Is $n^{2}+n+1=O\left(n^{2}\right)$? To prove this, we need to find a constant c such that $c n^{2} \geq n^{2}+n+1$. Let $c=2$ - that should work. Now we need to find a constant x such that for all $n>=x, 2 n^{2} \geq n^{2}+n+1$. We'll try $x=10$.

Let's proceed by an inductive argument. To make our life simpler, let $f(n)=2 n^{2}$, and $g(n)=n^{2}+n+1$. When $n=10, f(n)=200$ and $g(n)=111$, so $f(x)>g(x)$. Now, let's assume that our statement is true for all values between 10 and n for some n. We already know that this is true for $n=10$. Let's look at $n+1$:

$$
\begin{aligned}
f(n+1) & =2(n+1)^{2} \\
& =2 n^{2}+4 n+2 \\
& =f(n)+4 n+2 \\
g(n+1) & =(n+1)^{2}+(n+1)+1 \\
& =n^{2}+2 n+1+n+1+1 \\
& =n^{2}+3 n+3 \\
& =\left(n^{2}+n+1\right)+2 n+2 \\
& =g(n)+2 n+2
\end{aligned}
$$

From our inductive hypothesis, we know $f(n) \geq g(n)$, thus:

$$
f(n)+4 n+2 \geq g(n)+4 n+2
$$

Since $n \geq 10,4 n+2>2 n+2$, and therefore:

$$
\begin{aligned}
f(n)+4 n+2 & >g(n)+2 n+2 \\
f(n+1) & >g(n+1)
\end{aligned}
$$

Therefore, for all $n>=10,2 n^{2}>n^{2}+n+1$, meaning $2 n^{2} \geq n^{2}+n+1$, and therefore $n^{2}+n+1=O\left(n^{2}\right)$

