
Verilog Design Language

Doug SmithDoug Smith
Texas Instruments, Knoxville

11 / 1 / 11

Introduction

Texas Instruments

• 2010: #5 semiconductor company by sales, ~$13B revenue
– Acquisition of National Semi should move TI to #3

45 000 total products– ~45,000 total products

• Knoxville office established in December 2005
– Currently 9 Design Engineers in 2 Design Groups
– Multi-cell, Battery Charge Management

• 6 analog designers, 2 digital
• Switch Mode Battery Charger ICs
• Linear Chargersg
• Wireless Chargers
• All design work performed in Knoxville
• ~50% market share

Home Audio– Home Audio
• 1 analog designer, 1 analog co-op
• Class D Audio Amplifiers

Verilog Overview

Which Verilog?

Verilog 95
IEEE 1364-1995

SystemVerilog
IEEE 1800 2009

Verilog 2001
IEEE 1364-2001

Improved readability with

Original Verilog

IEEE 1800-2009
Mostly supported by EDA

Adds many features for advanced modeling and verification
Adds some features to capture design intent

p y
even less typing!

Heavily support by
EDA

Verilog-AMS
Analog

Why Verilog?

• Widely used by industry in US
– VHDL more common in defense industry, Europe and IBM

EDA tools used to work better for Verilog but have improved for VHDL– EDA tools used to work better for Verilog, but have improved for VHDL
• Netlists are in Verilog

• VHDL and Verilog are converging
S t V il dd f t f VHDL– SystemVerilog adds many features of VHDL

– New VHDL spec?
– Easy to co-simulate VHDL and Verilog

• More compact
– Much less typing faster to implement
– Easier to auto generate code

• More freedom
– Free to make mistakes
– Not as restrictive as VHDL

Basic Concepts

Logic Values

• Verilog logic data types are 4-state: 0, 1, X, Z
– reg, wire, integer

0 = logic low– 0 = logic low
– 1 = logic high
– Z = tri-state, high-impedance
– X = unknown valueX unknown value
– In real world there is no such thing as X!

• SV introduced 2-state types: 0, 1
– bit, shortint, int, longint, byte
– Uses less memory and evaluates faster
– For verification only
– Potential to mask X’s

No Xs in Real World

• Ex. synchronization circuit Timing violation
results in X here,

in simulation.

SYNCH
FLOP 1

ASYNCH
SIGNAL

SYNCH
FLOP 2

SYNCH
SIGNAL

in simulation.

FLOP 1SIGNAL FLOP 2 SIGNAL

In gate-level g
simulations, could

have timing
violation here

X propagates to
here, in simulation.

In real world, this will
settle out tosettle out to
something.

REG != Flop
reg dout;
wire sel;
wire din;

reg dout;
wire sel;
wire din;

reg dout;
wire sel;
wire din;

always @(sel or din)
if (sel)
dout = din;
l

always @(sel)
if (sel)
dout = din;

always @(posedge sel)
if (sel)
dout = din;

else
dout = 1’b0;

Synthesizes to Synthesizes to latch Synthesizes to flopSynthesizes to
combinational logic

Synthesizes to latch Synthesizes to flop

Simulator Event Scheduling

• Simulating parallel
hardware …

• …on a sequential machine.

• Keep in mind that every
ti l t i d ftime slot is made up of
multiple steps to evaluate.

• Very important to y p
remember that even
concurrent assignments
are actually performed
sequentially by simulator.

Assignments

• Blocking (=)
– Assignment is made before execution continues

• Non-blocking (<=)
– Assignment is schedule to be made with all other non-blocking assignments

initial
begin
A = 3;
#

initial
begin
A = 3;
##1;

A = A + 1;
B = A + 1;

#1;
A <= A + 1;
B <= A + 1;

A is assigned 4, then
B is assigned 5

A is assigned 4, when
B is assigned 4

begin-end versus fork-join

• begin-end timing is sequential, fork-join is parallel

initial
begin
#10ns A = ’b1;
#10ns B = ’b1;

A

B#10ns B b1;
#10ns C = ’b1;
end

B

C

initial
fork
#10ns A = ’b1;

A
#10ns A = b1;
#10ns B = ’b1;
#10ns C = ’b1;
join

B

C

Verilog has no Concept of Time

• simulators are event driven
– Doubling your clock will NOT shorten your simulation timeg y y
– Same number of events
– Same number of evaluation steps

• time values are only for your benefit

Verilog has Multiple Purposes

• Verification
– Essentially, entire language is available for usey g g

• Design
– Can only use synthesizable sub-set

• Gate-level Modeling
– Used to create standard cell simulation libraries

Synthesizable vs. Simulatable

• All Verilog commands can be simulated, but not all can be
synthesized

• Synthesizable code
– Keep it simple
– Generally stick with Verilog-2001
– Utilize the few SV features which capture intent

• Simulatable code
– Test benches, models, monitors
– SV very powerfulSV very powerful

• classes, data structures, queues, associative arrays, random sequences,
assertions

– S/W background is usefulS/W background is useful

Synthesizable Code

Synthesizable Code

• Typical synthesizable block

• Simple = fewer mistakes and better resultsSimple fewer mistakes and better results

module counter (
input rst_n, clk, enable,
o tp t reg [7 0] co ntoutput reg [7:0] count,
output alarm

);

assign alarm = (count == 8’h3F);

always_ff @(posedge clk, negedge rst_n)
if (!rst n) count <= ’h00;if (!rst_n) count <= h00;
else if (alarm) count <= ’h00;
else if (enable) count <= count + ’b1;

endmodule

Commonly Used Synthesizable Code

MOST COMMON

• module, endmodule

LESS COMMON

• parameter, defparam, localparam

• input, output, inout (at top-level)

• reg, wire, logic

• `define, `ifdef, `ifndef, etc.

• casez, casex

• always, always_ff, always_comb,
always_latch

• assign

• typedef, enum

EVEN LESS COMMON
• posedge, negedge, or

• case…endcase, if … else, ? … :

EVEN LESS COMMON

• interface, package

• unique, priority
• &, ^, |, ~

• !, &&, ||

• begin end

• generate, endgenerate, genvar

begin … end

Common Coding Mistakes

Wire name typos

• By default, new signal names are assumed to be 1-bit wires

• Design is incorrect but no error will be reported

timer i1 (.enable(timerEnable), .alarm(timerAlarm));
control i2 (... .enableTimer(enableTimer));

Design is incorrect, but no error will be reported.

• `default_nettype none forces declaration of every wire

• SV name and * do not infer implicit wires• SV .name and . do not infer implicit wires

timer i1 (.enable, .alarm);
control i2 (.*);

Wrong OR in sensitivity list

• Legal to use either “or” separator, or “|” operation

• However, they operate differentlyHowever, they operate differently

always @(a | b)
sum = a + b;

always @(a or b)
sum = a + b;su a b;

If a=1 and b changes from
0 to 1, always will not

sum a + b;

If a=1 and b changes from
0 to 1, always will trigger

• Instead of “or” use “ ” or “*” or always comb

y
trigger

y gg

• Instead of or , use , or , or always_comb
always @(a, b)
always @*
always combalways_comb

Vector in sequential logic sensitivity list

• Legal to use vector, but wrong

• Vector in sensitivity list of combinational logic is fineVector in sensitivity list of combinational logic is fine

wire [7:0] vector;
always @(vector)

wire [7:0] vector;
always @(posedge vector)a ays @(ecto)

...

always block triggers
h bit i t

always @(posedge vector)
...

always block triggers when
l h LSB i t

• Posedge/negedge should only have 1 bit arguments

when any bit in vector
changes

only when LSB in vector
changes

• Posedge/negedge should only have 1-bit arguments
wire [7:0] vector;
always @(posedge vector[7])

...

Incomplete sensitivity list

• Legal, but will not implement intended design

• Tools usually displays warning messageTools usually displays warning message

always @(A)
C = A & B;

always @(A or B)
C = A & B;C & ;

always block triggers
only when A changes. C

C A & B;

always block triggers when
either A or B changes. C will

• SV introduces @* and always comb

y g
will not be updated when

B changes.

g
update properly.

• SV introduces @ and always_comb
always @*
C = A & B;

always_comb
C = A & B;

Unintentionally infer latch

• reg / always block can be flip-flop, latch or combinational logic

• Latch usually result of incomplete case or if statementy p

reg dout;
wire sel;
wire din;

reg dout;
wire sel;
wire din; ;

always @(sel, din)
if (sel)

d t di

;

always @(sel, din)
if (sel) dout = din;
l d t 1’b0 dout = din;else dout = 1’b0;

Not defined for sel = 0, so Fully defined, so results in

• Good practice to specify default value when coding combo

,
results in latch

y ,
combinational logic

Unintentionally infer latch

• SV adds always_comb, always_ff and always_latch to capture intent

reg dout;
wire sel;
wire din;

logic dout;
wire sel;
wire din;

always_latch
if (sel)

dout = din;

always_comb
if (sel) dout = din;
else dout = 1’b0;

Results in error if result is
not a latch. No sensitivity

Results in error if result is
not combinational. No y

list needed.sensitivity list needed.

Improperly nested IF statements

• Good practice to use begin…end with nested IF statements

if (A >= 5)
begin
if (A <= 10)
C = 1’b1;

if (A >= 5)
if (A <= 10)
C = 1’b1;

else C 1 b1;
end

else
C = 1’b0;

else
C = 1’b0;

C is set to 0, when A < 5.Confusing code. Implies
that C is set to 0, when A < ,
5. But actually sets C to 0

when A > 10.

Using wrong NOT, AND, OR

• Logical operators (!,&&,||) versus bitwise operators (~,&,|)

reg A;
reg [1:0] B, C:
initial

begin

if (!B) -- evaluates to FALSE
if (~B) -- evaluates to TRUE

if (B && C) e al ates to TRUEbegin
A = 1’b1;
B = 2’b01;
C = 2’b10;
d

if (B && C) -- evaluates to TRUE
if (B & C) -- evaluates to FALSE

• Always use logical operators when looking for true/false result (if

end

• Always use logical operators when looking for true/false result (if
statements, etc.)

UART Example

UART_RX
module uart_rx #(
parameter DBIT = 8,

SB_TICK = 16

module uart_rx #(
parameter DBIT = 8,

SB_TICK = 16
) (
input wire clk, reset,
input wire rx, s_tick,
output reg rx done tick,

) (
input clk, reset,

rx, s_tick,
output reg rx done tick,output reg rx_done_tick,

output wire [7:0] dout
);

output reg rx_done_tick,
output [7:0] dout

);

N d t li itl d l i tNo need to explicitly declare inputs
and outputs as wire.

Not necessary to declare input on y p
each line. Continues from previous

line.

UART_RX
// symbolic state declaration
localparam [1:0]
idle = 2'b00,

typedef enum reg [1:0] {
idle,
start,

start = 2'b01,
data = 2'b10,
stop = 2'b11;

data,
stop

} state_t;

// signal declaration
reg [1:0] state_reg,

state_next;
[]

// signal declaration
state_t state_reg, state_next;
reg [3:0] s_reg, s_next;

[]reg [3:0] s_reg, s_next;
reg [2:0] n_reg, n_next;
reg [7:0] b_reg, b_next;

reg [2:0] n_reg, n_next;
reg [7:0] b_reg, b_next;

typedef enum approach records
variables using names instead of bit

valuesvalues

UART_RX
always @(posedge clk,

posedge reset)
if (reset)

always_ff @(posedge clk,
posedge reset)

if (reset)
begin
state_reg <= idle;
s_reg <= 0;
n reg <= 0;

begin
state_reg <= idle;
s_reg <= ‘b0;
n reg <= ‘b0;n_reg <= 0;

b_reg <= 0;
end

else
i

n_reg < b0;
b_reg <= ‘b0;
end

else
b ibegin

state_reg <= state_next;
s_reg <= s_next;
n reg <= n next;

begin
state_reg <= state_next;
s_reg <= s_next;
n reg <= n next;_ g _ ;

b_reg <= b_next;
end

_ g _
b_reg <= b_next;
end

Use always ff to specify intentUse always_ff to specify intent

UART_RX
// FSMD next-state logic
always @*
begin

// FSMD next-state logic
always_comb
begin

state_next = state_reg;
rx_done_tick = 1'b0;
s_next = s_reg;
n next = n reg;n_next = n_reg;
b_next = b_reg;

U l b t if i t tUse always_comb to specify intent.

Dangerous to assign values that are
re-assigned later. Could create false g
event. Assign all variables in every
case condition. Add default case.

UART_RX case (state_reg)
idle:
begin

case (state_reg)
idle:
if (~rx)

g
rx_done_tick = 1'b0;
n_next = n_reg;
b_next = b_reg;

begin
state_next = start;
s_next = 0;
end

if (~rx)
begin
state_next = start;end
s_next = ‘b0;
end

else
beginbegin
state_next = state_reg;
s_next = s_reg;
end

end

Assign all variables.

UART_RX case (state_reg)
start:
begin

case (state_reg)
start:
if (s_tick)

g
rx_done_tick = 1'b0;
b_next = b_reg;
if (!s_tick)
beginif (s_reg==7)

begin
state_next = data;
s next = 0;

begin
state_next = state_reg;
s_next = s_reg;
n_next = n_reg;s_next = 0;

n_next = 0;
end

else

end
else if (s_reg==7)

begin
state next = data;s_next = s_reg + 1; state_next = data;
s_next = ‘b0;
n_next = ‘b0;
end

else
begin
state_next = state_reg;
s next = s reg + ‘b1;

Remove nested if statements.
Assign all variables.

s_next s_reg + b1;
n_next = n_reg;
end

end

UART_RX
data:
if (s_tick)
if (s_reg==15)

data:
begin
rx_done_tick = 1'b0;

begin
s_next = 0;
b_next = {rx,

b reg[7:1]};

if (!s_tick)
begin
state next = state reg;b_reg[7:1]};

if (n_reg==(DBIT-1))
state_next = stop ;

else

state_next = state_reg;
s_next = s_reg;
n_next = n_reg;
b_next = b_reg;

n_next = n_reg + 1;
end

else
s next = s reg + 1;

end

_ _ g ;

Remove nested if statements.
Assign all variables.

UART_RX else if (s_reg==15)
begin
s next = ‘b0;

data:
if (s_tick)
if (s_reg==15)

_
b_next = {rx,

b_reg[7:1]};
if (n_reg==(DBIT-1))
beginbegin

s_next = 0;
b_next = {rx,

b reg[7:1]};

begin
state_next = stop ;
n_next = n_reg;
endb_reg[7:1]};

if (n_reg==(DBIT-1))
state_next = stop ;

else

else
begin
state_next =

state reg;n_next = n_reg + 1;
end

else
s next = s reg + 1;

state_reg;
n_next = n_reg+‘b1;
end

end_ _ g ;
else
begin
state_next = state_reg;
s next = s reg + ‘b1;s_next s_reg + b1;
n_next = n_reg;
b_next = b_reg;
end

UART_RX stop:
begin
n next = n reg;

stop:
if (s_tick)
if (s_reg==(SB_TICK-1))

_ _ g
b_next = b_reg;
if (!s_tick)
begin
state next state reg;begin

state_next = idle;
rx_done_tick =1'b1;
end

state_next = state_reg;
rx_done_tick = 'b0;
s_next = s_reg;
endend

else
s_next = s_reg + 1;

endcase

else
if (s_reg==(SB_TICK-1))

begin
state next = idle;end state_next = idle;
rx_done_tick = 'b1;
s_next = s_reg;
end

else
begin
state_next= state_reg;
rx done tick = 'b0;

Remove nested if statements.
Assign all variables rx_done_tick b0;

s_next = s_reg + ‘b1;
end

Assign all variables.

UART_RX
endcase
end

default:
begin
state_next = state_reg;
rx_done_tick = 'b0;
s_next = s_reg;
n_next = n_reg;
b next = b reg;b_next b_reg;
end

endcase
dend

Put default values in default case,
or else condition when using ifor else condition when using if

statement.

Simulation Race Conditions

Simulator can have race conditions

• Not referring to gate-level race conditions

R diti h 2 t h d l d t• Race conditions occur when 2 events are scheduled to
happen at same simulation time and the order of execution
by scheduler is not deterministic.

• Race conditions within simulator, can lead to unpredictable
results, and even differing results on different simulators.

• Race conditions are hard to debug because they occur in
“zero” time and don’t readily appear on waveforms.

• Race conditions can even result in an oscillation which will
hang the simulator

Race example

• Writing variable from more than one block

• Final value of A depends on which block is evaluate lastFinal value of A depends on which block is evaluate last

• Order is not specified in standard, so is unpredictable

always @(posedge clk) a 1;always @(posedge clk) a = 1;
always @(posedge clk) a = 5;

Race example

• More realistic example

module some model (module testbench;_ (
input d, clock,
output reg q);

always @(posedge clock)

;

DUT dut_i (d,clk,q);

initialalways @(posedge clock)
q = d;

endmodule

initial
begin
@(posedge clk);
d = 1;
if (q != d)
$display (“ERROR”);

end
endmoduleendmodule

Race example

• Initial and always blocks execute at time 0

• Value of CLK depends whether initial block was executed beforeValue of CLK depends whether initial block was executed before
always assignment was scheduled.

• Order is not specified in standard, so is unpredictable
initial clk = 0;
always

clk = #5ns ~clk;

• Better solution initial
begin
clk = 0;
foreverforever
begin
#5ns;
clk = ~clk;

end

Worse than race condition

• It is possible to create oscillations

• Simulation continues to run, but never advances simulation timeSimulation continues to run, but never advances simulation time

• Occurs when 2 blocks trigger each other

always @(posedge A posedge X)always @(posedge A, posedge X)
begin
A <= ‘b0;
B <= ‘b1;
end

always @(posedge B)
beginbegin
A <= ‘b1;
B <= ‘b0;
end

Avoiding race conditions
Clifford E. Cummings, Sunburst Design, Inc.
• When modeling sequential logic, use nonblocking assignments.
• When modeling latches, use nonblocking assignments.
• When modeling combinational logic with an always block use blockingWhen modeling combinational logic with an always block, use blocking

assignments.
– Flops and latches use <=, combo use =

• When modeling both sequential and combinational logic within the
same always block use nonblocking assignmentssame always block, use nonblocking assignments.
– Don’t do this

• Do not mix blocking and nonblocking assignments in the same always
block.

• Do not make assignments to the same variable from more than one
always block.

• Use $strobe to display values that have been assigned using
nonblocking assignmentsnonblocking assignments.
– Kind of outdated

• Do not make assignments using #0 delays.
– Guilty

Systemverilog

SV Enhancements

• Have already mentioned for synthesizable code

• Time literals can now have units• Time literals can now have units
– No requirement for `timescale

#5ns

• Enumerated types

• User defined types
– Can declare variables as new data type
– Introduces strict typing

typedef enum reg [1:0] {idle, start, data, stop}typedef enum reg [1:0] {idle, start, data, stop}
states;

• Structs and unions

SV Enhancements

• Queues
– Variable-size ordered collection of homogenous elementsg

int q[$];
q.push_back(10);
q.pop_front();

• Associative Arrays
– Dynamic array that implements lookup table.
– Good for modeling large, sparsely data space, such as RAMs

bit [31:0] RAM[integer];
RAM[‘h0000_0000] = ‘hDEAD_BEEF;
RAM[‘hFFFF_FFFF] = `hFACE_CAFE;

SV Enhancements

• $urandom, $urandom_range
– Generate random number

A = $urandom(); // returns an unsigned 32-bit number
A = $urandom_range(15,0); // returns number 0 to 15

• randcase
– Generate a weighted random variable

randcase
1: x = 1; // 20% of time
3: x = 2; // 60% of time
1: x = 3; // 20% of time

endcase

SV Enhancements

• randsequence
– Generate a random sequence of events
– Conditional branching based on prior results

randsequence(main)
main : first second done ;main : first second done ;

first : add := 3 | dec := 2 ;
second : pop | push ;p p | p ;
done : { $display("done"); } ;

add : { $display("add"); } ;
$dec : { $display("dec"); } ;

pop : { $display("pop"); } ;
push : { $display("push"); } ;

endsequenceendsequence

SV Enhancements

• fork … join_none

f k j i• fork … join_any

• disable fork;

Example: fork … join_any / disable fork
f k@(d i l) fork
begin
@(posedge some_signal);
error = ‘b0;

@(posedge some_signal);
…

;
end

begin
#100ns;

Above could hang simulation
if signal never transitions
from 0 to 1.

#100ns;
error = ‘b1;
end

join_any_
disable fork;

if (error)
$display (“ERROR: No signal”);$display (ERROR: No signal);

…

Using fork…join, a timeout error can be
added

SV Enhancements

• Classes

P k• Packages

• Assertions

• Coverage

References

Resources

• What’s New in Verilog 2001
– http://www.sutherland-hdl.com/papers/2000-HDLCon-presentation_Verilog-2000.pdf

• Online Verilog-1995 Quick Reference Guide
– http://www.sutherland-hdl.com/online_verilog_ref_guide/vlog_ref_top.html

• Standard Gotchas, Subtleties in the Verilog and SystemVerilog Standards That
E E i Sh ld K !Every Engineer Should Know!

– http://www.sutherland-hdl.com/papers/2006-SNUG-Boston_standard_gotchas_presentation.pdf

• Programming Gotchas
http://www deepchip com/items/0466 06 html– http://www.deepchip.com/items/0466-06.html

• full_case & parallel_case the Evil Twins of Verilog Synthesis
– http://www.deepchip.com/posts/0332.html

• SystemVerilog Saves the Day—the Evil Twins are Defeated! “unique” and
“priority” are the new Heroes

– http://www.sutherland-hdl.com/papers/2005-SNUG-paper_SystemVerilog_unique_and_priority.pdf

Resources

• How to raise the RTL abstraction level and design conciseness with
SystemVerilog - Part 1

– http://www.eetimes.com/design/eda-design/4015170/How-to-raise-the-RTL-abstraction-level-and-design-http://www.eetimes.com/design/eda design/4015170/How to raise the RTL abstraction level and design
conciseness-with-SystemVerilog--Part-1

• Verilog always@ Blocks
– http://www.scribd.com/doc/30553026/Verilog-Notes-John-Wawrzynek

• Race Condition
– http://www.testbench.in/TB_16_RACE_CONDITION.html

• Scheduling SemanticsScheduling Semantics
– http://www.systemverilog.in/scheduling-semantics.php

• Nonblocking Assignments in Verilog Synthesis, Coding Styles That Kill!
– http://www.sunburst-design.com/papers/CummingsSNUG2000SJ NBA.pdfp g p p g _ p

• SystemVerilog enhancements for all chip designers
– http://www.eetimes.com/electronics-news/4154793/SystemVerilog-enhancements-for-all-chip-designers

