Estimating Delays

- Would be nice to have
a "back of the envelope" method for sizing gates for speed - Logical Effort
- Book by Sutherland, Sproull, Harris
- Chapter 1 is on our web page
- See also section 4.4.3 in your text

Gate Delay Model

- First, normalize a model of delay to dimensionless units to isolate fabrication effects
- $\mathrm{d}_{\mathrm{abs}}=\mathrm{d} \tau$
- τ is the delay of a minimum inverter driving another minimum inverter in some process
- In a 0.6 u process, this is approx 50ps
- Now we can think about delay in terms of d and scale it to whatever process we're building the circuit in

Logical Effort of Other Gates \quad

- Logical effort of common gates assuming that P / N size ratio is 2

Number of inputs

Gate Type	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	\boldsymbol{n}
Inverter	1					
NAND		$4 / 3$	$5 / 3$	$6 / 3$	$7 / 3$	$(\mathrm{n}+2) / 3$
NOR		$5 / 3$	$7 / 3$	$9 / 3$	$11 / 3$	$(2 n+1) / 3$
MUX	2	2	2	2	2	
XOR		4	12	32		

Electrical Effort

- Value of logical effort g is independent of transistor size
- It's related to the ratios and the topology
- Electrical effort h captures the drive capability of the transistors via sizing
- Electrical effort $\mathrm{h}=\mathrm{C}_{\text {out }} / \mathrm{C}_{\text {in }}$
- Note that as transistor sizes for a gate increase, h decreases because $C_{\text {in }}$ goes up
Parasitic Delay
Parasitic delay p is caused by the internal
capacitance of the gate
It's constant and independent of transistor
size

Off path load will divert electrical effort from the main path, must account for this. Define a branching effort b as:

$$
\mathrm{b}=\text { (Con_path }+ \text { Coff_path) } / \text { Con_path }
$$

The branching effort will modify the electrical effort needed at that stage. The branch effort B of the path is:

$$
B=\Pi \mathrm{b}(\mathrm{i})
$$

Path Effort F

Path effort F is:
$\mathrm{F}=$ path logic effort * path branch effort * path electrical effort $=G * B * H$

Path branch effort and path electrical effort is related to the electrica effort of each stage:

B * H = Cout/Cin * $\Pi \mathrm{b}(\mathrm{i})=\Pi \mathrm{h}(\mathrm{i})$

Our goal is choose the transistor sizes that effect each stage effort h(i) in order to minimize the path delay!!!!!!!!!

Minimizing Path Delay

The absolute delay will have the parasitic delays of each stage summed together.

However, can focus on just Path effort F for minimization purposes since parasitic delays are constant.

For an N-stage network, the path delay is least when each stage in the path bears the same stage effort.

$$
\mathrm{f}(\mathrm{~min})=\mathrm{g}(\mathrm{i}) * \mathrm{~h}(\mathrm{i})=\mathrm{F}^{1 / \mathrm{N}}
$$

Minimum achievable path delay

$$
\mathrm{D}(\min)=\mathrm{N} * \mathrm{~F}^{1 / \mathrm{N}}+\mathrm{P}
$$

Note that if $\mathrm{N}=1$, then $\mathrm{d}=\mathrm{f}+\mathrm{p}$, the original single gate equation.

Choosing Transistor Sizes \quad

Remember that the stage effort $\mathrm{h}(\mathrm{i})$ is related to transistor sizes.
$\mathrm{f}(\mathrm{min})=\mathrm{g}(\mathrm{i}) * \mathrm{~h}(\mathrm{i})=\mathrm{F}^{1 / \mathbf{N}}$

So

$$
\mathrm{h}(\mathrm{i}) \min =\mathrm{F}^{1 / \mathbf{N}} / \mathrm{g}(\mathrm{i})
$$

To size transistors, start at end of path, and compute:

$$
\operatorname{Cin}(\mathrm{i})=\mathrm{gi} * \operatorname{Cout}(\mathrm{i}) / \mathrm{f}(\mathrm{~min})
$$

Once $\operatorname{Cin}(i)$ is know, can distribute this among transistors of that stage.

Size the transistors of the nand2 gates for the three stages shown.

Path logic effort $=\mathrm{G}=\mathrm{g} 0 * \mathrm{~g} 1 * \mathrm{~g} 2=4 / 3 * 4 / 3 * 4 / 3=2.37$
Branching effort $\mathrm{B}=1.0$ (no off-path load)
Electrical effort $\mathrm{H}=\mathrm{Cout} / \mathrm{Cin}=\mathrm{C} / \mathrm{C}=1.0$
Min delay achievable $=3 *\left(\mathrm{G}^{*} \mathrm{~B}^{*} \mathrm{H}\right)^{1 / 3}+3(2 *$ pinv $)$

$$
=3 *(2.37 * 1 * 1)^{1 / 3}+3(2 * 1.0)=10.0
$$

Example, continued

The effort of each stage will be:

$$
\mathrm{f} \min =(\mathrm{G} * \mathrm{~B} * \mathrm{H})^{1 / 3}=(2.37 * 1.0 * 1.0)^{1 / 3}=1.33=4 / 3
$$

Cin of last gate should equal:

$$
\begin{aligned}
\text { Cin last gate }(\min) & =\mathrm{gi} * \operatorname{Cout}(\mathrm{i}) / \mathrm{f}(\min) \\
& =4 / 3 * \mathrm{C} /(4 / 3)=\mathrm{C}
\end{aligned}
$$

Cin of middle gate should equal:
Cin middle gate $=\mathrm{gi} *$ Cin last gate $/ \mathrm{f}(\mathrm{min})$

$$
=4 / 3 * \mathrm{C} /(4 / 3)=\mathrm{C}
$$

All gates have same input capacitance, distribute it among transistors.

Another Example, Larger Load

Let Load $=8 \mathrm{C}$, what changes?
$\mathrm{Cin}=\mathrm{C}$

Size the transistors of the nand 2 gates for the three stages shown.

Path logic effort $=\mathrm{G}=\mathrm{g} 0 * \mathrm{~g} 1 * \mathrm{~g} 2=4 / 3 * 4 / 3 * 4 / 3=2.37$
Branching effort $\mathrm{B}=1.0$ (no off-path load)
Electrical effort $\mathrm{H}=\mathrm{Cout} / \mathrm{Cin}=8 \mathrm{C} / \mathrm{C}=8.0$
Min delay achievable $=3 *\left(\mathrm{G}^{*} \mathrm{~B}^{*} \mathrm{H}\right)^{1 / 3}+3\left(2^{*}\right.$ pinv $)$

$$
=3 *(2.37 * 1 * 8)^{1 / 3}+3(2 * 1.0)=14.0
$$

8C Load Example Cont.

The effort of each stage will be:

$$
\mathrm{f} \min =\left(\mathrm{G}^{*} \mathrm{~B} * \mathrm{H}\right)^{1 / 3}=(2.37 * 1.0 * 8)^{1 / 3}=2.67=8 / 3
$$

Cin of last gate should equal:
Cin last gate $(\mathrm{min})=\mathrm{gi} *$ Cout $(\mathrm{i}) / \mathrm{f}(\mathrm{min})$

$$
=4 / 3 * 8 \mathrm{C} /(8 / 3)=4 \mathrm{C}
$$

Cin of middle gate should equal:
Cin middle gate $=\mathrm{gi} *$ Cin last gate $/ \mathrm{f}(\mathrm{min})$

$$
=4 / 3 * 4 \mathrm{C} /(8 / 3)=2 \mathrm{C}
$$

Note that each stage gets progressively larger, as is typical with a multi-stage path driving a large load.

Example 1.6 from Chap 1

Size path from A to B

Path logic effort $\mathrm{G}=\mathrm{g} 0 * \mathrm{~g} 1 * \mathrm{~g} 2=4 / 3 * 4 / 3 * 4 / 3=2.37$
Branch effort, $1^{\text {st }}$ stage $=(y+y) / y=2$.
Branch effort, $2^{\text {nd }}$ stage $=(\mathrm{z}+\mathrm{z}+\mathrm{z}) / \mathrm{z}=3$
Path Branch effort B $=2 * 3=6$.
Path electrical effort $\mathrm{H}=$ Cout $/ \mathrm{Cin}=4.5 \mathrm{C} / \mathrm{C}=4.5$
Path stage effort $=\mathrm{F}=\mathrm{G} * \mathrm{~B} * \mathrm{H}=2.37 * 6 * 4.5=64$.
Min delay $=\mathrm{N}(\mathrm{F})^{1 / \mathrm{N}}+\mathrm{P}=3 *(64)^{1 / 3}+3(2$ pinv $)=18.0$ units

Example 1.6 Continued

Stage effort of each stage should be:
$\mathrm{f}(\mathrm{min})=(\mathrm{F})^{1 / \mathrm{N}}=(\mathrm{GBH})^{1 / \mathrm{N}}=(64)^{1 / 3}=4$
Determine Cin of last stage:
$\operatorname{Cin}(\mathrm{z})=\mathrm{g} *$ Cout $/ \mathrm{f}(\mathrm{min})=4 / 3 * 4.5 \mathrm{C} / 4=1.5 \mathrm{C}$
Determine Cin of middle stage:
$\operatorname{Cin}(\mathrm{y})=\mathrm{g} *(3 * \operatorname{Cin}(\mathrm{z})) / \mathrm{f}(\mathrm{min})=4 / 3 *(3 * 1.5 \mathrm{C}) / 4=1.5 \mathrm{C}$
Is first stage correct?
$\operatorname{Cin}(\mathrm{A})=\mathrm{g} *(2 * \operatorname{Cin}(\mathrm{y})) / \mathrm{f}(\min)=4 / 3 *(2 * 1.5 \mathrm{C}) / 4=\mathrm{C}$.
Yes, self-consistent.

Example 1.7 from Chap 1

$\mathrm{Cin}=10 \mathrm{u}$ gate cap

Path logic effort $\mathrm{G}=\mathrm{g} 0 * \mathrm{~g} 1 * \mathrm{~g} 2 * \mathrm{~g} 3=1 * 5 / 3 * 4 / 3 * 1=20 / 9$
Path Branch effort $\mathrm{B}=1$
Path electrical effort $\mathrm{H}=$ Cout/Cin $=20 / 10=2$
Path stage effort $=\mathrm{F}=\mathrm{G}^{*} \mathrm{~B} * \mathrm{H}=(20 / 9)^{*} 1 * 2=40 / 9$
For Min delay, each stage has effort $(\mathrm{F})^{1 / \mathrm{N}}=(40 / 9)^{1 / 4}=1.45$
$\mathrm{z}=\mathrm{g} *$ Cout $/ \mathrm{f}(\mathrm{min})=1 * 20 / 1.45=14$
$y=g * \operatorname{Cin}(z) / f(\min)=4 / 3 * 14 / 1.45=13$
$x=g * \operatorname{Cin}(y) / f(\min)=5 / 3 * 13 / 1.45=15$

Misc. Comments

- Note that you never size the first gate
- This gate is assumed to be fixed
- If you were allowed to size it, the algorithm would try to make it as large as possible
- This is an estimation algorithm
- Authors claim that sizing a gate by $1.5 x$ too big or small still results in a path delay within 5% of minimum
- In general, the best stage effort is between 3 and 4 (not e as often stated)
- The e value doesn't use parasitics...

