
Copyright © 2009 Elsevier

Chapter 10 ::
Functional Languages

Higher Order Functions and Conclusions
Michael L. Scott

Copyright © 2009 Elsevier

High-Order Functions

• Higher-order functions
– Take a function as argument, or return a function

as a result
– Great for building things

Copyright © 2009 Elsevier

Building Things in C

• sort and search take a comparison function
int compare_int(void *a, void *b) {

int x = *(int *)a;
int y = *(int *)b;
return x – y;
}

int temperatures[20];
qsort(temperatures, 20, compare_int)

Copyright © 2009 Elsevier

Map Function

• Takes a function and a sequence of lists, applies
function pair-wise to each element of the lists, and
returns a list as the result

• Example:
(map * ‘(2 4 6) ‘(3 5 7)) è (6 20 42)

Reduce (fold) Function

• Reduce a list of values to a single value using a
binary operator

• Example:
(define fold

(lambda (fct identity-value sequence)
(if (null? sequence)

identity-value ; e.g., 0 for +, 1 for *
(fct (car sequence)

(fold fct identity-value (cdr sequence))))))
(fold * 1 '(2 4 6)) ==> 48

Using map/fold in tandem

• Matrix Multiplication

5 2 4 6 10
1 2 10 12 17
4 8 3 8 20
11 15 9 2 1

3 17 22
6 5 4
2 3 2
6 11 7
4 8 9

*

(fold + 0 (map * row column))

(+ (1*17, 2*5, 10*3, 12*11, 17*8)
è (+ (17, 10, 30, 132, 136))
è 325

Copyright © 2009 Elsevier

Currying
• Replaces one of a function’s arguments with a

constant value and returns a function that accepts one
fewer arguments
– Good for creating simpler looking functions

• Simple Example
(define curried-plus (lambda (a) (lambda (b) (+ a b))))

((curried-plus 3) 4) ==> ((lambda (b) (+ 3 b)) 4) ==> 7
• Syntactic Sugar Example

(define total (lambda (L) (fold + 0 L))
(total ‘(1 2 3 4 5)) è 15

Functional Programming in Perspective

• Advantages of functional languages
– lack of side effects makes programs easier to

understand
– lack of explicit evaluation order (in some

languages) offers possibility of parallel evaluation
(e.g. MultiLisp)

– lack of side effects and explicit evaluation order
simplifies some things for a compiler (provided
you don't blow it in other ways)

– programs are often surprisingly short
– language can be extremely small and yet powerful

• Problems
– Performance

• trivial update problem
– initialization of complex structures
– summarization problem
– in-place mutation

• heavy use of pointers (locality problem)
• frequent procedure calls
• heavy space use for recursion
• requires garbage collection

– requires a different mode of thinking by the
programmer

– difficult to integrate I/O into purely functional
model

Functional Programming in Perspective

