
Copyright © 2009 Elsevier

Chapter 10 ::
Functional Languages

Programming Language Pragmatics
Michael L. Scott

Copyright © 2009 Elsevier

Historical Origins
• The imperative and functional models grew out

of work undertaken Alan Turing, Alonzo
Church, Stephen Kleene, Emil Post, etc. ~1930s
– different formalizations of the notion of an algorithm,

or effective procedure, based on automata, symbolic
manipulation, recursive function definitions, and
combinatorics

• These results led Church to conjecture that any
intuitively appealing model of computing would
be equally powerful as well
– this conjecture is known as Church’s thesis

Copyright © 2009 Elsevier

Historical Origins
• Mathematicians established a distinction

between
– constructive proof (one that shows how to obtain a

mathematical object with some desired property)
– nonconstructive proof (one that merely shows that

such an object must exist, e.g., by contradiction)

Copyright © 2009 Elsevier

Historical Origins

• Turing’s model of computing was the Turing
machine a sort of pushdown automaton using
an unbounded storage “tape”
– the Turing machine computes in an imperative

way, by changing the values in cells of its tape –
like variables just as a high level imperative
program computes by changing the values of
variables

Copyright © 2009 Elsevier

Historical Origins

• Church’s model of computing is called the
lambda calculus
– based on the notion of parameterized expressions

(with each parameter introduced by an occurrence
of the letter λ—hence the notation’s name.

– Lambda calculus was the inspiration for functional
programming

– one uses it to compute by substituting parameters
into expressions, just as one computes in a high
level functional program by passing arguments to
functions

Copyright © 2009 Elsevier

Functional Programming Concepts

• Functional languages such as Lisp, Scheme,
FP, ML, Miranda, and Haskell are an
attempt to realize Church's lambda calculus
in practical form as a programming language

Copyright © 2009 Elsevier

Functional Programming Concepts

• Key Idea: Define the outputs of a program as
a mathematical function of the inputs
– No mutable state
– No side-effects
– Emphasizes recursion rather than iteration

Origins of Functional Languages

• AI modules for game playing in the 1950s
• Branch-and-bound algorithms ideally suited for

recursion

Copyright © 2009 Elsevier

Functional Programming Concepts

• Significant features, many of which are
missing in some imperative languages
– 1st class and high-order functions
– implicit, parametric polymorphism
– powerful list facilities
– structured function returns
– fully general aggregates
– garbage collection

Copyright © 2009 Elsevier

Functional Programming Concepts
• So how do you get anything done in a functional

language?
– Recursion (especially tail recursion) takes the place of

iteration
– In general, you can get the effect of a series of

assignments
x := 0 ...
x := expr1 ...
x := expr2 ...

from f3(f2(f1(0))), where each f expects the
value of x as an argument, f1 returns expr1, and f2
returns expr2

Copyright © 2009 Elsevier

Functional Programming Concepts

• Recursion even does a nifty job of replacing
looping
x := 0; i := 1; j := 100;
while i < j do

x := x + i*j; i := i + 1;
j := j - 1

end while
return x

becomes f(0,1,100), where
f(x,i,j) == if i < j then
f (x+i*j, i+1, j-1) else x

Natural Recursive Problems

• Recurrences
– E.g., factorial:

0! = 1
1! = 1
n! = n * (n-1)!

– E.g., greatest common divisor
int gcd(int a, int b) {

if (a == b) return a;
else if (a > b) return gcd(a - b, b);
else return gcd(a, b - a);

}

• Tree traversals
• Graph traversals

Speeding Up Recursion

• Tail recursion: Recursion in which additional
computation never follows a recursive call

• Compiler optimizes a tail recursive function by re-
using the stack frame for the function

• Example
int gcd(int a, int b) {

start: if (a == b) return a;
else if (a > b) { a = a - b; goto start; }
else { b = b - a; goto start; }

}

Transforming Recursion to Use Tail
Recursion

• continuations: arguments that contain intermediate
results which get passed to successive recursive
calls

• Example
factorial(n, product) {

if (n == 0 or n == 1) return product
else

return factorial(n-1, product * n) }

Continuations are like imperative
programming

• Example: The fibonacci recurrence relation
fib0 = 0
fib1 = 1
fibn = fibn-1 + fibn-2

• a natural functional implementation:
fib(n) {

if (n == 0) return 0
else if (n == 1) return 1
else return fib(n-1) + fib(n-2)

}

Continuations (cont)

• An efficient C implementation
int fib(int n) {

int f1 = 0; f2 = 1;
int i;
for (i = 2; i <= n; i++) {

int temp = f1 + f2;
f1 = f2;
f2 = temp;

}
return f2;

}

Continuations (cont)

• A functional implementation of fib using
continuations
fib(n) {

fib-helper(f1, f2, i) {
if (i == n) return f2;
else return fib-helper(f2, f1 + f2, i+1);

}
return fib-helper(0, 1, 0);

}

Copyright © 2009 Elsevier

Functional Programming Concepts

• Lisp also has (these are not necessary
present in other functional languages)
– homo-iconicity: A Lisp program can be

manipulated as data.
• This property is often summarized by saying that

the language treats "code as data".
• Lisp stores data using list and code is also written

using lists
– self-definition
– read-evaluate-print

Copyright © 2009 Elsevier

Functional Programming Concepts

• Variants of LISP
– Pure (original) Lisp
– Interlisp
– MacLisp
– Emacs Lisp
– Common Lisp
– Scheme

Copyright © 2009 Elsevier

Functional Programming Concepts

• Pure Lisp is purely functional; all other Lisps
have imperative features

• All early Lisps dynamically scoped
– Not clear whether this was deliberate or if it happened

by accident
• Scheme and Common Lisp statically scoped

– Common Lisp provides dynamic scope as an option
for explicitly-declared special functions

– Common Lisp now THE standard Lisp
• Very big; complicated (The Ada of functional

programming)

Copyright © 2009 Elsevier

Functional Programming Concepts

• Scheme is a particularly elegant Lisp
• Other functional languages

– ML
– Miranda
– Haskell
– FP

• Haskell is the leading language for research
in functional programming

Copyright © 2009 Elsevier

A Review/Overview of Scheme

• Scheme is a particularly elegant Lisp
– Interpreter runs a read-eval-print loop
– Things typed into the interpreter are evaluated

(recursively) once
– Anything in parentheses is a function call

(unless quoted)
– Parentheses are NOT just grouping, as they are

in Algol-family languages
• Adding a level of parentheses changes meaning

Copyright © 2009 Elsevier

A Review/Overview of Scheme
Example program - Simulation of DFA

• We'll invoke the program by calling a function called
'simulate', passing it a DFA description and an input
string
– The automaton description is a list of three items:

• start state
• the transition function
• the set of final states

– The transition function is a list of pairs
• the first element of each pair is a pair, whose first element is a state

and whose second element in an input symbol
• if the current state and next input symbol match the

first element of a pair, then the finite automaton enters
the state given by the second element of the pair

Copyright © 2009 Elsevier

A Review/Overview of Scheme
Example program - Simulation of DFA

Copyright © 2009 Elsevier

A Review/Overview of Scheme
Example program - Simulation of DFA

Copyright © 2009 Elsevier

Evaluation Order Revisited

• Applicative order
– what you're used to in imperative languages
– usually faster

• Normal order
– like call-by-name: don't evaluate arg until you

need it
– sometimes faster
– terminates if anything will (Church-Rosser

theorem)

Copyright © 2009 Elsevier

Evaluation Order Revisited

• In Scheme
– functions use applicative order defined with

lambda
– special forms (aka macros) use normal order

defined with syntax-rules
• A strict language requires all arguments to be

well-defined, so applicative order can be used
• A non-strict language does not require all

arguments to be well-defined; it requires
normal-order evaluation

Copyright © 2009 Elsevier

Evaluation Order Revisited

• Lazy evaluation gives the best of both
worlds

• But not good in the presence of side effects.
– delay and force in Scheme
– delay creates a "promise"

Copyright © 2009 Elsevier

High-Order Functions

• Higher-order functions
– Take a function as argument, or return a function

as a result
– Great for building things
– Currying (after Haskell Curry, the same guy

Haskell is named after)
• For details see Lambda calculus on CD
• ML, Miranda, and Haskell have especially nice syntax

for curried functions

Copyright © 2009 Elsevier

Functional Programming in Perspective

• Advantages of functional languages
– lack of side effects makes programs easier to

understand
– lack of explicit evaluation order (in some

languages) offers possibility of parallel evaluation
(e.g. MultiLisp)

– lack of side effects and explicit evaluation order
simplifies some things for a compiler (provided
you don't blow it in other ways)

– programs are often surprisingly short
– language can be extremely small and yet powerful

Copyright © 2009 Elsevier

• Problems
– difficult (but not impossible!) to implement

efficiently on von Neumann machines
• lots of copying of data through parameters
• (apparent) need to create a whole new array in order to

change one element
• heavy use of pointers (space/time and locality problem)
• frequent procedure calls
• heavy space use for recursion
• requires garbage collection
• requires a different mode of thinking by the programmer
• difficult to integrate I/O into purely functional model

Functional Programming in Perspective

