details.

5. Click Run to start synthesis.

After the LUTs are mapped, the software moves registers to optimize
timing. See Retiming Example, on page 6-46 for an example. The
software honors other attributes you set, like syn_preserve, syn_useioff,
and syn_ramstyle. See How Retiming Works, on page 6-48 for details.

The log file includes a retiming report that you can analyze to under-
stand the retiming changes. It contains a list of all the registers added or
removed because of retiming. Retimed registers have a _ret suffix added
to their names. See Retiming Report, on page 6-48 for more information
about the report.

Retiming Example
The following example shows a design with retiming disabled and enabled.

Retiming Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-47

The top figure shows two levels of logic between the registers and the output,
and no levels of logic between the inputs and the registers.

The bottom figure shows the results of retiming the three registers at the
input of the OR gate. The levels of logic from the register to the output are
reduced from two to one. The retimed circuit has better performance than the
original circuit. Timing is improved by transferring one level of logic from the
critical part of the path (register to output) to the non-critical part (input to
register).

LO

Chapter 6: Design Optimization Retiming

6-48 Fpga User Guide, December 2005

Retiming Report
The retiming report is part of the log file, and includes the following:

• The number of registers added, removed, or untouched by retiming.

• Names of the original registers that were moved by retiming and which
no longer exist in the Technology view.

• Names of the registers created as a result of retiming, and which did not
exist in the RTL view. The added registers have a _ret suffix.

How Retiming Works
This section describes how retiming works when it moves sequential compo-
nents (flip-flops). It lists some of the implications and results of retiming:

• Flip-flops with no control signals (resets, presets, and clock enables) are
the most common type of component moved. Flip-flops with minimal
control logic can also be retimed. Multiple flip-flops with reset, set or
enable signals that need to be retimed together are only retimed if they
have exactly the same control logic.

• The software does not retime the following combinatorial sequential
elements: flip-flops with both set and reset, flip-flops with attributes like
syn_preserve, flip-flops packed in I/O pads, level-sensitive latches, regis-
ters that are instantiated in the code, SRLs, and RAMs. If a RAM with
combinatorial logic has syn_ramstyle set to registers, the registers can be
retimed into the combinatorial logic.

• Retimed flip-flops are only moved through combinatorial logic. The
software does not move flip-flops across the following objects: black
boxes, sequential components, tristates, I/O pads, instantiated compo-
nents, carry and cascade chains, and keepbufs. For Altera designs,
registers that are in counter modes are not retimed to preserve the
performance benefit of the counter mode.

• You might not be able to crossprobe retimed registers between the RTL
and the Tech view, because there may not be a one-to-one correspon-
dence between the registers in these two views after retiming. A single
register in the RTL view might now correspond to multiple registers in
the Technology view.

Retiming Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-49

• Retiming affects or is affected by these attributes and constraints:

Attribute/Constraint Effect

False path constraint Does not retime flip-flops with different false path
constraints. Retimed registers affect timing
constraints.

Multicycle constraint Does not retime flip-flops with different multicycle
constraints. Retimed registers affect timing
constraints.

Register constraint Does not maintain define_reg_input_delay and
define_reg_output_delay constraints. Retimed
registers affect timing constraints.

syn_hier=macro Does not retime registers in a macro with this
attribute.

syn_keep Does not retime across keepbufs generated because
of this attribute.

syn_hier=macro Does not retime registers in a macro with this
attribute.

syn_pipeline Automatically enabled if retiming is enabled.

syn_preserve Does not retime flip-flops with this attribute set.

syn_probe Does not retime net drivers with this attribute. If the
net driver is a LUT or gate, no flip-flops are retimed
across it.

syn_reference_clock On a critical path, does not retime registers with
different syn_reference_clock values together,
because the path effectively has two different clock
domains.

syn_useioff Does not override attribute-specified packing of
registers in I/O pads. It the attribute value is false,
the registers can be retimed. If the attribute is not
specified, the timing engine determines whether the
register is packed into the I/O block.

syn_allow_retiming Registers are not retimed if the value is 0.

LO

Chapter 6: Design Optimization Inserting Probes

6-50 Fpga User Guide, December 2005

• Retiming does not change the simulation behavior (as observed from
primary inputs and outputs) of your design, However if you are
monitoring (probing) values on individual registers inside the design,
you might need to modify your test bench if the probe registers are
retimed.

How Retiming Works With Synplify Premier Regions
The following conditions can occur after a register has been retimed:

• If the retimed register and its driver and load remain in a Synplify
Premier-specific region, then the register will remain in the region.

• If the retimed register is moved outside of a Synplify Premier-specific
region but its load remains in the region, then the register will remain in
the region.

• If the retimed register and its driver and load are moved outside a
Synplify Premier-specific region, then the register will be moved outside
the region.

• If the retimed register is moved to the boundary of a Synplify Premier-
specific region, then tunneling can occur.

• Retiming may move a register across a Synplify Premier-specific region
but not across combinatorial logic.

Inserting Probes
The probe insertion feature is only available with the Synplify Pro and
Synplify Premier tools. Probes are extra wires that you insert into the design
for debugging. When you insert a probe, the signal is represented as an
output port at the top level. You can specify probes in the source code or by
interactively attaching an attribute.

Inserting Probes Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-51

Specifying Probes in the Source Code
To specify probes in the source code, you must add the syn_probe attribute to
the net. You can also add probes interactively, using the procedure described
in Adding Probe Attributes Interactively, on page 6-52.

1. Open the source code file.

2. For Verilog source code, attach the syn_probe attribute as a comment on
any internal signal declaration:

module alu(out, opcode, a, b, sel);
output [7:0] out;
input [2:0] opcode;
input [7:0 a, b;
input sel;
reg [7:0] alu_tmp /* synthesis syn_probe=1 */;
reg [7:0] out;

//Other code

The value 1 indicates that probe insertion is turned on. For detailed
information about Verilog attributes and examples of the files, see the
Reference Manual.

To define probes for part of a bus, specify where you want to attach the
probes; for example, if you specify reg [1:0] in the previous code, the
software only inserts two probes.

3. For VHDL source code, add the syn_probe attribute as follows:

architecture rtl of alu is
signal alu_tmp : std_logic_vector(7 downto 0) ;
attribute syn_probe : boolean;
attribute syn_probe of alu_tmp : signal is true;
--other code;

For detailed information about VHDL attributes and sample files, see the
Reference Manual.

4. Run synthesis.

The software looks for nets with the syn_probe attribute and creates
probes and I/O pads for them.

5. Check the probes in the log file (*.srr) and the Technology view.

LO

Chapter 6: Design Optimization Inserting Probes

6-52 Fpga User Guide, December 2005

This figure shows some probes and probe entries in the log file.

Adding Probe Attributes Interactively
The following procedure shows you how to insert probes by adding the
syn_probe attribute through the SCOPE interface. Alternatively, you can add
the attribute in the source code, as described in Specifying Probes in the
Source Code, on page 6-51.

1. Open the SCOPE window and click Attributes.

2. Push down as necessary in an RTL view, and select the net for which
you want to insert a probe point.

Do not insert probes for output or bidirectional signals. If you do, you
see warning messages in the log file.

3. Do the following to add the attribute:

– Drag the net into a SCOPE cell.

– Add the prefix n: to the net name in the SCOPE window. If you are
adding a probe to a lower-level module, the name is created by
concatenating the names of the hierarchical instances.

– If you want to attach probes to part but not all of a bus, make the
change in the Object column. For example, if you enter
n:UC_ALU.longq[4:0] instead of n:UC_ALU.longq[8:0], the software only
inserts probes where specified.

Adding property syn_probe, value 1, to net pc[0]
Adding property syn_probe, value 1, to net pc[1]
Adding property syn_probe, value 1, to net pc[2]
Adding property syn_probe, value 1, to net pc[3]
....
@N|Added probe pc_keep_probe_1[0] on pc_keep[0] in
eight_bit_uc
@N|Also padding probe pc_keep_probe_1[0]
@N|Added probe pc_keep_probe_2[1] on pc_keep[1] in
eight_bit_uc
@N|Also padding probe pc_keep_probe_2[1]
@N|Added probe pc_keep_probe_3[2] on pc_keep[2] in
eight_bit_uc

Inserting Probes Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-53

– Select syn_probe in the Attribute column, and type 1 in the Value
column.

– Add the constraint file to the project list.

4. Rerun synthesis.

5. Open a Technology view and check the probe wires that have been
inserted. You can use the Ports tab of the Find form to locate the probes.

The software adds I/O pads for the probes. The following figure shows
some of the pads in the Technology view and the log file entries.

Adding property syn_probe, value 1, to net pc[0]
Adding property syn_probe, value 1, to net pc[1]
Adding property syn_probe, value 1, to net pc[2]
Adding property syn_probe, value 1, to net pc[3]
....
@N|Added probe pc_keep_probe_1[0] on pc_keep[0] in
eight_bit_uc
@N|Also padding probe pc_keep_probe_1[0]
@N|Added probe pc_keep_probe_2[1] on pc_keep[1] in
eight_bit_uc
@N|Also padding probe pc_keep_probe_2[1]
@N|Added probe pc_keep_probe_3[2] on pc_keep[2] in
eight_bit_uc

LO

Chapter 6: Design Optimization Inferring RAMs

6-54 Fpga User Guide, December 2005

Inferring RAMs
There are two methods of handling RAMs: instantiation and inference. The
software can automatically infer RAMs if they are structured correctly in your
source code. For details, see the following sections:

• Inference vs. Instantiation, next

• Coding RAMs for Inference, on page 6-55

• Specifying RAM Implementation Styles, on page 6-59

• Implementing Altera RAMs Automatically, on page 6-61

• Implementing Xilinx RAMs Automatically, on page 6-64

• Implementing Altera RAMs: FLEX and APEX, on page 6-67

• Implementing Altera RAMs: Stratix Multi-Port RAMs, on page 6-69

• Inferring Xilinx Block RAMs Using Registered Addresses, on page 6-70

• Inferring Xilinx Block RAMs Using Registered Output, on page 6-73

• Setting Xilinx RAM Initialization Values, on page 6-78

• Mapping Xilinx ROM to Block RAM, on page 6-79

Inference vs. Instantiation
There are two methods to handle RAMs: instantiation and inference. Many
FPGA families provide technology-specific RAMs that you can instantiate in
your HDL source code. The software supports instantiation, but you can also
set up your source code so that it infers the RAMs. The following table sums
up the pros and cons of the two approaches.

Inference in Synthesis Instantiation

Advantages
Portable coding style
Automatic timing-driven synthesis
No additional tool dependencies

Advantages
Most efficient use of the RAM primitives
of a specific technology
Supports all kinds of RAMs

Inferring RAMs Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-55

Coding RAMs for Inference
Read through the limitations before you start. See Inference vs. Instantiation,
on page 6-54 for information. The following steps describe general rules for
coding RAMs so that the compiler infers them; to ensure that they are
mapped to the vendor-specific implementation you want, see Specifying RAM
Implementation Styles, on page 6-59, Implementing Altera RAMs Automati-
cally, on page 6-61, and Implementing Xilinx RAMs Automatically, on
page 6-64.

1. Make sure that the RAM meets minimum size and address width
requirements for your technology. The software implements RAMs that
are smaller than the minimum as registers.

2. Structure the assignment to a VHDL signal/Verilog register as follows:

– To infer a RAM, structure the code as an indexed array or a case
structure. Code it as a two-dimensional array (VHDL) or memory
(Verilog) with writes to one process.

– Control the structure with a clock edge and a write enable.

The software extracts RAMs even if write enables are tied to true (VCC), if
you have complex write enables coded in nested IF statements, or if you
have RAMs with synchronous resets.

3. For a single-port RAM, make the address for indexing the write-to the
same as the address for the read-from. The following code and figure
illustrate how the software infers a single-port RAM.

Limitations
Glue logic to implement the RAM might
result in a sub-optimal implementation.
Can only infer synchronous RAMs
No support for address wrapping
No support for RAM enables, except for
write enable
Pin name limitations means some pins
are always active or inactive

Limitations
Source code is not portable because it is
technology-dependent.
Limited or no access to timing and area
data if the RAM is a black box.
Inter-tool access issues, if the RAM is a
black box created with another tool.

Inference in Synthesis Instantiation

LO

Chapter 6: Design Optimization Inferring RAMs

6-56 Fpga User Guide, December 2005

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity ramtest is
port (q : out std_logic_vector(3 downto 0);

d : in std_logic_vector(3 downto 0);
addr : in std_logic_vector(2 downto 0);
we : in std_logic;
clk : in std_logic);

end ramtest;

architecture rtl of ramtest is
type mem_type is array (7 downto 0) of std_logic_vector

(3 downto 0);
signal mem : mem_type;

begin
q <= mem(conv_integer(addr));
process (clk, we, addr) begin

if rising_edge(clk) then
if (we = '1') then

mem(conv_integer(addr)) <= d;
end if;

end if;
end process;
end rtl;

For technology-specific details, see Implementing Altera RAMs Automati-
cally, on page 6-61 and Implementing Xilinx RAMs Automatically, on
page 6-64.

4. For a dual-port RAM, make the write-to and read-from addresses
different. The following figure and code example illustrate how the
software infers a dual-port RAM.

Inferring RAMs Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-57

module ram16x8(z, raddr, d, waddr, we, clk);
output [7:0] z;
input [7:0] d;
input [3:0] raddr, waddr;
input we;
input clk;
reg [7:0] z;
reg [7:0] mem0, mem1, mem2, mem3, mem4, mem5, mem6, mem7;
reg [7:0] mem8, mem9, mem10, mem11, mem12, mem13, mem14, mem15;
always @(mem0 or mem1 or mem2 or mem3 or mem4 or mem5 or mem6 or

mem7 or mem8 or mem9 or mem10 or mem11 or mem12 or mem13 or
mem14 or mem15 or raddr)

begin
case (raddr[3:0])
4'b0000: z = mem0;
4'b0001: z = mem1;
4'b0010: z = mem2;
4'b0011: z = mem3;
4'b0100: z = mem4;
4'b0101: z = mem5;
4'b0110: z = mem6;
4'b0111: z = mem7;
4'b1000: z = mem8;
4'b1001: z = mem9;
4'b1010: z = mem10;
4'b1011: z = mem11;
4'b1100: z = mem12;
4'b1101: z = mem13;
4'b1110: z = mem14;
4'b1111: z = mem15;

endcase
end

LO

Chapter 6: Design Optimization Inferring RAMs

6-58 Fpga User Guide, December 2005

always @(posedge clk) begin
if(we) begin

case (waddr[3:0])
4'b0000: mem0 = d;
4'b0001: mem1 = d;
4'b0010: mem2 = d;
4'b0011: mem3 = d;
4'b0100: mem4 = d;
4'b0101: mem5 = d;
4'b0110: mem6 = d;
4'b0111: mem7 = d;
4'b1000: mem8 = d;
4'b1001: mem9 = d;
4'b1010: mem10 = d;
4'b1011: mem11 = d;
4'b1100: mem12 = d;
4'b1101: mem13 = d;
4'b1110: mem14 = d;
4'b1111: mem15 = d;

endcase
end
end
endmodule

For technology-specific details, see Implementing Altera RAMs Automati-
cally, on page 6-61 and Implementing Xilinx RAMs Automatically, on
page 6-64.

5. To infer multi-port RAMs or nrams (certain technologies only), do the
following:

– Target a technology that supports multi-port RAMs.

– Register the read address.

– Add the syn_ramstyle attribute with a value of no_rw_check. If you do not
do this, the compiler errors out.

– Make sure that the writes are to one process. If the writes are to
multiple processes, use the syn_ramstyle attribute to specify a RAM.

6. For RAMs where inference is not the best solution, use either one of
these approaches:

– Implement them as regular logic using the syn_ramstyle attribute with
a value of registers. You might want to do this is you have to conserve
RAM resources.

Inferring RAMs Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-59

– Instantiate RAMs using the black box methodology. Use this method
in cases where RAM is implemented in two cells instead of one
because the the RAM address range spans the word limit of the
primitive and the software does not currently support address
wrapping. If the address range is 8 to 23 and the RAM primitive is 16
words deep, the software implements the RAM as two cells, even
though the address range is only 16 words deep. Refer to the list of
limitations in Inference vs. Instantiation, on page 6-54 and the
vendor-specific information referred to in the previous step to
determine whether you should instantiate RAMs.

7. Synthesize your design.

The compiler infers one of the following RAMs from the source code. You
can view them in the RTL view:

If the number of words in the RAM primitive is less than the required
address range, the compiler generates two RAMs instead of one, leaving
any extra addresses unused.

Once the compiler has inferred the RAMs, the mapper implements the
inferred RAMs in the technology you specified. For details of how to map
the RAM inferred by the compiler to the implemention you want, see
Specifying RAM Implementation Styles, on page 6-59, Implementing
Altera RAMs Automatically, on page 6-61, and Implementing Xilinx RAMs
Automatically, on page 6-64.

Specifying RAM Implementation Styles
You can manually influence how RAMs are implemented with the syn_ramstyle
attribute, as described in the following procedure. The valid values vary
slightly, depending on the technology you use. Check the Reference Manual
for the values that apply to the technology you choose.

RAM1 RAM

RAM2 Resettable RAM

NRAM Multi-port RAM

LO

Chapter 6: Design Optimization Inferring RAMs

6-60 Fpga User Guide, December 2005

If you would rather set up your design so that the software automatically
maps the RAMs to the components you want, see Implementing Altera RAMs
Automatically, on page 6-61 and Implementing Xilinx RAMs Automatically, on
page 6-64 for some vendor-specific details.

1. If you do not want to use RAM resources, attach the syn_ramstyle
attribute with a value of registers to the RAM instance name or to the
signal driven by the RAM.

Use this value for small RAMs. The software implements the RAMs
according to the technology. They can be implemented as registers
(Altera, Xilinx), LPMs (Atmel, Cypress), dedicated RAM resources (Quick-
Logic) or synchronous dual-port memory cells (some Lattice technolo-
gies).

2. To use the dedicated memory resources on the FPGA (Altera
technologies), do the following:

– Set syn_ramstyle to block_ram.

– For newer Altera technologies like Stratix, specify mapping to
TriMatrix memories by setting syn_ramstyle to M512 , M4K , or M-RAM.

– For Flex10K architectures, register the read address, because the
technology does not support dual-port RAMs.

– If you do not want glue logic created, register the RAM output. For
Altera Stratix designs, you can set syn_ramstyle to no_rw_check.

The software implements the RAMS as EABs or ESBs, depending on the
technology.

3. To implement RAMs using dedicated Block SelectRAM+ in Xilinx Virtex
technologies, do the following. To use distributed memory, see the next
step.

– Set syn_ramstyle to block_ram.

– Register the read address, because the technology is fully
synchronous.

– If you do not want to generate glue logic for dual-port RAMs, either
register the RAM output or set syn_ramstyle to no_rw_check. Use this
attribute value only if you do not care about a read/write check.

4. To implement RAMs using distributed memory in Xilinx technologies,
you can set syn_ramstyle to select_ram. If you do not set syn_ramstyle

Inferring RAMs Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-61

explicitly, the software automatically uses this value, because it is the
default.

Implementing Altera RAMs Automatically
The following procedure shows you how to implement various Xilinx RAMs
automatically. You can always override the automatic implementation by
specifying the syn_ramstyle attribute, as described in Specifying RAM Imple-
mentation Styles, on page 6-59 or instantiate LPMs instead of using RAMs.

1. Follow the guidelines described for RAM inference by the compiler
(Coding RAMs for Inference, on page 6-55).

The Altera mapper does not implement any RAMs that are not first
inferred by the compiler.

2. To implement RAM in Flex and Apex families, see the details described in
Implementing Altera RAMs: FLEX and APEX, on page 6-67.

3. To implement Stratix block RAM, follow these guidelines:

– If you are a Verilog user, avoid using blocking statements when you
model the RAMs because not all blocking assignments are mapped to
block RAM.

– Synchronize the read and write addresses by registering either the
read address or output. RAMs with asynchronous read and write are
mapped to logic.

– Use syn_ramstyle with a value of no_rw_check to disable the creation of
glue logic in dual-port mode.

During synthesis, the mapper maps Altera Stratix RAM to ALTSYNCRAM
in the following modes:

4. To implement Stratix single-port RAMs, ensure the following:

Single-port One address bus

Dual-port One address bus (where old data cannot be obtained in
single-port mode), or
Two buses: one each for read and write.

Bidirectional Two buses: one for read/write and one for read only

LO

Chapter 6: Design Optimization Inferring RAMs

6-62 Fpga User Guide, December 2005

– The read and write addresses share a single address.

– There is only one data input.

– There is only RAM output.

– Either the read address or the output is registered.

– For multiple clocks, both the read address and the output must be
registered.

The mapper maps the RAM to the dedicated memory resource, ALTSYN-
CRAM, which is fully synchronous. It is mapped in SINGLE_PORT mode,
and all ports are registered. The ALTSYNCRAM implementation is deter-
mined by the Quartus place-and-route tool.

5. To implement Stratix dual-port RAMs, make sure of the following:

– The code is written so that the hardware exactly matches the RTL
behavior. For example, if your code allows simultaneous reads and
writes to the same address, it can result in a mismatch between the
RTL and hardware behaviors. In such a case, the mapper does not
map the RAM inferred by the compiler to the dedicated ALTSYNCRAM
resources and you get a warning message. See Stratix Dual-Port RAM
Code Examples, on page B-42 of the Reference Manual.

– The design has different read and write addresses.

– There is only one data input.

– There is only RAM output.

– Either the read address or the output is registered.

– The read and write addresses can have different clocks. However if
you register the read, write, and output, at least two of them must
share a clock.

Inferring RAMs Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-63

– For multiple clocks, both the read address and the output must be
registered.

The mapper maps the RAM to ALTSYNCRAM in DUAL_PORT mode, which
is fully synchronous. The actual ALTSYNCRAM implementation is deter-
mined by the Quartus place-and-route tool.

The following figure shows one dual-port RAM implementation:

6. To implement Stratix dual-port RAMs in bidirectional mode, make sure
of the following:

– The code must be written so that there are no mismatches between
the hardware and RTL behaviors. See Stratix Dual-Port RAM Code
Examples, on page B-42 of the Reference Manual for an explanation
and examples.

– The design has different read and write addresses. There are two read
addresses.

– There is only one data input.

– There are two RAM outputs.

– Either the read address or the output is registered.

– The read and write addresses can have different clocks. However if
you register the read, write, and output, at least two of them must
share a clock.

– For multiple clocks, both the read address and the output must be
registered.

LO

Chapter 6: Design Optimization Inferring RAMs

6-64 Fpga User Guide, December 2005

The mapper maps the RAM to ALTSYNCRAM in BIDIR_DUAL_PORT mode,
which is fully synchronous. The actual ALTSYNCRAM implementation is
determined by the Quartus place-and-route tool.

7. To implement Stratix multi-ports RAMs automatically, see Implementing
Altera RAMs: Stratix Multi-Port RAMs, on page 6-69.

Implementing Xilinx RAMs Automatically
The following procedure shows you how to implement various Xilinx RAMs
automatically. You can always override the automatic implementation by
specifying the syn_ramstyle attribute, as described in Specifying RAM Imple-
mentation Styles, on page 6-59.

1. Follow the guidelines described for RAM inference by the compiler
(Coding RAMs for Inference, on page 6-55).

The Xilinx mapper does not implement any RAMs that are not first
inferred by the compiler.

2. To automatically implement distributed RAM, do the following:

– Make sure the RAM size is at least 2K.

– Make sure the write operation is synchronous and the read operation
is asynchronous.

The Xilinx mapper implements RAMs inferred by the compiler as
asynchronous RAMs, using the CLB resources.

3. To implement block SelectRAM+, do the following:

– Make the write port synchronous. The read port can be
asynchronous.

– Register the read address (see Inferring Xilinx Block RAMs Using
Registered Addresses, on page 6-70).

– Make sure the RAM is a minimum of 2K bits.

The Xilinx mapper automatically implements RAMs inferred by the
compiler as Block SelectRAM+, using the dedicated memory resources
on the FPGA. The enable pin is tied to active and the reset pin is tied to
inactive.

4. To implement single-port block RAM automatically, do the following:

Inferring RAMs Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-65

– Register the output. (see Inferring Xilinx Block RAMs Using Registered
Output, on page 6-73).

– Make the read and write addresses the same.

– Make sure that the read and write clocks are the same.

– Make sure the read and write enables are the same.

The Xilinx mapper automatically implements RAMs inferred by the
compiler as single-port Block SelectRAM+ , using the dedicated memory
resources on the FPGA. The enable signal has the highest priority.
Where applicable, the tool uses the parity bus to infer data bus widths.
The mapper also uses the Write modes in some Xilinx architectures, as
described in the next step.

5. To implement dual-port block RAM automatically, do the following:

– Register the output. (see Inferring Xilinx Block RAMs Using Registered
Output, on page 6-73).

– Your design can have different read and write addresses, multiple
clocks, and different read and write enables.

The Xilinx mapper implements RAMs inferred by the compiler as dual-
port block SelectRAM+, using the dedicated memory resources on the
FPGA. The dual-port RAM has only one write port. The software
automatically inserts glue logic for address collision and recovery, unless
you specify otherwise with the syn_ramstyle attribute.

The mapper also implements the Write modes available with certain
Xilinx architectures to indicate the output value when the write enable is
active. The RAM implementations are shown here:

LO

Chapter 6: Design Optimization Inferring RAMs

6-66 Fpga User Guide, December 2005

6. To implement true dual-port block (multi-port) RAM automatically,
make sure the design meets the following conditions:

– The compiler has inferred multi-port RAMs (nrams). See Coding RAMs
for Inference, on page 6-55 for details.

– The inferred nram has two writes and one read. The read shares an
address with only one of the write ports, or two inferred RAMs share
the same write addresses, clocks, and enables, but have different
read addresses. In the latter case, the mapper pairs the RAMs
together and maps them to true dual-port RAM.

The Xilinx mapper implements RAMs inferred by the compiler as true
dual-port block SelectRAM+, using the dedicated memory resources on
the FPGA. The dual-port RAM has has one read port and multiple write
ports. Each write port has its own write clock, write enable, data in, and
write address.

Write Mode Xilinx Architecture RAM Implementation

Writefirst
(data_in goes to data_out)

Virtex-II, Virtex-II Pro,
Virtex-4, Spartan-3,
Spartan-3 Automotive, and
Spartan-3E

Block SelectRAM+
(single-port or dual-port)
Distributed RAM

Virtex, Virtex-E, Spartan-II,
Spartan-IIE, and Spartan-IIE
Automotive

Block SelectRAM+
(single-port or dual-port)
Distributed RAM

Readfirst
(memory goes to
data_out)

Virtex-II, Virtex-II Pro,
Virtex-4, Spartan-3,
Spartan-3 Automotive, and
Spartan-3E

Block SelectRAM+
(single-port)
Distributed RAM

Virtex, Virtex-E, Spartan-II,
Spartan-IIE, and Spartan-IIE
Automotive

Distributed RAM

Nochange
(data_out is unchanged)

Virtex-II, Virtex-II Pro,
Virtex-4, Spartan-3,
Spartan-3 Automotive, and
Spartan-3E

Block SelectRAM+
(single-port)
Distributed RAM

Virtex, Virtex-E, Spartan-II,
Spartan-IIE, and Spartan-IIE
Automotive

Distributed RAM

Inferring RAMs Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-67

Implementing Altera RAMs: FLEX and APEX
The alternative to inferring RAMs in an Altera design is to instantiate LPMs.
See Inference vs. Instantiation, on page 6-54 and Working with LPMs, on
page 6-87.

The software supports single-port RAMs for the FLEX10K family and single-
port or dual-port RAMs for the FLEX10KE, APEX20K, and 20KE families. It
inserts bypass logic to resolve a read/write behavior difference between the
RTL and post-synthesis gate-level simulations. There is a half-cycle difference
between the two: the post-RTL simulation shows memory updates occurring
on the positive edge of the system clock, and the post-synthesis simulation
shows memory updates on the negative edge. The following procedure shows
you how to set up your code.

1. Structure your source code as described in Coding RAMs for Inference,
on page 6-55.

2. Include an explicit read address register.

The address must be registered to implement a synchronous RAM in an
LPM. You do not need an explicit read address for the Flex 10KE, ACEX,
APEX, APEX II, Excalibur, and Mercury families, because these architec-
tures support dual-portRAMs with independent read and write registers.

3. To eliminate bypass logic, register the output of the RAM. The following
example defines a register, Q, for this purpose:

module ram_test(q, a, d, we, clk);
output[7:0] q;
input [7:0] d;
input [6:0] a;
input we, clk;
//Register the RAM output to eliminate glue logic
reg [7:0] q;
reg [6:0] read_add;
reg [7:0] mem [127:0];
always @(posedge clk) begin
q = mem[read_add];
end

LO

Chapter 6: Design Optimization Inferring RAMs

6-68 Fpga User Guide, December 2005

always @(posedge clk) begin
if(we)
//Register RAM data and read address
mem[read_add] <= d;
read_add <= a;

end
endmodule

When you synthesize this example, the software creates a single-port
synchronous RAM, implemented with as few registers as possible. If you
do not care about the insertion of glue logic, do not register the RAM
output:

module ram_test(q, a, d, we, clk);
output[7:0] q;
input [7:0] d;
input [6:0] a;
input we, clk;
reg [6:0] read_add;
reg [7:0] mem [127:0];
assign q = mem[read_add];

always @(posedge clk) begin
if(we)
//Register RAM data and read address
mem[read_add] <= d;
read_add <= a;

end
endmodule

When you synthesize this example, the software creates a bypass mux
to resolve the read/write simulation behavior on the positive and
negative edges of the clock.

You can use the syn_ramstyle attribute to ensure that the RAM is imple-
mented as an EAB or ESB, or to disable RAM inference as needed. See
Specifying RAM Implementation Styles, on page 6-59 for details.

4. Run synthesis.

The software automatically infers Altera-specific synchronous RAMs and
implements them in EABs or ESBs. When source code is written as a
single-port RAM, the software implements it as a dual-port RAM with
single-port RAM functionality, using the LPM_RAM_DQ:ALTDPRAM primi-
tive. The following table lists the family-specific details of implementa-
tion:

Inferring RAMs Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-69

Implementing Altera RAMs: Stratix Multi-Port RAMs
The software can infer true multi-port RAMs, where both ports are used to
read and write simultaneously. Implementing Stratix ALTSYNCRAM compo-
nents is a two-step process: first the synthesis compiler infers the RAM primi-
tive, and then the mapper maps the primitive to ALTSYNCRAM.

1. Make sure the compiler infers an nram, by following the guidelines in
Coding RAMs for Inference, on page 6-55.

For multi-port RAMs, the compiler infers an nram primitive, where n is
the number of write ports. You can view this in the RTL view.

2. To map the nram automatically to ALTSYNCRAM, ensure that it follows
these guidelines:

– The nram has two writes and one read. The read shares an address
with only one of the write ports.

– Make sure there are only two clocks, one for each port.

– You cannot have more than two write ports; nram primitives with more
than two ports are mapped to logic.

– The read address is registered.

– If the output is registered, the mapper retimes and infers block RAM.

The software maps nram primitives as follows:

FLEX10K Single-port synchronous
RAMs

LPMRAMDQ

FLEX10KE
APEX20K
APEX20KE

Single-port or dual-port
RAMs with asynchronous
READs

ALTDPRAM

LO

Chapter 6: Design Optimization Inferring RAMs

6-70 Fpga User Guide, December 2005

After synthesis, the software writes out the following for the place-and-
route tool:

defparam mem_1_1_Z.lpm_type = “altsyncram”;

Inferring Xilinx Block RAMs Using Registered Addresses
There are two ways to infer block RAMs in Xilinx Virtex designs: using regis-
tered addresses and using registered output. For information about the
latter, see Inferring Xilinx Block RAMs Using Registered Output, on page 6-73.
The following procedure shows you how to set up your code with an explicit
read address register.

The software does not currently infer block RAMs for Virtex designs automat-
ically; you have to use an attribute. It inserts bypass logic to resolve a
read/write behavior difference between the RTL and post-synthesis gate-level
simulations. It inserts the glue logic because it does not know the output at
the read port when the read address and the write address access the same
memory location.

1. Use instantiation instead of inference in the following cases where the
software currently does not infer the RAMs:

– RAMs with enable signals, RAM resets, or initialization settings.

– Inaccessible pins: read enable pins are always active, and reset pins
are always inactive.

– Dual-port RAMs with read/write on a port.

2. For single-port RAM, do the following:

Primitive Description Mapping

2 write ports, 1 read. The read shares an
address with only one of the write ports

ALTSYNCRAM in bidir mode

2 nrams each with 2 write addresses and 1 read,
which share the same write addresses, clocks,
and enables, but different read addresses

Paired together and mapped
to ALTSYNCRAM

> 2 write ports Logic

> 2 clocks Logic

Inferring RAMs Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-71

– Make sure the read and write clocks are the same.

– Make sure the read and write addresses are the same.

– Make sure the enable signals are the same. Use only write enable
signals.

– Register the address, as shown in the following code:

always @(posedge clk)
if(we)

mem[addr] = din;

always @(posedge clk)
addr_reg = addr;

assign dout = mem[addr_reg]

– To forward-annotate initialization values, use the Xilinx INIT property,
as described in Setting Xilinx RAM Initialization Values, on page 6-78.

3. For dual-port RAM, do the following:

– Register the address as shown in this code:

always @(posedge clk)
if(we)

mem[waddr] = din;

always @(posedge clk)
raddr_reg = raddr;

LO

Chapter 6: Design Optimization Inferring RAMs

6-72 Fpga User Guide, December 2005

assign dout = mem[raddr_reg]

– To forward-annotate initialization values, see Setting Xilinx RAM
Initialization Values, on page 6-78.

4. To prevent the insertion of glue logic, add the
syn_ramstyle=”no_rw_check” attribute.

By default, the software inserts glue logic when the read and write
addresses access the same memory location, because it does not know
the output of the read port. The glue logic prevents a mismatch between
the RTL and post-synthesis simulation results. See Specifying RAM
Implementation Styles, on page 6-59 or the Reference Manual for more
information about this attribute.

5. To infer Virtex block RAM, add the syn_ramstyle=”block_ram” attribute
to the register signal in your source code, or to the output signal of the
RAM in the SCOPE window. See Specifying RAM Implementation Styles,
on page 6-59 or the Reference Manual for more information about this
attribute.

6. Run synthesis.

The software implements the circuit using Xilinx RAMB4_S<n>_-S<n>
primitives. The Xilinx dual-port block RAM is implemented with one
write port.

+ Glue logic to resolve read/write discrepancies

Inferring RAMs Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-73

Inferring Xilinx Block RAMs Using Registered Output
For Virtex-II and Virtex-II Pro designs, you can code block RAMs with regis-
tered output as described here, or with registered addresses (see Inferring
Xilinx Block RAMs Using Registered Addresses, on page 6-70). For information
about forward-annotating initialization values, see Setting Xilinx RAM Initial-
ization Values, on page 6-78.

This information is organized into these subtopics:

• Advantages of Using Registered Output, on page 6-73

• Block RAM Mapping for Virtex-II Write Modes, on page 6-73

• Xilinx Single-Port Example with Registered Output, on page 6-75

• Xilinx Single-Output Dual-Port Example with Registered Output, on
page 6-77

Advantages of Using Registered Output
The registered output method allows you to use reset and enable lines as well
as the different write modes in Virtex architectures. The following table shows
the advantages of using registered output instead of registered addresses:

Block RAM Mapping for Virtex-II Write Modes
The following table summarizes how the software implements Block RAM for
the write modes in different Virtex families when you register the outputs. See
Xilinx Single-Port Example with Registered Output, on page 6-75 and Xilinx
Single-Output Dual-Port Example with Registered Output, on page 6-77 for
examples.

Registered Read Address Registered Output

Read and write clocks must be the
same

Can have different clocks

No enable, reset supported Supports enable and reset signals

LO

Chapter 6: Design Optimization Inferring RAMs

6-74 Fpga User Guide, December 2005

Virtex Virtex-E Virtex-II Virtex-II Pro

WRITEFIRST Mode

With enable and reset,
enable takes precedence

SP SP SP SP

With enable and reset, reset
takes precedence

SP SP SP SP

Without enable SP SP SP SP

Without reset SP SP SP SP

Without enable or reset SP SP SP SP

READFIRST Mode

With enable and reset,
enable takes precedence

Select
RAM

Select
RAM

SP SP

With enable and reset, reset
takes precedence

Select
RAM

Select
RAM

SP SP

Without enable Select
RAM

Select
RAM

SP SP

Without reset Select
RAM

Select
RAM

SP SP

Without enable or reset Select
RAM

Select
RAM

SP SP

NOCHANGE Mode

With enable and reset,
enable takes precedence

DP DP SP SP

With enable and reset, reset
takes precedence

DP DP SP SP

Without enable DP DP SP SP

Without reset DP DP SP SP

Without enable or reset DP DP SP SP

SP: Single-port block RAM
DP: Single-output, dual-port block RAM

Inferring RAMs Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-75

Xilinx Single-Port Example with Registered Output
This example shows the single-port 257x9 RAM with reset and enable
extracted from the following code, where the output is registered. To forward-
annotate initialization values, use the Xilinx INIT property as described in
Setting Xilinx RAM Initialization Values, on page 6-78.

LO

Chapter 6: Design Optimization Inferring RAMs

6-76 Fpga User Guide, December 2005

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity ramtest is port(
do : out std_logic_vector(8 downto 0);
addr : in std_logic_vector(8 downto 0);
di : in std_logic_vector(8 downto 0);
en,clk,we,rst : in std_logic);

end ramtest;

architecture beh of ramtest is
type memtype is array (256 downto 0) of std_logic_vector(8 downto
0);
signal mem : memtype;
attribute syn_ramstyle : string;
attribute syn_ramstyle of mem : signal is "block_ram";

begin
process(clk)
begin

if clk'event and clk='1' then
if(en='1') then

if (rst='1') then
do <= "000000000";

elsif (we='1') then
do <= di;

else
do <= mem(CONV_INTEGER(addr));

end if;
end if;
end if;

end process;

process(clk)
begin

if clk'event and clk='1' then
if (en='1' and we='1') then

mem(CONV_INTEGER(addr)) <= di;
end if;
end if;

end process;

end beh;

Inferring RAMs Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-77

Xilinx Single-Output Dual-Port Example with Registered Output
For Virtex and Virtex-II Pro designs, the software maps components to single-
output dual-port block RAMs when the RAMs are coded with different read
and write addresses, different read and write clocks, and different enable
signals.

To forward-annotate initialization values, see Setting Xilinx RAM Initialization
Values, on page 6-78.

In the following example, the read port has no enable, and the component is
mapped to single-output dual-port block RAM:

always@(posedge clk_r)
if(rst == 1)

data_out = 0;
else

data_out = mem[addr_out];
always @(posedge clk_w)

if (we) mem[addr_in] = data_in;

LO

Chapter 6: Design Optimization Inferring RAMs

6-78 Fpga User Guide, December 2005

Setting Xilinx RAM Initialization Values
You can forward-annotate RAM initialization values using the Xilinx INIT
property.

1. Add the INIT property. Keep the entire statement on one line. Let your
editor wrap lines if it supports line wrap, but do not press Enter until the
end of the statement.

– In VHDL attach the INIT property to the label as shown:

– In Verilog, attach the INIT property to the instance as shown:

2. For RAM, specify a hex value for the INIT statement as shown in these
examples:

3. For Virtex block RAM, specify 16 different INIT statements

– Define the INIT_xx=value property as follows:

All Virtex block RAMs have 16 INIT statements because they are all
4Kbits in size, although they are configured differently: 4Kx1, 2Kx2,
1Kx4, 512x8, and 256x16.

– End the initialization data with a semicolon.

RAM attribute INIT of object : label is "value";

Block RAM attribute INIT_xx of object : label is "value";

RAM /* synthesis INIT = "value" */

Block RAM /* synthesis INIT_xx = "value" */

Verilog RAM16X1S RAM1(...) /* synthesis INIT = "0000" */;

VHDL attribute INIT of RAM1 : label is "0000";

xx Indicate the part of the RAM you are initializing with a number from
00 to FF.

value Set the initialization value, in hex. You have 64 hex values in each INIT
(64 x 4 = 256 and 256 x 16 = 4K), because there are 16 INIT
statements.

Inferring RAMs Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-79

When you synthesize the design, the software forward-annotates the
RAM initialization information to the Xilinx place-and-route software.

Mapping Xilinx ROM to Block RAM
For Xilinx Virtex architectures, the software can map ROM into block RAM,
provided you follow the guidelines in this procedure.

1. Place a dff register in front of the ROM, or place one of the following after
the ROM:

where dffe is an enabled flip-flop, dffre is an enabled flip-flop with
asynchronous reset, dffse is an enabled flip-flop with asynchronous set,
and dffpatre is an enabled, vectored flip-flop with asynchronous reset
pattern.

2. Ensure that the registers and ROMs are within the same hierarchy.

3. Ensure that the number of outputs of the candidate ROM is 64 or fewer.

4. Make sure that at least half the addresses possess assigned values. For
example, in a ROM with ten address bits (1024 unique addresses), at
least 512 of those unique addresses must be assigned values.

5. Specify the syn_romstyle attribute with the value set to block_rom.

6. Synthesize the design.

The software maps the ROM into block RAM.

Asynchronous Synchronous

dff, dffe

dffr, dffre sdffr, sdffre

dffs, dffse sdffs, sdffse

dffpatr, dffpatre sdffpatr, sdffpatre

LO

Chapter 6: Design Optimization Inferring Shift Registers

6-80 Fpga User Guide, December 2005

Inferring Shift Registers
The software infers shift registers for Xilinx Virtex and Altera Stratix architec-
tures. Use the following procedure.

1. Set up the HDL code for the sequential shift components. See Shift
Register Examples, on page 6-82 for examples.

Note the following for Xilinx shift registers:

– The new component represents a set of three or more registers that
can be shifted left (from a low address to a higher address).

– The contents of only one register can be seen at a time, based on the
read address.

– For static components, the software only taps the output of the last
register. The read address of the inferred component is set to a
constant.

2. If needed, set the implementation style with the syn_srlstyle attribute. If
you do not want the components automatically mapped to shift
registers, set the value to registers.

You can set the value globally or on individual modules or registers.

syn_srlstyle Value Implemented as...

registers registers

select_srl Xilinx SRL16 primitives

no_extractff_srl Xilinx SRL16 primitives without output flip-flops

altshift_tap Altera Altshift_tap components

Inferring Shift Registers Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-81

3. For Altera shift registers, use attributes to control how the registers are
packed:

4. Run synthesis

After compilation, the software displays the components as seqShift
components in the RTL view. The following figure shows the components
in the RTL view.

In the technology view, the components are implemented as Xilinx
SRL16 or Altera altshift_tap primitives or registers, depending on the
attribute values you set.

5. Check the results in the log file and the technology file. The log file
reports the shift registers and the number of registers packed in them.

To... Attach...

Prevent a register from being packed
into shift registers

syn_useioff or syn_noprune to the
register. You can also use syn_srlstyle
with a value of registers.

Prevent two registers from being
packed into the same shift registers

syn_keep between the two registers.
The algorithm slices the chain
vertically, and packs the two registers
into separate shift registers.

Specify that two registers be packed
in different shift registers

syn_srlstyle with different group names
for the registers you want to separate
(syn_srlstyle= altshift_tap, group_name)

LO

Chapter 6: Design Optimization Inferring Shift Registers

6-82 Fpga User Guide, December 2005

Shift Register Examples

Altera Shift Register (VHDL)
library ieee;
use ieee.std_logic_1164.all;

entity test is
port (
clk : in std_logic;
din : in std_logic_vector(31 downto 0);
dout : out std_logic_vector(31 downto 0);
tap7 : out std_logic_vector(31 downto 0);
tap6 : out std_logic_vector(31 downto 0);
tap5 : out std_logic_vector(31 downto 0);
tap4 : out std_logic_vector(31 downto 0);
tap3 : out std_logic_vector(31 downto 0);
tap2 : out std_logic_vector(31 downto 0);
tap1 : out std_logic_vector(31 downto 0)
);
end test;

architecture rtl of test is
type dataAryType is array(31 downto 0) of std_logic_vector(31
downto 0);
signal q : dataAryType;

begin
process (Clk)
begin

if (Clk'Event And Clk = '1') then
q <= (q(30 DOWNTO 0) & din);

end if;
end process;

dout <= q(31);
tap7 <= q(27);
tap6 <= q(23);
tap5 <= q(19);
tap4 <= q(15);
tap3 <= q(11);
tap2 <= q(7);
tap1 <= q(3);

end rtl;

Inferring Shift Registers Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-83

Altera Shift Register (Verilog)
module
test(dout,tap7,tap6,tap5,tap4,tap3,tap2,tap1,din,shift,clk);

output [7:0] dout;
output [7:0] tap7;
output [7:0] tap6;
output [7:0] tap5;
output [7:0] tap4;
output [7:0] tap3;
output [7:0] tap2;
output [7:0] tap1;
input [7:0] din;
input shift, clk;
reg [7:0] q[63:0];

integer n;

assign dout = q[63];
assign tap7 = q[55];
assign tap6 = q[47];
assign tap5 = q[39];
assign tap4 = q[31];
assign tap3 = q[23];
assign tap2 = q[15];
assign tap1 = q[7];

always @(posedge clk)
if (shift)
begin

q[0] <= din;
for (n=0; n<63; n=n+1)

begin

q[n+1] <= q[n];
end

end

endmodule

LO

Chapter 6: Design Optimization Inferring Shift Registers

6-84 Fpga User Guide, December 2005

Xilinx Shift Register (VHDL)
This is a VHDL example of a shift register with no resets. It has four 8-bit
wide registers and a 2-bit wide read address. Registers shift when the write
enable is 1.

library IEEE;
use IEEE.std_logic_1164.all;

entity srltest is
port (inData: std_logic_vector(7 downto 0);

clk, en : in std_logic;
outStage : in integer range 3 downto 0;
outData: out std_logic_vector(7 downto 0)

);
end srltest;

architecture rtl of srltest is
type dataAryType is array(3 downto 0) of std_logic_vector(7

downto 0);
signal regBank : dataAryType;

begin
outData <= regBank(outStage);
process(clk, inData)

begin
if (clk'event and clk = '1') then

if (en='1') then
regBank <= (regBank(2 downto 0) & inData);
end if;

end if;
end process;

end rtl;

Xilinx Shift Register (Verilog)
module test_srl(clk, enable, dataIn, result, addr);
input clk, enable;
input [3:0] dataIn;
input [3:0] addr;
output [3:0] result;
reg [3:0] regBank[15:0];
integer i;

Inferring Shift Registers Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-85

always @(posedge clk) begin
if (enable == 1) begin

for (i=15; i>0; i=i-1) begin
regBank[i] <= regBank[i-1];

end
regBank[0] <= dataIn;

end
end

assign result = regBank[addr];

endmodule

LO

Chapter 6: Design Optimization Forward Annotation of Initial Values

6-86 Fpga User Guide, December 2005

Forward Annotation of Initial Values
Initial values for RAMs and sequential shift components are forward
annotated to the netlist. The compiler currently generates netlist (.srs) files
with seqshift, ram1, ram2, and nram components. If initial values are specified in
the Verilog code, the synthesis tool attaches an attribute to the component in
the .srs file.

For Verilog designs, a separate data file which contains the initial values
must be created and placed in the project directory. For more information on
initial values, see Initial Values in Verilog, on page 9-28.

Working with LPMs Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-87

Working with LPMs
Some technologies support LPMs (Library of Parameterized Modules), which
are technology-independent logic functions that are parameterized for
scalability and adaptability. There are two ways to instantiate LPMs in your
source code: as black boxes, or by using prepared components.

The following table compares the methods for instantiating LPMs.

See the following for more information about instantiating LPMs:

• Instantiating LPMs as Black Boxes (Altera), on page 6-88, next

• Instantiating LPMs as Black Boxes (Cypress), on page 6-92

• Instantiating LPMs Using VHDL Prepared Components, on page 6-94

• Instantiating LPMs Using a Verilog Library (Altera), on page 6-97

Black Box
Method

Verilog Library/VHDL
Prepared Component Method

Applies to any LPM Yes No

Synthesis LPM timing support No Yes

Synthesis procedure More coding Simple

LO

Chapter 6: Design Optimization Working with LPMs

6-88 Fpga User Guide, December 2005

Instantiating LPMs as Black Boxes (Altera)
The method described here uses either Verilog or VHDL LPMs in the Altera-
prescribed megafunction format. Alternatively, you can use the methods
described in Instantiating LPMs Using a Verilog Library (Altera), on page 6-97
or Instantiating LPMs Using VHDL Prepared Components, on page 6-94. For
information about using Clearbox in Synplify Pro Stratix designs, see Imple-
menting Megafunctions with Clearbox, on page 8-16.

1. Generate the LPM using the Altera MegaWizard Plug-in Manager. If you
generate the file using another method, make sure to use the same
MegaWizard format, where ALTSYNCRAM is instantiated.

For examples of coding style, see LPM Megafunction Example (Verilog), on
page 6-88 and LPM Megafunction Example (VHDL), on page 6-90.

2. Manually edit the LPM file and add the syn_black_box attribute to make
the LPM a black box for synthesis.

See the examples in LPM Megafunction Example (Verilog), on page 6-88
and LPM Megafunction Example (VHDL), on page 6-90.

3. Instantiate the LPM in your design so that the LPM is not the top level.
Synthesize the design.

The synthesis software treats the LPM as a black box. After synthesis,
the software writes out a .vqm file where the module is a black box.

4. Add the original LPM file to the results directory and use it along with
the .vqm file to place and route your design.

The place-and-route software uses the synthesized design information
from the .vqm file and adds in the ALTSYNCRAM parameter information
from the original megafunction file to place and route the LPM RAM
correctly.

LPM Megafunction Example (Verilog)
The following file shows the coding style the Altera MegaWizard uses to
generate a Verilog LPM file, with the syn_black_box attribute added for
synthesis.

Working with LPMs Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-89

module mylpm (
data,
wren,
wraddress,
rdaddress,
clock,
q)/* synthesis syn_black_box */;

input [7:0] data;
input wren;
input [4:0] wraddress;
input [4:0] rdaddress;
input clock;
output [7:0] q;

wire [7:0] sub_wire0;
wire [7:0] q = sub_wire0[7:0];

altsyncram altsyncram_component (
.wren_a (wren),
.clock0 (clock),
.address_a (wraddress),
.address_b (rdaddress),
.data_a (data),
.q_b (sub_wire0));

defparam
altsyncram_component.operation_mode = "DUAL_PORT",
altsyncram_component.width_a = 8,
altsyncram_component.widthad_a = 5,
altsyncram_component.numwords_a = 32,
altsyncram_component.width_b = 8,
altsyncram_component.widthad_b = 5,
altsyncram_component.numwords_b = 32,
altsyncram_component.lpm_type = "altsyncram",
altsyncram_component.width_byteena_a = 1,
altsyncram_component.outdata_reg_b = "UNREGISTERED",
altsyncram_component.indata_aclr_a = "NONE",
altsyncram_component.wrcontrol_aclr_a = "NONE",
altsyncram_component.address_aclr_a = "NONE",
altsyncram_component.address_reg_b = "CLOCK0",
altsyncram_component.address_aclr_b = "NONE",
altsyncram_component.outdata_aclr_b = "NONE",
altsyncram_component.read_during_write_mode_mixed_ports

= "DONT_CARE",
altsyncram_component.ram_block_type = "AUTO",
altsyncram_component.intended_device_family = "Stratix";

endmodule

LO

Chapter 6: Design Optimization Working with LPMs

6-90 Fpga User Guide, December 2005

LPM Megafunction Example (VHDL)
Instantiate a file like this one at the top level, and include it in the project file,
as shown in the preceding figure.

ENTITY myram IS
PORT(
data : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
wren : IN STD_LOGIC := '1';
wraddress : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
rdaddress : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
clock : IN STD_LOGIC ;
q : OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);

END myram;

ARCHITECTURE SYN OF mylpram IS
SIGNAL sub_wire0 : STD_LOGIC_VECTOR (7 DOWNTO 0);

COMPONENT altsyncram
GENERIC (

operation_mode : STRING;
width_a : NATURAL;
widthad_a : NATURAL;
numwords_a : NATURAL;
width_b : NATURAL;
widthad_b : NATURAL;
numwords_b : NATURAL;
lpm_type : STRING;
width_byteena_a : NATURAL;
outdata_reg_b : STRING;
indata_aclr_a : STRING;
wrcontrol_aclr_a : STRING;
address_aclr_a : STRING;
address_reg_b : STRING;
address_aclr_b : STRING;
outdata_aclr_b : STRING;
read_during_write_mode_mixed_ports : STRING;
ram_block_type : STRING;
intended_device_family : STRING

);

Working with LPMs Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-91

PORT (
wren_a : IN STD_LOGIC ;
clock0 : IN STD_LOGIC ;
address_a : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
address_b : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
q_b : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
data_a : IN STD_LOGIC_VECTOR (7 DOWNTO 0)

);

 END COMPONENT;

BEGIN
<= sub_wire0(7 DOWNTO 0);

altsyncram_component : altsyncram
GENERIC MAP (

operation_mode => "DUAL_PORT",
width_a => 8,
widthad_a => 5,
numwords_a => 32,
width_b => 8,
widthad_b => 5,
numwords_b => 32,
lpm_type => "altsyncram",
width_byteena_a => 1,
outdata_reg_b => "CLOCK0",
indata_aclr_a => "NONE",
wrcontrol_aclr_a => "NONE",
address_aclr_a => "NONE",
address_reg_b => "CLOCK0",
address_aclr_b => "NONE",
outdata_aclr_b => "NONE",
read_during_write_mode_mixed_ports => "DONT_CARE",
ram_block_type => "AUTO",
intended_device_family => "Stratix"

)

PORT MAP (
wren_a => wren,
clock0 => clock,
address_a => wraddress,
address_b => rdaddress,
data_a => data,
q_b => sub_wire0

);

END SYN;

LO

Chapter 6: Design Optimization Working with LPMs

6-92 Fpga User Guide, December 2005

Instantiating LPMs as Black Boxes (Cypress)
You can instantiate Cypress LPMs as black boxes if you define the LPM
parameters as comments. The following procedure shows you how to do this.
Alternatively, you can use the method described in Instantiating LPMs Using
VHDL Prepared Components, on page 6-94.

1. Define a black box for the LPM using syn_black_box. For details, see
Defining Black Boxes for Synthesis, on page 6-30.

2. Assign LPM-specific attributes like LPM_TYPE and LPM_WIDTH. The
LPM_TYPE attribute is required and must be set to the exact name of the
LPM.

These attributes are not used for synthesis but are passed to the place-
and-route tools. For a full list of available ports and parameters, see the
Cypress documentation. For code examples, see Verilog LPM Example
(Cypress), on page 6-92 and VHDL LPM Example (Cypress), on
page 6-93.

3. Instantiate the LPM in the higher-level module as shown in the following
code examples.

Verilog LPM Example (Cypress)
The following Verilog example shows a MADD_SUB component in an
adder:

module my_madd_sub(dataa, datab, cin, add_sub, result, cout,
overflow)
/* synthesis syn_black_box

lpm_width = 4
lpm_representation = "LPM_UNSIGNED"
lpm_direction = "LPM_NO_TYP"
lpm_hint = "SPEED"
lpm_type = "MADD_SUB"

*/;
output [3:0] result;
output cout;
output overflow;
input [3:0] dataa;
input [3:0] datab;
input cin;
input add_sub;
endmodule

Working with LPMs Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-93

module adder(r, a, b);
output [3:0] r;
input [3:0] a, b;
my_madd_sub inst0(.dataa(a), .datab(b), .cin(0), .add_sub(1),
.result(r), .cout(), .overflow());
endmodule

VHDL LPM Example (Cypress)
This is a VHDL example:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
library synplify;

entity adder is port (
dataA : in std_logic_vector(7 downto 0);
dataB : in std_logic_vector(7 downto 0);

 sum : out std_logic_vector(7 downto 0));
end adder;

architecture archadder of adder is
component madd_sub
port (dataa: in std_logic_vector(7 downto 0);

datab : in std_logic_vector(7 downto 0);
cin : in std_logic := '0';
add_sub: in std_logic := '1';
result: out std_logic_vector(7 downto 0);
cout : out std_logic;
overflow: out std_logic);

end component;

attribute black_box : boolean;
attribute black_box of madd_sub : component is true;
attribute lpm_width : positive;
attribute lpm_width of madd_sub : component is 8;
attribute lpm_representation : string;
attribute lpm_representation of madd_sub : component is

"LPM_UNSIGNED";
attribute lpm_direction : string;
attribute lpm_directionof madd_sub : component is "LPM_NO_TYP";
attribute lpm_type : string;
attribute lpm_type of madd_sub: component is "madd_sub";
attribute lpm_hint : string;
attribute lpm_hint of madd_sub: component is "SPEED";

LO

Chapter 6: Design Optimization Working with LPMs

6-94 Fpga User Guide, December 2005

begin
U1: Madd_sub -- Configured as an adder

port map (
dataA => dataA,
dataB => dataB,
-- cin => zero,
-- add_sub => one,
result => sum,
cout => open,
overflow => open
);

end archadder;

Instantiating LPMs Using VHDL Prepared Components
The prepared components method is the simplest to use, but it does not cover
all available LPMs. For other methods, see Instantiating LPMs as Black Boxes
(Cypress), on page 6-92, Instantiating LPMs as Black Boxes (Altera), on
page 6-88), or Instantiating LPMs Using a Verilog Library (Altera), on
page 6-97 (Altera only). The prepared components method uses generics
instead of attributes to specify design parameters. You specify the library,
instantiate the components, and assign (map) the ports and the values for the
generics.

1. In the higher-level entity, specify the appropriate library and use
clauses.

library lpm;
use lpm.components.all;

The prepared components are in the <install_dir>\lib\vhd directory.
The Altera LPM prepared components are in lpm, and the Cypress
prepared components are in cp_lpmpkg.

2. Instantiate the prepared component. For a list of Cypress prepared
components, see List of Prepared LPM Components (VHDL), on page D-4
in the Reference Manual. For Altera LPMs, see Instantiating LPMs in
VHDL, on page B-76 in the Reference Manual.

3. Assign the ports and values for the generics. These assignments override
the generic values in the library. Refer to the vendor documentation for
details about ports and values for generics.

Working with LPMs Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-95

This is an example of an LPM instantiated at a higher level:

library ieee, lpm;
use ieee.std_logic_1164.all;
use lpm.components.all;

entity test is
port(data : in std_logic_vector (5 downto 0);

distance : in std_logic_vector (7 downto 0);
result : out std_logic_vector (5 downto 0);

end test;

architecture arch1 of test is
begin
u1 : lpm_clshift

generic map (LPM_WIDTH=>6, LPM_WIDTHDIST =>8)
port map (data=>data, distance=>distance, result=>result);

end arch1;

Prepared Components LPM Example (Cypress)
The following example shows you how to implement a MADD_SUB component
in the design of an adder.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
library cypress;
use cypress.lpmpkg.all;

entity adder is port (
dataA : in std_logic_vector(7 downto 0);
dataB : in std_logic_vector(7 downto 0);
sum : out std_logic_vector(7 downto 0));

end adder;

architecture archadder of adder is
begin

U1: MADD_SUB -- Configured as an adder
generic map (

lpm_width => 8,
lpm_representation => lpm_unsigned,
lpm_direction => lpm_add,
lpm_hint => speed
);

LO

Chapter 6: Design Optimization Working with LPMs

6-96 Fpga User Guide, December 2005

port map (
dataA => dataA,
dataB => dataB,
-- cin => zero,
-- add_sub => one,
result => sum,
cout => open,
overflow => open
);

end archadder;

Prepared Components LPM Example (Altera)
This example shows the instantiation of the prepared component lpm_ram_dq:

library lpm;
use lpm.lpm_components.all;
library ieee;
use ieee.std_logic_1164.all;

entity lpm_inst is
port (clock, we: in std_logic;

data : in std_logic_vector(3 downto 0);
address : in std_logic_vector(3 downto 0);
q : out std_logic_vector (3 downto 0));

end lpm_inst;

architecture arch1 of lpm_inst is
begin

I0 : lpm_ram_dq
generic map (LPM_WIDTH => 4,

 LPM_WIDTHAD => 4,
 LPM_TYPE => "LPM_RAM_DQ")

port map (data => data,
 address => address,
 we => we,
 inclock => clock,
 outclock => clock,
 q => q);

end arch1;

Working with LPMs Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-97

Instantiating LPMs Using a Verilog Library (Altera)
For Altera LPMs, you can also instantiate LPMs from a Verilog library. For
other methods of instantiating LPMs, see Instantiating LPMs as Black Boxes
(Altera), on page 6-88 and Instantiating LPMs Using VHDL Prepared Compo-
nents, on page 6-94.

1. Add the Verilog library file <install_dir>/lib/altera/altera_lpm.v to
your project. The following shows the code for LPM_RAM_DP.

module lpm_ram_dp (q, data, wraddress, rdaddress, rdclock, wrclock,
rdclken, wrclken, rden, wren) /*synthesis syn_black_box*/;

parameter lpm_type = “lpm_ram_dp”;
parameter lpm_width = 1;
parameter lpm_widthad = 1;
parameter numwords = 1<<lpm_widthad;
parameter lpm_indata = “REGISTERED”;
parameter lpm_outdata = “REGISTERED”;
parameter lpm_rdaddress_control = “REGISTERED”;
parameter lpm_wraddress_control = “REGISTERED”;
parameter lpm_file = “UNUSED”;
parameter lpm_hint = “UNUSED”;

input [lpm_width-1:0] data;
input [lpm_widthad-1:0] rdaddress, wraddress;
input rdclock, wrclock, rdclken, wrclken, wren, rden;
output [lpm_width-1:0] q;
endmodule //lpm_ram_dp

2. Instantiate the LPM in the higher-level module. For example:

module top(d, q1, wclk, rclk, wraddr, raddr, wren, rden,
wrclken, rdclken) ;

parameter AWIDTH = 4;
parameter DWIDTH = 8;
parameter WDEPTH = 1<<AWIDTH;

input [AWIDTH-1:0] wraddr, rdaddr;
input [DWIDTH-1:0] d;
input wclk, rclk, wren, rden;
input wrclken, rdclken;
output [DWIDTH-1:0] q1;

LO

Chapter 6: Design Optimization Working with LPMs

6-98 Fpga User Guide, December 2005

lpm_ram_dp u1(.data(d), .wrclock(wclk), .rdclock(rclk), .q(q1),
.wraddress(wraddr), .rdaddress(rdaddr), .wren(wren),
.rden(rden), .wrclken(wrclken), .rdclken(rdclken));

defparam u1.lpm_width = DWIDTH;
defparam u1.lpm_widthad = AWIDTH;
defparam u1.lpm_indata = “REGISTERED”;
defparam u1.lpm_outdata = “REGISTERED”;
defparam u1.lpm_wraddress_control = “REGISTERED”;
defparam u1.lpm_rdaddress_control = “REGISTERED”;
endmodule

For information about using the LPMs in Altera simulation flows, see
Using LPMs in Simulation Flows, on page 8-20.

Working with Gated Clocks Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-99

Working with Gated Clocks
The gated clock feature is only available in the Synplify Pro and Synplify
Premier tools. This section first describes the gated clock solution, which is
available for certain Altera and Xilinx technology families. The information is
organized into these sections:

• The Synplicity Approach to Gated Clocks, next

• Synthesizing a Gated Clock Design, on page 6-101

• Prerequisites for Gated Clock Conversion, on page 6-103

• Gated Clock Conversion Report, on page 6-105

• Gated Clocks for Black Boxes, on page 6-108

• Restrictions to Using Fix Gated Clocks, on page 6-110

• Generated-Clock Optimization, on page 6-111

The Synplicity Approach to Gated Clocks
ASIC designs typically gate clocks to conserve power, with custom clock trees
defined for each individual tree. FPGA design has dedicated resources for low-
skew clock nets. If an FPGA design implements a large number of customized
clock trees on some other routing resource, it can result in clock skew and
timing problems.

If you use the dedicated FPGA global clock trees instead, you free up routing
resources and expedite placement and routing. Dedicated FPGA clock trees
are routed to every sequential device on the die and are designed with low
skew to avoid hold-time violations. Using these global clock trees allows the
programmable routing resources of the FPGA to be used primarily for logic
interconnect and simplifies static timing analysis because checks for hold-
time violations based on minimum delays are unnecessary.

The solution is to separate the gating from the clock inputs, and combine
individual clocks trees on the dedicated FPGA global clock trees. The software
logically separates the gating from the clock and routes the gating to the clock
enables on the sequential devices, using the programmable routing resources
of the FPGA. The software separates a clock net going through an AND, NAND,
OR, or NOR gate by doing one of the following:

LO

Chapter 6: Design Optimization Working with Gated Clocks

6-100 Fpga User Guide, December 2005

• Inserting a multiplexer in front of the input pin of the synchronous
element and connecting the clock net directly to the clock pin

• Moving the gating from the clock input pin to the dedicated enable pin,
when this pin is available.

The ungated or base clock is routed to the clock inputs of the sequential
devices using the global FPGA clock resources. Typically, many gated clocks
are derived from the same base clock, so separating the gating from the clock
allows a single global clock tree to be used for all gated clocks that reference
that base clock.

See the following figure for examples of eliminating gated clocks.

d

a
b

clk

Gated Clock

d
a
b

clk

Fixed Gated Clock

d

a
b

clk

Gated Clock
en

D Q

0

1

d

a
b

clk

Fixed Gated Clock

en

clk

en1

en2

d

Gated Clock with syn_keep

d

clk

en1
en2

Fixed Gated Clock

D Q

D Q

EN

D Q

EN

D Q
D Q

EN

keep1

keep2

Working with Gated Clocks Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-101

Synthesizing a Gated Clock Design
The Fix Gated Clocks option described here is only available in the Synplify Pro
and Synplify Premier tools for some Altera and Xilinx technology families.

1. Make sure that the gated clocks have the correct logic format and satisfy
the prerequisites for conversion. See Prerequisites for Gated Clock
Conversion, on page 6-103 for details.

2. If the gated clock drives a black box, specify the clock and the associated
clock enable signal with the following directives: syn_force_seq_prim,
syn_isclock, and syn_gatedclk_en. See Gated Clocks for Black Boxes, on
page 6-108 for details.

3. Make sure the clock net has a constraint specified in a .sdc file for the
current implementation.

If you do not specify an explicit constraint on the clock net or set a global
frequency constraint, enabling Fix Gated Clocks as described in the next
step will not have any effect.

4. Enable the Fixed Gated Clocks option.

– Select Project->Implementation Options.

LO

Chapter 6: Design Optimization Working with Gated Clocks

6-102 Fpga User Guide, December 2005

– On the Device tab, set the value of Fixed Gated Clocks according to the
kind of report you want to generate in the log file (see the following
table).

5. Synthesize the design.

The Fix Gated Clocks option works on flip-flops, counters, latches,
synchronous memories, and instantiated technology primitives. The
software logically separates the gating from the clock and routes the
gating to the clock enables on the sequential devices, using the
programmable routing resources of the FPGA. The ungated base clock is
routed to the clock inputs of the sequential devices using the global
clock resources. Because many gated clocks are normally derived from
the same base clock, separating the gating from the clock allows a single
global clock tree to be used for all gated clocks that reference the same
base clock.

See Restrictions to Using Fix Gated Clocks, on page 6-110 for additional
information.

6. Check the results in the Gated Clock Report section of the log file. See
Gated Clock Conversion Report, on page 6-105 for an example of this
report.

Value Effect

1 The default. Does not report any gated clock conversions.

2 Only reports sequential elements that could not be converted.

3 Reports the conversion status of all sequential elements.

0 Disables the option.

Working with Gated Clocks Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-103

Prerequisites for Gated Clock Conversion
For a gated clock to be converted successfully, the design must meet these
requirements:

Correct Logic Format
Specifically, the combinational logic for the gated clock must satisfy the
following two conditions to have the correct format:

• For at least one set of gating input values, the value output for the gated
clock must be constant and not change as the base clock changes.

• For at least one value of the base clock, changes in the gating input
must not change the value output for the gated clock.

The correct logic format requirements are illustrated with the simple gates
shown in the following figures. When the software synthesizes a design with
the Fix Gated Cock option enabled, clock enables for the AND gate and OR gate
are converted, but the exclusive-OR gate shown in the second figure is not
converted. The following table explains.

Condition Description

Combinational
logic only

The gated clock logic must consist only of combinational logic. A
derived clock that is the output of a register is not converted.

Single base
clock

Identify only one input to the combinational logic for the gated
clock as a base clock. To identify a net as a clock, specify a period
or frequency constraint for either the gate or the clock in the
constraint (.sdc) file. This example defines the clk input as the
base clock.
define_clock -name {clk} -freq 10.000 -clockgroup
default_clkgroup

Supported
primitives

The sequential primitive clocked by the gated clock must be
supported by Synplicity. Synplicity supports gated clock
conversion for most sequential primitives. Black box modules
driven by gated clocks can be converted if special synthesis
directives are used to define the black box. See Gated Clocks for
Black Boxes, on page 6-108.

Correct logic
format

See Correct Logic Format, on page 6-103 for an example of the
correct logic format.

LO

Chapter 6: Design Optimization Working with Gated Clocks

6-104 Fpga User Guide, December 2005

AND gate
gclks[1]

If either gate[1] or gate[2] is “0,” then gclks[1] is “0,”
independent of the value of clk which satisfies the first condition.
Also, if clk is “0,” then gclks[1] is “0,” independent of the values
of gate[1] and gate[2] which satisfies the second condition.
Because gclks[1] satisfies both conditions, it is successfully
converted to the clock-enable format.

OR gate
gclks[2]

If either gate[1] or gate[2] is “1,” then gclks[2] is “1”
independent of the value of clk which satisfies the first condition.
Also, if clk is “1,” then gclks[2] is “1” independent of the value of
gate[1] or gate[2] which satisfies the second condition. Because
gclks[2] satisfies both conditions, it is successfully converted to
the clock-enable format.

Exclusive-OR
gate
gclks[3]

 Irrespective of the value of gate[3], gclks[3] continues to toggle.
The exclusive-OR function causes gclks[3] to fail both conditions
which prevents gclks[3] from being converted.

D Q

din[1:3] D Q

gate[1:3]

dout[1:3]

D Q

clk

[1]

[1]

[2]

[2]

[3]

[1]

[2]

[3][1:3]

[1:3]

[1]

[2]

[3] [1:3]

dout_1[1]

dout_1[2]

dout_1[3]

gclks[2]

gclks[3]

gclks[1]

Before Gated Clock Conversion

Working with Gated Clocks Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-105

Gated Clock Conversion Report
The value of the Fix Gated Clocks option determines how the conversions in the
log file are reported:

For elements that could not be converted, the conversion also lists why the
conversion did not occur.

Value Effect

1 The default. Does not report any gated clock conversions.

2 Only reports sequential elements that could not be converted.

3 Reports the conversion status of all sequential elements. See example,
below.

0 Disables the option.

D Q

din[1:3]

CE

D Q

gate[1:3]

dout[1:3]

D Q

clk

CE[1]

[1]

[2]

[2]

[3]

[1]

[2]

[3][1:3]

[1:3]

[1]

[2]

[3] [1:3]

dout_1[1]

dout_1[2]

dout_1[3]

un15_ce

gclks[3]

ce[1]

After Gated Clock Conversion

The clock enables for the AND and
OR gates are converted, but the
clock enable for the exclusive OR
remains the same.

LO

Chapter 6: Design Optimization Working with Gated Clocks

6-106 Fpga User Guide, December 2005

Example
When Fix Gated Clocks is set to 3 (all sequential elements reported), the report
for the logic shown in Correct Logic Format, on page 6-103 would look like
this:

================= Gated clock report =================

The following instances have been converted
Seq Inst Clock

dout_1[2] clk_c
dout_1[1] clk_c
===================

The following instances have NOT been converted
Seq Inst Clock Reason for not converting

dout_1[3] G_8 Gating structure not compatible
===

Fix Gated Clock Error Messages
The following table describes the gated clock conversion error messages that
are reported in the Gated Clock Report section of the log file. The following terms
are used in the descriptions:

• user clock – the clock defined in the SDC file by the user

• clock driver – the driver to the clock pin of the sequential element

Error Message Explanation

Added MUX in data path The software added a MUX to the gated clock path
because the sequential element did not have an
equivalent gate with enable.

Cannot convert primitive
instance of the type

The software encountered a primitive in the gating logic
that cannot be handled by gated clock conversion.

Cannot find gated clock
property

The software cannot find a syn_gatedclk_data_in and/or
syn_gatedclk_data_out property on the sequential
instance.

Enable pin not found There is no enable pin on an equivalent sequential
element with enable.

Working with Gated Clocks Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-107

Found combination loop
involving the gating logic

There is a combinational loop in the gating logic, which
prevented gated clock conversion.

Found unsupported
combinational gate in gating
logic

There is an instance in the gating logic that could not
be handled currently by gated clock conversion.

Gated clock does not have
declared clock, add/enable
clock constraint in SDC file

The user-defined clock signal is not defined in the SDC
file, and this causes the gated clock conversion to fail.

Gated clock either has NO
DRIVER or has MULTIPLE
DRIVERS

The gated clock conversion code cannot determine
which clock to use because of one of the following:
• There is no user clock driving the sequential element

through the gating logic.
• There are multiple user-defined clocks driving the

gating logic.

Gating structure creates
Improper gating logic

The gating logic that corresponds to the sequential
element could not be reduced to a form where it
satisfies the following three rules needed for gated clock
conversion:
• For certain combinations of the gating signals, the

gated clock signal must be capable of being disabled
• For the remaining combinations of the gating signals,

the gated clock signal equals either the clock signal or
its inverted value

• Finally, all gated clock signal transitions can only
result from the clock signal transitions, and no
enable signal transition can result in a gated clock
signal transition

Instance has no clock pin The sequential gate does not have a clock pin.

Latch clock driven by an OR
gate

The latch is gated by an OR-gate or an OR-gate
equivalent and cannot be converted.

Library cell is not marked as
sequential

The library cell has been marked as non sequential,
with the property syn_force_seq_prim set to zero.

Multiple declared clocks
found

There are multiple user-defined clocks in the gating
logic.

No gating logic found There is no gating logic (this message is no longer
displayed in the gated clock report).

Error Message Explanation

LO

Chapter 6: Design Optimization Working with Gated Clocks

6-108 Fpga User Guide, December 2005

Gated Clocks for Black Boxes
To fix gated clocks that drive black boxes, you must identify the clock and
clock enable signal inputs to the black box. Use the syn_force_seq_prim,
syn_isclock, and syn_gatedclk_clock_en directives to do this. Refer to the
Reference Manual for information about these directives. You assume
responsibility for their functionality.

The following is an example of a black box with the required directives
specified.

Verilog
module bbe (ena, clk, data_in, data_out)
/* synthesis syn_black_box */
/* synthesis syn_force_seq_prim="clk" */
;
input clk
/* synthesis syn_isclock = 1 */
/* synthesis syn_gatedclk_clock_en="ena" */;
input data_in,ena;
output data_out;
endmodule

Not in chip The clock driver is in another FPGA, not in the FPGA in
which the sequential element is present.

Property dontfixgatedclock
found

There is a syn_dontfixgatedclock on a sequential
instance, which prevented gated clock conversion.

The width of the input not
equal to the width of the
output

There is an input/output data width mismatch on the
sequential element. This prevents the software from
using a MUX-based feedback loop to enable gated clock
conversion. The sequential element does not have an
equivalent gate with enable.

Unknown reason The software is nable to determine the reason why
gated clock conversion is failing. Contact Synplicity
Support.

User asserted syn_keep
found on gated clock logic

There is a user-asserted syn_keep on one of the gates in
the gating logic or one of the nets found in the gating
logic. This prevented gated clock conversion.

Error Message Explanation

Working with Gated Clocks Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-109

VHDL
library synplify;
use synplify.attributes.all;

entity bbe is
port (

clk : in std_logic;
en : in std_logic;
data_in : in std_logic;
data_out : out std_logic);

attribute syn_isclock : boolean;
attribute syn_isclock of clk : signal is true;
attribute syn_gatedclk_clock_en : string;
attribute syn_gatedclk_clock_en of clk : signal is "en";

end bbe;

architecture behave of bbe is

attribute syn_black_box : boolean;
attribute syn_force_seq_prim : string;
attribute syn_black_box of behave : architecture is true;
attribute syn_force_seq_prim of behave : architecture is "clk";

begin

end behave;

LO

Chapter 6: Design Optimization Working with Gated Clocks

6-110 Fpga User Guide, December 2005

Restrictions to Using Fix Gated Clocks
Currently, the Fix Gated Clocks option has the following restrictions:

• If the syn_keep attribute is assigned to a net, the Fix Gated Clocks option
does not preserve this net during optimization. Refer to the third
example in The Synplicity Approach to Gated Clocks, on page 6-99.

• The Fix Gated Clocks option cannot be implemented for instantiated
and inferred RAMs in Altera technologies.

• The Fix Gated Clocks option cannot be implemented for inferred counters
in Altera technologies.

• The Fix Gated Clocks option cannot be implemented by the Synplify
Premier tool, if the gates associated with the gated clock are assigned to
different Synplify Premier design plan regions. See the following figure.

Note: The Fix Gated Clocks option can be applied if all gates associated
with the gated clock are assigned to the same Synplify Premier
design plan region. Also, the flip-flops can be assigned to any
Synplify Premier region.

clk

en1

en2

d

Gated Clock

D Q

Rgn1 Rgn2

Fixed Gated Clock
Cannot Implement

Working with Gated Clocks Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-111

Generated-Clock Optimization
For Altera and Xilinx families, generated-clock optimization is included with
the Fix Gated Clocks option. When the option is enabled, the generated clock
logic is replaced with logic that uses the initial clock with an enable. With
generated-clock optimization, the original circuit functionality is preserved
and performance is improved by reducing clock skew.

Generated-Clock Optimization Example
The following code is optimized for a generated clock:

module ram(data0,data1,waddr0,waddr1,we0,we1,
clk0,clk1,q0,q1);

parameter d_width = 8;
parameter addr_width = 8;
parameter mem_depth = 256;

input [d_width-1:0] data0, data1;
input [addr_width-1:0] waddr0, waddr1;
input we0, we1, clk0, clk1;
output [d_width-1:0] q0, q1;

reg [addr_width-1:0] reg_addr0, reg_addr1, reg_addr2;
reg [d_width-1:0] mem [mem_depth-1:0] /* synthesis syn_ramstyle =

"no_rw_check" */ ;

assignq0 = mem[reg_addr0];
assignq1 = mem[reg_addr1];

always @(posedge clk0)
begin

reg_addr0 <= waddr0;
if (we0)

mem[waddr0] <= data0;
end

always @(posedge clk1)
begin

reg_addr1 <= waddr1;
if (we1)

mem[waddr1] <= data1;
end

endmodule

The following figure, shows a circuit before and after optimization for gener-
ated clocks.

LO

Chapter 6: Design Optimization Working with Gated Clocks

6-112 Fpga User Guide, December 2005

e n 1 _ tm p

e n 2 _ tm p

u 1 .u n 4 _ c o u n t [1 :0]

+
u 1 .c o u n t [1 :0]

e n 1

e n 2

r s t

c lk

Q [0]D [0]
R

Q [0]D [0]
R

[1 :0]1

Q [1 :0][1 :0] D [1 :0]
R

FDRE

en1_tmp_cnv

FDRE

en2_tmp_cnv

LUT2_4

G_2

LUT2_L_6

u1.un4_count_axbxc1 u1.clk_tmp_inferred_clock

FDR

u1.count[1]

LUT1_L_1

u1.count_i[0]

FDR

u1.count[0]

D
C
R
CE

Q

D
C
R
CE

Q

D
C
R

Q

D
C
R

Q

Before Generated Clock Optimization

After Generated Clock Optimization

Working with Gated Clocks Chapter 6: Design Optimization

Fpga User Guide, December 2005 6-113

Enabling Generated-Clock Optimization

Generated-clock optimization is enabled by entering a non-zero value in the
Fix Gated Clock Value field in the Device tab of the Options for implementation dialog
box. The following table describes the options.

When a value of 2 or 3 is entered, the log file includes a generated clock
optimization report.

Fix Gated Clock Value Description

0 Disable generated-clock optimization.

1 Perform optimization with no messages.

2 Perform optimization and report unoptimized sequential
elements.

3 Perform optimization and report the status of all
sequential elements.

LO

Chapter 6: Design Optimization Working with Gated Clocks

6-114 Fpga User Guide, December 2005

Conditions for Generated-Clock Optimization
To perform generated-clock optimization, the following conditions must be
met:

1. The combinational logic must be driven by flip-flops.

2. The input flip-flops, such as FF1 and FF2 in the previous figure, cannot
have an active set or reset.

For example, if FF1 has an active-low reset, then the reset must be
disabled (tied ‘high’) for generated-clock optimization. Similar rules
apply to all the input flip-flops in the cone.

3. All input flip-flops must be driven by the same edge of the same clock.

4. With generated-clock optimization, you do not have to specify a primary
clock.

Fpga User Guide, December 2005 7-1

C H A P T E R 7

Design Planning and Optimizations

Using the Synplify Premier Design Planner tool, you create a design plan to
physically constrain portions of a design to specific regions on a device.
Netlist restructure files usually contain primitives that have been bit sliced or
modules that have been zippered. The design plan (.sfp) as well as netlist
restructure files are used during optimization to improve the overall design
performance. It is important to place physical constraints carefully. This
section presents the following topics:

• Using the Design Planner on page 7-2

• Pin Assignments on page 7-6

• Working with Regions on page 7-19

• Checking Synplify Premier Utilization on page 7-25

• Using Process-Level Hierarchy on page 7-25

• Bit Slicing on page 7-26

• Zippering on page 7-33

You should be familiar with the recommended Synplify Premier design flows
and the Design Planner tool to use these design planning tips effectively.

LO

Chapter 7: Design Planning and Optimizations Using the Design Planner

7-2 Fpga User Guide, December 2005

Using the Design Planner
This section discusses the following topics:

• Creating a Design Plan on page 7-2

• Cutting, Copying, and Pasting in the Design Planner on page 7-5

For more information about the Design Planner, see the Synplicity FPGA
Synthesis Reference Manual.

Creating a Design Plan
After the design is compiled, you create a design plan by doing the following:

1. Click the New Design Plan icon () in the Project view. Alternatively, you
can also create a new design plan file using File->New from the Project
menu.

2. If you have not run area estimation, or the area estimation file is out-of-
date, the Estimation Needed dialog box appears asking if you want to run
estimation now.

– If you click No, the Design Planner is displayed. See Figure 7-2 on
page 7-4.

– If you click Yes, the Running Estimation dialog pops up in the upper-left
corner of the window displaying the runtime of the job. Once
estimation is completed, the Design Planner opens. See Figure 7-1 on
page 7-3.

Note: The No area estimate warning check box must be selected on the
Preferences dialog box to invoke this estimation needed message.
Access the Preferences dialog box from the Tools->Design Planner
Preferences menu and select the Assignments tab.

Using the Design Planner Chapter 7: Design Planning and Optimizations

Fpga User Guide, December 2005 7-3

Figure 7-1: Estimation Needed and Running Estimation Dialog Boxes

The following figure shows the Design Planner and RTL views.

LO

Chapter 7: Design Planning and Optimizations Using the Design Planner

7-4 Fpga User Guide, December 2005

Figure 7-2: Design Planner

The Synplify Premier Design Planner consists of an RTL view and three sub-
views:

• Design Plan Hierarchy Browser - displays hierarchical arrangement of
the unassigned design modules and pins for a specified device.

• Design Plan View - provides information about module assignment in
the device rows and regions.

• Design Plan Editor - shows the physical layout of the device and the
placement of the constraints.

See The Design Planner View on page 2-25 of the Reference Manual for infor-
mation on the Design Planner user interface.

Design Plan
Design Plan View Design Plan EditorHierarchy Browser

Using the Design Planner Chapter 7: Design Planning and Optimizations

Fpga User Guide, December 2005 7-5

Cutting, Copying, and Pasting in the Design Planner
You can use the cut, copy, and paste functions in the Design Plan Editor and
Design Plan Hierarchy Browser views. In conjunction with the HDL Analyst
copy function, you use these functions instead of drag and drop.

Cut, copy, and paste works only on assignments (such as modules, primi-
tives, and nets). You cannot cut or copy regions using the Design Planner tool
and, you cannot paste to multiple regions.

The following subsections provide details on using cut, copy, and paste.

Assign Module or Primitive from Analyst
1. Select the module or primitive in HDL Analyst and copy (Ctrl-c).

2. Select the destination region and paste (Ctrl-v).

Assign a Net to I/O Block from Analyst (Xilinx)
1. Select the net in HDL Analyst and copy.

2. Select the I/O block region and paste.

Assign a Module or Primitive from Hierarchy Browser Unassigned Bin
1. Select the module or primitive in the hierarchy browser and copy.

2. Select the destination region and paste.

Replicate a Module or Primitive using the Hierarchy Browser
1. Select the module or primitive within the region using the hierarchy

browser and copy.

2. Select the destination region and paste.

This displays the Replication dialog box.

Move an assignment Using the Hierarchy Browser View
1. Select the module or primitive within the region using the hierarchy

browser and cut (Ctrl-x).

LO

Chapter 7: Design Planning and Optimizations Pin Assignments

7-6 Fpga User Guide, December 2005

2. Select the destination region and paste.

Pin Assignments
This section discusses the following general guidelines for displaying and
assigning pin assignments for design planning:

• Methods for Specifying Pin Assignments on page 7-6

• Specifying Pins Using the Design Plan Editor on page 7-7

• Implementing Pin Assignments on page 7-11

• Storing Temporary Pin Assignments on page 7-14

• Displaying Rats Nesting on page 7-15

• Assigning Clock Pins on page 7-17

Methods for Specifying Pin Assignments
You can specify I/O pin locks and pin assignments using any one of the
following features of the Synplify Premier tool:

• Add pins to a constraint (.sdc) file using the SCOPE editor.

• Convert locked I/O pins to a constraint (.sdc) file using Run->Translate
Constraints in the Project view. See Converting Pin Location Constraint
Files in the Synplify Premier Tool on page 3-43 for details.

• Using the Design Plan Editor in Design Planner to assign pins. See
Specifying Pins Using the Design Plan Editor on page 7-7 for details.

• Importing pin assignments from an Altera .pin or a Xilinx .pad
constraint file to a design plan (.sfp) file using Tools->Import Info in the
Design Planner. See Importing Pin Location Files on page 7-10.

Pin Assignments Chapter 7: Design Planning and Optimizations

Fpga User Guide, December 2005 7-7

Specifying Pins Using the Design Plan Editor
The Design Plan Editor, the floorplan and region view in the Design Planner,
allows you to view and assign external ports and internal nets of the design to
I/O pins on the device. The Design Plan Editor is available for Altera and
Xilinx devices.

Pin Assignment Options
The Design Plan Editor includes options to:

• Expand the pin view

To do this, select View->Expanded Pin View menu from the Project menu, or
use Ctrl-e to toggle the expanded pin view on (enabled) or off (disabled) in
the Design Plan Editor.

Figure 7-3: Expanded Pin View - Enabled and Disabled (Altera Device)

• Adjust the pin view

Select View->Adjust Pin View... from the Project menu, the Adjust Pin View
dialog box appears.

LO

Chapter 7: Design Planning and Optimizations Pin Assignments

7-8 Fpga User Guide, December 2005

Figure 7-4: Adjust Pin View Dialog Box

To adjust the pin view:

– Move the slider to either a smaller or larger view of the pins.

By default the Continuous view update option is enabled. This option
dynamically displays the pin size changes in the Design Plan Editor
as you drag the slider. If disabled, the pin size display updates only
after you release the mouse button.

– Click OK to save your new pin view setting or Cancel to restore your
original pin view setting.

• Display the device I/O pin names

To display the I/O pin names in the three panes of the Synplify Premier
Design Planner, perform the following:

– In the Design Plan Hierarchy Browser, select the expand icon next to
Pins to display all the available I/O pins. When you select a pin in the
Design Plan Hierarchy Browser, its corresponding pin location is
highlighted in the Design Plan Editor.

– In the Design Plan Hierarchy Browser, select the Pins folder to list the
pins in the Design Plan view. When you select a pin in the Design
Plan view, its corresponding pin location is highlighted in the Design
Plan Editor.

– In the Design Plan view, right-click and select Show/Hide columns, then
select the columns (Clock, Name, Side, Seq, Dir, or Port/Net) to display
from the Select Columns dialog box.

Pin Assignments Chapter 7: Design Planning and Optimizations

Fpga User Guide, December 2005 7-9

Figure 7-5: Show/Hide Columns for I/O Pins in the Design Plan View

– In the Design Plan Editor, the pin number is displayed when you
place the cursor over an I/O pin location.

The following figure shows an example of I/O pins displayed for an
Altera device in all three views of the Design Planner.

Figure 7-6: Design Planner View of I/O Pins (Altera Device)

Design Plan
Design Plan View Design Plan EditorHierarchy Browser

LO

Chapter 7: Design Planning and Optimizations Pin Assignments

7-10 Fpga User Guide, December 2005

Importing Pin Location Files
In the Synplify Premier Design Planner, you can use a utility tool to import
pin location information from an Altera .pin or Xilinx .pad file into the .sfp
file. To use this utility:

1. Select Tools->Import Pin Info from the Project Menu. The Open dialog box
appears.

Figure 7-7: Import Pin Information Dialog Box

2. Select either an Altera.pin or a Xilinx .pad file and click Open.

The imported pin assignments are displayed and highlighted in the
Design Planner view.

Pin Assignment Conflicts
Since there are several methods of assigning I/O pins, the following are
examples of pin assignment conflicts you might encounter:

• Imported information from a .pin or .pad file with different device
packages and parts.

• The .sdc file might contain I/O pin locks that conflict with the pin locks
specified in the .sfp file.

Note: The SCOPE constraint file (.sdc) typically takes precedence over
the Design Plan file (.sfp) when conflicts exist after pin assign-

Pin Assignments Chapter 7: Design Planning and Optimizations

Fpga User Guide, December 2005 7-11

ments. It is highly recommended you avoid creating these
mismatches in the .sdc and .sfp files.

• If pin locks are specified using the back end place-and-route tool that
are added into the .sfp file, potential pin lock conflicts may occur. When
conflicts exist, an appropriate warning message appears in the .srr log
file and is displayed in the Messages window.

• Design rule checks are implemented for multiple assignments to the
same I/O pins or ports.

Note: Pin assignment information and region information are included
in the same .sfp file.

Implementing Pin Assignments
This section describes how to assign I/O pins with the following conditions:

• Assign a single port

To do this, drag a port from the HDL Analyst RTL view and drop it to the
pin location on the device in the Design Plan Editor.

Figure 7-8: Drag a Port to a Pin Location in the Design Plan Editor

LO

Chapter 7: Design Planning and Optimizations Pin Assignments

7-12 Fpga User Guide, December 2005

Once the pin is assigned, you can reassign its location in the Design
Plan Editor by dragging and dropping it to another pin location.

• Assign a bus port (group of signals)

To do this, drag a bus port from the HDL Analyst RTL view and drop it to
one device pin in the Design Plan Editor view. The software allocates the
remaining pin(s) depending upon its location on the device.

Figure 7-9: Drag a Bus Port to a Pin Location in the Design Plan Editor

Pins located on the left and right sides of the device are allocated from
bottom to top. Pins located on the top and bottom of the device are
allocated from left to right. Pins that are occupied will be skipped. All
devices allocate pins using this convention.

I/O Pin Display
In the Design Plan Editor, selected assigned pins appear orange,
deselected assigned pins appear red, and selected unassigned pins
appear blue. When your cursor is above the assigned pin, the pin
number along with the port or net assignment is displayed.

Pin Assignments Chapter 7: Design Planning and Optimizations

Fpga User Guide, December 2005 7-13

In the Design Plan view, assigned I/O pins display pin directions and the
port or net assignments. If these columns are not visible, right-click in
the Design Plan view and select Show/Hide columns.

In the RTL view, assigned ports appear blue. When your cursor is above
the assigned port, a tool tip appears showing the pin assignment infor-
mation.

Figure 7-10: Tooltip Displays a Pin Assignment in the RTL View

LO

Chapter 7: Design Planning and Optimizations Pin Assignments

7-14 Fpga User Guide, December 2005

Note: You can also drag the port from the HDL Analyst->RTL view and
drop it to the pin location in either the Hierarchy Browser, or
else, the Design Plan view of the Synplify Premier Design
Planner.

• Reverse pin assignments

Reversing pin assignments allows you to assign pins both in a clockwise
or counter-clockwise direction.

To reverse pin assignments, select any set of pins in any view of the
Synplify Premier Design Planner and right-click, then select Reverse Pin
Assignments from the pop-up menu. The reversed pin assignments are
displayed in the Design Planner views.

Storing Temporary Pin Assignments
A Temporary Assigns icon () is displayed in the Hierarchy Browser which
allows you to temporarily store pin assignments. For example, you can
rearrange (reorder) pin assignments for nets or ports. To do this, you must
first move these pins to Temporary Assigns and then assign them to the desired
pin locations.

The Temporary Assigns option supports the following capabilities:

• You can drag and drop pin assignments from the Design Plan Editor to
Temporary Assigns. However, you cannot drag and drop assignments from
the HDL Analyst RTL view to Temporary Assigns.

• You can drag and drop pin assignments from the Temporary Assigns
container to the new pin or region location in the Design Plan Editor.

• If you want to return an assignment from the Temporary Assigns container
to its original placement:

– Select the assignment in the Temporary Assigns.

– Then, right-click and select Reassign from the pop-up menu.

• To empty the Temporary Assigns container:

– Select the Temporary Assigns icon.

– Then, right-click and select Empty from the menu.

Pin Assignments Chapter 7: Design Planning and Optimizations

Fpga User Guide, December 2005 7-15

• To sort pin assignments by description, name, or origin in the Design
Plan View, do the following:

– Display the Description and/or Origin header by right-clicking and
selecting Show Columns->Description/Origin from the menu.

– Click on the Column heading in the Design Plan View to sort.

• You can Edit->Undo or Edit->Redo operations in the Temporary Assigns
container.

• If an assignment in the Temporary Assigns container subsequently gets
reassigned or unassigned from the RTL view, then the assignment is
automatically removed from Temporary Assigns.

The following figure shows the use of Temporary Assigns in the Synplify Premier
Design Planner.

Figure 7-11: Design Planner with Temporary Assigns

Displaying Rats Nesting
After I/O pins are assigned, you can enable rats nesting to show connectivity
between the I/O pads and the assigned logic for regions on the device.

• To enable rats nesting for all regions of a design, right-click in the Design
Plan Editor and select Rats Nest->Show from the pop-up menu.

• To enable rats nesting for a region, select a region and right-click in the
Design Plan Editor. Select Rats Nest->Show Selected from the menu

• To disable rats nesting, right-click in the Design Plan Editor and select
Rats Nest->Hide.

LO

Chapter 7: Design Planning and Optimizations Pin Assignments

7-16 Fpga User Guide, December 2005

You can also select View->Rats Nest from the Project menu, then choose the
Show, Hide, or Show Selected command.

Pin Assignment Statistics
After assigning I/O pins, you can view your assignments with the following
tools:

• In the Design Plan Hierarchy Browser, right click on the Pins folder and
select Properties from the pop-up menu. The Properties dialog box shows
the total number of pins, the number of assigned pins, and the
percentage of pins assigned.

• When you select assigned port(s) in the HDL Analyst RTL view, their
corresponding pin(s) are highlighted in the Synplify Premier Design
Planner views. Likewise, you can also select assigned pin(s) from any
Design Planner view and their corresponding port(s) will be highlighted
in the HDL Analyst RTL view.

Note: You can also crossprobe ports from the HDL Analyst RTL view to
their pin assignments in the Hierarchy Browser and Design Plan
views.

• When you select an internal net with a pin assignment from the HDL
Analyst RTL view, its corresponding pin will be highlighted in the

Pin Assignments Chapter 7: Design Planning and Optimizations

Fpga User Guide, December 2005 7-17

Synplify Premier Design Planner views. Likewise, you can also select this
assigned pin from any Design Planner view, and its corresponding
internal net will be highlighted in the HDL Analyst RTL view.

Assigning Clock Pins
The Design Plan Editor allows you to view and assign clock pins on the
device.

Clock pins support the following capabilities:

• Clock pins are available for Altera and Xilinx devices.

• Clock pins are displayed in the color green to differentiate them from
signal I/O pins in the Design Plan Editor.

• You can drag and drop a signal pin to a clock pin. When you do so, a
message asks you to confirm the assignment to ensure that the correct
signal gets assigned to the clock pin.

• You cannot drag and drop a bus (group of signals) to a clock pin.

• You can drag and drop a bus to an I/O pin near a clock pin(s). The clock
pin(s) will be skipped when assigning this bus to the I/O pins.

Refer to Specifying Pins Using the Design Plan Editor on page 7-7 for informa-
tion about how to use the Synplify Premier Design Planner pin assignment
capabilities. In the Design Planner, you can similarly assign clock pins as you
do I/O pins. The color of the pin changes after you assign a clock pin.

In the Design Plan view, you can enable or disable the Clock column on the
Select Columns dialog box which displays whether or not a pin is a clock (Yes or
No). See the following figure.

LO

Chapter 7: Design Planning and Optimizations Pin Assignments

7-18 Fpga User Guide, December 2005

Figure 7-12: Design Plan Editor Showing Clock Pins (Xilinx Device)

Design Plan View

Design Plan Editor

Clock Pins

Working with Regions Chapter 7: Design Planning and Optimizations

Fpga User Guide, December 2005 7-19

Working with Regions
This section discusses the following general guidelines for placing and editing
regions in the Design Planner before running physical synthesis:

• Viewing Intellectual Property (IP) Core Areas on page 7-19

• Placing Regions on page 7-20

• Moving and Sizing Regions on page 7-21

• Replicating Logic Manually on page 7-23

• Assigning Register to Pin-Locked I/O Paths to Regions on page 7-24

• Checking Synplify Premier Utilization on page 7-25

Viewing Intellectual Property (IP) Core Areas
You can view dedicated areas on the device reserved for IP core from the
design plan editor UI of the Design Planner. The IP core area appears as a
gray box on the device in the Design Plan Editor. Xilinx Virtex-II Pro devices
can contain up to four IP core areas depending upon the part specified for the
device.

IP core areas support the following capabilities:

• IP core areas are available on Xilinx Virtex-II Pro (Virtex2p - Implementa-
tion options name) devices.

• A tool tip is displayed when the cursor is placed over an IP core area in
the Design Plan Editor.

• Do not create regions that overlap or are contained within an IP
core area.

LO

Chapter 7: Design Planning and Optimizations Working with Regions

7-20 Fpga User Guide, December 2005

For more information on IPs, see Handling Xilinx IPs (Design Planner) on
page 9-35.

Placing Regions
Where you place a region is dependent on how the data flows in your design
and where the pins are locked.

For Altera, you can determine where the target place-and-route tool places
the critical path after you run with no constraints. Determine where the
critical path is placed using the Design Plan Editor. This can be a good
starting place for you to determine what row to begin with when placing the
critical path on the logic device using the Synplify Premier Design Planner
tool.

For Xilinx, the size and location of a region can be easily modified, so a rough
estimate of the region is usually sufficient. However, a starting point for
determining where to place the region is to gather information from the Xilinx
floorplanner. Run placement and routing without constraints, then use the
floorplanner to determine where the critical path logic is placed. From this
information, you can begin by creating the region in the same general area on
the logic device using the Design Planner tool.

IP Core

Working with Regions Chapter 7: Design Planning and Optimizations

Fpga User Guide, December 2005 7-21

For Altera, you can also overlap regions. When overlapping regions, be aware
that the Synplify Premier Design Planner software treats overlapping regions
no differently than regions that do not overlap.

For Xilinx, it is not recommended that you overlap regions for some designs.
The Xilinx place-and-route tool cannot always place these designs, and there-
fore, can potentially create an error. But keep in mind, Synplify Premier
Design Planner software can still support regions that overlap.

Moving and Sizing Regions
The following enhancements provide user support when you create, move, or
resize regions.

• WYSIWYG region boundaries

• Cursor arrow keys region manipulation

• Preserving logic and memory resources

WYSIWYG Region Boundaries
The Design Planner tool shows you region boundaries when a create, move, or
resize region operation is performed. Region boundaries are adjusted to fit
around logic and memory contained in the region.

Moving Regions
You can move regions using either the cursor arrow keys or the mouse
button.

Using the Cursor Arrow Keys
To move a region using the cursor arrow keys:

1. Select the region to highlight the rectangle representing this region.

2. Use the cursor arrow keys (left, right, up, or down) to reposition the
region on the device.

LO

Chapter 7: Design Planning and Optimizations Working with Regions

7-22 Fpga User Guide, December 2005

Using the Mouse Button
To move a region using the mouse button:

1. Select the region to highlight the rectangle representing this region.

2. Press the left mouse button while dragging the region to the desired
position on the device.

Note: Logic and memory resources are preserved when you move a
region, using either the mouse button or the cursor arrow keys.

Resizing Regions
You can resize regions using either the cursor arrow keys or the mouse
button. To resize a region:

Using the Cursor Arrow Keys
To resize a region using the cursor arrow keys:

1. Select the region to highlight the rectangle representing this region.

2. Press and hold the Ctrl and Shift keys simultaneously.

3. Press the cursor arrow key (left, right, up, or down) in the direction you
want the region resized.

An initial resizing arrow appears along the edge of the region.

4. While continuing to hold the Ctrl and Shift keys, use the cursor key to
resize the region in the direction of the arrows.

5. Release the Shift key. You can no longer resize the region.

Using the Mouse Button
To resize a region using the mouse button:

1. Select the region to highlight the rectangle representing this region.

2. Press the left mouse button on any of the handles of the rectangle while
dragging the region in the direction you want the region resized.

Working with Regions Chapter 7: Design Planning and Optimizations

Fpga User Guide, December 2005 7-23

Note: Logic and memory resources are not preserved when you resize a
region, using either the cursor arrow keys or the mouse button.

Preserving Logic and Memory Resources
When regions contain both logic and memory resources, you can preserve
these resources when you move a region. For example, Xilinx devices can
preserve the number of CLBs and BRAMs in a region. Altera devices can
preserve the number of LABs and ESBs in a region.

To enable resource preservation, hold the Shift key while you move a region
using either the mouse button or cursor arrow keys. When you resize a region
using either the mouse button or the cursor keys, you cannot preserve
resources. The default is not to preserve resources.

Replicating Logic Manually
You need to replicate logic manually when an instance in a region fans out to
instances in several other regions. This is done to avoid the routing delay
between the regions, especially if the regions are not placed close together.
After replication, each region contains a local copy of the instance. You can
copy (Ctrl-c) logic to be replicated and paste (Ctrl-v) replicated logic in the
Design Planner.

Note: If you replicate an instance to a region and the instance does not
drive any logic in the region, then the software does not create a
copy of the instance in the region. Therefore, when you look at
the RTL netlist of the region, the replica of the instance does not
appear.

When you assign the same instance logic from the HDL Analyst RTL view to
different regions created in the Design Plan Editor, an Instance Replication dialog
box appears as shown in the following figure. Confirm whether or not you
want to replicate the selected logic instance to the specified region. You can
choose to confirm replication for each instance separately (Yes or No) or simul-
taneously (Yes to All or No to All) for multiple instances.

LO

Chapter 7: Design Planning and Optimizations Working with Regions

7-24 Fpga User Guide, December 2005

Figure 7-13: Instance Replication Dialog Box

Assigning Register to Pin-Locked I/O Paths to Regions
If a path is critical from a register to a pin-locked I/O, make sure that you
assign the critical path to a region that is close to the pins where the I/O is
locked. Physically constraining logic close the to locked pins minimizes
routing delays.

Checking Synplify Premier Utilization Chapter 7: Design Planning and Optimizations

Fpga User Guide, December 2005 7-25

Checking Synplify Premier Utilization
As a general rule, follow the utilization guidelines defined in the following
sections for device and region utilization.

Device Utilization
Device utilization above 90% can lead to longer timing closure. If your design
uses over 90% of the device and if the design contains several finite state
machines, try using the sequential encoding style, (instead of one-hot) to
possibly provide more space on the device.

Region Utilization
Area utilization of a region should not be more than 80% to allow for Synplify
Premier Design Planner area estimations and for any additional room
required for routing and replicating. The place-and-route tools consider the
design plan to be a hard constraint, so if there is not enough area in the
region for the routing process, the place-and-route tool will error out. Make
sure the utilization estimates are up-to-date (using Run->Estimate Area in the
Project view and right-click->Estimate Regions after making any changes to the
design plan) and that utilization does not exceed 80% before going on to the
placement and routing phase. After synthesis, you can also check the utiliza-
tion in the .srr file to get a better estimate for the design.

Using Process-Level Hierarchy
The presence of process-level hierarchy can affect design performance either
positively or negatively. The tendency is to affect Xilinx designs positively and
Altera designs slightly negatively.

LO

Chapter 7: Design Planning and Optimizations Bit Slicing

7-26 Fpga User Guide, December 2005

Process-level hierarchy is turned off by default in the Synplify Premier UI. The
mapper is intended to treat designs with and without process-level hierarchy
the same way. However, the presence of process-level hierarchy changes
names of instances extensively and this affects the mappers as well as the
back end place-and-route tools.

Bit Slicing
The following topics describe bit slicing in the Synplify Premier tool.

• About Bit Slicing on page 7-26

• Using Bit Slicing on page 7-26

• Bit Slice Examples on page 7-29

• Bit Slicing Guidelines on page 7-32

About Bit Slicing
You can use bit slicing whenever a primitive is too large to fit into a region or
when a finer granularity of placement control is needed for a wide signal. Bit
slicing allows you to break up larger primitives into a number of smaller
primitives where each can be placed into separate regions, as appropriate.

The logical division of primitive outputs is defined by a slice_primitive
command read from a netlist restructure (.nrf) file. Bit slicing references this
file and uses the netlist filter to control the logical division of the element into
the user-defined number of primitives. A graphical user interface simplifies
the editing of the .nrf files for bit slicing (existing .tcl files can be used
directly by the netlist filter or renamed with a .nrf extension for viewing in
the graphical user interface).

Using Bit Slicing
To use the Project environment for bit slicing:

Bit Slicing Chapter 7: Design Planning and Optimizations

Fpga User Guide, December 2005 7-27

1. In the Synplify Premier project window, open a new (File->New->Netlist
Restructure File) or existing .nrf file, then click on the Bit Slices tab.

Figure 7-14: Bit Slicing

2. Type in or drag and drop the instance to slice from the RTL view onto
this tab.

To slice an instance by a specified number of bits per slice or by a specified
number of slices:

1. Enter a value for Bits per Slice or Slices clicking the corresponding button
and entering a value in the adjacent field. If you enter a Bits per Slice
value, an instance is allocated for each group of bits with any remaining
bits allocated to the last instance. When using a Slices value, the bits are
divided equally among the specified number of instances with the last
instance assigned any partial number.

2. Save the file.

3. Close the RTL view and redisplay the Project view. The netlist restructure
folder displays in the Project view.

4. Display the Options for Implementation dialog box (click Impl Options or select
Project->Implementation Options) and click on the Netlist Restructure tab. Make
sure that the netlist restructure file that you just created is checked in
the Netlist Restructure Files section, and click OK.

5. Select Run->Compile Only (F7) to run netlist restructuring on your design.
The sections of the sliced element are displayed and can now be
individually assigned.

LO

Chapter 7: Design Planning and Optimizations Bit Slicing

7-28 Fpga User Guide, December 2005

Custom Slicing
A custom slice setting is available for defining slices of varying widths. To use
the custom setting:

1. Click on the Custom button. This enables the MSB/LSB table.

2. Select the entry in the table, then click on the Slice button.

This displays the Select New Slice MSB.

Figure 7-15: Select New Slice MSB

3. Either click OK to slice the number of bits into two or enter the starting
MSB for the second (least significant) slice.

4. Continue to select entries in the table and click Slice to redisplay the
Select New Slice MSB popup menu (see Slicing into Predefined Primitives on
page 7-30).

5. Save the file.

6. Close the RTL view and redisplay the Project view.

7. Display the Options for Implementation dialog box (click Impl Options or select
Project->Implementation Options) and select the Netlist Restructure tab. Make
sure that the netlist restructure file is checked.

8. Recompile the design. The sections of the sliced element can be
individually assigned.

Bit Slicing Chapter 7: Design Planning and Optimizations

Fpga User Guide, December 2005 7-29

Bit Slice Options
To enable either of the Bit Slice options, check the corresponding box in the
Options section on the Bit Slices tab.

• Preserve the Hierarchical View–preserves the hierarchical view (the effects of
bit slicing are only visible at the next level down in the hierarchy).

• Slice all instances of this type–global application of the bit slice definition to
all same-type instances in the netlist

Note: If you use zippering on a module before bit slicing a primitive
within the module, the post zippering name of the module
instance must be used in the bit slicing command. For example,
after using zippering on a module, run Compile Only (F7) and open
the RTL view to get the new module instance name. Drag and
drop the element to be bit sliced from the new RTL view.

• Select a group of bits, right-click and select Properties. A dialog box
displays the bit slicing properties of the primitive. Click OK to dismiss
this dialog box. Also, see Zippering Guidelines on page 7-41.

Bit Slice Examples
The following examples illustrate two different cases of bit slicing a 96-bit bus
XOR primitive. The following figure shows the primitive before bit slicing.

Figure 7-16: Unsliced 96-bit primitive

Slicing into Primitives of Equal Size
In this example, the Bits per Slice value is set to 36.

LO

Chapter 7: Design Planning and Optimizations Bit Slicing

7-30 Fpga User Guide, December 2005

Figure 7-17: Setting the Bits per Slice

The Bits per Slice setting divides the output of the y[95:0] primitive into three
individual primitives. The first two primitives each contain the requested 36
bits; the last primitive contains the remaining 24 bits (y[95:72]). The RTL
Device view for this bit slicing example is shown in the following figure.

Figure 7-18: Bit Slicing Into Primitives of Equal Widths

Slicing into Predefined Primitives
In this example, the Custom setting is used to slice the primitive into three
individual primitives of predefined widths of 48, 32, and 16. When the Custom
radio button is selected, the adjacent table is enabled. Clicking on the top
(and only) entry enables the Slice button as shown in the following figure.

Bit Slicing Chapter 7: Design Planning and Optimizations

Fpga User Guide, December 2005 7-31

Figure 7-19: Setting the Bits per Slice

Clicking the Slice button prompts you to accept the displayed MSB for the new
(next) slice or to enter another MSB for the slice.

Figure 7-20: Creating the First Slice

For this example, click OK to create an initial bit slice of 48. The upper limit of
the bit range is always one less than the previously assigned MSB so that
each slice is at least one bit wide. When you click OK, the table is updated and
the Slice button is again enabled. Select the second entry in the table and
click Slice. You are again prompted to accept the displayed MSB for the new
slice or to enter another MSB for the slice. Enter 15 (the MSB for the third
slice) and click OK. The table is updated as shown in the following figure.

Figure 7-21: Final Table Values

LO

Chapter 7: Design Planning and Optimizations Bit Slicing

7-32 Fpga User Guide, December 2005

You can merge two (or more) adjacent slice definitions in the table by
selecting the entries with the Ctrl key and clicking Join. Using this feature
allows you to essentially undo an entry with an incorrect width.

Save the .nrf file, make sure that the filename is checked on the Netlist
Restructure tab, and run Compile Only (press F7) on the design. The RTL Device
view for this bit slicing example is shown in the following figure.

Figure 7-22: Bit Slicing into Primitives of Varying Widths

Bit Slicing Guidelines
For bit slicing, you can only divide bus primitives of the following types:

See slice_primitive in the Tcl Commands and Scripts chapter of the
Synplicity FPGA Reference Manual for information on using the bit-slicing
command in a .nrf file or in a .tcl script.

buf or register

inv xor mux

tristate and latch

Zippering Chapter 7: Design Planning and Optimizations

Fpga User Guide, December 2005 7-33

Zippering
You can use zippering whenever a logic block is too large to fit into a region.
Zippering allows you to break up a block into a number of smaller instances
where each can be placed into separate regions, as appropriate.

This help section consists of the following Zippering topics:

• Using Zippering

• Analyzing a Design for Zippering

• Zippering Example

• Zippering Guidelines

Zippering works by allowing the outputs of a block to be divided into groups.
Once divided, a “cone-of-logic” is traced down through the hierarchy to the
input pins to create instances containing only the requisite logic. While calcu-
lating the cone of logic, logic replication occurs based on the number of
inputs in the cone. The individual instances can then be assigned to different
regions.

Using Zippering
Use the zipper_inst_hier command in the .nrf or .tcl file to define where to
logically divide a module by identifying groups of output signals. Zippering
references the file and uses the netlist filter to control the logical division of
the module. A graphical user interface simplifies the creation and editing of
.nrf files (existing .tcl files can be used directly or renamed with a .nrf
extension for viewing in the graphical user interface).

To use the Project environment for zippering:

1. In the Synplify Premier project view, create a new file (File->New->Netlist
Restructure File) or existing .nrf file, then click on the Zippering tab.

LO

Chapter 7: Design Planning and Optimizations Zippering

7-34 Fpga User Guide, December 2005

Figure 7-23: Zippering

2. Drag and drop the block to be zippered from the RTL view to the UI.

3. Click on the “+” sign to expand the Group 0.

This displays the output nets.

4. Click on Add Group to add an empty group to the Pin Groups window. If
necessary, continue to click on Add Group to add additional groups (each
group defined represents a zippered section).

5. Click on a net in group 0 and drag the net to the new group. You can use
the Ctrl and Shift keys to select more that one net.

Figure 7-24: Assigning Net to Group

Zippering Chapter 7: Design Planning and Optimizations

Fpga User Guide, December 2005 7-35

6. Continue to arrange the groups by dragging nets to the individual
groups. Note that you can slice a net (see Slicing a Bus Net on page 7-35)
by selecting the net and clicking Slice Pin.

7. When all of the nets are arranged in groups, save the file.

8. Close the RTL view and redisplay the Project view.

9. Display the Options for Implementation dialog box (click Impl Options or select
Project->Implementation Options) and select the Netlist Restructure tab. Make
sure that the netlist restructure file is checked.

10. Run Compile Only (F7) on your design with the netlist restructure file and
open the partition. The sections of the zippered element can be
individually assigned.

11. The additional logic replication performed during zippering increases the
total area of the design. To update area estimates, run area estimation
(press F9) after zippering.

Take care when using zippering since non-optimal zippering can cause
extensive replication which can significantly increase design size.

Slicing a Bus Net
When necessary, bus nets can be individually sliced and divided into separate
groups. To slice a bus net:

1. Select the bus net to slice from the group in the Pin Groups window.

2. Click Slice Pin. Accept the displayed MSB for the new (next) slice or enter
another MSB for the slice.

Figure 7-25: Creating the First Slice

LO

Chapter 7: Design Planning and Optimizations Zippering

7-36 Fpga User Guide, December 2005

3. Click OK to create a slice equal to half the width of the initial bus net or
enter an MSB for the new (second) slice and click OK. The upper limit of
the bit range displayed is always one less than the MSB of the parent
slice so that each slice is at least one bit wide.

If you split a bus net incorrectly, you can essentially undo the split by
selecting the nets using the Ctrl or Shift key and clicking Join Pins.

Analyzing a Design for Zippering
Zippering requires careful examination of your design to logically divide the
block into an optimal number of instances and logical signal boundaries. As a
simple example, consider the large block shown in Figure 7-26 on page 7-36.

Figure 7-26: RTL View of top_inst Hierarchical Block

The hierarchical block in Figure 7-26 requires 325 I/O pins including 256
output pins for the eight output buses and 69 input pins. In a design, the
number of I/O pins required for this block may be too large to fit into one
region. Looking down a level into the block’s hierarchy (see Figure 7-27 on
page 7-37), if you were to logically divide the block into two instances as
shown by the broken line, each instance would require a smaller number of
output pins for the split buses and some number of input pins with some
redundancy (common logic). These two instances could then be assigned to
different regions.

Zippering Chapter 7: Design Planning and Optimizations

Fpga User Guide, December 2005 7-37

With zippering, you only need to specify the outputs and corresponding
instance. The “cone of logic” is used to trace outputs back to their inputs and
only logic necessary to control the specified outputs is included.

Figure 7-27: RTL View: top_inst One Level Down in Hierarchy

Zippering Example
The following example illustrates zippering a 256-output block shown in
Figure 7-27 on page 7-37 into two instances. In this example, the outputs
from module top_inst are divided between two instances: out1, out2, out3, and
out4 in one instance and out5, out6, out7, and out8 in the other instance.

To zipper the example design:

1. Open a new or existing .nrf.

2. Drag and drop top_inst from the RTL view to the UI.

3. Click on the “+” sign to Expand Group 0 in the Pin Groups window.

Common Logic

LO

Chapter 7: Design Planning and Optimizations Zippering

7-38 Fpga User Guide, December 2005

Figure 7-28: Expand Group 0

4. Click Add Group to add an empty group to the Pin Groups window as
shown in the following figure.

Figure 7-29: Add a Second Group

5. Select net out5[31:0] in Group 0 and drag it to Group 1. Expand Group 1 (click
the + sign) to show the new assignment.

6. In order, drag and drop nets out6[31:0], out7[31:0], and out8[31:0] from Group
0 to Group 1. The groups are shown in the following figure.

Zippering Chapter 7: Design Planning and Optimizations

Fpga User Guide, December 2005 7-39

Figure 7-30: Defining the Groups

7. Save the file.

8. Close the RTL view and redisplay the Project view.

9. Display the Options for Implementation dialog box (click Impl Options or select
Project->Implementation Options) and select the Netlist Restructure tab. Make
sure that the netlist restructure file is checked.

10. Run Compile Only (F7) on the design.

LO

Chapter 7: Design Planning and Optimizations Zippering

7-40 Fpga User Guide, December 2005

The results are shown in the following RTL view.

Figure 7-31: Zippered Module

As shown in Figure 7-31, the original block is split into two instances.
The first instance is named top_inst_0.1_1 and contains the out5 through
out8 buses, and the second instance is named top_inst_0.1_0 and contains
the out1 through out4 buses. Looking at the I/O pin requirements, the
first instance requires 153 I/O pins, and the second instance requires
197 I/O pins.

Zippering Chapter 7: Design Planning and Optimizations

Fpga User Guide, December 2005 7-41

Zippering Guidelines
For zippering:

• You can combine zippering and bit slicing in a single .nrf. Bit slicing
commands are automatically placed ahead of the zippering commands
in the file so that as the file is read, line-by-line, all of the primitives are
sliced before any outputs are zippered.

• If you zipper a block before bit slicing a primitive in the block, the post
zippering name of the instance must be used in the bit slicing command.
For example, after zippering a block, run Compile Only (F7), open the RTL
view, and push down into the new hierarchical block containing the
primitive. Drag and drop the primitive to bit slice onto the Bit Slices tab of
the UI.

• Zippering usually increases overall area utilization which can increase
dramatically with the random selection of output groups.

• Zippering can be done at any level in the hierarchy above the leaf level;
the full hierarchical instance name must be specified.

• After zippering, individual instances may not include all of the contents
of the original instance.

• Zippering through an existing .tcl file is supported; add the .tcl file
with the Add File button or select the Netlist Restructure tab of the Option for
Implementation dialog box and click Add Restructure File.

• Hierarchical instances cannot be used when the Zipper all instances of this
type box is checked (or the -nl option is used with the zipper_inst_hier
command).

• Select a group of instance pins, right-click and select Properties. A dialog
box displays the zippering pin group properties of the module. Click OK
to dismiss this dialog box. Also, see Bit Slice Options on page 7-29.

See zipper_inst_hier in the Tcl Commands and Scripts chapter of the
Synplicity FPGA Reference Manual for information on using the zippering
command in a .nrf or in a .tcl script.

LO

Chapter 7: Design Planning and Optimizations Zippering

7-42 Fpga User Guide, December 2005

Fpga User Guide, December 2005 8-1

C H A P T E R 8

Vendor-Specific Optimizations

This chapter covers techniques for optimizing your design for various
vendors. The information in this chapter is intended to be used together with
the information in Chapter 6, Design Optimization.

This chapter describes the following:

• Passing Information to the P&R Tools, on page 8-2

• Generating Vendor-Specific Output, on page 8-6

• Working with Actel Designs, on page 8-8

• Working with Altera Designs, on page 8-11

• Working with Lattice Designs, on page 8-23

• Working with Xilinx Designs, on page 8-28

LO

Chapter 8: Vendor-Specific Optimizations Passing Information to the P&R Tools

8-2 Fpga User Guide, December 2005

Passing Information to the P&R Tools
The following procedures show you how to pass information to the place-and-
route tool; this information generally has no impact on synthesis. Typically,
you use attributes to pass this information to the place-and-route tools. This
section describes the following:

• Specifying Pin Locations, on page 8-2

• Specifying Locations for Actel Bus Ports, on page 8-3

• Specifying Macro and Register Placement, on page 8-3

• Passing Technology Properties, on page 8-4

• Specifying Padtype and Port Information, on page 8-5

Specifying Pin Locations
In certain technologies you can specify pin locations that are forward-
annotated to the corresponding place-and-route tool. The following procedure
shows you how to specify the appropriate attributes. For information about
other placement properties, see Specifying Macro and Register Placement, on
page 8-3.

1. Start with a design using one of the following vendors and technologies:
Actel (except 500K and PA), Altera FLEX10K, ACEX, or APEX families,
Xilinx Virtex or Spartan-3 families, Lattice, or QuickLogic.

2. Add the appropriate attribute to the port. For a bus, list all the bus pins,
separated by commas. To specify Actel bus port locations, see Specifying
Locations for Actel Bus Ports, on page 8-3.

– To add the attribute from the SCOPE interface, click the Attributes tab
and specify the appropriate attribute and value.

– To add the attribute in the source files, use the appropriate attribute
and syntax. See the Reference Manual for syntax details.

Family Attribute and Value

Actel (except 500K and PA) alspin {pin_number}

Altera APEX altera_chip_pin_lc {pin_number}

Passing Information to the P&R Tools Chapter 8: Vendor-Specific Optimizations

Fpga User Guide, December 2005 8-3

Specifying Locations for Actel Bus Ports
You can specify pin locations for Actel bus ports, except the 500K and PA
technologies. To assign pin numbers to a bus port, or to a single- or multiple-
bit slice of a bus port, do the following:

1. Open the constraint file an add these attributes to the design.

2. Specify the syn_noarrayports attribute globally to bit blast all bus ports in
the design.

define_global_attribute syn_noarrayports {1};

3. Use the alspin attribute to specify pin locations for individual bus bits.
This example shows locations specified for individual bits of bus
ADDRESS0.

define_attribute {ADDRESS0[4]} alspin {26}
define_attribute {ADDRESS0[3]} alspin {30}
define_attribute {ADDRESS0[2]} alspin {33}
define_attribute {ADDRESS0[1]} alspin {38}
define_attribute {ADDRESS0[0]} alspin {40}

The software forward-annotates these pin locations to the place-and-
route software.

Specifying Macro and Register Placement
You can use attributes to specify macro and register placement in Actel and
QuickLogic designs. The information here supplements the pin placement
information described in Specifying Pin Locations, on page 8-2 and bus pin
placement information described in Specifying Locations for Actel Bus Ports,
on page 8-3.

Altera FLEX10K/ACEX altera_chip_pin_lc {@pin_number}

Lattice loc {pin_number}

QuickLogic ql_placement {pin_number}

Xilinx xc_loc {pin_number}.

See Controlling Placement with RLOCs, on
page 8-35 for details about relative placement.

LO

Chapter 8: Vendor-Specific Optimizations Passing Information to the P&R Tools

8-4 Fpga User Guide, December 2005

Passing Technology Properties
The following table summarizes the attributes used to pass technology-
specific information for certain vendors. For details about the attributes in
the table, see the Reference Manual.

For... Use...

Relative placement of Actel macros
and IP blocks

alsloc Attribute
define_attribute {u1} alsloc {R15C6}

Placement of Lattice ORCA input or
output registers next to I/O pads

din Attribute or dout Attribute
define_attribute { load } din ""

Vendor Attribute for passing properties

Lattice ORCA orca_props Attribute
define_attribute {p:data_in} orca_props {LEVELMODE=LVDS}

Xilinx Specify the Xilinx properties directly in the source code. The
software passes them to the place-and-route tool. For example:
attribute INIT of RAM1 : label is "0000";

or
/* synthesis INIT_xx = "value" */

Passing Information to the P&R Tools Chapter 8: Vendor-Specific Optimizations

Fpga User Guide, December 2005 8-5

Specifying Padtype and Port Information
For many vendors, you can use attributes to specify technology-specific port
information or padtype.

Information Vendor Attribute

Padtype Lattice ORCA orca_padtype Attribute
define_attribute {AIN[3]} orca_padtype {IBT}

QuickLogic ql_padtype Attribute
define_attribute {clk} ql_padtype {CLOCK}

Xilinx xc_padtype Attribute
define_attribute {a[3:0]} xc_padtype {IBUF_GTLP}

Ports Altera altera_io_opendrain Attribute
define_attribute {alucout} altera_io_opendrain {1}

Altera altera_io_powerup Attribute
define_attribute {seg [31:0]} altera_io_powerup {high}

Xilinx xc_isgsr Directive
define_attribute {bbgsr.gsrin} xc_isgsr {1}

Xilinx xc_pullup/xc_pulldown Attribute
define_attribute { port_name } xc_pulldown { 1 }

LO

Chapter 8: Vendor-Specific Optimizations Generating Vendor-Specific Output

8-6 Fpga User Guide, December 2005

Generating Vendor-Specific Output
The following topics describe generating vendor-specific output in the
synthesis tools.

• Targeting Output to Your Vendor, on page 8-6

• Customizing Netlist Formats, on page 8-7

Targeting Output to Your Vendor
You can generate output targeted to your vendor.

1. To specify the output, click the Impl Options button.

2. Click the Implementation Results tab, and check the output files you need.

The following table summarizes the outputs to set for the different
vendors, and shows the P&R tools for which the output is intended.

Vendor Output Netlist P&R Tool

Actel EDIF (.edn)
*_sdc.sdc

Designer Series

Altera Flex and Acex EDIF (.edf)
AHDL (.tdf)

MAX+PLUSII or Quartus II

Altera Apex, Stratix,
Statix-II, Stratix-GX,
Mercury, Max-II,
Excalibur, Cyclone,
Cyclone-II

Verilog (.vqm) Quartus II

Altera Max EDIF (.edf)
AHDL (.tdf)

MAX+PLUSII

Atmel EDIF (.edf) Figaro

Cypress VHDL (.vhn) Warp

Lattice EDIF (.edf) ispExpert

Lattice Mach EDIF (.edf) or .src ispExpert

Lattice Orca EDIF (.edn) ispLEVER

Generating Vendor-Specific Output Chapter 8: Vendor-Specific Optimizations

Fpga User Guide, December 2005 8-7

3. To generate mapped Verilog/VHDL netlists and constraint files, check
the appropriate boxes and click OK.

See Specifying Result Options, on page 3-9 for details about setting the
option. For more information about constraint file output formats and
how constraints get forward-annotated, see Generating Constraint Files
for Forward Annotation, on page 3-64.

Customizing Netlist Formats
The following table lists some attributes for customizing your Actel, Altera,
and Xilinx output netlists:

QuickLogic EDIF (.qdf or .edf) SpDE

Xilinx CoolRunner EDIF (.edf) or .src Web Fitter for EDIF files,
Minc for *.src files

Xilinx Spartan and
XC4000, XC4500, etc.

EDIF (.edf)or XNF (.xnf) Design Manager or ISE
Project Navigator

Xilinx Virtex and
Spartan-3

EDIF (.edf) Design Manager or ISE
Project Navigator

For... Use...

Netlist formatting syn_netlist_hierarchy Attribute (Altera, Xilinx, Actel)
define_global_attribute syn_netlist_hierarchy {0}

EDIF formatting syn_edif_bit_format Attribute (Xilinx)
define_global_attribute syn_edif_bit_format {%n<%i>}

syn_edif_name_length Attribute (Xilinx)
define_global_attribute syn_edif_name_length { restricted }

syn_edif_scalar_format Attribute (Xilinx)
define_global_attribute syn_edif_scalar_format {%u}

Bus specification syn_noarrayports Attribute (Altera, Xilinx, Actel)
define_global_attribute syn_noarrayports {1}

Vendor Output Netlist P&R Tool

LO

Chapter 8: Vendor-Specific Optimizations Working with Actel Designs

8-8 Fpga User Guide, December 2005

Working with Actel Designs
The Synplify and Synplify Pro synthesis tools support Actel designs. The
following procedures Actel-specific design tips.

• Using Predefined Actel Black Boxes, on page 8-8

• Using ACTGen Macros, on page 8-9

• Working with Radhard Designs, on page 8-10

For additional Actel-specific information, see Passing Information to the P&R
Tools, on page 8-2 and Generating Vendor-Specific Output, on page 8-6.

Using Predefined Actel Black Boxes
The Actel macro libraries contain predefined black boxes for Actel macros so
that you can manually instantiate them in your design. For information
about using ACTGen macros, see Using ACTGen Macros, on page 8-9. For
general information about working with black boxes, see Defining Black
Boxes for Synthesis, on page 6-30.

To instantiate an Actel macro, use the following procedure.

1. Locate the Actel macro library file appropriate to your technology in one
of these subdirectories under synplify_install_dir/lib.

Use the macro file that corresponds to your target architecture. If you
are targeting the 1200XL architecture, use the act2.v or act2.vhd
macro library.

2. Add the Actel macro library at the top of the source file list for your
synthesis project. Make sure that the library file is first in the list.

3. For VHDL, also add the appropriate library and use clauses to the top of
the files that instantiate the macros:

proasic ProASIC (500K) and ProASIC PLUS (PA and ProAsic3E) macros

actel Macros for all other Actel technologies.

Working with Actel Designs Chapter 8: Vendor-Specific Optimizations

Fpga User Guide, December 2005 8-9

library family ;
use family.components.all ;

Specify the appropriate technology in family; for example, act3.

Using ACTGen Macros
The following procedure shows you how to include ACTgen macros in your
design. For information about using Actel macro libraries, see Using
Predefined Actel Black Boxes, on page 8-8. For general information about
working with black boxes, see Defining Black Boxes for Synthesis, on
page 6-30.

1. In ACTgen, generate the function you want to include.

2. Use the Actel netlist translation utility to convert the resulting EDIF
netlist to VHDL or Verilog.

3. For VHDL macros, do the following:

– Edit the ACTgen VHDL file, and add the appropriate library clause at
the top of the file:

library family ;
use family.components.all

– Include the VHDL version of the ACTgen result in your synthesis
source file list.

4. For Verilog macros, do the following:

– Include the appropriate Actel macro library file for your target
architecture in your the source files list for your project.

– Include the Verilog version of the ACTgen result in your source file
list. Make sure that the Actel macro library is first in the source files
list, followed by the ACTgen Verilog files, followed by the other source
files.

5. Synthesize your design as usual.

LO

Chapter 8: Vendor-Specific Optimizations Working with Actel Designs

8-10 Fpga User Guide, December 2005

Working with Radhard Designs
The following procedure outlines how to specify radhard values for a design
with the syn_radhardlevel attribute. Remember that the attribute is not recur-
sive. It only applies to all registers at the level where it is set and does not
affect lower-level registers.

You specify radhard values in modules and architecture in both the
Attributes panel in SCOPE and in the source code. However, for registers, it
must be specified in the source code only.

1. Add to your project the Actel macro files appropriate to the radhard
values you plan to set in the design. The macro files are in
<install_dir>/lib/actel:

2. To set a global or default syn_radhardlevel attribute, do the following:

– Set the value in the source file for the module. The following sets all
registers of module_b to cc:

– Make sure that the corresponding Actel macro file (see step 1) is the
first file listed in the project.

3. To set a syn_radhardlevel value on a per register basis, set it in the source
file. You can use a register-level attribute to override a default value with
another value, or set it to a value of none, so that the global default value
is not applied to the register.

Radhard Value Verilog Macro File VHDL Macro File

cc cc.v cc.vhd

tmr tmr.v tmr.vhd

tmr_cc tmr_cc.v tmr_cc.vhd

VHDL Verilog

library synplify;
use synplify.attributes.all;
attribute syn_radhardlevel of
behav: architecture is “cc”;

module module_b (a, b, sub,
clk, rst) /*synthesis
syn_radhardlevel=”cc”*/;

Working with Altera Designs Chapter 8: Vendor-Specific Optimizations

Fpga User Guide, December 2005 8-11

– To set the value in the source file, add the attribute to the register. For
example, to set the value of register bl_int to tmr_cc, enter the following
in the module source file:

Working with Altera Designs
This section includes some Altera technology-specific tips for optimizing your
design. These tips are in addition to the general guidelines described in
Design Guidelines, on page 6-2. This section discusses the following topics
that are specific to Altera technologies:

• APEX Design Tips, next

• FLEX Design Tips, on page 8-12

• Determining ROM Implementation, on page 8-12

• Working with Altera EABs and ESBs, on page 8-14

• Working with Altera PLLs, on page 8-15

• Implementing Megafunctions with Clearbox, on page 8-16

• Packing I/O Cell Registers, on page 8-18

• Using LPMs in Simulation Flows, on page 8-20

• Working with Quartus II, on page 8-22

In addition, you can use the techniques described in these other topics, which
apply to other vendors as well as Altera:

• Defining Black Boxes for Synthesis, on page 6-30

• Inferring RAMs, on page 6-54

• Inferring Shift Registers, on page 6-80

VHDL Verilog

library synplify;
use synplify.attributes.all;
attribute syn_radhardlevel of
bl_int: signal is “tmr_cc”

reg [15:0] a1_int, b1_int
/*synthesis syn_radhardlevel
= ”tmr_cc”*/;

LO

Chapter 8: Vendor-Specific Optimizations Working with Altera Designs

8-12 Fpga User Guide, December 2005

• Working with LPMs, on page 6-87

• Passing Information to the P&R Tools, on page 8-2

• Generating Vendor-Specific Output, on page 8-6

APEX Design Tips
Use these techniques when working with APEX designs:

• Set the option to map to ATOM primitives. When the software maps
elements to ATOM primitives, the Quartus tool can skip synthesis, thus
reducing run time. The pin assignments, part information, and cliquing
information are forward-annotated to Quartus.

• If you have a large design and need to conserve flip-flops, pack the regis-
ters into Apex I/O cells. See Packing I/O Cell Registers, on page 8-18 for
more information.

FLEX Design Tips
The software automatically maps logic to Altera cells like LCELL, carry and
cascade primitives. However, the default setting for the Max+ Plus II place-
and-route tool is to do technology mapping. You must reconfigure Max+ Plus
II to take full advantage of the Synplicity synthesis results.

If you are not going to use the synthesis technology mapping, turn off the Map
logic to Lcells option before you run synthesis.

Determining ROM Implementation
The software automatically infers ROMs from CASE statements in the RTL
code. This procedure shows you how to control the implementation of ROM in
APEX and FLEX designs with the syn_romstyle attribute.

1. To implement the ROM structure as a block, do the following:

– Apply the syn_romstyle attribute to the signal output value.

– Set the value of the attribute to block_ROM. You can set the attribute
in the source code, the SCOPE interface, or directly in the constraint

Working with Altera Designs Chapter 8: Vendor-Specific Optimizations

Fpga User Guide, December 2005 8-13

file. See Adding Attributes and Directives, on page 3-66 for
information.

– Run synthesis.

The software implements all small ROMs (less than seven address bits)
as logic. It implements the larger ROM structures as extended system
blocks (ESBs) in APEX designs and extended array blocks (EABs) in
FLEX designs.

If you have to conserve ROM resources, you can turn off ROM implemen-
tation globally with the altera_auto_use_esb and altera_auto_use_eab
attributes, and then specify the ROMs you want implemented as block
ROMs with the syn_romstyle attribute.

2. To implement the ROM structure as discrete logic, do the following:

– Apply the syn_romstyle attribute to the signal output value.

– Set the value of the attribute to logic.

Format Example

Verilog reg [3:0] z /* synthesis syn_romstyle=”block_rom” */;

VHDL signal z : std_logic_vector(3 downto 0);
attribute syn_romstyle : string;
attribute syn_romstyle of z : signal is “block_rom”;

Constraint
file syntax

define_attribute {z_20[3:0]} syn_romstyle
{block_rom}

Format Example

Verilog reg [3:0] z /* synthesis syn_romstyle=”logic” */;

VHDL signal z : std_logic_vector(3 downto 0);
attribute syn_romstyle : string;
attribute syn_romstyle of z : signal is “logic”;

Constraint file
syntax

define_attribute {z_20[3:0]} syn_romstyle {logic}

LO

Chapter 8: Vendor-Specific Optimizations Working with Altera Designs

8-14 Fpga User Guide, December 2005

– Run synthesis.

The software implements all small ROMs (less than seven address bits)
and all other ROMs with this attribute as discrete logic primitives
instead of blocks.

3. To view the ROM in your design, do the following:

– Open the RTL view of the design.

– Find the ROM block and push into it. A text window opens and
displays the ROM table view of the data in the block.

Working with Altera EABs and ESBs
An Altera EAB is an extended array block, in FLEX10K designs. An ESB is an
extended system block in Apex 20K and 20KE designs.

1. Attach the altera_implement_in_eab attribute to the component you want to
implement as an EAB, and set the value to 1.

2. To implement an ESB, do the following:

– Make your design hierarchical, and instantiate the module/entity in
the ESB at the top level.

– Attach the altera_implement_in_esb attribute to the component.

– Set the value to true.

When this attribute is set, the software implements the logic as a
PTERM in an extended system block.

3. Run synthesis.

For FLEX10KE, APEX20K, and 20KE designs, the software generates
Altera-specific single or dual-port RAMs with asynchronous READs.
When source code is written as a single port RAM, the software imple-
ments it as a dual-port RAM with single port RAM functionality, using
the LPM_RAM_DQ:ALTDPRAM primitive.

Working with Altera Designs Chapter 8: Vendor-Specific Optimizations

Fpga User Guide, December 2005 8-15

Working with Altera PLLs
The synthesis software recognizes the Altera PLL component, altpll. The following
procedure shows you how to take advantage of this component and use it in
your design.

1. Use the Altera megafunction wizard to generate structural VHDL or
Verilog files for the Altera PLLs in your design.

2. If you are using VHDL, comment out the LIBRARY and USE clauses in the
file generated by the Altera Megawizard tool. The following shows an
example of the lines to be commented out:

LIBRARY altera_mf;
USE altera_mf.altera_mf_components.all;

You comment out these lines because the altpll component is declared in
the Megawizard file before instantiation, so you do not need references to
anothe vhd files that contains the component declaration.

However, if you need the component declaration to be compatible with a
particular Quartus version, use the vhd files packaged with the software
in the lib/altera directory and named for the Quartus version. For
example, the altera_mf42.vhd file is intended for use with Quartus 4.2

3. If you are using Verilog, do not do anything, as the mapper understands
the altpll component.

However, for compatibility with different Quartus versions, altera_mf.v
files are packaged with the software in the lib/altera directory. Use the file
that corresponds to the Quartus version you intend to use.

4. Instantiate the altpll component in your design.

5. Add the Megawizard Verilog or VHDL files to your project.

6. Open SCOPE and define the PLL input frequency in the SCOPE window.

The synthesis software does not use the input frequency from the Altera
Megawizard software. Based on the input value you supply, the software
generates the PLL outputs. All PLL outputs are put in the same clock
group.

LO

Chapter 8: Vendor-Specific Optimizations Working with Altera Designs

8-16 Fpga User Guide, December 2005

7. Set the target technology and the Quartus version (Implementation Options -
> Implementation Results), and synthesize as usual.

The software uses the altpll component information and the constraints
to synthesize. The synthesis software forward-annotates the PLL input
constraints.

Implementing Megafunctions with Clearbox
The Synplify Pro synthesis software treats user-instantiated Quartus
megafunctions as black boxes, because they do not come with any timing
information. This prevents the synthesis tool from making any timing-driven
optimizations at the megafunction boundary. For example, the synthesis
software does not move the registers of a pipelined LPM_MULT to improve
FMAX. Altera Clearbox provides structural information for modules
containing the following primitives stratix_lcell, stratix_mac_mult, stratix_mac_out,
and stratix_ram_block.

The following procedure shows you how to use Altera Clearbox to implement
megafunctions as clear boxes, with timing and resource information that can
be used for synthesis. Use this procedure with Stratix, Stratix II, Cyclone,
and Cyclone II technologies.

1. Use the Altera megafunction wizard to generate structural VHDL or
Verilog files for the megafunctions in your design.

The Clearbox output has its full body either in VHDL or Verilog with no
parameters remaining, other than the parameters remaining on the
ATOMs The synthesis software uses this timing and resource informa-
tion for the megafunctions, but does not synthesize the internals of the
megafunctions.

2. If you are using VHDL, it is recommended that you comment out the
LIBRARY and USE clauses in the file generated by the Altera Megawizard
tool. The following shows a Stratix example of the lines to be commented
out; for other technologies, comment out the corresponding lines:

LIBRARY stratix;
USE stratix.all;

You comment out these lines because the Altera Megawizard file
declares the Clearbox components before instantiating them, so you do
not need references to vhd files that contain the component declarations.

Working with Altera Designs Chapter 8: Vendor-Specific Optimizations

Fpga User Guide, December 2005 8-17

The VHDL file generated by Megawizard uses the stratix.vhd declaration.
Because of ongoing modifications in Quartus, you might need compo-
nent declarations that match particular versions of Quartus. These
component declarations are packaged with the software in the lib/altera
directory and are named for the technology and Quartus version. For
example, stratix_41.vhd corresponds to Quartus 4.1.

3. Instantiate the modules in your design.

4. Add the Verilog/VHDL files to your project.

– If you are using Verilog, make sure to include the stratix.v file from
the lib/altera directory. Make sure to use the version that matches
the version of Quartus you are going to use. For example, if you are
using Quartus 4.1, make sure you use the stratix_41.v file.

This file contains the port and parameter definitions of the Clearbox
primitives. It is not automatically included because Verilog does not
support library statements.

5. Click Implementation Options, set the implementation options, and
synthesize the design.

– On the Device tab, set the target technology to Stratix, Stratix II,
Cyclone, or Cyclone II.

– On the Implementation Results tab, select the appropriate Quartus
version. This is important, because this determines the format of the
output .vqm file, which varies with different Quartus versions.

– Click OK.

– Synthesize as usual.

The software uses the timing and resource information from the struc-
tural Verilog/VHDL files to calculate paths more accurately. Megafunc-
tions are implemented as hierarchical instances, not black boxes. This
figure shows you can push into the mult_add megafunction and see the
stratix_mac_mult and stratix_mac_out primitives it contains.

LO

Chapter 8: Vendor-Specific Optimizations Working with Altera Designs

8-18 Fpga User Guide, December 2005

The .vqm file generated for Quartus after synthesis only contains the
Clearbox module, and does not write out the internals of the module.

6. Before you run Quartus, put all these files in the same result directory:

– The structural Verilog/VHDL file generated by Quartus and used as
input to synthesis. This contains timing and resource usage
definitions for the primitives.

– The .vqm file generated after synthesis, which only contains the top-
level module.

– The Quartus project file.

This ensures that the Quartus software can find all the information it
needs in the .vqm file and the original structural Verilog/VHDL files.

Packing I/O Cell Registers
You can improve input or output path timing in designs by packing registers
into I/O cells with the syn_useioff attribute.

With Altera Stratix, when this attribute is enabled, registers are not packed
into Multiply/Accumulate (MAC) blocks. The highest to lowest priority is
registers, then ports, then global.

Working with Altera Designs Chapter 8: Vendor-Specific Optimizations

Fpga User Guide, December 2005 8-19

1. To pack the registers globally, set syn_useioff=1 on the top level module or
architecture. Specify the attribute in the source code, the SCOPE
interface, or directly in the constraint file.

2. To set the attribute locally, set syn_useioff=1 on a port.

The software packs registers with asynchronous clear pins and
asynchronous preset pins for APEX20KE I/O cells. The software can
infer the I/O cell if you have a preset or clear, and an embedded flip-flop
in the I/O cell.

Format Example

Verilog module test(d, clk, q) /* synthesis syn_useioff=1 */;

VHDL architecture rtl of test is
attribute syn_useioff : boolean;
attribute syn_useioff of rtl : architecture is true;

Constraint
file syntax

define_global_attribute syn_useioff 1

Format Example

Verilog module test(d, clk, q);
input [3:0] d;
input clk;
output [3:0] q /* synthesis syn_useioff=1 */;
reg q;

VHDL entity test is
port (d : in std_logic_vector (3 downto 0);
clk : in std_logic;
q : out std_logc_vector (3 downto 0);
attribute syn_useioff : boolean;
attribute syn_useioff of q : signal is true;
end test;

Constraint file
syntax

define_attribute {p:q[3:0]} syn_useioff 1

LO

Chapter 8: Vendor-Specific Optimizations Working with Altera Designs

8-20 Fpga User Guide, December 2005

Using LPMs in Simulation Flows
This section describes how to use instantiated LPMs in simulation flows. For
information about instantiating LPMs, see Working with LPMs, on page 6-87.

Simulation Flows
The simulation flows vary, depending on the method used to instantiate the
LPMs. For information about instantiating the LPMs, see Instantiating LPMs
Using VHDL Prepared Components, on page 6-94, Instantiating LPMs as Black
Boxes (Altera), on page 6-88, and Instantiating LPMs Using a Verilog Library
(Altera), on page 6-97. The following table summarizes the differences
between the flows:

Black Box Method Simulation Flow
Use this flow if you instantiated the LPMs as Verilog or VHDL black boxes.
You can use this procedure for any LPM supported by Altera.

1. Use the Altera MegaWizard Plug-In Manager to create an LPM
megafunction with the same module and port names as the black box
module in your synthesis design.

Black Box Flow Verilog Library/VHDL
Prepared Component Flows

Applies to any LPM Yes No

Synthesis LPM timing
support

No Yes

Synthesis procedure Many steps Simple

RTL simulation Complicated steps Easy

Post-synthesis (.vm)
simulation

Yes No

Post- P&R (.vo) simulation Yes Yes

Software version Any version
Max+PlusII
Quartus II 1.0 or
earlier

Synplify 7.0 or later
Quartus II 1.1 or later

Working with Altera Designs Chapter 8: Vendor-Specific Optimizations

Fpga User Guide, December 2005 8-21

2. Compile the following:

– Test bench

– The design (RTL, post-synthesis .vm file, or the post-P&R .vo file)

– The .v file you generated in the previous step

3. Compile the LPM megafunction simulation model: 220model.v or
altera_mf.v.

4. For .vm or .vo simulation, compile the primitive simulation model. For
example apex20Ke_atoms.v.

5. Simulate the design.

Library/Prepared Component Simulation Flow
Use this simulation procedure when you use a Verilog library or VHDL
prepared components to instantiate the LPMs. You can use this flow for .vo
simulation with any synthesis release from 7.0 on, if your design contains the
supported LPMs.

1. Instantiate the LPMs.

– For VHDL designs, use the prepared components methods described
in Instantiating LPMs Using VHDL Prepared Components, on
page 6-94 or Instantiating LPMs as Black Boxes (Altera), on page 6-88.

– For Verilog designs, use the library methods described in Instantiating
LPMs Using a Verilog Library (Altera), on page 6-97 or Instantiating
LPMs as Black Boxes (Altera), on page 6-88.

2. Compile the test bench and design. The design can be either RTL or the
post-P&R .vo file.

3. Compile the LPM megafunction simulation model: 220model.v or
altera_mf.v.

4. For .vo simulation, compile the primitive simulation model. For example
apex20Ke_atoms.v.

5. Simulate the design.

LO

Chapter 8: Vendor-Specific Optimizations Working with Altera Designs

8-22 Fpga User Guide, December 2005

Working with Quartus II
The following steps show you how to use the synthesis information to run
Quartus II either from the Synplicity synthesis interface or standalone.

1. Set the QUARTUS_ROOTDIR environment variable to point to your
Quartus II installation directory.

2. Synthesize your design.

3. Select one of the options from the Option->Quartus menu.

– Set options by selecting Set Option. You can configure options like
cliquing and black boxes. The Quartus II software opens. The
synthesized Verilog netlist, forward annotated timing constraints,
and pin assignments are placed in a named Quartus project

– To place and route interactively, select Foreground Compile. This
command opens the Quartus GUI and automatically runs Quartus II
with the project settings from the synthesis run. You can monitor
placement and routing as it progresses, see errors and warning
messages, check what percentage of the job has completed, and
execute other Quartus II commands.

– To run Quartus II in batch mode, select Run Background Compile. This
runs Quartus II in batch mode. View the log file that contains
placement and routing data as the design compiles, and obtain a
report on the completed placement and routing. Background
compilation generates a log file and other files specified with Set
Options.

Using the information in the <project_name>_cons.tcl and
<project_name>.tcl files, the software sets up the Quartus project,
compiles it, and reads forward-annotated information from the
synthesis run.

4. To run the Quartus II software standalone using the synthesis
information, do the following:

– Start Quartus II.

– Select <project_name>_cons.tcl from the Run Tcl Script menu.

The software uses the synthesis results to run Quartus II.

Working with Lattice Designs Chapter 8: Vendor-Specific Optimizations

Fpga User Guide, December 2005 8-23

Working with Lattice Designs
The Synplify and Synplify Pro synthesis tools include support for Lattice
technologies. This section describes the following techniques for working with
Lattice designs:

• Instantiating Lattice Macros, on page 8-23

• Using Lattice GSR Resources, on page 8-24

• Inferring Carry Chains in Lattice XPLD Devices, on page 8-25

• Controlling I/O Insertion in Lattice Designs, on page 8-25

• Forward-Annotating Lattice ORCA Constraints, on page 8-26

For additional information about working with Lattice designs, see Passing
Information to the P&R Tools, on page 8-2 and Generating Vendor-Specific
Output, on page 8-6.

Instantiating Lattice Macros
You can instantiate Lattice macros that are predefined in the Lattice libraries
that come with the tool, in the synplify_install_dir/lib directory.

1. To use a Verilog macro library, add the appropriate library to your
project, making sure that it is the first file in the source files list.

The Verilog macro libraries are under the synplify_install_dir/lib
directory: Add the library appropriate to the technology you are using

ORCA devices synplify_install_dir/lib/lucent/orca*.v

Replace the asterisk with either 2, 3, or 4, according to the
Orca series you are using

ispXPGA devices synplify_install_dir/lib/lattice/lava1.v

EC/ECP devices synplify_install_dir/lib/lucent/ecp.v

CPLD devices synplify_install_dir/lib/cpld/lattice.v

LO

Chapter 8: Vendor-Specific Optimizations Working with Lattice Designs

8-24 Fpga User Guide, December 2005

2. To use a VHDL macro library, add the appropriate library and use clauses
to your VHDL source code at the beginning of the design units that
instantiate the macros.

You only need the VHDL macro libraries for simulation, but it is good
practice to add them to the code. The library names may vary,
depending on the map file name, which is often user-defined. The
simulator uses the map file names to point to a library.

3. Instantiate the macros from the library as described in Instantiating
Black Boxes and I/Os in Verilog, on page 6-30 and Instantiating Black
Boxes and I/Os in VHDL, on page 6-32.

Using Lattice GSR Resources
The following procedure describes how to use GSR (global set/reset)
resources and check resource usage. The GSR resource is a prerouted signal
that connects to the reset input of every flip-flop, regardless of any other
defined reset signals.

1. For the EC, ECP, and Orca families, you can control the use of GSR
resources as follows:

– To improve routability and performance, use the dedicated GSR
resource. Select Project ->Implementation Options and enable the Force
GSR Usage option on the Device tab.

CPLD Devices library lattice;
use lattice.components.all;

Orca Devices Replace the asterisk with the series number (2, 3, or 4) for
the Lattice ORCA Series 2, Series 3, or Series 4 macro
library you are using.

library orca*;
use orca*.orcacomp.all;

ispXPGA Devices library lava;
use lava.components.all;

EC/ECP Devices library ec;
use ec.components.all;

library ecp;
use ecp.components.all;

Working with Lattice Designs Chapter 8: Vendor-Specific Optimizations

Fpga User Guide, December 2005 8-25

When you set this option, the synthesis software creates a GSR
instance to access the resource. It uses the GSR resource for reset
signals, instead of general routing. All registers are reset. when the
GSR is activated, even if some flip-flops do not have a reset.

– If a global set/reset does not correctly initialize the design, turn off
the option. Select Project ->Implementation Options and disable the Force
GSR Usage option on the Device tab. When this option is off, the
software does not use the GSR resource unless all flip-flops have
resets, and all resets use the same signal.

2. To optimize area, set the Resource Sharing option, as described in Sharing
Resources, on page 6-5.

3. To check resource usage, do the following:

– Synthesize the design.

– Select View Log and check the Resource Usage section. For ORCA
families, you can compare the LUTs in the synthesis usage report to
the occupied PFUs (function units) in the report generated after
placement and routing. Each PFU consists of four 4-input LUTs and
four registers. An occupied PFU means that least one LUT or register
was used.

Inferring Carry Chains in Lattice XPLD Devices
For XPLD devices, you can control the inference of carry chains with the
syn_use_carry_chain attribute. By default, all counters are implemented as
carry chains when they are over 4 bits wide. To override this, set the
syn_use_carry_chain attribute with a value of 0 on the registers of the counter or
adder.

Controlling I/O Insertion in Lattice Designs
You can control I/O insertion globally, or on a port-by-port basis.

1. To control the insertion of I/O pads at the top level of the design, use the
Disable I/O Insertion option as follows:

– Select Project->Implementation Options and click the Device panel.

LO

Chapter 8: Vendor-Specific Optimizations Working with Lattice Designs

8-26 Fpga User Guide, December 2005

– If you do not want to insert any I/O pads in the design, enable Disable
I/O Insertion

Do this if you want to check the area your blocks of logic take up,
before you synthesize an entire FPGA. If you disable automatic I/O
insertion, you do not get any I/O pads in your design, unless you
manually instantiate them.

– If you want to insert I/O pads, disable the Disable I/O Insertion option.

When this option is set, the software inserts I/O pads for inputs,
outputs, and bidirectionals in the output netlist. Once inserted, you
can override the I/O pad inserted by directly instantiating another
I/O pad.

2. To force I/O pads to be inserted for input ports that do not drive logic,
follow the steps below.

– To force I/O pad insertion at the module level, set the syn_force_pad
attribute on the module. Set the attribute value to 1. To disable I/O
pad insertion at the module level, set the syn_force_pad attribute for
the module to 0.

– To force I/O pad insertion on an individual port, set the syn_force_pad
attribute on the port with a value to 1. To disable I/O insertion for a
port, set the attribute on the port with a value of 0.

Enable this attribute to preserve user-instantiated pads, insert pads on
unconnected ports, insert bi-directional pads on bi-directional ports
instead of converting them to input ports, or insert output pads on
unconnected outputs.

If you do not set the syn_force_pad attribute, the synthesis design
optimizes any unconnected I/O buffers away.

Forward-Annotating Lattice ORCA Constraints
For Lattice Orca, EC, and ECP designs, you can forward-annotate multicycle
and false path constraints to ispLEVER by following the procedure below. For
additional information about forward-annotation, see Generating Constraint
Files for Forward Annotation, on page 3-64.

1. To forward-annotate a from, to, or through multicycle constraint, open the
SCOPE spreadsheet and do either of the following:

Working with Lattice Designs Chapter 8: Vendor-Specific Optimizations

Fpga User Guide, December 2005 8-27

– Click the Multi-Cycle Paths tab. Depending on the type of constraint you
want to set, select or type the instance name under the To, From or
Through column. Next, set the number of clock cycles under the Cycles
column.

When you set this constraint, the software runs timing-driven
synthesis and then forward-annotates the constraint.

– Click the Other tab. In the Command column, type define_multicycle_path.
In the Arguments column, type -from and the source port or register
name, and -to and the destination port or register name. For example:
-from in0_int -to output 2.

When you set this constraint from the Other tab, the software forward-
annotates the constraint, but does not run timing-driven synthesis
using this constraint.

2. To forward-annotate a false path constraint, open the SCOPE
spreadsheet and do either of the following:

– Click the False Paths panel. Depending on the type of constraint you
want to set, select or type the instance name under the To, From or
Through column. When you set this constraint, the software runs
timing-driven synthesis and then forward-annotates the constraint.

– Click the Other tab. In the Command column, type define_false_path. In
the Arguments column, type -from and the source port or register name,
and -to and the destination port or register name. For example:

When you set this constraint from the Other tab, the software forward-
annotates the constraint, but does not run timing-driven synthesis
using this constraint.

3. Select Project->Implementation Options and enable the Write Vendor Constraint
File option on the Implementation Results tab.

4. Run your design. The Synplify synthesis tool creates a .prf file in the
same directory as your result files.

Command Arguments

define_false_path -from in1_int -to output

define_false_path -from in* -to out*

LO

Chapter 8: Vendor-Specific Optimizations Working with Xilinx Designs

8-28 Fpga User Guide, December 2005

5. Start the Lattice ispLEVER place-and-route tool and run the Map stage.
The place-and-route software includes the constraints from the
synthesis .prf file when it generates another .prf file after mapping.

6. Run the PAR and BIT stages in ispLEVER.

Working with Xilinx Designs
This section contains tips for working with Xilinx designs:

• Designing for Xilinx Architectures, next

• Instantiating CoreGen Cores, on page 8-29

• Packing Registers for I/Os, on page 8-33

• Controlling Placement with RLOCs, on page 8-35

• Using Clock Buffers in Virtex Designs, on page 8-36

• Reoptimizing With EDIF Files, on page 8-39

• Instantiating Special I/O Standard Buffers for Virtex, on page 8-38

For additional Xilinx-specific techniques, see The Xilinx MultiPoint Synthesis
Flow, on page 10-48, Using the Xilinx Modular Flow, on page 10-54, Working
with Gated Clocks, on page 6-99, Inferring RAMs, on page 6-54, and Inferring
Shift Registers, on page 6-80. Note that some of these features are not avail-
able in the Synplify product.

Designing for Xilinx Architectures
The tips listed here are in addition to the technology-independent design tips
described in Design Guidelines, on page 6-2.

• For critical paths, attach the xc_fast attribute to the I/Os.

• To ensure that frequency constraints from register to output pads are
forward annotated to the P&R tools, add default input_delay and
output_delay constraints of 0.0 in the synthesis tool. The synthesis tool
forward-annotates the frequency constraints as PERIOD constraints

Working with Xilinx Designs Chapter 8: Vendor-Specific Optimizations

Fpga User Guide, December 2005 8-29

(register-to-register) and OFFSET constraints (input-to-register and
register-to-output). The place-and-route tools use these constraints.

• Run successive place-and-route iterations with progressively tighter
timing constraints to get the best results possible.

• Specify a UNISIM library using the following syntax:

library unisim;
use unisim.vcomponents.all;

Remove any other package files with user-defined UNISIM primitives.

Instantiating CoreGen Cores
Predesigned IP cores save on design effort and improve performance. The
process for handling IP cores is slightly different for CoreGen and Virtex PCI
cores. The following procedure describes how to instantiate a CoreGen
module. For Virtex PCI cores, see Instantiating Virtex PCI Cores, on page 8-30.

1. Define the core as a black box by adding the syn_black_box attribute to
the module definition line.

module ram64x8(din, addr, we, clk, dout)/* synthesis syn_black_box
*/;

input[7:0] din;
input [5:0] addr;
input we, clk;
output [7:0] dout;

endmodule;

2. Make sure the bus format matches the bus format in the core generator,
using the syn_edif_bit_format and syn_edif_scalar_format directives if needed.

module ram64x8(din, addr, we, clk, dout)
/* synthesis syn_black_box syn_edif_bit_format = “%u<%i>”
syn_edif_scalar format =”%u” */;

3. Generate timing and resource usage information for synthesis.

– Use the Xilinx CORE generator to create structural EDIF netlists. For
legacy cores, generate a single flat .edf netlist file. For newer cores,
generate a top-level flat .edf netlist file that instantiates .ndf files for
each hierarchical level in the design.

– In the synthesis software, add the generated files (.edf only for legacy
cores; .edf and .ndf for newer cores) to your project.

LO

Chapter 8: Vendor-Specific Optimizations Working with Xilinx Designs

8-30 Fpga User Guide, December 2005

4. Instantiate the black box in the module or architecture.

ram64x8 r1(din, addr, we, clk, dout);

5. Synthesize the design.

If you supplied structural EDIF netlists, the software optimizes the
design based on the information in the structural netlists. The generated
reports contain the optimization information .

Instantiating Virtex PCI Cores
For Virtex PCI cores, you can use either a top-down or bottom-up method-
ology. This figure shows a design that is used in the explanations of both
methodologies, below.

FF

PCIM_LC

BUFG

I/O

FF

FF

FF

FF

FF

I/O

I/O

I/O

BUFG

PCI_LC_ICFG

PCIM_TOP

PING64

Working with Xilinx Designs Chapter 8: Vendor-Specific Optimizations

Fpga User Guide, December 2005 8-31

Bottom-Up Method
The bottom-up method synthesizes lower-level modules first. The synthesized
modules are then treated as black boxes and synthesized at the next level.
The following procedure refers to the figure shown above.

1. Synthesize the user-defined application (PING64) by itself.

– Make sure that the Disable I/O Insertion option is on.

– Specify the syn_edif_bit_format = “%u<%i>” and
syn_edif_scalar_format = “%u” attributes. This ensure that the EDIF
bus names match the Xilinx upper-case, angle bracket style bus
names and the Xilinx upper-case net names, respectively.

The software generates an EDIF file for this module.

2. Synthesize the top-level module that contains the PCI core, with the
Disable I/O Insertion option enabled and the EDIF naming attributes
described in the previous step. Use the following files to synthesize:

– The top-level module (PCIM_LC) file, with the PCI core (PCI_LC_I)
declared as a black box with the syn_black_box attribute.

– A black box file for the core (PCI_LC_I), that only contains information
about the PCI core ports. This file is the source file that is generated
for simulation, not the .ngo file.

– The appropriate Synplicity Virtex file (<install>/lib/xilinx) that
contains module definitions of the I/O pads in the top-level module,
PCIM_LC.

The software generates an EDIF file for this module.

3. Synthesize the top level (PCIM_TOP) with Disable I/O Insertion off. Use the
following files:

– The source file for CFG.

– A black box file for PING64.

– A black box file for PCIM_LC.

– A top-level file that contains black box declarations for PING64 and
PCIM_LC.

The software generates an EDIF file for the top level.

LO

Chapter 8: Vendor-Specific Optimizations Working with Xilinx Designs

8-32 Fpga User Guide, December 2005

4. Place and route using the Xilinx .ngo file for the core, and the three
EDIF files generated from synthesis: one for each of the modules PING64
and PCIM_LC, and the top-level EDIF file. Select the top-level EDIF file
when you run place-and-route.

Top-down Methodology
The top-down method instantiates user application blocks and synthesizes
all the source files in one synthesis run. This method can result in a smaller,
faster design than with the bottom-up method, because the tool can do cross-
boundary optimizations. The following procedure refers to the design shown
in the previous figure.

1. Create your own configuration file for your application model (CFG).

2. Edit the top-level source file to do the following:

– Instantiate your application block (PING64) in the top-level source file.

– Add the ports from your application.

3. Add the appropriate Synplicity Virtex file (<install>/lib/xilinx) to the
project. This file contains module definitions of the I/O pads in the
PCIM_LC module.

4. Specify the top-level file in the project.

5. Synthesize your design with the following files:

– Virtex module definition file (previous step)

– Source files for top-level design, user application (PING64), PCIM_LC,
and CFG

– Simulation wrapper file for PCI core

The software generates an EDIF file for the top level.

6. Place and route the design using the top-level EDIF file from synthesis
and the Xilinx .ngo file for the PCI core.

Working with Xilinx Designs Chapter 8: Vendor-Specific Optimizations

Fpga User Guide, December 2005 8-33

Packing Registers for I/Os
When a register drives an input or output, you might want to pack it in an
IOB instead of a CLB. For example, when

• The chip interfaces with another, and you have to minimize the register-
to-output or input-to-register delay.

• You have limited CLB resources, and packing the registers in an IOB can
free up some resources.

To pack registers in an IOB, you set the syn_useioff attribute.

1. To globally embed all the flip-flops into IOBs, attach the syn_useioff
attribute to the module in one of these ways:

– Add the attribute in the SCOPE window, attaching it to the module,
architecture, or the top level. Check the Enable box, set the Attribute
column to syn_useioff, the Object column to <global>, and the attribute
value to 1. The constraint file syntax looks like this:

define_global_attribute syn_useioff 1

– To add the attribute in the Verilog source code, add this syntax to the
top level:

module global_test(d, clk, q) /* synthesis syn_useioff = 1 */;

– To add the attribute in the VHDL source code, add this syntax to the
top level architecture declaration:

architecture rtl of global_test is
attribute syn_useioff : boolean;
attribute syn_useioff of rtl : architecture is true;

For details about attaching attributes using the SCOPE interface and in
the source code, see Adding Attributes and Directives, on page 3-66.

When set globally, all boundary registers and (OE) registers associated
with the data registers are marked with the Xilinx IOB property. This
property is forward annotated in the EDIF netlist, and used by the Xilinx
place-and-route tools to determine how the registers are packed. All
marked registers are packed in the corresponding IOBs.

LO

Chapter 8: Vendor-Specific Optimizations Working with Xilinx Designs

8-34 Fpga User Guide, December 2005

2. To apply syn_useioff to individual registers or ports, use one of these
methods:

– Add the attribute in the SCOPE window, attaching it to the ports you
want to pack, and set the attribute value to 1.The resulting constraint
file syntax looks like this:

define_attribute {p:q[3:0]} syn_useioff 1

– To add the attribute in the Verilog source code, add this syntax:

module test is (d, clk, q);
input [3:0] d;
input clk;
output [3:0] q /* synthesis syn_useioff = 1 */;
reg q;

– To add the attribute in the VHDL source code, add syntax as shown
inside the entity for the local port:

entity test is
port (d : in std_logic_vector(3 downto 0);

clk : in std_logic
q : out std_logic_vector(3 downto 0);

attribute syn_useioff : boolean;
attribute syn_useioff of q : signal is true;
end test;

The software attaches the IOB property as described in the previous step,
but only to the specified flip-flops. Packing for ports and registers
without the attribute is determined by timing preferences. If a register is
to be packed into an IOB, the IOB property is attached and forward
annotated. If it is to be packed into a CLB, the IOB property is not
forward annotated.

In Virtex designs where the synthesis software duplicates OE registers,
setting the syn_useioff attribute on a boundary register only enables the
associated OE register for packing. The duplicate is not packed, but
placed in CLBs. The packed registers are used for data path, and the
CLB registers are used for counter implementation.

In Virtex designs where a shift register is at a boundary edge and the
syn_useioff attribute is enabled, the software extracts only the initial or
final SRL16 shift register from the LUT for packing. The shift register
that is implemented in the technology view is smaller because of the
extraction.

Working with Xilinx Designs Chapter 8: Vendor-Specific Optimizations

Fpga User Guide, December 2005 8-35

Controlling Placement with RLOCs
RLOCs are relative location constraints. They let you control placement in
critical sections, thus improving performance. You specify RLOCs using three
attributes, xc_map, xc_rloc, and xc_uset. As with other attributes, you can
define them in the source code, or in the SCOPE window.

1. Create the modules you want to constrain, and specify the kind of Xilinx
primitive you want to map them to, using the xc_map attribute. The
modules can have only one output.

This Verilog example shows a 4-input Spartan XOR module:

module fmap_xor4(z, a, b, c, d) /* synthesis xc_map=fmap*/ ;
output z;
input a, b, c, d;
assign z = a ^ b ^c ^d;
endmodule

This is the equivalent VHDL example:

library IEEE;
use IEEE.std_logic_1164.all;
entity fmap_xor4 is

port (a: in std_logic;
b: in std_logic;
c: in std_logic;
d: in std_logic
);

end fmap_xor4;

architecture rtl offmap_xor4 is
attribute xc_map : STRING;
attribute xc_map of rtl: architecture is “fmap”;
begin

z <= a xor b xor c xor d;
end rtl;

2. Instantiate the modules you created at a higher hierarchy level.

Family xc_map Value Max. Module Inputs

XC4000, Spartan families fmap
hmap

4
3

Virtex and Spartan-3
families

lut 4

LO

Chapter 8: Vendor-Specific Optimizations Working with Xilinx Designs

8-36 Fpga User Guide, December 2005

3. Group the instances together (xc_uset attribute) and specify the relative
locations of instances in the group with the xc_rloc attribute.

This example shows the Verilog code for the top-level CLB that includes
the 4-input module in the previous example:

module clb_xor9(z, a) ;
output z;
input [8:0] a;
wire x03, x47;
//Code for XC4000 or Spartan
fmap_xor4 x03 /*synthesis xc_uset=”SET1” xc_rloc=”R0C0.f” */

(z03, a[0], a[1], a[2], a[3]);
fmap_xor4 x47 /*synthesis xc_uset=”SET1” xc_rloc=”R0C0.g” */

(z47, a[4], a[5], a[6], a[7]);
hmap_xor3 zz /*synthesis xc_uset=”SET1” xc_rloc=”R0C0.h” */

(z, z03, z47, a[8]);
//Code for Virtex differs because it includes the slice
fmap_xor4 x03 /*synthesis xc_uset=”SET1” xc_rloc=”R0C0.S0” */

(z03, a[0], a[1], a[2], a[3]);
fmap_xor4 x47 /*synthesis xc_uset=”SET1” xc_rloc=”R0C0.S0” */

(z47, a[4], a[5], a[6], a[7]);
hmap_xor3 zz /*synthesis xc_uset=”SET1” xc_rloc=”R0C0.S1” */

(z, z03, z47, a[8]);endmodule

4. Create a top-level design and instantiate your design.

Using Clock Buffers in Virtex Designs
The software can infer a buffer called BUFGDLL that includes the CLKDLL
primitive. BUFGDLL consists of an IBUFG followed by a CLKDLL (Clock Delay
Locked Loop) followed by a BUFG. To use this CLKDLL primitive, you must
specify the xc_clockbuftype attribute. The following steps show you how to add
the attribute in SCOPE or the HDL files.

1. To specify the attribute in the SCOPE window, use the procedure
described in Adding Attributes in the SCOPE Window, on page 3-68 to
add the xc_clockbuftype attribute to a port.

The software infers a buffer as shown in the following figure.

Working with Xilinx Designs Chapter 8: Vendor-Specific Optimizations

Fpga User Guide, December 2005 8-37

The output EDIF netlist contains text like the following:

(instance clk_ibuf (viewRef PRIM (cellRef BUFGDLL (libraryRef VIRTEX)))

2. To specify the attribute in Verilog, add the attribute as shown in this
example.

module test(d, clk, rst, q);
input [1:0] d;
input clk /* synthesis xc_clockbuftype = “BUFGDLL” */, rst;
output [1:0] q;
//other coding

3. To specify the attribute in VHDL, add the attribute as shown in this
example.

entity test_clkbuftype is
port (d: in std_logic_vector(3 downto 0);

clk, rst : in std_logic;
q : out std_logic_vector(3 downto 0)

);
attribute xc_clockbuftype of clk : signal is “BUFGDLL”;
end test_clkbuftype

LO

Chapter 8: Vendor-Specific Optimizations Working with Xilinx Designs

8-38 Fpga User Guide, December 2005

Instantiating Special I/O Standard Buffers for Virtex
The software supports all the I/O Virtex standards, like HSTL_*, CTT, AGP,
PC133_*, PC166_*, etc. You can either instantiate these primitives directly, or
specify them with the xc_padtype attribute.

1. To instantiate I/O buffers, use code like the following to specify them.

module inst_padtype(a, b, clk, rst, en, bidir, q) ;
input [0:0] a, b;
input clk, rst, en;
inout bidir;
output [0:0] q;

reg [0:0] q_int;
wire a_in, bidir_in, q_in;
IBUF_AGP i1 (.O(a_in), .I(a)) ;
IOBUF_CTT i2 (.O(q_in), .IO(bidir) , .I(Q_int), .T(en)) ;
OBUF_F_12 o1 (.O(q), .I(q_in)) ;

always @(posedge clk or posedge rst)
if (rst)

q_int = 1’b0;
else

q_int = a_in & b;

endmodule

2. To specify the I/O buffers with an attribute, add the attribute in the
SCOPE window (refer to Setting Constraints in the SCOPE Window, on
page 3-18 for details) or in the source code, as the following example
illustrates.

module inst_padtype(a, b, clk, rst, en, bidir, q) ;
input [0:0] a /* synthesis xc_padtype = “IBUF_AGP” */, b;
input clk, rst, en;
inout bidir /* synthesis xc_padtype = “IOBUF_CTT” */;
output [0:0] q /* synthesis xc_padtype = “OBUF_F_12” */;

reg [0:0] q_int;

assign q = bidir;
assign bidir = en ? q_int : 1’bz;
always @(posedge clk or posedge rst)

if (rst)
q_int = 1’b0;

else
q_int = a_in & b;

endmodule

Working with Xilinx Designs Chapter 8: Vendor-Specific Optimizations

Fpga User Guide, December 2005 8-39

Reoptimizing With EDIF Files
You can resynthesize an EDIF file to refine and optimize your design further.

1. Make sure your design conforms to these rules:

– The design should not have mixed language files.

– The name of the EDIF file matches the module name.

2. Create a project and add the EDIF file to the design.

3. Specify the EDIF as the top-level design.

– Click Impl Options and go to the Verilog or VHDL tab.

– Enter the module name in the Top Level Module/Entity field. If your
module is not in the work library, specify the library first:

<library>.<module>

– Click OK.

4. Set any other options you want and resynthesize your design.

Working with Xilinx Place-and-Route Software
The following procedure shows you how to run the Xilinx place-and-route tool
from within the synthesis software.

1. Set the XILINX environment variable to point to your Xilinx software
installation directory.

2. Start the Synplicity software and open a synthesized design.

3. Start the place-and-route software:

– To start Xilinx Design Manager, select Options->Xilinx->Start Design
Manager.

– To start Xilinx floorplanner, select Options->Xilinx->Start Floorplanner.

– To start the ISE tool, select Options->Xilinx->Start ISE Project Navigator.

LO

Chapter 8: Vendor-Specific Optimizations Working with Xilinx Designs

8-40 Fpga User Guide, December 2005

Fpga User Guide, December 2005 9-1

C H A P T E R 9

Design Planning for Vendors

This section provides tips for design planning Altera-specific devices and
particular design conditions. Refer to:

• Design Planning with Altera Devices on page 9-2

This section also provides tips for design planning Xilinx-specific devices and
particular design conditions. Refer to:

• Design Planning with Xilinx Designs on page 9-8

• Handling Xilinx Critical Paths (Design Planner) on page 9-14

• Handling Xilinx Black Boxes (Design Planner) on page 9-22

• Handling Xilinx Block RAMs (Design Planner) on page 9-24

• Handling Block Multipliers (Design Planner) on page 9-30

• Handling DSP Blocks (Design Planner) on page 9-32

• Handling Xilinx IPs (Design Planner) on page 9-35

LO

Chapter 9: Design Planning for Vendors Design Planning with Altera Devices

9-2 Fpga User Guide, December 2005

Design Planning with Altera Devices
The following topics describe the design planning process for Altera devices.

• Stratix and Cyclone Devices on page 9-2

• Displaying Stratix Devices on page 9-2

• Creating Regions for Stratix Devices on page 9-4

Stratix and Cyclone Devices
The guidelines in this section provide tips and strategies for using the
Synplify Premier Design Planner for design planning Altera devices. Design
Planner supports the following Altera technologies: STRATIX, STRATIX II,
STRATIX-GX, CYCLONE, and CYCLONE-II.

Displaying Stratix Devices
The high-performance Stratix, Stratix-II, and Stratix GX technology includes
the following advanced features:

• Abundant memory resources for on-chip storage (512 RAM, 4K RAM,
and MRAM)

• High-bandwidth DSP blocks for digital signal processing-intensive appli-
cations

• Maximized signal quality and data transfer reliability with differential
I/O technology, capable of 840-Mbps performance

• Robust clock management and frequency synthesis for managing on-
and off-chip timing to maximize system performance using full-featured,
embedded phase-locked loops (PLLs)

Supporting Stratix Devices
Use the Design Planner to view and create regions and assign critical path
logic to these regions from the Design Plan Editor. The Stratix device
contains:

Design Planning with Altera Devices Chapter 9: Design Planning for Vendors

Fpga User Guide, December 2005 9-3

• A row and column coordinate system. The origin (1,1) is located at the
lower-left corner of the device.

• Device features that all align on these row and column boundaries.

• The following component features: LABs (logic blocks), DSPs (digital
signal processors), 512 RAMs, 4K RAMs, and MRAMs (512K RAMs).
Depending upon the part and package used, the number of these blocks
on the device may vary.

• Tool tips displayed as you move the mouse cursor over a feature
describing what it represents and its location on the device.

The following figure shows an example of an Altera Stratix device from the
Design Plan Editor.

LO

Chapter 9: Design Planning for Vendors Design Planning with Altera Devices

9-4 Fpga User Guide, December 2005

Figure 9-1: Example of an Altera STRATIX Device

Creating Regions for Stratix Devices
You can create a region by drawing a rectangle around any number of LAB,
RAM, and DSP structures within the desired location on a Stratix family
device. Then you can move or resize the region, as necessary. Refer to Moving
and Sizing Regions on page 7-21 for more information.

LABs 512 RAMs 4K RAMs DSPsMLABs

Design Plan Editor

Design Planning with Altera Devices Chapter 9: Design Planning for Vendors

Fpga User Guide, December 2005 9-5

To create a region on the device:

1. Place the cursor over the device in the Design Plan Editor and click the
right mouse button to display a popup menu.

2. Select the Add Region option from the popup menu or use Ctrl-r.

The popup menu disappears, but the cursor is initialized to create a
region.

3. Press the left mouse button while dragging the cursor across the desired
LABs/RAMs/DSPs, if available, in the selected rows/columns of the
device, and then release the mouse button.

A blue rectangle appears displaying the region you created.

Note: You can create regions that contain only LABs, only RAMs, only
DSPs, or that overlap any combination of LABs, RAMs, and DSPs,
as required. Regions can then be moved or resized. The Design
Planner tool prevents you from creating a region that is
completely contained inside any of these types of blocks; these
regions are invalid.

Whenever you create, move, or resize regions, all operations snap to the
row/column grid locations on the device.

Assigning to Regions
When you assign MAC/RAM/ROM blocks to a region on the device, the
Design Planner software applies the following conditions, respectively:

• For MACs:

– Place MAC blocks in a region containing DSP resources. Otherwise,
the MAC block is mapped to logic and a warning message is generated
in the log file (.srr). DSP resource utilization can also be displayed in
the Design Plan view after you run Estimate Regions. Refer to Checking
Region Utilization on page 9-7.

– When the attribute syn_multstyle=logic is applied to the MAC
instance, then MAC logic is mapped to logic and a warning message is
generated in the log file (.srr).

LO

Chapter 9: Design Planning for Vendors Design Planning with Altera Devices

9-6 Fpga User Guide, December 2005

– When a multiplier is placed in a region without DSP resources and
the attribute syn_multstyle=lpm_mult is applied to the multiplier,
then the multiplier is mapped to the MAC block and a warning
message is generated in the log file (.srr).

– Do not place signed and unsigned multipliers in the same DSP block.

Note: Use the Create MAC Hierarchy optimization on the Netlist Restructure
tab of the Implementation Options dialog box, to conveniently map
MAC configurations together into one MAC block so that this
block can be easily assigned to DSP regions for physical
synthesis. This option is enabled by default for Stratix devices
only.

• For RAMs/ROMs:

– Place RAM/ROM logic in a region containing RAM/ROM resources.
Otherwise, RAM/ROM logic is mapped to logic and a warning
message is generated in the log file (.srr). Specified RAM/ROM
resource utilization can also be displayed in the Design Plan view
after you run Estimate Regions. Refer to Checking Region Utilization on
page 9-7.

– When RAM/ROM logic is placed in a region with RAM/ROM
resources and the attribute syn_multstyle=logic is applied to the
RAM/ROM instance, then the RAM/ROM is mapped to logic and a
warning message is generated in the log file (.srr).

– When RAM/ROM logic is placed in a region without RAM/ROM
resources and the attribute syn_ramstyle=blockram is applied to the
RAM/ROM instance, then the RAM/ROM is mapped to altsyncram and
a warning message is generated in the log file (.srr).

Note: The RAM will not be inferred if the register driving the address or
the output register is not placed in the same region.

Design Planning with Altera Devices Chapter 9: Design Planning for Vendors

Fpga User Guide, December 2005 9-7

Checking Region Utilization
The Design Planner software calculates resource capacity and usage for logic
assigned to the region, and displays this information in the Design Plan view.
To update and view the area of a region reflecting the actual utilization,
perform the following:

1. Right-click on the device in the Design Plan Editor, then select Estimate
Regions or Estimate All Regions from the popup menu. As the job runs, the
region is greyed-out and you can:

– View a label placed in the upper-left corner of the region displaying
the elapsed time of the job. This label is removed when the estimation
job completes. Est Pending appears in the upper-left corner of all other
regions waiting for region estimation.

– View the status in the Tcl Script window.

– Or, select Run->Job Status.

2. Click on Regions in the Design Plan Hierarchy Browser. This should
update information for the rgn in the Design Plan view with statistics for
the assigned logic.

3. To choose desired options to report, right-click in the Design Plan view
and select Show/Hide Columns from the pull-down menu. You can display
region usage for any of the following from the Select Columns dialog box:

– Area, Area Use, Area Use (%)

– DSP, DSP Use, DSP Use (%)

– RamBits, RamBit Use, and RamBit Use (%)

LO

Chapter 9: Design Planning for Vendors Design Planning with Xilinx Designs

9-8 Fpga User Guide, December 2005

Design Planning with Xilinx Designs
The guidelines in this section provide tips and strategies for using the
Synplify Premier Design Planner for design planning Xilinx devices. The
Design Planner support the following Xilinx technologies: Virtex-4, Virtex-
II Pro, Virtex-II, Virtex-E, Virtex, and Spartan-3. Refer to the following
sections:

• Displaying Xilinx Device Resources on page 9-8

• Creating Regions for Xilinx Designs on page 9-12

• Handling Xilinx Critical Paths (Design Planner) on page 9-14

• Handling Xilinx Black Boxes (Design Planner) on page 9-22

• Handling Xilinx Block RAMs (Design Planner) on page 9-24

• Handling Block Multipliers (Design Planner) on page 9-30

• Handling DSP Blocks (Design Planner) on page 9-32

• Handling Xilinx IPs (Design Planner) on page 9-35

Displaying Xilinx Device Resources
The Design Planner tool displays the following resources on the Xilinx device,
if relevant:

• Block FIFOs (Virtex-4 devices only)

• Digital Signal Processing Elements (DSPs - Virtex-4 devices only)

• Block RAMs

• Block Multipliers

• Digital Clock Managers (DCMs)

• I/O Banks

The following example displays these resources on a Virtex-4 device. The
figure shows the lower-left corner of the device. Notice that I/O banks are
located within the device.

Design Planning with Xilinx Designs Chapter 9: Design Planning for Vendors

Fpga User Guide, December 2005 9-9

Figure 9-2: Xilinx Virtex-4 Device

I/O Banks

DSPs DCMsBRAM/FIFO
Blocks

LO

Chapter 9: Design Planning for Vendors Design Planning with Xilinx Designs

9-10 Fpga User Guide, December 2005

The following example displays these resources on a Virtex-II device.

Figure 9-3: Xilinx Virtex-II Device

Block FIFOs
Use the Design Planner to view block FIFOs displayed on the Virtex-4 device
in the Design Plan Editor. See Figure 9-2 on page 9-9. In the Virtex-4 archi-
tecture, dedicated logic in the block RAM enables you to easily implement
synchronous or asynchronous FIFOs. This eliminates the need for additional
CLB logic for counter, comparator, or status flag generation, and uses just
one block RAM resource per FIFO.

I/O Banks

Block Multipliers

DCMsBlock RAMs

I/O Pins

Design Planning with Xilinx Designs Chapter 9: Design Planning for Vendors

Fpga User Guide, December 2005 9-11

DSPs
Use the Design Planner to view digital signal processing blocks (DSP48)
displayed on the Virtex-4 device in the Design Plan Editor. These application
specific module blocks provide a programmable mix of logic, memory, I/O
processors, clock management, and digital signal processing. For DSP
support, refer to Handling DSP Blocks (Design Planner) on page 9-32.

Block RAMs
Use the Design Planner to view block RAMs displayed on the device in the
Design Plan Editor. For block RAM support, refer to Handling Xilinx Block
RAMs (Design Planner) on page 9-24.

Block Multipliers
Use the Design Planner to view block Mults displayed on the device which
appear as rectangles adjacent to the block RAM resources in the Design Plan
Editor. See Figure 9-3 on page 9-10. For Block Mult support, refer to
Handling Critical Paths with Large Multiplexers on page 9-21.

I/O Banks
Use the Design Planner to view I/O banks displayed on the device in the
Design Plan Editor. See Figure 9-3 on page 9-10. I/O banks group device pins
together within a rectangular area. I/O Bank 0 starts at the top-left corner of
the device with I/O banks incrementing in a clockwise direction around the
device. You can move the mouse cursor over any of these I/O regions to
identify which I/O bank it belongs. For more information about pin assign-
ment support, refer to Pin Assignments on page 7-6.

Digital Clock Managers (DCMs)
Use the Design Planner to view DCMs on Virtex-II and Spartan-3 devices in
the Design Plan Editor. See Figure 9-3 on page 9-10. The number of DCMs
may vary depending upon the device selected. For example, DCMs are aligned
with the block RAMs resources on the device and contain the following:

• For Virtex-II and Spartan-3 devices, each block RAM column contains
two DCMs. One DCM is located above the top block RAM column and
the other DCM is located below the bottom block RAM column.

LO

Chapter 9: Design Planning for Vendors Design Planning with Xilinx Designs

9-12 Fpga User Guide, December 2005

• For Virtex-II Pro devices, a maximum of 4 or 8 DCMs can be located on
the device depending upon the device part and package selected. When
the device includes 4 DCMs, they are aligned above and below the right-
most and left-most block RAM columns. When the device includes 8
DCMs, they are aligned above and below the two right-most and two left-
most block RAM columns.

Note that DCM support provides the following:

• You can move the mouse cursor over any resource on the device to
display a tool tip describing what it represents.

• You only can display resources.

Creating Regions for Xilinx Designs
Use the following recommendations to help you design plan regions in the
Design Plan Editor for Xilinx devices:

• The Configurable Logic Block (CLB) coordinate system for the device
depends on the following:

– For Virtex and Virtex-E architectures, the CLB coordinate location
row=1, col=1 starts at the top-left corner of the device.

– For Virtex-4, Virtex-II Pro, Virtex-II, and Spartan-3 architectures, the
CLB coordinate location row=1, col=1 starts at the bottom-left corner
of the device.

• The number of CLB rows in a region must be greater than the length of
the cascade/carry chain logic assigned to it. Refer to Handling Critical
Paths with Cascading Cells or Carry Chain Logic on page 9-17.

• It is not recommended that you overlap regions on Xilinx devices for
some designs. The Xilinx place-and-route tool cannot always place these
designs, and therefore, can potentially create an error. Keep in mind,
however, that the Design Planner software can still support regions that
overlap.

• For Spartan-3 architectures, it is recommended that you create regions
that are at least 6 x 6 CLBs as a minimum size to obtain optimum region
utilization.

Design Planning with Xilinx Designs Chapter 9: Design Planning for Vendors

Fpga User Guide, December 2005 9-13

Regions Driving Global Bus Signals
Regions that drive a global bus signal should include row or column overlap
to all other regions that drive the same global bus signal.

For Virtex family architectures, all tristates feeding the same bus signal are
required to be on the same CLB row or column (4 bus signals per
row/column).

Figure 9-4: Overlapping Regions–1

Multiple Regions Driving a Global Bus
If multiple regions drive a global bus signal make sure that there is some
overlap between all the regions that drive the signal.

Row Overlap

LO

Chapter 9: Design Planning for Vendors Handling Xilinx Critical Paths (Design Planner)

9-14 Fpga User Guide, December 2005

Handling Xilinx Critical Paths (Design
Planner)

These sections describe the following guidelines for critical paths:

• Splitting a Critical Path into Multiple Regions

• Creating Smaller Regions for Long Critical Paths

• Handling Critical Paths with High Fanout Nets

• Handling Critical Paths with Cascading Cells or Carry Chain Logic

• Handling Critical Paths with Bit Slicing

• Handling Critical Paths with Pipelining

• Handling Designs with Multiple Critical Paths

• Handling Critical Paths with Large Multiplexers

Splitting a Critical Path into Multiple Regions
If a critical path contains logic that should be placed very closely together,
you can try to split a critical path into multiple regions that contain common
logic. For instance, if a critical path ends with a large multiplexer feeding a
register, you might find that the large mux is decomposed and spread out
throughout the region. To prevent the mux from spreading, you can split the
region into two, then constrain the mux and the register to one region and the
rest of the logic to the other region.

Figure 9-5: Splitting a Critical Path into Multiple Regions

logic

Include mux with register
in another region

Place this logic
into one region

Handling Xilinx Critical Paths (Design Planner) Chapter 9: Design Planning for Vendors

Fpga User Guide, December 2005 9-15

Creating Smaller Regions for Long Critical Paths
For the most optimal timing results, you need to divide the logic of the
modules containing the critical path into smaller regions. Assign logic to each
of the regions so that it follows the dataflow of the design.

For example, say the critical path is contained in modules A, B, and C of the
design. Determine the start point of the critical path in module A and where it
ends in module A. Assign this portion of the critical path to one region. Deter-
mine the start point of the critical path in module B and where it ends in
module B and assign this portion of the critical path to a second region. Then,
determine the start point of the portion of the critical path that is contained in
module C. Assign this portion of the critical path to a third region.

Figure 9-6: Place Critical Path into Smaller Regions

Handling Critical Paths with High Fanout Nets
The Virtex family of devices contain secondary routing buffers on the first and
last CLB rows of the device. When a critical path contains a design with high
fanout nets, it is advisable to place that critical path in a region that includes
the first or last CLB row near the middle column of the device. (The secondary
routing buffers can only be accessed from the first and last CLB row close to
the vertical center of the device.)

Critical path
start point

A

CP
logic

CP
logic

CP
logic

CP end point

Determine start/end Determine start point

Assign to one region Assign to third region

B C

Assign to second region

R3

Determine end point

R2R1

LO

Chapter 9: Design Planning for Vendors Handling Xilinx Critical Paths (Design Planner)

9-16 Fpga User Guide, December 2005

Figure 9-7: Critical Paths with High Fanout Nets

Extracting Enable Registers
For Design Planner software to effectively extract an enable register, both the
mux and register must be kept together when applying design planning. If a
register of a critical path is fed by a mux that is outside of the critical path,
you must constrain the mux along with the register and the rest of the critical
path logic into the same region.

Figure 9-8: Extracting Enable Register

logic

critical
path

Include this mux in same
region with the critical path
to extract enable register

Handling Xilinx Critical Paths (Design Planner) Chapter 9: Design Planning for Vendors

Fpga User Guide, December 2005 9-17

Also, if the critical path is too large to fit into one block region so that you
need to divide the path among two or more regions, place the mux along with
the register into the same region to ensure that the enable register is
extracted.

Figure 9-9: Extracting Enable Register with Large Critical Path

Handling Critical Paths with Cascading Cells or Carry
Chain Logic

If a critical path contains either cascading cells or carry chains, the Carry
Chain Design Rule Check (DRC) ensures that the region is large enough to
support the cascade/carry chain assignment of:

• 2 bit slices/CLB for Virtex-E and Virtex

• 4 bit slices/CLB for Virtex-4, Virtex-II Pro, Virtex-II, and Spartan-3

For example, an 8-bit adder requires that you create a region with at least 4
CLBs in the vertical direction to accommodate the carry chain for Virtex and
Virtex-E designs. If a region is not large enough, the Xilinx place-and-route
tool fails.

The Carry Chain DRC checks will be implemented after you have created a
region and have assigned cascade/carry chain logic to that region:

• The Design Plan View displays:

– MaxChainLength — The length of the longest cascade/carry chain that
can fit into the specified region. This maximum length accommodates
all cascade/carry chains less than or equal to this length.

logic

critical path too large
for one region

Include mux with register
in the same region to
extract enable register

LO

Chapter 9: Design Planning for Vendors Handling Xilinx Critical Paths (Design Planner)

9-18 Fpga User Guide, December 2005

– MaxChainLength Use — The length of the longest cascade/carry chain
assigned to the region, after you run Estimate Regions for the specified
region from the Design Plan Editor.

– MaxChainLength Use (%) — The percentage of the length of the longest
cascade/carry chain assigned to the region and the longest
cascade/carry chain that fits into the region, after you run Estimate
Regions for the specified region from the Design Plan Editor. This
percentage can show that the cascade/carry chain exceeds its
capacity to fit into the region.

• A Carry Chain DRC violation changes the color of the region area in the
Design Plan Editor to orange. You must then resize the region to avoid a
place and route failure.

See Design Plan Editor with Cascade/Carry Chain on page 9-18.

Figure 9-10: Design Plan Editor with Cascade/Carry Chain

Design Plan EditorDesign Plan View

Handling Xilinx Critical Paths (Design Planner) Chapter 9: Design Planning for Vendors

Fpga User Guide, December 2005 9-19

Handling Critical Paths with Bit Slicing
If the critical path involves a datapath that is too wide for one region, you can
use bit-slicing to divide the datapath.

For example, if a 16-bit multiplexer is too large to fit in one region, then:

• Use bit-slicing to divide the datapath.

• Replicate the register and place with the common logic of the critical
path.

• Place one half of the critical path in one region and the other half of the
critical path in another region.

Figure 9-11: Critical Path with Bit Slicing

logic 8

8

Critical path
starting point

R2

R1

logic

Use bit slicing

16 1616

8

16

R2

reg
_1

CP1

reg
_2

8

8

8

8

CP2 start point (replicate reg_1)

R1

16

LO

Chapter 9: Design Planning for Vendors Handling Xilinx Critical Paths (Design Planner)

9-20 Fpga User Guide, December 2005

Handling Critical Paths with Pipelining
If the critical path contains a register that follows either a multiplier or ROM
that is pipelined, then create two regions:

• Place the critical path starting point and logic in one region.

• Place the multiplier or ROM with the pipeline register in another region.

Figure 9-12: Critical Path with Pipelining

Handling Designs with Multiple Critical Paths
If a design has multiple critical paths that do not share the same start and
end points, place them in separate regions.

If a design has multiple critical paths that share the same end point, try to
constrain only the critical path common logic in a separate region and
constrain any unrelated logic that is connected to each starting point regis-
ters in separate regions, respectively. Place the common logic region between
these regions to minimize their distances.

logic

Place multiplier with pipelining in one region (R2)

Place critical path

and logic in one region (R1)
starting point and

R1 R2

Handling Xilinx Critical Paths (Design Planner) Chapter 9: Design Planning for Vendors

Fpga User Guide, December 2005 9-21

Figure 9-13: Multiple Critical Paths with Same End Point

Handling Critical Paths with Large Multiplexers
If the critical path contains a large multiplexer (MUX), make sure that the
region containing the MUX also includes the control logic for that MUX.

Figure 9-14: Critical Paths Containing Large Multiplexers

Critical path
ending point

Critical paths
starting points

logic

logic

logic

CP1

CP2 R1 R2 R3

R2

R1

R3

Place common logic
into center region

Place in same region

LO

Chapter 9: Design Planning for Vendors Handling Xilinx Black Boxes (Design Planner)

9-22 Fpga User Guide, December 2005

Handling Xilinx Black Boxes (Design
Planner)

The following topics describe handling Xilinx black boxes in the Design
Planner.

• Design Planning Xilinx Black Boxes on page 9-22

• Creating Block RAM Regions on page 9-25

• Assigning to Block RAM Regions on page 9-27

Design Planning Xilinx Black Boxes
You can design plan black boxes as follows:

• When you use the Design Plan Editor to assign a black box to a region,
then placement constraints will be written to the .ncf file for that black
box. Synplify Premier software will also search for the syn_resources
attribute, to determine the type of black box (LUTs, registers, or block
RAMs) and the size of the black box module (number of LUTs, registers,
or block RAMs) to constrain.

The Design Planner software supports the following types of black box:

– Contains only LUTs.

– Contains only block RAMs.

– If you do not define the black box, by default, it is treated as a logic
only black box.

– Cannot support a mixed black box (logic and block RAMs in the same
module). If this occurs, a warning message is displayed and
constraints are not written to the.ncf file.

• Another way you can constrain a black box to a specific CLB location or
region is by placing a constraint in the user constraint file (.ucf) for the
Xilinx place-and-route tool.

– Instantiate the black box.

– If a critical path contains a black box, then place the black box in one
region and the logic portion in another region as shown below.

Handling Xilinx Black Boxes (Design Planner) Chapter 9: Design Planning for Vendors

Fpga User Guide, December 2005 9-23

Figure 9-15: Critical Path Contains Black Box

logicBlack Box

Place logic portion
in R2

in R1
Place element

R1 R2

LO

Chapter 9: Design Planning for Vendors Handling Xilinx Block RAMs (Design Planner)

9-24 Fpga User Guide, December 2005

Handling Xilinx Block RAMs (Design
Planner)

If a critical path includes block RAMs, make sure that the region containing
the critical path is close to or includes a sufficient number of block RAMs.
The Design Planner tool allows you to create block RAM regions in the Design
Plan Editor. This can help you visualize where block RAMs are placed on the
device.

Block RAM support includes the following:

• The target FPGA device footprint displays the following resources: CLBs,
Block RAMs (BRAMs), and I/O pins.

– CLBs have their unique coordinate system starting at location
(row=0, col=0). On Virtex-4, Virtex-II Pro, Virtex-II, and Spartan-3
devices, CLBs are subdivided into quadrants with row and column
labels reflecting two units per CLB.

– Block RAMs have their unique coordinate system starting at location
(row=0, col=0).

– A tool tip displays the memory size and coordinate location of block
RAMs when you drag the cursor over these locations.

– Refer to Pin Assignments on page 7-6 for information on I/O pins.

• The height and width of BRAMs resemble the images viewed from the
Xilinx place-and-route tool. For example, the height of BRAMs:

– Span 4 CLB rows (8 slices) on Virtex-4, Virtex-II Pro, Virtex-II, and
Spartan-3 devices

– Span 4 CLB rows on Virtex and Virtex-E devices

Handling Xilinx Block RAMs (Design Planner) Chapter 9: Design Planning for Vendors

Fpga User Guide, December 2005 9-25

Creating Block RAM Regions
Use the Design Plan Editor to create block RAM regions. Block RAM regions
can:

• Consist only of CLBs, only block RAMs, or a combination of CLBs and
block RAMs.

• Overlap with each other.

• Calculate region-to-region delay based on the CLB location. For regions
consisting only of block RAMs, region-to-region delay can be calculated
from a representative CLB location.

To create a block RAM region:

1. Place the cursor over the Design Plan Editor view and click the right
mouse button to display a dialog box.

2. Select Add->Block Region from the dialog box.

3. Press the left mouse button while dragging the cursor across the desired
rows and columns and then release the mouse button.

A blue rectangle appears displaying the region you created.

Note: You can also move or resize block RAM regions. Any changes
made to the region are reflected in the Design Planner view.

A tool tip displays the coordinate locations for CLBs and BRAMs and the
capacity of the region, when you drag the cursor over these locations. See the
following example.

Figure 9-16: Creating Block RAM Regions

LO

Chapter 9: Design Planning for Vendors Handling Xilinx Block RAMs (Design Planner)

9-26 Fpga User Guide, December 2005

The following tips are recommended when you create block RAM regions:

• Select a block RAM that is within or close-to the region containing the
rest of the critical path logic.

• If a critical path contains several RAMs, place block RAMs in one region
and place standard logic in another region. See Critical Path Contains
Block RAMs (Case 1) on page 9-26.

Figure 9-17: Critical Path Contains Block RAMs (Case 1)

• If the block RAMs span all CLB rows, select region R2 instead of R1.
Region R2 allows more area for routing. See Critical Path Contains Block
RAMs (Case 2) on page 9-26.

Figure 9-18: Critical Path Contains Block RAMs (Case 2)

logicRAM 1

Place logic portion
in R2

in R1
Place element

RAM 2

in R1
Place element

R1 R2

R1 R2

Handling Xilinx Block RAMs (Design Planner) Chapter 9: Design Planning for Vendors

Fpga User Guide, December 2005 9-27

Assigning to Block RAM Regions
When assigning RAM modules to block RAM regions:

• You might want to show rats nesting for block RAM regions. Refer to
Displaying Rats Nesting on page 7-15.

• Drag and drop the RAM modules from the HDL Analyst RTL view to the
Design Planner view.

Implementation of Block RAM Assignments
Block RAMs will be implemented as follows:

• Design Planner software automatically recognizes inferred block RAMs.

– Make sure the register driving the RAM and the block RAM are
assigned to the same region.

– For Virtex-II and Spartan-3 designs, make sure the block RAM and its
output register are assigned to the same region.

• For instantiated block RAMs with non-Xilinx primitive names, you must
specify the syn_resources "Blockrams=value" attribute in the HDL
source code.

Resolving syn_ramstyle Attribute Conflicts
Refer to the following table to resolve syn_ramstyle attribute conflicts when
assigning RAM logic to block RAM regions. Conflicts that occur either from
the HDL code or SCOPE editor are resolved similarly.

Block RAM Description HDL Code /
SCOPE Editor

Design Plan Editor

Inferred for block RAM block_ram Honors block_ram and constrains
the logical RAM to the block RAM
region.

Mapped to registers registers Honors registers, floats RAM logic,
generates a warning.

LO

Chapter 9: Design Planning for Vendors Handling Xilinx Block RAMs (Design Planner)

9-28 Fpga User Guide, December 2005

Conflicts that occur when assigning RAM logic to a particular type of block
RAM region are resolved as follows:

• Block RAMs specified without an explicit type and assigned to a block
RAM region will be implemented as block RAMs. You must estimate the
block RAM region to ensure that block RAMs can fit into that region.

– If block RAMs contain standard logic and are assigned to pure block
RAM regions, then that logic is not constrained and can float
anywhere on the device. You must estimate the block RAM region to
ensure all logic can fit into that region.

– If block RAMs do not contain standard logic and are assigned to a
CLB only region, then the block RAM logic is not constrained and can
float anywhere on the device.

After Implementing Block RAM Regions
After you assign logical RAMs to block RAM regions, the following occur:

• The resulting implementation from the Design Plan Editor is saved to a
Design Plan file (.sfp).

• Region estimations can be run. If a violation occurs the color of the block
RAM region area in the Design Plan Editor changes to orange.

• After you run area estimations, block RAM utilization is displayed in the
Design Plan view. The utilization report shows: dimensions of CLBs and

Inferred for select_ram select_ram Honors select_ram, floats RAM logic,
generates a warning.

Inferred for no_rw_check no_rw_check Honors no_rw_check and constrains
logical RAM to the block RAM region.

Attribute conflicts between
HDL code and SCOPE
editor

Attributes specified in the SCOPE
editor typically takes precedence
over the HDL code when conflicts
exist. It is highly recommended you
avoid creating any attribute
mismatches in the HDL code and
SCOPE editor.

Block RAM Description HDL Code /
SCOPE Editor

Design Plan Editor

Handling Xilinx Block RAMs (Design Planner) Chapter 9: Design Planning for Vendors

Fpga User Guide, December 2005 9-29

BRAMs, number of BRAMs, BRAM usage, and percentage of BRAM
usage for each block RAM region.

• Right-click and select Show/Hide columns... from the Select Columns dialog
box to enable these options in the Design Plan view.

Figure 9-19: Block RAM Utilization from the Design Planner

• Location constraints for block RAM regions are written to a Xilinx netlist
constraint file (.ncf). The Xilinx place-and-route tool should recognize
and honor these constraints.

Design Plan View Design Plan Editor

LO

Chapter 9: Design Planning for Vendors Handling Block Multipliers (Design Planner)

9-30 Fpga User Guide, December 2005

Handling Block Multipliers (Design
Planner)

The following topics describe handling Xilinx block multipliers.

• Block Multiplier Support on page 9-30

• Creating Block Mult Regions on page 9-30

• Assigning to Block Mult Regions on page 9-31

• Region Utilization on page 9-31

Block Multiplier Support
If a critical path includes multipliers, make sure that the region containing
the critical path is close to or includes a sufficient number of block Mult
resources. The Design Planner tool allows you to create block Mult regions in
the Design Plan Editor. This can help you visualize where block Mults are
placed on the device. Block Mult support provides the following:

• Resources displayed on Xilinx Virtex-4, Virtex-II Pro, Virtex-II, and
Spartan-3 devices.

• You can move the mouse cursor over any resource on the device to
display a tool tip identifying its description.

• Block Mult resources have their unique coordinate system starting at
location (row=0, col=0).

• You can create a block Mult region and assign logic to the region. There-
after, you can display block Mult capacity and utilization results for
these resources.

Creating Block Mult Regions
Use the Design Plan Editor to create block Mult regions. Block Mult regions
can:

• Consist only of CLBs, only block Mults, or a combination of CLBs and
block Mults.

Handling Block Multipliers (Design Planner) Chapter 9: Design Planning for Vendors

Fpga User Guide, December 2005 9-31

• Overlap with each other.

• Calculate region-to-region delay based on the CLB location. For regions
consisting only of block Mults, region-to-region delay can be calculated
from a representative CLB location.

To create a block Mult region:

1. Place the cursor in the Design Plan Editor, right-click and select Add-
>Block Region from the popup menu.

2. Press the left mouse button while dragging the cursor across the desired
rows and columns and then release the mouse button.

A blue rectangle appears displaying the region you created.

Note: You can also move or resize block Mult regions. Any changes
made to the region are reflected in the Design Plan view.

Assigning to Block Mult Regions
When assigning multiplier instances to block Mult regions:

• You might want to show rats nesting for block Mult regions. Refer to
Displaying Rats Nesting on page 7-15.

• To assign multipliers, drag and drop the multiplier instances from the
HDL Analyst RTL view to the Design Plan Editor.

Region Utilization
The Design Planner software calculates resource capacity and usage by logic
assigned to the region, and displays this information in the Design Plan view.
To update and view the area of a region reflecting the actual utilization,
perform the following:

1. Right-click on the device in the Design Plan Editor, then select Estimate
Regions or Estimate All Regions from the popup menu. As the job runs, the
region is greyed-out and you can:

LO

Chapter 9: Design Planning for Vendors Handling DSP Blocks (Design Planner)

9-32 Fpga User Guide, December 2005

– View a label placed in the upper-left corner of the region displaying
the elapsed time of the job. This label is removed when the estimation
job completes. Est Pending appears in the upper-left corner of all other
regions waiting for region estimation.

– View the status in the Tcl Script window.

– Or, select Run->Job Status.

2. Click on Regions in the Design Plan Hierarchy Browser. This should
update information for the rgn in the Design Plan view with statistics for
the assigned logic.

3. To choose desired options to report, right-click in the Design Plan view
and select Show/Hide Columns from the pull-down menu. You can display
region usage for the following from the Select Columns dialog box:
BlockMults, Block Mult Use, and Block Mult Use (%).

Handling DSP Blocks (Design Planner)
The DSP48 slices support many independent functions which include any of
the following:

• Multipliers

• Multiplier accumulators (MACs)

• Multipliers followed by an adder

• Three-input adders

• Wide bus multiplexers

• Magnitude comparators

• Wide counters

The Design Planner tool allows you to create DSP block regions on the device.
You can assign multipliers, for example, to this DSP region to help constrain
the multiplier and its surrounding logic to this region for synthesis.

Handling DSP Blocks (Design Planner) Chapter 9: Design Planning for Vendors

Fpga User Guide, December 2005 9-33

The following figure shows a section of the floorplan for a Virtex-4 device,
where a multiplier is assigned to the mult region and its surrounding logic is
assigned to regions rgn1 to rgn5.

After you run synthesis, the HDL Analyst Technology view shows that the
multiplier and its surrounding logic are constrained to the DSP48 module.

DSP Mult Region

Surrounding Logic Block Regions
(rgn1 - rgn5)

LO

Chapter 9: Design Planning for Vendors Handling DSP Blocks (Design Planner)

9-34 Fpga User Guide, December 2005

Handling Xilinx IPs (Design Planner) Chapter 9: Design Planning for Vendors

Fpga User Guide, December 2005 9-35

Handling Xilinx IPs (Design Planner)
Synplify Premier offers a methodology to facilitate placement and timing
controls for white boxes/IPs to improve quality of results (QoR) for the design.
A white box IP is a RTL module contained in a HDL file and which is accom-
panied by a Xilinx netlist file that defines the contents of the IP. Synplify
Premier physical synthesis supports the following Xilinx netlist file formats:

• .edn — Xilinx .edif netlist format used in the Intrusive IP flow.
(See Intrusive IP Flow on page 9-35.)

• .ngc — encrypted Xilinx netlist format used in the Macro IP flow.
(See Macro IP Flow on page 9-37.)

• .ngo — encrypted Xilinx netlist format used in the Macro IP flow.
(See Macro IP Flow on page 9-37.)

However, physical synthesis does not support black boxes and will generate
an error message. A black box is a RTL module contained in a HDL file with
only a wrapper specifying its input and output ports. The content of the black
box is not defined.

Intrusive IP Flow
The intrusive IP flow allows the Synplify Premier software to perform logic and
physical optimizations for the components contained within the IP. You must
add the Xilinx netlist files (.edn) that include the contents of the IPs to your
project. You can optionally include a design plan file (.sfp) which constrains
the IP components to specified placement locations. The intrusive IP flow is
the default mode to run physical synthesis providing the most optimal QoR
improvements.

Note: This intrusive IP flow only supports Virtex-4, Virtex-II Pro, and
Spartan-3 technologies when you run the Synplify Premier
Graph-based Physical Synthesis feature.

The following figure shows the Xilinx netlist file added to the Project file.

LO

Chapter 9: Design Planning for Vendors Handling Xilinx IPs (Design Planner)

9-36 Fpga User Guide, December 2005

You can run physical synthesis for the following intrusive IP flows with Xilinx
.edn netlist files:

• Without a design plan file

This intrusive IP flows lets the Synplify Premier software determine
optimizations and placements for all the logic in the IP.

• With a soft region constraint for the IP

This intrusive IP flow lets the Synplify Premier software move or tunnel
logic across region boundaries to improve timing. You must create this
IP region constraint before you run physical synthesis. See Creating IP
Region Constraints on page 9-38.

Add Xilinx
Netlist File
(.edn)
to Project

Handling Xilinx IPs (Design Planner) Chapter 9: Design Planning for Vendors

Fpga User Guide, December 2005 9-37

• With a hard region constraint for the IP

This intrusive IP flow prevents the Synplify Premier software from
moving or tunneling out logic inside the region boundaries to improve
timing. However, logic not originally assigned to the region can be moved
inside the region during optimizations. You must create this IP region
constraint before you run physical synthesis. See Creating IP Region
Constraints on page 9-38.

Macro IP Flow
The macro IP flow forces the Synplify Premier software to leave the contents of
the IP untouched. Only a timing model is generated for the IP during
synthesis. You must add the Xilinx netlist files (.ngc/.ngo) that include the
contents of the IPs to your project. You must also include a design plan file
(.sfp) which constrains the IP components to specified placement locations.

The following figure shows the Xilinx netlist file added to the Project file.

Add Xilinx
Netlist File
(.ngo/.ngc)
to Project

LO

Chapter 9: Design Planning for Vendors Handling Xilinx IPs (Design Planner)

9-38 Fpga User Guide, December 2005

When you run physical synthesis for the macro IP flow with a Xilinx .ngc or
.ngo netlist file:

• Without a design plan file

This macro IP flow is not supported for physical synthesis and will
generate an error message.

• With an IP block region constraint for the IP

This macro IP flow preserves the contents of the IP to the region
boundary. This IP flow prevents the Synplify Premier software from
moving or tunneling out logic outside the region boundary, as well as,
placing logic outside the region into this region boundary. The Synplify
Premier software preserves the hierarchy of the IP and prevents any
pruning or optimizing of instances inside the IP. You must create this IP
region constraint before you run physical synthesis. See Creating IP
Region Constraints on page 9-38.

Creating IP Region Constraints
You can create region constraints for both the intrusive and macro IP flows,
before you can run physical synthesis. It is recommended that you run
through a first-pass logic synthesis flow to determine the size, shape, and
resources required for the region constraint you need to create for physical
synthesis.

Then, you can use design planning to create a region for the IP to improve
QoR for the design. To do this, perform the following:

1. Open the Design Planner. To do this, you can either:

– Click on the New Design Plan icon ().

– Select File->New from the Project menu.

2. In the New dialog box, select the design plan file type and specify a
Design Plan file name and file location directory to add to your project.

Handling Xilinx IPs (Design Planner) Chapter 9: Design Planning for Vendors

Fpga User Guide, December 2005 9-39

3. In the Design Plan Editor pane of the Design Planner view, create a
region by doing either of the following:

– Right-click and select Add->Block Region.

– Use the left-mouse button to draw a region at the desired location.

Good design planning is required to ensure better QoR improvements.
Make sure to place regions so that they are near required resources,
such as I/O ports or contain RAMs if necessary. Do not place regions
where they might create an obstruction for the rest of the design. Design
planning is an iterative process to ensure that IP regions are placed in an
optimal location.

4. Assign IP logic to this region by selecting the IP module in the RTL
Analyst view and dragging it to the desired location in the Design Plan
Editor.

5. Specify the type of constraint to apply to this region. First select the IP
region. Then, right-click and select Region Type and one of the following
options:

– Soft (Tunneling On)
This is the default region type for the IP flows. The following Tcl
command is saved to the design plan file:

assign_property syn_rgn_tunnel_on {region_name} 1

– Hard (Tunneling Off)
The following Tcl command is saved to the design plan file:

Design Planner View

IP RegionIP Module

Design Plan EditorDesign Plan Hierarchy View Design Plan View

LO

Chapter 9: Design Planning for Vendors Handling Xilinx IPs (Design Planner)

9-40 Fpga User Guide, December 2005

assign_property syn_rgn_tunnel_off (region_name} 1

– IP Block
The following Tcl command is saved to the design plan file:

assign_property syn_rgn_ip_block {region_name} 1

See Intrusive IP Flow on page 9-35 and Macro IP Flow on page 9-37 for a
description of these options.

6. Save the Design Plan file (.sfp).

7. Run physical synthesis.

Fpga User Guide, December 2005 10-1

C H A P T E R 1 0

Design Flows and Process
Optimization

This chapter covers topics that can help the advanced user improve produc-
tivity and inter operability with other tools. It includes the following:

• Using Batch Mode, on page 10-2

• Working with Tcl Scripts and Commands, on page 10-4

• Automating Flows with synhooks.tcl, on page 10-10

• The VIF Formal Verification Flow, on page 10-13

• Running Place-and-Route After Synthesis, on page 10-21

• MultiPoint Synthesis, on page 10-28

• The Altera LogicLock Flow, on page 10-39

• The Xilinx MultiPoint Synthesis Flow, on page 10-48

• Using the Xilinx Modular Flow, on page 10-54

• Integrating with Third-Party Software, on page 10-70

• Working with the Identify RTL Debugger, on page 10-72

LO

Chapter 10: Design Flows and Process Optimization Using Batch Mode

10-2 Fpga User Guide, December 2005

Using Batch Mode
Batch mode is a command-line mode where you run scripts from the
command line. You might want to set up multiple synthesis runs with a
batch script. You can run in batch mode if you have a floating license, but
not with a node-locked license.

Batch scripts are in Tcl format. For more information about Tcl syntax and
commands, see Working with Tcl Scripts and Commands, on page 10-4.

This section describes the following operations:

• Running Batch Mode on a Project File, next

• Running Batch Mode with a Tcl Script, on page 10-3

Running Batch Mode on a Project File
Use this procedure to run batch mode if you already have a project file set up.
You can also run batch mode from a Tcl script, as described in Running Batch
Mode with a Tcl Script, on page 10-3.

1. Make sure you have a project file (.prj) set up with the implementation
options. For more information about creating this Tcl file, see Creating a
Tcl Synthesis Script, on page 10-5.

2. From a command prompt, go to the directory where the project files are
located, and type one of the following, depending on which project you
are using:

synplify -batch project_file_name.prj
synplify_pro -batch project_file_name.prj
synplify_premier -batch project_file_name.prj

The software runs synthesis in batch mode. Use absolute path names or
a variable instead of a relative path name.

The software returns the following codes after the batch run:

– 0 - ok

– 2 - error

– 3 and above - abnormal exit (but no details).

Using Batch Mode Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-3

3. If there are errors in the source files, check the standard output for
messages. On UNIX systems, this is generally the monitor; on Windows
systems, it is the sdout.log file.

4. After synthesis, check the result_file.srr log file for error messages
about the run.

Running Batch Mode with a Tcl Script
The following procedure shows you how to create a Tcl batch script for
running synthesis. If you already have a project file set up, use the procedure
described in Running Batch Mode on a Project File, on page 10-2.

1. Create a Tcl batch script. See Creating a Tcl Synthesis Script, on
page 10-5 for details.

2. Save the file with a *.tcl extension to the directory that contains your
source files and other project files.

3. From a command prompt, go to the directory with the files and type the
following:

synplify -batch Tcl_script.tcl
synplify_pro -batch Tcl_script.tcl
synplify_premier -batch Tcl_script.tcl

The software runs synthesis in batch mode. The synthesis (compilation
and mapping) status results and errors are written to the log file
result_file.srr for each implementation. The synthesis tool also
reports success and failure return codes.

4. Check for errors.

– For source file or Tcl script errors, check the standard output for
messages. On UNIX systems, this is generally the monitor in addition
to the stdout.log file; on Windows systems, it is the stdout.log file.

– For synthesis run errors, check the result_file_name.srr log file.
The software uses the following error codes:

0 - ok

2 - error

3 and above - abnormal exit (but no details).

LO

Chapter 10: Design Flows and Process Optimization Working with Tcl Scripts and Commands

10-4 Fpga User Guide, December 2005

Working with Tcl Scripts and Commands
The software uses extensions to the popular Tcl (Tool Command Language)
scripting language to control synthesis and for constraint files. See the
following for more information:

• Crossprobing from the Tcl Script Window, next

• Using Tcl Commands and Scripts, on page 10-4

• Generating a Job Script, on page 10-5

• Creating a Tcl Synthesis Script, on page 10-5

• Using Tcl Variables to Try Different Clock Frequencies, on page 10-7

• Using Tcl Variables to Try Several Target Technologies

• Running Bottom-up Synthesis with a Script, on page 10-9

You can also use synhooks Tcl scripts, as described in Automating Flows with
synhooks.tcl, on page 10-10.

Crossprobing from the Tcl Script Window
To crossprobe from the Tcl Script window (not a Synplify feature) to the
source code, click on the Warnings tab and then double-click a line in the Tcl
window. The software opens the relevant source code file and highlights the
corresponding code. Crossprobing from the Tcl script window is useful for
debugging error messages.

Using Tcl Commands and Scripts
1. To get help on Tcl syntax, do any of the following:

– Refer to the online help (Help -> Tcl Help) for general information about
Tcl syntax.

– Refer to the Reference Manual for information about the synthesis
commands.

– Type help * in the Tcl window for a list of all the Tcl synthesis
commands. The Tcl window is not available in Synplify.

Working with Tcl Scripts and Commands Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-5

– Type help <command_keyword> in the Tcl window to see the syntax for
the command.

2. To run a Tcl script, do the following:

– Create a Tcl script. Refer to Generating a Job Script, on page 10-5 and
Creating a Tcl Synthesis Script, on page 10-5.

– Run the Tcl script by either typing source Tcl_scriptfile in the Tcl
script window, or selecting File -> Run Tcl Script, selecting the Tcl file and
clicking Open.

The software runs the selected script and executes the commands in it.
For more information about Tcl scripts, refer to the following sections.

Generating a Job Script
You can record Tcl commands from the interface and use it to generate job
scripts.

1. In the Tcl script window, type recording -file logfile to write out a Tcl
log file.

2. Work through a synthesis session.

The software saves the commands from this session into a Tcl file that
you can use as a job script, or as a starting point for creating other
Tcl files.

Creating a Tcl Synthesis Script
Tcl scripts are text files with a *.tcl extension. You can use the graphic user
interface to help you create a Tcl script. Interactive commands that you use
actually execute Tcl commands, which are displayed in the Tcl window as
they are run. You can copy this text in the Tcl window and paste it into a text
file that you build to run as a Tcl script. For example:

add_file -verilog "prep2.v"
set_option -technology STRATIX
set_option -part EP1SGX40D
set_option -package FC1020

project -run

LO

Chapter 10: Design Flows and Process Optimization Working with Tcl Scripts and Commands

10-6 Fpga User Guide, December 2005

The following procedure covers general guidelines for creating a synthesis
script from scratch.

1. Use a text file editor or select File->New, click the Tcl Script option and type
a name for your Tcl script.

2. Start the script by specifying the project with the project -new
command. For an existing project, use load project.prj.

3. Add files. This may not be needed for an existing project.

– Add source files with add_file -vhdl or add_file -verilog. Make
sure the top-level file is last:

add_file -vhdl "statemach.vhd"
add_file -vhdl "rotate.vhd"
add_file -vhdl "memory.vhd"
add_file -vhdl "top_level.vhd"

– Add constraint files with constraints and vendor-specific attributes.
See Using a Text Editor for Constraint Files, on page 3-62 for details
about this file.

add_file -constraint "design.sdc"

4. Set the design synthesis controls and the output:

– Set vendor-specific set_option controls as needed. See the
appropriate vendor chapter in the Reference Manual for details.

set_option -technology VIRTEX2
set_option -part XC2V40
set_option -package CS144
set_option -speed_grade -6

– Use the set_option command for implementation options.

set_option -symbolic_fsm_compiler true
set_option -frequency 30.0

– Set the output file information with project -result_file and
project -log_file.

5. Set the file and run options:

– Save the project with project -save.

– Run the project with project -run.

– Open the RTL and Technology views:

Working with Tcl Scripts and Commands Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-7

open_file -rtl_view
open_file -technology_view

6. Check the syntax.

– Check case, because Tcl is case-sensitive.

– Start all comments with a hash mark (#).

– Enclose all pathnames and filenames in double quotes.

– Always use a forward slash (/) in directory and pathnames, even on
the PC.

Using Tcl Variables to Try Different Clock Frequencies
To create a single script for multiple synthesis runs with different clock
frequencies, you need to create a Tcl variable for the different settings you
want to try. For example, you might want to try different target technologies.

1. To create a variable, use this syntax:

set variable_name {
first_option_to_try
second_option_to_try
...}

2. Create a foreach loop that runs through each option in the list, using
the appropriate Tcl commands. The following example shows a variable
set up to synthesize a design with different frequencies. It also creates a
separate log file for each run.

set try_freq {
85.0
90.0
92.0
95.0
97.0
100.0

)
foreach frequency $try_freq {

set_option -frequency $frequency
project -log_file $frequency.srr
project -run}

Tcl commands that set the
frequency, create separate log files
for each run, and run synthesis

Foreach loop

Set of frequencies
to try

LO

Chapter 10: Design Flows and Process Optimization Working with Tcl Scripts and Commands

10-8 Fpga User Guide, December 2005

The following code shows the complete script:

project -load "design.prj"
set try_these {

20.0
24.0
28.0
32.0
36.0
40.0

}

foreach frequency $try_these {
set_option -frequency $frequency
project -log_file $frequency.srr
project -run
open_file -edit_file $frequency.srr

}

Using Tcl Variables to Try Several Target Technologies
This technique used here to run multiple synthesis implementations with
different target technologies is similar to the one described in Using Tcl
Variables to Try Different Clock Frequencies, on page 10-7. As in that section,
you use a variable to define the target technologies you want to try.

1. Create a variable called try_these with a list of the technologies.

set try_these {

ISPGDX APEX20K Virtex2 # list of technologies
}

2. Add a foreach loop that creates a new implementation for each
technology and opens the RTL view for each implementation.

foreach technology $try_these {
impl -add
set_option -technology $technology
project -run -fg
open_file -rtl_view

}

The following code example shows the script:

Working with Tcl Scripts and Commands Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-9

Open a new project, set frequency, and add files.
project -new
set_option -frequency 33.3
add_file -verilog "D:/test/simpletest/prep2_2.v"

Create the Tcl variable to try different target technologies.
set try_these

ISPGDX APEX20K Virtex2 # list of technologies
}

Loop through synthesis for each target technology.
foreach technology $try_these {

impl -add
set_option -technology $technology
project -run -fg
open_file -rtl_view

}

Running Bottom-up Synthesis with a Script
To run bottom-up synthesis, you create Tcl scripts for individual logic blocks,
and a script for the top level that reads the other Tcl scripts.

1. Create a Tcl script for each logic block. The Tcl script must synthesize
the block. See Creating a Tcl Synthesis Script, on page 10-5 for details.

2. Create a top-level script that reads the block scripts. Create the script
with the with project -new command.

3. Add the top-level data:

– Add source files with add_file -vhdl or add_file -verilog.

– Add constraint files with add_file -constraint.

– Set the top-level options with set_option.

– Set the output file information with project -result_file and
project -log_file.

– Save the project with project -save.

– Run the project with project -run.

4. Save the top-level script, and then run it using this syntax:

source “block_script.tcl”

LO

Chapter 10: Design Flows and Process Optimization Automating Flows with synhooks.tcl

10-10 Fpga User Guide, December 2005

When you run this, the entire design is synthesized, beginning with the
lower-level logic blocks specified in the sourced files, and then the top
level.

Automating Flows with synhooks.tcl
This procedure provides the advanced user with callbacks that let you
customize your design flow or integrate with other products. For example,
you might use the callbacks to send yourself email when a job is done (see
Automating Message Filtering with a synhooks Script, on page 4-14), or to
automatically copy files to another location after mapping. You can use the
callback functions to integrate with a version control system, or generate the
files needed to run formal verification with the Cadence Conformal tool. The
procedure is based on a file called synhooks.tcl, which contains the Tcl
callbacks.

1. Copy the synhooks.tcl file from the Synplicity <install_dir>/examples
directory to a new location.

You must copy the file to a new location so that it does not get
overwritten by subsequent product installations and you can maintain
your customizations from version to version. For example, copy it to
C:/work/synhooks.tcl.

2. Define an environment variable called SYN_TCL_HOOKS, and point it to
the location of the synhooks.tcl file.

3. Open the synhooks.tcl file in a text editor, and edit the file so that the
commands reflect what you want to do. The default file contains
examples of the callbacks, which provide you with hooks at various
points of the design process.

– Customize the file by deleting the ones you do not need and by adding
your customized code to the callbacks you want to use. The following
table summarizes the various design phases where you can use the
callbacks and lists the corresponding functions. For details of the
syntax, refer to Tcl synhooks File Syntax, on page 5-58 in the
Reference Manual.

Automating Flows with synhooks.tcl Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-11

– Save the file.

As you synthesize your design, the software automatically executes the
function callbacks you defined at the appropriate points in the design
flow.

Design Phase Tcl Callback Function

Project Setup Callbacks

Settings defaults for projects proc syn_on_set_project_template

Creating projects proc syn_on_new_project

Opening projects proc syn_on_open_project

Closing projects proc syn_on_close_project

Application Callbacks

Starting the application after
opening a project

proc syn_on_start_application

Exiting the application proc syn_on_exit_application

Run Callbacks

Starting a run. See Example:
proc syn_on_start_run, on
page 10-12.

proc syn_on_start_run

Ending a run proc syn_on_end_run

Key Assignment Callbacks

Setting an operation for Ctrl-
F8. See Example: proc
syn_on_press_ctrl_f8, on
page 10-12.

proc syn_on_press_ctrl_f8

Setting an operation for Ctrl-
F9

proc syn_on_press_ctrl_f9

Setting an operation for Ctrl-
F11

proc syn_on_press_ctrl_f11

LO

Chapter 10: Design Flows and Process Optimization Automating Flows with synhooks.tcl

10-12 Fpga User Guide, December 2005

Example: proc syn_on_start_run
The following code example gets selected files from the project browser at the
start of a run:

proc syn_on_start_run {compile c:/work/prep2.prj rev_1} {
set sel_files [get_selected_files -browser]

while {[expr [llength $sel_files] > 0]} {
set file_name [lindex $sel_files 0]
puts $file_name
set sel_files [lrange $sel_files 1 end]

}
}

Example: proc syn_on_press_ctrl_f8
The following code example gets all the selected files from the project browser
and project directory when the Ctrl-F8 key combination is pressed:

proc syn_on_press_ctrl_f8 {} {
set sel_files [get_selected_files]

while {[expr [llength $sel_files] > 0]} {
set file_name [lindex $sel_files 0]
puts $file_name
set sel_files [lrange $sel_files 1 end]

}
}

The VIF Formal Verification Flow Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-13

The VIF Formal Verification Flow
During synthesis, the Synplify Pro tool performs several sequential optimiza-
tions and design transformations to improve delay and area. These transfor-
mations make it difficult for a formal verification tool to match registers in the
result netlist with the corresponding registers in the source HDL (a prerequi-
site for verifying equivalence). To solve this, the Synplify Pro software provides
a Tcl file interface that lets you integrate with verification tools. This propri-
etary format is called the Verification Interface Format or VIF. This feature is
currently available for only Xilinx and Altera technologies.

This section describes the following:

• Overview of the VIF Flow, next

• Generating a VIF File, on page 10-14

• Generating a VIF File, on page 10-14

• Using a Tcl Script for VIF Conversion, on page 10-16

• Handling Equivalency Check Failures, on page 10-18

Overview of the VIF Flow
The Synplify Pro VIF flow is based on a Tcl file generated during synthesis.
This file has a .vif extension. It contains a vendor-independent list of the
design transformations performed during synthesis so that the verification
tool can do equivalence checking and match up the post-synthesis registers
with the original golden netlist. The following diagram summarizes the two
ways in which you can use the .vif file as input.

LO

Chapter 10: Design Flows and Process Optimization The VIF Formal Verification Flow

10-14 Fpga User Guide, December 2005

Generating a VIF File
1. In the Synplify Pro interface, select Project->Implementation Options and set

the following on the Device tab:

Figure 10-1: Device options for generating VIF output

– Set Technology to an Altera or Xilinx family that supports the VIF flow.

– Disable Retiming. This is an optional, but recommended step. Register
retiming optimizations are hard to verify. The disadvantage is that
you may lose performance when you disable retiming.

HDL

Synplify Pro

Verilog Netlist
(.vm or .vqm)

.vif

VIF Translator

Verification Model Library
from FPGA Vendor

Third-party Equivalence
Checking Tool

Third-party
Verification File

Disable Retiming

Enable
Verification Mode

The VIF Formal Verification Flow Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-15

– Enable the Verification Mode option. This is another optional step that
disables various sequential optimizations that can not be easily
verified; the inference of resettable SRLs for example. The trade-off
when you enable the Verification Mode option is that you may sacrifice
performance or area, because the optimizations are not performed.

The reason for disabling sequential optimizations is to make it easy
for the verification tool to sync up registers. Sequential optimizations
are hard to verify because registers are moved or optimized away. For
a list of VIF optimization commands, see step 4, below.

2. Go to the Implementation Results tab and enable Write Verification Interface
Format (VIF) File.

Figure 10-2: Implementation Results Options for Generating VIF Output

Note: For Altera designs, make sure to use .vqm as the output format,
not .vm.

3. Synthesize the design as usual.

The Synplify Pro software generates the .vif file and stores it in the
project/verif directory.

4. Check the .vif file to see how the optimizations were handled.

The following table lists the VIF commands used to map some synthesis
optimizations. For details of the command syntax, refer to Tcl VIF
Commands, on page 5-62 in the Reference Manual.

Optimization VIF Command

FSM register mapping vif_set_fsmreg

FSM state encoding vif_set_state_map

Register merging vif_set_merge

LO

Chapter 10: Design Flows and Process Optimization The VIF Formal Verification Flow

10-16 Fpga User Guide, December 2005

5. Use the .vif file as input to any formal verification tool that supports a Tcl
interface. Do one of the following:

– If you are using the Cadence Conformal tool, run the translation
script vif2conformal.tcl which is in the <install dir>/lib directory (see Using
a Tcl Script for VIF Conversion, on page 10-16 for details). This
translates the .vif file commands to commands for the Conformal tool.

– If your verification tool does not directly support VIF commands,
create a script that translates the .vif file commands to native Tcl
commands.

– If the verification tool supports the VIF commands in its Tcl
framework, use the file directly.

6. In the verification tool, use the information from the .vif file along with
the synthesis output when you check logic equivalence against the
golden netlist.

Using a Tcl Script for VIF Conversion
The Synplify Pro software includes Tcl scripts for use with the Cadence
Conformal tool. You can convert .vif files manually or automatically.

Manual VIF Conversion
The following procedure describes how to convert .vif files manually.

1. Source the vif2conformal.tcl file by typing one of the following commands in
the Synplify Pro Tcl window:

source <synplify pro install>/lib/vif2conformal.tcl

or

Register replication vif_set_equiv

Pruning of duplicate registers vif_set_constant, vif_set_transparent

Black boxes for undefined modules vif_set_map_point

Port direction changes vif_set_port_dir

Optimization VIF Command

The VIF Formal Verification Flow Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-17

source $LIB/vif2conformal.tcl

2. In the Tcl window, navigate to the verification folder containing the
<design>.vif file, and type the following command:

vif2conformal <design>.vif

The vif2conformal.tcl script runs on the <design>.vif file and translates the
information into Conformal side files (*.vtc, *.vsc, *.vmc, and so on). You
can now run Conformal using these files.

Automated VIF Conversion with Synhooks
You can create a script using the synhooks.tcl file (see Automating Flows with
synhooks.tcl, on page 10-10) to automate the generation of verification files. A
synhooks Tcl script example, synhooks_for_vif2conformal.tcl, has been provided
and is located in the install_dir/examples directory.

The synhooks_for_vif2conformal.tcl Tcl script example sets your environment to
automatically convert the Synplify Pro generated .vif file to Conformal-
specific side files at the end of each synthesis run. Use either of the following
methods to convert your files:

1. Set the environment variable SYN_TCL_HOOKS to point to the
synhooks_for_vif2conformal.tcl file.

For example:

SYN_TCL_HOOKS=install_dir/examples/synhooks_for_vif2conformal.tcl

2. Source the synhooks_for_vif2conformal.tcl file in the Synplify Pro Tcl window
to setup automatic conversion.

For example:

% source install_dir/examples/synhooks_for_vif2conformal.tcl

Note: For the second method, you will have to source the
synhooks_for_vif2conformal.tcl file every time a new project is started,
or the tool is reopened. The automatic conversion setup is lost
once you close a Synplify Pro project or restart the tool.

LO

Chapter 10: Design Flows and Process Optimization The VIF Formal Verification Flow

10-18 Fpga User Guide, December 2005

Handling Equivalency Check Failures
If your design fails the equivalency check, try the following tips and
techniques to debug the results.

• Check the log file report and fix the errors reported.

• Check the optimization mapping in the vif file. See step 4 of Overview of
the VIF Flow, on page 10-13 for a list of commands.

Protected Flow Support Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-19

Protected Flow Support
Synplicity’s protected flow specifies a secured flow for IP implementations.
The IP protection is achieved through the use of encryption/decryption
technology for the HDL (IP vendor), netlist, and bit-stream protection (Silicon
vendor).

IP Flow Diagram
The following diagram illustrates the IP flow for FPGAs using Synplicity
software.

LO

Chapter 10: Design Flows and Process Optimization Protected Flow Support

10-20 Fpga User Guide, December 2005

Using IP in a Design
To use an IP in a design, do the following

1. Add the vendor-encryted IP with your other files in the project.

The encrypted files must be encrypted by the vendor in the vendor
format, not encrypted by the user.

2. Synthesize the design.

The tool decrypts the IP and synthesizes it. The software then re-
encrypts the IP file for the place-and-route tool. For Lattice technologies,
the encryption can be decrypted by the place-and-route tool. For all
other technologies, the place-and-route tool cannot decrypt the
encrypted IP in the output netlist. The simulation netlists produced after
synthesis do not contain the details of the IP. You need the netlist from
the vendor to simulate the IP.

3. Analyze the design.

The software treats the IP as a black box in HDL Analyst views. The RTL
and Technology HDL Analyst tools do not allow you to view or push/pop
into encrypted code.

Running Place-and-Route After Synthesis Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-21

Running Place-and-Route After Synthesis
For Altera and Xilinx technologies, you can automatically create a place-and-
route implementation, and run the tool automatically after synthesis. You
can run place-and-route from within the tool or in batch mode. This feature is
only available in the Synplify Pro and Synplify Premier tools.

This section describes the following:

• Creating and Running P&R Projects, next

• Specifying Xilinx Place-and-Route Options, on page 10-23

• Backannotating Place-and-Route Data, on page 10-25

• Analyzing Physical Synthesis (Synplify Premier), on page 10-26

Creating and Running P&R Projects
For Altera and Xilinx technologies, the Synplify Pro and Synplify Premier tools
automatically create a place-and-route implementation after the synthesis
run is complete. The following steps show you how to create a new place-and-
route implementation manually.

1. To create a new place-and-route implementation do one of the following:

– Click on the New P& R... button from the Project view.

– Select a synthesis implementation, then right-click and select Add New
Place & Route Job from the popup menu.

The Add New Place and Route Job dialog box opens. The available options
vary slightly depending on the synthesis tool you are using and the
chosen technology. See Running Physical Synthesis, on page 11-9 for a
description of the Synplify Premier place-and-route flow.

LO

Chapter 10: Design Flows and Process Optimization Running Place-and-Route After Synthesis

10-22 Fpga User Guide, December 2005

2. Type a name for the place-and-route implementation in Place & Route Flow
Name. A default place-and-route name appears in the display. Avoid
using spaces in the implementation name.

3. For Xilinx users, select a place-and-route options file. See Specifying
Xilinx Place-and-Route Options, on page 10-23 for details.

4. For Synplify Premier users, you can choose to backannotate data. See
Backannotating Place-and-Route Data, on page 10-25 for details.

5. Enable the Run Place & Route following synthesis option and click OK.

The application creates a place-and-route implementation under the
current synthesis implementation in the Project view. Currently, you
cannot change the location of the P&R directory.

Conversely, if you do not want to create a place-and-route implementa-
tion, disable the Run Place & Route following synthesis option.

6. Click the current implementation in the Project view to see the place-
and-route implementation.

Place and Route implementation

Running Place-and-Route After Synthesis Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-23

To create subsequent place-and-route implementations, select the place-
and-route implementation, right-click, and select Add Place & Route Job
from the popup menu. You can repeat the preceding steps to add as
many P&R implementations as you need.

7. Synthesize the design. You can either

– Press the Run button.

– Right-click and select Run Place & Route Job from the popup menu.

If the synthesis implementation associated with the place-and-route
implementation has not been synthesized, then running place-and-route
invokes synthesis as well. After synthesis, the software automatically
runs the place-and-route tool. If you have a Xilinx design and specified
an options file, the software uses the options to run place-and-route.

8. To run in batch mode, do the following:

– Create a place-and-route implementation, as described previously.

– Use the -run all command to synthesize the design and then place
and route. If the synthesis implementation is selected the software
only runs synthesis; you must run place-and-route separately.

Specifying Xilinx Place-and-Route Options
This section shows you how to customize your Xilinx place-and-route run by
specifying a place-and-route options file or xflow script. You can either use
the default or specify a custom file.

1. To use the default place-and-route options, click the New P&R button in
the Project view and select Use Default Options File in the dialog box. Click
OK.

The software uses the default Xilinx place-and-route options located in
the xilinx_par.opt file when it runs place-and-route.

2. To use an existing options file (xflow script), do the following:

– Click the New P&R button in the Project view.

– Click Existing Options File. Select the file name in the next dialog box,
and click Open.

LO

Chapter 10: Design Flows and Process Optimization Running Place-and-Route After Synthesis

10-24 Fpga User Guide, December 2005

– Return to the Add New Place & Route Job dialog box and make sure the
correct options file is selected. Click OK.

If you want to customize this file, edit the default file. The software uses
the options in this file to place and route the design after synthesis. You
can now view the results, as described in step 4.

3. To create a new Xilinx place-and-route options file, do either of the
following:

– Click the New P&R button in the Project view. In the dialog box, click
Create New Options File. Specify the file name in the next dialog box, and
click Open.

Alternatively, select File->New. Set the file type to Xilinx Option File. Type
a file name; for example, design_par.opt. Enable the Add to Project option.
Click OK.

A text window opens with the file. The software creates an options file
(.opt) with the default options and adds it to the project. The Project
view displays this file. You can now edit this file to customize it.

– Customize the options file by editing it. Save the file.

– Return to the Add New Place & Route Job dialog box, and make sure the
options file you created is selected. Select Run Place & Route following
synthesis. Click OK.

The software uses the options file to place and route the design after
synthesis.

4. View the results.

– Select the P&R implementation in the Project view. The result files are
displayed in the Implementation Results view.

– View the log file xflow.log for information about the run.

Running Place-and-Route After Synthesis Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-25

Backannotating Place-and-Route Data
In the Synplify Premier tool, you can also choose to back annotate place-and-
route data which provides accurate timing and placement information during
physical synthesis. To do this:

• Click on the New P&R... button from the Project view. On the Add New Place
& Route Job dialog box, enable the Backannotate placement and timing data
following Place & Route option.

• Select a synthesis implementation, then right-click and select Place &
Route Options from the popup menu. Enable the Back Annotate option from
the popup dialog box.

However, this option is only applicable for certain Altera and Xilinx technolo-
gies. See Device Support for the Physical Synthesis Flows, on page 11-3.

LO

Chapter 10: Design Flows and Process Optimization Running Place-and-Route After Synthesis

10-26 Fpga User Guide, December 2005

Analyzing Physical Synthesis (Synplify Premier)
Default timing and area reports are presented in the .htm or .srr log file for
the design project. To view this information, click the View Log button in the
Project view (or View->View Log File). The following .htm log file shows both the
Table of Contents and the HTML log file contents for the design.

See Viewing the Log File, on page 4-2 for complete information on how to
interpret the log file results.

In addition, you can generate a stand-alone timing report to display more or
less information than what is provided in the log file. See the following:

• Analyzing Timing, on page 4-73

• The Island Timing Report, on page 4-83

Also, check the place-and-route results to determine if further synthesis is
required. For example, click on Xilinx P&R Report to check the xflow_par.log
file to verify that all constraints were met as shown below. For Full Chip

Running Place-and-Route After Synthesis Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-27

Physical Synthesis, you can also click on Initial Placement Report to check the
xflow_gp.log file. Click on Quartus P&R Report to check the quartus.log file for
place-and-route results for Altera devices.

For more information on analyzing synthesis results graphically, see the
following topics:

• Synplify Premier Physical Analyst Tool, on page 5-2

• Analyzing With the HDL Analyst Tool, on page 4-56

LO

Chapter 10: Design Flows and Process Optimization MultiPoint Synthesis

10-28 Fpga User Guide, December 2005

MultiPoint Synthesis
This document describes the MultiPointTM synthesis flow, which automates
the traditional bottom-up flow for large designs. This feature is available with
the Synplify Pro product, for use with certain technology families.

• Traditional Bottom-up Design and MultiPoint Synthesis, on page 10-28

• The Synplify Pro MultiPoint Synthesis Flow, on page 10-29

For information about technology-specific flows, see The Altera LogicLock
Flow, on page 10-39 and Using the Xilinx Modular Flow, on page 10-54

Traditional Bottom-up Design and MultiPoint Synthesis
In a traditional bottom-up flow, a design is divided into parts that can be
processed independently. Traditionally, this approach has been used in the
following cases:

• Where parts of the design need to be isolated to stabilize results. The
design team can freeze portions of the design as they are completed,
while continuing to work independently on the rest of the design.

• To process large designs where a top-down approach is not possible
because of memory and run time limits. The bottom-up flow permits
partial recompiles and multiprocessing to speed up design compilation.

For certain device technologies, the Synplicity MultiPoint™ synthesis flow lets
you design incrementally and synthesize designs that exceed runtime limits
for top-down synthesis. For details of these flows, see The Synplify Pro Multi-
Point Synthesis Flow, on page 10-29 for a generic flow diagram. The Altera
LogicLock Flow, on page 10-39, and Using the Xilinx Modular Flow, on
page 10-54 for technology-specific flows.

Traditionally, bottom-up design requires designers to write and maintain
time-consuming and error-prone scripts that direct synthesis and keep track
of design dependencies. The MultiPoint flow automates difference-based
incremental synthesis, and eliminates the need for these scripts.

The MultiPoint flow lets you break down a design into smaller synthesis units,
called compile points. The software treats each compile point as a block for
incremental mapping and the design team can work on individual compile

MultiPoint Synthesis Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-29

points independently of the rest of the design. A design may have any number
of compile points, and compile points may be nested. See the Reference
Manual for details about compile points.

You must provide timing constraints (timing budgeting) for each compile
point; the more accurate the constraints, the better your results. Constraints
are not automatically budgeted, so manual time budgeting is important.

The Synplify Pro MultiPoint Synthesis Flow
This section describes the Synplify Pro MultiPointTM Synthesis flow, which
contains the following steps to automate the traditional bottom-up flow for
large designs.

• Set Implementation Options, on page 10-30

• Compile the Design, on page 10-31

• Set Implementation Options, on page 10-30

• Define Compile Points and Top-Level Constraints, on page 10-31

• Set Constraints, on page 10-33

• Synthesize, on page 10-36

• Analyze Results, on page 10-37

• Resynthesize or Incrementally Synthesize, on page 10-38

The following figure shows the general procedure for using the Synplify Pro
MultiPoint flow. For flows with vendor-specific details, see The Altera
LogicLock Flow, on page 10-39 and The Xilinx MultiPoint Synthesis Flow, on
page 10-48. For Actel designs, follow the generic flow.

LO

Chapter 10: Design Flows and Process Optimization MultiPoint Synthesis

10-30 Fpga User Guide, December 2005

Set Implementation Options
The first step in MultiPoint synthesis is to set the implementation options,
just as with the regular design flow. Multipoint synthesis is not available with
the Synplify tool.

1. Start Synplify Premier or Synplify Pro, set up a design project for the
MultiPoint flow, and open the project for the top-level design.

2. Press the Impl Options button in the Project view to open the
Implementation Options dialog box.

3. Set the following:

– Select a technology that supports the MultiPoint flow and set the
device, part and speed grade options.

– Set the global frequency, and any other optimization options.

Compile the Design

Set Implementation Options

Synthesize

Define Compile Points and
Top-Level Constraints

Set Constraints

Analyze Results

F7

Resynthesize or
Incrementally SynthesizeMeets requirements

Fails requirements

MultiPoint Synthesis Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-31

4. For Synplify Premier MultiPoint synthesis, also do the following:

– In the Implementation Options dialog box, go to the tab and disable Netlist
Optimization Options.

– For Altera Stratix devices, also disable Create MAC Hierarchy.

– Remember that Synplify Premier Multipoint synthesis ignores the
following optimizations for compile points: Feedthrough Optimization,
Constant Propagation, and Create Always/Process Level Hierarchy.

You are now ready to compile the design (Compile the Design, on
page 10-31).

Compile the Design
After setting the implementation options, you must compile the design. This
is the second step in the The Synplify Pro MultiPoint Synthesis Flow, on
page 10-29. The Synplify tool does not support multipoint synthesis.

1. Open the project for the top-level design.

2. Press F7 or select Run->Compile Only.

This compiles the design and enables the SCOPE constraints file to be
initialized, which is important for the defining the compile points and
their constraints, later in the flow.

If you are a Synplify Pro user, the next step is to define compile points
(Define Compile Points and Top-Level Constraints, on page 10-31).

Define Compile Points and Top-Level Constraints
This is a step in The Synplify Pro MultiPoint Synthesis Flow, on page 10-29.
The Synplify tool does not support multipoint synthesis. Compile points and
constraints are both saved in a constraint file, so this step can be combined
with the setting of constraints, as convenient. This procedure keeps the two
steps separate.

You define compile points in a top-level constraint file. See the Reference
Manual for details about compile points. You can add the compile point
definitions to an existing top-level.sdc file or create a new file.

1. Open a SCOPE window for the top-level file.

LO

Chapter 10: Design Flows and Process Optimization MultiPoint Synthesis

10-32 Fpga User Guide, December 2005

– To define compile points in an existing top-level constraint file, open a
SCOPE window by double-clicking the file in the Project view.

– To define compile points in a new top-level constraint file, click the
SCOPE icon. Select the Select File Type tab, click Top Level, and click
OK.

Alternatively, you can create a new top-level constraint file when you
create the module-level constraint files, as described in Create
Compile Point and Top-Level Constraint Files, on page 10-34.

The SCOPE window opens.

2. Click the Compile Points tab.

– Set the module you want as a compile point using either of these
methods: select a module from the drop down list in the Module
column, or drag the instance from the HDL Analyst RTL view to the
Module column.

– The Type is locked.

This tags the module as a compile point. The following figure shows the
the prgm_cntr module set as a compile point in the Synplify Pro flow.

Click and select.

MultiPoint Synthesis Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-33

The next figure shows the rgn1 (region) module set as a compile point in
the Synplify Premier Multipoint flow.

3. Set any other top-level constraints like input/output delays, clock
frequencies or multicycle paths.

The parent level includes lower-level constraints. The software considers
the lower-level constraints when it maps the top level.

4. Save the top-level .sdc file.

You can now set constraints as described in Set Constraints, on
page 10-33.

Set Constraints
This is a step in the The Synplify Pro MultiPoint Synthesis Flow, on
page 10-29. You must specify constraints for each compile point in individual
.sdc files, as well as set separate top-level constraints for the entire design.
You need a compile point constraint file for each compile point, and a
constraint file for the top level. Do not define the compile point constraints in
the same file as the top-level constraints.

LO

Chapter 10: Design Flows and Process Optimization MultiPoint Synthesis

10-34 Fpga User Guide, December 2005

See the following sections for details about compile point constraints:

• Create Compile Point and Top-Level Constraint Files, next

• Set Compile Point Constraints, on page 10-35

Create Compile Point and Top-Level Constraint Files
You can create a module (compile point) constraint file as follows. Optionally,
you can generate a top-level constraint file at the same time that you define
the compile points.

1. In an open project, click the SCOPE icon (). The Create a New SCOPE
File dialog box opens.

2. Click the Select File Type tab and click the Compile Point option.

3. Select the module you want to make a compile point.

4. Click OK.

If you do not have a top-level file, you are prompted to create one. If you
have multiple top-level files, you can choose one or create a new one by
clicking New. For information about defining compile points in a top-
level file, see Define Compile Points and Top-Level Constraints, on
page 10-31.

MultiPoint Synthesis Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-35

5. Click OK to exit the prompt box, and then click OK again in the Create a
New SCOPE File dialog box to initialize the constraints.

Two SCOPE windows open, one for the top-level and one for the compile
point constraint file. You must define constraints for both the top-level
and the compile point. See Set Compile Point Constraints, on page 10-35
for details about setting compile point constraints. Set top-level
constraints as in a normal design flow.

Set Compile Point Constraints
To create or modify the Synplify Premier or Synplify Pro compile point
constraints, do the following:

1. If needed, open the SCOPE window for the compile point constraint file
by double-clicking the file in the Project view.

This opens the constraint file for the compile point. The name of the
compile point file appears in the banner of the SCOPE window. Note that
there is no Compile Point tab in the SCOPE UI when the constraint file is
for a compile point.

2. Set constraints for the compile point. In particular, do the following:

– Define clocks for the compile point.

– Specify I/O delay constraints for non-registered I/O paths that may
be critical or near critical.

– Set port constraints for the compile point that are needed for top-level
mapping.

You must set compile point constraints because parent constraints do
not propagate down to the compile points. However, compile point
constraints are considered while mapping the parent, so you do not need
to duplicate compile point constraints at the top level. Compile point
port constraints are not used at the parent level, because compile point
ports do not exist at that level

LO

Chapter 10: Design Flows and Process Optimization MultiPoint Synthesis

10-36 Fpga User Guide, December 2005

If you want to use the syn_hier attribute with a compile point, the only
valid value is flatten. The software ignores any other value of syn_hier for
compile points. The syn_hier attribute behaves normally for all other
module boundaries that are not defined as compile points.

3. Save the file. When prompted, click Yes to add the constraint file to the
top-level design project.

The software writes a file cp_name_number.sdc to the current directory.

Synthesize
This is a step in The Synplify Pro MultiPoint Synthesis Flow, on page 10-29 .
The Synplify tool does not support MultiPoint synthesis. After you have set
up the compile points and the constraints, you can synthesize the design.

1. Click Run and synthesize the top-level design.

The design is synthesized in two phases:

– First, compile points are synthesized from the bottom up, starting
with the compile point at the lowest level of hierarchy in the design.
Each compile point is synthesized independently. For each compile
point, the software creates a subdirectory named after the compile
point, in which it stores intermediate files for the compile point: RTL
netlist, mapped netlist, and model file. The model file contains the
hierarchical interface timing and resource information that is used to
synthesize the next level.

When a design is resynthesized, compile points are resynthesized
only if source code logic or constraints have been changed. If a
compile point has not changed, the model file from the previous run
is used. Once generated, the model file is not updated unless there is
an interface design change or you explicitly specify it.

– After all the compile points are synthesized, the software synthesizes
the design from the top down, using the model information for each
compile point.

The software writes out a single output netlist and one constraint file for
the entire design.

MultiPoint Synthesis Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-37

Analyze Results
This is a step in The Synplify Pro MultiPoint Synthesis Flow, on page 10-29.
Multipoint synthesis is not supported in the Synplify tool. The software writes
timing and area results to one log file in the implementation directory. You
can check this file and the RTL and Technology views to determine if your
design has met the goals for area and performance. You can also view and
isolate the critical paths, search for and highlight design objects and
crossprobe between the schematics and source files.

1. Check that the design meets the target frequency for the design. Use the
Log Watch window or check the log file.

2. Open the log file and check the following:

– Check top-level and compile point boundary timing. You can also
check this visually using the RTL and Technology view schematics. If
you find negative slack, check the critical path. If the critical path
crosses the compile point boundary, you might need to improve the
compile point constraints.

– Fix any errors. Remember that the mapper reports an error if
synthesis at a parent level requires that interface changes be made to
a locked compile point. The software does not change the compile
point interface, even if changes are required to fix DRC violations.

– Review all warnings and determine which should be addressed and
which can be ignored.

– Review the area report in the log file and determine if the cell usage is
acceptable for your design.

– Check all DRC information.

3. Check the RTL and Technology view schematics for a graphic view of the
design logic.

Note that even though instantiations of compile points do not have
unique names in the output netlist, they have unique names in the
Technology view. This is to facilitate timing analysis and the viewing of
critical paths.

LO

Chapter 10: Design Flows and Process Optimization MultiPoint Synthesis

10-38 Fpga User Guide, December 2005

Resynthesize or Incrementally Synthesize
This is an optional step in The Synplify Pro MultiPoint Synthesis Flow, on
page 10-29. Multipoint synthesis is not supported in the Synplify tool. You
can resynthesize a locked compile point or synthesize your design incremen-
tally. To obtain the best results, you should also define any required
constraints and set the proper implementation options for the compile point
before resynthesizing.

1. To synthesize a design incrementally, make the changes you need to fix
errors or improve your design.

– Define new compile point constraints or modify existing constraints
in the existing constraint file or in a new constraint file for the
compile point. Save the file.

– If necessary, reset implementation options. Click Impl Options and
modify the settings (operating conditions, optimization switches, and
global frequency).

2. Click Run to resynthesize the design.

When a design is resynthesized, compile points are not resynthesized
unless source code logic, implementation options, or constraints have
been modified. If there are no compile point interface changes, the
software synthesizes the immediate parent using the previously gener-
ated model file for the compile point

3. To force the software to generate a new model file for the compile point,
select click Impl Options and enable Update Compile Point Timing Data. Click
Run.

The software regenerates the model file for each compile point when it
synthesizes the compile points. The new model file is used to synthesize
the parent. The option remains in effect until you disable it.

4. To override incremental synthesis and force the software to resynthesize
all compile points whether or not there have been changes made, use
the Run->Resynthesize All command.

You might want to force resynthesis to propagate changes from a locked
compile point to its environment, or resynthesize compile points one last
time before tape out. When you use this option, incremental synthesis is
disabled for the current run only.

The Resynthesize All command does not regenerate model files for the
compile points unless there are interface changes. If you enable Update

The Altera LogicLock Flow Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-39

Compile Point Timing Data and select Resynthesize All, you can resynthesize
the entire design and regenerate the compile point model files, but
synthesis will take longer than an incremental synthesis run.

The Altera LogicLock Flow
You can use Synplify Pro and Synplify Premier MultiPoint synthesis in
conjunction with Altera’s LogicLock methodology to design and lock down a
design, one section at a time. The design team can work on individual
modules separately and concurrently, and then integrate them into the top-
level design. The following Synplify Pro and Synplify Premier procedures are
specific to Altera; for a general description of how to use the MultiPoint flow,
see The Synplify Pro MultiPoint Synthesis Flow, on page 10-29.

• Using Synplify Pro With the Altera LogicLock Flow

• Using Synplify Premier With the Altera LogicLock Flow

Using Synplify Pro With the Altera LogicLock Flow
To implement Synplify Pro MultiPoint synthesis with the Altera LogicLock
flow, perform the steps in the following procedure:

1. Set up a project file as usual. In particular, do the following:

– Set the target device to one of the Altera families that use LogicLock:
Apex, ApexII, Mercury, Excalibur, or Stratix.

– Set the implementation options. On the Implementation Results tab,
make sure to enable the Write Mapped Verilog/VHDL Netlist option.

– Compile the design.

2. Define compile points in the top-level .sdc file.

– Click the Compile Points tab, and set compile points. A compile point is
a module that is treated as a block for incremental synthesis In
subsequent synthesis iterations, the software does not resynthesize
the compile point unless the hierarchical interface changes. See the

LO

Chapter 10: Design Flows and Process Optimization The Altera LogicLock Flow

10-40 Fpga User Guide, December 2005

Reference Manual for details about compile points. The following
example shows three compile points set: ALU, comb_logic, and mult.

– Click the Attributes tab and set the altera_logiclock_location and
altera_logiclock_size attributes. The following figure shows these
attributes set for the ALU compile point. Save the file.

3. Create a compile point constraint file for each compile point.

– Click the SCOPE icon.

– In the Create a New SCOPE File dialog box, click the Select File Type tab,
then click Compile Point, and select the compile point. The following
example shows v:work.alu selected.

– In the next dialog box, select the top-level .sdc file that defines the
compile points.

– Set the clock constraint for the compile point. This can be the same
as the top level. Save the file.

The Altera LogicLock Flow Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-41

4. Synthesize your design and check the compile point summary in the log
file.

The software synthesizes the design from the bottom up, starting with
the compile point at the lowest level. For each compile point, the
software generates a separate subdirectory with a complete set of output
files. It also generates a model file that contains timing information and
which is used to synthesize the next hierarchical level.

5. Place and route the design.

You can hierarchically place and route the design, because each compile
point has a separate set of output files. The Quartus software places the
compile point modules you created in the LogicLock regions.

6. Analyze Results

The software writes timing and area results to one log file in the imple-
mentation directory. You can check this file and the RTL and Technology
views to determine if your design has met the goals for area and perfor-
mance. You can also view and isolate the critical paths, search for and

Set a clock constraint
for the compile point

Set up a
constraint
file for the
compile
point

LO

Chapter 10: Design Flows and Process Optimization The Altera LogicLock Flow

10-42 Fpga User Guide, December 2005

highlight design objects and crossprobe between the schematics and
source files.

• Check that the design meets the target frequency for the design. Use the
Log Watch window or check the log file.

• Open the log file and check the following:

– Check top-level and compile point boundary timing. You can also
check this visually using the RTL and Technology view schematics. If
you find negative slack, check the critical path. If the critical path
crosses the compile point boundary, you might need to improve the
compile point constraints.

– Fix any errors. Remember that the mapper reports an error if
synthesis at a parent level requires that interface changes be made to
a locked compile point. The software does not change the compile
point interface, even if changes are required to fix DRC violations.

– Review all warnings and determine which should be addressed and
which can be ignored.

– Review the area report in the log file and determine if the cell usage is
acceptable for your design.

– Check all DRC information.

• Check the RTL and Technology view schematics for a graphic view of the
design logic.

Note that even though instantiations of compile points do not have
unique names in the output netlist, they have unique names in the
Technology view. This is to facilitate timing analysis and the viewing of
critical paths.

7. To synthesize the design incrementally, do the following:

– Make the design changes needed in the compile points.

– Click Run to resynthesize your design incrementally.

For an incremental run, the software only resynthesizes compile points
whose logic, implementation options, or timing constraints have
changed.

The following figure illustrates incremental synthesis by comparing
compile point summaries. After the first run, a syntax change was made
in the mult module, and a logic change in the comb_logic module. The
figure shows that incremental synthesis resynthesizes comb_logic (logic

The Altera LogicLock Flow Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-43

change), but does not resynthesize mult because the logic did not change
even though there was a syntax change.

Using Synplify Premier With the Altera LogicLock Flow
To implement Synplify Premier MultiPoint synthesis with the Altera LogicLock
flow, perform the steps in the following procedure:

1. Set up a project file as usual. In particular, do the following:

– Set the target device to one of the Altera families that use
LogicLock: Apex, ApexII, Excalibur, Mercury, Cyclone, or Stratix.

– Set the implementation options. On the Netlist Restructure tab, make
sure to disable all the Netlist Optimization Options. For Altera Stratix
devices, disable the Create MAC Hierarchy option also.

– Compile the design.

2. Create a design plan to constrain regions on the device. To do this:

– Create a new design plan.

– Create constraint regions on the device. Then, assign necessary
logic to these regions. Run region estimation for the regions and
check all DRC information.

Incremental Run Log Summary

First Run Log Summary

Syntax changes only; not resynthesized

Logic changes; compile
point resynthesized

LO

Chapter 10: Design Flows and Process Optimization The Altera LogicLock Flow

10-44 Fpga User Guide, December 2005

– For regions to be defined as a compile point, enable the LogicLock
option for the region.

– Save the design plan file (.sfp).

3. Run Compile Physical Hierarchy to compile the design to include regions
as modules in the netlist that is created.

4. Define compile points and top-level constraints in the top-level
.sdc file.

– A compile point is a module or a Synplify Premier design plan region
that is treated as a block for incremental synthesis. In subsequent
synthesis iterations, the software does not resynthesize the compile
point unless the module or region changes. Click the Compile Points tab,
select the modules you want as compile points, and set Type to locked.
Currently, the locked compile point model is the only one that is
supported.

– Click the Attributes tab and set the altera_logiclock_location and
altera_logiclock_size attributes.

Note: Region compile points use the constraints from the deisgn
plan (.sfp) file. Module compile attributes are ignored from
the .sdc file.

– Define the constraints for the design, as usual.

– Save the file.

The following example shows three compile points set: ALU, comb_logic,
and mult.

The Altera LogicLock Flow Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-45

In subsequent iterations, the software does not resynthesize the
compile point unless the compile point changes.

5. Create a separate compile point constraint file for each compile point
you defined.

– Click the SCOPE icon.

– In the Create a New SCOPE File dialog box, click the Select File Type tab,
then click Compile Point, and select the compile point.

– In the next dialog box, select the top-level .sdc file that defines the
compile points.

– Set the clock constraint and I/O timing for the compile point. This
can be the same as the top level.

– Click the Attributes tab and type in the syn_allowed_resource attribute for
the compile point (the object type is view). Remember that allowed
resources set for a lower level count as part of the resources for
the higher level. Save the file.

Set a clock constraint
for the compile point

Set up a
constrain
t file for
the
compile
point

LO

Chapter 10: Design Flows and Process Optimization The Altera LogicLock Flow

10-46 Fpga User Guide, December 2005

Note: Set the syn_allowed_resource attribute for module compile points
only. Region compile points use the constraints from the
design plan (.sfp) file.

6. Synthesize your design and check the compile point summary in the
log file.

The software synthesizes the design from the bottom up, starting
with the compile point at the lowest level. It generates netlists and a
model file for each compile point, and stores these files in subdirecto-
ries named after the compile point. It also generates a model file that
contains timing information and which is used to synthesize the next
hierarchical level.

7. Place and route the design.

You can hierarchically place and route the design, because each
designated LogicLock point has a separate.vqm file. The Quartus
software places the compile point modules you created in the
LogicLock regions.

8. To synthesize the design incrementally, do the following:

– Make the design changes needed.

– Click Run to resynthesize your design incrementally.

For an incremental run, the software only resynthesizes compile
points whose logic, implementation options, or timing constraints
have changed. The following figure compares compile point
summaries. After the first run, a syntax change was made in the
mult module, and a logic change in the comb_logic module.
Incremental synthesis resynthesizes comb_logic (logic change), but
does not resynthesize mult because the logic did not change even
though there was a syntax change.

The Altera LogicLock Flow Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-47

– To resynthesize all compile points, whether or not they have
changed, select Run-> Resynthesize All. If a compile point interface
has not changed, the model file is not regenerated even though the
compile point is resynthesized. The information in the old model
file is used to synthesize the next level.

– To force a new model file to be generated, click Impl Options and
enable Update Compile Point Timing Data.

Incremental Run Log Summary

First Run Log Summary

Syntax changes only; not resynthesized
Logic changes; resynthesized

Region moved; resynthesized

LO

Chapter 10: Design Flows and Process Optimization The Xilinx MultiPoint Synthesis Flow

10-48 Fpga User Guide, December 2005

The Xilinx MultiPoint Synthesis Flow
You can use the Synplify Pro MultiPoint synthesis in conjunction with the
Xilinx place-and-route tool to design and lock down a design, one section at a
time. The design team can work on individual modules separately and
concurrently, and then integrate them into the top-level design. The following
Synplify Pro procedures are specific to Xilinx; for a general procedure on how
to use the MultiPoint flow, see The Synplify Pro MultiPoint Synthesis Flow, on
page 10-29 .

Using Synplify Pro With Xilinx MultiPoint Synthesis
To implement Synplify Pro MultiPoint synthesis with the Xilinx MultiPoint
Synthesis flow, perform the steps in the following procedure:

1. Set up a project, set implementation options, and compile the project

– Set up a project as usual, select the Xilinx target device, and set the
implementation options. Compile the design.

2. Define compile points in the top-level .sdc file.

– Click the Compile Points tab, and set compile points. The following
example shows three compile points set: ALU, comb_logic, and mult.

– Click the Attributes tab. Set Object Type to instance, set Object to the
compile point, and set the xc_area_group attribute to define the region.
The following figure shows the attribute set for the ALU compile point.
Save the file.

The Xilinx MultiPoint Synthesis Flow Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-49

LO

Chapter 10: Design Flows and Process Optimization The Xilinx MultiPoint Synthesis Flow

10-50 Fpga User Guide, December 2005

A compile point is a module that is treated as a block for incremental
mapping. In subsequent synthesis iterations, the software does not
resynthesize the compile point unless the original RTL netlist for the
compile point changes.

3. Create a compile point constraint file for each compile point.

– Click the SCOPE icon.

– In the Create a New SCOPE File dialog box, click the Select File Type tab,
then click Compile Point, and select the compile point. The following
examples shows v:work.alu selected.

– In the next dialog box, select the top-level .sdc file that defines the
compile points.

– Set the clock constraint for the compile point. This can be the same
as the top level. Save the file.

Set a clock constraint
for the compile point

Set up a
constraint
file for the
compile
point

The Xilinx MultiPoint Synthesis Flow Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-51

4. Synthesize your design and check the compile point summary in the
log file.

The software synthesizes the design from the bottom up, starting with
the compile point at the lowest level.

5. Place and route the design.

The place-and-route software places the compile point modules in the
regions you defined with the xc_area_group attribute.

6. To synthesize the design incrementally, do the following:

– Make the design changes needed in the compile points.

– Click Run to resynthesize your design incrementally.

The synthesis software runs incrementally, only resynthesizing compile
points whose logic, implementation options, or timing constraints have
changed.

The following figure illustrates incremental synthesis by comparing
compile point summaries. After the first run, a syntax change was made
in the mult module, and a logic change in the comb_logic module. The
figure shows that incremental synthesis resynthesizes comb_logic (logic
change), but does not resynthesize mult because the logic did not change
even though there was a syntax change. Incremental synthesis re-uses
the mapped file generated from the previous run to incrementally
synthesize the top level.

Incremental Run Log Summary

First Run Log Summary

Syntax changes only; not resynthesized

Logic changes; compile
point resynthesized

LO

Chapter 10: Design Flows and Process Optimization The Xilinx MultiPoint Synthesis Flow

10-52 Fpga User Guide, December 2005

Set a clock constraint
for each compile point

Set up a
constraint
file for
each
compile
point

The Xilinx MultiPoint Synthesis Flow Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-53

Incremental Run Log Summary

First Run Log Summary

Syntax changes only; not resynthesized
Logic changes; resynthesized

Region moved; resynthesized

LO

Chapter 10: Design Flows and Process Optimization Using the Xilinx Modular Flow

10-54 Fpga User Guide, December 2005

Using the Xilinx Modular Flow
The modular flow was introduced in the Synplify Pro products to handle the
needs of complex designs. This section contains an introduction and descrip-
tions of the three phases of the modular design flow:

• Overview of Modular Flow Design Stages, next

• Initial Design Budgeting

• Active Implementation, on page 10-58

• Final Assembly, on page 10-63

• Design Files and Area Design Planning, on page 10-65

Overview of Modular Flow Design Stages
As designs become more complex, designers need to partition large designs
into smaller modules to manage the complexity, leverage team design
resources, and handle design changes more efficiently. The Synplify Pro tool
supports a modular flow for Xilinx Virtex devices that allows designers to
address these issues.

With the Xilinx Virtex modular flow, a team leader partitions the design and
workload to work in parallel on modules that are subordinate to the top-level
design. The modular flow consists of three design phases: Initial Design
Budgeting, Active Implementation, and Final Assembly. The following figure
illustrates how to use the Synplicity synthesis tools within this flow to accom-
plish tasks in the first two phases.

Planning

Design Entry Module P&R

Module Synthesis

Top-level Synthesis Simulation

Top-level P&R

Initial Design Budgeting Final AssemblyActive Implementation

Xilinx Modular Flow Phases and Tasks
Synthesis Tasks in the Flow

Using the Xilinx Modular Flow Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-55

The steps in each phase are briefly described in the following sections, with
emphasis on the tasks done with the synthesis tool.

Initial Design Budgeting
In this phase, the team leader uses the team design model to partition the
design into modules, define the physical partition, and define the top-level
design and global design constraints. Based on initial floorplanning, the lead
team designer assigns physical locations to the modules.

Planning
Using the team design model, the team leader defines the HDL top-level
design, the global design constraints, and determines the positions of each of
the modules by doing some preliminary floorplanning. The team leader parti-
tions the design into smaller self-contained modules or structures, and
assigns the modules to different teams or designers. This planning stage can
be merged with the next stage of Design Entry.

1. Partition the design into smaller self-contained modules or structures.

2. Use initial floorplanning to assign the modules to specific physical
locations on the target device.

3. Allocate global resources like clock buffers.

4. Assign each module to a designer or a design team.

This modular flow uses a simple example to illustrate the flow. The design
consists of a top-level design with two lower-level modules, mux and flop. See
Design Files and Area Design Planning, on page 10-65 for the files.

Top-Level Design

Flop

Mux

LO

Chapter 10: Design Flows and Process Optimization Using the Xilinx Modular Flow

10-56 Fpga User Guide, December 2005

Design Entry (Team Leader)
The team leader must

1. Create the following files and add them to a project:

– A top-level design file. The HDL source code for the top-level design
contains the top-level module with all the global logic such as clock
resources, inter-module logic connections, and connections between
I/O ports and modules. For the top-level file used as an example
here, see Top-Level Design File, on page 10-65.

– A file for each module. This file is a black box wrapper for the module
and lists the inputs and outputs. It also contains attributes to declare
the module a black box (syn_black_box) and set the physical location of
the module, based on initial floorplanning (xc_modular_region). For
information about generating the area numbers for xc_modular_region,
see Determining the Area Range for xc_modular_region, on page 10-69.
For the module files used in this example, see Module Mux File, on
page 10-67 and Module Flop File, on page 10-68.

– A top-level constraint file. You can use the SCOPE interface to set
global clock constraints. If there is a conflict between the global clock
constraint and a clock constraint set on a module, the global clock
constraint is used.

Using the Xilinx Modular Flow Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-57

– Synthesize the design. Make sure you set Technology to Xilinx Virtex ,
Virtex-II, Virtex-II Pro, or Virtex-4 and check the Modular Flow
checkbox on the Device tab of the Implementation Options form.

When you check Modular Flow, the software generates the directory struc-
ture needed for the flow in the Xilinx place-and-route tool.

The software creates top-level .edif and .ncf files, which it places in the
top-level directory. It issues warnings if it finds a module that is instanti-
ated more than once at the top level.

Currently empty, used for final assembly

Contains top-level EDIF netlist
and top-level constraint file (.ncf)

Currently empty, used for completed modules

Currently empty, used for module design

LO

Chapter 10: Design Flows and Process Optimization Using the Xilinx Modular Flow

10-58 Fpga User Guide, December 2005

2. Generate a top-level .ngo file that contains the top-level area
constraints.

– Start the Xilinx place-and-route tool.

– Go to the top_level directory and run ngdbuild in initial mode. Use
this syntax and type the command at the command line:

ngdbuild -modular initial <toplevel>.edf

To run our example, the command is ngdbuild -modular initial
example_top.edf. This command generates a .ngd file and a .ngo file that
contains the top-level area constraints for place and route.

3. Archive the directories, and give each designer or design team working
on a module a copy of the .prj file, the top-level HDL file, the sub-
module HDL files (black box wrappers), and the top-level .sdc file with
region constraints.

Design Entry (Module Level)
At this stage, the module designer must do the following:

1. Open the source code file(s) for the module you are responsible for, and
delete the syn_black_box attribute. Do not remove the xc_modular_region
attribute.

For example, if you are the designer responsible for the mux design, you
open the source code file for this module and delete the syn_black_box
attribute. From your perspective, it is no longer a black box, because
you are going to create the internal logic for it.

2. Complete the internal logic design for the module.

Active Implementation
The active implementation phase starts after the designer finishes the
module-level design and passes on the project to each development team.
This phase consists of module synthesis, top-level synthesis, development of
the physical partitions, and module-level placement and routing.

Using the Xilinx Modular Flow Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-59

Module Synthesis
The advantage to using the modular design flow is the elimination of depen-
dencies and the need for all teams to be done before an individual team can
synthesize a module design with the overall design. Individual teams can
synthesize their assigned modules with the top-level design without
depending on the progress of other design teams. It allows the module
designer to iterate the module design with the top level more frequently, and
evolve the overall design and separate modules more efficiently.

Although this is module-level synthesis, you actually synthesize your module
design with the top-level design, the top-level constraint file, wrapper files for
other modules, and optional module-level constraint files. To use our
example, if you are assigned to mux, you create HDL source code for it. You
synthesize mux using the project created by the team leader, replacing the
original mux wrapper file with the design you created. The project file includes
the top-level design source code and constraint file, as well as the wrapper file
for the flop module, which remains a black box from your perspective.

1. Start with the project set up by the team leader and set device options in
the synthesis tool with Project->Implementation Options. The module file is
now updated to contain the design.

– On the Device tab, set the device to Xilinx Virtex or Xilinx Virtex-II.

– Check the Modular Flow checkbox.

LO

Chapter 10: Design Flows and Process Optimization Using the Xilinx Modular Flow

10-60 Fpga User Guide, December 2005

– On the Implementation Results tab, check that the name of the output
netlist matches the name of the module you are actively synthesizing
as it occurs in the top-level EDIF file, so that the name of the netlist
for this module and the name in the top-level EDIF file are the same.
For example, the name for the output file for mux must be mux.edf to
match the name of the component in the top-level EDIF file.

– Set any other device options you want, and click OK.

The software issues warnings if it finds either of the following:

– A module that is instantiated more than once at the top level.

– Internal tristates. Unlike the regular design flow, in the modular flow
the software cannot move internal tristates up to the top level
because of the strict hierarchy limits required by this flow.

2. Compile the design with Run->Compile Only. You need to do this to
initialize constraints for the SCOPE environment.

3. Set module-level constraints if needed. Use the following procedure:

– Select the hierarchical object (module) in the RTL view. Right-click
and select SCOPE->Edit Module Constraints to open a SCOPE window and
enter module constraints. Do not use the SCOPE icon, because that
opens the top-level constraints file.

– Set the module-level constraints and save the file. The file name is
prefixed by module_. For example, the constraint file generated for the
mux module is called module_mux.sdc.

– Add it to the project. If there is a conflict between the global clock
constraint (set at the top level) and a clock constraint set on a
module, the global clock constraint is used.

4. Click the Run button to synthesize.

As the design continues to evolve, the top-level source files sometimes
change to accommodate overall design objectives. Make sure to use the
most current top-level files. If there are design changes at the top level,
all design teams must be updated with the changes by the team leader.

The software generates the directory structure needed to continue the
modular flow in the Xilinx place-and-route tool. For our example, you
see the following directories after synthesizing mux with a black box for
flop:

– constraint, which contains the constraint files for the design

Using the Xilinx Modular Flow Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-61

– top_level_final, which is still empty, but will be used for final
assembly

– top_Level, which contains example_top.edf, the EDIF netlist for the
top level and example_top.ncf, the top-level place-and-route
constraint file

– PIM (Physically Implemented Module), which is currently empty, but
will be used to hold modules as they are completed

– mux, which contains mux.edf, the EDIF netlist for the top level, and
mux.ncf, the place-and-route constraint file for the module

– flop, which is still empty, because flop is still a black box

Unless you synthesize the top level, you have now finished synthesis.
The rest of the flow uses the Xilinx place-and-route tool.

Top-level Synthesis
Optionally, you can synthesize the top-level design as an intermediate check,
although it is not necessary with the modular flow. This is because the top-
level module contains the physical locations of the devices and all modules
use the same top-level area constraint file. At this point, you have finished the
synthesis phase. The rest of the flow uses the Xilinx place-and-route tool.

Module Placement and Routing
After synthesis, you use the Xilinx placement and routing tool (Xilinx
Software Solutions Version 3.1I) to place and route the module. The
completed module can be then be instantiated in the top-level design. Each
module is placed and routed independently with the Xilinx P&R tool. The
modules are developed in parallel, so the post-routing timing results of one
module can be used with placement and routing constraints when you
synthesize another module with the Synplify Pro software.

The place-and-route commands are included here for completeness. If you
need more information about the commands, see the Xilinx software
documentation.

You must run placement and routing from the command line, but you could
create a script to automate this process.

1. Open the Xilinx place-and-route software.

LO

Chapter 10: Design Flows and Process Optimization Using the Xilinx Modular Flow

10-62 Fpga User Guide, December 2005

2. Go to the module directory (in this case, the mux directory) and type the
following at the command line to run the ngdbuild command in module
mode:

ngdbuild -p <part_num> -modular module -active <module>.edf
<path_to_top_level_ngo_file>

For our example, the command is

ngdbuild -p xcv50-6bg256 -modular module -active mux
..\top_level\example_top.ngo

This command runs the ngdbuild command in module mode. It uses the
area constraints from the top-level .ngo file to build an .ngo file in the
module directory.

3. Map the module with this command:

map <top_level_file>.ngd

For our example:

map example_top.ngd

This command uses the .ngo file in the module directory to generate
.ngd and .ncd files in the module directory.

4. Place and route the module with the following command:

par -w <top_level_file>.ncd <top_level_file_par>.ncd

The second .ncd file is the placed and routed file that is generated by
this command, so name it something distinct and meaningful to you. By
not overwriting the original .ncd file, you can try different design
options. The _par suffix is a convention that lets you keep track of when
you generated the .ncd file. For our example, use this command:

par -w example_top.ncd example_par.ncd

5. Open the place-and-route tool and check your placement results with
this command:

 fpga_editor <top_level_file_par>.ncd

For our example, the name of the .ncd file is example_par.

Using the Xilinx Modular Flow Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-63

6. Copy the lower-level module files into the PIM directory. From the
module directory, type the following

pimcreate -ncd -w <top_level_file_par>.ncd
<path_to_pim_directory> <module_file>

For the module file, just specify the name of the module file without any
extensions. For example:

pimcreate -ncd -w example_par.ncd ..\PIM mux

This command creates a directory under PIM called mux, into which it
copies the mux.ncd and mux.ngo files. The PIM directory is an interme-
diate holding area where module designers deposit module files as they
are completed. The PIM files are used by the team leader for final
assembly of the design.

Final Assembly
After all subordinate modules have been synthesized separately, use their
combined netlists to place and route the entire design.The project leader
merges the physical partition files from each development team and then does
the final placement and routing to create a final netlist.

1. Complete all the modules, and copy them to the PIM directory. See
Module Synthesis, on page 10-59 for details. At this point, you can do
functional and timing simulation before placing and routing the top level
with the Xilinx P&R tool.

2. Open a command prompt, and go to the top_level_final directory, and
type the following:

ngdbuild -p <part_num> -modular assemble -pimpath
<path_to_pim_dir> -use_pim <module_name>
<path_to_top_level_ngo_file>

This command runs ngdbuild in assembly mode, specifying each of the
modules in the pim directory. You must repeat -use_pim
<module_name> as many times as needed to specify all the modules in
the design. For example:

ngdbuild -p xcv50-6bg256 -modular assemble -pimpath ..\PIM -use_pim
mux -use_pim flop example_top.ngo

The command generates a top-level .ngd file that is a fully expanded
design file.

LO

Chapter 10: Design Flows and Process Optimization Using the Xilinx Modular Flow

10-64 Fpga User Guide, December 2005

3. Map the design with the following command. The command maps each
module using the files in the pim directory.

map <top_level_file>.ngd

For our example:

map top.ngd

4. Place and route the design with the following command. The command
uses the files in the PIM directory.

par -w <top_level_file>.ncd <top_level_file_par>.ncd

For example:

par -w example_top>.ncd example_par.ncd

5. Open the place-and-route tool and verify the locations of the modules
with this command:

 fpga_editor <top_level_file_par>.ncd

To use our example, you type the following:

fpga_editor <top_level_file_par>.ncd

Using the Xilinx Modular Flow Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-65

Design Files and Area Design Planning
This section contains the top-level design files for the example used in the
modular flow and discusses how to estimate module area.

Top-Level Design File
This is the top-level file (example_top.vhd or example_top.v) used as an
example in the modular design flow. It contains the ports for the whole design
and instantiations of the two lower-level modules.

LO

Chapter 10: Design Flows and Process Optimization Using the Xilinx Modular Flow

10-66 Fpga User Guide, December 2005

VHDL
library ieee;
use ieee.std_logic_1164.all;

entity example_top is port (
inmux : in std_logic_vector(3 downto 0);
sel : in std_logic_vector(1 downto 0);
reset : in std_logic;
clk : in std_logic;
output : out std_logic);

end example_top;

architecture beh of example_top is

component mux is port (
inmux : in std_logic_vector(3 downto 0);
sel : in std_logic_vector(1 downto 0);
outmux : out std_logic);

end component;

component flop is port (
inflop : in std_logic;
clk : in std_logic;
reset : in std_logic;
outflop : out std_logic);

end component;

signal bridge : std_logic;

begin
U0 : mux port map (inmux,sel,bridge);
U1 : flop port map (bridge,clk, reset, output);
end beh;

Using the Xilinx Modular Flow Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-67

Verilog
module modular_design_top (inmux, sel, reset, clk, out);

input [3:0] inmux;
input [1:0] sel;
input reset;
input clk;
output out;

wire bridge;

mux U0 (.inmux(inmux), .sel(sel), .outmux(bridge));
flop U1 (.inflop(bridge), .outflop(out), .reset(reset),
.clk(clk));

endmodule

Module Mux File
For the module, the team leader creates a port map, declares the module as a
black box, and specifies the physical location of the module on the FPGA
(mux.vhd or mux.v). The syn_black_box attribute declares this module to be a
black box, until the module designer deletes the attribute and creates the
internals for the module. The xc_modular_region attribute specifies the range of
CLBs (or slices in Virtex-II designs) on the FPGA into which this module can
be placed. In this case, mux goes in the region between R1C1 and R5C5.

VHDL
library ieee;
use ieee.std_logic_1164.all;

entity mux is port (
inmux : in std_logic_vector(3 downto 0);
sel : in std_logic_vector(1 downto 0);
outmux : out std_logic);

end mux;

architecture beh of mux is

attribute syn_black_box : boolean;
attribute syn_black_box of beh : architecture is true;
attribute xc_modular_region : string;
attribute xc_modular_region of beh : architecture is

"CLB_R1C1:CLB_R5C5";

begin
end beh;

LO

Chapter 10: Design Flows and Process Optimization Using the Xilinx Modular Flow

10-68 Fpga User Guide, December 2005

Verilog
module mux (inmux, sel, outmux) /* synthesis syn_black_box
xc_modular_region="CLB_R1C1:CLB_R5C5" */;

input [3:0] inmux;
input [1:0] sel;
output outmux;

endmodule

Module Flop File
For the module, the team leader creates a port map, declares the module as a
black box, and specifies the physical location of the module on the FPGA
(flop.vhd or flop.v). The syn_black_box attribute declares this module to be a
black box, until the module designer deletes the attribute and creates the
internals for the module. The xc_modular_region attribute specifies the range of
CLBs (or slices in Virtex-II designs) on the FPGA into which this module can
be placed. In this case, flop goes in the region between R7C7 and R8C8.

VHDL
library ieee;
use ieee.std_logic_1164.all;

entity flop is port (
inflop : in std_logic;
clk : in std_logic;
reset : in std_logic;
outflop : out std_logic);

end flop;

architecture beh of flop is
attribute syn_black_box : boolean;
attribute syn_black_box of beh : architecture is true;
attribute xc_modular_region : string;
attribute xc_modular_region of beh : architecture is

"CLB_R7C7:CLB_R8C8";

begin
end beh;

Using the Xilinx Modular Flow Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-69

Verilog
module flop (inflop, outflop, reset, clk) /* synthesis
syn_black_box xc_modular_region="CLB_R7C7:CLB_R8C8" */;

input inflop;
input reset;
input clk;
output outflop;

endmodule

Determining the Area Range for xc_modular_region
You determine the area range by first estimating the area of the module and
then fitting it on to the FPGA along with the other modules.

1. Estimate the area of the module. You can use one of these methods:

– Often, the team leader has a rough idea of the area of the module. Use
this rough area estimate to determine the area range on the FPGA.

– Synthesize the lower-level modules with the modular design option
turned off. The log file gives you the resource usage, which you can
use to calculate the area of the module.

2. Determine where it should be placed on the FPGA, based on its size.

3. Indicate placement area range with row and column numbers, and use
these numbers as the value of the xc_modular_region attribute.

– For Virtex designs, use this format: CLB_R<n>C<n>:CLB_R<n>C<n>. For
example, CLB_R3C3:CLB_R8C8.

– For Virtex-II designs, use this format:
SLICE_R<n>C<n>:SLICE_R<n>C<n>. For example,
SLICE_R3C3:SLICE_R8C8.

LO

Chapter 10: Design Flows and Process Optimization Integrating with Third-Party Software

10-70 Fpga User Guide, December 2005

Integrating with Third-Party Software
This section discusses how to use synthesis results with software from other
vendors to accomplish your design needs. For information about working
with Altera and Xilinx software, refer to Working with Altera Designs, on
page 8-11, Working with Xilinx Designs, on page 8-28, and The Xilinx Multi-
Point Synthesis Flow, on page 10-48. You can also use a synhooks Tcl script
(see Automating Flows with synhooks.tcl, on page 10-10) to integrate third-
party software.

Resynthesizing with QuickLogic SpDE Information
For QuickLogic designs, you can use pad placement information from the
place-and-route run when you resynthesize your design. You might want to
use this methodology to redesign a part so that it works in an existing
system, without having to change FPGA connections.

1. After synthesis, place and route your design with SpDE.

2. Check the following in the .scp command file generated by SpDE:

– Make sure the object names and the case in the .scp file match the
names and case in the source file.

– Use the portprop command to specify pad placement and pad type.

– Specify fixed placement for I/O pads with the instprop command.

For the syntax of these commands, see the Reference Manual.

3. Include the .scp command file in your project by doing one of the
following:

– Add the include directive to your project file, and specify the .scp file
with the pad placement information.

– Add the include directive to a Tcl script file, and specify the .scp file
with the pad placement information. Read the Tcl script into your
project.

For more information about the include directive, see the Reference
Manual.

4. Resynthesize your design.

Integrating with Third-Party Software Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-71

When you modify and resynthesize the design, the software keeps the
pin locations specified in the included .scp file.

Synopsys DesignWare Component Support
In the Synplify Premier software, Synplicity DW-compatible models have been
created for a number of the Synopsys® DesignWare® components. These
models extract the functionality of the component, but not its implementa-
tion. The mappers synthesize the model to the most appropriate implementa-
tion.

Synopsys Designware Components are supported in certain Actel, Altera, and
Xilinx technologies.

For a complete list of the supported components, see Translating Third-party
Libraries, on page H-1 in the Reference Manual.

LO

Chapter 10: Design Flows and Process Optimization Working with the Identify RTL Debugger

10-72 Fpga User Guide, December 2005

Working with the Identify RTL Debugger
The Identify RTL Debugger is a dual-component system that is part of an
HDL design flow process. The system consists of the Identify Instrumentor
and Identify Debugger software tools. The combination of these tools allows
you to probe your HDL design in the target environment. This system fits
easily into your existing design flow, with only a few modifications.

The Identify Instrumentor tool allows you to select your design instrumenta-
tion at the HDL level and then create an on-chip hardware probe. The Identify
Debugger tool interacts with the on-chip hardware probe and allows you to
perform live debugging of the design. The combined system allows you to
debug your design faster, easier, and more efficiently.

The Synplify, Synplify Pro, and Synplify Premier synthesis tools have
integrated the Identify Instrumentor into the synthesis user interface. To use
the Identify Instrumentor, create an Identify implementation and then launch
the Identify Instrumentor from within the synthesis tool.

To add an Identify implementation:

1. In the synthesis interface, open the design you want to instrument.

2. Do one of the following tasks to add an Identify implementation:

– With the project implementation selected, right-click and select New
Identify Implementation from the pop-up menu.

Working with the Identify RTL Debugger Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-73

– Select Project->New Identify Implementation.

An Options for Implementations dialog box appears where you can set the
options for your implementation. Note that the options apply only for
logic synthesis and not for physical synthesis.

3. Close the Options for Implementations dialog box. An Identify implementation
is created.

4. Open the Identify Instrumentor either by selecting the Launch Identify icon
() in the toolbar or by selecting Run->Identify Instrumentor. If you do not
have an implementation created when you select Run->Launch Identify
Instrumentor or select the Launch Identify icon (), the following message
dialog box appears. Select OK.

• If the location of the Identify Instrumentor executable is unknown, a
Launch Identify dialog box appears.

• If the synthesis application locates the Identify software, it opens with
the path to the Identify instrumentor executable.

LO

Chapter 10: Design Flows and Process Optimization Working with the Identify RTL Debugger

10-74 Fpga User Guide, December 2005

Note: If the icon and menu command are inaccessible, you are either
on an unsupported platform or you are using a technology that
does not support this feature.

• If you have the Identify software installed but the synthesis application
cannot find it, select Locate Identify Installation (identify_instrumentor): and the
... button. This opens the Select Identify Installation Directory dialog box.
Locate and select your current Identify installation directory.

Working with the Identify RTL Debugger Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-75

• If you do not have the Identify software installed, select Install Identify and
click OK. Install the Identify software before proceeding as described
above.

5. The Identify Instrumentor software interface opens, with an Identify
project automatically set up for the design to be debugged.

LO

Chapter 10: Design Flows and Process Optimization Working with the Identify RTL Debugger

10-76 Fpga User Guide, December 2005

6. Do the following in the Identify Instrumentor interface:

– Instrument the design. For details of using the Identify instrumentor,
refer to the Identify RTL Debugger documentation.

– Save the instrumented design.

The Identify Instrumentor tool exports the instrumented design to the
synthesis software. It creates an instrumentation subdirectory under
your synthesis working directory called designName_instr, which
contains the following:

– A synthesis project file

– An instr_sources subdirectory for the instrumented HDL files

– Tcl scripts for loading the instrumented design

Working with the Identify RTL Debugger Chapter 10: Design Flows and Process Optimization

Fpga User Guide, December 2005 10-77

7. Return to the synthesis interface and view the instrumented design that
contains the debugging logic.

– In the synthesis interface, open the project file for the instrumented
design, which is in theinstr_sources subdirectory listed in the
Implementations Results view for your original synthesis project.

– Synthesize the design.

– Open the RTL view to see the inserted debugging logic.

8. Place and route the instrumented design after synthesis.

9. Use the Identify Debugger tool to debug the instrumented design. You do
not have access to the Identify Debugger with the evaluation copy. To
use the Identify Debugger, you must have a full-up version of Identify.

LO

Chapter 10: Design Flows and Process Optimization Working with the Identify RTL Debugger

10-78 Fpga User Guide, December 2005

Fpga User Guide, December 2005 11-1

C H A P T E R 11

Synplify Premier Design Flow

This document describes how to use the Synplify Premier tool, with and
without a design plan, in a physical synthesis design flow.

Topics include:

• Synplify Premier Physical Synthesis Flows on page 11-2

• Graph-based Physical Synthesis on page 11-4

• Design Plan-based Physical Synthesis Flow on page 11-8

• Graph-based Physical Synthesis with a Design Plan Flow on page 11-7

• Running Physical Synthesis on page 11-9

LO

Chapter 11: Synplify Premier Design Flow Synplify Premier Physical Synthesis Flows

11-2 Fpga User Guide, December 2005

Synplify Premier Physical Synthesis Flows
Synplify Premier supports the following physical synthesis flows:

• Graph-based physical synthesis—a fully automated flow for incremental
performance improvement producing a design with detailed placement.
Graph-based physical synthesis is currently available for Virtex-II Pro,
Virtex-4, and Spartan-3.

• Graph-based physical synthesis with a design plan—a graph-based
physical synthesis flow that is guided by a design plan. It also produces
a design with detailed placement. Graph-based physical synthesis with
a design plan is currently available for Virtex-II Pro, Virtex-4, and
Spartan-3.

• Design-plan based physical synthesis—an interactive flow that lets you
perform physical synthesis optimization using the Design Planner view.
The Design-plan based physical synthesis produces a design with coarse
placement. The Design-plan based physical synthesis is available for
Altera Cyclone, Cyclone-II, Stratix, Stratix-GX, and Stratix-II and Xilinx
Virtex, Virtex-II, and Virtex-E.

Synplify Premier Physical Synthesis Flows Chapter 11: Synplify Premier Design Flow

Fpga User Guide, December 2005 11-3

Device Support for the Physical Synthesis Flows
The following table describes the devices that are supported for the following
Synplify Premier Physical Synthesis flows:

Physical Optimization Flows Altera Devices Xilinx Devices

Graph-based Physical Synthesis Spartan-3
Virtex-II Pro
Virtex-4

Graph-based Physical Synthesis
with a Design Plan
(Design Planner option of the
Synplify Premier tool only)

Spartan-3
Virtex-II Pro
Virtex-4

Design Plan-based Physical
Synthesis
(Design Planner option of the
Synplify Premier tool only)

Cyclone
Cyclone II
Stratix
Stratix-II
Stratix-II GX

Virtex
Virtex-II
Virtex-E

LO

Chapter 11: Synplify Premier Design Flow Graph-based Physical Synthesis

11-4 Fpga User Guide, December 2005

Graph-based Physical Synthesis
The Synplify Premier tool includes a Graph-based Physical Synthesis feature.
This graph-based physical synthesis approach provides a single-pass flow for
90 nm FPGAs. Pre-existing wires, switches, and placement sites used for
routing represent a detailed routing resource graph of the FPGA, which
measures delay and availability of wires. Physical synthesis performs concur-
rent placement and synthesis optimizations to ensure fast routes for critical
paths and generates a fully-placed and physically-optimized netlist ready for
the vendor place-and-route tool. This push-button flow easily provides from
5% to 20% timing improvements.

Graph-based Physical Synthesis methodology allows the Synplify Premier
software to constrain assigned logic to specific CLB locations for an entire
device, while optimizing the design based on this placement information. The
Synplify Premier tool integrates synthesis and placement by performing
concurrent placement and synthesis optimizations for the design based on
timing, constraints, and the device technology.

Graph-based Physical Synthesis Design Flow
The following figure shows the Graph-based Physical Synthesis design flow,
which includes the Synplify Premier features and tools to run physical
synthesis. Note that this feature is currently applicable for certain device
technologies only.

Graph-based Physical Synthesis Chapter 11: Synplify Premier Design Flow

Fpga User Guide, December 2005 11-5

Graph-based Physical Synthesis Tasks
To run Graph-based Physical Synthesis successfully with Synplify Premier,
be aware of the following conditions:

• You must select a target technology that supports Graph-based Physical
Synthesis.

• Xilinx place-and-route software is available for initial placement of the
design.

Physical Analyst

Island Timing Analyst

Design – Verilog
(.v) or VHDL (.vhd)

Timing Constraints
(.sdc)

Run Synplify Premier
(Physical Synthesis enabled)

Graph-based Physical Synthesis Flow

Analyze Results

Physical Synthesis

Initial Placement

Add Design Files

Set Implementation
Options

Create and Compile Project

Vendor Route

LO

Chapter 11: Synplify Premier Design Flow Graph-based Physical Synthesis

11-6 Fpga User Guide, December 2005

– You do not need to add a place-and-route job to your project.

– Check the xflow_gp.log file for place-and-route results.

• Make sure the design is complete (including all IPs with no black boxes)
and properly constrained.

• Simply click on the Run button to start this push-button physical
synthesis flow, which also includes running placement and routing.

The Synplify Premier software automatically controls the settings for
these optimizations.

• You do not have to specify a design plan file (.sfp) for your project

Creating a .sfp file requires using the separately-licensed Design
Planner option of Synplify Premier.

For more information, see the following topics:

• For applicable Graph-based Physical Synthesis technologies, see Device
Support for the Physical Synthesis Flows on page 11-3.

• For the Synplify Premier with Design Planning, see Design Plan-based
Physical Synthesis Flow on page 11-8.

Graph-based Synthesis Flow Specifications
This feature helps simplify the process that provides critical path timing
improvements for the design. The Synplify Premier tool can implement
Graph-based Physical Synthesis for the following conditions:

• Device is Xilinx Virtex-4, Virtex-II Pro, or Spartan-3 architecture.

• Designs can contain block RAMs, block multipliers, or external user-
defined modules provided in an EDIF netlist.

• Placement is defined for LOC and RLOC constraints.

• Xilinx place-and-route software is available for initial placement of the
design.

• Black boxes, compile points, and MultiPoint synthesis area groups are
not present in the design.

• Regions can be created to constrain logic within a particular area of the
device (Design Planner option of Synplify Premier only).

Graph-based Physical Synthesis with a Design Plan Flow Chapter 11: Synplify Premier Design Flow

Fpga User Guide, December 2005 11-7

Graph-based Physical Synthesis with a
Design Plan Flow

The Graph-based Physical Synthesis with a Design Plan flow for Virtex-II Pro,
Virtex-4, and Spartan-3 combines the graph-based flow with detailed place-
ment with physical optimization using the Design Planner.

Design Plan
(.sfp)

Graph-based Physical Synthesis
 with a Design Plan Flow

Physical Analyst

Island Timing Analyst

Design – Verilog
(.v) or VHDL (.vhd)

Timing Constraints
(.sdc)

Run Synplify Premier
(Physical Synthesis enabled)

Analyze Results

Create and Compile Project

Vendor Route

Physical Synthesis

Initial Placement

Add Design Files

Set Implementation
Options

LO

Chapter 11: Synplify Premier Design Flow Design Plan-based Physical Synthesis Flow

11-8 Fpga User Guide, December 2005

Design Plan-based Physical
Synthesis Flow

The Design Planner is a separate licensed option to the Synplify Premier
software. You use the Design Planner to create a design plan to create and
edit regions in your design. The following figure shows the Design Planner
design flow, which includes the features and tools to run physical synthesis.
Note that some of these features are only applicable for certain device
technologies.

Design Plan
(.sfp)

Design Plan-based
Physical Synthesis Flow

Physical Analyst

Island Timing Analyst

Design – Verilog
(.v) or VHDL (.vhd)

Timing Constraints
(.sdc)

Run Synplify Premier
(Physical Synthesis enabled)

Analyze Results

Design Plan-based

Add Design Files

Set Implementation
Options

Create and Compile Project

Vendor Place & Route

Physical Synthesis

with Backannotation

Running Physical Synthesis Chapter 11: Synplify Premier Design Flow

Fpga User Guide, December 2005 11-9

Design Planner Tasks
1. First run the Synplify Premier software with the Design Planner option

using standard timing constraints in a normal logic synthesis flow to
determine if timing performance enhancements are needed.

2. Run the place-and-route tool.

3. Analyze the results using the following tools:

– Synthesis log file and the place-and-route results file.

– Physical Analyst to view and analyze placement information.

– Island Timing Analyst to view and analyze timing information.

Use these tools to help facilitate creating these physical constraints.
Currently, these tools are only available for Altera and Xilinx devices that
support place-and-route with backannotation.

4. Create a design plan with the Design Planner, to which you can
interactively assign the critical paths to rows or regions on the device.

5. Run Synplify Premier with the design plan to optimize the design.

6. Rerun the place-and-route tool and analyze results.

Running Physical Synthesis
The following describes the tasks to run Graph-based, Graph-based with a
design plan, or Design plan-based physical synthesis.

• Create the Project File on page 11-10

• Set Implementation Options on page 11-11

• Run Place-and-Route on page 11-18

• Synthesize the Design on page 11-21

• Analyze Results on page 11-22

• Running Multiple Implementations on page 11-24

LO

Chapter 11: Synplify Premier Design Flow Running Physical Synthesis

11-10 Fpga User Guide, December 2005

Create the Project File
The Synplify Premier physical synthesis flow requires a design project file
(.prj). To do this:

1. Open the Synplify Premier tool.

2. Create a project.

– File->New

– Click on the Open Project button, then New Project.

3. Add source files:

– HDL source files (.v/.vhd)

– Constraint files (.sdc)

– For the Design Planner option, add design plan files (.sfp). (See
Chapter 7, Design Planning and Optimizations if you do not have a
design plan file.)

See Chapter 2, Project Setup for information on how to add source files.

Running Physical Synthesis Chapter 11: Synplify Premier Design Flow

Fpga User Guide, December 2005 11-11

4. Save the project file.

Set Implementation Options
After creating your design project, you can specify the options for the physical
synthesis design run.

Bring up the Implementations Options dialog box (Impl Options button).

1. In the Device panel, set Device technology and options for:

– Technology, part, speed, and package

– Device mapping options

Note: Currently, Graph-based Physical Synthesis only supports Xilinx
Virtex-4, Virtex-II Pro, and Spartan-3 technologies.

LO

Chapter 11: Synplify Premier Design Flow Running Physical Synthesis

11-12 Fpga User Guide, December 2005

Running Physical Synthesis Chapter 11: Synplify Premier Design Flow

Fpga User Guide, December 2005 11-13

2. Click on the Options tab and set optimization switches for physical
synthesis. Make sure to enable the Physical Synthesis option.

You can also enable the Physical Synthesis switch from the Project view.

However, if you try to enable this option without a Synplify Premier
license, the following message appears:

LO

Chapter 11: Synplify Premier Design Flow Running Physical Synthesis

11-14 Fpga User Guide, December 2005

3. Click on the Constraints tab:

– Set an overall target frequency for the design. See Specifying Global
Frequency and Constraint Files on page 3-6 for information.

– Make sure the constraint file that you want to use is selected. If you
do not see the desired constraint files in the pane, you need to either
create one, or add an existing .sdc file to your project.

See:

– Setting Constraints in the SCOPE Window on page 3-18 for
information on creating constraint files.

Running Physical Synthesis Chapter 11: Synplify Premier Design Flow

Fpga User Guide, December 2005 11-15

4. Click on the Implementation Results tab and specify your output options.
See Specifying Result Options on page 3-9 for details.

5. Click on the Timing Report tab and specify the following:

– Number of critical paths and start/end points to display in the timing
report.

– Enable the option to generate an island timing report. Then specify
the parameters used to generate the timing report.

If you do not wish to generate an island timing report at this time, you
can choose to use the interactive Island Timing Analyst tool after you
run synthesis instead. See The Island Timing Analyst on page 4-88.

LO

Chapter 11: Synplify Premier Design Flow Running Physical Synthesis

11-16 Fpga User Guide, December 2005

6. From the Verilog/VHDL tab, specify the desired HDL options. See Setting
Verilog and VHDL Options on page 3-11.

7. If you are running the Design-based or Graph-based with a design plan
physical synthesis flow, click on the Design Planning tab and make sure
the design plan file (.sfp) is selected. For Altera and certain Xilinx
technologies, you must create a design plan (.sfp) to run physical
synthesis. However, you do not need to select a design plan file to run
Graph-based physical synthesis.

Running Physical Synthesis Chapter 11: Synplify Premier Design Flow

Fpga User Guide, December 2005 11-17

If you try to enable a design plan file (.sfp) without a Design Planner
license, a popup message appears stating that the current license does
not support design planning.

8. From the Netlist Restructure tab, specify the following options:

– Enable any necessary netlist optimizations. The Create MAC Hierarchy
option is available only for certain Altera technologies.

– Include any necessary netlist restructure file (.nrf) for which bit
slicing or zippering might have been performed.

LO

Chapter 11: Synplify Premier Design Flow Running Physical Synthesis

11-18 Fpga User Guide, December 2005

9. Click OK to apply the implementation options.

Run Place-and-Route
The following instructions describe how to set-up the place-and-route option
to run after physical synthesis has completed.

Note that the Graph-based Physical Synthesis and the Graph-based with a
design plan flows automatically runs the Xilinx place-and-route tool for initial
placement during synthesis and requires no setup. By default the software
uses the place-and-route xilinx_gp.opt options file.

To create a final place-and-route job to run after synthesis, do the following:

1. From the Project view window, press the New P&R... button and specify
the following:

– Place-and-route implementation name. A default place-and-route
name (for example, pr_1) appears in the display. Avoid using spaces in
this implementation name.

– Whether to automatically run the place-and-route implementation
after the main synthesis flow.

– Whether or not to include back annotation data from place-and-route
during physical synthesis. This option is only available for Altera

Running Physical Synthesis Chapter 11: Synplify Premier Design Flow

Fpga User Guide, December 2005 11-19

Cyclone, Cyclone-II, Stratix, Stratix-II, and Stratix-GX and Xilinx
Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-4 technologies.

– Include the default place-and-route options file (xilinx_par.opt) or a
customized options file (.opt) if desired. If you do not specify a user-
generated file with custom place-and-route options, then a default
place-and-route options file is used during physical synthesis. The
customized options file is only available for certain Xilinx
technologies.

You can either:

– Click on the Existing Options File button and navigate to the location of
the options file.

– Otherwise, click on the Create New Options File button to create an
options file.

The specified file name will be created with default settings and added to
your project so that you can edit this file in the Project view.

Navigate to an
Existing Option
File

LO

Chapter 11: Synplify Premier Design Flow Running Physical Synthesis

11-20 Fpga User Guide, December 2005

Once you create and add the place-and-route job for the implementa-
tion, this job should be enabled on the Place and Route tab of the Options
for Implementation dialog box.

Running Physical Synthesis Chapter 11: Synplify Premier Design Flow

Fpga User Guide, December 2005 11-21

For information about running place-and-route, see Running Place-and-
Route After Synthesis on page 10-21.

2. Save the project file.

Synthesize the Design
Click Run in the Project view to start physical synthesis.

During this phase, mapping and physical synthesis are integrated. All optimi-
zations are done with placement-aware synthesis. When physical synthesis
completes, Done! appears in the status window of the Project view.

LO

Chapter 11: Synplify Premier Design Flow Running Physical Synthesis

11-22 Fpga User Guide, December 2005

Analyze Results
You can display the physical synthesis results graphically using the HDL
Analyst, Physical Analyst, and Island Timing Analyst tools.

Log File
Click the View Log button in the Project view and analyze results. This
displays the log file in either text (.srr) or HTML (.htm) format. The log file
contains default timing and area reports. See Log File Command on page 3-32
in the Reference Manual and Analyze Results on page 11-22 for information
on analyzing the results.

HDL Analyst
The RTL and Technology views are schematic views used to graphically
analyze your design.

To open an RTL view for a compiled design, do the following:

• Select HDL Analyst->RTL->Hierarchical View.

• Click the RTL View icon () (a plus sign inside a circle).

• Double-click the .srs file in the Implementation Results view.

• To open a flattened RTL view, select HDL Analyst->RTL->Flattened View.

To open a Technology view for a mapped (synthesized) design, do the
following:

• Select HDL Analyst ->Technology->Hierarchical View.

• Click the Technology View icon (NAND gate icon ().

• Double-click the .srm file in the Implementation Results view.

• To open a flattened Technology view, select HDL Analyst-> Technology-
>Flattened View.

Running Physical Synthesis Chapter 11: Synplify Premier Design Flow

Fpga User Guide, December 2005 11-23

For more information about using the HDL Analyst views, see the following:

• Basic Operations in the Schematic Views on page 4-16

• Exploring Design Hierarchy on page 4-30

• Finding Objects on page 4-37

• Analyzing With the HDL Analyst Tool on page 4-56

• Analyzing Timing on page 4-73

Physical Analyst
The Physical Analyst tool provides a visual display of the floorplan, place-
ment, and global routing of the design after design planning and place-and-
route have been run. To display the Physical Analyst view, you can:

• Click on the Physical Analyst icon () from the Physical Analyst toolbar.

• Select HDL Analyst->Physical Analyst in the Project view.

• Select the .srm file, then right-click and select Open Using Physical Analyst
from the popup menu.

The Physical Analyst view is capable of showing instances and nets. For more
information, see Chapter 5, Physical Analyst.

Island Timing Analyst
Use the Island Timing Analyst to generate and display the Islands/Paths
Summary and Details reports. You can also cross probe these critical paths to
the HDL Analyst view. To invoke the Island Timing Analyst, you can either:

• Click on the Island Timing Analyst icon ().

• Select HDL Analyst->Island Timing Analyst from the menu.

For more information about using the Island Timing Analyst, see The Island
Timing Analyst on page 4-88.

LO

Chapter 11: Synplify Premier Design Flow Running Physical Synthesis

11-24 Fpga User Guide, December 2005

Running Multiple Implementations
You can create multiple implementations of the same design so that you can
compare the results of each implementation and place-and-route run. This
lets you experiment with different settings for the same design with different
place-and-route options. Implementations are revisions of your design within
the context of the Synplify Premier software and do not replace external
source code control software and processes.

For the Graph-based physical synthesis with a design plan flow
(Virtex-II Pro, Spartan-3, and Virtex-4), you can run the first pass using
the Synplify Premier software without a design plan file (.sfp) to synthe-
size the design. Placement and routing runs automatically. Then, create a
new implementation and apply a design plan for Design plan-based
physical synthesis.

See Working with Multiple Implementations on page 2-22 for more informa-
tion.

Fpga User Guide, December 2005 Index-1

Index

Symbols
*.acf file 3-65
*.lp file 3-65
*.ncf file 3-65
.edf file 8-29
.ndf file 8-29
.prf file 3-65
.sdc file 3-20
.v files. See Verilog
.vhd files. See VHDL
.vqm file

Clearbox 8-18

A
Actel

ACTgen macros 8-9
I/O pad type 3-40
macro libraries 8-8
output netlist 8-6
pin numbers for bus ports 8-3

ACTgen macros 8-9
Add marker command 5-29
adjust pin view 7-7
alspin

bus port pin numbers 8-3
pin locations 8-2

Alt key
column editing 2-6
mapping 4-52

Altera
Apex design tips 8-12
Clearbox. See Clearbox
converting PIN files 3-43
design tips 8-11
EABs 8-14
ESBs 8-14

FLEX design tips 8-12
forward-annotation 3-65
I/O packing 8-18
instantiating LPMs as black boxes 6-88
LPM megafunction example

(Verilog) 6-88
LPM megafunction example

(VHDL) 6-90
multi-port RAMs 6-69
netlist 8-6
pin loc files

converting to SDC 3-43
PLLs. See altplls
RAMs 6-67
ROMs 8-12
simulating LPMs 8-20
STRATIX

additional tips for Synplify Premier
Design Planner 9-2

Stratix RAM 6-61
Verilog LPM library 6-97

Altera devices
physical synthesis 11-3

Altera MegaWizard
generating LPM files 6-88

altera_implement_in_eab attribute 8-14
altera_implement_in_esb attribute 8-14
altpll

component declaration files 8-15
using 8-15

altplls
constraints 8-15

altshift_tap, set implmentation
style 6-80

ALTSYNCRAM for LPMs 6-88
ALTSYNCRAM, Altera Stratix 6-61
analyzing netlists 5-42
annotated properties for analyst

options for implementation dialog
box 3-6

Index-2 Fpga User Guide, December 2005

APEX
netlist 8-6
packing I/Os 8-18

archive project (GUI, How to) 2-26
area, optimizing 6-3
assigning critical paths to a region 4-98
asterisk wildcard

Find command 4-42
Atmel

output netlist 8-6
attributes

adding 3-66
from RTL and Technology views 3-74
in constraint files 3-64
in SCOPE 3-68
Verilog 3-68
VHDL 3-66

altera_implement_in_eab 8-14
altera_implement_in_esb 8-14
collections 3-50
effects of retiming 6-49
for FSMs 6-15, 6-23
pipelining 6-42
VHDL package 3-67

audience for the document 1-11
auto constraints

using 3-45
Auto route cross probe insts

command 5-34

B
B.E.S.T 4-19
back annotation

after place-and-route 10-25
backslash

escaping dot wildcard in Find
command 4-42

in Find command 5-26
batch mode 10-2
Behavior Extraction Synthesis

Technology. See B.E.S.T
bit slicing 7-26

guidelines 7-32
legal primitives 7-32

black boxes 6-30
adding constraints 6-34

adding constraints in SCOPE 6-37
adding constraints in Verilog 6-36
adding constraints in VHDL 6-35
EDIF naming consistency 6-39
for IP cores 8-29
gated clock attributes 6-108
instantiating in Verilog 6-30
instantiating in VHDL 6-32
internal startup blocks 6-39
pin attributes 6-38
prepared component method

(Altera) 6-96
specifying timing information for Xilinx

cores 8-29
timing constraints 6-34

block FIFOs (Synplify Premier Design
Planner)

displaying 9-10
block Mults (Design Planner)

displaying 9-11
block RAM 9-24

dual-port, mapping with registered
address 6-71

glue logic in 6-72
mapping dual port coding style 6-77
mapping ROM (Xilinx) 6-79
mapping to single-output

dual-port 6-77
mapping to single-port 6-75
single-port

mapping with registered
address 6-70

using registered addresses 6-70
using registered output 6-73

block RAM (Design Planner)
displaying in the Physical View 9-11

block RAM regions
assigning 9-27
creating 9-25

bookmarks
in source files 2-6
using in log files 4-4

BRAMs (Synplify Premier) 9-24
breaking up large primitives (Synplify

Premier) 7-26
browsers 4-30
buffering

crontrolling 6-8

Index

Fpga User Guide, December 2005 Index-3

BUFG
for fanouts 6-9

BUFGDLL 8-36
bus

drag and drop 3-22

C
c_diff command

examples 3-52
c_foreach command

using 3-58
c_intersect comamnd

examples 3-52
c_list command

different from c_print 3-57
example 3-59
using 3-57, 3-58

c_print command
different from c_list 3-57
using 3-58

c_symdiff command
examples 3-53

c_union command
examples 3-52

callback functions, customizing
flow 10-10

carry chain DRC (Synplify Premier) 9-17
carry chains

inferring 8-25
case sensitivity

Find command (Tcl) 3-54
Clearbox

file-handling for Quartus 8-18
implementing Stratix megafunctions

with 8-16
using 8-16
Verilog port and parameter

definitions 8-17
clock buffers 8-36
clock constraints

edge-to-edge delay 3-27
false paths 3-39

clock constraints, setting 3-27
clock DLLs 8-36
clock domains

setting up 3-32

clock groups
effect on false path constraints 3-39
for global frequency clocks 3-29
Xilinx DCMs and DLLs 3-31

clock pins 7-17
clock trees 4-73
clocks

asymmetrical 3-30
defining 3-28
for DCMs and DLLs 3-31
for PLLs 3-31
frequency 3-30
gated 3-32
gated. See gated clocks.
implicit false path 3-39
limited resources 3-32
overriding false paths 3-39

collections
adding attributes to 3-50
adding objects 3-51
concatenating 3-51
constraints 3-50
copying 3-58
creating from common objects 3-51
creating from other collections 3-49
creating in SCOPE 3-48
creating in Tcl 3-51
crossprobing objects 3-49
definition 3-47
diffing 3-51
highlighting in HDL Analyst views 3-57
iterating through objects 3-58
listing objects 3-58
listing objects and properties 3-57
listing objects in a file 3-58
listing objects in columnar format 3-57
listing objects with c_list 3-57
Tcls script window and SCOPE

comparison 3-47
using Tcl expand command 3-55
using Tcl find command 3-53
viewing 3-56

colors
in text files 2-10

column editing 2-6
commands

Auto route cross probe insts (Physical
Analyst) 5-34

Expand Path Forward 5-54
Go to Location 5-27

Index-4 Fpga User Guide, December 2005

Go to Next 5-30
Go to Previous 5-30
Highlight Visible Net Instances

(Physical Analyst) 5-46
Markers 5-29
Select Net Instances 5-46
Selection Transcription 5-16
Send Crossprobes when selecting

(Physical Analyst) 5-34
Signal Flow 5-11
slice_primitive 7-26
zipper_inst_hier 7-37

comment characters
in text files 2-10

comments in source files 2-6
compile points

creating constraint file 10-34
defining in constraint files 10-31
preserving with syn_hier 10-36
setting constraints 10-35

compiler directives (Verilog)
specifying 3-12

Conformal 10-16
connectivity-based timing report 4-83
constants

extracting from VHDL source code 3-14
constraint files 3-60

See also SCOPE
applying to a collection 3-50
black box 6-34
colors 2-10
comments 2-10
creating in a text editor 3-62
creating with SCOPE 3-19
define_clock 3-62
define_reg_input_delay 3-63
effects of retiming 6-49
enter or edit 3-22
Find command 3-31
fonts 2-10
forward-annotating 3-64
module-level, Xilinx 10-60
opening 3-20
options 3-7
setting for compile points 10-35
specifying through points 3-35
syn_reference_clock attribute 3-62
tabs 2-10
types of 3-21
vendor-specific 3-64

when to use 3-60
constraints

altplls 8-15
translating from Xilinx UCF 3-42
Xilinx UCF 3-42

context
for object in filtered view 4-59

control panel
displaying instances 5-7
displaying nets 5-7
displaying objects 5-6
displaying row sites 5-7
displaying signal pins 5-7
Objects pane 5-6
Physical Analyst view 5-5
selecting objects 5-6

control panel (Physical Analyst) 5-5
panes 5-6

copy project (GUI, How to) 2-34
core cells

displaying 5-31
CoreGen 8-29
cores, instantiating in Xilinx

designs 8-29
critical paths

delay 4-75
Expand Path Forward command 5-54
flat view 4-74
hierarchical view 4-74
islands 4-83
slack time 4-75
tracing forward 5-54
tracing in Physical Analyst 5-54
using -route 6-4
viewing 4-74

critical paths (Physical Analyst) 5-51
crossprobing 4-48

allowing to place-and-route file 4-27
and retiming 6-48
collection objects 3-49
filtering text objects for 4-53
from FSM viewer 4-54
from log file 4-5
from message viewer 4-10
from text files 4-51
Hierarchy Browser 4-49
importance of encoding style 4-55
paths 4-52
Physical Analyst view 5-34

Index

Fpga User Guide, December 2005 Index-5

RTL view 4-50
Technology view 4-50
Text Editor view 4-50
text file example 4-52
to FSM Viewer 4-54
Verilog file 4-50
VHDL file 4-50
View Cross Probing commands 5-34
within RTL and Technology views 4-49

crossprobing (Physical Analsyt)
RTL view 5-35
Technology view 5-38

crossprobing (Physical Analyst)
auto route crossprobing 5-41
RTL view 5-37
Technology view 5-35
text files 5-35, 5-36

crossprobing commands (Synplify
Premier)

Physical Analyst view 5-34
current level

expanding logic from net 4-63
expanding logic from pin 4-63

current level and below search 4-39
current level search 4-39
customization

callback functions 10-10
Cypress netlist 8-6

D
DCMs

defining clocks 3-31
DCMs (Synplify Premier)

displaying 9-11
default constraints 3-24
default enum encoding 3-14
define_attribute 3-73
define_clock constraint 3-62
define_false_paths constraint 3-63
define_input_delay constraint 3-63
define_multicycle_path constraint 3-63
define_output_delay constraint 3-63
define_reg_input_delay constraint 3-63
define_reg_output_delay constraint 3-63
design entry 1-9

design flow
customizing with callback

functions 10-10
physical synthesis 11-8

design flows
FPGA generic 1-8
Synplify 1-16
Synplify Premier 1-20
Synplify Pro 1-16
synthesis 1-16

design guidelines 6-2
design hierarchy

viewing 4-56
design plan 7-2

guidelines 7-1
options 3-8

Design Plan Editor view
moving regions 7-21
preserving region resources 7-23
resizing regions 7-22

Design Planner 7-2
design plans

displaying IP core areas 7-19
design size

amount displayed on a sheet 4-27
design view display history

moving between design views 4-26
device options

See alsoimplementation options
device view

Physical Analyst 5-8
dialog boxes

Enhanced Instance Display 5-31
Find Object 5-23
Physical Analyst Properties 5-18
Resolve Selection 5-15

digital clock managers (Synplify Premier)
see DCMs 9-11

directives
adding 3-66

Verilog 3-68
VHDL 3-66

black box 6-35, 6-36
for FSMs 6-15
specifying for the compiler

(Verilog) 3-12
syn_state_machine 6-20
syn_tco 6-36

Index-6 Fpga User Guide, December 2005

adding black box constraints 6-35
syn_tpd 6-36

adding black box constraints 6-35
syn_tsu 6-36

adding black box constraints 6-35
displaying instances (Physical

Analyst) 5-10
Dissolve Instances command

using 4-70
dissolving 4-70
DLLs

defining clocks 3-31
dot wildcard

Find command 4-42
drag and drop 3-22
drivers

preserving duplicates with
syn_keep 6-11

selecting 4-66
dual-port RAMs

6-69
block RAMs with single registered

output, Xilinx 6-77
Stratix 6-62

E
EABs, inferring 8-14
edf2srs.exe translator 3-42
EDIF

structural, for Xilinx IP cores 8-20, 8-29
synthesizing 8-39

EDIF files
reoptimizing with 8-39

Edit menu commands
for editing source files 2-5

Editing window 2-5
emacs text editor 2-8
encoding styles

and crossprobing 4-55
default VHDL 3-14
FSM Compiler 6-19

enhanced display mode 5-31
Enhanced Instance Display dialog

box 5-31
environment variables

SYN_TCL_HOOKS 10-10

equivalence checking
VIF file 10-13

equivalency checking
handling failure 10-18

error messages
gated clock report 6-106

errors
definition 2-5
filtering 4-9
sorting 4-9
source files 2-4
Verilog 2-4
VHDL 2-4

ESBs, inferring 8-14
Expand command

using 4-63
expand command

Tcl. See Tcl expand command
Expand command (Physical

Analyst) 5-43
Expand commands

connections 4-66, 5-48
pin and net logic 4-62

Expand commands (Physical Analyst)
pin and net logic 5-43

Expand Inwards command
using 4-63

Expand Path Forward command 5-54
Expand Paths command

different from Isolate Paths 4-66
expand pin view 7-7
Expand to Register/Port command

using 4-63
Expand to Register/Port command

(Physical Analyst) 5-43
expanding

connections 4-66
connections (Physical Analyst) 5-48
pin and net logic 4-62

expanding (Physical Analyst)
pin and net logic 5-43

F
false paths

defining between clocks 3-39
I/O paths 3-39

Index

Fpga User Guide, December 2005 Index-7

impact of clock group
assignments 3-39

overriding 3-39
ports 3-38
registers 3-38
setting constraints 3-38

fanouts
buffering vs replication 6-8
hard limits 6-8
soft global limit 6-7
soft module-level limit 6-7
using syn_maxfan 6-7

features
Synplify 1-2
Synplify Pro 1-2

files
*.acf 3-65
*.lp 3-65
*.ncf 3-65
.prf 3-65
.sdc 3-20
.v 2-2
.vhd 2-2
altpll component declarations 8-15
filtered messages 4-13
fsm.info 6-20
log 4-2
message filter (prf) 4-12
output 8-6
rom.info 4-33
specifying tcl 7-37
statemachine.info 6-28
synhooks.tcl 10-10
Tcl 10-4

See also Tcl commands
Tcl batch script 10-3
Xilinx UCF 3-42

Filter Schematic command
using 4-60

Filter Schematic icon
using 4-61

filtered search (Physical Analyst) 5-26
filtering 4-60

advantages over flattening 4-60
using to restrict search 4-39

filtering (Physical Analyst) 5-42
Find command

4-39
browsing with 4-38

constraint file 3-31
hierarchical search 4-40
long names 4-38
message viewer 4-9
Physical Analyst view 5-23
reading long names 4-41
search scope, effect of 4-42
search scope, setting 4-40
searching the mapped database 4-40
searching the output netlist 4-45
setting limit for results 4-41
using Filter Search option 5-26
using in RTL and Technology

views 4-39
using wildcards 4-42, 5-26
wildcard examples 4-44

find command
Tcl. See Tcl find command

Find command (Tcl)
case sensitivity 3-54
database differences 3-47, 3-49
pattern matching 3-54
Tcl window vs SCOPE 3-47

Find Object dialog box 5-23
finding information

information organization 1-13
finding objects

Physical Analyst view 5-23
Fix Gated Clocks option. See gated

clocks
Flatten Current Schematic command

transparent instances 4-68
using 4-68

Flatten Schematic command
using 4-68

flattening 4-67
See also dissolving
compared to filtering 4-60
hidden instances 4-69
transparent instances 4-68
using syn_hier 6-10

FLEX netlist 8-6
fonts

setting in text files 2-10
forward annotation

frequency constraints in Xilinx 8-28
initial values 6-86
vendor-specific constraint files 3-64

Index-8 Fpga User Guide, December 2005

forward-annotation
constraints 8-26

FPGA design flow, generic 1-8
frequency

clocks 3-30
internal clocks 3-30
other signals 3-30
setting global 3-6

from constraints
specifying 3-35

FSM Compiler 6-17
advantages 6-17
enabling 6-18

FSM encoding
user-defined 6-16
using syn_enum_encoding 6-16

FSM Explorer 6-22
running 6-23
when to use 6-22

FSM view
crossprobing from source file 4-51

FSM Viewer 6-25
crossprobing 4-54

fsm.info file 6-20
FSMs

See also FSM Compiler, FSM Explorer
attributes and directives 6-15
defining in Verilog 6-13
defining in VHDL 6-14
definition 6-13
optimizing with FSM Compiler 6-17
properties 6-28
state encodings 6-27
transition diagram 6-25
viewing 6-25

G
gated clocks

attributes for black boxes 6-108
conversion example 6-103
conversion report 6-105
conversion requirements 6-103
error messages in report 6-106
examples 6-100
procedure for fixing 6-101
restrictions 6-110
Synplicity approach 6-99

generated clocks 6-111
generated-clock conversion 6-111
generics

extracting from VHDL source code 3-14
global optimization options 3-5
glue logic

Altera Stratix RAM 6-61
Go to Location command 5-27

creating markers 5-28
Go to Next command 5-30
Go to Previous command 5-30
GSR resources 8-24

H
HDL Analyst

See also RTL view, Technology view
critical paths 4-74
crossprobing 4-48
filtering schematics 4-60
Push/Pop mode 4-33, 4-35
traversing hierarchy with mouse

strokes 4-31
traversing hierarchy with Push/Pop

mode 4-33
using 4-56

HDL Analyst tool
deselecting objects 4-24
selecting/deselecting objects 4-23

HDL Analyst views
highlighting collections 3-57

help
information organization 1-13

hidden instances
consequences of saving 4-58
flattening 4-69
restricting search by hiding 4-39
specifying 4-57
status in other views 4-57

hierarchical design
expanding logic from nets 4-63
expanding logic from pins 4-63

hierarchical instances
dissolving 4-70
hiding. See hidden instances, Hide

Instances command
multiple sheets for internal logic 4-59
pin name display 4-61

Index

Fpga User Guide, December 2005 Index-9

viewing internal logic 4-58
hierarchical objects

pushing into with mouse stroke 4-32
traversing with Push/Pop mode 4-33

hierarchical search 4-39
hierarchy

flattening 4-68
netlist restructuring 3-16
traversing 4-30

hierarchy browser
clock trees 4-73
controlling display 4-27
crossprobing from 4-49
defined 4-30
finding objects 4-37
traversing hierarchy 4-30

Highlight Visible Net Instances
command 5-46

I
I/O banks (Synplify Premier)

displaying 9-11
I/O insertion 8-25
I/O pads

specifying I/O standards 3-40
I/O paths

false path constraint 3-39
I/O standard 3-40
I/Os

auto-constraining 3-46
constraining 3-33
packing in Apex designs 8-18
packing in Xilinx designs 8-33
pin-locked 7-24
preserving 8-26
specifying pad type (Xilinx) 8-38
Verilog black boxes 6-30
VHDL black boxes 6-32

implementation options 3-2
design plan file 3-8
device 3-2
global frequency 3-6
global optimization 3-5
netlist optimizations 3-16
part selection 3-2
specifying results 3-9

implementations

copying 2-23
deleting 2-23
multiple. See multiple

implementations.
renaming 2-23

include paths
updating older project files 2-21

Initial Values
forward annotation 6-86

input constraints, setting 3-33
input files. See source files
instances

preserving with syn_noprune 6-11
properties 4-20, 5-19
properties of pins 4-20

instances (Physical Analyst) 5-7
interactive Island Timing Analyst 4-86
IP core areas 7-19
IP cores 8-29
Island Timing Analyst 4-83

generating island timing report 4-86
interactive 4-86

island timing report
Island Timing Analyst 4-86

islands
timing report 4-83

Isolate Paths command
different from Expand Paths 4-66, 4-67

ispLEVER
forward-annotating constraints

for 8-26

K
key assignments

customizing 10-11
keyword completion, Text Editor 2-6

L
Lattice

constraint file 3-65
forward annotation 3-64
macro libraries 8-23

Lattice netlist 8-6
location constraints

RLOCs 8-35

Index-10 Fpga User Guide, December 2005

log file
gated clock conversion report 6-105
gated clock error messages 6-106
physical synthesis 10-26

log files
checking FSM descriptions 6-24
checking information 4-2
colors 2-10
fonts 2-10
pipelining description 6-43
retiming report 6-48
setting default display 4-2
state machine descriptons 6-19
tabs 2-10
viewing 4-2

Log Watch window 4-6
moving 4-6, 4-8
multiple implementations 2-23
resizing 4-6, 4-8

logic
expanding between objects 4-66
expanding from net 4-63, 5-46
expanding from pin 4-63, 5-43

logic preservation
syn_hier 6-12
syn_keep for nets 6-11
syn_keep for registers 6-11
syn_noprune 6-11
syn_preserve 6-11

LPM_RAM_DQ
VHDL example 6-96

LPMs
Altera megafunction example

(Verilog) 6-88
Altera megafunction example

(VHDL) 6-90
black box method simulation flow 8-20
comparison of Altera instantiation

methods 6-87
generics method, Cypress 6-94
in .vqm 6-88
instantiating as black boxes 6-87
instantiating as black boxes

(Altera) 6-88
instantiating with a Verilog library

(Altera methodology) 6-88
instantiating with a Verilog library

(Synplicity methodology) 6-97
instantiating with VHDL prepared

components 6-94
using in Altera simulation flows 8-20

Verilog black box (Cypress) 6-92
Verilog library simulation flow 8-21
VHDL prepared component simulation

flow 8-21
VHDL prepared components

instantiation example 6-95
LPMs, Altera 6-87

M
macro libraries

Lattice 8-23
markers

adding 5-29
advancing to next 5-31
creating 5-28
deleting 5-30
in Physical Analyst view 5-29
measuring distance 5-30
moving 5-30
using 5-29

markers (Physical Analyst)
adding 5-29

Markers command 5-29
Add marker 5-29
Go to Next 5-30
Go to Previous 5-30
Remove All 5-30
Remove Selected 5-30

Max netlist 8-6
megafunctions

altplls 8-15
using Clearbox 8-16

Megawizard
altplls 8-15

memory usage
maximizing with HDL Analyst 4-72

Message viewer
filtering messages 4-10
saving filter expressions 4-12
searching 4-9
using the F3 key to search forward 4-9
using the Shift-F3 key to search

backward 4-9
message viewer

using 4-8
Message viewer keyboard shortcuts 4-9

Index

Fpga User Guide, December 2005 Index-11

messages
filtering 4-10
saving filter information from command

line 4-13
saving filter information from GUI 4-12
writing messages to file 4-13

mixed language files 2-16
restrictions 2-16

modular flow 10-54
design entry (leader) 10-56
design entry (module) 10-58
directory structure after module

synthesis 10-60
directory structure after top-level

synthesis 10-57
final assembly phase 10-63
initial design budgeting 10-55
module synthesis 10-59
place and route (module) 10-61
planning 10-55
top level synthesis 10-61

mouse strokes
in Physical Analyst 5-20
navigating between views 5-21
pushing/popping objects 4-31

mouse strokes (Physical Analyst) 5-20
moving regions

Design Plan Editor view 7-21
mulitiple implementations

running (project) 2-23
multicycle constraints

forward-annotating 8-26
multicycle paths, setting

constraints 3-28, 3-34
multiple implementations 2-22

running (from workspace) 2-25
using 11-24

multipliers
pipelining restriction 6-40

multipliers, pipelining 6-40
multipoint synthesis

and bottom-up flow 10-28
multipoint synthesis flow 10-29

compiling the design for
initialization 10-30, 10-31

defining compile points 10-31
setting constraints 10-33
setting implementation options 10-30

multi-port RAMs
See also dual-port RAMs
Altera Stratix 6-69

multisheet schematics 4-24
for nested internal logic 4-59
searching just one sheet 4-39
transparent instances 4-25

N
name spaces

output netlist 4-45
technology view 4-40

navigating among design views 4-26
netlist restructure files

specifying 3-17
netlists

restructuring options 3-16
netlists (Physical Analyst)

analyzing 5-42
netlists for different vendors 8-6
nets

expanding logic from 4-63, 5-46
preserving for probing with

syn_probe 6-11
preserving with syn_keep 6-11
properties 4-20, 5-19
selecting drivers 4-66
signal flow 5-11
unfiltering 5-26

nets (Physical Analyst)
resetting the display 5-13
routing 5-12
selecting instances 5-46

New property 4-22
ngdbuild command

final assembly 10-63
module level 10-62

notes
filtering 4-9
sorting 4-9

notes, definition 2-5
nram primitive. See dual-port RAMs,

multi-port RAMs

O
object properties

Index-12 Fpga User Guide, December 2005

in Physical Analyst 5-19
object visibility (Physical Analyst) 5-6
objects

finding 5-23
finding on current sheet 4-39
flagging by property 4-21
locating in Physical Analyst view 5-27
selecting in Physical Analyst view 5-14
selecting overlapping in Physical

Analyst view 5-15
selecting/deselecting 4-23

Objects pane (Physical Analyst) 5-6
optimization

for area 6-3
for timing 6-4
generated clock 6-111
logic preservation. See logic

preservation.
preserving hierarchy 6-12
preserving objects 6-10
tips for 6-2

optimization flows
physical synthesis 11-2

options file (place-and-route) 10-23
OR 3-37
output constraints, setting 3-33
output files 8-6

specifying 3-9
output netlists

finding objects 4-45
overlapping objects

selecting in Physical Analyst view 5-15

P
p_nram primitive. See dual-port RAMs,

multi-port RAMs, nram primitive
package library, adding 2-13
pad types

industry standard 3-40
par command

final assembly 10-64
module level 10-62

parameters
extracting from Verilog source

code 3-12
part selection options 3-2

partitioning
bit slicing 7-26

path constraints
false paths 3-38

pathnames
using wildcards for long names

(Find) 4-41
paths

analyzing 4-77, 4-79
tracing between objects 4-66
tracing from net 4-63, 5-46
tracing from pin 4-63, 5-43

paths (Physical Analyst)
tracing between objects 5-48

paths, crossprobing 4-52
pattern matching

Find command (Tcl) 3-54
PDF

cutting from 2-6
Physical Analyst

analyzing netlists 5-42
control panel 5-5
crossprobing RTL view 5-37
crossprobing Technology view 5-38
crossprobing text files 5-36
device view 5-8
displaying instances 5-10
input files 5-2
object properties 5-19
opening view 5-4
properties 5-18
routing nets 5-7

Physical Analyst keyboard
shortcuts 5-21

Physical Analyst view
adding markers 5-29
creating marker 5-28
critical paths 5-51
crossprobing 5-34
deleting markers 5-30
displaying net signal flow 5-11
displaying signal pins 5-10
Expand commands 5-43
filtering 5-42
finding objects (Physical Analyst) 5-23
Go to Location command 5-27
instance properties 5-19
measuring distance 5-30
mouse strokes 5-20

Index

Fpga User Guide, December 2005 Index-13

moving markers 5-30
net properties 5-19
selecting objects 5-14
tool tips 5-20
transcribing objects 5-16
using markers 5-29
using Selection Transcription 5-16
zoom selected objects 5-22

physical constraints
Altera guidelines 9-2
Xilinx guidelines 9-8

physical coordinates
marking 5-29

physical optimization
description 1-4

physical synthesis
Altera devices 11-3
analyzing results 10-26
design flow 11-8
optimization flows 11-2
running place-and-route 10-21, 11-18
with back annotation 10-25
Xilinx device support 11-3

pin assignment 7-6
assigning clock pins 7-17
assigning pins 7-11
crossprobing 7-16
options 7-7
temporary assigns 7-14

pin assignment tool 7-7
pin loc constraint files

converting 3-43
pin names, displaying 4-61
pins

expanding logic from 4-63, 5-43
properties 4-20

pipelining
adding attribute 6-42
definition 6-40
multipliers 6-40
prerequisites 6-40
whole design 6-41

place-and-route
creating implementation 10-21
customizing option file 10-23
running with physical synthesis 11-18
with back annotation 10-25
with physical synthesis 10-21

place-and-route implementations 10-21
placement

definition 1-10
PLLs

defining clocks 3-31
ports

false path constraint 3-38
properties 4-20

POS interface
using 3-35

preferences
crossprobing to place-and-route

file 4-27
displaying Hierarchy Browser 4-27
displaying labels 4-27
RTL and Technology views 4-26
SCOPE 3-41
sheet size (UI) 4-27

preserving region resources
Design Plan Editor view 7-23

prf file 4-12
primitives

breaking up large 7-26
pin name display 4-61
pushing into with mouse stroke 4-32
viewing internal hierarchy 4-56

probes
adding in source code 6-51
definition 6-50
retiming 6-50

process-level hierarchy 7-25
Product of Sums interface. See POS

interface
project command

archiving projects (GUI, How to) 2-26
copying projects (GUI, How to) 2-34
unarchiving projects (GUI, How to) 2-31

project files
adding files 2-11
adding files to 2-15
batch mode 10-2
creating 2-11
definition 2-11
deleting files from 2-15
opening 2-14
replacing files in 2-15
updating include paths 2-21
VHDL file order 2-14

Index-14 Fpga User Guide, December 2005

VHDL library 2-13
projects

archiving (GUI, How to) 2-26
copying (GUI, How to) 2-34
restoring archives (GUI, How to) 2-31

properties
displaying with tooltip 4-20
finding objects with Tcl Find 3-54
Physical Analyst 5-18
reporting for collections 3-57
viewing for individual objects 4-20

Properties command
instances 5-19
nets 5-19

prototyping overview 1-4
Push/Pop mode

HDL Analyst 4-31
keyboard shortcut 4-33
using 4-31, 4-33

Q
Quartus

file handling for Clearbox 8-18
Quartus II

background compile 8-22
foreground compile 8-22
using synthesis results to run 8-22

question mark wildcard, Find
command 4-42

QuickLogic
pad placement 10-70

QuickLogic netlist 8-7

R
RAM inference

multi-port RAMs, Altera 6-69
Stratix dual-port 6-62

RAMs
Altera Stratix 6-61
dual-port, Stratix 6-62
initializing values (Xilinx) 6-78
multi-port. See dual-port RAMs,

multi-port RAMs
RAMs, inferring 6-54

advantages 6-54
Altera EABs and ESBs 8-14

Altera Flex details 6-67
Xilinx block RAMs 6-70

region
assigning critical paths 4-98

regions
manual logic replication 7-23
moving regions 7-21
preserving logic and memory

resources 7-23
resizing regions 7-22
retiming 6-50

register balancing. See retiming
register constraints, setting 3-27
register packing

See also syn_useioff attribute 8-33
Altera 8-18
Xilinx 8-33

registers
false path constraint 3-38

relative location. See block RAM
relative placement. See RLOCs
replicating logic manually

regions 7-23
replication

controlling 6-8
reports

gated clock conversion 6-105
resizing regions

Design Plan Editor view 7-22
Resolve Selection dialog box 5-15
resource sharing 8-25

optimization technique 6-3
overriding option with syn_sharing 6-6
results example 6-6
using 6-5

restore project (GUI, How to) 2-31
retiming

effect on attributes and
constraints 6-49

example 6-46
overview 6-44
probes 6-50
regions 6-50
report 6-48
simulation behavior 6-50

return codes 10-2
RLOCs 8-35

Index

Fpga User Guide, December 2005 Index-15

RLOCs, specifying 8-35
RLOCs, Xilinx 8-35
ROM

block RAM mapping (Xilinx) 6-79
rom.info file 4-33
ROMs

inferencing in Altera designs 8-12
pipelining 6-40
viewing data table 4-33

routing
definition 1-10

routing nets (Physical Analyst) 5-7
RTL view

adding attributes 3-74
crossprobing description 4-48
crossprobing from 4-49
crossprobing from Text Editor 4-51
defined 4-17
description 4-16, 11-22
filtering 4-60
finding objects with Find 4-39
finding objects with Hierarchy

Browser 4-37
flattening hierarchy 4-68
highlighting collections 3-57
opening 4-18
selecting/deselecting objects 4-23
sequential shift components 6-81
setting preferences 4-26
state machine implementation 6-19
traversing hierarchy 4-30

RTL view. See also HDL Analyst
RTL views

analyzing clock trees 4-73
crossprobing collection objects 3-49

S
schematic objects

selecting/deselecting 4-23
schematic page size 4-27
schematics

multisheet. See multisheet schematics
selecting/deselecting objects 4-23

SCOPE
adding attributes 3-68
adding probe insertion attribute 6-52
case sensitivity for Verilog designs 3-54

collections compared to Tcl script
window 3-47

creating compile point constraint
file 10-34

defining compile points 10-31
drag and drop 3-22
I/O pad type 3-40
pipelining attribute 6-41
setting compile point constraints 10-35
setting constraints 3-19
setting display preferences 3-41
specifying RLOCs 8-35
state machine attributes 6-15
using the wizard 3-20
using the wizard to generate

defaults 3-24
SCOPE editing operations 3-23
SCOPE keyboard shortcuts 3-23
scope of the document 1-11
search

browsing objects with the Find
command 4-38

browsing with the Hierarchy
Browser 4-37

finding objects on current sheet 4-39
setting limit for results 4-41
setting scope 4-40
using the Find command in HDL

Analyst views 4-39
See also search
Select Net Instances command (Physical

Analyst) 5-46
selecting objects (Physical Analyst) 5-14
Selection Transcription command 5-16
selection, in RTL and Technology

views 4-23
Send Crossprobes when selecting

command 5-34
sequential shift components

Altshift_tap 6-80
inferring 6-80
mapping 6-80
SRL16 primitives 6-80
Verilog 6-84
VHDL 6-84

set command
collections 3-58

set_option command 3-4

Index-16 Fpga User Guide, December 2005

sheet connectors
navigating with 4-25

sheet size
setting number of objects 4-27

shift register lookup table. See
sequential shift components

shift registers. See sequential shift
components

Shift-F3 key
Message Viewer 4-9

shortcut keys (Physical Analyst) 5-21
Show Cell Interior option 4-56
Show Context command

different from Expand 4-59
using 4-59

signal flow
displaying in Physical Analyst

view 5-11
signal flow (Physical Analyst) 5-11
Signal Flow command 5-11
signal pins

displaying in Physical Analyst
view 5-10

signal pins (Physical Analyst) 5-10
displaying 5-7

simulation, effect of retiming 6-50
single-port RAMs

block RAM with registered output,
Xilinx 6-75

sites (Physical Analyst) 5-7
slack

handling 4-81
setting margins 4-74

slice_primitive command 7-26
Slow property 4-22
source code

adding pipelining attribute 6-42
crossprobing from Tcl window 4-54
defining FSMs 6-13
fixing errors 2-7
opening automatically to

crossprobe 4-50
optimizing 6-2
specifying RLOCs 8-35
when to use for constraints 3-60

source files

See also Verilog, VHDL.
adding comments 2-6
adding files 2-11
checking 2-4
colors 2-10
column editing 2-6
comments 2-10
copying examples from PDF 2-6
creating 2-2
crossprobing 4-51
editing operations 2-5
fonts 2-10
mixed language 2-16
specifying default encoding style 3-14
specifying top level file for mixed

language projects 2-17
specifying top level in Project view 2-14
specifying top-level file in the

Implementation Options dialog
box 3-14

state machine attributes 6-15
tabs 2-10
using bookmarks 2-6

specifying levels 4-70
SRLs See sequential shift components
state machines

See also FSM Compiler, FSM Explorer,
FSM viewer, FSMs.

attributes 6-15
descriptions in log file 6-19
implementation 6-19

statemachine.info file 6-28
Stratix

Clearbox. See Clearbox ($nopage> 8-16
dual-port rams 6-62

stratix_lcell 8-16
stratix_mac_mult 8-16
stratix_mac_out 8-16
stratix_ram_block 8-16
syn_allow_retiming attribute

using for retiming 6-45
syn_black_box

instantiating LPMs (Altera) 6-88
syn_black_box attribute

instantiating LPMs (Cypress) 6-92
syn_edif_bit_format attribute 8-29
syn_edif_scalar_format attribute 8-29
syn_encoding attribute 6-15

Index

Fpga User Guide, December 2005 Index-17

syn_enum_encoding directive
FSM encoding 6-16

syn_force_pad attribute
using 8-26

syn_forward_io_constraints
attribute 3-64

syn_hier attribute
controlling flattening 6-10
preserving hierarchy 6-12
using with compile points 10-36

syn_isclock
black box clock pins 6-38

syn_keep
shift register inference 6-81

syn_keep attribute
preserving nets 6-11
preserving shared registers 6-11

syn_keep directive
effect on buffering 6-9

syn_maxfan attribute
setting fanout limits 6-7

syn_noarrayports attribute
use with alspin 8-3

syn_noprune directive
preserving instances 6-11
shift register inference 6-81

syn_pipeline attribute 6-42
syn_preserve

effect on buffering 6-9
syn_preserve directive

preserving FSMs from
optimization 6-15

preserving logic 6-11
preserving power-on for retiming 6-46

syn_probe attribute 6-51
inserting probes 6-51
preserving nets 6-11

syn_ramstyle attribute
glue logic for Altera Stratix RAMs 6-61
multi-port RAM inference 6-58
preventing glue logic

(no_rw_check) 6-72
syn_reference_clock constraint 3-62
syn_replicate attribute

using buffering 6-9
syn_romstyle attribute

defining ROM style 8-12

syn_sharing directive
overriding default 6-6

syn_srlstyle attribute
altshift_tap 6-80
mapping sequential shift components

to registers 6-80
setting shift register style 6-80

syn_state_machine directive
using with value=0 6-20

SYN_TCL_HOOKS environment
variable 10-10

syn_tco attribute
adding in SCOPE 6-37

syn_tco directive 6-36
adding black box constraints 6-35

syn_tpd attribute
adding in SCOPE 6-37

syn_tpd directive 6-36
adding black box constraints 6-35

syn_tsu attribute
adding in SCOPE 6-37

syn_tsu directive 6-36
adding black box constraints 6-35

syn_use_carry_chain attribute
using 8-25

syn_useioff attribute
packing registers (Altera) 8-18
packing registers (Xilinx) 8-33
preventing flops from moving during

retiming 6-46
shift register inference 6-81

synhooks.tcl file 10-10
Synplify

feature comparison with Synplify Pro
and Synplify Premier 1-4

Synplify Premier
prototyping 1-4

Synplify Premier synthesis tool
feature comparison with Synplify Pro

and Synplify 1-4
Synplify Pro

feature comparison with Synplify and
Synplify Premier 1-4

Synplify Pro software
design flow 1-16
features 1-2
overview 1-2

Index-18 Fpga User Guide, December 2005

starting 1-12
Synplify software

design flow 1-16
features 1-2
overview 1-2
starting 1-12

synplify UNIX command 1-12
synplify_premier UNIX command 1-12
synplify_premier_dp UNIX

command 1-12
synplify_pro UNIX command 1-12
synplify_proto UNIX command 1-12
syntax

checking source files 2-4
checking Verilog 2-4

syntax check 2-4
synthesis

checking source files 2-4
checking Verilog 2-4

synthesis check 2-4
Synthesis On/Off Implemented as

Translate On/Off 3-15
synthesis_on/off 3-15

T
tabs

setting in text files 2-10
tcl callbacks

customizing key assignments 10-11
Tcl commands

batch script 10-3
entering in SCOPE 3-28
running 10-4

Tcl expand command
crossprobing objects 3-49
usage tips 3-55
using in SCOPE 3-48

Tcl files 10-4
colors 2-10
comments 2-10
creating 10-5
fonts 2-10
for bottom-up synthesis 10-9
guidelines 3-61
naming conventions 3-61
recording from commands 10-5

synhooks.tcl 10-10
tabs 2-10
using variables 10-7
wildcards 3-61

Tcl find command
annotating properties 3-54
crossprobing objects 3-49
examples of filtering 3-55
usage tips 3-53
using in SCOPE 3-48

Tcl Script window
crossprobing 4-54, 10-4
message viewer 4-8

Tcl script window
collections compared to SCOPE 3-47

Tcl scripts
See Tcl files.

technology mapping, description 1-10
Technology view

See also HDL Analyst
adding attributes 3-74
critical paths 4-74
crossprobing 4-48, 4-49
crossprobing from source file 4-51
filtering 4-60
finding objects 4-41
finding objects with Find 4-39
finding objects with Hierarchy

Browser 4-37
flattening hierarchy 4-68
general description 4-16, 11-22
highlighting collections 3-57
opening 4-18
selecting/deselecting objects 4-23
setting preferences 4-26
state machine implementation in 6-19
traversing hierarchy 4-30

Technology views
crossprobing collection objects 3-49

temporary assigns 7-14
drag and drop 7-14
empty 7-14
return assignment 7-14

Text editor
using 2-5

text editor
built-in 2-5
external 2-8

Text Editor view

Index

Fpga User Guide, December 2005 Index-19

crossprobing 2-8, 4-50
Text Editor window

colors 2-9
fonts 2-9

text files
crossprobing 4-51

through constraints 3-35
AND lists 3-37
OR lists 3-36

time stamp, checking on files 2-16
Timing Analyst

using 4-76
timing constraints 3-62
timing failures, handling 4-81
timing information

critical paths 4-75
timing optimization 6-4
timing report

connectivity-based 4-83
generating 4-83
viewing 4-87

generated by Timing Analyst 4-77
Island Timing Analyst 4-83
specifying format options 3-10

timing view 4-77
example 4-77

tips
memory usage 4-72

to constraints
specifying 3-35

tool tips (Physical Analyst) 5-20
displaying in Tcl window 5-16

top level entity
specifying in VHDL 3-14

top level module
specifying in VHDL 3-14

transcribing objects 5-16
transparent hierarchical instances

lower-level logic on multiple
sheets 4-25

transparent instances
flattening 4-68

U
UCF constraints 3-42

unarchive project (GUI, How to) 2-31
UNISIM library 8-29
UNIX commands

synplify 1-12
synplify_premier 1-12
synplify_premier_dp 1-12
synplify_pro 1-12
synplify_proto 1-12

V
vendor-specific netlists 8-6
verification

using VIF file 10-13
Verification Interface Format (VIF) file.

See VIF file.
Verilog
‘ifdef and ‘define statements 3-12
Actel ACTgen macros 8-9
adding attributes and directives 3-68
adding probes 6-51
Altera LPM library 6-97
Altera LPM megafunction example 6-88
Altera PLLs 8-15
always block hierarchy 3-16
black boxes 6-30
black boxes, instantiating 6-30
case sensitivity for Tcl Find

command 3-54
checking 2-4
choosing a compiler 3-11
Clearbox port and parameter

definitions 8-17
clock DLLs 8-37
creating source files 2-2
crossprobing from HDL Analyst

view 4-50
defining FSMs 6-13
editing operations 2-5
extracting parameters 3-12
include paths, updating 2-21
instantiating LPMs as black boxes

(Altera) 6-88
LPM black box instantiation

example 6-92
mixed language files 2-16
RAM structures for inference 6-55
RLOCs 8-35
sequential shift components 6-84
specifying compiler directives 3-12

Index-20 Fpga User Guide, December 2005

structural, for Altera
megafunctions 8-16

Verilog 2001
setting global option from the Project

view 3-11
setting option per file 3-11

Verilog macro libraries
Actel 8-8
Lattice 8-23

VHDL
Actel ACTgen macros 8-9
adding attributes and directives 3-66
adding probes 6-51
Altera LPM megafunction example 6-90
Altera PLLs 8-15
black boxes 6-32
black boxes, instantiating 6-32
case sensitivity for Tcl Find

comand 3-54
checking 2-4
clock DLLs 8-37
constants 3-14
creating source files 2-2
crossprobing from HDL Analyst

view 4-50
defining FSMs 6-14
editing operations 2-5
extracting generics 3-14
instantiating LPMs as black boxes

(Altera) 6-88
LPM instantiation example 6-95
macro libraries, Actel 8-8
mixed language files 2-16
prepared components method of

instantiation 6-96
process hierarchy 3-17
RAM structures for inference 6-55
RLOCs 8-35
sequential shift components 6-84
structural, for Altera

megafunctions 8-16
VHDL files

adding library 2-13
adding third-party package library 2-13
order in project file 2-14
ordering automatically 2-14

VHDL macro libraries
Lattice 8-24

vi text editor 2-8
VIF file

using 10-13
vif2conformal.tcl script 10-16
Virtex

block RAM. See also block RAM.
clock buffers 8-36
I/O buffers 8-38
netlist 8-7
PCI core 8-29

virtual clock, setting 3-27

W
warning messages

definition 2-5
warnings

feedback muxes 6-4
filtering 4-9
handling 4-14
sorting 4-9

wildcards
effect of search scope 4-42
Find command (Tcl) 3-54
Find command examples 4-44
in Find command 5-26
message filter 4-11
SCOPE wizard 3-71

wildcards (Find)
how they work 4-42

workspaces
creating 2-24
using 2-25

write modes, Virtex-II 6-73

X
xc_clockbuftype attribute

specifying 8-36
xc_fast attribute

for critical paths 8-28
xc_fast attribute (Xilinx) 3-73
xc_loc attribute (Xilinx) 3-73
xc_map attribute

relative location 8-35
xc_modular_region attribute

determining area range 10-69
xc_padtype attribute

specifying I/Os 8-38

Index

Fpga User Guide, December 2005 Index-21

xc_rloc attribute
specifying relative location 8-36

xc_uset attribute
grouping instances for relative

placement 8-36
using to group instances 8-36

xflow script 10-23
Xilinx

block RAMs 6-70
clock buffers 8-36
converting PAD files 3-43
CoreGen 8-29
defining DCMs and DLLs 3-31
design guidelines 8-28
forward-annotation 3-65
I/O buffers 8-38
I/O pad type 3-40
IP cores 8-29
netlist 8-7
packing registers 8-33
pin loc files

converting to SDC 3-43
place-and-route option file 10-23
reoptimizing EDIF 8-39
RLOCs 8-35
tips for optimizing 8-28
UCF file 3-42
Virtex-II write modes 6-73
xc_fast_attribute 3-73
xc_loc attribute 3-73

Xilinx device support
physical synthesis 11-3

Z
zipper_inst_hier commands

zipper_inst_hier 7-37
zippering

guidelines 7-41
partitioning 7-33

zoom selected objects (Physical
Analyst) 5-22

Index-22 Fpga User Guide, December 2005

	Preface
	Synplicity Software License Agreement

	Contents
	Introduction
	The FPGA Synthesis Tools
	About the Synplify and Synplify Pro Software
	About the Synplify Premier Software
	Synplicity FPGA Tool Features
	Synplicity Product Family

	The Generic FPGA Design Flow
	HDL Design Entry
	Logic Optimization (Compilation)
	Technology Mapping
	Placement
	Routing
	FPGA Configuration

	Audience
	Scope of the Document
	Starting the Software
	Getting Started
	Getting Help

	User Interface Overview
	Design Flows
	Logic Synthesis Design Flow
	Prototyping Design Flow
	Physical Synthesis Design Flows

	Project Setup
	Setting Up HDL Source Files
	Creating HDL Source Files
	Checking HDL Source Files
	Editing HDL Source Files with the Built-in Text�Editor
	Using an External Text Editor
	Setting Editing Window Preferences

	Setting Up Project Files
	Creating a Project File
	Opening an Existing Project File
	Making Changes to a Project
	Using Mixed Language Source Files
	Setting Project View Display Preferences
	Updating Verilog Include Paths in Older Project Files

	Setting Up Implementations and Workspaces
	Working with Multiple Implementations
	Creating Workspaces
	Using Workspaces

	Archiving Files and Projects

	Constraints, Attributes, and Options
	Setting Implementation Options
	Setting Device Options
	Setting Optimization Options
	Specifying Global Frequency and Constraint Files
	Specifying Result Options
	Specifying Timing Report Output
	Setting Verilog and VHDL Options
	Setting Synplify Premier Netlist Restructuring Optimizations

	Setting Constraints in the SCOPE Window
	Using the SCOPE Window
	Entering and Editing Constraints in the SCOPE Window
	Entering Default Constraints
	Setting Clock and Path Constraints
	Defining Clocks
	Defining Input and Output Constraints
	Defining Multicycle Paths
	Defining From/To/Through for Timing Exceptions
	Defining False Paths
	Specifying Standard I/O Pad Types
	Setting SCOPE Display Preferences
	Translating Xilinx UCF Constraints
	Converting Pin Location Constraint Files in the Synplify Premier Tool

	Using Auto Constraints
	Using Collections
	Comparing Methods for Defining Collections
	Creating and Using Collections (SCOPE Window)
	Creating Collections (Tcl Commands)
	Using the Tcl Find Command to Define Collections
	Using the Expand Tcl Command to Define Collections
	Viewing and Manipulating Collections (Tcl Commands)

	Working with Constraint Files
	When to Use Constraint Files over Source Code
	Tcl Syntax Guidelines for Constraint Files
	Using a Text Editor for Constraint Files
	Generating Constraint Files for Forward Annotation

	Adding Attributes and Directives
	Adding Attributes and Directives in VHDL
	Adding Attributes and Directives in Verilog
	Adding Attributes in the SCOPE Window
	Adding Attributes with the SCOPE Wizard
	Adding Attributes to a Tcl Constraint File
	Adding Attributes From the RTL and Technology Views

	Result �Analysis
	Checking Log Results
	Viewing the Log File
	Analyzing Results Using the Log File Reports
	Using the Log Watch Window

	Handling Messages
	Checking Results in the Message Viewer
	Filtering Messages in the Message Viewer
	Filtering Messages from the Command Line
	Handling Warnings
	Automating Message Filtering with a synhooks Script

	Basic Operations in the Schematic Views
	Differentiating Between the Views
	Opening the Views
	Analyzing Your Design Graphically
	Viewing Object Properties
	Selecting Objects in the RTL/Technology Views
	Working with Multisheet Schematics
	Moving Between Views in a Schematic Window
	Setting Schematic View Preferences
	Managing Windows

	Exploring Design Hierarchy
	Traversing Design Hierarchy with the Hierarchy Browser
	Exploring Object Hierarchy by Pushing/Popping
	Exploring Object Hierarchy of Transparent Instances

	Finding Objects
	Browsing to Find Objects
	Using Find for Hierarchical and Restricted Searches
	Using Wildcards with the Find Command
	Using Find to Search the Output Netlist

	Crossprobing
	Crossprobing Description
	Crossprobing within an RTL/Technology View
	Crossprobing from the RTL/Technology View
	Crossprobing from the Text Editor Window
	Crossprobing from the Tcl Script Window
	Crossprobing from the FSM Viewer

	Analyzing With the HDL�Analyst Tool
	Viewing Design Hierarchy and Context
	Filtering Schematics
	Expanding Pin and Net Logic
	Expanding and Viewing Connections
	Flattening Schematic Hierarchy
	Minimizing Memory Usage While Analyzing Designs

	Analyzing Timing
	Analyzing Clock Trees in the RTL View
	Viewing Critical Paths
	Analyzing Paths with the Timing Analyst
	Analyzing Paths with the Synplify Premier Timing Analyst
	Handling Negative Slack

	The Island Timing Report
	Generating the Island Timing Report
	Automatic Island Timing Report
	Defining the Group Range and Global Range
	Interactive Island Timing Analyst
	Viewing the Island Timing Report

	The Island Timing Analyst
	Islands/Paths Control Panel
	Islands/Paths Summary View
	Islands/Paths Summary Management
	Islands/Paths Details View

	Island Timing Report Critical Paths
	Assigning Critical Paths to a Region

	Physical Analyst
	Synplify Premier Physical Analyst Tool
	Opening the Physical Analyst View
	Using the Physical Analyst Control Panel
	Setting Object Controls
	Setting Visibility Controls

	Using the Physical Analyst Device View
	Setting Object Display Options
	Displaying Instances
	Displaying Signal Pins
	Displaying Signal Flow for Selected Nets
	Routing Nets to Display

	Selecting Objects
	Selecting Multiple Nets
	Transcribing Object Selections

	Viewing Object Information
	Viewing Properties
	Using Tool Tips
	Using Mouse Strokes
	Using Keyboard Shortcuts
	Zooming in the Physical Analyst

	Finding Objects
	Finding Objects with the Find Command
	Finding Object Locations
	Using Markers
	Changing Color Schemes
	Configuring Enhanced Instance Display

	Crossprobing in Physical Analyst
	Analyzing Netlist with the Physical Analyst
	Expanding and Viewing Connections

	Analyzing Timing with the Physical Analyst
	Viewing Critical Paths
	Tracing Critical Paths Forward and Backwards

	Design Optimization
	Design Guidelines
	General Optimization Tips
	Area Optimization Tips
	Timing Optimization Settings

	Optimizing Results
	Sharing Resources
	Setting Fanout Limits
	Controlling Buffering and Replication
	Controlling Hierarchy Flattening
	Preserving Objects from Optimization
	Preserving Hierarchy

	Defining State Machines for Synthesis
	Defining State Machines in Verilog
	Defining State Machines in VHDL
	Specifying FSMs with Attributes and Directives

	Using the Symbolic FSM Compiler
	Choosing When to Use the FSM Compiler
	Running the FSM Compiler on the Whole Design
	Running the FSM Compiler on Individual FSMs

	Using FSM Explorer
	Deciding When to Use the FSM Explorer
	Running the FSM Explorer

	Using the FSM Viewer
	Defining Black Boxes for Synthesis
	Instantiating Black Boxes and I/Os in Verilog
	Instantiating Black Boxes and I/Os in VHDL
	Adding Black Box Timing Constraints
	Adding Other Black Box Attributes

	Pipelining
	Prerequisites for Pipelining
	Pipelining the Design

	Retiming
	Controlling Retiming
	Retiming Example
	Retiming Report
	How Retiming Works
	How Retiming Works With Synplify Premier Regions

	Inserting Probes
	Specifying Probes in the Source Code
	Adding Probe Attributes Interactively

	Inferring RAMs
	Inference vs. Instantiation
	Coding RAMs for Inference
	Specifying RAM Implementation Styles
	Implementing Altera RAMs Automatically
	Implementing Xilinx RAMs Automatically
	Implementing Altera RAMs: FLEX and APEX
	Implementing Altera RAMs: Stratix Multi-Port RAMs
	Inferring Xilinx Block RAMs Using Registered Addresses
	Inferring Xilinx Block RAMs Using Registered Output
	Setting Xilinx RAM Initialization Values
	Mapping Xilinx ROM to Block RAM

	Inferring Shift Registers
	Shift Register Examples

	Forward Annotation of Initial Values
	Working with LPMs
	Instantiating LPMs as Black Boxes (Altera)
	Instantiating LPMs as Black Boxes (Cypress)
	Instantiating LPMs Using VHDL Prepared Components
	Instantiating LPMs Using a Verilog Library (Altera)

	Working with Gated Clocks
	The Synplicity Approach to Gated Clocks
	Synthesizing a Gated Clock Design
	Prerequisites for Gated Clock Conversion
	Gated Clock Conversion Report
	Fix Gated Clock Error Messages
	Gated Clocks for Black Boxes
	Restrictions to Using Fix Gated Clocks
	Generated-Clock Optimization

	Design Planning and Optimizations
	Using the Design Planner
	Creating a Design Plan
	Cutting, Copying, and Pasting in the Design Planner

	Pin Assignments
	Methods for Specifying Pin Assignments
	Specifying Pins Using the Design Plan Editor
	Implementing Pin Assignments
	Storing Temporary Pin Assignments
	Displaying Rats Nesting
	Pin Assignment Statistics
	Assigning Clock Pins

	Working with Regions
	Viewing Intellectual Property (IP) Core Areas
	Placing Regions
	Moving and Sizing Regions
	Replicating Logic Manually
	Assigning Register to Pin-Locked I/O Paths to Regions

	Checking Synplify Premier Utilization
	Device Utilization
	Region Utilization

	Using Process-Level Hierarchy
	Bit Slicing
	About Bit Slicing
	Using Bit Slicing
	Bit Slice Examples
	Bit Slicing Guidelines

	Zippering
	Using Zippering
	Analyzing a Design for Zippering
	Zippering Example
	Zippering Guidelines

	Vendor-Specific Optimizations
	Passing Information to the P&R Tools
	Specifying Pin Locations
	Specifying Locations for Actel Bus Ports
	Specifying Macro and Register Placement
	Passing Technology Properties
	Specifying Padtype and Port Information

	Generating Vendor-Specific Output
	Targeting Output to Your Vendor
	Customizing Netlist Formats

	Working with Actel Designs
	Using Predefined Actel Black Boxes
	Using ACTGen Macros
	Working with Radhard Designs

	Working with Altera Designs
	APEX Design Tips
	FLEX Design Tips
	Determining ROM Implementation
	Working with Altera EABs and ESBs
	Working with Altera PLLs
	Implementing Megafunctions with Clearbox
	Packing I/O Cell Registers
	Using LPMs in Simulation Flows
	Working with Quartus II

	Working with Lattice Designs
	Instantiating Lattice Macros
	Using Lattice GSR Resources
	Inferring Carry Chains in Lattice XPLD Devices
	Controlling I/O Insertion in Lattice Designs
	Forward-Annotating Lattice ORCA Constraints

	Working with Xilinx Designs
	Designing for Xilinx Architectures
	Instantiating CoreGen Cores
	Instantiating Virtex PCI Cores
	Packing Registers for I/Os
	Controlling Placement with RLOCs
	Using Clock Buffers in Virtex Designs
	Instantiating Special I/O Standard Buffers for Virtex
	Reoptimizing With EDIF Files
	Working with Xilinx Place-and-Route Software

	Design Planning for Vendors
	Design Planning with Altera Devices
	Stratix and Cyclone Devices
	Displaying Stratix Devices
	Creating Regions for Stratix Devices

	Design Planning with Xilinx Designs
	Displaying Xilinx Device Resources
	Creating Regions for Xilinx Designs

	Handling Xilinx Critical Paths (Design Planner)
	Splitting a Critical Path into Multiple Regions
	Creating Smaller Regions for Long Critical Paths
	Handling Critical Paths with High Fanout Nets
	Handling Critical Paths with Cascading Cells or Carry Chain Logic
	Handling Critical Paths with Bit Slicing
	Handling Critical Paths with Pipelining
	Handling Designs with Multiple Critical Paths
	Handling Critical Paths with Large Multiplexers

	Handling Xilinx Black Boxes (Design Planner)
	Design Planning Xilinx Black Boxes

	Handling Xilinx Block RAMs (Design Planner)
	Creating Block RAM Regions
	Assigning to Block RAM Regions

	Handling Block Multipliers (Design Planner)
	Block Multiplier Support
	Creating Block Mult Regions
	Assigning to Block Mult Regions
	Region Utilization

	Handling DSP Blocks (Design Planner)
	Handling Xilinx IPs (Design Planner)
	Intrusive IP Flow
	Macro IP Flow
	Creating IP Region Constraints

	Design Flows and Process Optimization
	Using Batch Mode
	Running Batch Mode on a Project File
	Running Batch Mode with a Tcl Script

	Working with Tcl Scripts and Commands
	Crossprobing from the Tcl Script Window
	Using Tcl Commands and Scripts
	Generating a Job Script
	Creating a Tcl Synthesis Script
	Using Tcl Variables to Try Different Clock Frequencies
	Using Tcl Variables to Try Several Target Technologies
	Running Bottom-up Synthesis with a Script

	Automating Flows with synhooks.tcl
	The VIF Formal Verification Flow
	Overview of the VIF Flow
	Generating a VIF File
	Using a Tcl Script for VIF Conversion
	Handling Equivalency Check Failures

	Protected Flow Support
	Using IP in a Design

	Running Place-and-Route After Synthesis
	Creating and Running P&R Projects
	Specifying Xilinx Place-and-Route Options
	Backannotating Place-and-Route Data
	Analyzing Physical Synthesis (Synplify Premier)

	MultiPoint Synthesis
	Traditional Bottom-up Design and MultiPoint Synthesis
	The Synplify Pro MultiPoint Synthesis Flow

	The Altera LogicLock Flow
	Using Synplify Pro With the Altera LogicLock Flow
	Using Synplify Premier With the Altera LogicLock Flow

	The Xilinx MultiPoint Synthesis Flow
	Using Synplify Pro With Xilinx MultiPoint Synthesis

	Using the Xilinx Modular Flow
	Overview of Modular Flow Design Stages
	Initial Design Budgeting
	Active Implementation
	Final Assembly
	Design Files and Area Design Planning

	Integrating with Third-Party Software
	Resynthesizing with QuickLogic SpDE Information
	Synopsys DesignWare Component Support

	Working with the Identify RTL Debugger

	Synplify Premier Design Flow
	Synplify Premier Physical Synthesis Flows
	Device Support for the Physical Synthesis Flows

	Graph-based Physical Synthesis
	Graph-based Physical Synthesis Design Flow
	Graph-based Physical Synthesis Tasks
	Graph-based Synthesis Flow Specifications

	Graph-based Physical Synthesis with a Design Plan Flow
	Design Plan-based Physical Synthesis Flow
	Design Planner Tasks

	Running Physical Synthesis
	Create the Project File
	Set Implementation Options
	Run Place-and-Route
	Synthesize the Design
	Analyze Results
	Running Multiple Implementations

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Helvetica-Bold
 /Tahoma-Bold
 /Times-Italic
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

