Is $n^2 + n + 1 = O(n^2)$? To prove this, we need to find a constant c such that $cn^2 \ge n^2 + n + 1$. Let c = 2 – that should work. Now we need to find a constant x such that for all $n \ge x$, $2n^2 \ge n^2 + n + 1$. We'll try x = 10.

Let's proceed by an inductive argument. To make our life simpler, let $f(n) = 2n^2$, and $g(n) = n^2 + n + 1$. When n = 10, f(n) = 200 and g(n) = 111, so f(x) > g(x). Now, let's assume that our statement is true for all values between 10 and n for some n. We already know that this is true for n = 10. Let's look at n + 1:

$$f(n+1) = 2(n+1)^2$$

= 2n² + 4n + 2
= f(n) + 4n + 2

$$g(n+1) = (n+1)^2 + (n+1) + 1$$

= $n^2 + 2n + 1 + n + 1 + 1$
= $n^2 + 3n + 3$
= $(n^2 + n + 1) + 2n + 2$
= $g(n) + 2n + 2$

From our inductive hypothesis, we know $f(n) \ge g(n)$, thus:

$$f(n) + 4n + 2 \ge g(n) + 4n + 2$$

Since $n \ge 10$, 4n + 2 > 2n + 2, and therefore:

$$f(n) + 4n + 2 > g(n) + 2n + 2$$

 $f(n+1) > g(n+1)$

Therefore, for all $n \ge 10$, $2n^2 > n^2 + n + 1$, meaning $2n^2 \ge n^2 + n + 1$, and therefore $n^2 + n + 1 = O(n^2)$