
A Tool for Sketching and Manipulating Binary Heaps

Brad Vander Zanden and Michael Beeler
Computer Science Department

University of Tennessee
Knoxville, TN 37996

bvz@cs.utk.edu, beeler@cs.utk.edu

ABSTRACT
Data structures are one of the most fundamental topics taught in
computer science courses. Instructors often use diagrams to illus-
trate the operations that are performed on data structures but there is
a lack of computerized teaching tools with domain-specific knowl-
edge that could assist an instructor in sketching and manipulating
these data structures. This paper introduces a prototype tool that al-
lows users to quickly sketch and manipulate binary heaps. The tool
allows optional captions to be associated with the manipulations of
the heaps so that students can use this tool for self-directed study.
Eventually we hope to extend this tool to work with many different
types of data structures, including arrays, lists, trees, and graphs.

Categories and Subject Descriptors
E.1 [Data Structures]: trees; K.3.2 [Computers and Education]:
Computer and Information Sciences Education

General Terms
algorithms

Keywords
binary heaps, animation, instruction

1. INTRODUCTION
Instructors in Computer Science often present new data struc-

tures to students using a combination of pseudo-code and drawings
on a whiteboard. As instructors explain the algorithms associated
with the data structure, they will rapidly change the drawings to
represent changes within the structure. A student attempting to fol-
low the instructor’s lecture and take quality notes on the topic may
quickly find they are doing neither.

Our research group is designing a data structure sketching tool
that aims to change this dynamic. An instructor using this tool can
rapidly sketch a data structure, type in any needed values, and use
pre-supplied animations to provide a step-by-step demonstration of
how the structure is changed as various algorithms are performed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

on it. Instructors can save their examples and students can later re-
view them or build their own examples and test various algorithms
on the newly sketched structures. Captions are provided with each
animation step so that the student can understand what is happen-
ing, even without having the instructor present. Hastily sketched
notes will not be needed as a student can reproduce a class lecture
by watching a saved sample provided by the instructor or by creat-
ing their own examples and experimenting with them. Ultimately it
is our intention to provide animation building blocks that will allow
instructors to create their own animations. However, the Working
Group on Evaluating the Educational Impact of Visualization [16]
reports that one reason instructors often do not use animations is
that they do not have time to create their own. Hence we decided to
initially concentrate on providing a set of our own animations with
the tool.

The tool also currently includes a number of other features to aid
an instructor or student. First, a property sheet allows an instruc-
tor to customize an animation for the textbook they are using or for
their own teaching style. For example the pre-supplied captions can
be edited and the names of the operations can be changed. This cus-
tomization feature was added to address the concerns voiced by the
visualization working group that animations were often not used
because instructors could not customize the animations to the text-
book they were using [16]. Second, the animations can be stepped
through at the user’s own pace and the animations can be reversed
to return to a previous state.

The rest of this paper is organized as follows. Section 2 describes
previous work. Sections 3-4 present an example interaction with
the tool and a brief overview of its design and implementation. Fi-
nally the paper concludes with a discussion of potential future work
and conclusions.

2. RELATED WORK
A great deal of work has been expended on creating various

toolkits that allow instructors or students to either instrument code
to produce an animation of an algorithm or else to write a script that
produces an animation of an algorithm [15, 10, 26, 27, 4, 5, 22, 7,
8, 3, 23, 20, 1]. Our tool differs from these tools in that it produces
data structures through sketching, not via a script or program. An-
other difference is that our tool provides captions that accompany
the animation. One can also find animations of heaps on the web,
such as [2]. However these animations tend to have more limited
functionality than our tool, for example by hard-coding the values
provided to the heap or only providing a limited set of operations,
such as insert and extract max. There have also been studies that
look at the effectiveness of animations. These studies imply that
some type of active participation, rather than passive participation,
is required to make the animations effective [24, 12, 6, 25, 18, 19,

21]. They also imply that well designed illustrations that contain
both explanatory text and graphics can improve students’ mastery
of concepts, compared with purely textual instruction [13, 14, 17,
9, 11]. Our tool is meant to be used by instructors during interac-
tive lecture sessions so while it is true that students can sit back and
remain passive it is also true that students can actively participate
and ask the professor to change values in the heap or change the
structure of the heap and observe what happens as operations are
performed. Additionally students can actively participate on their
own by drawing their own example heaps and applying operations
to these heaps. Finally we have incorporated a multi-view envi-
ronment in our tool and plan to expand it in the future by allowing
sound bites to be incorporated that describe the type of operation
which is being performed.

3. AN EXAMPLE SESSION
In this section we will give a brief description of how a user

can create and animate the operations on a MaxHeap. Figure 1
shows a sample screen shot of the tool. The tool has two modes,
a construction mode for creating binary heaps and an operations
mode for applying operations to the constructed heap.

A user can either sketch a binary heap or create one using the
construction menu’s fast build option. To sketch a tree the user
starts by clicking anywhere on the canvas to create the initial root
node. The user then clicks and drags from the root node to start
creating the nodes of the binary heap. Anytime that the user clicks
on a node and then drags the mouse away from the node a new
child is created, provided that the node does not already have two
children. To keep the creation of binary heaps simple we decided
to support only one style of sketching. To determine which style
of sketching was most ”natural” for people, we asked a number of
instructors and students to quickly draw binary trees. The majority
of individuals drew a node, then drew edges from the node and
created new nodes at the end of the edges. Hence it was the style
we adopted.

Once the nodes have been created, or even while nodes are being
created, the user can select a node and enter a value. Hitting the
enter key will cause a left to right, top to bottom traversal of nodes
so that all the nodes can be given values without moving the mouse.
At any time the user can select the beautify button and the tool will
draw a nicely formatted version of the tree.

The second way to create a binary heap is to use the quick struc-
ture builder menu. It asks for the number of levels in the tree and an
optional number of leaves for the bottom level. The user can also
ask that the heap be populated with a set of random values selected
from a user specified range. Initially the heap property will not be
satisfied. Figure 1 shows an example of a heap created using the
quick build feature.

3.1 Max Heapify
When the user finishes construction of the tree, the user can se-

lect Build Max Heap to enter Operations Mode. The sketching tool
will first verify that the heap is structurally sound, namely that it is a
complete binary tree except for the bottom level, and that the leaves
of the bottom level are filled from left to right. If the user has cre-
ated an incomplete tree, the sketching tool will draw ”ghost” nodes
that make the heap structurally sound. The ghost nodes appear as
gray nodes with gray edges. A dialog box also appears asking the
user if the user wishes to accept the ghost nodes. Accepting the
ghost nodes causes the sketching tool to introduce the nodes to the
structure as full nodes. Rejecting the ghost nodes leaves the ghost
nodes in place and allows the user to connect them individually.
Canceling the operation removes the ghost nodes. Selecting either

of the latter two options will prevent the heapify operation from
taking place. Ghost nodes are intended to aid in the rapid building
of trees for instructors and to aid students by providing a visual rep-
resentation of the structural state required to heapify a binary tree.
The heapify operation will also check to make sure that all nodes
have a value and alert the user if one or more nodes is valueless.

Once the structure has been verified the sketching tool actually
performs the heapify operation internally but does not yet reflect it
on the screen. The user can press the Next button to start a step-by-
step animation of the heapify process. The sketching tool brings the
user’s attention to the bottom right-most node in the tree that has
children by flashing the children. Simultaneously a caption appears
explaining the purpose of this step, which is to find the larger of the
two children. When the user is ready to proceed to the next step the
user again presses the Next button and the sketching tool flashes
the larger of the two children and the parent node. Again a caption
appears explaining that heapify is comparing the two nodes to de-
termine which one is the largest. A third press of the Next button
will cause the two nodes to be swapped if the child is larger than the
parent (Figure 2). If the two nodes do not need to be swapped then
the animation proceeds to the comparison of the next two nodes in
the heapify process. Using Next, the user can step through every
step in the heapify process. At any time, the user can use the Pre-
vious button to step backwards through the heapify process. Using
Play will cause the animation of the heapify operation to occur con-
tinuously until it is either completed or the user presses the pause
button.

3.2 Operations on the Heapified Tree
Once the structure has been heapified, the user can select oper-

ations from the operations menu to operate on the heap. Currently
the tool supports inserting a new value into the heap, removing the
maximum value from the heap, deleting a selected node from the
heap, and updating the value of a node in the heap. As with the
heapify operation, when the user selects an operation the sketching
tool performs the operation internally and then allows the user to
press the animation controls to control the animation of the opera-
tion.

3.3 Exiting Operations Mode
The user can return to sketching mode by either using the Exit Op

Mode button or resetting the structure. Resetting the structure will
return it to its original, un-heapified state. To return to Operations
Mode, Build Max Heap must be used again. Repeating the heapify
operation ensures that the heap is still structurally sound.

3.4 Editing Properties
A pop-up property sheet allows various aspects of a heap to

be customized. For example, the names of the operations can be
changed to match those found in the instructor’s textbook. Thus
an instructor could change the ”Extract Heap” operation to read
”deleteMax” instead. Similarly a property allows the heap to be
treated as either a min or max heap.

4. DESIGN AND IMPLEMENTATION
The sketching tool is written in Java and is currently written as a

stand alone application. Its class structure is designed to be easily
extensible so as to allow new data structures to be rapidly added to
the tool in the future. The class hierarchy used to build, modify,
and animate a data structure are described below.

4.1 The Structure Class

Figure 1: A screenshot taken of a binary heap that has been created using the quick structure builder. As requested by the user,
the binary heap contains three levels, with three leaves on the bottom level, and the heap has been populated with random values
between 32 and 64.

Figure 2: A screenshot taken while 61 is being promoted to a parent during the heapify operation.

The structure class is the abstract base class for all data structures
used by the sketching tool. Our initial goal is to allow the rapid
sketching of node and edge based structures, such as trees, lists
and graphs, so the structure class declares methods for creating and
deleting nodes, directing how nodes are connected with edges, and
specifying ”wellformedness” rules for the structure. Additionally
it holds the animation event queue, which will be described later.
As an example, a binary tree extends the structure class by pro-
viding wellformedness rules that allow only two children for each
parent and that establish a root node. Our Max-Heap data structure
extends binary tree and provides functions to heapify, extract the
max node, insert or delete nodes, and update the priority of existing
nodes. Max-Heap’s functions generate structure events and popu-
late the structure’s animation event queue. Max-Heap adds the ad-
ditional wellformedness rule that the binary tree must be complete
except for the bottom level.

4.2 The Structure Event Class
The structure event class provides a base class for animating ob-

jects in a data structure. Each class that extends the structure event
class needs to provide methods for doing both an animation and re-
verse animation (i.e., restoring a data structure to its previous state).
Additionally, an event class can provide an optional caption to be
displayed when the event is executed. The caption should describe
the sub-operation being performed (e.g., compare or swap). Oper-
ations such as heapify or insert-node generate the appropriate set
of animation events and store them on the animation queue pro-
vided by the structure class. These events are then popped off or
pushed onto the animation queue by the next, previous, and play
buttons. Our max heap data structure makes extensive use of com-
pare and swap events. These events can also be used by other data
structures, such as a linked list data structure that is currently under
development.

4.3 The Node and Edge Class
These abstract classes exist to implement the individual elements

of the structure class and they include the unique attributes of the
structure. For example, with a binary tree the classes are extended
to binaryNode and binaryEdge respectively. binaryNode has a pointer
to a parent and to two children. binaryEdge provides an unweighted
edge that connects two nodes. Abstract draw methods available for
node and edge allow their subclasses to draw each component and
respond to any commands issued by the data structure.

5. FUTURE WORK
At the suggestion of one of our instructors we are currently adding

an array at the bottom of the graphics window so that users can see
how the array implementation of a heap looks. At a higher level we
would ultimately like to allow instructors to be able to sketch a wide
variety of data structures, including arrays, lists, trees, and graphs,
and provide appropriate sets of operations for manipulating these
data structures. We would also like to expose the lower level an-
imation events, such as swap and compare, so that instructors can
assign homework problems that students can solve by producing
their own animations. Finally we would like to provide an area for
displaying pseudo-code or source code and highlighting the state-
ments in the code that would be executed to produce the effects
being shown in the graphics window. Finally we plan to start us-
ing this tool in the classroom to gain feedback from students and
instructors as to its effectiveness and usability.

6. CONCLUSIONS
The sketching tool described in this paper provides an inter-

active, fast, and educational way of both presenting and learning
about binary heaps. It can be used in lectures, individual discus-
sions with students, or by students themselves to quickly create
custom heaps and to experiment with the effects that operations
have on these heaps. The use of captions and animations allow the
students or instructors to move through the operations in a step-by-
step fashion with an explanation provided at each step as to what
is happening. It is hoped that the use of this tool in the classroom
can alleviate the difficulties that students often have in taking notes
when instructors are rapidly changing diagrams since the students
will be able to experiment with the diagrams themselves and at their
own pace once class is over.

7. REFERENCES
[1] AKINGBADE, A., FINLEY, T., JACKSON, D., PATEL, P.,

AND RODGER, S. Jawaa: Easy web-based animation from cs
0 to advanced cs courses. In SIGCSE Symposium on
Computer Science Education (Reno, NV, Feb 2003), ACM,
pp. 162–166.

[2] ANG, W. Priority queue animation. 1998.
[3] BAKER, R. S., BOILEN, M., GOODRICH, M. T.,

TAMASSIA, R., AND STIBEL, B. A. Testers and visualizers
for teaching data structures. In ACM Technical Symposium
on Computer Science Education (New Orleans, LA, 1999),
Proceedings SIGCSE’1999, pp. 261–265.

[4] BROWN, M. H. Exploring algorithms using Balsa-II. IEEE
Computer 21, 5 (May 1988), 14–36.

[5] BROWN, M. H. Zeus: A system for algorithm animation and
multi-view editing. In Proceedings of the IEEE Symposium
on Visual Languages (Kobe, Japan, Oct 1991), IEEE
Computer Society, pp. 4–9.

[6] BYRNE, M., CATRAMBONE, R., AND STASKO, J.
Evaluating animations as student aids in learning computer
algorithms. Computers and Education 33 (1999), 253–278.

[7] DERSHEM, H. L., MCFALL, R. L., AND UTI, N.
Animation of java linked lists. In ACM Technical Symposium
on Computer Science Education (Cincinnati, Kentucky,
2002), Proceedings SIGCSE’2002, pp. 53–57.

[8] HAMILTON-TAYLOR, A. G., AND KRAEMER, E. Ska:
supporting algorithm and data structure discussion. In ACM
Technical Symposium on Computer Science Education
(Cincinnati, KY, 2002), Proceedings SIGCSE’2002,
pp. 58–62.

[9] HANSEN, S., NARAYANAN, N., AND HEGARTY, M.
Designing educationally effective algorithm visualizations:
Embedding analogies and animations in hypermedia. Journal
of Visual Languages and Computing 13, 3 (2002), 291–317.

[10] HENRY, R., WHALEY, K., AND FORSTALL, B. The
University of Washington illustrating compiler. Sigplan
Notices 25, 6 (1990), 223–233.

[11] HUNDHAUSEN, C., DOUGLAS, S., AND STASKO, J. A
meta-study of algorithm visualization effectiveness. Journal
of Visual Languages and Computing 13, 3 (2002), 259–290.

[12] KEHOE, C., STASKO, J., AND TAYLOR, A. Rethinking the
evaluation of algorithm animations as learning aids: an
observational study. International Journal of
Human-Computer Studies 54, 2 (Feb 2001), 265–284.

[13] MAYER, R., AND ANDERSON, R. Animations need
narrations: An experimental test of a dual-coding hypothesis.
Journal of Educational Psychology 83, 4 (1991), 484–490.

[14] MAYER, R., AND ANDERSON, R. The instructive
animation: Helping students build connections between
words and pictures in multimedia learning. Journal of
Educational Psychology 84, 4 (1992), 444–452.

[15] MUKHERJEA, S., AND STASKO, J. T. Toward visual
debugging: Integrating algorithm animation capabilities
within a source-level debugger. ACM Transactions on
Computer Human Interaction 1, 2 (June 1994), 161–213.

[16] NAPS, T., COOPER, S., KOLDEHOFE, B., LESKA, C.,
ROSSLING, G., DANN, W., KORHONEN, A., MALMI, L.,
RANTAKOKKO, J., ROSS, R., ANDERSON, J., FLEISCHER,
R., KUITTINEN, M., AND MCNALLY, M. Evaluating the
educational impact of education. In Working Group Reports
from ITiCSE on Innovation and Technology in Computer
Science Education (Thessaloniki, Greece, 2003), ITiCSE,
pp. 124–136.

[17] NARAYANAN, N., AND HEGARTY, M. Multimedia design
for communication of dynamic information. International
Journal of Human-Computer Studies 57, 4 (2002), 279–315.

[18] PALMITER, S., AND ELKERTON, J. An evaluation of
animated demonstrations for learning computer-based tasks.
In Human Factors in Computing Systems (New Orleans, LA,
Apr 1991), Proceedings SIGCHI’91, pp. 257–263.

[19] PANE, J., CORBETT, A., AND JOHN, B. Assessing
dynamics in computer-based instruction. In Human Factors
in Computing Systems (Vancouver, Canada, Apr 1996),
Proceedings SIGCHI’96, pp. 197–204.

[20] PIERSON, W., AND RODGER, S. Web-based animation of
data structures using jawa. In SIGCSE Symposium on
Computer Science Education (Atlanta, GA, Feb 1998),
ACM, pp. 267–271.

[21] RIEBER, L., BOYCE, M., AND ASSAD, C. The effects of
computer animation on adult learning and retrieval tasks.
Journal of Computer-Based Instruction 17 (1990), 46–52y.

[22] ROBLING, G., AND FREISLEBEN, B. Animalscript: an
extensible scripting language for algorithm animation. In
ACM Technical Symposium on Computer Science Education
(Charlotte, NC, 2001), Proceedings SIGCSE’2001,
pp. 70–74.

[23] STASKO, J. Using student-built algorithm animations as
learning aids. In ACM Technical Symposium on Computer
Science Education (San Jose, CA, Feb 1997), Proceedings
SIGCSE’1997, pp. 25–29.

[24] STASKO, J. Empirically Assessing Algorithm Animations as
Learning Aids. MIT Press, 1998, ch. 28, pp. 419–438.

[25] STASKO, J., BADRE, A., AND LEWIS, C. Do algorithm
animations assist learning? an emporical study and analysis.
In Human Factors in Computing Systems (Amsterdam,
Netherlands, Apr 1993), Proceedings INTERCHI’93,
pp. 61–66.

[26] STASKO, J. T. Tango: A framework and system for
algorithm animation. IEEE Computer 23, 9 (September
1990), 27–39.

[27] STASKO, J. T. Using direct manipulation to build algorithm
animations by demonstration. In Human Factors in
Computing Systems (New Orleans, LA, Apr 1991),
Proceedings SIGCHI’91, pp. 307–314.

