
A	Problem	

Suppose	each	line	of	my	input	consists	of	a	
student’s	exam	scores.	The	final	exam	is	
op<onal,	so	each	line	may	have	either	2	or	3	
scores:	
mickey	mouse	78	95	
donald	duck	85	93	63	
winnie	pooh	68	58	93	
Problem	Statement:	Read	the	exam	scores	for	
each	student	and	print	their	average	

1	



Why	cin	fails	

•  A	possible	code	fragment	to	read	a	student’s	
name	and	exam	scores	
cin	>>	fname	>>	lname;	
cin	>>	exam1	>>	exam2	>>	final;	

•  What	happens	if	there	are	only	two	scores?	
mickey	mouse	78	95	
donald	duck	85	93	63	

	

2	



A	Solu<on	

1.  Read	a	full	line	of	input	(getline)	
2.  Break	the	line	of	input	into	name	and	exam	

fields	(string	streams)	

3	



getline()	reads	an	en<re	line	

•  Syntax:		
–  From	cin:	getline(cin,	string	s)	
–  From	a	file:	getline(ifstream	file,	string	s)	

•  Example	
string	line;	
getline(cin,	line);			//	read	a	line	from	the	console	
	
ifstream	fromFile;	
fromFile.open(“data.txt”);	
getline(fromFile,	line);		//	reads	a	line	from	a	file	

4	



string	streams	

•  string	streams	allow	you	to	
– extract	fields	from	a	string	using	the	input	
operator	>>	

– create	a	formaYed	string	using	the	output	
operator	<<	

•  string	streams	behave	just	like	cin	and	cout:	
they	support	<<	and	>>,	and	you	can	test	
them	for	eof	

	
5	



including	string	streams	

•  #include<sstream>:	includes	a	string	stream	in	
your	program	

6	



input	stringstreams	

•  istringstream	buffer;	--	declares	an	“input”	
stringstream	named	buffer		

•  str(string	s)	member	func<on:	assigns	the	string	
to		istringstream	which	you	want	to	break	into	
fields	

•  >>:	reads	the	next	field	from	the	string	and	
converts	it	to	the	appropriate	value	

•  clear():	clears	the	current	string	out	of	the	string	
stream	object	so	that	a	new	one	can	be	assigned	
to	it	via	the	str()	func<on.		

7	



the	average	exam	problem	
int	exams[3],	count	=	0;	double	sum	=	0;	
istringstream	buffer;	

						string	fname,	lname,	line;	
	
						getline(cin,	line);						 	 	//	read	a	student	

buffer.str(line);	 	 	 	//	assign	the	line	to	buffer	
						buffer	>>	fname	>>	lname;		//	extract	first	and	last	names	
						while	(buffer	>>	exams[count])	{		//	extract	exams	un<l	end	of	line	
														count++; 		

	 	sum	+=	exams[count];	
							}	

	cout	<<	“average	=	“	<<	sum	/	count	<<	endl;	
	

8	



the	average	exam	problem—
processing	all	lines	of	the	file	

int	exams[3],	count	=	0;	double	sum	=	0;	
istringstream	buffer;	
string	fname,	lname,	line;	

	
						while	(getline(cin,	line))	{				 	 	//	read	a	student	

	 	sum	=	0;	
	 	count	=	0;	
	 	buffer.clear();	
	 	buffer.str(line); 	 	 	 	//	assign	the	line	to	buffer	

						 	 	buffer	>>	fname	>>	lname;	 	 		//	extract	first	and	last	names	
						 	 	while	(buffer	>>	exams[count])	{		//	extract	exams	un<l	end	of	line	
														 	 	count++; 		

	 	 	sum	+=	exams[count];	
							 	 	}	

	 	cout	<<	“average	=	“	<<	sum	/	count	<<	endl;	
}	

9	



output	stringstreams	

•  ostringstream	line;	--	declares	an	“output”	
stringstream	that	allows	you	to	create	a	
formaYed	string	

•  <<:	allows	you	to	write	variables	into	the	string	
•  str():	returns	the	formaYed	string	
•  clear():	prepares	the	ostringstream	object	for	
another	formaYed	string.	You	must	also	
call	.str(“”)	to	clear	the	formaYed	string	before	
star<ng	on	a	new	formaYed	string.	

10	



ostringstream	example	

•  Write	a	func<on	that	takes	the	integer	variables	
hours,	minutes,	and	seconds	as	parameters,	and	
creates	a	string	formaYed	as	“hh:mm:ss	hours”	
string	formatTime(int	hours,	int	minutes,	int	seconds)	{	
								ostringstream	<me;	
								<me	<<	hours	<<	":"	<<	minutes	<<	":"	
																<<	seconds	<<	"	hours";	
								return	<me.str();	
}	

11	


