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Mobile devices employ the same scheduling algorithms as their desktop cousins. Unfortunately, these al-
gorithms do not take advantage of an application’s heavy reliance on graphical user interfaces (GUIs). In
this article, we discuss how we can partition the functionality of a GUI into 4 threads–an event handling
thread, a display thread, and two threads for handling background and foreground tasks–and then use the
information imparted by these threads to schedule applications in a way that reduces power consumption. We
also describe how we can combine our scheduling algorithm with our previous work on push event models to
obtain additional power savings and to also obtain reductions in latency, which is the elapsed time between
when an input event arrives and when the app starts processing it. These combined approaches yield power
savings approaching 30% in applications that alternate “bursty” events with long idle periods, and up to a 17.1
millisecond reduction in latency.
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puter systems organization→ Embedded software;
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1 INTRODUCTION
Most process schedulers for consumer-oriented, mobile devices employ the same scheduling algo-
rithms as their desktop cousins. For example, Android schedules applications using the completely
fair scheduler (CFS) that is also used by desktop Linux machines [12]. However, mobile devices
have two characteristics that make it desirable to develop more sophisticated schedulers. First,
they have a limited power source, which increases the importance of ensuring that the CPU does
not perform useless work, such as executing a polling loop for a graphical application that is
completely obscured by other applications. Second, most applications that run on mobile devices
involve graphical user interfaces that lend themselves to more nuanced scheduling. For example,
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unlike desktop computers where one might have many overlapping windows, mobile devices tend
to have only one application visible at a time [15]. Some newer devices with bigger screens will
split the screen to display more than one app but even on these devices it is unusual to display
more than 2 apps at a time. If an app is not visible, then there is no need to schedule it, or its power
consuming polling loop.

The reason that existing desktop schedulers cannot more effectively schedule GUI-oriented apps
is that they only consider the CPU when deciding which applications get scheduled. They do not
take into account other factors that can influence scheduling, such as the graphics processing unit
(GPU), the event subsystem, the I/O subsystem and the memory controller. Instead, they use a
binary wait or execute model where the process is either scheduled (execute) or not scheduled
(wait). A process waits until some event occurs, such as the completion of I/O, the passage of a
certain amount of time, the acquisition of a lock, or the arrival of an input event. Unfortunately a
GUI-oriented app “busy-waits” because the CPU executes a polling loop to check for events for
that app. Since existing desktop schedulers do not consider whether the app has the input focus
and can actually receive events (i.e., they ignore the state of the event subsystem), they execute
this polling loop regardless of whether or not the app can actually receive any events. Application
programmers can try to tell the scheduler that the app can be put to sleep, but usually they prefer
not to in order to keep their code portable [2].
To address this shortcoming of existing schedulers, we have designed and implemented a new

scheduler called the guiS scheduler or “GUI Scheduler” that takes advantage of the fact that almost
all apps on mobile systems are graphically oriented. guiS attempts to reduce power consumption in
four ways: (a) coordinate process scheduling for GUI-specific situations, such as when an application
is running but is not actively visible to the user, (b) improving the efficiency of hardware timer
interrupts (c) more intelligently assigning tasks an app must perform to either low or high power
cores, and (c) shutting down certain CPU cores when the apps they are executing have no pending
input events and are not executing background tasks.
Previously, we have implemented two other kernel subsystems with which guiS coordinates

to improve its scheduling decisions. First we implemented an event push model, called the Event
Stream Model (ESM), that eliminates event polling loops by pushing events to the appropriate
application using vector controller interrupts [8]. By eliminating polling loops, we make it possible
for a scheduler to avoid scheduling apps until they have an actual event waiting to be processed.
Previously, apps had to be constantly scheduled so that their polling loop could canvas the input
devices and determine if there was an event waiting for the app. Second, we have implemented a
kernel display server called the KDS that divides GUI applications into four distinct threads, an
event handling thread, a display thread, a foreground thread for long-running tasks that handle
constant updates to an app while it is in foreground mode (an app such as Pandora or Sirius could
be in the foreground without being visible), and a background thread for background tasks that
handle less immediate responses such as the decoding of audio as well as activities that should
proceed even when the app is neither visible nor in the foreground [9]. These four threads constitute
well-defined task information that guiS can use to perform more intelligent scheduling.

Using these two subsystems, the GUI scheduler improves upon current schedulers by considering
multiple factors when scheduling applications, including GUI window state, GPU contexts, I/O load,
and event load. For example, the KDS communicates to the scheduler when a GUI window has been
placed into the background. guiS considers this information and makes the appropriate decision
about how the application is scheduled, which often involves de-scheduling the application.
guiS also incorporates several improvements that Hsiu et al. [5] made in their heterogeneous

CPU core scheduler. A heterogeneous CPU has both so-called shadow cores and normal cores.
Shadow cores consume less power than normal cores but can also run more slowly [16]. Hsiu’s work
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determined which proportion of shadow cores to normal cores is best for balancing performance
and power consumption in GUI applications. We adapted this result by allowing guiS to coordinate
with our ESM in order to identify which applications need to run. When the scheduler determines
that no GUI applications need to run, such as when the user places their phone in their pocket, it
triggers the power subsystem in the Android kernel to power down the CPU and other peripherals.
It also causes the ESM to reprogram the vectored interrupt controller to target the shadow core for
future events. Since the shadow core is the first line of event processing, the ESM (running on the
shadow core) can then make the decision whether or not the power-hungry CPU cores need to be
awoken (see Section 5 for more details).

The rest of this paper is organized as follows. Section 2 describes existing scheduling strategies
and existing power saving strategies for mobile devices. Section 3 presents an overview of our guiS
scheduler. Section 4 describes in detail how it schedules processes, Section 5 describes how guiS
manages the assignment of processes to cores, and Section 6 describes how it improves the efficiency
of hardware ticks once polling loops have been eliminated. Section 7 describes experiments we
have performed with our guiS scheduler on several apps and the power and latency savings it
achieves, and Section 8 summarizes the work and presents our conclusions.

2 RELATEDWORK
This section begins by examining the strategies used by existing schedulers, both desktop sched-
ulers and mobile device schedulers. It then looks at work that has been done with scheduling
heterogeneous cores that have different power consumption and performance capabilities. Finally
it concludes with an examination of the most common alternative power saving approaches that
have been utilized for mobile devices.

2.1 Scheduling Algorithms
Most scheduling algorithms used by existing operating systems use some variation of a priority-
based scheme that tries to ensure that all processes are given a share of the CPU while still giving
preference to higher-priority processes. The current scheduler used by the Android operating
system and other Linux-based operating systems is the “Completely Fair Scheduler” (CFS) [12].
This scheduler aims to provide an equal (fair) proportion of CPU to each running process and to
allow for priorities [17]. Those processes that have not received an equal portion of CPU time
are prioritized over those that have. Furthermore, the scheduler balances processes with a higher
priority with those with a lower priority to enable higher priority processes to have more CPU
usage without starving the lower priority processes. However, CFS does not use information about
GUI applications to improve its scheduling.

The scheduler used in Microsoft’s Windows operating system is a priority scheduler that assigns
all processes a priority between 0 and 31. The scheduler assigns time slices in a round robin fashion
to all processes with the highest existing priority level. For example, if the highest existing processes
have a priority of 29, then all processes with a priority level of 29 will be scheduled in round robin
fashion. If no process at the highest existing priority level is ready to run, then the Windows
scheduler will start allocating time slices in a round robin fashion to processes at the next highest
priority level. If a process with a higher priority level becomes ready to run, the lower priority
process will be suspended and the higher priority level process will begin running. The scheduler
can dynamically boost or lower priority levels to ensure that CPU starvation does not occur for
any process. Windows also has a direct rendering scheme called DirectDraw that allows a GUI to
bypass some drawing layers and more expeditiously render a GUI [10]. However, the scheduler
itself does not distinguish between GUI and non-GUI apps.
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The Mac desktop and iOS schedulers use a derivation of the Mach kernel’s scheduler [1]. These
schedulers use a priority queue-based scheduling system that divides processes into four priority
bands with each band having multiple priority-levels. Processes can migrate between priority-levels
within a band to try to prevent CPU starvation but typically will not migrate between bands. The
bands do not distinguish between GUI applications and non-GUI applications. However, one of
the priority bands is for real-time processes, and if a GUI has real-time constraints, it can request
to be a real-time process. A real-time process can request that it receive x out of the next y CPU
units. The scheduler will try to honor these requests, but may not be able to, thus making it a "soft
real time" scheduling system. Hence there are ways for a GUI application to obtain scheduling
preferences, but this is different from using GUI-specific information to improve the scheduling
process.

The guiS scheduler described in this paper differs from these schedulers in that it takes advantage
of the unique features of mobile device software, specifically their GUI-oriented focus, to improve
the scheduling process. guiS is a heavily modified CFS scheduler that uses information about GUI
apps to 1) avoid scheduling background GUI apps, and 2) place higher latency and lighter weight
GUI tasks on lower power consuming cores and heavier weight, lower latency GUI tasks on higher
power but faster cores.

2.2 Scheduling with Heterogeneous CPU Cores
The introduction of heterogeneous CPU cores into both mobile and desktop operating systems
creates interesting scheduling questions about which processes should be placed on which cores.
Li et al. modified the Linux kernel’s load balancing algorithms for the big.LITTLE architecture [7].
ARM’s big.LITTLE system is an energy optimization scheme that pairs high performing, but power
consuming cores with lower performing, but lower power consuming cores. Li’s work emphasized
how to allocate processes efficiently among the heterogeneous cores. In our guiS scheduler we have
employed their idea of placing the lightweight event dispatching and event handling tasks on the
low energy, power-reducing cores and placing the more computationally expensive, longer-running
application tasks on the faster, but higher energy cores.

Seehwan Yoo, et al describe several conditions which can decrease the efficiency of the big.LITTLE
or shadow core processors [18]. They lay out several ways to achieve increased power efficiency
without sacrificing performance. Our guiS scheduler uses the knowledge gained from several of their
test cases tominimize the negative effects that occur when switching between the performance cores
and the power efficient cores. For example, when the cores have been powered down, guiS causes
initial event processing to occur on the lower power cores that spin up faster while simultaneously
spinning up a higher power core that will execute the drawing procedure that updates the app’s
window.

Hsiu, Tseng, et al. examined the current set of process schedulers and determined they are not
suitable for mobile devices with heterogeneous CPU cores [5]. Their research shows that with
the conventional schedulers, such as the Completely Fair Scheduler (CFS) and its variants, energy
efficiency and performance are not maximized. The research presented in this paper confirms
their finding by implementing a new scheduler that focuses on energy efficiency and achieving
power reductions of as much as 30%. Their work helped guide the design of our guiS scheduler. For
example, guiS can determine how to best balance event handling among a set of cores and will
attempt to place IO-intensive apps on slower, lower power cores and CPU-intensive apps on faster,
higher power cores.

Gaspar, Tanica, Tomàs, Ilic, and Sousa have proposed a framework for an application-aware task
management system for mobile devices using heterogeneous CPU cores [4]. Their system utilizes
the new mobile device CPU technologies, such as big.LITTLE, in order to improve the performance
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of applications, as well as using the objective of the application to better determine how to allocate
CPU resources to that application. We have taken a similar approach in implementing our GUI
scheduler. Our work differs from their work in that our scheduler is specifically designed to work
with mobile GUI applications. In addition, as far as we can determine, their task management
system is a theoretical framework, whereas our GUI scheduler is an actual implementation.
Bui, Liu, Kim, Shin, and Zhao studied the effects of using the larger, power hungry cores when

scheduling web page loading for Chromium and Firefox on mobile devices [3]. They achieved an
average of a roughly 24% energy savings using Chromium on a big.LITTLE smart phone, which
nicely aligns with our own findings that we can achieve up to 30% reductions in power consumption
for some apps by smartly managing GUI apps on the different cores.

2.3 Alternative Power Saving Methods
Our techniques for saving power involve modifying the kernel software so that application pro-
grammers can realize power savings without any explicit effort. By contrast, mobile OS’s currently
provide application-level techniques for conserving power. The most common such techniques
are "wake locks" and aggressive sleeping policies to reduce power consumption. A wake lock is
a lock that an application programmer can set which prevents the CPU from entering a sleeping
state regardless of what activities the application is performing [13]. However, when used improp-
erly, wake locks can unnecessarily keep the CPU at the highest power state, thus consuming an
inordinate amount of power. While the guiS scheduler cannot completely eliminate wake locks,
programmers can move the code requiring a wake lock into one of the prioritized threads, such as
the background thread, rather than using a wake lock. Theoretically, this should eliminate the need
to keep the CPU awake once the code finishes executing and the CPU can be automatically powered
down, thus reducing power consumption. In contrast, wake locks must be manually deactivated,
and an inexperienced application programmer may forget to remove the lock, thus preventing the
mobile device from ever entering a sleeping state, and hence needlessly consuming the mobile
device’s battery [6].
Aggressive sleeping policies are the consequence of attempting to maximize the limited power

source in mobile devices. All mobile operating systems must use some sort of sleeping policy in
order to reduce power consumption by powering down several peripherals, such as the LCD screen
or Wi-Fi card. For example, when the LCD screen on a mobile phone dims and then turns off, it is
adhering to a sleeping policy that prescribes that the screen will dim after a certain duration, and
then turn off after a longer duration. Unfortunately, sleeping policies are reactive since they involve
some sort of measurement of the last user interaction. The term “aggressive” applied to sleeping
policies means that with mobile devices, the duration between stepping down a fully awake device
to a sleeping device is significantly reduced. A drawback of aggressive sleep policies is that they
can increase application latency when they inaccurately predict that a device can be powered down
because a lag occurs before a sleeping device fully awakens.

Our guiS solves many of the problems caused by aggressive sleeping policies by removing several
of the situations that require them. By categorizing the type of work that is performed in each
KDS thread, the operating system knows what type of computation is occurring and hence can
eliminate many of the guesses that are made by current sleeping policies. For example, activities
on the background thread should not affect the display, such as the downloading of updated news
articles, and hence the LCD screen can be powered down when only the background thread is
executing. The LCD is free to power down since this activity does not require the LCD screen. In
current mobile OS implementations, the LCD screen must use an aggressive timer to determine
when to power down since it does not know what the application is doing.
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3 GUI SCHEDULER (GUIS) OVERVIEW
guiS is a modified version of the “Completely Fair Scheduler” (CFS) currently employed in the
Android OS [12]. Much of guiS looks exactly like the CFS. In fact, when a running thread is not
associated with a GUI application (e.g., a console application), then the thread is scheduled in
accordance with CFS policy, meaning that the scheduler looks and acts like the current Android OS
with non-GUI applications.

Our GUI scheduler differs from the CFS scheduler in its explicit recognition of and handling of
GUI applications. guiS will not schedule some GUI threads if it knows that the GUI’s application is
in the background, and guiS will also schedule GUI threads on different power-consuming cores
depending on the type of work being performed by the thread.

The original motivation for guiS derived from the observation that most mobile devices display
only one app at a time. Any app whose window is covered is unable to directly receive user input
events and has no need to display graphics so it can be theoretically disabled. Newer mobile devices
have bigger displays that permit more than one app to be displayed at a time, but for the most part,
the apps are displayed in non-overlapping windows which still makes it easy to determine whether
or not an app’s display is completely covered and thus not visible.
An obvious problem arises with this simple observation however. An application may want to

execute instructions even though it is in the background. For example, an application may want
to play music even though it may not be able to receive user inputs or display its graphics. We
would like to make it as easy as possible for the scheduler to determine when an application can be
completely de-scheduled while placing a minimal burden on the application programmer to tell the
scheduler what the app is doing.
This motivation drove the design of the Kernel Display Server (KDS), in which we divided an

application’s tasks into four threads: event handling, display, foreground tasks, and background
tasks. A display server is traditionally a piece of middle ware in the application layer that distributes
events to an app and delivers drawing commands from the app to the kernel. Hence if we define
events as GUI input and drawing commands as GUI output, then all GUI I/O is handled through the
display server. Applications typically register call back procedures with event handlers and these
call back procedures execute when the appropriate event is received. These call back procedures
are foreground tasks as are some longer running tasks, such as video decoding. Additionally, some
apps may initiate background tasks, such as audio decoding or news article downloading, that
should proceed even in the absence of an input event. In both of these cases, it is appropriate
for the display server to know about the tasks, and hence it is appropriate for the display server
to manage an app using the aforementioned four threads. Existing display servers require the
application programmer to register call back procedures so the only additional burden that our KDS
imposes on an application programmer is to specify if a longer-running procedure is a foreground
or background task.

We have also moved the display server into the kernel to reduce the amount of system calls that
must be made between the kernel and display server and also so that the display server can share
the scheduling information it obtains from the threads with the guiS scheduler. With our KDS,
certain threads can be toggled on or off through the GUI scheduler. This allows for the application’s
event, drawing, and foreground threads to be suspended if the application is in the background,
hence cutting their computational and power consumption requirements.
The important piece of the KDS for the guiS scheduler is the division of GUI tasks into four

separate thread types. This classification allows the guiS scheduler to determine which tasks need
to run even if the GUI is in the background (and conversely, which tasks do not need to run) and
how to schedule the tasks on different cores.
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Fig. 1. The application connects through the KDS directly or through middleware. The application then tells
the KDS to which of the four threads certain code belongs. From there, the GUI scheduler will prioritize the
threads and schedule them to run based on their category.

The next three sections describe in greater detail how the guiS scheduler is implemented so that
it can take advantage of this thread information. In the discussion that follows we will use three
terms to which we want to ascribe a precise meaning:

• application: The overall GUI application. We will sometimes abbreviate application as app.
• task: A block of code that is executed, typically as a thread, by the scheduler. A task will
normally be associated with an app.

• event handler: A memory address where code that will execute later in response to an event
is stored. A handler will eventually become a task when it is pushed an event by the ESM.
Otherwise, the handler is a dormant block of code in RAM.

We will also use three variables to which we want to ascribe a precise meaning:
• task.thread_state: Whether the app with which the task is associated is in the foreground or
background.

• task.thread_type: Which of the four KDS threads a task is running on if the task is associated
with a GUI app.

• task.state: The current state of the task, such as sleeping, running, or waiting for an event.

4 SCHEDULING PROCESSES FOR GUI-SPECIFIC APPLICATIONS
Figure 1 shows how an app starts up and the guiS scheduler obtains information about the app
from the KDS and Table 1 shows how the scheduler schedules the threads. Algorithm 1 shows the
top-level pseudo code implementation of how the guiS schedules each thread. All four threads abide
by the same scheduling rules that normal processes do, namely that a sleeping process will only
be set to run when the blocking condition is resolved. For example, if the programmer explicitly
calls sleep() in the drawing thread, the drawing thread will sleep for the desired amount of time,
regardless of whether or not the screen needs to be redrawn.
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Task Type When Scheduled Where Scheduled
Event Handling Thread When event is received from the ESM Low power core
Drawing Thread When app is visible to the user High power core
Foreground Thread When app is in the foreground High power core
Background Thread Always (foreground and background) High power core

Table 1. When a task is eligible for scheduling by the guiS scheduler and where it is typically scheduled. The
rationale for the assignment of tasks to cores is discussed in Section 5.

ALGORITHM 1: guis_schedule() is called when a context switch is requested through a hardware timer
“tick” or when a task yields to the scheduler. The scheduling algorithm determines which type of thread is
running (e.g., event handling, drawing, foreground, or background thread) and schedules it accordingly. If
the task is not part of a GUI process, as in the default case, the scheduler schedules the task normally in the
Completely Fair Scheduler mode. If the scheduler runs through the entire task list and is unable to schedule a
task, then it schedules the idle task. The idle task gradually puts cores into sleep states and eventually dims
and then shuts down the LCD if the idle task keeps running for an extended period of time.
guis_schedule()

begin
taskScheduled = false;
foreach task ∈ task_list do

switch task.thread_type do
case EVENT_HANDLING_THREAD do

taskScheduled = guis_schedule_event_handling(task)
end
case DRAWING_THREAD do

taskScheduled = guis_schedule_drawing(task)
end
case FOREGROUND_THREAD do

taskScheduled = guis_schedule_foreground(task)
end
case BACKGROUND_THREAD do

taskScheduled = guis_schedule_background(task)
end
otherwise do

taskScheduled = schedule(task) // revert to CFS mode
end

end
if taskScheduled then

return;
end

end
schedule(idleTask);

end

The event handling thread executes the event handlers that the application registers with the
KDS and handles user input, wi-fi traffic, and so forth. The scheduler will only run this thread
when an event occurs in which the app has expressed an interest. The event dispatcher runs on this
thread and it in turn pushes events to the appropriate event handlers (see Algorithm 2). When the
event handler finishes, the event handling thread is put back to sleep and is left undisturbed until
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ALGORITHM 2: If the app is in the EV_WAIT state, then the task is waiting for input and there is no need
to schedule anything. This should rarely happen as event handlers are expected to handle only a single event
and then return. However, for maximum programmer flexibility the event system was written so that an event
handler could wait on another event. If the app is not in the EV_WAIT state, that means this task, either an
event handler or the event dispatcher, is running, and hence the scheduler allows the task to continue to run.
Also, even if the app has moved to the background, a handler that has already started to execute is allowed to
complete its execution, hence the lack of a check for the app’s thread state.
guis_schedule_event_handling(task)

begin
if task.state != EV_WAIT then

task.run();
return true;

end
return false;

end

ALGORITHM 3: The drawing thread only runs if the application is in the foreground and can be seen by the
user. The macro CAN_SEE() is used to check if the LCD screen is on or off. If the LCD screen is on, then it
stands to reason that any drawing could be seen by the user, and hence it is necessary to draw to the screen.
Otherwise, this scheduling algorithm keeps the thread in a sleeping state. When an app becomes invisible, its
GPU context is immediately saved, and the guiS scheduler is also notified of the context switch by the GPU
and guiS immediately saves the thread’s state. That is why this scheduling code does not attempt to save the
thread state if the task is in the background–the state has been previously saved.
guis_schedule_drawing(task)

begin
if task.thread_state = FOREGROUND then

if CAN_SEE(task’s app) then
task.state = RUNNING;
task.run();
return true;

end
end
return false;

end

another event occurs or until the application exits. If the application is placed in the background,
the currently executing event handler, if there is one, is executed to completion. However, the KDS
deregisters the ESM event handlers that handle input events or other events that should be ignored
while the application is in the background, thus preventing any other event handlers from starting
up while the application is in the background. For example, if there is a mouse handling routine,
the KDS knows that if this application is in the background, it cannot receive mouse inputs, and
hence it deregisters any event handlers that are listening for mouse events.
The drawing thread is only scheduled to run when the application is visible to the user (see

Algorithm 3). For example, if the LCD is turned off for any reason or the application is minimized,
the drawing thread is suspended. Most of an application’s drawing routines should be placed in the
drawing thread for efficient power management.
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ALGORITHM 4: An application in the foreground thread will only be scheduled to run if the application is
in the foreground. It does not check whether or not the results would be visible to the user (i.e, if the LCD is
turned on or off).
guis_schedule_foreground(task)

begin
if task.thread_state = FOREGROUND then

task.state = RUNNING;
task.run();
return true;

end
return false;

end

ALGORITHM 5: Any task in the background thread is scheduled to run regardless of its state.
guis_schedule_background(task)

begin
task.state = RUNNING;
task.run();
return true;

end

The foreground thread is scheduled to run when the application is in the foreground (see
Algorithm 4). It runs regardless of whether or not the application is visible to the user. For example,
if the LCD screen is turned off, but the application is in the foreground (i.e., the active application),
the foreground thread is scheduled to run. For example, a video player app, where the programmer
wishes to play the audio when the screen is turned off but wants any output suspended when other
apps are activated, would place the audio decoding and output code in this thread.

The background thread is scheduled to run regardless of the application’s status (see Algorithm 5).
Programmers should place in the background thread any routines that must run regardless of
whether or not the application is currently interacting with the user. Typically, non-GUI related
code would be placed in this thread. For example, the Facebook application would place the routines
which retrieve notifications for the user in this thread. As another example, a stopwatch app that is
not currently visible but which is keeping track of time would place the time keeping routine in
this thread.
The KDS coordinates with the ESM and guiS by updating the status of each GUI application.

For example, the KDS is notified whenever an application moves from the foreground (visible
to the user) into the background (not visible to the user). In this case, the KDS will relay to the
scheduler that the application’s drawing, event, and foreground threads should be suspended since
an application in the background cannot possibly draw to the screen. These threads will not execute
until the application’s GUI state changes, which means that they will not require the CPU, and
hence reduce power consumption.
The KDS also deregisters the application’s event handlers from the ESM so that the ESM will

not try to forward events to the application. When the application returns to the foreground and
becomes visible, the KDS will re-register the application’s event handlers with the ESM and guiS
will re-activate the event handling, foreground, and drawing threads.
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ALGORITHM 6: The window manager calls the kds_on_background function to inform the KDS that an
application has been placed into the background. This function deregisters the event handlers that cannot run
when the application is in the background and notifies the guiS scheduler that the application has been placed
into the background.
kds_on_background(app)

begin
foreach eventHandler ∈ app do

esm_register(app, eventHandler.event, NULL);
end
guis_set_state(app, BACKGROUND);

end

ALGORITHM 7: The window manager calls the kds_on_foreground function when either the app moves
into the foreground or when the app is in the foreground and its visibility changes. This function de-registers
the event handlers if the app is no longer visible and re-registers the event handlers if the app has become
visible. In both cases, it notifies the guiS scheduler that the application was placed into the foreground.
kds_on_foreground(app)

begin
if CAN_SEE(app) then

foreach eventHandler ∈ app do
esm_register(app, eventHandler.event, eventHandler.address);

end
end
else

foreach eventHandler ∈ app do
esm_register(app, eventHandler.event, NULL);

end
end
guis_set_state(app, FOREGROUND);

end

The manner in which the KDS learns when an application has moved to the background or
the foreground, either because of a user action or because of an API command written in the
program, is via the window manager. The window manager coordinates with Android’s Input
Flinger, which ultimately calls kds_on_background or kds_on_foreground as shown in Algorithm 6
and Algorithm 7, respectively. These two KDS commands call the guis_set_state function, which in
turn restarts the threads if the app is moving into the foreground and stops the threads if the app is
moving into the background. The guis_set_state function is depicted in Algorithm 8.

5 IMPROVING POWER CONSUMPTION BY MANAGING THE CORES
The previous section discussed how tasks get scheduled but glossed over which core a task is
assigned to when it executes. guiS uses the following guidelines when assigning a task to either a
slower, but lower power consuming core or a faster, but higher power consuming core:

• It assigns IO-intensive tasks to lower power consuming cores and CPU-intensive tasks to
higher power consuming cores with the expectation that IO-intensive tasks will be IO-bound
and hence will not be unreasonably slowed down by the slower compute speed on the lower
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ALGORITHM 8: guis_set_state sets the state of the GUI application. This state information is used by guiS’s
thread scheduling algorithms when determining which threads to schedule. For example, if the state is set to
BACKGROUND, meaning that the application is in the background, then only the background thread will be
scheduled to execute.
guis_set_state(app, state)

begin
app.thread_state = state;

end

power cores. A task is deemed IO-intensive if there are IO bytes scheduled to be read or
written for at least three consecutive context switches to the task (i.e, three consecutive time
slices). Then, it remains an IO intensive process until three switches occur without any IO
bytes scheduled. There may well be better ways to decide if a task is CPU- or IO-intensive
but this rule worked well for our scheduling purposes.

• It assigns tasks on the event handling thread to the lower power consuming cores and tasks
on the remaining three threads to the higher power consuming cores. The event handling
thread typically executes callback procedures that normally require little computational time
and can be run acceptably quickly on a low-power core. In contrast foreground, background,
and drawing tasks typically are compute-intensive tasks that require the faster, higher power
consuming cores.

• The event interrupt and event dispatch routines that the ESM executes to initially interpret
an event, collect information about the event, and direct the event to the appropriate event
handlers, are placed on the lower power consuming cores as they execute very few instructions
and hence finish very quickly no matter what core they execute on.

• If an event handling task executes for more than 100 timer interrupts, then it is switched to a
higher power core under the presumption that it is a more compute-intensive task that needs
to be completed quickly in order to be responsive to the user. There is perhaps a better way
to set this policy dynamically, but this heuristic worked well for our experiments.

One of the biggest issues we faced with our power conserving scheme is that waking the
larger cores has a “spin up time” that can produce latency. Our guiS handles this problem by
preemptively waking a larger core when the event dispatcher starts pushing an event with the ESM.
The expectation is that if an event is handled, the GUI will have to be updated somehow, usually
via the drawing thread, but sometimes also a foreground or background task will be launched.
By spinning up the larger core as the event dispatcher starts pushing an event, the larger core
is typically awake by the time the event handler has finished, thus eliminating the latency issue.
Of course if the event does not lead to the GUI being updated, then the core may have been
unnecessarily awakened. This has not been a problem in practice since 1) it is relatively uncommon
for an event not to update the GUI in some way, and 2) even when an individual event does not
update the GUI, events often arrive in bursts, meaning that a subsequent event is likely to update
the GUI, and thus the larger core is quickly needed any way.

6 IMPROVING THE EFFICIENCY OF HARDWARE TIMER INTERRUPTS BY
ELIMINATING POLLING LOOPS

Throughout this paper, we have indicated that the elimination of polling loops can reduce the
power consumption of a mobile device. The specific mechanism by which this power reduction is
achieved is by the improved scheduling of hardware timer interrupts. In this section, we discuss
how we achieved this improved scheduling.
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ALGORITHM 9: The kernel looks at the task’ sleep times to determine when to schedule the next dynamic
tick. If all tasks have an indefinite sleep, then no hardware tick is scheduled. In this case, the only interrupt
from the hardware would be an event, such as the user clicking the power button or finger tapping the LCD
screen. This figure simplifies the process for scheduling dynamic ticks. Rather than iterating through the
entire task list every time a task changes state, the Linux tick scheduler incrementally updates the dynamic
tick time each time an application goes into the sleeping state with the lesser of the current tick time or length
of the task’s sleep segment.
kernel_schedule_tick()

begin
total_sleep_time = FOREVER;
foreach task ∈ task_list do

if task.sleep_time < total_sleep_time then
total_sleep_time = task.sleep_time;

end
end
hardware_timer.set_period(total_sleep_time);

end

A kernel tick is a hardware timer interrupt that is used to perform many kernel-related routines,
such as context switching, application timing, and updating the system clock [14]. A periodic
tick describes a timer interrupt that occurs at a known frequency. This frequency is set when the
Android kernel is compiled and is typically set by the device manufacturer between 250 Hz and
1000 Hz. While periodic ticks are simple, they have a serious drawback: periodic ticks occur even
when all of the applications are idle (i.e., when the tick would be unnecessary). Hence, periodic
ticks unnecessarily use the CPU and prevent the CPU from ever entering a deep sleep since it
is servicing the periodic ticks. In order to mitigate the problem with periodic ticks, the Linux
kernel can be configured as a tickless kernel, which means that rather than having ticks occur at a
regular frequency as with periodic ticks, they occur at a variable frequency and they occur only
when they are needed. Variable frequency timer interrupts are known as dynamic ticks, since the
interrupt is dynamically scheduled to meet the demand of the operating system. Unlike periodic
ticks, dynamic ticks use a programmable timer in order to dynamically schedule the next timed
interrupt to the CPU. For example, when all applications are idle, the timer is programmed so that
it never interrupts the CPU. Instead, the CPU is awakened only when a useful interrupt or event
occurs, such as a finger tap or when the power button is pressed. This allows the CPU to sleep for
much longer periods of time, and hence, the CPU consumes only a minimal amount of power.
Since the ESM uses vectored interrupts to process events, it only requires that dynamic ticks

be scheduled when events occur. Algorithm 9 depicts a simplified version of the kernel’s tick
scheduling algorithm in pseudo code. In contrast, existing pull models force a dynamic tick to
be scheduled for each iteration of a polling loop. For example, if the polling loop delays for 16
milliseconds, the next dynamic tick must be scheduled at most 16 milliseconds in the future. By
eliminating the polling loop, the CPU sleeps for a longer period of time, thus reducing the amount
of power consumed by the CPU.
In particular, if all ESM tasks are sleeping, the guiS artificially sets a timer that monitors the

amount of time since the last user input in the dynamic power scaling subsystem to the timeout
value. Setting the timer to this value effectively forces the dynamic scaling subsystem to think that
no user input has occurred, which then starts the process of shutting down the mobile devices
hardware elements, such as the CPU cores and LCD.
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7 EXPERIMENTS AND RESULTS
The primary goal of the guiS scheduler is to coordinate with the ESM and KDS sub-systems to allow
GUI-oriented apps to be completely de-scheduled when they are incapable of receiving input events
and are in the background. When all open apps are in the background, such as when the mobile
device is idle and in the user’s pocket, then the CPU can enter deep sleep states that conserve
power. A secondary goal of the scheduler is to reduce latency by allowing an app to be immediately
scheduled when an input event occurs rather than having to wait for the next iteration of the
polling loop to detect the event and then schedule the app.
To test our guiS scheduler’s effect on power savings and latency, we designed a spiral tracing

app, a text messaging app, and a video playing app that provide a representative sample of how
different apps interact with a mobile device’s kernel. We then ran our three apps on a 32-bit NVIDIA
TK1 reference board [11] and measured power consumption using the TK1’s power consumption
monitoring system. We established the baseline power consumption of our apps by running them
using the out-of-the-box Android kernel provided with the reference board. This kernel included
the conventional event pull model with polling loop delays set to 16 milliseconds. Then, we ran the
tests again using the Android kernel modified with our KDS/ESM/guiS subsystems.
In the remainder of this section we first describe our three apps and how we performed our

testing on each of them and then we describe the power savings and latency reductions we achieved
with our guiS scheduler.

7.1 Testing Apps
Our test apps and the the typical category of apps they were meant to emulate are described as
follows:

(1) A spiral app in which the user traces a spiral with a stylus while randomly clicking and
releasing the stylus to create mouse down/up events (Figure 2). This app simulates both game
playing apps and apps in which a user browses their screen by clicking on GUI interaction
objects, such as buttons, images, or hyperlinks. Input events arrive regularly and at relatively
evenly spaced intervals in such apps. For testing purposes we traced the spiral for 60 seconds
and recorded a transcript of the events. The test generated 1614 events. Then, we scaled all of
the events to fit into a 10 second test (161.4 events per second), a 20 second test (80.7 events
per second), and a 60 second test (26.9 events per second). We chose these time frames in
order to test the efficiencies (or lack thereof) of scheduling the CPU in the context of rapidly
occurring events versus infrequently occurring events.

(2) The standard Android text messaging app which we instrumented to send text messages to
and from a server with pauses to simulate a user reading the text message and formulating
a response. This simulates an interaction style that is typical of many social media apps in
which input events arrive in an irregular, “bursty” fashion. For example, a user may use the
keyboard to key in a text message and then pause to read one or more text messages. Our
testing program used a simulated keyboard to compose and send a random text message to
the server, receive a reply, wait for 5 seconds to simulate a user reading the text message,
and then send a return text message to the server. We used a 20 second test which meant on
average that there were three round trips between the user and the server.

(3) A video playing app which has minimal interaction with a user but which writes large
amounts of data to the frame buffer. This app simulates media playing apps, including audio-
based apps such as Pandora and Sirius, and video playing apps, such as ESPN and YouTube.
These apps do a good deal of foreground processing of audio or video but typically do not
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Fig. 2. A screen shot of the spiral app. The user traced a spiral path from point A to point Z while randomly
pressing and releasing the stylus. The app displayed blue stars wherever the user pressed the stylus and red
stars wherever the user released the stylus. The stylus events were transmitted to the kernel as mouse pressed
and released events.

perform much event handling. For our tests the video playing application displayed a 30-
second movie clip with no event handling so that we could observe how the guiS scheduler
performed in the absence of input events. The movie clip used MPEG-4, Part 10 (AVC/H.264)
encoding. The movie frames were 1920 pixels wide by 1080 pixels tall and the clip was played
at a rate of 29.97 frames per second.

7.2 Power Savings
By taking advantage of the scheduling information provided by the KDS and the elimination of
polling loops by the ESM, the guiS scheduler was able to obtain the power savings shown in Table 2.
For the spiral and text messaging apps, almost all of the power savings comes from the elimination
of polling loops and the ability of guiS to power down the cores when events are not being received.
As might be expected, the guiS achieved its best performance on the text messaging app since
events occurred in bursts followed by relatively long idle times.
In the spiral app, guiS achieved greater power consumption savings as the average intervals

between incoming events increased. This is to be expected since for both the 10 second and 20
second tests, the average spacing between events is less than the 16ms clock rate and therefore both
the push and pull event models are dealing with event queues that often have events in them and
therefore the guiS scheduler cannot power down the CPU. However, even in these two tests, guiS
achieved some savings because the events were not completely evenly spaced and so occasionally
there were pauses where the event queues emptied and the core could be put in a lighter sleep
mode. In the 60 second test, the event queue frequently emptied and guiS was able to power down
the core handling the spiral app more frequently.
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App Power Reduction (milliwatts) Power Reduction (%)
Spiral (10s) 41 mW 5%
Spiral (20s) 118 mW 15%
Spiral (60s) 185 mW 23%

Text Messaging 218 mW 30%
Video (Average Savings) 182 mW 6%
Video (Peak Savings) 400 mW 11%

Table 2. Power reductions achieved by guiS on 3 different apps.

Finally, guiS achieved its power savings in the video app via another means. In the video app,
the pull model’s increased power consumption is a result of the CPU cores being taken off task
from decoding video in order to service the event polling loops. The CPU must then catch up by
decoding the video frames that were delayed while the CPU was diverting attention to the pull
model event system. When we probed deeper, we discovered that multitasking between decoding
video and polling devices perturbs cache locality and this produces extra stress, hence extra power
consumption, on the CPU. With the guiS/ESM/KDS model, there was no diversion to the event
system because no events were being generated and hence guiS was able to keep the CPU focused
on the task of decoding the video, thus eliminating the cache perturbations associated with the
pull model.

7.3 Reductions in Latency
The guiS scheduler was also successful in reducing latency for the two event handling apps, which
were the spiral and text messaging apps. It reduced latency for the spiral app by an average of 0.3
milliseconds for the 10-second test, 1.9 milliseconds for the 20-second test, and 6.7 milliseconds
for the 60-second test. The better performance as the length of the test increases is due to the fact
that the events arrive at larger intervals and in particular more frequently exceed the 16ms testing
period of the polling loops in the pull model. If an event arrives inside the 16ms testing period of
the polling loop, then there is an event waiting in the queue when the current event has finished
its processing and hence there is no latency between the processing of events. However, if the next
event falls outside this 16m window, then the app must wait until the next 16ms window to process
the event and this creates some latency.

The guiS scheduler was even more effective at reducing latency in the text messaging app, doing
so by an average of 13.6ms and up to 17.1 milliseconds in some interactions. The reason for the
increased effectiveness of the guiS scheduler is twofold. First, the polling loop sleeps in 16ms
chunks during idle periods and hence takes some time to detect the next event when it arrives.
Second, users do not type as quickly as they move a stylus and in particular the intervals between
keystrokes tends to exceed 16ms so there is almost always some delay before a polling loop detects
a keyboard event. One would not expect latency to average more than 8ms for a 16ms polling
loop or to exceed 16ms in any situation but there was another factor that increased latency for the
event pull model which is scheduler-induced latency. The default scheduler for the pull model is
the Completely Fair Scheduler (CFS) which attempts to give an equal share of CPU time to each
process [17]. Therefore, an app could be starved of CPU time if the scheduler determined the app
had consumed more than its fair share of CPU. Because the apps’ polling loop consumed CPU
time, they were sometimes scheduled less frequently than the polling loop desired. The removal
of polling loops by the ESM subsystem eliminates this penalty and hence apps running in the
guiS/ESM/KDS kernel do not suffer scheduler induced latency. In addition, even if the CPU is in a
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power reducing sleep state, the guiS scheduler can spin up a lower power core quickly to process a
pushed event as soon as it occurs, thus keeping latency quite low.

8 CONCLUSION
In this paper, we have presented a graphical user interface scheduler (guiS) that can be used in
mobile devices to improve the scheduling performance of GUI-oriented apps. guiS takes advantage
of knowledge that is provided by a separate kernel component we have implemented, the Kernel
Display System (KDS). The KDS divides an app into four threads: event handling, display, foreground
tasks, and background tasks. When an app is not currently visible and is also in the background,
then all threads, except for the background thread, can be de-scheduled. When an app is not
currently visible, but may be still active, such as streaming audio, then the event handling and
display threads can be de-scheduled while the background and foreground threads continue to
execute. The KDS tells guiS when an application changes state, and guiS responds by appropriately
scheduling or de-scheduling threads based on the GUI’s state. For backward compatibility, if the
application is not a GUI application, the guiS reverts to “compatibility mode”, where applications
are scheduled according to the current completely fair scheduler (CFS) algorithms.

Our experiments have shown that the combination of the ESM, KDS, and guiS reduces the power
consumption of certain apps by up to 30% and reduces their latency by up to 17.1 milliseconds when
compared with the current pull event model. In low computation environments with irregularly
occurring events, the Event Stream Model’s removal of polling loops is the main contribution to
this power consumption and latency reduction. The KDS and guiS make further modest power
consumption and latency reductions, although it is important to note that guiS is required to
achieve the ESM power consumption reductions since it is the one which de-schedules the event
handling threads and handles the dynamic tick computations, thus allowing the CPU to enter its
deep sleep states. In high computation environments with few or no occurring events, the KDS and
guiS scheduler make the main contributions to power consumption reduction by allowing the CPU
to remain focused on one task rather than having to context switch to polling tasks. The ability to
stay on task both reduces memory cache misses and keeps the CPU from having to go to higher
power states to make up for “lost time”.
Finally, we developed some simple heuristics for determining how to allocate tasks among

the lower and higher power consuming cores. In the future, it would be useful to look at more
sophisticated strategies for dynamically allocating tasks to the appropriate core. For example, one
might come up with better ways to distinguish IO-intensive from CPU-intensive tasks in the context
of GUI applications or better strategies for migrating event handlers between lower and higher
power consuming cores.
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