
Chapter 5

Virtuoso Layout Editor

V IRTUOSO is the layout editor from Cadence that you use to draw
the composite layout for the fabrication of your circuit. It is part
of the dfII tool suite. The process of drawing layout amounts to

drawing lots of colored rectangles with a graphical editor where each color
corresponds to a fabrication layer on the integrated circuit. There are a lot
of design rules for how those layers interact that must be followed very
carefully. The circuit decribed by these colored rectangles can be extracted
from this graphic version and compared to the transistors in the schematic.
The layout is eventually exported in standard format calledstreamor gdsII
and sent to the foundry to be fabricated.

This chapter will show how to to use theVirtuoso Layout Editor to
draw the composite layout and how to check that the layout obeys design
rules using DRC (Design Rule Checking). It’s also critical that the layout
correspond to the schematic that you wanted. A Layout Versus Schemtic
(LVS) process will check that the extracted circuit from your layout matches
the transistor schematic that you wanted. What we’re after is for all the
different views of a cell to match in terms of the information about the cell
that they share. Theschematicor cmosschview should describe the same
circuit that thelayout view describes, thesymbolview should have the same
interface as both of those views, and thebehavioral view should also share
that interface. Eventually we’ll addextracted andabstract views for other
tools, which should also match the essential information. You may also use
configviews for analog simulation.

5.1 An Inverter Schematic

We’ll demonstrate the layout process with a very simple inverter circuit.
First you need aschematicview that describes the circuit you want. You



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

can then simulate thisschematicview with a Verilog simulator likeVerilog-
XL or NC Verilog to verify that it’s doing the right thing. This is important
because once you design the layout in thelayout view, you need something
to compare it to to make sure the layout is correct. In our case we always
refer back to theschematicview as the “golden” specification that describes
the circuit we want.

Starting Cadenceicfb

BecauseVirtuoso is part of the CadencedfII tool suite, the first step is start-
ing Cadnceicfb with the cad-ncsu script. The procedure for starting
icfb, making a new library, and attaching the technology are described in
Chapter 2. Make sure you have a library with theUofU TechLib ami06
technology attached.

Making an Inverter Schematic

The procedure for designing a schematic using theComposer schematic
capture tool is described in Chapter 3. The procedure for using transistors
in a schematic is specifically described in Section 3.3. If you usenmos
and pmos transistors from theNCSU Analog Parts library you will get
transitors that simulate with zero delay in the Verilog simulators. If you
use transistors from theUofU Analog Parts library you will get transistors
that simulate with 0.1 time units of delay in those same simulators. This is
described in Section 4.4.

For this inverter, useComposer from theLibrary Manager to create
a new cell view with a cell name ofinverter . Make the view type
cmos sch because this will be an individual standard cell consistingIt’s easy to change all

cells (like nmos)from
one library to be from

another library later.
You can change the

reference library from
NCSU Analog Parts to
UofU Analog Parts for

example.

of nothing but transistors. Make an inverter usingnmosandpmos transis-
tors from either of theAnalog Parts libraries. Use the properties on the
transistors to change the width of the transistors so that thepmosdevice is
6u M wide and thenmosdevice is 3u M wide. You can do this when

you instantiate the devices, or later using the properties dialog box (use the
q hotkey or theproperties widget). Yourinverter schematic should look

like Figure 5.1 when you’re done.

Making an Inverter Symbol

Now is a good time to make a symbol view of the inverter too. Follow the
procedure from Chapter 3 to make a symbol view. If you like gates to look
like the standard symbols for gates (always a good idea) your symbol might
end up looking something like that in Figure 5.2.

DRAFT - Please do not distribute 116



Draft September 3, 2007 5.1: An Inverter Schematic

Figure 5.1: Inverter Schematic

Figure 5.2: Inverter Symbol

DRAFT - Please do not distribute 117



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

Now check and savethe symbol andcmossch views. They should
both check and save without errors before you proceed to the layout!

5.2 Layout for an Inverter

The process of drawing CMOS layout is to use the graphical editor toNote that there is a
tutorial on Virtuoso that

comes with the tools.
Although it will not use

our same technology
information it may show
you even more tricks of

the tools.

draw colored rectangles that represent the fabrication layers in the CMOS
fabrication process.

Creating a new layout view

In the Library Manger , in the same library as you used for theinverter
cmosschview, create a new cell view. This cell view should have theCell
Name of inverter so that it will be a different view of the same in-
verter cell. The view type should belayout , and the tool should be

Virtuoso (see Figure 5.3).

This will open up two windows; TheVirtuoso Editing window where
the layout is drawn and theLSW (Layer Select Window), where you select
the layers (diffusion, metal1, metal2, polysilicon, etc) to draw.

If the layout is going to be a Standard Cell, the height of the cell as well
as the width of the VDD and VSS power supply wires must be defined so
that cells can eventually abut each other and have the power supply connec-
tions made automatically as the cells abut each other. To avoid DRC errors
when abutting the cells, it is also important to keep the left and right bor-
ders of the cell free of any drawing that might cause an error when the cell
is abutted to another cell. The n-tub is usually aligned with the cell bor-
ders so that it connects into a seamless rectangle when abutted. Usually cell
templates of standard heights containing VDD and VSS contacts (wires) as
well as default nwell dimensions are used. For this tutorial, you can just
pick some reasonable dimensions, but keep in mind that later you’ll want to
plan for a particular power pitch.

Drawing an nmos transistor

Click on the nactive (light green) layer in the LSW window. In the Vir-There are two types of
active defined in our

technlogy file: nactive
and pactive. They’re

different colors so you
can tell them apart.

tuoso Layout Editor window, pressr to activate the Rectangle command.
Now you can draw a rectangle by selecting the start and end points of the
rectangle. This firstnactive rectangle is shown in Figure 5.4.

Press k to activate theRuler command. You can click on one of the
corners of the green rectangle to place the ruler and measure the sides (typ-

DRAFT - Please do not distribute 118



Draft September 3, 2007 5.2: Layout for an Inverter

Figure 5.3: Dialog for Creating aLayout View of the inverter cell

Figure 5.4: Initialnactive rectangle

DRAFT - Please do not distribute 119



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

Figure 5.5:nactiveRectangle with Measurement Rulers

ing K will clear all rulers). Remember that our N-transistor in the inverter
cmossch view had a W/L of 3um/0.6um. It’s important to keep the theThe terms “active” and

“diffusion” are both used
to describe the same
layers in the layout.

width and length of a transistor in mind when you’re drawing active regions.
The length is measured in the direction between the source and drain con-
nections. The width is measured in the orthogonal direction. The width of
the diffusion will be usually the same as the width of the transistors but the
length of diffusion region has to account for the source/drain contacts and
the actual gate length. In order to keep the parasitic capacitance low, the
source and drain active regions should be kept as small as possible. This
means don’t have extra unnecessary active area between the device and the
contact. A general rule of thumb is to have the length of the diffusion region
to be 3um + Gate length in the 0.5 micron technology that we’re using.

In Figure 5.5 you can see the rulers measuring a rectangle ofnactive. A
very useful command to know about is thes stretch command. You can
use this to stretch the rectangle to be the right size once you have the rulers
to guide you.

Now you need to add the source and drain contacts to thenactive re-
gions. Contacts are “sandwiches” of active, contact (cc), and metal1 (M1)
layers overlapped on top of each other. Contacts are special in theMOSIS
SCMOS rules in that they have to be an exact size. Most other layers have
a mx or min size, but contacts in theUofU Techlib ami06 technology must
be exactly 0.6um X 0.6um in size.

The easiest way to draw a contact is to use the pre-defined contacts in
the technology. We have pre-defined in the technology file all the contacts

DRAFT - Please do not distribute 120



Draft September 3, 2007 5.2: Layout for an Inverter

Figure 5.6: Create Contact Dialog Box

that you’re likely to need. use theCreate → contact... menu choice or
press o . This starts up acreate contactwindow. In this window you
can select any from the list of predefined contacts. You can also make an
array of contacts if you have an area to contact that is larger than the area
covered by just a single contact. In general you should use an array of as
many contacts as will fit in the area that you’re trying to contact. Contacts
have non-negligible resistance compared to the pure metal connections so
adding more contacts reduces the resistance of the connection by offering
parallel resistors for the entire connection. Thecreate contactdialog box
looks like that in Figure 5.6. Note that we’re making arrays of contacts with
one column and two rows. You can change this later if desired by selecting
the contact array and using theq properties.

Pre-defined contacts are defined in the technology file. The pre-defined
contacts that are available in this technology file include:

M1 P: Connection between Metal 1 and Pactive (source and drain ofpmos
devices) that includes the pselect layer

M1 N: Connection between Metal 1 and Nactice (source and drain ofnmos
devices) that includes the nselect layer

NTAP: Nwell connection used for tying the Nwell to Vdd Connections from Metal
1 “down” to active or
Poly are known as
“contacts” and
connections between
different metal layers are
called “vias”

DRAFT - Please do not distribute 121



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

Figure 5.7:nactiveshowing source and drain connections

SUBTAP: Substrate connection used for tying the substrate to GND

P CC: Conenction between Metal 1 and Pactive without select layers (can
be uses if it’s already inside a pselect layer)

N CC: Conenction between Metal 1 and Nactive without select layers (can
be used if it’s already inside an nselect layer)

M1 POLY: Connection between Metal 1 and Polysilicon

M1 ELEC: Conenction between Metal 1 and the Electrode layer (Poly2).

M2 M1: Connection between Metal 1 and Metal 2

M3 M2: COnnection between Metal 2 and Metal 3

Ournmostransistor layout with arrays of twoM1 CC contacts on source
and drain and rulers showing all the dimensions is shown in Figure 5.7. Of
course, you can draw the contacts using rectangles ofnactive, cc, andM1
layers directly, but it’s much easier to use the pre-defined contacts.

Now you can draw the gate of the transistor by putting a rectangle of
polysilicon (POLY ) over the active. It’s important to note that the poly
must overlap the active in order to make a transistor. When the transistor
is fabricated there will be no diffusion implant in the channel region un-
derneath the poly, but for the layout you must overlap active and poly to
make transistors. The process that extracts the transistor information from
the layout uses this overlap to identify the transistors.

DRAFT - Please do not distribute 122



Draft September 3, 2007 5.2: Layout for an Inverter

It turns out that it’s not enough to drawnactive to let the foundty know
that you want n-type silicon for this device. You also need to put annselect
“selection” layer around thenactive region to signal that this active region
should be made n-type. This is because of how the layers are represneted
in the fabrication data format. In that format there’s only one layer for all
active regions, and the N-type and P-type active is differentiated with the
select layers. We use different layers fornactive and pactive and make
them different colors so it’s easy to tell them apart, but they both become
generic “active” when they are output instream format so the select layers
are required.

You could have used theM1 N contacts but because we drew a sepa-
ratenselectrectangle around the whole transistor, it’s not necessary to in-
clude the redundantnselectaround the contacts. It wouldn’t hurt anything,
though. As long as the overlappednselectrectangles cover the area that you
want, it’s just a matter of anesthetics whether you have one big rectangle
or lots of overlapping smaller rectangles. Personally, I like the cleaner look
of one large rectangle. It helps me see what’s going on without the visual
clutter of lots of overlapping edges.

The finalnmos transistor layout with the (red) polysilicon gate,nselect
region (green outline) is shown in Figure 5.8. Note that thewidth of the
redPOLY layer defines the transistor’slength (0.6u M). Thewidth of the
transistor is the hight of thenactive layer. The transistor gate must overlap
the width of the transistor by 0.6 microns. Note also that thenselectlayer
must overlap thenactive by 0.6 microns. The source and drain regions of
this transistor have conenctions to the M1 (first level of metal interconnect)
through theM1 CC contacts. You can connect to these regions using a
rectangle of M1 later.

Drawing a pmos transistor

Now complete the same set of steps to make apmos transistor somewhere
in your layout window. This is a very similar process to making thenmos
device. The differences are:

• Usepactive instead ofnactive for the active (diffusion) layer.

• Use M1 CC (or M1 P) contacts for the source and drain regions,
or use a “sandwich” ofpactive, cc, andM1 layers with the correct
dimensions. Remember that thecccontact must be exactly 0.6u M by
0.6 u M in this technology. Thepactive andM1 layers must overlap
thecc layers by 0.3u M. As before, it’s easier to use the pre-defined
contacts using theCreate→ contact...menu choice or presso .

DRAFT - Please do not distribute 123



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

Figure 5.8: NMOS transistor layout

• Because of the mobility difference betweennactiveandpactive, make
thepmosdevice twice as wide as thenmosdevice to roughly equal-
ize drive capabilities. In other words, make thepmostransistor 6u M
wide, and keep the length the default 0.6u M long.

• Surround thepactive rectangle of thepmos device withpselectso
that the foundry knows to make this active region P-type.

The result of making thispmos transistor is shown in Figure 5.9. Note
that the transistor is twice as wide as thenmos device, and has arrays of
M1 P contacts that are four rows high.

However, because of the processing technology used for this set of tech-
nology files, we’re not done yet. Thepmos device must live inside of an
NWELL . This allows thepactive of thepmosdevice to be suurounded by
N-type silicon, while thenmos device we drew eariler lives in the P-type
silicon substrate. Draw a box ofNWELL around the entirepmos device
with overlaps around thepactive of at least 2.1u M. The completedpmos
device with its surroundingNWELL is shown in Figure 5.10.

Assembling the Inverter from the Transistor Layouts

Now that you have layout pieces ofnmosandpmosdevices, you can assem-
ble them into an inverter by connecting the source and drain connections of
the transistors to the appropriate places. Connections are made using rect-
angles of any conducting layers, but metal layers are the usual choice for
making connections if that’s possible.

DRAFT - Please do not distribute 124



Draft September 3, 2007 5.2: Layout for an Inverter

Figure 5.9: Apmostransistor 6u M wide and 0.6u M long

DRAFT - Please do not distribute 125



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

Figure 5.10: Apmostransistor inside of anNWELL region

Select the entire layout piece of one of your transistors using the left
mouse button. Starting with the cursor in the arrow shape click and drag
with the left button pressed. The selected rectangles are highlighted in
white. Now hover your mouse over the selected pieces until the curser
changes to the “move” character (arrows pointing up, down, right, and left),
and move the whole piece of layout using the left button again. This time
everything that has been selected will move as you drag. Drag the layout
so that the transistors are arranged vertically with a gap of at least 1.8u M
between thenwell of thepmosand thenselectof thenmostransistors.

Once the transistors are place, you can connect the drains of the two
transistors to make the output node of the inverter using a rectangle of
metal1. You can also connect the gates of the transistors together with a
rectangle ofpoly, and make the input connection from thepoly to metal1
using aM1 POLY contact.

You can also use “paths” for making these connections. A “path” is
like a “wire” in Virtuoso. To make a path, select the layer you want, and
then selectCreate→ Path or use thep hotkey. This enters “path creating
mode” in the editor. You start paths with a left click, make bends in the path
with another left click, and finish a path with a double left click. You can

DRAFT - Please do not distribute 126



Draft September 3, 2007 5.2: Layout for an Inverter

Figure 5.11: Dialog box for thepath command

also get a dialog box that controls how the path is created using theF3
function key. This dialog is shown in Figure 5.11 for apoly wire.

A few things to note about thispath dialog are:

• You want to set the snap mode toorthogonal to keep your wires on
vertical and horixozontal axes

• You can change thejustification of the wire from center to left or right
depending on whether you want your mouse to define the center, or
one of the edges of the path

• The width of the path defaults to the minimum allowablt width for
that layer in the technology. You can change this if you want a fatter
wire, but don’t make it narrower than the default.

• You can use the dialog box to change layers by selecting a different
layer. Thepath mode will have you place an appropriate contact, and
then switch to a path of that new layer.

The layout for the inverter with the input and ouput connections made
between the two transistors is shown in Figure 5.12.

DRAFT - Please do not distribute 127



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

Figure 5.12: Inverter Layout with Input and Output Connections Made

DRAFT - Please do not distribute 128



Draft September 3, 2007 5.2: Layout for an Inverter

Now make the source connections to theVdd andGND power supplies
at the top and bottom of the inverter. These are simply wide metal connec-
tions inmetal1. Don’t forget to make the connections from the wide wires
to the source nodes of the transisors. Make the power supply wires at least
2.4u M wide to avoid electromigration problems in the future. The inverter
with the power supply wires is shown in Figure 5.13.

Although this is a “functional” inverter layout at this point it’s not com-
plete. In CMOS you must make sure that the substrate is tied low with a
connection toGND and that thenwell is tied high with a connection toVdd
to avoid latchup effects due to the parasitic devices formed by the wells.
These contacts are most easily made using theSUBTAP andNTAP pre-
defined contacts int he technology. These taps are contacts from thenactive
and pactive active regions tometal1, but they are meant specifically for
connections to the well and substrate. Any connection topactive which is
outside of annwell is a substrate connection, and any connection tonactive
inside of annwell is a well connection. These contacts are a standard width
so that they can be tiled in a consistant way. When you start fitting your cells
to the library template you will see that cells in theUofU Digital library are
sized in units of 2.4u M chunks that match with the well and substrate tap
widths for convenience.

The inverter with the well and substrate connections is shown in Fig-
ure 5.14. Thenwell layer in this example has been extended by 0.3u M
beyond theVdd metal layer to make it easier to abut these cells in a larger
layout later on.

Finally, we need to add connection name information to our layout. Re-
member that all the different views of a cell must be consistant in their I/O
interface (at least). The invertercmossch view andsymbol view each Remember that Verilog

names are case sensitivehave an input connection namedIn and an output connection namedOut.
In addition, our layout needs to identify the power supply connections ex-
plicitly. We’ll specify the power supply connections with the namesvdd!
andgnd!. The “!” character is a flag to make these names global. If you
don’t use this flag you will have to export your power supply connections as
pins to your cell. That’s not incorrect, it’s just a hassle.

In order to make connections in the layout view we need to addpins to
the design.Pins are similar to the red-arrow pins in thecmosschview, but
in the layout we identify pieces of the layout with the pins. These are called
shape pinsbecause they identify a shape in the layout with the pin. There
are other types of pins you can make inVirtuoso but please use onlyshape
pins in this tool flow because other steps in the process depend on this.

A shape pin is a piece of layout (a rectangle) in a particular layer (i.e.
metal1) that also has a pin name attached to it. Add ashape pinusing the
Create→ Pin menu choice. The dialog box is shown in Figure 5.15. Note

DRAFT - Please do not distribute 129



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

Figure 5.13: Inverter Layout with Power Supply Connections

DRAFT - Please do not distribute 130



Draft September 3, 2007 5.2: Layout for an Inverter

Figure 5.14: Inverter Layout with Well and Substrate Connections

DRAFT - Please do not distribute 131



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

Figure 5.15: Shape Pin Dialog Box

that you won’t see this exact dialog box until you selectshape pinas the pin
type. Once you are in theshape pindialog box, make sure that you have
selected theDisplay Pin Nameoption, that you’re placing a rectangle, that
you have selected the correct direction for the pin (i.e.input ), and that you
have entered the name (or names) you want to add. You select the layer that
you want the pin to be made in (i.e.metal1) in theLSW (Layer Selection
Window). When all this is correct, draw a rectangle of the layer in the spot
that you want to have identified with the connection pin in the layout.

In our inverter place ametal1 input shape pinnamedIn directly over
theM1 POLY contact for the inverter’s input, and ametal1 output shape
pin namedOut somewhere overlapping the output node connection. For
the power supply connections, make the shape pins as large as the power
supply wire, and inmetal1. This will define that entire wire as a possible
connection point fo the power supply. Power supply connection are made
with the namesvdd! andgnd!, and should beinput/output type. The final
layout for the inverter showing the pins with the pin names visible is shown
in Figure 5.16. Note that it’s important for a later stage in this process that
the little “+” near the pin name that defines where the label is to be inside
the shape of theshape pin.

Before proceeding to the next step, make sure to save your layout. In
fact, you should probably save the layout often while you’re working. There’s
nothing quite as frustrating as doing hours of layout only to have the ma-
chine or the network crash and you lose your work! Save often!

Using Hierarchy in Layout

Once you have a piece of layout, you can use that layout as an instance in
other layout. In fact, that’s what you’ve already done with the pre-defined

DRAFT - Please do not distribute 132



Draft September 3, 2007 5.2: Layout for an Inverter

Figure 5.16: Final Inverter Layout

DRAFT - Please do not distribute 133



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

contacts in theAdd → Contact step. The pre-defined contacts are actually
pieces of layout in another layout view inside theUofU TechLib ami06
technology library. When you put one in your layout you were really placing
an instance of that cell in your layout.

You can see this by changing the scope of what’s visible in the layout
editor. That is, you can change things so that the only shapes you see are the
shapes that are directly placed in your current cell view, and the hierarchi-
cal instances will be hidden with a red box around them. Try toggling the
hierarchical display usingshift-f and ctl-f to see how this works.

As a very simple example of including other hierarchical cells in a lay-
out, consider a simple circuit with four inverters in a row. Figure 5.17 shows
a layout with four instances of an inverter where the output of each inverter
is connected to the input of the inverter on its right. Figure 5.18 shows the
same cell with the hierarchy expanded to look inside each of the inverter
instances.

5.2.1 Virtuoso Command Overview

Virtuoso, like any full-featured layout editor, has hundreds of commands.
This tutorial has only scratched the surface, but these commands should be
all you need for most basic layout tasks. These tasks and commands are:

Drawing Rectangles: The basic components of alayout view are colored
rectangles that represent fabrication layers. Layers are selected in the
LSW Layer Selection Window. Rectangles are drawn with theCreate
→ Rectanglemenu choice, the rectangle widget, or ther hotkey.

Connecting Rectangles:Rectangles of the same material are electrically
connected by abutment or by overlapping. Rectangles of different
materials are electrically connected using contacts or vias. These can
be drawn with a “sandwich” of layers with an appropriate contact
shape between them (cc) for connectingmetal1 “down” to active or
poly, andvia<n> for connectingmetal<n> to metal<n+1>. So,
for connectingmetal2 to metal3 a via2 is used. Vias and contacts
must be exactly 0.6u M by 0.6u M in thisUofU Techlib ami06 tech-
nology.

Using Paths: A convenient way to draw “wires” out of rectangles is to use
thepath feature through theCreate→ Path... menu choice or thep
hotkey. Choose the layer from theLSW. Single-click the left button
to change directions, double click the left button to end a wire.

Moving and Stretching: Select layout using the left button, or click and
drag to select groups of layout objects. If the cursor changes to the

DRAFT - Please do not distribute 134



Draft September 3, 2007 5.2: Layout for an Inverter

Figure 5.17: Layout with four inverter instances

DRAFT - Please do not distribute 135



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

Figure 5.18: Layout with four inverter instances expanded to see all levels
of layout

DRAFT - Please do not distribute 136



Draft September 3, 2007 5.3: Printing Layouts

“movement arrows” you can move the selected shapes using the left
button with click and drag. Reshapping can be done with theStretch
(hotkey s ) command.

Changing the View Hierarchy: You can choose how many levels of hier-
archy to view using theOptions→ Display meny choice and change
theDisplay Levelsnumbers. You can also use thectl-f hotkey to
hide all but the top level, andF (shift-f) hotkey to expand the display
to all levels of the hierarchy. Note that thef hotkey fills and centers
on the screen with the current cell.

Viewing Connectivity: You can use theConnectivity → Mark Net meny
to mark an entire connected net. This will highlight the entire con-
nected net through all conducting layers. Note that it does notselect
that net, it simply marks it so you can see what’s connected to what.

Hierarchical Instantiation: You can include instances of other layout cells
in your current layout with theCreate → Instance menu, the i
hotkey, or theinstancewidget. These instances will show up as blank
boxes with a red outline if you are not viewing deep enough in the
hierarchy, and as filled in layouts if you have expanded the viewing
hierarchy.

5.3 Printing Layouts

In order to print your layout view you can use theDesign→ Plot → Sub-
mit... menu. This will submit your design to be plotted (printed) either on
a printer or to a file. TheSubmit Plot dialog box is shown in Figure 5.19.
This Figure shows the dialog box after the plotter has been configured to
send the output to an EPS (Encapsulated PostScript) file on A-sized paper
to a file calledfoo.ps. These choices are set up in thePlot Options... dialog
box as seen in Figure 5.20. In this dialog you can select the plotter (printer)
that you would like to send the graphics to. You can either select a printer
name (like the CADE printer), or save the file as EPS. You can choose to
center the plot, fit it to the page, or scale the plot to whatever size you like.
You can also choose to queue the plot for a later time, change the name of
the file (if you’re plotting to a file), and choose to have email sent when the
plotting completes (a somewhat silly feature, unless you’re really queuing
the plot for sometime later). The EPS option will print to a color postscript
file so that if you have access to a color printer you can print in color. I like
to un-select thePlot With Header option so that I don’t get an extra header
page included with the plot.

DRAFT - Please do not distribute 137



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

Figure 5.19:Submit Plot dialog box

DRAFT - Please do not distribute 138



Draft September 3, 2007 5.4: Design Rule Checking

Figure 5.20:Plot Options dialog box

5.4 Design Rule Checking

Because there are so many rules about how you can draw shapes in the
different mask layers, it’s very hard to tell just by looking if you have obeyed
all the design rules (The MOSIS SCMOS rev8 design rules are shown in
Appendix D). Letting the CAD tool check the design rules for you is known
asDesign Rule Checking or DRC. When you’re drawing new layout using
Virtuoso it’s helpful to run the DRC check frequently as you’re doing your
layout. There are three DRC tools that we have access to in this CAD flow,
but only DIVA is currently fully supported for our class technology. The
tools are:

DIVA: This is the DRC engine that is integrated withVirtuoso and sup-
ported by our current class technology files. It will be described in
detail in the next section.

Assura : This is a faster and more capable DRC engine that is also inte-
grated withVirtuoso, but not yet fully supported by our technology
information. It uses a different DRC rules file that is currently under
development.

Calibre : This is the “industry standard” DRC engine fromMentor. It re-

DRAFT - Please do not distribute 139



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

Figure 5.21: NMOS transistor layout (with DRC errors)

quires yet a different DRC rules file so it’s not supported by our class
flow at the time being.

5.4.1 DIVA Design Rule Checking

If you have aVirtuoso layout window open you can check that layout for
design rule violations usingDIVA from that layout window. Consider a
piece of layout as shown in Figure 5.21. This is a single nmos transistor
similar, but not exactly the same as, Figure 5.8.

To run DIVA DRC choose theVerify → DRC... menu choice. A
new window pops up as shown in Figure 5.22. Notice that theRules file
field is already filled in withdivaDRC.rul . This is the rules file in the
UofU TechLib ami06 library that checks for MOSIS SCMOS Rev8 design
rules. ClickOK to start the design rule check. The results of the DRC will
be in the mainCIW window, and if there are errors those errors will be
highlighted in the layout with flashing white shapes.

In this case there are 4 total errors flagged by the DRC process. These
rules are described in theCIW where theSCMOS Rulenumber tells you
which of the rules from Appendix D has been violated. The violation geom-
etry is also highlighted in the layout as shown in Figure 5.24. From these
two sources we can see that the top of thepoly gate needs to extend futher
over thenactive, the nselectalso needs to be extended at the top of the
transistor, and thecccontact layer is too close to the transistor gate.

In a larger layout it may be hard to spot all the error highlights. In this
case you can use tools inVirtuoso to find the errors for you and change

DRAFT - Please do not distribute 140



Draft September 3, 2007 5.4: Design Rule Checking

Figure 5.22:DIVA DRC control window

Figure 5.23: Results from the DRC in theCIW window

DRAFT - Please do not distribute 141



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

Figure 5.24: NMOS transistor layout (with DRC errors flagged)

the layout view so that you can see those errors. If you selectVerify →
Markers → Explain you can click on an individual error marker and have
it explaned. If you do this to the white marker at the top of the example
in Figure 5.24 you get the explaination as shown in Figure 5.25. If you
would like to step through all the errors in the current layout view, you can
selectVerify → Markers → Find... which pops up the window seen in
Figure 5.26. Selecting theZoom To Markers option and then clicking the
Next button will zoom to each DRC violation in turn and put the explaina-
tion in a window like that in Figure 5.25. It’s a great way to walk through
and fix DRC violations one by one in a larger layout. When you are finished
and would like to get rid of all the white DRC markers you can useVerify
→Markers → Deleteor Verify →Markers → Delete All... to erase them
from the screen.

When you have fixed all the violations and re-run theDIVA DRC pro-
cess you should seeTotal errors found: 0 in theCIW . Although the pre-
vious example of the inverter was completed using the rulers, in practice I
would have used the DRC checker after each of the major steps to make sure
that things were legal as I was drawing the layout.

5.4.2 Assura Design Rule Checking

This is to be added. The Assura tool can read a DIVA DRC file, but it needs
some modification. This has been done, but not documented yet (10/2006).

DRAFT - Please do not distribute 142



Draft September 3, 2007 5.4: Design Rule Checking

Figure 5.25: Explaination of DRC violation

Figure 5.26: Finding all DRC violations

DRAFT - Please do not distribute 143



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

5.5 Generating an Extracted View

Another view that is essential to the design process is anextractedview of
a cell. An extracted view is one that takes the layout view of the cell and
extracts the transistor schematic from that layout. The extraction tool does
this by knowing the electrical properties of the layers and the overlap of
the layers. For example, one of the extraction rules is that when apolysil-
icon rectangle overlaps a rectangle ofnactive, the area of the overlap is an
nmos transistor. The connection between the transistors is extracted from
the conducting layers and the connection between those layers.

To run the extraction process usingDIVA start by opening thelayout
view of a cell (for example, the inverter from Figure 5.16). From the layout
window choose theVerify → Extract... menu choice. A new window pops
up as shown in Figure 5.27. Notice that theRules filefield is already filled
in with divaEXT.rul . This is the rules file in theUofU TechLib ami06
library that extracts the transistors using the technology defined according
to the MOSIS SCMOS Rev8 design rules. Another thing to consider about
extraction is whether you want to extract with or without parasitic capaci-
tances. Usually you want to include parasitics because it will give a more
accurate (although slightly slower) analog simulation of the cell later on. To
include the parasitic capacitors use theSet Switchesbutton in the extraction
dialog box. This will bring up another box (Figure 5.28) that has a number
of switches. The most important isExtract Parasitic Caps. If you select
this and click OK you will see this switch show up in the main extraction
dialog box.

Once things are set the way you want them, clickOK to start the ex-
traction. The results will show up in theicfb Command Interperter Window
(CIW). Note that you should run the extractor only after passing the DRC
phase. A correct extraction should show 0 errors as shown in Figure 5.29.

After extraction you will see that for your cell (theinv in this example)All layers in the
virtuoso layout editor

are actually
“layer/purpose pairs.”
The “purpose” of the

layers is drawing. The
layers in the extracted

view are “net” purpose
and have outline views

to indicate this different
purpose.

will now have a new view namedextracted. You can open this view in
icfb and look at the result. For the inverter you should see outline views of
the mask layers and transistor symbols for each of the extracted transistors.
The extracted transistors will be annotated with their width and length as
defined by the rectangles that are drawn. See Figure 5.30 for an example.
The extracted view is used to compare the layout with a schematic to make
sure that the layout accurately captures the desired schematic. This is a
critical step in the design process!

DRAFT - Please do not distribute 144



Draft September 3, 2007 5.5: Generating an Extracted View

Figure 5.27:DIVA extraction control window

DRAFT - Please do not distribute 145



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

Figure 5.28:DIVA extraction special switches

Figure 5.29:DIVA extraction result in the CIW

DRAFT - Please do not distribute 146



Draft September 3, 2007 5.5: Generating an Extracted View

Figure 5.30: Extracted view of the inverter

DRAFT - Please do not distribute 147



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

5.6 Layout Versus Schematic Checking (LVS)

The process of verifying that an extracted layout captures the same tran-
sistor netlist as a schematic is known asLayout versus Schematicor (LVS)
checking. In order to do this check you need both aschematicview and an
extracted view of the cell. Note that this LVS process will not tell you if
your schematic is correct. It will only tell you if the schematic and layout
views describe the same circuit!

To run the LVS process usingDIVA start by opening thelayout view of
a cell (for example, the inverter from Figure 5.16). From the layout win-
dow choose theVerify → LVS... menu choice. A new window pops up
as shown in Figure 5.31. Notice that theRules filefield is already filled in
with divaLVS.rul . This is the rules file in theUofU TechLib ami06 library
that compares the transistor netlist defined by the schematic (extracted from
the schematic using thenetlister) with the netlist defined by theextracted
view. When this window pops up you may see a window as shown in Fig-
ure 5.32. This window is asking if you want to use old information for the
LVS, or re-do the LVS using the information in the LVS form. You almost
always want to select theuse form contentsoption here before moving to
the LVS window.

Once you get to the LVS window, you need to fill in theLibrary , Cell,
and View for each of theschematicand extracted sections in the win-
dow. You can either type these in by hand, or use theBrowsebutton to pop
up a little version of theLibrary Manager where you can select the cells
and views by clicking. Note that the LVS window in Figure 5.31 has the
Rewiring andTerminals buttons selected.Rewiring means that the netlists
can be changed so that the process will continue after the first error.Ter-
minals means that the terminal labels in both the schematic and extracted
views will be used as starting points for the matching. To have this be useful
the terminals must be named identically in the layout and schematic.

You can also change some of the LVS options in theNCSU→ Modify
LVS Rules ... menu choice in the layout editor. This window, shown in
Figure 5.33, sets various switches that modify how the LVS rules file inter-
perts the two netlists. The default switches are shown in the figure and the
names should be reasonably self-explanitory. Mostly they involve issues of
whether structures in the netlist should be combined such that their effect is
the same regardless of their physical connection. For example, theAllow
FET series Permutation switch controls whether two netlists should be
considered the same if series FETs are in a different order in the schematic
and the layout. Often you don’t care about the order in a series connec-
tion. If you do, unselect this switch before running LVS.Combine Parallel
FETs controls whether two parallel FETs should be considered the same as

DRAFT - Please do not distribute 148



Draft September 3, 2007 5.6: Layout Versus Schematic Checking
(LVS)

Figure 5.31:DIVA LVS control window

Figure 5.32:DIVA LVS Control Form

DRAFT - Please do not distribute 149



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

Figure 5.33:NCSU form to modify LVS rules

one FET. The logical effect is the same, so usually this is allowed. How-
ever, by default the LVS process does not check for matching FET param-
eters between the schematic and layout. If you would like this extra level
of checking, you can select theCompare FET Parametersswitch and the
result is that two FETs in the same position in the netlist will not match if
their width and length parameters do not match.

Once the window is filled in as in Figure 5.31 you can start the LVS
process using theRun button. This will sometimes ask if if can save the
schematic or extracted view before continuing. You almost always want to
agree since you want to LVS against the most current views. Clicking on the
Run button will have little visible effect. Look in the CIW and you’ll see
LVS job is now started... to indicate that things are running. If you think
about LVS in general algorithmic terms, it’s really performing exact graph
matching on two circuit netlist graphs to see if the graphs are the same.
This is a very hard problem in general (many graph matching problems are
NP-complete, although it’s not known if exact graph matching falls into this
category). Hints such as using named terminals can make the problem much
easier, but for large circuit this can still take quite a bit of time.

When the process finishes you will see a window like that in Figure 5.34.
In this case the report is that the processhas succeeded. If you get this result
that’s a great start, but all it means is that the LVS algorithm has finished.
It doesnot tell you whether the graphs have matched (i.e. if the schematic

DRAFT - Please do not distribute 150



Draft September 3, 2007 5.6: Layout Versus Schematic Checking
(LVS)

Figure 5.34:DIVA LVS completion indication

and extracted view describe the same circuit). For that you need to click
the Output button in the LVS window. In this case, the Output window
(Figure 5.35 tells us that although the numbers ofnets, terminals, pmos
andnmos transistors are the same in the two views, that the netlists failed
to match. Scrolling down in this window (Figure 5.36) you can see thatRemember that if you

change anything in the
layout view you need to
re-run the extraction
process to generate a
new extracted view
before re-running LVS.

the problem is with the naming of the output terminal. The output terminal
in this example was namedY in the layout (extracted) view andOut in the
schematic view. This can be corrected by changing the name of one of the
terminals and re-running LVS. After doing this the output of LVS shows that
the netlists do indeed match.

If instead of thehas succeededmessage after running LVS you get a
has failedmessage you need to figure out what caused the LVS process to
not run to completion. To see the process error messages to help figure this
out select theInfo button in the LVS control window (Figure 5.31), and in
theDisplay Run Information window that pops up (Figure 5.37) select the
Log File button to see why the LVS process failed. Usually this is because
one of the two netlists could not be generated. The most common problems
are either you didn’t have the correct permissions for the files, or you may
have forgotten to generate the extracted view altogether. You can also use
theDisplay Run Information window to help track down issues where LVS
reports that the netlists fail to match.

Tracking down LVS issues can be quite frustrating, but it must be done.
If LVS says that the schematic and layout don’t match, you must figure out
what’s going on. Experience shows that even though you can see no issues
with your layout, that the LVS process is almost never wrong. Here are
some thoughts about debugging LVS issues:

• - If LVS fails to run, then you have a problem right up front. Usu-
ally it’s because you have specified the files incorrectly in the LVS
dialog box. You can see what caused the problem by clicking on the
Info button in the LVS dialog box, and then looking at the RunInfo
LogFile.

DRAFT - Please do not distribute 151



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

Figure 5.35:DIVA LVS ouptut

DRAFT - Please do not distribute 152



Draft September 3, 2007 5.6: Layout Versus Schematic Checking
(LVS)

Figure 5.36:DIVA LVS output (scrolled)

DRAFT - Please do not distribute 153



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

Figure 5.37:DIVA LVS Run Information Window

• If the LVS is succesful, but the netlists fail to match, now you have a
detective problem of tracking down the cause of the mismatch. Now
you need to look at the Output Report to see what’s going on.

• The first thing to look at is the output report and check the netlist sum-
mary for bothschematicandlayout (extracted) views. If the number
of nets is different, that can give you a place to start looking. Let’s
assume that you’ve already simulated the schematic using aVerilog
simulator so you believe that’s working. (This should definitely be
true!).

– If you have fewer nets in the layout than you do in the schematic,
suspect that there are things connected together in the layout that
weren’t supposed to be. This is easy to do by overlapping some
metal that you didn’t intend to overlap (for example).

– If there are more nets in the layout than in the schematic, then
there are nodes that were supposed to be connected, but weren’t.
This too is easy to do, by leaving out a contact or via, for exam-
ple.

– Now you go into detective mode to figure out what’s different.
For small cells you you just poke around in the layout withCon-
nectivity → Mark Net to see the connected layout and see if
there’s anything connected that shouldn’t be.

– You can also open the extracted layout and look at things there.
The advantage of this is that the extracted layout has the netlist
already constructed so when you select something you’re select-
ing the whole connected layout net by default. You can also use
q with the selected net to see thing like net number of the se-

lected net.

DRAFT - Please do not distribute 154



Draft September 3, 2007 5.6: Layout Versus Schematic Checking
(LVS)

• You can also use the error reporting mechanism in LVS to see which
nets are different. After running LVS, open a schematic window and
an extracted view window for the cell in question. Now click on the
Error Display button in the LVS dialog box. This will let you walk
through the errors in the LVS output file one at a time and will high-
light in the schematic or the extrated view which node that error is
talking about. This can be very helpful if you have only a few errors
in the output file, but can also be more confusing than helpful if you
have a lot of errors. This is because once you have one error, it can
cause lots of things to look like errors. This can, however, be a good
way to see that the output file is talking about, and you might walk
through the errors and see a big connected net in the layout that you
thought should be two separate nodes (for example).

• If you’d like to look at the extracted view and search for a particu-
lar net, you can do it through a slightly non-obvious procedure. Of
course, you can use theError Display to step through the errors un-
til you get to the one with the net you’re interested in. Or you can
open the extractred view, selectVerify → Shorts. Dismiss the in-
formational dialog box to get theShorts Locator box. Type the net
name or number in theNet Namebox and click onRun. This will
highlight that node in orange. ClickFinish to start over with another
net. Clearly this dialog box does something more interesting than just
highlight a net. It has something to do with tracking down shorts be-
tween nets, but I have to admit I don’t know exactly what it does. I
do know that it highlights nets by name in extracted views!

• Remember that a single LVS error can cause lots of things to look like
errors. Once you find one error, rerun LVS and see what’s changed.
A single fix can cause lots of reported violations to go away.

• If all else fails and you’re convinced that things are correct, try re-
moving the˜ /IC CAD/cadence/LVSdirectory and re-running LVS.
It’s possible (but rare) that you mess LVS up so badly that you need
to delete all its generated files and start over.

If your cell passes LVS then it’s a pretty good indication that your layout
is a correctly functioning circuit that matches the behavior of the transistor
schematic.

5.6.1 Generating an analog-extracted view

The LVS process compares theschematicview with theextracted view to
see if the netlists are the same. Once LVS says that the netlists are the same,

DRAFT - Please do not distribute 155



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

there is one further step that you can take. Click on theBuild Analog button
in the LVS control window (Figure 5.31). Make sure toInclude All the
extracted paracitics so that if you extracted paracitic capaciters they will
be included, and clickOK . This will generate yet anotherCell View called
analog-extracted. This view is very similar to theextracted view, but has
additional power supply information so that the view can be simulated with
the analog simulatorSpectre. This will be seen in Chapter 6.

5.7 Overall Cell Design Flow (so far...)

The complete cell design flow involves each of the steps defined previously.
They are:

1. Start with a schematic of your desired circuit. The schematic can be
made using components from theUofU Digital v1 1 library and the
transistors from theNCSU Analog Parts and UofU Analog Parts
libraries. UseComposer as described in Chapter 3.

2. Simulate that schematic using one of the Verilog simulators defined
in Chapter 4 to make sure the functionality is waht you want. Make
sure to use a self-checking testbench.

3. Now draw a layout of the cell using theVirtuoso as described in this
Chapter.

4. Make sure that thelayout view passes DRC.

5. Generate anextractedview.

6. Make sure that theschematicandextractedview match by using the
LVS checker.

7. Generate theanalog-extractedcell view for later analog simulation.

5.8 Standard Cell Template

Designing a standard cell library involves creating a set of cells (gates, flip
flops, etc.) that work together throughout the CAD tool flow. In general this
means that the cells should have all the views necessary for designing with
the cells, and should be compatable in terms of their attributes so that they
can all work together. At this point in out understanding of the CAD flow
this means that each cell in the cell library needs the following views:

DRAFT - Please do not distribute 156



Draft September 3, 2007 5.8: Standard Cell Template

schematic: This view defines the gate or transistor level definition of the
cell. It can be simulated using any of the Verilog simulators in Chap-
ter 4 as a switch-level or a behavioral-level simulation.

behavioral: This view is the Verilog description of the cell. It should in-
clude both behavior andspecifyblocks for timing so that the timing
can be back-annotated with better estimates as the design progresses
through the flow.

layout: This view describes the mask layout of the cell. It should pass all
DRC checks. It should also follow strict physical and geometrical
standards so that the cells will fit with each other and work together
(the subect of this Section).

extracted: This view extracts the circuit netlist from the layout and is gen-
erated by the extraction process. It should be used with the LVS
checker to verify that thelayout andschematicviews represent the
same circuit.

analog-extracted: This view is an augmented version of theextracted
view that includes information so it can be used by the analog simula-
tor Spectre. It is generated from the extracted view through the LVS
process.

In addition to these views, subsequent Chapters in this text will intro-
duce a number of additional views that are required for the final, complete
cell library. They include:

abstract: This is a view that is derived from the layout. It tells the place
and route tool where the ports of the cell are, and where the “keep-
outs” or obstructions of the cell are that it should not try to route over.
Generating this view from the layout is described in Chapter 9.

LEF: This is a Library Exchange Format file that is derived from the ab-
stract view of the cell and is read by the place and route tool (SOC
Encounter) so that it can get information about the technology that
it is routing in, and about the abstract views of the cells in the library.
This view is also generated by theAbstract program.

Verilog Interface: The system you design will eventually be input to the
place and route tool as a structural verilog file that describes the stan-
dard cell gates used in your design and the connections between them.
In addition to this file you need a simple I/O interface of each cell
(separate from the LEF file) so that the place and route tool can parse
the structural verilog file. This will also be described in Chapter 9.

DRAFT - Please do not distribute 157



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

Lib: This is a standard format, calledLiberty format (usually with a.lib
filename extension), for describing cells so that the synthesis tools
can understand the cells. The file describes the I/O interface, the logic
function, the capacitance on the cell pins, and extracted timing for the
cell. This file can be generated by hand, using analog simulation using
Spectre or Spice, or using theSignalStorm tool fromCadence and
will be described in Chapter 7.

5.8.1 Standard Cell Geometry Specification

In standard cell based design flow, the automatic place and route tool (SOC
Encounter in this flow) places the standard cells selected by the synthesis
engine (Synopsys design compiler or Cadence BuildGates) in a set of
rows. To make this packing as efficient as possible we can plan our cells
so that they can be placed adjacent to each other. With some simple rules
about how the internal layout of the cells is designed, we can guarantee that
any two cells can be placed next to each other without causing any DRC
violations. Some overall design considerations are:

• Since the cells are going to be placed in rows adjacent to each other
we will make all our cells the same height so that they fit nicely into
rows.

• All our CMOS based standard cells have a set ofpmos transistors in
an nwell for the pull-up network andnmos transistors for the pull-
down network. We will always place thenwell with pmostransistors
on top of the layout andnmos transistors at the bottom. By doing
this and having the same height in thenwell layer for all cells, we can
have a continuous well throughout the row of cells.

• All standard cells have a power and ground bus. To avoid shorting
of power and ground while placing cells adjacent to each other, we
place thevdd! bus on top andgnd! bus at the bottom of the cell
(which makes sense because we have the pull up network on top and
pull down at the bottom). Having equal heights for these buses for all
cells and running these buses throughout the width of the cells allow
for automatic connection of adjacent cell power and ground buses by
abutment.

• All the standard cell layouts will have a fixed origin in the lower left
corner of the layout, but pay attention, it is not the absolute lower left
of the layout!

Hence we define the following standard cell dimensions for class cells
that will be implemented in the AMI C5N0.5µ CMOS process.

DRAFT - Please do not distribute 158



Draft September 3, 2007 5.8: Standard Cell Template

Cell height = 27 microns. This height is measured from the center of the
gnd! bus to the center of thevdd! bus.

Cell width = multiple of 2.4 microns. This matches the verticalmetal2rout-
ing pitch and also the pitch of theNTAP andSUBTAP well and sub-
strate contacts.

nwell height from top of cell = 15.9 microns. This is 2/3 of the cell height
becausepmos transistors are usually made wider thannmos transis-
tors.

vdd! and gnd! bus height = 2.4 microns.This height is centered on the
supply lines so that 1.2 microns is above the cell boundary and 1.2
microns is below the cell boundary. This way if the cells are abutted
vertically with the supply lines overlapping those supply lines remain
2.4 microns wide.

vdd! and gnd! bus width = 1.2 microns overhang beyond the cell boundary.
This is for convenience so that themetal1 layer of the well and sub-
strate contacts can overlap the cells safely.

Based on thenwell size and placement, and the MOSIS SCMOS rules,
we can now standardize thenselectandpselectsizes as well. The closest
that select edges can be to the well edges is 1.2 microns (SCMOS rules 2.3
and 4.2). So, the select restrictions are:

pselect height from inner edge of vdd! bus = 13.5 microns

nselect height from inner edge of gnd! bus = 8.7 microns

nselect and pselect width = cell width

nwell overhang outside cell width = 1.5 microns(to top, left and right of
the cell)

To avoidlatch-up in the circuit we place substrate and well contacts to
make sure that thenwell is tied to vdd and the substrate is tied to gnd. As
seen in Section 5.2, we use predefined contacts for these connections in theThe usual rule of thumb

for the minimum
number of well contacts
is to place one well
contact for every square
of well material.

form of NTAP andSUBTAP contacts. Each of these contacts is 2.4 microns
wide so you can think of the overall cell width as a multiple of 2.4 microns,
or as an integer number ofNTAP andSUBTAP cells. These contacts are
placed centered on thevdd! andgnd! lines. Note that placing this many
well and substrate contacts is overkill, but does not have negative effects.

It’s a good idea to builr a standard cell layouttemplate incorporating
these basic design specifications. This can serve as a starting point for the

DRAFT - Please do not distribute 159



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

design of new cells. It’s also a good idea to keep your library cells in a
separateCadence library from your designs. This keeps the distinction
clear between the library cells and the designs that use those cells. You
could, for example, make a template with thegnd! bus on the bottom,
including theSUBTAP contacts, thevdd! bus on the top, including the
NTAP contacts, and thenwell, nselect, andpselectlayers as defined earlier.
An example of such a template with rulers showing the dimensions, and
examplepmos and nmos transistors is shown in Figure 5.38. This cell,
even without actual connections between the transistors, should pass DRC
with no violations.

The notion of acell boundary was used without specific definition in
the preceeding text. The cell boundary is the rectangle that defines theThe cell boundary will

be generated as a
rectangle of type
prBound by the

Abstract program. This
layer is not editable by

default, but can be
enabled if needed
through the LSW

window.

outline of the cell from the place and route tool’s point of view. We have
defined our library so that the cell boundary is actually inside of the cell
layout geometry so that when the cells are abutted with respect to the cell
boundary, they actually overlap by a small amount. The cell boundary is
shown in Figure 5.39, but you don’t have to draw it by hand. It will be
derived during the process of extracting anabstract view as described in
Chapter 9.

In order to make sure that there will not be any DRC violations when
cells are abutted, it is very important that no geometry on any layers (other
than the layers already in the template) falls within 0.6 microns from the left
and right of the cell boundary or within the vdd! or gnd! buses. This rule is
in addition to to other SCMOS Design Rules within the cell and applies even
if the DRC of the individual standard cell does not complain. For example,
in the layout shown in Figurr 5.39, thenactiveandpactive layers are placed
0.6µ away from the cell boundaries on left and right side. They cannot come
any closer to the boundary. Also, in thelayout view shown, thepmosand
nmos transistor gates (poly layer) are placed just touching thevdd! and
gnd! bus inner edges. The gates could go farther away from the bus inner
edges but cannot extend into the bus structure. If you need more space than
these rules allow, you will have to make your whole cell wider. Each time
you make a cell wider, it has to be made wider in increments of2.4µ.

5.8.2 Standard Cell I/O Pin Placement

The design rules for a specific VLSI process define the minimum dimen-
sions and spacing for all layers, including the metal layers that are used for
routing signals. The minimum spacing between two metal routing layers
is called thepitch of that layer. It’s also more efficient for overall wiring
density if the metal wiring on each layer of metal is restricted to a single di-
rection. This is well known by people who make multi-layer printed circuit

DRAFT - Please do not distribute 160



Draft September 3, 2007 5.8: Standard Cell Template

Figure 5.38: Alayout template showing standard cell dimensions

DRAFT - Please do not distribute 161



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

Figure 5.39: Alayout template showing cell boundary (prBound layer)

DRAFT - Please do not distribute 162



Draft September 3, 2007 5.8: Standard Cell Template

boards and the principle is the same for VLSI chips. In our case we will
eventually tell the place and router to prefer horizontal direction routing for
layersmetal1 andmetal3, and vertical routing for layermetal2. The pitch
for metal2 vertical routing according to the MOSIS SCMOS design rules
is 2.4µ which, conveniently (but not coincidentally), matches our standard
cell dimension increment and well and substrate contact width. Themetal3
routing pitch is3.0µ and so sets the routing pitch for all horizontal routing
by the place and route tool even thoughmetal1 can actually be routed on a
finer pitch when routed by hand.

It turns out to make the job of the place and route tool much easier if the
connection points to the cell are centered on horizontal and vertical routing
pitch dimensions. The grid lines in Figure 5.39 (actually 0-width rectangles
of type wire in the layout) show the horizontal and vertical routing chan-
nels in the cell. We follow offset grid line placement rules where the grid
lines are offset by half of the vertical and horizontal grid line pitch from
the origin. Thus the vertical grid lines start at1.2µ from the y-axis and Remember to use shape

pins for all connection
pins in a cell.

are spaced2.4µ thereafter. Similarly, the horizontal grid lines start at1.5µ
from the x-axis and are spaced3.0µ thereafter. However it should be noted
that the first and last horizontal grid lines cannot be used, as any geometry
placed on them extends into thevdd! or gnd! bus violating the rules defined
above.

Input and ouptut pins for a cell should be placed at the intersection of the
horizontal and vertical routing channels if at all possible. Also, if possible,
do not place two pins on the same vertical or horizontal routing channel.
For our cells it is most efficient if all cell I/O pins are made inmetal2. This
makes it easy for the router to jump over thevdd! andgnd! buses to make
contact with the pin using ametal2vertical wire.

As far as possible use onlymetal1 for signal routing within the standard
cell layout. Routing onmetal2 layer can be used if necessary, but if it is used
it should always run centered on a vertical routing channel line and never
run horizontally except for very short distances (this is to reduce metal2
blockage layers enabling easier place and route). In any case, make sure that
there are no horizontal metal2 runs around I/O pins. You should try to avoid
any use ofmetal3 in your library cells. That routing layer should be reserved
for use by the place and route tool. I know of at least one commercial
standard cell library for a three-metal process like ours that contains over
400 cells and uses onlymetal1 in the cells (other than the1.2µ by 1.2µ
metal2connection pins) so it is possible to define lots of cells without using
more than one metal layer.

DRAFT - Please do not distribute 163



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

5.8.3 Standard Cell Transistor Sizing

For critical designs MOSIS recommends the minimum transistor width to
be1.5µ for the AMI C5N process. The minimum transistor length for AMI
C5N process is0.6µ. Hence the minimum dimension for annmos transis-
tor pulling the output directly tognd! is W/L = 1.5µ/0.6µ. TO roughly
equalize the strength of the pullup and pulldowns the minimum dimension
of a pmos transistor pulling the output directly tovdd! should be W/L =
3.0µ/0.6µ. For series stack of transistors between output andvdd! orThe 2:1 width ratio

roughly compensates for
the mobility of majority

carriers in pmos
transistors (holes) which
is roughly half of that of
nmos transistor carriers

(electrons).

gnd!, the transistor width should be the number of transistors in the stack
multiplied by the minimum width for a single transistor stack. If you can’t
make the series transistors quite wide enough, at least do your best. Also, a
stack greater than four should not be used. For example, if there are three
pmostransistors in a series stack between output node andvdd!, then these
transistors will be sized W/L =(3× 3.0)µ/0.6µ = 9.0µ/0.6µ if possible.

You can also create cells with different drive strengths by adjusting the
width of the output transistors. For example, an inverter with a1.5µ pull-A 2x inverter has extra

output drive, but also
extra input capacitance,
so the resulting logical
effort is the same, but
the electrical effort is

different.

down and3.0µ pullup could be considered a 1x inverter, and one with a
3.0µ pulldown and6.0µ pullup would then be a 2x inverter denoting that its
output drive is two times as strong as the 1x inverter.

A standard cell template for a cell that is four contacts wide is shown
in Figure 5.40. The standard 1x inverter from theUofU Digital v1 1 cell
library is shown in Figurefig:inv1x, and the 1x two-input nand gate from
that library is shown in Figure 5.42.

DRAFT - Please do not distribute 164



Draft September 3, 2007 5.8: Standard Cell Template

Figure 5.40: Alayout template for a four-wide cell

DRAFT - Please do not distribute 165



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

Figure 5.41: Standard cell layout for a 1x inverter

DRAFT - Please do not distribute 166



Draft September 3, 2007 5.8: Standard Cell Template

Figure 5.42: Standard cell layout for a 1x NAND gate

DRAFT - Please do not distribute 167



CHAPTER 5: Virtuoso Layout Editor Draft September 3, 2007

DRAFT - Please do not distribute 168


