
High	Level	Java	Concurrency	
Mechanisms

Brad	Vander	Zanden



High	Level	Java	Concurrency

• Mutex Locks
• Executors
• Atomic	variables
• Concurrent	collections
• Random	number	generation



java.util.concurrent



Mutex Locks
• Lock	interface
– lock():	acquires	a	lock	and	sleeps	if	necessary
– tryLock(ms):	tries	to	acquire	a	lock

• returns	true	on	success	and	false	on	failure
• can	specify	optional	ms,	in	which	case	it	will	timeout	after	
that	length	of	time

• tryLock allows	thread	to	back	out	without	sleeping	if	lock	is	
unavailable

– unlock():	releases	the	lock
– lockInterruptibly():	like	lock	but	allows	thread	to	be	
interrupted	while	waiting	by	throwing	
InterruptedException



Mutex Locks	(cont)

• ReentrantLock
– implementing	class
– ReentrantLock(fair=false)
• fair	=	true:	longest	waiting	thread	gets	lock
• avoids	starvation



Mutex Example

• Adding	together	2	numbers:	The	add	method	
for	each	Box	should	add	the	value	from	the	
parameter	Box	to	the	value	in	this	box	and	
print	the	computed	sum
– Deadlock	with	synchronized	methods:	
http://web.eecs.utk.edu/~bvz/cs365/notes/concu
rrency/BadLock.java

– Solving	deadlock	with	mutex locks:	
http://web.eecs.utk.edu/~bvz/cs365/notes/concu
rrency/GoodLock.java



Tasks	and	Thread	Pools

• A	task is	a	computation	that	you	want	
repeated	one	or	more	times
– it	should	be	embedded	in	a	thread

• A	thread	pool is	a	pool	of	one	or	more	worker	
threads	to	which	tasks	may	be	assigned

• When	a	task	is	submitted	to	a	thread	pool,	it	is	
placed	on	a	queue	and	ultimately	executed	by	
one	of	the	worker	threads



Executors

• Executors	manage	thread	pools
– Executor,	a	simple	interface	that	supports	launching	
new	tasks.

– ExecutorService,	a	subinterface of	Executor,	which	
adds	features	that	help	manage	the	lifecycle,	both	
of	the	individual	tasks	and	of	the	executor	itself.

– ScheduledExecutorService,	a	subinterface of	
ExecutorService,	supports	future	and/or	periodic	
execution	of	tasks.



Executor	Class

• The	Executor	class	provides	a	collection	of	
factory	methods	that	create	thread	pools	
which	are	managed	using	one	of	the	three	
desired	executor	interfaces



Executor	Interface

• allows	you	to	submit	Runnable	tasks	to	a	
thread	pool	via	the	execute	method



ExecutorService

• allows	you	to	submit	either	Runnable	or	Callable	
tasks	via	the	submit	method
– Callable	tasks	may	return	a	value.	This	value	may	be	
retrieved	using	the	Future	object	returned	by	the	
submit	method.	

– The	Future	object	represents	the	pending	result	of	
that	task.	
• You	access	the	result	using	the	get()	method.	The	thread	will	
wait	until	the	result	is	returned

• The	Future	object	also	allows	you	to	cancel	the	execution	of	
the	task



ExecutorService (cont)

• allows	you	to	shutdown	a	thread	pool
– shutdown():	accepts	no	new	tasks	but	finishes	
execution	of	all	running	and	waiting	tasks	

– shutdownNow()
• accepts	no	new	tasks
• kills	waiting	tasks
• tries	to	kill	running	tasks	by	calling	interrupt():	up	to	
each	task	as	to	whether	or	not	they	actually	die



ExecutorService

• Examples
– ThreadPoolTester
– CallableTester



ExecutorService
(Fork/Join	Pools)

• designed	for	work	that	can	be	recursively	
divided	into	smaller	tasks

• pseudocode
if	(my	portion	of	the	work	is	small	enough)	

do	the	work	directly	

else	
split	my	work	into	two	pieces	
invoke	the	two	pieces	
wait	for	the	results



Fork/Join	(cont)

• wrap	code	in	a	ForkJoinTask subclass,	typically	
either
– RecursiveTask:	returns	a	value
– RecursiveAction:	does	not	return	a	value

• can	submit	a	collection	of	recursive	sub-tasks	for	
execution	using	ForkJoinTask’s invokeAll()method
– takes	an	arbitrary	length,	comma-separated	list	of	
ForkJoinTask objects	as	a	parameter

– returns	when	isDone()	is	true	for	each	task



Fork/Join	(cont)

• create	a	ForkJoinPool instance	to	initiate	
recursive	task
– call	invoke	method	with	ForkJoinTask object

• examples:	
http://docs.oracle.com/javase/7/docs/api/jav
a/util/concurrent/RecursiveAction.html
– IncrementTask
– Sort



ScheduledExecutorService

• Allows	you	to	schedule	repeating	tasks
– fixed	rate:	execute	every	n time	units	(useful	for	
clocks)

– fixed	delay:	execute	every	n time	units	after	the	
termination	of	the	current	task	(can	cause	drift	in	
a	clock)

• Can	cancel	a	repeating	task	by	calling	cancel	
on	its	returned	Future	object



ScheduledExecutorService

• Also	allows	you	to	schedule	a	one-shot	task	at	
a	future	time



Example

• The	following	example	prints	“beep”	every	10	
seconds	for	an	hour

http://docs.oracle.com/javase/7/docs/api/java/
util/concurrent/ScheduledExecutorService.html



Concurrent	Collections

• Many	collection	classes	fail	“fast”	if	a	concurrent	
modification	is	attempted
– “best	effort”	only	so	unreliable

• Synchronized	classes:	operations	are	atomic
– BlockingQueue:	FIFO	class	that	blocks	when	empty	or	
full
• good	for	producer/consumer	problems

– ConcurrentMap:	good	for	hash	tables
– ConcurrentNavigable Map:	good	for	sorted	maps
– Vector



ThreadLocalRandom

• A	random	number	generator	isolated	to	
current	thread
– internally	seeded:	seed	is	not	user	settable
– avoids	sharing/contention	with	Math.random()
– faster	than	generating	your	own	Random	number	
objects



ThreadLocalRandom (cont)

• Usage:	
ThreadLocalRandom.current().nextX(...)	where	
X	is	Int,	Long,	etc

• Bounded	ranges	also	possible
ThreadLocalRandom.current().nextInt(4,	73);


