Programming Language Pragmatics

Michael L. Scott

Copyright © 2009 Elsevier

E



Historical Origins

* The imperative and functional models grew out
of work undertaken Alan Turing, Alonzo
Church, Stephen Kleene, Emil Post, etc. ~1930s

— different formalizations of the notion of an algorithm,
or effective procedure, based on automata, symbolic
manipulation, recursive function definitions, and
combinatorics

* These results led Church to conjecture that any
intuitively appealing model of computing would
be equally powerful as well

— this conjecture is known as Church s thesis

Copyright © 2009 Elsevier




Historical Origins
« Mathematicians established a distinction
between

— constructive proof (one that shows how to obtain a
mathematical object with some desired property)

— nonconstructive proof (one that merely shows that

such an object must exist, €.g., by contradiction)

Copyright © 2009 Elsevier




Historical Origins

e Turing s model of computing was the Turing

machine a sort of pushdown automaton using
an unbounded storage “tape”

— the Turing machine computes 1n an imperative
way, by changing the values 1n cells of its tape —
like variables just as a high level imperative
program computes by changing the values of
variables

Copyright © 2009 Elsevier




Historical Origins

e Church’ s model of computing is called the
lambda calculus

— based on the notion of parameterized expressions
(with each parameter introduced by an occurrence
of the letter A—hence the notation’ s name.

— Lambda calculus was the inspiration for functional
programming

— one uses 1t to compute by substituting parameters
into expressions, just as one computes in a high
level functional program by passing arguments to
functions

Copyright © 2009 Elsevier




Functional Programming Concepts

* Functional languages such as Lisp, Scheme,
FP, ML, Miranda, and Haskell are an
attempt to realize Church's lambda calculus
in practical form as a programming language

Copyright © 2009 Elsevier




Functional Programming Concepts

» Key Idea: Define the outputs of a program as

a mathematical function of the inputs

— No mutable state
— No side-effects

— Emphasizes recursion rather than iteration

Copyright © 2009 Elsevier




Origins of Functional Languages

e Al modules for game playing in the 1950s

* Branch-and-bound algorithms 1deally suited for
recursion



Functional Programming Concepts

 Significant features, many of which are
missing 1In some 1mperative languages

— 1st class and high-order functions
— 1mplicit, parametric polymorphism
— powertul list facilities

— structured function returns

— fully general aggregates

— garbage collection

Copyright © 2009 Elsevier




Functional Programming Concepts

* So how do you get anything done 1n a functional
language?
— Recursion (especially tail recursion) takes the place of
iteration
— In general, you can get the effect of a series of
assignments
x := 0
X := exprl
X 1= expr2 ...
from £3 (£2 (£1 (0) ) ) , where each f expects the
value of x as an argument, {1 returns exprl, and {2
returns expr2

Copyright © 2009 Elsevier




Functional Programming Concepts

* Recursion even does a nifty job of replacing
looping
x := 0; 1 : ;] = 100;

+ 1;

end while
return x

becomes £(0,1,100), where
f(x,1,7) == if 1 < 7 then
f (xti*3, 1+1, J-1) else x

Copyright © 2009 Elsevier




Natural Recursive Problems

e Recurrences

— E.g., factorial:
0'=1
1'=1
n! =n * (n-1)!
— E.g., greatest common divisor
int gcd(int a, int b) {
if (a == b) return a;
else if (a > b) return gcd(a - b, b);

else return gcd(a, b - a);
h
e Tree traversals

* Graph traversals



Speeding Up Recursion

e Tail recursion: Recursion in which additional
computation never follows a recursive call

e Compiler optimizes a tail recursive function by re-
using the stack frame for the function

« Example
int gcd(int a, int b) {
start: 1f (a ==Db) return a;
else if (a>Db) { a=a - b; goto start; }
else { b="D - a; goto start; }



Transforming Recursion to Use Tail
Recursion

* continuations: arguments that contain intermediate

results which get passed to successive recursive
calls

« Example
factorial(n, product) {
if (n == 0 or n == 1) return product
else
return factorial(n-1, product * n) }



Continuations are like imperative
programming

« Example: The fibonacci recurrence relation
fib, = 0
fib, = 1
fib, = fib_, + fib,,

 a natural functional implementation:
fib(n) {
if (n ==0) return 0
else if (n==1) return 1
else return fib(n-1) + fib(n-2)



Continuations (cont)

* An efficient C implementation
int fib(int n) {
int f1 =0; 2 =1;
nt 1;
for(1=2;1<=n;1++) {
int temp = {1 + {2;

f1 =12;

2 = temp;
h
return 12;



Continuations (cont)

* A functional implementation of fib using
continuations
fib(n) {
fib-helper(fl, £2,1) {
if (1 ==n) return 2;
else return fib-helper(f2, f1 + 12, 1+1);

b
return fib-helper(0, 1, 0);



Functional Programming Concepts

* Lisp also has (these are not necessary

present in other functional languages)

— homo-iconicity: A Lisp program can be
manipulated as data.

» This property 1s often summarized by saying that
the language treats "code as data".

 Lisp stores data using list and code 1s also written
using lists

— self-definition
— read-evaluate-print

Copyright © 2009 Elsevier




e Variants of LISP
— Pure (original) Lisp
— Interlisp
MacLisp
Emacs Lisp

Common Lisp

Scheme

Copyright © 2009 Elsevier

E



Functional Programming Concepts

* Pure Lisp 1s purely functional; all other Lisps
have imperative features

» All early Lisps dynamically scoped

— Not clear whether this was deliberate or 1f 1t happened
by accident

* Scheme and Common Lisp statically scoped
— Common Lisp provides dynamic scope as an option
for explicitly-declared special functions

— Common Lisp now THE standard Lisp

* Very big; complicated (The Ada of functional
programming)

Copyright © 2009 Elsevier




Functional Programming Concepts

* Scheme 1s a particularly elegant Lisp

* Other functional languages
— ML
— Miranda
— Haskell
— FP

» Haskell 1s the leading language for research
in functional programming

Copyright © 2009 Elsevi




A Review/Overview of Scheme

* Scheme 1s a particularly elegant Lisp
— Interpreter runs a read-eval-print loop

— Things typed 1nto the interpreter are evaluated
(recursively) once

— Anything 1n parentheses 1s a function call
(unless quoted)

— Parentheses are NOT just grouping, as they are
in Algol-family languages

* Adding a level of parentheses changes meaning

Copyright © 2009 Elsevier




A Review/Overview of Scheme
Example program - Simulation of DFA

« We'll invoke the program by calling a function called

'simulate’, passing it a DFA description and an input
string

— The automaton description 1s a list of three items:
e start state
* the transition function

» the set of final states

— The transition function 1s a list of pairs

« the first element of each pair is a pair, whose first element is a state
and whose second element in an input symbol

« 1f the current state and next input symbol match the
first element of a pair, then the finite automaton enters
the state given by the second element of the pair

Copyright © 2009 Elsevier




(define simulate
(lambda (dfa input)
(cons (current-state dfa) ; start state
(if (aull? input)
(if (infinal? dfa) ’(accept) ’(reject))
(simulate (move dfa (car input)) (cdr input))))))

;; access functions for machine description:
(define current-state car)
(define transition-function cadr)
(define final-states caddr)
(define infinal?
(lambda (dfa)
(memg (current-state dfa) (final-states dfa))))

(define move
(lambda (dfa symbol)
(let ((cs (current-state dfa)) (trans (transition-function dfa)))
(list
(if (eg? cs ’error)
‘error
(let ((pair (assoc (list cs symbol) trams)))
(if pair (cadr pair) ’error))) ; new start state
trans ; same transition function
(final-states dfa))))) ; same final states

figure 10.] Scheme program to simulate the actions of a DFA. Given 2 machine description
and an input symbol i, function move searches for a transition labeled i from the start state to
some new state s. [t then returns a new machine with the same transition function and final
states, but with s as s “start” state. The main function, simulate, Tesis to see if iTis in 2 final
sate. If not, it passes the current machine description and the first symbol of input tc move, and
then calls itself recursively on the new machine and the remainder cof the input. The functions
cadr and caddr are defined as (lambda (x) (car (ecdr x))) and (lambda (x) (car (cdr
(cdr x)))), respectively. Scheme provides a large collection of such abbreviaticns.

Copyright © 2009 Elsevier




(define zero-one-even-dfa

’(q0 : start state
(((q0 0) g2) ((q0 1) q1) ((gq1l 0) g3) ((gq1l 1) q0) ; transition fn
((g2 0) q0) ((g2 1) g3) ((g3 0) q1) ((g3 1) g2))
(q0))) ; final states

Figure 10.2 DFA to accept all strings of zeros and ones containing an even number of each.
At the bottom of the figure is a representation of the machine as a Scheme data structure, using

the conventions of Figure [0.1.

Copyright © 2009 Elsevier

ELSEVIER



Evaluation Order Revisited

* Applicative order
— what you're used to in imperative languages
— usually faster

e Normal order

— like call-by-name: don't evaluate arg until you
need i1t

— sometimes faster

— terminates 1f anything will (Church-Rosser
theorem)

Copyright © 2009 Elsevier




Evaluation Order Revisited

 In Scheme

— functions use applicative order defined with
lambda

— special forms (aka macros) use normal order
defined with syntax-rules

* A strict language requires all arguments to be
well-defined, so applicative order can be used

* A non-strict language does not require all
arguments to be well-defined; it requires
normal-order evaluation

Copyright © 2009 Elsevier




Evaluation Order Revisited

» Lazy evaluation gives the best of both
worlds

* But not good in the presence of side effects.
— delay and force in Scheme

— delay creates a "promise”

Copyright © 2009 Elsevier




High-Order Functions

* Higher-order functions

— Take a function as argument, or return a function
as a result

— Great for building things

— Currying (after Haskell Curry, the same guy
Haskell is named after)
» For details see Lambda calculus on CD

ML, Miranda, and Haskell have especially nice syntax
for curried functions

Copyright © 2009 Elsevier




Functional Programming in Perspective

* Advantages of functional languages

— lack of side effects makes programs easier to
understand

— lack of explicit evaluation order (in some
languages) offers possibility of parallel evaluation
(e.g. MultiLisp)

— lack of side effects and explicit evaluation order
simplifies some things for a compiler (provided
you don't blow it in other ways)

— programs are often surprisingly short

— language can be extremely small and yet powerfuﬁi

Copyright © 2009 Elsevier




Functional Programming in Perspective
* Problems

— difficult (but not impossible!) to implement
efficiently on von Neumann machines
* lots of copying of data through parameters

* (apparent) need to create a whole new array in order to
change one element

 heavy use of pointers (space/time and locality problem)
 frequent procedure calls
 heavy space use for recursion

 requires garbage collection

* requires a different mode of thinking by the programmer

e difficult to integrate I/O 1nto purely functional model

Copyright © 2009 Elsevier




